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Abstract 

As the new generation of smart sensors is evolving towards high sampling acquisitions systems, the amount of 

information to be handled by learning algorithms has been increasing. The Graphics Processing Unit (GPU) 

architectures provide a greener alternative with low energy consumption for mining big-data, harnessing the power of 

thousands of processing cores in a single chip, opening a widely range of possible applications. Here, we design a novel 

evolutionary computing GPU parallel function evaluation mechanism, in which different parts of time series are 

evaluated by different processing threads. By applying a metaheuristics fuzzy model in a low-frequency data for 

household electricity demand forecasting, results suggested that the proposed GPU learning strategy is scalable as the 

number of training rounds increases. 
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1. Introduction 

Sometimes called as the hugest machine ever built, the power grid has been passing through several 

improvements. Researchers and the industry have been focusing on efficiently integrating Renewable 

Energy Resources (RER) into the grid. The massive insertion of RER is, usually, assisted by Artificial 

Intelligent (AI) tools [1]. 

The challenging task of making people's vision reality has been assisted by a new class of smart tools 

embedded on Smart Meters (SM) [2]. Smart in the sense that the modest use of sensors is being replaced 

by the ones fulfilled with computational abilities. In a common sense, these computational abilities are 

developed based on AI techniques or specific strategies envisioned by its creator/programmer. These class 

of meters are starting to talk [3] and introducing important information to be dealt by decision makers. 

This paper tackles a mini/microgrid forecasting problem, the Household Electricity Demand 

Forecasting. Other low-frequency problems measured from RER, such as Wind Power Generation, can be 

tackled as future extension of the proposed framework. Embed the next generation of SM, also known as 

Soft Sensors, with forecasting abilities is a potential step towards efficient Smart Grid (SG) control and 

management. In special, machine learning techniques are being used to break down household energy 

consumption data into individual appliances. In our point of view, this information provided by house's 

independent devices opens a wide range of possibilities for enhancing mini/microgrid control. Researchers 

had begun to publicly release their data sets, such as the Reference Energy Disaggregation Dataset (REDD) 

[4], which provides low-frequency power measurements (3-4 second intervals) available for 10-25 

individually monitored circuits. 

Coelho et al. [5] recently introduced a Hybrid Fuzzy Model (HFM), calibrated through metaheuristics 

procedures, applied in a microgrid load forecasting problem with hourly samples. Motivated by the new 

class of big-data time series, which are reality in several areas (such as in the electric industry, biology, 

neuroscience, image processing, among others) we decide to enhance their model, designing a parallel 

function evaluation to work over a Graphics Processing Unit (GPU). Furthermore, HFM generic parameters 

matches the request for tackling Big Time-series Data, since the HFM model was designed as an automatic 

learning model, without magic numbers. 

The use of GPU based architectures can provide a greener alternative with low energy consumption 

for mining information from such huge datasets [6]. Each GPU provides thousands of processing cores with 

much faster arithmetic operations than a classic Central Processing Unit (CPU). In a nutshell, we aim at 

generating ensemble GPU threads learning process, which provide independent forecasts, optimized in 

order to reduce a given forecasting statistical quality measure. The idea seams to fit the scope and design 

of the HFM, being, essentially, simple to be implemented and adapted to it, since the latter was based on 

metaheuristics and implemented in the core of the OptFrame [7]. 

In the remaining of this paper we introduce our GPU disaggregated forecasting process (Section 2), 

while the computational results and the analyzed parameters are presented in Section 3, finally, Section 4 

draws some final considerations and possible extensions. 

2. HFM with GPU disaggregated forecasting process 

Let us consider a target time series ts = y1,..., yt, comprising a set of t observations. The goal is to 

estimate the forecasts of a finite sequence {yt+1,..., yt+k}, with k indicating the number of steps ahead to be 

predicted, namely forecasting horizon. 

The idea explored in our approach regards the independence of the training rounds. Different training 

rounds can be seen as independent windows, which are known to be an interesting application for designing 

high-performance hardware with parallel computation [8]. In fact, this application is specially fit to the 

GPU computing paradigm called Single Instruction Multiple Data [9]. The threads in a GPU are executed 

in batches called warps, and all threads in a warp execute the same instruction simultaneously, but over 

different parts of the training set. With this disaggregated forecasting process, it is possible to drastically 

reduce the computing effort by sharing it with thousands of independent processing units in a single GPU. 

Figure 1 depicts an example of a time series split into several learning process, executed by different 
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threads. Each thread runs an independent training, returning its predicted values for a given forecasting 

horizon k, a finite sequence of {ythread i+1,…, ythread i+k} forecasts, with tthread i   [1,...,t-k]. 

                  
Figure 1: On the left side, the HFM with GPU disaggregated forecasting process can be seen. On the right side, 

MAPE for varying horizons and granularities with sliding window strategy, mentioned in Section 3.2 

 

In special, the HFM requires a minimum number of tsmaxLag samples for feeding its model, thus the 

green boxes limit model's minimum number of inputs. On the other hand, the blue boxes represents the 

forecasting horizon k to be predicted based on previous information. Each index tthread i points to the 

beginning a blue box. The two boxes together should move along the whole tackled time series, as a sliding 

window strategy [10]. The sliding length is exactly the desired forecasting horizon. Thus, the blue box 

moves k samples ahead and, consequently, asking the green box to come together and to provide necessary 

inputs of the model. 

3. Computational experiments

The REDD considered in this study provides low-frequency data for household electricity demand 

forecasting. Statistical analyzes of well-known forecasting models over this data set was done by Veit et 

al.[11]. Following their description, we extracted the data of house 1 from Apr 18th 2011 22:00:00 GMT 

to May 2nd 2011 21:59:00 GMT. 

Four different time series are analyzed here: three different individually monitored circuits; and one of 

the two-phase mains input. Since the time series have several gaps, holes/breaks due to meters or sensors 

not providing measurements, they were interpolated. Each individual house component passed through 

linear interpolations in order to have a granularity of 1 second for each analyzed time series. 

The tests were carried out on a computer Intel i7-4790K 4.00GHz, 16GB RAM, equipped with a 

NVIDIA GPU GTX TITAN X, 12GB of global memory, 3072 CUDA cores, compliant with Maxwell 

microarchitecture.

3.1. Speed up analysis 

The speedup of a computationally accelerated process is the ratio between the time spent by a single-

processing strategy (usually a CPU) divided by the time spent by the same strategy executed in a parallel 

machine. In this work, the parallel forecasts generation was analyzed applying the HFM model over the 

time series with the total energy values of the house called Main. After this study, a similar behavior was 

also detected for the other three time series mentioned above. Different sizes of training set were analyzed, 

being composed of a total number of samples hereafter called nSamples: 5000, 10000, 50000, 100000, 

200000, 500000 and 1000000. The ability of the proposal in handling high forecasting horizons (increasing 

the size of the blue box in Figure 1), was also analyzed for the following values of steps-ahead k (s): 1, 2, 
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5, 10, 60, 360, 720, 1800, 3600 and 7200. Thus, the maximum forecasting horizon was 2 hours, the 

equivalent of 7200 seconds. 

Following this design, the HFM model was fed with nSamples + k samples, allowing it to perform, at 

least, one training round for each configuration. 

For each configuration, 1000 function evaluations were performed during the evolutionary process of 

the HFM. In general, each evaluation was related to a unique set of model's parameters. Figure 2 depicts a 

superimposed interactions plots using the ggplot2 R package. Time was measured with precision of 

millisecond (ms). Analyzing Figure 2, one can conclude that as the number of samples increases, GPU 

outperforms the CPU performance with a speedup of nearly 10 times. However we could also conclude that 

the disaggregated forecasting process is not suitable for small size time series. A similar conclusion could 

be reached for long forecasting horizons. However, we decide to look at the speed in a different way, thus, 

the Number of Training Rounds NTR related to each configuration was calculated. Basically, the NTR, 

also known as Number of Training Cycles, is equal to number of samples divided by the forecasting horizon. 

 

 
Figure 2: Parallel forecasting model speed up using Titan X 

 

Thus, we calculated the NTR for each configuration, rounded it and cut into the following intervals: 0, 

1, 5, 10, 50, 100, 200, 500, 1000, 10000, 50000, 100000, 500000 and 1000000. As can be noticed, the last 

three higher intervals were only executed for forecasting horizons with steps-ahead k equal to 1, 2 or 5. 

Figures 3 and 4 show the new speed up interaction plots in relation to the NTR. In this case, a speedup 

of over 10 times is achieved, with the GPU being nearly 15 times faster than the CPU approach for a 

forecasting horizon considering one step ahead. In fact, by considering the gains on different training rounds 

it is possible to achieve a near exponential acceleration, which can be seen in Figure 4. 

3.2. REDD dataset results with high granularities 

Here, we report some initial results regarding a batch of 1 seconds training, following a similar 

branch of the experiments reported by Veit et al. [11]. As done by them, we run 18 different configurations, 

with granularities of 15, 30 and 60 minutes, covering seven different forecasting horizons of 1440, 720, 

360, 180, 60, 30 and 15 minutes. 

The sliding window strategy was used for, iteratively, training and testing the model. Thus, the data 

set was split into windows with a defined length (3 days + 3 days of tsmaxLag). Instead of setting the sliding 

length to 24 hours, we explore the whole time series, moving the sliding windows with a single unit (15, 

30 or 60 minutes). Figure 1 shows heat maps of the Mean Absolute Percentage Error (MAPE). These initial 

results suggest the competitiveness of our proposal with the state-of-the-art benchmark models reported in 

literature. In special, when applied to forecast horizons higher than 60 minutes our model demonstrated a 
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better performance. Since the proposed parallel processing strategy does not interfere with the quality of 

the prediction model, the convergence of the proposed parallel HFM model is guaranteed to follow the 

previously validated HFM model in literature. 

 
Figure 3: Speed up according the number of CUDA threads 

 

 
Figure 4: Specific range of speed up according the number of CUDA threads 

 

Figure 1 shows heat maps of the Mean Absolute Percentage Error (MAPE). These initial results suggest 

the competitiveness of our proposal with the state-of-the-art benchmark models reported in literature. In 

special, when applied to forecast horizons higher than 60 minutes our model demonstrated a better 

performance. Since the proposed parallel processing strategy does not interfere with the quality of the 

prediction model, the convergence of the proposed parallel HFM model is guaranteed to follow the 

previously validated HFM model in literature. 
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4. Conclusions and future works 

In this current study, a parallel time series forecasting framework was designed. The main core of our 

strategy was to split the time series through independent training parts, composed of k samples, namely 

forecasting horizon, plus the minimum number of inputs required by the metaheuristic hybrid fuzzy model 

of Coelho et al. [5]. The proposed GPU deep learning strategy appears to be scalable as the number of 

training rounds from the load time series increases, achieving up to 15 times speedup over a single threaded 

CPU implementation.  

Exploring the fact that machine learning techniques can be used to break down household energy 

consumption data into individual appliances, we explored our proposal in public data set for energy 

disaggregation. The obtained results suggested that the proposal could be applied in the new generation of 

microgrid soft sensors, since its showed competitive performance in predicting the different house device's 

average consumption. 

A possible extension is to explore novel designs for the parallel forecasting strategy applied in 

forecasting horizons higher than one (k  1). However, according model input, a high dependence on 

previous values can be expected. When the model requests inputs of low lags, values that had just been 

predicted should be feedback into the model, what generates a highly dependent computation (over previous 

values) that may not be easily explored by the GPU paradigm of Single Instruction Multiple Data. Exploring 

the advantages and disadvantages of those inputs on a parallel multi-step time series forecasting sounds a 

worth topic to be studied.  

5. References 

[1] K. W. Kow, Y. W. Wong, R. K. Rajkumar, R. K. Rajkumar, A review on performance of artificial intelligence and conventional 

method in mitigating PV grid-tied related power quality events, Renewable and Sustainable Energy Reviews 56 (2016) 334 - 346. 

[2] M. P. McHenry, Technical and governance considerations for advanced metering infrastructure/smart meters: Technology, 

security, uncertainty, costs, benefits, and risks, Energy Policy 59 (2013) 834 - 842 

[3] R. Bertoldo, M. Poumadère, L. C. R. Jr., When meters start to talk: The public's encounter with smart meters in France, Energy 

Research & Social Science 9 (2015) 146 - 156, special Issue on Smart Grids and the Social Sciences. 

[4] J. Z. Kolter, M. J. Johnson, Redd: A public data set for energy disaggregation research, in: Workshop on Data Mining Applications 

in Sustainability (SIGKDD), San Diego, CA, 2011. 

[5] V. N. Coelho, I. M. Coelho, B. N. Coelho, A. J. Reis, R. Enayatifar, M. J. Souza, F. G. Guimarães, A self-adaptive evolutionary 

fuzzy model for load forecasting problems on smart grid environment, Applied Energy 169 (2016) 567 - 584.  

[6] D. B. Kirk, W. H. Wen-mei, Programming massively parallel processors: a hands-on approach, Morgan Kaufmann, 2012. 

[7] I. M. Coelho, P. L. A. Munhoz, M. N. Haddad, V. N. Coelho, M. M. Silva, M. J. F. Souza, L. S. Ochi, A computational framework 

for combinatorial optimization problems, in: VII ALIO/EURO Workshop on Applied Combinatorial Optimization, Porto, 2011, pp. 

51-54. 

[8] N. Nedjah, L. Macedo Mourelle, High-performance hardware of the sliding window method for parallel computation of modular 

exponentiations, International Journal of Parallel Programming 37 (6) (2009) 537-555. 

[9] M. J. Flynn, Some Computer Organizations and Their Effectiveness, IEEE Transactions on Computers C-21 (9) (1972) 948-960. 

[10] J. Fowers, G. Brown, P. Cooke, G. Stitt, A performance and energy comparison of FPGAs, GPUs, and multicores for sliding-

window applications, in: Proceedings of the ACM/SIGDA, FPGA '12, ACM, New York, NY, USA, 2012, pp. 47-56. 

[11] A. Veit, C. Goebel, R. Tidke, C. Doblander, H.-A. Jacobsen, Household electricity demand forecasting: Benchmarking state-of-

the-art methods, in: Proceedings of the 5th ICFES, e-Energy '14, ACM, New York, NY, USA, 2014, pp. 233-234. 

 

Biography  

Control and Automation Engineering obtained at UFOP and PhD in Electrical 

Engineering at the PPGEE/UFMG. He has been investigating different fields of 

artificial intelligence, machine learning and high performance computing. Vitor 

received several teachings about high level programming from his brother Igor and 

advised by the masters, Marcone and Fred. 

 


