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Abstract 

This paper shows and discusses a generic implementation of the 
global-local analysis toward generalized finite element method 
(GFEMgl). This implementation, performed into an academic 
computational platform, follows the object-oriented approach 
presented by the authors in a previous work for the standard 
version of GFEM in which the shape functions of finite elements 
are hierarchically enriched by analytical functions, according to 
the problem behavior. In global-local GFEM, however, the en-
richment functions are constructed numerically from the solution 
of a local problem. This strategy allows the use of a coarse mesh 
even when the problem produces complex stress distributions. On 
the other hand, a local problem is defined where the stress field 
presents high gradients and it is discretized using a large number 
of elements. The results of the local problem are used to enrich the 
global problem which improves the approximate solution. The 
great advantage is allowing a well-refined description of the local 
problem, when necessary, avoiding an overburden for the compu-
tation of the global solution. Details of the implementation are 
presented and important aspects of using this strategy are high-
lighted in the numerical examples. 
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1 INTRODUCTION 

Finite element method (FEM) is a powerful method to solve various physical problems. This meth-
od is robust and has been thoroughly developed to solve engineering and applied science problems 
such as linear and non-linear stress analysis of solid and structures, electromagnetism, fluid flows 
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and similar fields. In generalized finite element method (GFEM), Melenk and Babuška (1996), 
Strouboulis et al. (2000a), Duarte et al. (2000), Strouboulis et al. (2001), as in FEM, the approxi-
mation is built over a mesh of elements using interpolation functions. However, the approximation 
is associated with nodal points as in the Meshless methods, and it is enriched in the same fashion as 
in the hp-cloud method, Duarte et el. (1995), Duarte (1996), Liszka et al. (1996), Oden et al. (1998). 
Special functions multiply the original FEM functions and smooth and non-smooth solutions can be 
modeled independently of the mesh. The enrichment strategy of GFEM is similar to the one used in 
the extended finite element method (XFEM), introduced in Belytschko and Black (1999). 

Global-local FEM was proposed by Noor (1986) in order to solve non-linear problems. This 
method was presented after proposing zooming method by Hirai et al. (1985). A local problem is 
defined where a local phenomenon happens. The global-local FEM approach has two steps. The first 
step is done with a coarse FEM mesh that ignores the effect of the local phenomena. This is fol-
lowed by the second step which includes an analysis of the local region using refined finite element 
meshes. The key parameter for the local analyses is the application of field state variables as bound-
ary conditions on the local boundaries. Once the solution of local problem is obtained, the global-
local FEM analysis can be finished. In global-local GFEM (GFEMgl), Duarte et al. (2007), a varia-
tion of the standard GFEM, enrichment functions are constructed numerically from the solution of 
a local problem. GFEMgl approach has three steps, its first and second steps are the same as the 
global-local FEM. In the third step, the results of the local problem are used to enrich the global 
problem which improves the approximate solution. In the case of fracture mechanic problems, the 
stress field around the crack tip presents high gradients and it is discretized using a large number of 
elements. The great advantage is providing a well-refined description of the local problem. More 
information on global-local GFEM, considering its various aspects can be found in Duarte and Kim 
(2008), Kim et al. (2008), Kim et al. (2009), Kim et al. (2010), Pereira et al. (2011), Gupta et al. 
(2012), Kim et al. (2012), Gupta et al. (2013), Evangelista et al. (2013), Plews and Duarte (2015). 

According to Alves et al. (2013), the similarity between GFEM/XFEM and FEM can allow a 
straightforward migration for these methods and also the reuse of the FEM structure. This migra-
tion and code reuse depend on how the FEM code is implemented, and a successful strategy is the 
object-oriented approach. Following such strategy several implementations have been proposed, 
Strouboulis et al. (2000a), Strouboulis et al. (2001), Bordas et al. (2007), Dunant et al. (2007), Nis-
tor et al. (2008), Chamrová and Patzák (2010), Neto et al. (2013). In Alves et al. (2013), the FEM 
programming environment proposed by Fonseca and Pitangueira (2007) is expanded to enclose the 
standard version of GFEM. This environment, so called INSANE (Interactive Structural Analysis 
Environment) is an open source software available at http://www.insane.dees.ufmg.br and written 
in Java language. In the present paper, a new expansion that includes the GFEMgl is presented. 
The implementation, conducted through the development of comprehensive object-oriented design, 
allows generalization of the global-local approach in such way that any types of partition of unity 
methods, analysis model and enrichment strategy can be combined. It also allows that stress and 
strain field can be applied as boundary conditions for local problems in addition to the capability of 
applying displacement boundary condition. Details of the implementation are discussed and im-
portant aspects of using these strategies are highlighted in numerical examples. This work is orga-
nized as follows: A brief explanation of GFEM is presented in section 2. In section 3, main ideas and 
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formulations of global-local GFEM is presented. The INSANE class organization and its expansion 
to include GFEMgl method are discussed in section 4. In the section 5, numerical examples are pre-
sented, and final section is devoted to concluding remarks and discussion. 
 

2 THE GENERALIZED FINITE ELEMENT METHOD 

A brief explanation of GFEM is described in this section. Further details can be found in Melenk 
and Babuška (1995), Babuška and Melenk (1997), Oden et al. (1998), Duarte  et al. (2000), Strou-
boulis et al. (2001), Pereira et al. (2011). The GFEM was developed for modeling structural prob-
lems with discontinuities. The origins of this method can be summarized as: 

• Research done by Babuška and co-workers – initially named as special finite element method 
by Babuška et al. (1994) and later as partition of unity method (PUM) by Melenk and Ba-
buška (1996). 

• Then, as a meshless formulation in the hp-cloud method, Duarte et al. (1995), and later as a 
hybrid approach with the FEM, Oden et al. (1998). 

Furthermore, it can be considered an instance of the PUM, in the sense that it employs a set of 
PU functions to guarantee interelement continuity. Such strategy creates conforming approxima-
tions which are improved by a nodal enrichment scheme. This basic idea shares the same character-
istics from XFEM proposed by Belytschko and Black (1999), as it is observed in Fries and Be-
lytschko (2010). 

Here this procedure is summarized following Barros et al. (2004, 2013) and considering two-
dimensional space. A conventional finite elements mesh can be considered for which  is a set 

of NE elements, defined by N nodes, . 

A generic patch of elements or cloud 
jw Î W  is obtained by the union of finite elements sharing 

the vertex node 
jx , Fig. 1(a). The assemblage of the interpolation functions, built at each element 

e jK wÎ  and associated with node 
jx , composes the function ( )jN x  defined over the support 

cloud 
jw . As 

1
( ) 1

N

jj
N

=
=å x  at every point x in the domainW , the set of functions ( )  

constitutes a partition of unity (PU). A set of q linearly independent functions is defined at each 
cloud 

jw  as: 
 

1 2 1 1{ ( ), ( ),..., ( )} { ( )} ( ) 1q
j j j jq ji i jI L L L L L== = =x x x x x  (1) 

 

The generalized finite element shape functions are determined by the enrichment of the PU 
functions, which is obtained by the product of such functions by each one of the components of the 
set 

jI  at the generic cloud 
jw : 

 

1 1{ } ( ) { ( )}q q
ji i j ji iN Lf = == ´x x  (2) 

 

The enrichment scheme is obtained by multiplying a PU function of C0 type with compact sup-
port 

jw , Fig. 1(a), by the function ( )jiL x , Fig. 1(c), named in Strouboulis et al. (2000b), as a local 
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approximation (also called enrichment function). The resulting shape function, ( )jif x , Fig. 1(d), 

inherits characteristics of both functions, i.e., the compact support and continuity of the PU and 
the approximate character of the local function. 
 

 

(a) Cloud { }|j e e jw K K= É x  (b) Partition of unity function ( )jN x  

 

(c) Enrichment Function ( )jiL x  (d) ( ) ( ) ( )ji j jiN Lf = ´x x x  

Figure 1: Enrichment scheme for a cloud 
jw , from Barros et al. (2007). 

 
As a consequence, the generalized global approximation, denoted by ( )u x , can be described as a 

linear combination of the shape functions associated with each node: 
 

= =
é ù= +ê úë ûå å

1 2
( ) ( ) ( )

N q

j j ij jij i
N Lu x x u x b  (3)

 

where 
ju  and 

jib  are nodal parameters associated with standard – ( )jN x  – and GFEM – 

( ) ( )j jiN L´x x  – shape functions, respectively. Aiming to minimize round-off errors, Duarte et al. 

(2000) suggest that a transformation should be performed over the ( )jiL x  functions, if they are of 

polynomial type. In such case, the coordinate x is replaced as follows: 
 

j

jh

-


x x
x  (4)

 

in which 
jh  is the diameter of the largest finite element sharing the node j, the cloud 

jw . 
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3 GLOBAL-LOCAL GENERALIZED FINITE ELEMENT METHOD 

This method, originally proposed by Duarte and Babuška (2005), combines the standard GFEM 
with the global-local strategy proposed by Noor (1986). GFEMgl is suitable for problems with local 
phenomena, such as stress field next to the crack tip. The analysis is divided in three steps: initial 
global problem (step 1), local problem (step 2) and final global problem (step 3). These steps are 
described in the following sub-sections. 
 
3.1 Initial Global Problem (Step 1) 

Following Kim et al. (2010), consider a domain G G GW = W È ¶W  of an elastic problem in nR . The 

boundary is decomposed in u
G G G

s¶W = ¶W È ¶W  with ¶W Ç ¶W = Æu
G G

s , where indices u and s  

refer to the Dirichlet and Neumann boundary conditions. 0 0 ( )
G G G
Î Wu X  represents the solution of 

the approximate space 0 ( )G GWX  (built by FEM or GFEM functions) for the initial global problem 

in its weak form, shown in: 
 

0 0 0( ) : ( ) .
G G

G G Gd d
sW ¶Wò òu v x = t v ss e  (5)

 

where 0 0, , ( )G G GÎ Wv Xs e , and t  are stress tensor, strain tensor, test functions, and prescribed 

traction vector, respectively. 
 
3.2 Local Problem (Step 2) 

LW  is a sub-domain from GW . This sub-domain may contain cracks, holes or other special features, 

as suggested by Duarte and Kim (2008). The corresponding local solution ( )E
L L LÎ Wu X  is ob-

tained from: 
 

s

s s

\( )

0 0

\( )

( ) : ( ) . . .

. ( ( ) ).

u u
L L G L L G L G

u
L G L L G

L L L L L L L

L G G L

d d d d

d d

s
h k

h k

W ¶W Ç¶W ¶W ¶W Ç¶W ¶W Ç¶W

¶W Ç¶W ¶W ¶W Ç¶W

+

+ +

ò ò ò ò

ò ò

s eu v x + u v s + u v s = t v

u v t u   u v

 (6)

 

where ( )E
L L LÎ Wv X  represents the test functions, ( )E

L LWX  is the space generated by FEM or 

GFEM functions, h  is the penalty parameter and k  is the stiffness parameter both used to impose 

Dirichlet and Cauchy boundary conditions, respectively. Additionally, t  is the prescribed traction, 

u  is the prescribed displacement, 0( )Gt u  is the traction vector obtained from the first step.

¶W ¶W Ç ¶W\ ( )L L G
 is the  part of the local problem boundary  that doesn't coincide with the 

global problem boundary and on which the numerical solution that comes from the step 1 is im-
posed as boundary condition. The last integrals on the left and right side of Eq. (6) correspond to 
the Cauchy or spring boundary condition, imposing the displacements as well as the stress calculat-

ed in the global problem. The ( )E
L LWX  space can be defined as: 

 



2534     M. Malekan et al. / An Object-Oriented Class Organization for Global-Local Generalized Finite Element Method 

Latin American Journal of Solids and Structures 13 (2016) 2529-2551 

1

ˆ( ) ( ) ( ) ( ) ( ) ( )
LN

E E E E
L L j j j j

j

N H
=

ì üï ïï ïï ïé ùW = = + +í ýê úë ûï ïï ïï ïî þ
å  X u x x u x u x u x  (7)

 

functions ˆ ( ), ( )E E
j jHu x u x  and ( )E

j


u x  are continuous, discontinuous and singular components of the 

approximate solution and 
jN  is the partition of unity function used in global problem. The number 

of nodes of the local domain is given by LN . 

 
3.3 Final Global Problem (Step 3) 

The global problem is enriched by solution Lu  (from step 2). The new solution ( )E E
G G GÎ Wu X  is 

obtained from: 
 

( ) : ( ) .
G G

E E E
G G Gd d

sW ¶Wò òu v x = t v ss e  (8)

 

where E
Gv  represents the test functions and ( )E

G GWX  is the initial space increased by ( )gl
ku x  from 

local problem Lu : 
 

1
ˆ( ) ( ) ( ) ( ) ( ) ( )

gl

N glE E
G G j j k kj

k I

N N
=

Î

ì üï ïï ïï ïW = = +í ýï ïï ïï ïî þ
å åX u x x u x x u x  (9)

 

and 
glk IÎ  represent the set of nodes enriched by the local solution Lu . 

Figure 2 illustrates a simplified global-local strategy. First the initial global problem is solved 
using a coarse mesh. After defining the local domain, the results of the initial global problem is 
transferred as a boundary condition to the local problem. Finally, the solutions of the local problem 
are transferred to the final global problem as a numeric enrichment function in order to enrich the 
predefined nodes of the global problem. 
 

4 INTERACTIVE STRUCTURAL ANALYSIS ENVIRONMENT 

The INSANE environment, Fonseca and Pitangueira (2007), Alves et al. (2013), is an open source 
software implemented in Java, an OOP language. The INSANE computational environment is 
composed by three great applications: pre-processor, processor and postprocessor. The persistence of 
data among these three segments of INSANE is performed by data files written in extensible 
markup language format. Here, a summary of several modules of the numerical core application 
(the processor) are presented aiming to introduce the INSANE system, corresponding to the stand-
ard FEM/GFEM approach, and also to show the generalization performed here to enclose the 
GFEMgl formulation. More information can be found in Alves et al. (2013). 
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Figure 2: Three steps of the Global-Local strategy. 

 
The INSANE numerical core is composed by the interfaces Assembler, Model and Persistence 

and the abstract class Solution. Figure 3 shows the unified modeling language (UML) diagram from 
numerical core of INSANE. 
 

 

Figure 3: Organization of numerical core of INSANE. 
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The observation strategy is determined by the observer-observable design pattern, which is a 
change propagation mechanism. When an object of type observer (which implements the interface 

java.util.observer) is instantiated, it is added to a list of observers of other objects of type observa-
bles (which extends the class java.util.observable). Any modification in the state of an observed 
object notifies the corresponding observer object that updated itself. 

Detailed of GFEM implementation can be found in Alves et al. (2013), section 4. Here, the fo-
cus is on the main modifications in order to expand the computational system to comprise GFEMgl. 
Following sub-sections explain various INSANE classes and approaches in order to perform GFEM 
analysis as well as GFEMgl analysis. 
 
4.1 Persistence Interface 

Persistence treats the input data and persists the output data. For GFEMgl, this class was extended 
to deal with more than one model. In that case, the data is separated in a global model and several 
local models, corresponding to the global and the several local problems respectively. 
 
4.2 Assembler Interface 

Assembler interface is responsible for assembling the linear equation system provided by the dis-
cretization of the initial value problem. This class is implemented following the generic representa-
tion: 
 

+ + = AX BX CX D  (10)

 
where X is the solution vector; the single dot represent its first time derivative and the double dots 

its second time derivative; A, B and C are matrices with the properties of the problem and D is a 

vector that represents the system excitation. 
The Assembler interface has the necessary methods for assembling the matrix system. It is im-

plemented by an object of the class GFemAssembler that was modified in order to transfer bounda-
ry condition from the global model to the several local models. A Cauchy boundary condition was 
implemented following Kim et al. (2010) (here represented by Eq. (6)). 
In static analysis, Eq. (10) is simplified by eliminating the two first terms. The resulting matrix 
system is: 

 

uu up u p

pu pp p u

é ù ì ü ì üï ï ï ïï ï ï ïê ú =í ý í ýê ú ï ï ï ïê ú ï ï ï ïë û î þ î þ

C C X D

C C X D
 (11)

 
where Eq. (11) is used to represent each step of the global-local solution given by Eqs. (5), (6), and 
(8). In these equations, the matrix C is the model stiffness matrix, X is the vector of nodal dis-

placements, D is the vector of forces. 
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4.3 Solution 

Solution abstract class starts the solution process and has the necessary resources for solving the 
matrix system. GFEMgl process is implemented by GlobalLocal class, as shown in Fig. 4. Since 
GFEMgl is composed by more than one model (one global model and several local models), the 
problem has more than one assembler, each one responsible to build the corresponding equation in 
the form of (11). This is the main difference from standard GFEM solution class. Figure 4 shows in 
details the UML diagram for this class. 
 

 

Figure 4: UML diagram for Solution class. 

 
The main attributes of this class are: 

− globalPath: contains the path of the file responsible for storing the global model description. 

− solverType: contains information about the type of solver of the linear equation system. 

− leq: LinearEquationSystem object which is responsible to solve the linear equation system. 

− loadCombination: load combination of the problem. 

− globalAssembler: handles information about the global model. 

− localAssemblerList: list of Assembler objects that handles information about the several local 
models. 

− globalEnrichedNodes: handles the pointer to the global nodes that will be enriched by global-
local enrichment. 
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− localEnrichedList: list that relates each global node, that will be enriched by the global-local 
enrichment strategy, with the corresponding local model. This is a very important infor-

mation because it is in the local model that the function ( )gl
ku x will be built and used to en-

rich the PU of the global node. 

− localPath: contains the list of paths of each file responsible for storing each local model de-
scription. 

 
4.4 Model Interface 

The Model interface contains the data of the discrete model and provides to Assembler information 
to assemble the final matrix system. Both Model and Solution communicate with the Persistence 
interface, which treats the input data and persists the output data to the other applications, when-
ever it observes a modification of the discrete model state. This interface consisted of the following 
classes: 
 
4.4.1 Node 

This class is designed to manage the geometric representation of a node entity as well as the infor-
mation from the discrete model. In addition to information about the node coordinates, this class 
holds lists of identifiers such as type of degrees of freedom, state variables and type of nodal con-
straint. This list of identifiers are based on HashMap strategy provided by JAVA API Collection 
Horstmann and Cornell (2008). This type of Java storing strategy allows an indirect communication 
between variables associated to the Node, named keys, and the variables stored in the Model. In 
spite of degrading performance of the framework, such strategy creates a generic and friendly im-
plementation because it simplifies how new information is added to the class. Furthermore, methods 
from JAVA API Collection allows using the keys like conventional attributes which preserves the 
readability of the code. “LOCAL_ENRICHER” is added in order to indicate which local domain 
will provide the global-local enrichment function, as shown in Fig. 5. This new attribute is defined 
in the Node class as an instance of GFEM using the enrichment strategy. 
 

 

Figure 5: UML diagram for Node. 
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4.4.2 Element 

In Alves et al. (2013), this class was not modified for standard GFEM. On the other hand, the spe-
cial characteristics of GFEMgl, such as the relationship between the global and the local elements, 
requires a new extension of the Element class. Note that this new GFemElement class is not only 
derived from the superclass Element but also contains on object of Element type, Fig. 6. 
 

 

Figure 6: UML diagram for Element class. 

 
Indeed this strategy takes advantage of parametric element library, with bar, triangular, quadri-

lateral, tetrahedral and hexahedral elements, without having to use simple inheritance from each 
one of those types of elements. Figure 7 shows the new parameters added in GFemElement class in 
order to add the ability to solve problems using the global-local scheme. Similar to the Node class, 
the HashMap strategy is used to include new parameters. The parameters of this class are: 

− LOCAL_NAME: if the element belongs to a local problem, this parameter indicates in which 
local model it is inserted. 

− GLOBAL_ELEMENT: if the element belongs to a local problem, this parameter indicates 
which element from the global model contains the current element. This relationship allows 
to obtain from the global element the necessary data to apply the boundary conditions on the 
edge, if it is the case, of the current element. 

− LOCAL_ELEMENTS: if the element belongs to a global problem, this parameter indicates 
the elements of the local problem that discretize the domain of this global element. In this 
implementation the local mesh is nested in the global mesh. As a consequence each global el-
ement exactly contains a set of local elements. 

− BOUNDARY_INFORMATION: informs which kind of boundary conditions is transferred 
from step 1 to step 2. 

− STEP_GL: informs in which step of the problem the solution is being processed. 

− LOCAL_TWINS: if the element belongs to a local problem, this parameter indicates which 
element, if there is, from another local problem coincides with it. 
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Figure 7: UML diagram for GFemElement class. 

 
4.4.3 EnrichmentType 

GlobalLocalEnrichment extends EnrichmentType and provides specific methods to build the en-
riched functions from the solution of the local problem and applied in the third step of the global-
local problem. Figure 8 shows the class diagram of this class. EnrichmentType is an abstract class 
and its methods are abstract. Thus, GlobalLocalEnrichment class contains the same method as the 
EnrichmentType class. 
 

 

Figure 8: UML diagram for GlobalLocalEnrichment. 

 
4.4.4 Problem Driver 

Informs to Assembler all the necessary data for assembling the final system of the model, Eq. (11). 
For GFEMgl case, an additional loop is performed using descendants of each global element, since 
they play the role of cells of integration. Actually, information of each descendants will be used to 
enriching corresponding global element based on relationship between step 2 and step 3 of global-
local strategy. Figure 9 describes stiffness matrix calculation using sequence diagram. 
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Figure 9: Sequence diagram for stiffness calculation. 

 
4.5 Generic Boundary Condition 

Figure 10 shows the relationship between the types of objects found in the package Value, which is 
used to define a generic boundary condition of the problem (e.g., conditions of Dirichlet, Neumann 
or Cauchy required by Eq. (6)). The definition of these boundary conditions in different geometric 
entities is performed through an ElementValue object, which is derived for the specific types Ele-

mentVolumeValue (boundary conditions applied in a volume), ElementAreaValue (boundary condi-
tions applied to a area) and ElementLineValue (boundary conditions imposed on a line). Ele-

mentValue consists of the following attributes: 

− An array of objects of type PointValue, responsible for storing the coordinates of a point and 
information that defines the boundary condition at this point. 

− An object of type Shape, responsible for the interpolation of PointValue. 

 

 

Figure 10: UML diagram of the Value package. 
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The class Shape is responsible for providing the approximation function that interpolates the 
different PointValue applied in a region of the element that can be a line, area or a volume, depend-
ing on the element type. The responsible for combining this information and providing the equiva-
lent nodal value is EquivalentNodalValue class, whose attributes are objects of Element and Ele-

mentValue classes. 
 
4.6 Information Transferring from the Global to the Local Problem 

One of the actions performed during the process of generalization of the imposition of boundary 
conditions on INSANE environment is to add the ability to obtain boundary conditions of an ele-
ment of the local problem from an element of the global problem. This is required in the global-
local analysis process in which, it is necessary to impose boundary conditions for the local problem 
provided by the global mesh solution. There are basically three types of boundary conditions that 
can be used: 

– Dirichlet boundary conditions 

– Neumann boundary conditions 

– Cauchy boundary conditions 

The class responsible for the transfer of boundary conditions between domains is the Equiva-

lentNodalValue class that is part of the Value package. The EquivalentNodalValue class has meth-
ods that fall into those capable of modifying the matrix C (stiffness) and those able to modify the 

vector D (force) of the system in Eq. (10), as can be seen in Fig. 11. 

 

 

Figure 11: EquivalentNodalValue class. 

 

5 NUMERICAL EXAMPLES 

This section presents two linear-elastic problems in R2. Section 5.1 presents a linear bending prob-
lem, and section 5.2 presents a fracture mechanic problem. The geometry and boundary conditions 
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are very simple, since the goal is not demonstrate the capabilities of the methods, but the general 
approach proposed to enclose the GFEMgl formulation in INSANE environment. 

Among the three aforementioned boundary conditions in section 4.6, according to Kim et al. 
(2010), the Dirichlet boundary conditions (a limiting case of Cauchy boundary condition) lead to 
worse results than Cauchy boundary conditions. Thus, for all two examples, the Dirichlet boundary 
conditions are applied on the local problem boundaries in order to demonstrate the robustness of 
the methodology in the worst case scenario. 

Numerical integration for the first and second steps of the global-local analysis is done based on 
standard Gaussian quadrature procedure. In the third step, the numerical integration for those 
global elements that contain local elements is done over the Gauss points of local elements, as pro-
posed by Kim et al. (2010). Consider that a global element contains nLe local elements and number 
of Gauss points for each local elements be equal to GP. Thus, the number of integration points for 

this global element is obtained by: 
1

Len

ii
GP

=å . In other words, the global numerical integration is 

done over Gauss points of each local element that represent a part of the global element. 
 
5.1 Linear Bending-Moment Problem 

Figure 12 illustrates a beam subjected to a set of loads that produce a linear-bending moment. In 
Lee and Bathe (1993), this problem is used to evaluate numerically the effects of element distortions 
in FEM. Here, this problem exemplifies and validates the GFEMgl implementation within INSANE 
environment. 
 

 

Figure 12: Linear bending-moment problem - geometry and loading. 

 
The data for solving this two-dimensional plane stress problem are (using consistent units): 

− Modulus of elasticity E = 1.0 × 107; 

− Poisson ratio ν = 0.3; 

− Load P = 20 distributed as the load function fy = 0.12y2+ 1.2y. 

− Moment M = 2000 distributed as the load function fx = 24y–120. 

The analytical solution is given for the displacements u and v, in direction x and y respectively 
and described in Cartesian coordinates, as: 
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2 3 2 21
(0.12 0.092 y 0.6 24 1.38 120 4.6 )u x x xy y x y
E

= - - - + + -  (12)

 

3 2 2 21
( 0.04 0.036 y 12 0.36 3.6 4.6 36 )v x x x xy y x y
E

= - - + + + + -  (13)

 
Using the GFEMgl, the solution of this problem can be divided in three steps: 

• Step 1: All the nodes of the problem are enriched by P2 functions (quadratic enrichment). 
This strategy guarantees a cubic order of approximation through the beam, reproducing the 
analytical solution of the problem (see Eqs. (12) and (13)). The P2 enrichment function for x 
direction is as follows: 

 
2 2

2 2

( ) 0 ( ) 0
( ) 0

( )
0 ( )

0 ( ) 0 ( )

j j

j j

jT j j

j

j
j j

j j

j j

x x y y
N N

N h h

N x x y y
N N

h h

f

- -

=
- -

é ùæ ö æ öê ú÷ ÷ç ç÷ ÷ç çê ú÷ ÷ç ç÷ ÷÷ ÷ç çê úè ø è øê ú
ê úæ ö æ öê ú÷ ÷ç ç÷ ÷ç çê ú÷ ÷ç ç÷ ÷÷ ÷ç çê úè ø è øë û

x x
x

x
x

x x

 (14)

 

• Step 2: Global problem is split in 9 local problems, as presented in Fig. 13. Each local prob-
lem is enriched using P2 functions in order to exactly represent the analytical solution of the 
problem (this is only possible if exact boundary conditions are provided from step 1). At the 
end of step 2, there is a numerical solution that can exactly reproduce this problem. 

• Step 3: Returning to the global problem, the enrichment P2 is replaced by global-local en-
richment obtained from step 2. For this example, the numerical solution from local problems 
can exactly reproduce the analytical solution for this problem. 

For this analysis, a Gauss-Legendre quadrature rule with 4 × 4 points is employed for both 
global and local problems. 

Figure 14 shows stress distribution of stress component σxx for each local domain of the beam. 
This figure depicts a generic application of the GFEMgl implementation, in which any region, or 
the whole mesh can be defined as local domains and used to solve the problem. This is an im-
portant issue in the case of not having a predefined local phenomenon and can take advantage of 
the independent characteristic of each local problem. As an efficient way and with the help of 
parallel processing, each local problem can be solved separately using multi-core machines. The 
P2 enrichment is used for the global problem aiming to avoid any error in the boundary condition 
of the local problem. The idea is to having an “exact” local solution to enrich the global mesh. 
Then, the implementation is validate if the global-local solution exactly reproduce the analytic 
solution. 
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(a) Local domain 1 (cloud of node 1) 

 

(b) Local domain 2 (cloud of node 3) 

 

(c) Local domain 3 (cloud of node 7) 

 

(d) Local domain 4 (cloud of node 9) 

 

(e) Local domain 5 (cloud of node 2) 

 

(f) Local domain 6 (cloud of node 8) 

 

(g) Local domain 7 (cloud of node 4) 

 

(h) Local domain 8 (cloud of node 6) 

 

(i) Local domain 9 (cloud of node 5) 

Figure 13: Description of the 9 local domains of the problem. 
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(a) σxx for local 1 (b) σxx for local 2 

  

(c) σxx for local 3 (d) σxx for local 4 

 

(e) σxx for local 5 (f) σxx for local 6 

 

(g) σxx for local 7 

 

(h) σxx for local 8 

 

(i) σxx for local 9 

 

Figure 14: Results of stress component σxx for each local domain. 

 
5.2 Fracture Mechanic Problem 

This example considers a cracked plate submitted to an axial stress, as shown in Fig. 15. The 
cracked zone produces singular stress field near the crack tip. The objective of this problem is to 
illustrate the use of this version of GFEMgl for fracture mechanic problems. This problem analyzed 
under plane stress state, has the following parameters (in consistent units): 
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− Modulus of elasticity E = 1.0; 

− Poisson ratio ν = 0.3; 

− Traction σ = 1.0. 

 

 

Figure 15: Geometry and loading of a cracked plate submitted to an axial stress. 

 
The reference solution of this problem is obtained using a mesh of 12087 p–quadrilateral ele-

ments in ANSYS®. For GFEMgl analysis, however, a smaller number of finite elements as well as of 
degrees of freedom (DOFs) is used. The reason for using a smaller number of DOFs is explained by 
the use of global-local enrichment function, which is suitable for high stress concentration. This 
strategy is used to describe the singular stress near the crack tip. 

A geometric mesh is used to describe the local domain, Fig. 16 and it is shown in Fig. 17. This 
mesh is graded so that the elements are decreased in geometric progression toward the crack tip, in 
four levels (L1, L2, L3 and L4) with a common reduction factor of 10%. Results are shown in Fig. 
18. Also, Table 1 presents a comparison between the strain energy values for the reference and ap-
proximate solutions. 
 

 

Figure 16: Global and local domain of the problem. 
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Analysis DOFs Strain energy 

Reference result 24648 10.98326 

Global-local result 134 10.80963 

Table 1: DOFs and strain energy for geometric enrichment. 

 
It can be observed from the results shown in Fig. 18 and Table 1 the capability of the global-

local enrichment strategy to represent the singular stress field close to the crack tip. 
 

 

Figure 17: Geometric mesh with reduction rate f = 10%. 

 

 

Figure 18: Results for stress component σxx (step 3) in different positions given by the coordinate x  

and the same coordinate y of the crack, for L4 in the global-local analysis. 
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6 CONCLUSION 

An overview of the GFEMgl is given with emphasis on implementation aspects under OOP ap-
proach. The focus of this work is to present a GFEMgl extension of a FEM programming environ-
ment called INSANE. The proposed approach allows to combine any types of partition of unity 
methods, analysis model and enrichment strategy. Also, an expansion of the numerical core IN-
SANE, in order to adapt it to impose boundary conditions using the penalty method is included. 
The OOP approach is fully exploited, reinforcing the premise segmentation and encapsulation of the 
INSANE environment. The validation of this extension and some additional conclusions about the 
GFEM global-local strategy are presented by numerical examples for Solid Mechanics. 
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