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ABSTRACT. Improve quality of timber structures design is an aim that must be systematically sought by 
engineers in this area. An important topic that can contribute directly to be achieved in this subject is the more 
consistent knowledge related to structural properties of wood. Know values of longitudinal modulus of 
elasticity (E) and shear modulus (G) is essential for proper evaluation of plate structures performance, as 
example. It has been usual to adopt statistical equivalence for E and G values in plans longitudinal-radial and 

longitudinal-tangential, although experimental confirmation of this hypothesis is required. In this context, the 
aim of this work is to determine values of ELR, ELT, GLR and GLT, based on static bending tests, to five 
dicotyledonous species. Results showed statistical equivalence between the elastic properties in both plans, and 
the relation E = 35G was obtained for the five wood species here considered. 

Keywords: static bending test, timber, shear modulus, longitudinal modulus of elasticity. 

Módulo de elasticidade transversal e longitudinal da madeira: relações baseadas nos 

ensaios de flexão 

RESUMO. Melhorias no projeto das estruturas de madeira são metas que devem ser sistematicamente 

almejadas por profissionais da área. Um tópico importante que pode contribuir diretamente para isso está 
relacionado a um conhecimento mais profundo a respeito das propriedades de resistência e de rigidez da 
madeira. O conhecimento dos módulos de elasticidade longitudinal (E) e transversal (G) é essencial para a 
avaliação do desempenho de placas entre outros elementos estruturais. No dimensionamento estrutural 
tem sido comum adotar equivalência estatística dos valores de E e G nas direções longitudinal-radial e 
longitudinais-transversal. Este trabalho objetivou determinar valores dos módulos de elasticidade ELR, ELT, 
GLR e GLT com base em testes de flexão estática para cinco espécies dicotiledôneas, possibilitando avaliar a 
equivalência ou não destas propriedades (ELR e ELT; GLR e GLT) assim como de estabelecer correlações 
adequadas entre E e G. Os resultados revelaram equivalência estatística entre as propriedades elásticas em 
ambas as direções, e a relação E = 35·G foi obtida para espécies de madeira estudadas. 

Palvras-chave: ensaio de flexão estática, madeira, módulo de elasticidade transversal, módulo de elasticidade 

longitudinal. 

Introduction 

Improve quality of timber structures design is a 

aim that must be systematically sought by 

professionals in this area. Among the important 

topics that can strongly contribute to be achieved 

this goal, a more consistent knowledge of structural 

properties of wood can be pointed out. 

Some normative codes in this matter adopt 

arithmetic relations to describe wood properties in 

order to make simple and quick the evaluation of 

structural elements behavior. In the specific case  of  

Brazilian Code NBR 7190 (Associação Brasileira de 
Normas Técnicas [ABNT], 1997), some relations 
between longitudinal modulus of elasticity (E) and 
shear modulus (G) are adopted, but without 
appropriate experimental basis. This can induce to 
doubts in structural design and someone can take 
calculation assumptions that lead to imprecise 
estimation of stresses, as asserted by Bodig and Jayne 
(1982), Calil Junior, Lahr, and Dias (2003), Karlsen 
(1967), Mateus (1961), and Ritter (1990). Know 
values of longitudinal modulus of elasticity (E) and 
shear modulus (G) is essential for proper evaluation 
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of plate structures performance, as example, 
according to Christoforo, Panzera, Batista, Borges, 
and Lahr (2011), Herzog, Natterer, Schweitzer, 
Votz, and Winter (2000), among others. 

Several studies have been conducted to optimize 
the theoretical basis aiming to determine shear 
modulus in wood, considering its features of 
orthotropy, being mentioned among them Gillis 
(1972), Holmberg, Persson, and Petersson (1999), 
Nairn (2007), Price (1929), and Schniewind (1959). 
These authors have contributed to better 
understanding of the problem, usually working with 
the well-known tests in clear specimens. 

Researchers as Ballarin and Nogueira (2003) 
sought to obtain experimental values of G, although 
working mostly with small number of specimens, 
aspect that prevent generalization of the results 
obtained. 

Moreover, it is noteworthy that the values of 
wood stiffness properties can be obtained from non-
destructive testing techniques, according to Ballarin 
and Palma (2009). They point out that, although in 
some cases leading to high variability of results, non-
destructive techniques are configured as an 
interesting alternative to characterize wood from 
planted forests, given the significant amount of 
defects present in them. Papers by Alves and 
Carrasco (2013), Bucur and Archer (1984), 
Gonçalves, Trinca, and Cerri (2011), Gonzales, 
Valle, and Costa (2001), Ross, Brashaw, and Pellerin 
(1998), Sandoz (1989), Stålne and Gustafsson 
(2002), Tallavo, Pandey, and Cascante (2013), Yang, 
Wang, Lin, and Tsai (2008) are other examples of 
the same propositions of the first mentioned 
authors. 

Mascia and Lahr (2006), evaluating aspects of 
wood as an orthotropic material, calculated E and G 
values in the two longitudinal planes. Results 
published by these researchers were object of 
statistical analysis. In a more superficial approach, it 
could not be ruled out a possible difference between 
ELT and ELR and between GLR and GLT for the 
tropical species Jatobá (Hymenaea stilbocarpa). Also 
from data contained in the cited article, it’s possible 
to infer that relation E G-1 is close to 20, for Jatobá. 

Christoforo, Ribeiro Filho, Panzera, and Lahr 

(2013) presented an analytical methodology for 

determination longitudinal and shear moduli for 

structural dimension lumber (proper to wood 

coming from planted forests), using three-point 

static bending tests; adapted from Brazilian Code 

NBR 7190 (ABNT, 1997). Wood species used in 

these trials were Pinus elliottii and Corymbia citriodora. 

The related equations were developed according to 

virtual forces method and the shear shape coefficient 

(fs) to rectangular cross section was adopted as 1.20 

(6/5). Results of coefficients (α) between moduli  

(E = α·G) for the referred wood species were, 

respectively, 18.70 and 21.20, very close to the 

coefficient (20) set by the aforementioned Brazilian 

Code. 
Simplifying, it has been usual to adopt statistical 

equivalence for values of G in the longitudinal-
radial (GLR) and longitudinal-transversal (GLT) 
directions, important parameters related to 
structural design requirements, as evidenced by 
Gillis (1972) and Kretschmann (2010), among 
others. Similar position is taken by the NBR 7190 
(ABNT, 1997) that establishes a unique relationship 
between these properties, i.e., E = G 20-1. 

Then, this work focuses on determining values 
of ELR, ELT, GLR and GLT, based on static bending 
tests, exclusively to some dicotyledonous species 
grown in Brazil, aiming to confirm its equivalence 
(ELR and ELT, GLR and GLT) or to establish proper 
correlations. 

Material and methods 

To achieve the proposed objective, five 
hardwood species were considered, each one 
representing a strength class, according to the 
prescriptions of Brazilian standard document NBR 
7190 (ABNT, 1997): 

- Cedrinho (Erisma uncinatum): class C20; 
- Peroba rosa (Aspisdosperma polyneuron): class 

C30; 
- Tereticornis (Eucalyptus tereticornis): class C40; 
- Canafístula (Cassia ferruginea): class C50; 
- Jatobá (Hymenaea stilbocarpa): class C60. 

The specimens evaluated in experimental 

procedures were properly stored and tested in 

dependencies of Laboratory of Wood and Timber 

Structures (LaMEM), Department of Structural 

Engineering (SET), São Carlos Engineering School 

(EESC), University of São Paulo (USP). 

Inclusion of these wood species in strength classes 

stipulated by NBR 7190 (ABNT, 1997) is based on 

the characteristic values of compression strength 

parallel to grain. 

For each species, results of 12 tests species were 

considered, for specimens with nominal 

dimensions: 5×5×115 cm, with growth rings 

parallel to two opposite faces. 

Each specimen was tested four times in static 

bending: two with force applied on LR plane 

(longitudinal-radial) and two in the LT plane 

(longitudinal-transversal). In all situations, the 

specimens were initially tested according to  

the four-point bending model (Figure 1a), used by  
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- This situation suggests the need of adjusting 
coefficient E/ G for adequate design of timber 
structures. 

It's tempestive to signal that the conclusions here 
commented are only pertinent to tropical wood 
species. 
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