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Resumo
Nesta tese, eu apresento meu trabalho de doutorado sobre Darwinismo quântico. É um
projeto original que foi revisado por pares e aceito para publicação num jornal internacional
respeitado. Nos primeiros capítulos eu introduzo os conceitos essenciais para entender
Darwinismo quântico e nos dois últimos eu apresento meus trabalhos. O conceito de
Darwinismo quântico foi construído para explicar uma possível transição do quântico
para o clássico. Meus principais interesses são encontrar as implicações do Darwinismo
quântico na dinâmica dos sistemas e encontrar modelo mais realistas onde ele se aplica.
No primeiro trabalho eu estudei Darwinismo quântico em um sistema de muitos corpos
composto por osciladores harmônicos quânticos em que os sub-ambientes não interagem
e nem se correlacionam entre si. Por meio de cálculos numéricos e analíticos pudemos
observar o Darwinismo quântico por meio de duas abordagens diferentes. Nós mostramos o
Darwinismo quântico em um modelo pela abordagem BPH pela primeira vez. Além disso,
em contraste com um trabalho publicado recentemente, nós mostramos que o Darwinismo
quântico pode ser observado mesmo em system com um grau de não-Markovianidade
alto e propusemos uma forma mais adequada para quantificá-lo. No segundo trabalho
nós investigamos o Darwinismo quântico em um modelo mais realista em que os sub-
ambientes podem ficar fortemente correlacionados. O modelo consiste de um átomo de
dois níveis inserido em um ambiente fermiônico que foi usado para estudar a catástrofe de
ortogonalidade. Como tanto a catástrofe de ortogonalidade quanto o Darwinismo quântico
vem com o fenômeno de decoerência, nós estamos investigando se estes dois conceitos estão
correlacionados. Além disso, nós escolhemos esse modelo porque ele pode ser mapeado no
modelo bosônico de um gás de Tonks Girardeau tornando possível uma implementação
experimental por meio de átomos frios. Estamos estudando esse modelo através de cálculos
analíticos e numéricos. No penúltimo capítulo eu apresento o primeiro resultado e descrevo
o que ainda está faltando nesse estudo.

Palavras-chave: darwinismo quântico; transição do quântico para o clássico; sistemas
de muitos corpos; não-markovianidade; catástrofe de ortogonalidade; fundamentos de
mecânica quântica; decoerência.



Abstract
In this thesis, I present my work during my Ph.D. in quantum Darwinism. It is a original
project, which has been peer-reviewed and accepted for publication in a respected interna-
tional journal. In the first chapters, I recalled the essential concepts to understand quantum
Darwinism, and in the two last, I present my works. The quantum Darwinism concept
was constructed to explain a possible quantum-to-classical transition. My main interests
are to find the quantum Darwinism implications in the system’s dynamics and to find
more realistic models where it applies. The first work was finished and published while the
second is still in progress. In the first model I studied quantum Darwinism in a many-body
system of quantum harmonic oscillators where the subenvironments neither interact nor
correlate between themselves. Through analytical and numerical calculations, we observed
quantum Darwinism from two different approaches. We show quantum Darwinism through
the BPH approach in a model for the first time. In contrast with a recently published
work, we also show that quantum Darwinism can be observed even in a system with a
high degree of non-Markovianity, and proposed a more suitable way to quantify it. In
the second work, we investigate quantum Darwinism in a more realistic model where the
subenvironments can become strongly correlated. The model consists of a two-level atom
interacting with a fermionic environment and was used to study orthogonality catastrophe.
As both orthogonality catastrophe and quantum Darwinism comes with decoherence, we
are investigating if these two concepts are correlated. Beyond that, we chose this model
because it can be mapped in a bosonic model of the Tonks-Girardeau gas enabling an
experimental implementation with cold atoms. We are performing numerical and analytical
calculations in this work. In the sixth chapter, I present the first result and describe what
is missing.

Keywords: quantum Darwinism; quantum-to-classic transition; many-body systems; non-
Markovianity; orthogonality catastrophe; foundations of quantum mechanics; decoherence.
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1 Introduction

The concept of quantum Darwinism was introduced and popularized by W. Zurek to
investigate and explain a possible emergence of the classical world from the quantum world
by studying the open quantum systems dynamics. Since the beginning of the formulation of
quantum mechanics, such emergence has been discussed. Scrödinger [1–3], Heisenberg [4],
and Borh [5, 6] already opened this discussion (see also [7]).

Conceptually, quantum states are quite different from classical states. Classical
states are objective and deterministic, which means that, for example, we can predict with
arbitrarily small uncertainty the position and linear momentum of a particle. However,
as is well known in quantum mechanics, due to the Heisenberg uncertainty principle,
there is a trade-off between the uncertainties associated with position and momentum:
if we can predict very well one of them, the other one is necessarily uncertain (see
Appendix B). Another peculiarity is the possibility of superposition states; even though
some quantum states may have an apparently intuitive meaning, like the state of a particle
in a definite position in space, one can have a superposition of such states for different
positions (see Appendix A.2). These particularities make quantum phenomena considerably
counterintuitive, making it crucial to understand their foundations as much as possible.

In this thesis, we describe quantum Darwinism from the foundations of quantum
mechanics and investigate its connection with two other concepts: non-Markovianity
and orthogonality catastrophe. In the first work, we study quantum Darwinism in a
model where several quantum harmonic oscillators make the system and environment,
and the system dynamics can be controlled to be Markovian or not. In contrast with a
recent result in literature, we show that the non-Markovianity degree does not hinder
the quantum Darwinism in this model. We also introduce a more suitable quantifier of
quantum Darwinism in Markovian and non-Markovian systems. The second work is still
in progress, and we are studying quantum Darwinism in a more realistic model where
the environment is highly correlated. We are also investigating if there is some relation
between quantum Darwinism and orthogonality catastrophe.

In Chap. 2, we present the concept of quantum-to-classical transition from decoher-
ence in open quantum systems. This gives us the necessary tools to introduce the concept
of quantum Darwinism in Chap. 3. In Chap. 4, we introduce the quantum Markovianity
and non-Markovianity from an approach that allows us to trace a classical counterpart. In
chapter 5, we present our work of quantum Darwinism in quantum Harmonic oscillators.
Finally, in Chap. 6 we introduce the concept of orthogonality catastrophe and present our
first results of quantum Darwinism in a model with a strongly correlated environment.
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2 Open Quantum systems

Usually, textbooks introduce quantum theory by analyzing closed systems. This
is the most intuitive way since the postulates were constructed from closed quantum
systems. However, we must consider quantum systems interacting with their surroundings
to understand nature. Strictly speaking, the only perfectly closed system in nature is the
whole universe; any other system interacts at some level with the environment in which it
is inserted. At some level, any (sub)system inside the universe is an open quantum system.

From the most fundamental studies of quantum mechanics to technological applica-
tions, it is essential to understand the dynamics of open quantum systems. For example, an
open quantum system can lose coherence when it interacts with its environment (or other
systems); then, this interaction directly affects its evolution. Also, during a measurement
process, the system is never closed; it interacts directly with the measurement apparatus [8].
Another example is quantum information processing studies where, for the best conditions,
the quantum system must be as closed as possible. In this case, one can consider that
the interaction of the system with its environment results in undesirable noises. Such
noises can frequently be understood and controlled through the open quantum system
dynamics [9–11].

In Sec. 2.1, we shall recall the concepts of closed and open physical systems in
classical and quantum mechanics. The interaction between an open quantum system and
its environment can come with a sharing of information between then. Sec. 2.2 introduces
the concept of decoherence that gives an intuition of how the system and environment
can exchange information. Finally, in Sec. 2.3, we introduce the old discussion about the
quantum-to-classic transition and trace a possible connection with decoherence.

2.1 Closed and Open Systems
If a physical system does not interact with any other system, one can say that it is

closed, which means that the system’s dynamics depend on itself only, and nothing else
can disturb it. For example, consider a classical pendulum under only conservative forces.
If it starts moving due to an instantaneous external action, its movement continues until
other external force ceases. In this case, the system is closed since no external system
interferes with its dynamics. However, if the pendulum interacts with an external damping
force, its movement will be affected and can cease, meaning that this system is open.

As in the classical world, the quantum system also can be defined as open or
closed. The dynamics of an open quantum system will depend on its interaction with the
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environment, and its description is essential to several areas of quantum mechanics. Let us
briefly recall the dynamics of closed quantum systems to better understand open quantum
systems.

2.1.1 Closed Quantum Systems

A pure quantum state subjected to some Hamiltonian H(t) can be represented by
a state vector |ψ(t)〉 and it evolves in time according to Schrödinger’s equation,

i~
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 . (2.1)

The solution of Schrödinger’s equation can be formulated in terms of a time-evolution
unitary operator U(t, t0) such that

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 .

Therefore, defining ~ = 1, Eq.(2.1) can be rewritten as,

i~
d

dt
U(t, t0) = H(t)U(t, t0). (2.2)

For a time-independent Hamiltonian H with initial condition U(t0, t0) = I we get the
expression

U(t, t0) = exp [−iH(t− t0)] , (2.3)

see Appendix. A.2.

In some cases, the system’s state can not be characterized as a single state vector
but as a collection of pure states |ψi(t)〉, where the index i is associated with a probability
pi. Such mixed states may be described through the density operator (or density matrix) ρ
defined as

ρ(t) =
∑
i

pi |ψi(t)〉 〈ψi(t)|, (2.4)

see Appendix. A.4. Each state |ψi(t)〉 evolves according to the Schrödinger equation. Then,
the time evolution density matrix of closed systems is also described by a unitary operator
U(t, t0),

ρ(t) =
∑
i

piU(t, t0) |ψi(t0)〉 〈ψi(t0)|U †(t, t0)

= U(t, t0)ρ(t0)U †(t, t0). (2.5)

Differentiating Eq. (2.5) and using Eq. (2.2) we get the Liouville-von Neumann equation

d

dt
ρ(t) = −i [H(t), ρ(t)] , (2.6)

that can be written as
d

dt
ρ(t) = Lρ(t), (2.7)



Chapter 2. Open Quantum systems 16

where L is the Liouville operator that is defined as

Lρ(t)− i [H(t), ρ(t)] . (2.8)

Then, similarly to the pure state differential equation, ρ(t) is given by

ρ(t) = exp [L(t− t0)] ρ(t0) (2.9)

for a time-independent Hamiltonian.

2.1.2 Open Quantum Systems

Here we will focus on cases where an open quantum system interacts with its
surroundings. The interaction between the system S and its environment E leads to the
emergence of correlations between them. Once these correlations are created, the system’s
dynamics can no longer be described by a unitary operator. The system description for
some time instant can be made by its reduced state, which results from the partial trace of
the environment over the global system.

The Hilbert space of the system HS and the Hilbert space of the environment HE

compose the Hilbert space of the global system that can be defined as

H = HS ⊗HE. (2.10)

The total Hamiltonian may be described as

H(t) = HS ⊗ IE + IS ⊗HE +HI(t), (2.11)

where HS is the free Hamiltonian of the system, HE is the free Hamiltonian of the
environment, and HI(t) is the Hamiltonian of the interaction between the system and the
environment.

In the case of multipartite quantum systems, observables related to some specific
part acts just in the Hilbert space of this part. For example, consider a global system
composed of a system S, an environment E, and an observable AS ⊗ IE that acts only in
the system. The operator AS acts in the Hilbert space of the system, HS, while an identity
acts in the environment subspace, HE. Therefore, the expectation value of the observable
A is given by

〈A〉 = trS {A (trEρ)} , (2.12)

where ρ is the density matrix of the global system. The analysis is analogous to an
observable that acts just on the environment, and the expectation value of some observable
B of the environment is

〈B〉 = trE {B (trSρ)} . (2.13)
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Even if the global system S + E is closed and a unitary operator can describe its
whole dynamics, the dynamics of the reduced systems do not follow a unitary evolution.
The time evolution of any reduced state X that composes a global system X + Y can be
obtained from the Liouville-von Newmann equation (2.6)

trY
[
d

dt
ρ(t)

]
= trY [−i [H(t), ρ(t)]]

d

dt
ρX(t) = −itrY [H(t), ρ(t)] . (2.14)

There are several relevant differential equations for reduced density matrices that
describe approximately open systems, such as the Markovian master equation and the
generalized master equation [8]. However, in the models explored in this thesis (Chaps. 5
and 6), we can afford to describe the complete dynamics of both the system and the
environment.

2.2 Decoherence
Some interactions allow the environment to acquire information about the open

quantum system. In this case, the environment behaves as a measurement apparatus.
This process creates correlations between the system and the environment, enabling the
environment to keep information about the system. By observing the evolution of the
density matrix, it is noticeable that the superposition of the system’s states vanishes, and
for some basis, the system loses coherence. This phenomenon is known as decoherence.
Through decoherence, it is possible to understand why non-classical states states are
so fragile. Decoherence describes how the entanglement between the system and the
environment singles out a specific set of quantum states and excludes other fragile states
like the Schrödinger cat states [12]. In Sec. 3.4, we specify this information and how to
measure it. For a while, we will treat it generically.

In the early ’70s, studies of quantum-to-classical transition and the measurement
problem by Zeh [13] were used as a basis for the theory of quantum decoherence. In the
’80s, Refs [14] and [15] show how the environment can select some system states and
destroy its superposition states. From this, it was possible to connect decoherence with the
quantum-to-classical transition (see Ref [16]). The loss of coherence of an open quantum
system induced by its environment has been widely studied for the last fifty years or so,
so there is currently extensive literature about it [17–19].

The decoherence theory applies from the fundamental studies of quantum mechanics
to the technological applications of quantum information. Superposition states that are at
the core of quantum information processing can be strongly affected by decoherence. Thus,
designs for quantum computing need to take decoherence into account. Experimental
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Figure 1 – (a) Interference pattern of a particle beam crossing a double slit with no path
recording. (b) When a detector is capable of inferring the particle path, the
Interference pattern vanishes.

techniques recently developed are capable of observing and controlling decoherence [20–23].
For example, in cavity quantum electrodynamics (CQED) experiments, it is possible to
time resolve the effects of decoherence [24].

2.2.1 Quantum Decoherence Formalism

Quantum decoherence enables us to understand how the environment affects the
states of an open quantum system. To introduce the quantum decoherence formalism, let
us describe the simple but rich example with the double slits experiment presented in
Ref. [18]. Consider a particle beam passing through a wall with two slits and reaching a
screen that can record the position of each incident particle. Each particle from the beam
is an open quantum system, S, and can cross or the slit 1 or the slit 2. In the first situation,
we can not know for what slit the particle passed through, and the pattern of interference
is visible (Fig.1(a)). However, if we place a sensor in slit 1 that can record the particle
path, the interference pattern vanishes (Fig.1(b)). The which-path information destroys
the interference pattern. The more distinguishable the path is of the particle, the less
visible the interference pattern. In this idealized example, the sensor is the environment
E. The environment’s degrees of freedom interact with the particle, creating correlations
between these two systems.

Consider that the particle’s quantum states related to slits 1 and 2 are |s1〉 and
|s2〉, respectively, and that the initial state of the environment is |E〉. After the interaction
between the system and the environment, the evolution of the global state can be described
as

|Ψ0〉 = (α |s1〉+ β |s2〉) |E〉 −→ |Ψ〉 = α |s1〉 |E1〉+ β |s2〉 |E2〉 , (2.15)

where |E1〉 and |E2〉 are the states of the environment if the state of the system is |s1〉
and |s2〉, respectively.

By tracing out the degrees of freedom of the environment from the global state,
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ρSE, one gets the reduced density matrix of the system,

ρS = TrE (ρSE) , (2.16)

where all information about the system is stored. Namely, for observables that acts only
on the system, that is, O = OS ⊗ IE, the expectation value of O depends only on ρS. For
the double slit example, ρS is obtained by tracing out the environment from Eq. (2.15),

ρS = TrE (ρSE) (2.17)

= |α|2 |s1〉 〈s1|+ |β|2 |s2〉 〈s2|+ αβ∗ |s1〉 〈s2| 〈E2|E1〉+ α∗β |s2〉 〈s1| 〈E1|E2〉 (2.18)

For a given operation that measures the position of the particle in the screen, one
can define an operator O = |x〉 〈x| ⊗ IE. The expected value of O gives the probability
density P (x) of detecting the particle in a particular position x. As this observable lies
only in the Hilbert space of the system, we get

P (x) = 〈O〉 = TrS (ρSO)

= 〈x| (ρS) |x〉

= |α|2|ψ1(x)|2 + |β|2|ψ2(x)|2 + 2Re {αβ∗ψ1(x)ψ∗2(x) 〈E2|E1〉} , (2.19)

where ψ(x1) = 〈x|s1〉 and ψ(x2) = 〈x|s2〉. The last term represents the visibility of the
interference pattern and can vanish as the states of the environment become orthogonal.
The coherence between the states of the system vanishes when the states of the environment
are orthogonal. Therefore, we can conclude that the orthogonality between |E1〉 and |E2〉
indicates how much coherence the system lost.

In the case of complete decoherence, the environment states in Eq. (2.18) become
completely distinguishable and all off-diagonal terms of the density matrix vanishes. In
large environments, the number of interaction events is also significant, which results in a
faster vanishing of the off-diagonal terms.

2.2.2 Environment-induced superselection

Generally, the interactions’ correlations entangle the system, and the environment
states. These correlations can destroy the superposition but do not affect the system’s
specific set of pure states. Consider the time evolution of a density matrix ρS(t) of the von
Neumann example in Eq. (2.18). At t = 0, there are no correlations between the system
and the environment, and all elements of the matrix ρS will be nonzero if all γi 6= 0. As
time progresses, the system and the environment become entangled, and the coherence in
the superposition states of the system will vanish. The environment can effectively monitor
the system through correlations [25]. For several kinds of interactions and on a proper
basis, the off-diagonal elements of ρS decrease quickly, and just the diagonal states survive
the decoherence process.
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One can conclude that environment interaction can select and highlight the
“strongest” states of the system. This environment-induced superselection is known in
the literature as einselection [14, 15,26]. Such robust states are also called pointer states
or preferred states. The basis composed only by pointer states is known as pointer basis
or preferred basis. The decoherence process also highlights a preferential observable or
a POVM of preferential observables; that is, those observables that are diagonal in the
preferential basis.

We can understand the highlighting of the pointer states through the total Hamilto-
nian that drives the system and the environment. Consider a Hamiltonian H composed of
three parts, the self-Hamiltonians of the system and environment, HS and HE, respectively,
and the Hamiltonian describing their interaction, HI , so

H = HS +HB +HI . (2.20)

We shall consider three different situations: H ≈ HI , H ≈ HS, and HS ≈ HI . Cases that
HI dominates are known as the quantum-measurement limit of decoherence [14, 17]. In
these situations, HI � HS + HE and the preferred basis is enclosed in HI . This case
satisfies the primary condition to einselection known as commutativity criterion

[O,HI ] = 0, (2.21)

where O is the preferential observable.

Consider the case where the interaction Hamiltonian is given by

HI = OS ⊗OE. (2.22)

To determine the pointer states, we need to find the system states that neither entangle
with the environment nor change with the interaction when subject to HI . In particular,
these states coincide with the eigenstates {|si〉} with eigenvalues {λi} of the part of HI

that acts on the system’s Hilbert space, OS. Thus, if HI is time-independent, for each
state |si〉 of the system associated with the environment state |E(0)〉 at t = 0, we get

e−iHI t/~ |si〉 |E(0)〉 = e−iOSt/~ |si〉 e−iOEt/~ |E(0)〉

= e−iλit |si〉 |E(t)〉 . (2.23)

Note that any state of {|si〉} remains a product state with the environment at any t and
does not decohere. However, superpositions of pointer states can decohere and become
entangled with the environment as, for example,

e−iHI t/~
∑
i

|si〉 |E(0)〉 =
∑
i

e−iλit |si〉 |Ei(t)〉 . (2.24)

Finding the eigenvectors ofHI in the system subspace allows us to identify the pointer states
and the system preferred observable, O = ∑

i |si〉 〈si|, where the commutativity criterion in
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Eq. (2.21) can be accomplished exactly. Therefore, HI = OS ⊗OE can represent a physical
observable (the preferential observable) that will be monitored by the environment.

The regime HS � HI is known as the quantum limit of decoherence [27]. Since HS

dominates the dynamics, the environment frequencies are small compared to the frequency
of the system. Even if the system and the environment are correlated through the position
or momentum, the selected pointer states will be the energy eigenstates.

In the most common models found in nature, neither HI nor HS dominates over H;
usually, HS and HI have the same weight. The characterization of the pointer states can be
performed by the predictability sieve method [28–30]. This technique consists of measuring
the decoherence during a time evolution for several different initially pure states of the
system. The pointer states are that those better survive to decoherence. When a pure state
is not robust, it loses coherence while it becomes entangled with the environment’s states.
The loss of purity leads to an increase in entropy. Pointer states do not entangle with the
states of the environment, do not decohere, and the increase of the entropy is minimal.

Decoherence leads to an increase in the reduced system’s entropy, which means
that the system becomes even less predictable. However, the states that do not lose
coherence are capable of keeping some information, and, at less for these classes of states,
the predictability can survive.

2.3 The Quantum-to-Classic Transition
Quantum mechanics is a solid theory. Up to now, there is no conflict between

experiments and theoretical predictions. However, it is hard to reconcile our perceptions
with quantum theory predictions. For example, we can see directly neither superpositions
of states nor entanglement. Some interpretations were developed to overcome this situation.
In 1928, Bohr proposed that the measurement of quantum systems should be made by
classical apparatus [5, 6]. Such interpretation, known as Copenhagen Interpretation, makes
necessary the existence of a border (that can be mobile) separating quantum and classical.
Wheeler emphasized that, from this point of view, “no phenomenon is a phenomenon until
it is a recorded phenomenon” [31]. Another alternative is the Many World Interpretation.
Proposed by Everett in 1957. This approach eliminates the necessity of a line separating
the quantum from the classical [32]. It consists of considering all alternatives of the
state vectors as existing results. The whole universe evolves according to the Schrödinger
equation. When systems interact, the superposition states split into branches, and this
process repeats indefinitely, giving rise to infinite worlds.
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2.3.1 The Measurement Problem

Even with these interpretations, the key questions remain: “If can exist more than
one outcome simultaneously, why do we see just one? What decides the outcome?”

Significant advances were reached with the decoherence theory. We can start our
analysis from the measurement problem raised by Von Neumann in 1932 [33]. Instead
of considering that the measurement apparatus is classical as Bohr did, Von Newmann
investigated the situation where it is also a quantum system.

This analysis can be exemplified with a 1/2 spin system S that is measured by a
quantum detector D. Consider that in this situation, the Hilbert space HS of the system
has two dimensions with possible states {|↑〉 , |↓〉} and the Hilbert spaceHD of the quantum
detector also have two possible states {|d↑〉 , |d↓〉}. If the apparatus, initially in |d↓〉, detects
a particle in the state |↑〉 its state flips to |d↑〉, that is

|↓〉 |d↓〉 → |↓〉 |d↓〉

|↑〉 |d↓〉 → |↑〉 |d↑〉 . (2.25)

Assuming that the initial state of the system is

|ψS〉 = α |↑〉+ β |↓〉 , (2.26)

with |α|2 + |β|2 = 1 and the initial state of the apparatus is |ψD〉 = |d↓〉, we get

|Ψi〉 = |ψS〉 ⊗ |ψD〉 = (α |↑〉+ β |↓〉)⊗ |d↓〉 ⇒ α |↑〉 |d↑〉+ β |↓〉 |d↓〉 = |Ψc〉 . (2.27)

The interaction between the system and the detector transforms the initial product state
|Ψi〉 in a correlated state |Ψc〉.

Describing a measurement just as described in Eq. (2.27) can be problematic; we
can not see the two outcomes |d↑〉 and |d↓〉 simultaneously in the real world. Aware of this
issue, Von Newmann proposed to analyze the density matrix of the state |Ψc〉,

ρc = |Ψc〉 〈Ψc|

= |α|2 |↑〉 〈↑| |d↑〉 〈d↑|+ |β|2 |↓〉 〈↓| |d↓〉 〈d↓|+ αβ∗ |↑〉 〈↓| |d↑〉 〈d↓|+ α∗β |↓〉 〈↑| |d↓〉 〈d↑| .
(2.28)

The quantum correlations in Eq. (2.28) are represented by the off-diagonal terms of
the matrix ρc. However, a measurement process only detects classical states. Then, Von
Neumann postulated a non-unitary reduction of the state vector, eliminating the off-
diagonal terms,

ρr = |α|2 |↑〉 〈↑| |d↑〉 〈d↑|+ |β|2 |↓〉 〈↓| |d↑〉 〈d↑| . (2.29)

The evolution
ρc ⇒ ρr (2.30)
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is known as wave packet collapse, and it is easier to interpret than looking just at |Ψc〉.
However, it is not yet clear how this transition happens.

The reduction ρc ⇒ ρr increases the entropy of the global system by the amount

∆H = H(ρc)−H(ρr)

= |α|2 ln |α|2 + |β|2 ln |β|2 , (2.31)

where H(ρ) = −Trρ ln ρ. This means that the system becomes less predictable and loses
information when its states become classical.

2.3.2 Decoherence in the Reduced Density Matrix of the System

As pointed out by Zeh [13] and strongly emphasized by Zurek [14, 15, 34], the
Scrödinger equation is not only applicable in single systems but also in composite systems.
Most of the systems in nature interact with their neighborhood. The destiny of the lost
information can be explained by the decoherence theory (see Sec. 2.2) which treats the
system’s environment as an active element.

When an environment interacts with the set system+apparatus, their states can
become correlated. In the case of large environments, information can be dispersed on
several degrees of freedom. To exemplify this analysis, let us include the environment in
the example in Eq. 2.27. Now, the global system is composed of the system S, the detector
D, and the environment E initially in the state |E0〉. The evolution of the global system is
given by

|Ψc〉 |E0〉 = (α |↑〉 |d↑〉+ β |↓〉 |d↓〉) |E0〉 ⇒ α |↑〉 |d↑〉 |E↑〉+ β |↓〉 |d↓〉 |E↓〉 = |Φ〉 . (2.32)

The state of system+apparatus is found by tracing out the degrees of liberty of the
environment

ρSD = TrE |Φ〉 〈Φ|

= |α|2 |↑〉 〈↑| |d↑〉 〈d↑|+ |β|2 |↓〉 〈↓| |d↑〉 〈d↑|

+ αβ∗ |↑〉 〈↓| |d↑〉 〈d↓| 〈E↓|E↑〉+ α∗β |↓〉 〈↑| |d↓〉 〈d↑| 〈E↑|E↓〉 . (2.33)

In particular, when the environment states {|E↓〉 , |E↑〉} are orthogonal, 〈Ei|Ei′〉 = δi,i′ , we
recover the completely mixed state predicted by Von Newmann in Eq. (2.29).

ρSD = ρr = |α|2 |↑〉 〈↑| |d↑〉 〈d↑|+ |β|2 |↓〉 〈↓| |d↑〉 〈d↑| . (2.34)

As presented in Sec. 2.2, when the system interacts with its environment, its
states become correlated, destroying the superposition of the system’s states. Just the
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strongest states can survive; these are the pointer states. As the pointer states are robust
and fittest, they change minimally during decoherence, and only their superpositions are
destroyed. The pointer states form the pointer basis with the classic outcome options of
the preferential observable (or POVM). In this process of einselection (see in detail in
Sec. 2.2.2), the interaction between system and environment results in highlighting the
classical states of the system, that in the example of Eq. (2.34) are the diagonal states of
ρSD.

When decoherence and einselection occur, obtaining information about the system
is possible by measuring small fractions of the environment. This is attainable when
information about the system is spread redundantly in the environment, and it is known
as Quantum Darwinism.
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3 Quantum Darwinism

As we could see in the previous chapter, the interaction between the system and
the environment can highlight a set of pure states that form the pointer basis. Such states
do not entangle with the environment’s states and, therefore, do not lose coherence.

In some cases, information about the system can be found redundantly spread
in the environment, so that a small fragment of the environment can contain almost all
information that the whole environment has about the system. Such redundant information
is about a specific observable, the preferred observable [15]. The pointer states, beyond
being able to survive the environmental decoherence, are capable of multiplying and
encoding information about them in the environment states. Then we can say that the
fittest states survive to decoherence and multiply information about themselves in the
environment.

The survival of some system states from decoherence and their redundant prolifer-
ation in the environment is known as quantum Darwinism. Wojciech Zurek popularized
this concept in Ref. [35] and made an analogy with Charles Darwin’s work. Zurek has
been investigating the consequences of decoherence since the early ’80s, inspired by Zeh’s
work (see Sec. 2.2).

The redundancy of information can be quantified through mutual information
and is also a measure of classicality of the system. The works published in 1983 [34] and
1998 [30] bring the first mentions to redundancy of information in the context of open
quantum systems, and the way to quantify it was introduced in 2000 in Ref. [36]. In
2003 Quantum Darwinism was first introduced in Ref. [37], where the author connected
decoherence, einselection, and redundancy and was widely disclosed through Ref. [35] in
2009.

3.1 From Decoherence to Quantum Darwinism
Depending on the kind of interaction, the environment can effectively measure

the open quantum system. The states of the environment correlate with the states of
the system. This “measurement kind” process destroys the superposition states of the
system, and just a set of resilient pure states can resist the pointer states. Then, we can
say that this system suffered decoherence. The remaining pure states are einselected, that
is, selected by the environment through the decoherence process (Sec. 2.2).

The entanglement produced by the decoherence process makes it possible to obtain
information about the system by measuring the environment. In some cases, it is necessary
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to measure nearly the entire environment to obtain almost all information about the
system. However, there are cases where just a small fragment of the environment carries
enough information to infer the state of the system.

Redundancy in the information theory context is defined as the difference between
the minimal number of bits required to decode the message with no ambiguity and the
size of the complete encoded message [38]. It follows similarly in quantum information. For
some kinds of interaction, information can be “decoded” from a small environment fraction.
In general, the Hilbert space of the environment HE is much larger than the Hilbert space
of the system HS, and information about the system can be spread redundantly over the
environment. During the interaction, the environment measures, records, and encodes
the states of the system. The states related to the preferential observables are recorded
redundantly in the environment (see Sec. 2.2.2).

In a case where there is no redundancy, it is required to measure the whole
environment to obtain such information. Once the quantity of redundancy is relevant, the
measurement of a small fragment of the environment is enough to detect the state of the
system related to the preferential observable; this is the case of quantum Darwinism.

Observe that the set of system states related to a specific observable is selected
(or einselected) by the environment through the decoherence process. Furthermore, the
information about these states not just survives, it also proliferates in the environment’s
states. Therefore, it is noticeable that “Darwinism” is related to the Charles Darwin theory,
which claims that in nature, only the strongest and fittest can survive in the environment
and reproduce themselves.

3.2 The preferential Observable
In a redundant scenario, the information about the preferred observable is encoded

in the environment states, and by measuring a small fraction of the environment, one can
infer the system state. In contrast, non-preferential observables cannot be measured by
small environment fractions.

Consider a two-level atom with the possible states |e〉 and |g〉 coupled to an
environment such that each individual subenvironment has two possible spin states, |↑〉
and |↓〉. Suppose that the state |ΨSE〉 of the composite system is given by

ΨSE = 1√
2

(|e〉 |↑↑ · · · ↑〉+ |g〉 |↓↓ · · · ↓〉) (3.1)

= 1√
2

(|e〉 |E↑〉+ |g〉 |E↓〉) . (3.2)

By measuring the entire environment, it is possible to infer the atom’s state, as we can see
in Eq (3.2). However, in this case, it is not necessary to measure all the environment, the
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result of the measurement of just one subenvironment tells us precisely the state of the
system, Eq. (3.1).

Notwithstanding, it is not guaranteed the redundancy of information about other
observables of the system. By rewriting the states of the system on the basis

|1〉 = 1√
2

(|e〉+ |g〉)

|0〉 = 1√
2

(|e〉 − |g〉) (3.3)

the global state becomes

|ΨSE〉 =1
2 |1〉 (|↑↑ · · · ↑〉+ |↓↓ · · · ↓〉) + 1

2 |0〉 (|↑↑ · · · ↑〉 − |↓↓ · · · ↓〉) (3.4)

= 1√
2

(|1〉 |E1〉+ |0〉 |E0〉) . (3.5)

To obtain information about the system on the basis {|1〉 , |0〉} it is necessary to measure
the whole environment, indicating that this is not the preferential basis and that there is
no redundancy on it. In this example, the preferential basis is {|e〉 , |g〉}, and it is capable
of encoding information of the preferential observable redundantly in the environment.

In the next sections, we present two ways to determine if quantum Darwinism can
be observed in a quantum system.

3.3 Objectivity and Quantum Darwinism
Different observers on Earth can see the moon by accessing different tiny fractions

of all photons scattered from it, agreeing with what they observed. This is an example
of classical objectivity. In the context of the quantum-to-classical transition, quantum
Darwinism is presented to elucidate the arising of the objective reality from the quantum
world.

To pinpoint the features of classical objectivity, consider a system S interacting
with E , which is composed of several subenvironments. Objectivity is reached when:

• There exists an observable (or POVM) that can be measured by multiple observers
and it is capable of inferring information about the system by probing the environment.
This is the preferential observable (Sec. 3.2) that can be described by the pointer
states selected by einselection;

• a large number of observers should have access to information of the pointer observable
through different subenvironments of E simultaneously;

• and all observers must agree with the result obtained.
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The information about a system observable becomes objective when these conditions
are fulfilled. Such information is selected with the preferred states by the einselection and
is proliferated redundantly in the environment states. Therefore, objectivity indicates the
emergence of classical reality.

3.4 Partial Information Plot Approach
When Zurek introduced the quantum Darwinism concept, he proposed quantifying

it by calculating the redundancy of information [35] that can be seen as a consequence of
einselection (See Ref. [34]).

As information is a term that can have multiple meanings, it is important to define
which “information” we are talking about. Since elements of information theory can be
adapted to quantum information, Zurek proposed to use the quantum mutual information
to characterize quantum Darwinism [35]. The mutual information between a system S

and its environment E is defined as

I(S : E) := H(S) +H(E)−H(S, E), (3.6)

where H(S) is the von Neumann entropy of the system, H(E) is the entropy of the
environment, and H(S, E) is the joint entropy of system and environment. The von
Neumann entropy of a certain system X, H(X), is given by H(X) = −Tr [ρ(X)lnρ(X)].
Mutual information I(S : E) defines the quantity of information that the whole environment
has about the system. If the system and environment are in a product state, ρ = ρ(S)⊗ρ(E),
the mutual information is zero. If the system and the environment are in a maximally
entangled state, as for example in

|Ψ〉 = 1√
2

(|↑S〉 |↑E〉+ |↓S〉 |↓E〉) , (3.7)

the mutual information is maximal. In this case, one can know precisely the state of
the system by measuring the environment. Therefore, mutual information is an excellent
metric to quantify how much information the environment has about the system. In this
approach, quantum mutual information is crucial to measure the quantity of redundant
information contained in the environment.

To calculate the redundancy, we need to consider fragments F of the environment,
composed of m subenvironments Ek. Each Ek is the smallest portion possible of the
environment. Consider also that E is divisible in N subenvironments. To understand how
the information is spread, we can look at fragments of the environment that contains
m subenvironments. The number of subenvironments, m, contained in Fm is given by
m = fN , where f is the fraction of the environment contained in Fm, that is, f = m/N .

The mutual information

I(S, Ek) = H(S) +H(Ek)−H(S, Ek) (3.8)



Chapter 3. Quantum Darwinism 29

gives the amount of information that a single subenvironment has about the system. In
the example of Eq. (3.1), where a single environment Ek gives all information about the
preferential observable, the mutual information between the system and Ek is I(S, Ek) =
H(S). As the mutual information is antisymmetric around H(S) and f = 1/2 for pure
states [39], I(S, Ek) ≥ H(S) indicates that the subenvironment Em has all available
information about the preferred observable; If this is valid to any k, the redundancy is
maximal, and quantum Darwinism can be observed. In contrast, if to reach I ≥ H(S), it
is required to get the whole environment, that is, I = I(S,E), the redundancy is minimal,
and there is no quantum Darwinism.

Typically, redundancy is not maximal, but it can be large enough to characterize
quantum Darwinism. It is possible to obtain almost all information about the system by
taking more than one subenvironment. First, it is necessary to define what amount of
information about the system is acceptable to guarantee a good approximation to the
ideal condition. We shall define an arbitrary parameter 0 < δ < 1 so that (1− δ)H(S) is
the desired good approximation.

The second step is to compute the average mutual information for a fraction f .
Each fraction contains fragments Fm of the environment composed by m subenvironments.
The mutual information of each Fm is given by

I(S,Fm) = H(S) +H(Fm)−H(S,Fm). (3.9)

For 1 < m < N , there are C =
(
N
m

)
different possible combinations of subsystems. Then,

the average mutual information of a fraction f of the environment is given by the average
value of I(S,Fm) for all combinations:

Ī(f) = 〈I(S,Fm)〉 to all C combinations m. (3.10)

In the third step, one can finally calculate the redundancy. The quantity fδ is the
smallest fraction required to obtain all information of the system’s preferential observable
but a percentage δ; that is, I(S, fδ) = (1− δ)H(S). It is clear that the smaller is fδ, the
larger is redundancy. Then, one can define the redundancy related to δ, Rδ, as the inverse
of fδ,

Rδ = 1
fδ
. (3.11)

Therefore, to find the redundancy of information in this approach, it is necessary to
find the fraction fδ necessary to obtain almost all information about the system spread in
the environment. Fig. 2 presents three examples. In the solid line, quantum Darwinism can
be observed. Although it does not represent the perfect case, fδ that provides almost all
information about the system is relatively small, which means that Rδ is high. In contrast,
in the long-dashed line, fδ ∼ 0.5 and in the short-dashed line fδ = 0.5, implying in small
values of Rδ.
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Figure 2 – figure

Three qualitatively distinct possibilities for a partial information plot (PIP) [40]. The
solid line a) corresponds to a case where a small fraction of the environment already has
average mutual information close to H(S), being the signature of quantum Darwinism.
The linear profile b) can be seen (approximately) in our model for small interaction times
(see Sec. 5.2.4). In profile c), fδ is close to 0.5, so the redundancy is very small. This kind

of profile can be obtained from random pure states drawn according to the Haar
measure [39].

3.5 BHP Approach
In the quest to understand the conditions required to observe quantum Darwinism,

F. Brandão, M. Piani, and P. Horodecki proposed looking at how the system’s initial states
are mapped into states of the environment [41]. We call this method the BPH approach
for short.

The authors observed that the general conditions for quantum Darwinism were
still not clear. One needs to look at the system’s dynamics individually to see if quantum
Darwinism is applicable or not; it is not possible to infer this from the Hamiltonian, for
example. This investigation produced a significant result. It showed that some of the
requirements for quantum Darwinism were naturally and generically satisfied.

They formulated the concepts of emergent objectivity of the observables and
outcomes and showed under which circumstances one can validate quantum Darwinism. In
Sec. 3.3, it was defined under which conditions objectivity emerges. We can separate these
conditions into two groups. The first group defines the objectivity of observables: there
exists an observable accessible to different observers by probing parts of the environment.
The second is the objectivity of the outcomes: all observers shall be able to measure the
system through the environment and find the same result.

The objectivity of the outcomes was found as a consequence of the quantum
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Figure 3 – (Color) Open quantum system (red particle) and its environment (blue parti-
cles). As the system is identical to the environment particles, any subenviron-
ment could be the system.

mechanics postulates. To understand the idea, let us consider a set with N + 1 initially
uncorrelated systems. Any system can be considered the main system S; the only restriction
is that it shall have finite dimension dS. The remaining systems, E1, · · · , EN , compose the
environment E with no restrictions to dimension (See Fig.3). Once S and E interact, E
acquires information about S. This operation can be described by a completely positive
trace-preserving (CPTP) map Λ : D(S)→ D(E1 ⊗ · · · ⊗ En), where D(X) represents the
set of all possible density matrices of the system X Hilbert space.

One can define the difference between two quantum operations Λ1 and Λ2 as the
diamond norm of their difference, that is

‖Λ1 − Λ2‖� = supX ‖(Λ1 − Λ2)⊗ idX‖1
‖X‖1

(3.12)

where ‖X‖1 = tr
((
X†X

)1/2
)
. Let ε be the maximal tolerable error, such that ‖Λ1 − Λ2‖� ≤

ε allow us to consider λ1 and λ2 approximately equal.

From the map Λ : D(S) → D(E1 ⊗ · · · ⊗ EN), define a quantum operation that
takes the state of S on the states of the subenvironment Ej as Λj := tr\Ej ◦Λ, where tr\Ej
is the partial trace over all subenvironment except for Ej; that is, Λj : D(S) → D(Ej).
Also consider a fixed δ, such that 0 < δ < 1. In the first theorem of Ref. [41], BPH
proved that there exists a measurement described by a POVM {Mk}k, an operation
Ej, and an environment subset F ⊆ {1, · · · , N} with |F | ≥ (1 − δ)N , such that for all
subenvironments j and all possible F ’s,

‖Λj − Ej‖� =
(

27 ln(2)d6
S log(dS)

Nδ3

) 1
3

, (3.13)
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with
Ej =

∑
k

tr (MkX)σj,k, (3.14)

where σj,k ∈ D(Ej) are k-th subenvironment states. Note that δ establishes how close can
be the maps Λj and Ej. For example, if S and E are perfectly correlated we can learn
about the state of S by measuring all environment in any situation. Then, the quantity
δ means that we want to find an operation that describes a measurement equivalent to
measure all subenvironments but a percentage δ of N .

The smaller ‖Λj − Ej‖� is, the more suitable is the POVM {Mk}k to measure the
system. For a fixed δ, N , and dS, the right side of Eq. (3.13) defines how close Ej and Λj

are. The large the environment is and the smaller dS, the smaller is the distinguishability
between Λj and Ej.

The operation in Eq. (3.14) gives some details about the dynamics Λj : D(S)→
D(Ej). The operation Ej describes the subenvironment Ej “measuring” the system states
through the POVM {Mk}k during the interaction. Then, the states of Ej , σj,k are prepared
according to the result of this measurement. The operation Ej is properly named as measure
and prepare map.

This POVM can be interpreted as the preferential observable, meaning that the
observable’s objectivity is a general characteristic of quantum systems in a Hilbert space
of finite dimension. Extending this theorem, it is also possible to prove that if different
observers with access to different parts of the environment have almost all information about
the pointer observable, they will agree on the outcomes obtained, validating objectivity of
outcomes [41].

It is important to stress that this theorem does not guarantee the objectivity
of the outcomes. The outcomes become objective only if the states of the POVM are
distinguishable. For example, Ref. [39] used Page’s formula for the Haar-average entropy
to compute the averaged mutual information Ī over the Hilbert space of pure states
H = S ⊗ E. It was shown that for a fixed fraction f , limN→∞

〈
Ī(f)

〉
= 0 for f < 1/2.

It is necessary to take at less half of the environment to infer the system state, and
therefore, there is no redundancy or objectivity of the observable. One can conclude
that the objectivity of the outcomes is not a general consequence of quantum mechanics
postulates and depends on the details of the dynamics.

3.6 Exemplifying and comparing BPH and PIP approaches
To clarify the idea and difference between these approaches, we show two examples

and discuss their particularities. First, we analyze the dynamics of a particular model to
give a qualitative idea of the preferential observable and redundancy. We will then apply
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both approaches, BPH and PIP, to give a quantitative notion of quantum Darwinism.
Finally, we will compare the two methods.

Example 1: Consider a qubit system S inserted in an environment E composed
of N qubit subenvironments, with E = {E1, · · · , EN}, where the possible states of S
and each Ei are respectively {|0〉 , |1〉} and {|0〉Ei , |1〉Ei}. Assume the initial state of E
as |0〉E = |0〉E1

⊗ · · · ⊗ |0〉En and the interaction dynamics for a specific time interval
∆t = tf − ti as

|0〉 |0〉E →|0〉 |0〉E
|1〉 |0〉E →|1〉 |1〉E . (3.15)

If the system is initially in a superposition state

1√
2

(|0〉+ |1〉), (3.16)

then at t = tf the dynamics of Eq. (3.15) evolves the global system to

|Ψ(tf )SE〉 = 1√
2

(|0〉 |0E〉+ |1〉 |1E〉), (3.17)

whose density matrix is ρSE = |Ψ(tf )SE〉 〈Ψ(tf )SE |. For any fragment F ⊂ E of the
environment composed by one or more subenvironments, the reduced density matrix is

ρSF =tr\FρSE

=1
2 |0〉 〈0| |0F 〉 〈0F |+

1
2 |1〉 〈1| |1F 〉 〈1F | , (3.18)

where |0F 〉 = ⊗k∈F |0〉k and analogously for |1F 〉. Therefore, by measuring the environment
fraction F on the basis {|0F 〉 , |1F 〉}, one can infer the state of S on the basis {|0〉 , |1〉},
at a time tf .

However, is it possible to infer the state of S by measuring F on another basis?
What can we learn about other observables through F? To answer this question, we can
rewrite Eq. (3.17) in the basis {|+〉 , |−〉}, where |±〉 = 1√

2(|0〉 ± |1〉), for the system, and
in the basis {|GHZ+〉 , |GHZ−〉}, with |GHZ±〉 = 1√

2(|0E〉 ± |1E〉), for the environment.
The global system will become

ρSF = 1√
2

(|+〉 |GHZ+〉+ |−〉 |GHZ−〉). (3.19)

Now, differently from Eq. (3.17), only by measuring the whole environment one can learn
the system’s state. Note that, moreover, the same is true for any system observable,
defined by an arbitrary orthonormal basis. In this example, the preferential observable is
described by the basis {|0〉 , |1〉}, and the information about it is spread redundantly over
the environment; one can infer the value of this observable even when F contains only one
subenvironment.
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It is easy to check that the partial information plot for state (3.17) is an exact
plateau: Ī(0) = 0 by definition, Ī(f) = H(S) = ln 2 for every 0 < f < 1 and Ī(f) =
2H(S) = 2 ln 2 for f = 1. This reflects the fact that any proper subset of the environment
only has information about the preferred observable.

To understand this example in terms of the BPH approach, we need to find the
map ΛF of this dynamic. Since the environment is composed of many subsystems, one can
define, via composition with partial tracing, corresponding maps ΛF : DS → DF to each
fragment F ⊂ E of the environment, namely

ΛF =TrE−F ◦ ΛE
ΛF (ρ) =Tr(|0〉 〈0| ρ) |0F 〉 〈0F |+ Tr(|1〉 〈1| ρ) |1F 〉 〈1F | . (3.20)

Note that ΛF is exactly a measure and prepare map, as defined in Eq. (3.14), and the POVM
{|0〉 〈0| , |1〉 〈1|} is the preferential observable. These facts characterize the objectivity of
observables. The map ΛF shows that the states {|0〉F , |1〉F} of F are perfectly correlated to
the pointer basis states of S {|0〉 , |1〉}. The objectivity of the outcomes is conditioned on the
distinguishability between the states of the fragments. In this case, the two possible states
of the fragment, {|0F 〉 , |1F 〉}, are orthogonal. Then, we can conclude that by measuring
just one fraction, one can know precisely the state of the system. Furthermore, the smallest
possible fraction gives all information about S, which means that redundancy is maximal.

Note that in the PIP approach, since one considers only the specific global state
(3.17), a strong claim can be made: if someone observes a particular outcome upon the
{|0F 〉 , |1F 〉} measurement in an environment fragment F , we can be sure that a {|0〉 , |1〉}
measurement in the system itself if performed, will show the same outcome. There is no
analog claim in the BPH approach. It is not correct to say in general that, upon seeing
the outcome 0 in an environment F , the system was in state |0〉 at T = 0, since the
system could have been, say, in the initial state 1√

2(|0〉+ |1〉). In this case, there would be
a positive probability of observing the outcome 1 in the environment fractions.

Example 2: Now, consider a slight modification in the dynamics:

|0〉 |0E〉 7→ |0〉 |0E〉 , (3.21)

|1〉 |0E〉 7→ |0〉 |1E〉 . (3.22)

No matter what initial state we choose for system S, it will never correlate with the
environment, so the PIP is always trivial. From this perspective then, it appears that this
is a bad instance of quantum Darwinism.

From the BPH perspective, however, they are necessarily the same. Indeed, the
maps ΛF defined by such new dynamics are exactly the same as in Eq. (3.20) for every
proper subset F ⊂ E. Nevertheless, as a side note, it is interesting to see that they do differ
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for F = E. In this case, having access to the whole environment does have a consequence.
Indeed, the dynamics essentially transfer any initial state of the system to the environment:

(α |0〉+ β |1〉) |0E〉 7→ |0〉 (α |0E〉+ β |1E〉). (3.23)

Therefore, one can choose to obtain information about an arbitrary system observ-
able, in the sense that there exists some (in general, global) measurement that can be done
in the whole environment with the same statistics of the corresponding system observable
in the initial system state. Of course, these measurements being global makes meaningless
the notion of objectivity, since it would not be possible to compare the outcomes of different
observers.

As we could see, albeit these approaches are different they are complementary; one
can be more suitable than the other depending on the situation.

3.7 Quantum Darwinism Examples
There are quite interesting theoretical models in the literature that can help us

clarify the concept of quantum Darwinism. This section shows two works [42,43] where
the objectivity of the system emerges from einselection.

3.7.1 Quantum Darwinism in Quantum Brownian Motion

Quantum Brownian motion is a well-studied model for open systems [26,42,44–46].
Its similarity with systems often found in nature makes it suitable in open quantum
experimental systems investigations [47, 48].

In this model, the system S and the environment E are a collection of N + 1
quantum harmonic oscillators. The system and the environment can interact and are
coupled in position. Therefore, the environment is a set of quantum harmonic oscillators
E = {E1, · · · , EN} where each Ei is a subenvironment (see Fig. 4).

In this model, the Hamiltonian is given by

H = HS +HE +HI , (3.24)

with

HS = p2
S

2M + MΩ2x2

2 , (3.25)

HE = 1
2

N∑
i=1

(
q2
i

mi

+miω
2
i y

2
i

)
, (3.26)

and

HI = x
N∑
i=1

Ciyi, (3.27)
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Figure 4 – System S interacting with individual subenvironments Ei that compose the
whole environment E . In a quantum Brownian motion model each Ei is a
quantum harmonic oscillator coupled to S, which is also a quantum harmonic
oscillator. Figure extracted from Ref. [42].

where Ci are constants of the spectral density:

J(ω) =
N∑
i

C2
i

2miωi
δ (ω − ωi) . (3.28)

As the interaction between S and Ei depends linearly on the position, one expects
the emergence of position as the preferential observable. Furthermore, the harmonic
potential produces Gaussian pointer states that are well localized in x and p. The dynamic
of this system can be described by master equations associated to the Hamiltonian in
Eq. (3.24) [26], and the exact solution of the reduced state of the system ρS was calculated
in Ref. [44].

In Ref [26], the authors used this model to investigate quantum Darwinism. They
considered an Ohmic bath [49] with a cutoff frequency Λ, at zero temperature. The system
is initially in a squeezed Gaussian state with squeezing parameters sx = 1

sp
, where sx = sp

for coherent ground states. For sx(p) � 1, this state is a kind of Schrödinger cat state
where the superposition is in position (or momentum).

At t = 0, the superposition state of the system ρS(0) forms a product with the
environment state ρE(0), ρS,E(0) = ρS(0)⊗ ρE(0). For t > 0, the interaction between S and
E destroys the superposition of the system, and ρS becomes a mixed state. This increases
system entropy and its correlation with the environment.

They analyzed the redundancy of information from the PIP approach (Sec. 3.4).
The subset

F = {Ei} ⊂ {E1, · · · , EN} = E

is a fragment of the environment that contains a fraction f of E (see Fig. 4). Then, the
mutual information between F and S is given by Eq. (3.9), and the averaged mutual
information of all possible combinations of F that contains the same fraction f of E , is
given by Eq. (3.10).
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Figure 5 – (Color). Partial information plots (PIPs), I(S,F) for a random fragment F ⊂ E ,
at different time instants. This figure was taken from the Ref. [42].

Figure 6 – (Color). (a) Redundancy Rδ varying with t for S is initially squeezed in position
with sx = 6.3 × 103 for different values of δ. (b) Redundancy varying with
t with fixed δ = 0.1 for different squeezing factors in position sx (C) and in
momentum px. This figure was taken from the Ref. [42].

To calculate the reduced states of the system and the fragments, they performed
exact numerical calculations of an environment with 1024 oscillators with S initially in
an x-squeezed state. The PIP (see Fig. 5) has a plateau form even for small values of
t, indicating that the system decoheres very quickly; this behavior is expected, since
sx(p) � 1. The plateau form qualitatively shows that the fraction required to obtain almost
all information about the system is quite small, which means that the redundancy is high.

The fraction fδ is the fraction size that gives almost all information about the
system, but a percentage δ, that is, the fraction such that

I(S, f) ≥ (1− δ)H(S). (3.29)

Redundancy Rδ, as defined in Sec. 3.4, is the inverse of fδ, Rδ = 1
fδ

and reaches larger
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values as δ increases (see Fig. 6(a)). Redundancy also grows faster and reaches larger
values as the squeezing parameters grow up (see Figs. 6(b) and (c)). The larger sx or sp,
the more distinguishable the states in the superposition of ρS and, therefore, the faster the
system decoheres. As shown in Sec. 3.1, quantum Darwinism arises from the decoherence
of the system states induced by the interaction with the environment. Therefore, it is
expected that redundancy grows with decoherence.

In this example of quantum Brownian motion, the dynamic is Markovian, and
we can see quantum Darwinism in it. However, there is a work claiming that when the
dynamics is non-Markovian, in this same model, quantum Darwinism is “hindered” [50].
We shall discuss this work in Chap. 5 and present a model where non-Markovianity does
not eliminate quantum Darwinism.

3.7.2 Quantum Darwinism in a Spin Model

Another example of quantum Darwinism in the literature was published by Zwolak,
Quan, and Zurek in 2009 [43]. They used an exactly solvable model where the system and
all subenvironments are single spin particles. In this model, the entropy of any environment
fraction can be computed, making possible the investigation of large environments. We can
see more clearly the connection between quantum Darwinism and decoherence through
this work.

Consider a system S that interacts with its environment E composed by N suben-
vironments Ei under a total Hamiltonian HS,E such that HI ≈ HS,E , where HI is the
interaction Hamiltonian. In Sec. 2.2.2 we show that when the interaction is the dominant
part of the total Hamiltonian, HS,E commutes with the preferential observable O. In
this case, known as the quantum-measurement limit of decoherence [17], the preferential
observable can be identified directly from HI ; and high redundancy of information can
arise in fragments F ⊂ {Ei} in the global system with a pure initial state.

The evolution of quantum systems under this kind of Hamiltonian has an important
particularity. The states of the system ρS and the system plus a fraction ρS,F can become
maximally mixed and completely decohered. The off-diagonal terms of ρS decreases to
zero,

ρS(0) =
S00 S01

S10 S11

 → ρS(t) ≈
S00 0

0 S11

 (3.30)

This is an explicit example where the decoherence process highlights the pointer states.
Further, ρS,F presents the same behavior,

ρS,F(t) → ρS,F ≈

S00U0ρFU0 0
0 S11U1ρFU1

 , (3.31)
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where U0 and U1 are the unitary operators projected onto the pointer states S00 and S11,
respectively.

Since the eigenstates of ρS(t) are the pointer states and the entropy of ρS,F(t) is
identical to the entropy of ρS(t)⊗ ρF(0), the mutual information between S and F at any
t becomes

I(S : F) = H(S) +H(F)−H(S,F) (3.32)

= H(ρS(t)) +H(ρF(t))−H(ρS(t)⊗ ρF(0))

= H(ρS(t)) +H(ρF(t))−H(ρS(t))−H(ρF(0))

= HF(t)−HF(0) = ∆HF . (3.33)

To quantify the information gain of the fragments, one just has to compute its variation.
When E is in a pure state, Eq. (3.33) reduces to I(S : F) = H(F) and when ρF(t) is
completely mixed, one gets I(S : F) = 0 for any t.

To be more explicit, consider a model where the system is a single-spin system
coupled to an environment composed of N spins, whose Hamiltonian is given by

HS,E = 1
2

N∑
k=1

σzSσ
z
k, (3.34)

where σzS and σzk are the z-direction system spin and k-th subenvironment spin, respectively.

The system and each subenvironment Ei are qubits in the σz basis, forming initially
a product state

ρS,E = ρS ⊗
N∏
k=1

ρE [k] (3.35)

where

ρE [k] =
e00 e01

e10 e11

 . (3.36)

The entropy h for each qubit is given by

h = −Tr (ρE [k] log2 ρE [k]) . (3.37)

When the qubit is in a completely mixed state, it reaches the maximal value, h = 1.

The reduced density matrices ρS and ρS,F at any instant t are given, respectively,
by

ρS =
 S00 S01ΛE(t)
S10Λ∗E(t) S11

 (3.38)

and

ρS =
 SF00 SF01ΛE/F(t)
SF10Λ∗E/F(t) SF11

 (3.39)
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with

Λi(t) =
∏
k∈i

Λkt (3.40)

and

Λk = cos(t) + (e11 − e00) sin(t), (3.41)

where i =# E for all environment and i =# E/#F for all environment but the fraction
F . The quantity Λi(t) is the decoherence factor of the reduced density matrices ρS(t)
and ρSF(t). The off-diagonal terms of these matrices in the pointer basis S go to zero for
N �# F and small Λk(k), highlighting the pointer states.

By diagonalizing exactly ρS(t) and ρSF(t), the mutual information for general
conditions is given by

I(S : F) = ∆HF(t) +
[
H (κE(t))−H

(
κE/F(t)

)]
, (3.42)

with H(x) = −x log2 x− (1− x) log2(1− x) and

κi(t) = 1
2

(
1 +

√
(s11 − s00)2 + 4 |s01| |Λi(t)|2

)
. (3.43)

Except for a completely mixed E and F = E , both ρS(t) and ρSF(t) always decoheres. For
example, for e00 = 1/2, Λi(t) = 0 at t = π/2.

Fig. 7 shows the evolution of the mutual information varying with t and #F for
N = 100, ρS(0) = |+〉 〈+|, r00 = 1/2 where |+〉 = 1√

2(|0〉+ |1〉). At the initial time instants
to get nearly almost all information about the system I(S : F) ≈ H(S) = H(s00), it is
necessary to take a fragment #F ≈ (1/2)#E . As the system and environment interact,
they become correlated and S decoheres transferring its information to the environment.
The initial state of E is pure in Fig. 7(a), and mixed with h ≈ 0.8 in Fig. 7(b). Note that
in both cases, the I(S : F) curve gets a plateau form, showing that a small fragment is
enough to obtain almost all information about the system. It is also worth mentioning
that although the plateau form is reached in both cases, pure and mixed states, it is slower
for mixed states. Further, for totally mixed sates (h = 1), we always get I(S : F) = 0.

In particular, we get
Rδ = N

#F
= 1
fδ

(3.44)

where fδ is the fraction of the environment that gives I(S : F = fδ) ∼ H(S). From
Eqs. (3.41) and (3.42), we can observe that for t = π/2, any single spin of E contains
almost all information about S.

Another important result of this work is the link between redundancy and deco-
herence. As mentioned previously, h measures the purity of the subenvironments, with Ei
maximally mixed for h = 1. We also know that the larger h, the smaller the decoherence.



Chapter 3. Quantum Darwinism 41

Figure 7 – Mutual information I(S : F) between S and F varying with t and the number
(#) of spins in a fragment F for (a) E initially pure, where h = 0 and (b) a E
mixed with h ≈ 0.8. This figure was taken from the Ref. [43].

Figure 8 – Redundancy Rδ for δ = 0.1 varying with the purity of ρE , where h = 0 for pure
states and h = 1 for maximally mixed states. The time was fixed at t = π/2
in the larger plot and at t = π/2 in the inset. This figure was taken from the
Ref. [43].

The plot in Fig. 8 shows Rδ as a function of h for δ = 0.1 at t = π/2 and t = π/3. For
both time instants, Rδ decreases with h. This shows that the redundancy of information
depends directly on decoherence and scales as Rδ ∝ 1− h.
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4 Markovian and non-Markovian Dynamics

The definition of Markovianity and non-Markovianity is well established for classical
stochastic processes. Its definition can be constructed in terms of the Kolmogorov hierarchy
of the n-point joint probability, favoring a connection with some definitions of quantum
Markovianity.

In this section, we show two definitions of Markovianity in quantum systems and
their counterpart with the classical cases. To give some intuition, we first revisit the
classical definition of Markovian processes and its divisibility property. This allows a
connection with two definitions of quantum Markovian processes: one based on divisibility
of quantum maps and the other on the behavior of the distance between two quantum
states.

4.1 Markovianity in classical processes
The concept of classical Markovianity is constructed for stochastic processes. A

stochastic process is defined as a set of random variables X = {x0, x1, · · · , xn} in the same
probability space (Ω,∑, P ) where Ω is the sample space, ∑ the possible events, and P the
probability measure. In simple words, it is a set of random variables X that depends on
the parameter t. For simplicity, we shall restrict our analysis to discrete random variables
xi ∈ χ, where χ is a finite set with all possible outcomes and consider cases where t
represents time.

4.1.1 Formal Definition

A stochastic process is Markovian if the probability of the random variable X
takes the value xn at any arbitrary tn ∈ I, depends only on the value xn−1 at tn−1, being
insensitive to any value taken by X at times previous to tn−1. One can write this definition
of Markov process can be defined in terms of conditional probabilities,

P (xn, tn|xn−1, tn−1; · · · ;x0, t0) = P (xn, tn|xn−1, tn−1), for all {tn ≥ tn−1 ≥ t0}. (4.1)

From Eq.(4.1), it is possible to visualize the famous statement that “a Markov process
does not have memory”.

Consider now the interval t3 ≥ t2 ≥ t1. In a Markov process, one can split the con-
ditional probability P (x3, t3|x1, t1) in a product of the two probabilities P (x3, t3|x2, t2) and
P (x2, t2|x1, t1). This result can be deduced from the discrete description of the Chapman-
Kolmogorov equation. Consider the joint probability density function P (x1, t1; · · · ;xn, tn).
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Then, the discrete Chapman-Kolmogorov equation is

P (x1, t1; · · · ;xn−1, tn−1) =
∑
xn∈χ

P (x1, t1; · · · ;xn, tn) (4.2)

By definition, the joint probability of three consecutive times, t3 ≥ t2 ≥ t1, in terms of the
joint probability is

P (x3, t3;x2, t2;x1, t1) = P (x3, t3|x2, t2;x1, t1)P (x2, t2;x1; t1)

= P (x3, t3|x2, t2;x1, t1)P (x2, t2|x1, t1)P (x1, t1). (4.3)

For a Markovian process P (x3, t3|x2, t2;x1, t1) = P (x3, t3|x2, t2) Eq. 4.3 becomes

P (x3, t3;x2, t2;x1, t1) = P (x3, t3|x2, t2)P (x2, t2|x1, t1)P (x1, t1). (4.4)

By dividing both sides by P (x1, t1) and taking the sum over x2 we can apply the Chapman-
Kolmogorov equation (Eq. 4.2) in the left side. Then, we get

P (x3, t3|x1, t1) =
∑
x2∈χ

P (x3, t3|x2, t2)P (x2, t2|x1, t1). (4.5)

Therefore, one can conclude that a family of conditional probabilities P (xn, tn|xn−1, tn−1)
with tn ≤ tn−1 represents a Markovian process if it satisfies Eq. (4.5).

4.1.2 Divisibility Property

Some definitions of quantum Markovianity are based on the divisibility of quantum
maps, and it is possible to construct a characterization of classical Markovianity similarly.
Then, the dynamic maps divisibility property of classical Markovian processes helps to
connect the classical and quantum Markovianity concepts.

Consider a time-dependent one-point probability P (x, t) of a random variable X
that describes a stochastic process. Let T be a dynamical map of the evolution of P (x, t).
Then, P (x1, t1) for given an initial state P (x0, t0), with t1 ≥ t0, is given by

P (x1, t1) =
∑
x0∈χ

T (x1, t1|x0, t0)P (x0, t0). (4.6)

Since ∑x1∈χ P (x1, t1) = 1, ∑x0∈χ P (x0, t0) = 1 and P (x1, t1) ≥ 0 for all P (x0, t0), T follows
the properties ∑

x1∈χ
T (x1, t1|x0, t0) = 1 (4.7)

and

T (x1, t1|x0, t0) ≥ 0 with x1, x0 ∈ χ. (4.8)

Therefore, T (x1, t1|x0, t0) is a matrix that takes the probability P (x0, t0) in P (x1, t1) and,
since it describes the evolution of stochastic processes, it is known as the stochastic matrix.
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Stochastic matrices can be related to conditional probabilities. For an initial time
t = t0 of a stochastic process, the joint probability in terms of the conditional probability
for t2 and t0 is

P (x2, t2;x0, t0) = P (x2, t2|x0, t0)P (x0, t0). (4.9)

By applying the Chapman-Kolmogorov equation we get

P (x2, t2) =
∑
x0∈χ

P (x2, t2|x0, t0)P (x0, t0), (4.10)

Since P (x2, t2|x0, t0) obeys the properties Eq. (4.7) and Eq.(4.8), T (x2, t2|x0, t0) = P (x2, t2|x0, t0)
for all t2. Therefore, given an initial x0 at t0, the stochastic matrix gives the one-point
probability at any t2. Note, this does not ensure a Markovian process. As shown previously,
in a Markovian dynamics, P (x2, t2|x0, t0) shall satisfy Eq. (4.5). For t2 ≥ t1 ≥ t0, it can
occur T (x2, t2|x1, t1) 6= P (x2, t2|x1, t1).

In a Markovian process we can write P (x2, t2;x1, t1) = P (x2, t2|x1, t1)P (x1, t1) and,
therefore

P (x2, t2) =
∑
x1∈χ

P (x2, t2|x1, t1)P (x1, t1), (4.11)

what makes T (x2, t2|x1, t1) = P (x2, t2|x1, t1). Consider now the times t3 ≥ t2 ≥ t1 ≥ t0 in
a Markov process. Similarly to Eqs. (4.7) and (4.8), we get the properties

∑
x2∈χ

T (x2, t2|x1, t1) = 1 (4.12)

T (x2, t2|x1, t1) ≥ 0, and (4.13)

T (x3, t3|x1, t1) =
∑
x2∈χ

T (x3, t3|x2, t2)T (x2, t2|x1, t1). (4.14)

The process described by T (x3, t3|x1, t1) is known as a divisible process, and all Markovian
processes are divisible. However, there are also divisible non-Markovian processes (see
examples in Refs. [51, 52]). A divisible process is always Markovian when the transitional
matrix describes the dynamics of one-point probabilities.

Therefore, the process is Markovian if the transition matrix of the one-point
probability is such that,

P (x2, t2) = T (x3, t3|x1, t1)P (x1, t1), (4.15)

can split as
P (x3, t3) =

∑
x2∈χ

T (x3, t3|x2, t2)T (x2, t2|x1, t1)P (x1, t1) (4.16)

for all t2.
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4.1.3 Kolmogorov Distance

The L1 − norm of a vector v(x) is defined as

||v(x)||1 :=
∑
x

|v(x)|. (4.17)

Consider a random variable X whose probability distribution is given either by p1(x) or
p2(x). By defining w(x) := p1(x)− p2(x), the distance between p1(x) and p2(x) is given by
the L1 − norm of w(x),

Dk(p1, p2) = ||w(x)||1 = 1
2 ||p1(x)− p2(x)||1. (4.18)

This distance is known as Kolmogorov distance and can identify the divisibility of a
stochastic process [53–55].

Consider two different probability distributions p[1](t) and p[2](t) whose evolution
can be described by the transformation matrix T (x2, t2|x1, t1). Then, this process is divisible
if the Kolmogorov distance Dk(p[1](t), p[2](t)) does not increase when T (x2, t2|x1, t1) is
applied to (p[1](t)− p[2](t)). We can check this by recovering the definition of Eq. (4.17),
the positivity of T (x2, t2|x1, t1) and the fact that each of its rows sums up to one. Then,
for t2 ≥ t1 and from the properties (4.12) and (4.13), we get

Dk(p[1](t2), p[2](t2)) = 1
2
∣∣∣∣∣∣T (x2, t2|x1, t1)

(
p[1](t1)− p[2](t1)

)∣∣∣∣∣∣
1

= 1
2
∑
x2∈χ

∣∣∣∣∣∣
∑
x1∈χ

T (x2, t2|x1, t1)
(
p[1](t1)− p[2](t1)

)∣∣∣∣∣∣ (4.19)

≤ 1
2
∑
x2∈χ

∑
x1∈χ

T (x2, t2|x1, t1)
∣∣∣(p[1](t1)− p[2](t1)

)∣∣∣
= 1

2
∑
x1∈χ

∣∣∣(p[1](t1)− p[2](t1)
)∣∣∣ = Dk(p[1](t1), p[2](t1)). (4.20)

In a Markovian process, the distance between two one-point probability distribu-
tions described by a transition matrix shall decrease monotonically. The best chance to
distinguish them is at the initial times. As time goes, these probabilities distributions be-
come even more indistinguishable. This shows that a Markovian process can not be traced
back to the one-point probabilities. However, this distance can increase in non-Markovian
processes, which indicates an underlying memory in the process since the system retains
some information about the probabilities distributions at t0.

Therefore, it is possible to characterize the Markovianity of a stochastic process
by means of its divisibility and by looking at one-point probability distributions distance.
These properties are the basis of some definitions of quantum Markov processes.
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4.2 Quantum Markov processes
It is possible to define Markovianity in quantum systems, and there are several

different definitions [56–58]. Here, we shall focus on a definition that has a close analogy
with the classical counterpart. However, even using this analogy, this link does not come
directly.

The main problem of a straightforward definition of quantum Markovianity from
the classical one is the non-commutative algebra of quantum mechanics. Although quantum
mechanics can be interpreted statistically, the measurement process can directly affect the
state of a system. The sampling of quantum systems is made by measurement processes, and
measurement disturbs the system states. The description of P (xn, tn|xn−1, tn−1; · · · ;x0, t0)
can be impracticable since each pair (xi, ti), with t ≥ i ≥ 0, depends on the measure-
ment process. Then, in the quantum realm, we do not describe a Markovian process
with P (xn, tn|xn−1, tn−1; · · · ;x0, t0) = P (xn, tn|xn−1, tn−1). A solution for this issue is to
define the Markovianity of quantum processes with properties that do not depend on
measurements.

4.2.1 Divisibility of Quantum Maps

As shown in Sec.4.1.2, the classical Markov process in one-point probability distribu-
tions can be defined in terms of divisibility of the map represented by the transition matrix.
Divisibility can also be defined in the quantum case in terms of maps. The advantage of
this definition is that quantum maps can be described without any knowledge of measures.
As in the classical case, divisibility and quantum Markovianity are equivalent to one-point
probabilities.

The density matrix ρ (Sec. A.5) of quantum systems can be interpreted as a
probability distribution. In the spectral decomposition

ρ =
∑
x

p(x) |ψ(x)〉 〈ψ(x)| , (4.21)

where the eigenvalues p(x) are equivalent to the classical probability to finding the system
in the corresponding eigenstate |ψ(x)〉, one can define

P (|ψ(x)〉) := p(x). (4.22)

Consider a quantum system S that has a set of possible quantum states S with
the same eigenvalues. If the spectral decomposition of an initial state ρ(t0) is preserved,

ρ(t0) =
∑
x

p(x, t0) |ψ(x)〉 〈ψ(x)| −→
∑
x

p(x, t) |ψ(x)〉 〈ψ(x)| ρ(t) ∈ S, (4.23)

this process can be interpreted as stochastic on the variable x. Its divisibility can be
defined similarly to classical processes (Sec. 4.1.2). Then, in a Markov process, there is a
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matrix T (x1, t1|x0, t0) that maps p(x0, t0) into p(x1, t1),

p(x1, t1) =
∑
x0∈χ

T (x1, t1|x0, t0)p(x0, t0), (4.24)

with t1 ≥ t0, satisfying Eqs. (4.12), (4.13), and (4.14).

A dynamical process from the initial state ρ(t0) to ρ(t1),

ρ(t0) =
∑
x0∈χ

p(x0, t0) |ψ(x0)〉 〈ψ(x0)| −→
∑
x1∈χ

p(x1, t1) |ψ(x1)〉 〈ψ(x1)| = ρ(t), (4.25)

can be described by a dynamical map Et1,t0 that preserves the spectral decomposition,

ρ(t1) = Et1,t0 [ρ(t0)] . (4.26)

By applying Eq. (4.24) to the right side of Eq. (4.26) we obtain

Et1,t0 [ρ(t0)] =
∑
x0∈χ

p(x0, t0)Et1,t0 |ψ(x0)〉 〈ψ(x0)| (4.27)

=
∑

x0,x1∈χ
T (x1, t1|x0, t0)p(x0, t0) |ψ(x1)〉 〈ψ(x1)| (4.28)

=
∑
x1∈χ

p(x1, t1) |ψ(x1)〉 〈ψ(x1)| . (4.29)

Since Et1,t0 obeys the properties of Eqs. (4.12), (4.13), and (4.14), when applied to
any state of S, the trace and positivity are preserved. Then, Et1,t0 transforms a physical
quantum state in another physical quantum state. Furthermore, these properties guarantee
the composition law

Et3,t1 = Et3,t2Et2,t1 , t3 ≥ t2 ≥ t1. (4.30)

We define a trace-preserving linear map Et2,t1 as a positive-divisible map for all
t2 ≥ t1 ≥ t0 if it obeys Eq. (4.30). When the evolution of a quantum system can be
described by positive divisible maps that fulfill Eq. (4.30), one defines this dynamics as a
quantum Markovian process.

The sensibility of quantum systems to measurements makes it difficult to define
quantum Markovianity in terms of Eq. (4.1). Thus, to come at a definition of quantum
Markovianity analog to the classical, we shall focus on one-point probabilities.

An important mathematical result that worth mentioning is theGorini-Kossakowski-
Sudarshan-Lindblad (GKSL) equation or Lindblad equation [59–61]. It is a master equation
in Lindblad form that describes in a general form the Markovian evolution of an open
quantum system. The GKSL theorem states that an operator Lt is a generator of a
Markovian process if and only if it can be written as

dρ(t)
dt

= Lt [ρ(t)] = −i [H(t), ρ(t)] +
∑
k

γk(t)
[
Vk(t)ρ(t)v†k(t)−

1
2
{
V †k (t)Vk(t), ρ(t)

}]
,

(4.31)
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where V (t) is a time-dependent operator, H(t) the time-dependent Hamiltonian, and with
λk(t) ≥ 0 for all values of k and t. The complete proof of this theorem can be found in
Refs. [59, 62].

4.2.2 Memoryless and Contractive properties in Quantum Markovian Processes

It is not straightforward from the divisibility property the lack of memory in
quantum Markovian systems. Therefore, we may look at the contractive properties of the
completely positive (CP) maps to see this memoryless more intuitively.

Hypothesis testing problems are quite useful to understand the contractivity of CP
maps. Consider a quantum system S associated with a Hilbert space H in two possible
states: ρ1 with probability q and ρ2 with probability (1− q). To find the density matrix
that represents the state of S correctly, we can measure it with a POVM T . Then, the
best choice of T that minimizes the probability to choosing the wrong ρ, is such that

Pmin(Fail) = min
0≤T≤I

{(1− q)Tr [ρ2T ] qTr [ρ1 (I− T )]} (4.32)

= 1− ||∆||1
2 (4.33)

with ||∆||1 = Tr
√

∆†∆ and where ∆ = qρ1− (1− q)ρ2 is a Hermitian operator also known
as Helstrom matrix [63]; this is a theorem whose proof can be found in Ref. [53]. Since E
is linear, applying it to ∆ is equivalent to

E (∆) = qE (ρ1)− (1− q) E (ρ2) . (4.34)

Therefore, when E acts on ρ1 and ρ2, at some time t > 0, the states will become ρ1(t) and
ρ2(t) respectively.

Note, therefore, that the trace norm of ∆ gives the distinguishability between states
ρ1 and ρ2 through a POVM T . It is also possible to connect trace-preserving and positive
maps with the trace norm. In Refs. [64,65], A. Kossakowski proved that “a trace-preserving”
linear map E is positive if and only if for any Hermitian operator ∆ acting on H,

||E (∆)||1 ≤ ||∆||1 , ” (4.35)

This theorem shows that an operator ∆ subject to a CPTP map E decreases the distin-
guishability between the states ρ1(t) and ρ2(t) for any t > 0.

As shown in Eqs. (4.27) to (4.30), a quantum Markov process Et2,t1 is CPTP for
all t2 ≥ t1 ≥ t0. Thus, we can connect the divisibility with the last theorem and conclude
that a process is Markovian when∣∣∣∣∣∣[Et2,t1 ⊗ I]

(
∆̃
)∣∣∣∣∣∣

1
≤
∣∣∣∣∣∣∆̃∣∣∣∣∣∣

1
. (4.36)
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Figure 9 – For E(∆(t0)) = ∆(t), ||∆(t)||1 is the distinguishability between two possible
states ρ1(t) and ρ2(t) of system at some time t > 0. The blue (solid) line repre-
sents a system under a Markovian process. The red (dashed) line represents
a non-Markovian process of a system. It is possible to observe that distin-
guishability decreases monotonically when the system is subject to a Markovian
process. However for non-Markovian cases one can find ||∆(t2)||1 > ||∆(t1)||1,
signalizing an underlying memory in the dynamics.

where ∆̃ is any Hermitian operator acting on H⊗H. We are considering ∆̃ instead of ∆
because Markovianity just makes sense in open quantum systems since closed systems are
trivially Markovian.

Similar to classical evolutions, states of quantum systems become less distin-
guishable when a CPTP-divisible map can describe its evolution, that is, when Et2,t1 is
Markovian. The distinguishability of Markovian dynamics decreases monotonically with
time. This means that the best chance to distinguish between ρ1 and ρ2 is at t1, since
they become even more indistinguishable with time. However, when Et2,t1 represents a non-
Markovian dynamics, Pmin(Fail) can increase, and the states become more distinguishable
at a later time t2 (Fig. 9). It is also important to highlight that in non-Markovian cases,
the distinguishability at t2 can not be larger than the distinguishability at t0, see Fig. 9.

The increase of distinguishability with time can be understood as the presence
of memory in the dynamics. As opposed to Markovian dynamics, systems under non-
Markovian processes can store information about its initial state that can be recovered at
posterior times.

4.3 Quantification and detection of non-Markovianity
Once defined quantum Markovianity, we can define how to quantify and detect it

in quantum systems. From the definition of quantum Markovianity presented here and
the postulates of quantum mechanics, it is easy to see that closed quantum systems are
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trivially Markovian. The dynamics of closed quantum systems are always unitary, and
unitary matrices U(t1, t0) are CPTP and divisible, that is,

U(t2, t0) = U(t2, t1)U(t1, t0). (4.37)

Therefore, by definition, U(t1, t0) fulfills all requirements of a Markovian process. On the
other hand, it was found that the evolution of open quantum systems is, strictly speaking,
non-Markovian [8,66]. We can quantify non-Markovianity in open quantum systems by
exploring the concepts of divisibility and distance of maps and channels, and detect it via
witness. In this section, we present some methods to quantify and detect non-Markovianity
and present a method frequently used to detect and quantify it jointly.

4.3.1 Quantification Via Quantum Maps

The degree of non-Markovianity is broadly used to quantify non-Markovianity. It
is a normalized quantity between zero and one, where zero is obtained when the process is
Markovian and one when its non-Markovianity is maximal. This quantity can be obtained
by exploring the concepts of divisibility and distance of maps and channels. As there are
available in literature diverse ways to quantify non-Markovianity [67–71], we focus on two
of them, the geometric measures and by optimization of the Helstrom matrix norm.

Initially proposed to measure the non-Markovianity of quantum channels, the
geometric measure of non-Markovianity is an important approach [67]. To understand
this method, consider a system S whose dynamics is described by the map Et,t0 and a set
of Markovian processesM = {E1

t,t0 , · · · , E
M
t,t0}. The quantity of non-Markovianity of this

process can be based on the distance between Et,t0 and each Markovian dynamics E it,t0 ,
D(Et,t0 , E it,t0), see Fig. 10. Therefore, the geometric measure of non-Markovinity at a time
t is defined as

N t
GM (Et,t0) := min

Eit,t0∈M
D
(
Et,t0 , E it,t0

)
. (4.38)

Observe that N t
GM (Et,t0) is zero only when E it,t0 represent a Markovian process.

A measure of non-Markovianity degree DINM can be defined as the maximization
of N t

GM (Et,t0) for a given time interval I, that is,

DINM := max
t∈I
N t
GM (Et,t0) , (4.39)

ranging between 0 and 1. The process is Markovian only whenDINM = 0 and non-Markovian
for values larger than zero.

Although this method is quite precise, it is quite hard to compute. The calculation
becomes impracticable in systems with large dimensions.

Another interesting method to quantify non-Markovianity is by optimization of
the Helstrom matrix norm. As shown in Sec. 4.2.2, the norm of the Helstrom matrix
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Figure 10 – Geometric measure of non-Markovianity: It is the distance between the
map Et,t0 and the non-convex set of Markovian maps. The degree if non-
Markovianity D is tha maximal value of N t

GM (Et,t0) at a time t

.

∆ = qρ1 − (1− q)ρ2 gives the distance between two the possible states of the system ρ1

and ρ2 when these last are subject to a POVM. We could see that when the distance
between these states increases with time, that is, ||∆(t)||1 < ||∆(t+ ε)||1 at any t > 0,
The states ρ1 and ρ2 become more distinguishable at t+ ε. This indicates that the system
has a memory where its initial state is stored.

In Markovian systems, one expects the information flows from the system to
the environment. The increase in distinguishability can be interpreted as a back-flow of
information from the environment to the system [58]. However, the information way is
not enough to characterize non-Markovianity because it is possible to find non-Markovian
dynamics with no back-flow [72].

As proposed in Ref. [68], it is possible to quantify the non-Markovinity by exploring
the concept of distance in a Helstrom matrix. As non-Markovianity is a feature of open
quantum systems, we shall consider an environment E in this analysis, and for simplicity,
we can consider dimHE = dimHS. The Helstrom matrix for the composite system SE is
∆̃ = qρSE1 − (1− q)ρSE2 with ∆ = TrE∆̃ and

∣∣∣∣∣∣∆̃(t)
∣∣∣∣∣∣

1
=
∣∣∣∣∣∣[Et,t0 ⊗ I]

(
∆̃(t0)

)∣∣∣∣∣∣
1
. For t > 0,

any increase in the norm of the Helstrom matrix at t+ ε in comparison with t indicates
that the state’s distinguishability increased and the dynamics are non-Markovianity. Then,
the maximal distinguishability for a given time t is given by

σ
(
∆̃, t

)
:= lim

ε→o+

∣∣∣∣∣∣∆̃(t+ ε)
∣∣∣∣∣∣

1
−
∣∣∣∣∣∣∆̃(t)

∣∣∣∣∣∣
1

ε

:=
d
∣∣∣∣∣∣∆̃(t)

∣∣∣∣∣∣
1

dt
. (4.40)

The quantity of non-Markovianity in a time interval I can be obtained by integrating
σ(∆̃, t) and maximizing over all possible ∆̃

N I
H = max

∆̃

∫
t∈I,∆̃>0

σ
(
∆̃, t

)
dt. (4.41)
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The process is Markovian only when N I
H > 0; otherwise, it is not non-Markovian.

The larger N I
H , the larger the non-Markovianity. Similar to geometric measures, the

quantification of non-Markovianity with this method is quite complex and becomes
impracticable for large dimensions.

4.3.2 Detection Via Quantum Witness

Although the characterization and quantization of quantum non-Markovianity
can be quite tricky, the violation of any Markovianity criterion is a strong indicator of
non-Markovianity. One can establish a criterion for detecting the non-Markovianity and
define a quantity linked to it that vanishes when the system dynamics is Markovian. This
quantity is known as a witness of non-Markovianity, and, albeit it can also vanish in the
non-Markovian process, it surely indicates non-Markovianity if larger than zero [53,59].

From the definition of quantum Markov processes presented in Sec. 4.2, it is possible
to define witnesses of monotonicity in dynamics described by local completely positive
maps and witnesses of monotonicity in dynamics described by general completely positive
maps. As the main work of this thesis was based on a witness of monotonicity under
local completely positive maps, we shall focus on it. However, we may briefly introduce
witnesses of monotonicity under completely positive maps.

4.3.3 Witnesses of Local Completely Positive Maps

This witness can be defined in systems whose dynamics are described by a local
map. For a system S interacting with its environment E, the dynamic is given by a
map acting directly only in the system, E = ES ⊗ IE. In this case, entanglement, mutual
information, for example, can be suitable witnesses.

As proposed in Ref. [69], entanglement can be a non-Markovianity witness. By
defining the entanglement quantifier E as in Ref [73], a dynamic is non-Markovian in an
interval (t0, t1) when the quantity

Q(E) := ∆E +
∫ t1

t0

∣∣∣∣∣dE (ρSE(t))
dt

∣∣∣∣∣ dt, (4.42)

with ∆E = E(ρSE(t1))− E(ρSE(t0)), is larger than zero.

Quantum mutual information (Sec. 3.4) can also be a witness of non-Markovianity
[74]. We can rewrite the equation that defines quantum mutual information, Eq. (3.6), as

I(S,E) = H (ρSE||ρS ⊗ ρE) (4.43)

and apply a local operation E = ES ⊗ IE. Then, for a composed system SE we get

I (E (ρSE)) = H (E (ρSE) ||TrS [E (ρSE)]⊗ TrS [E (ρSE)]) (4.44)

= H (E (ρSE) ||E (ρSE ⊗ ρSE)) ≤ H (ρSE||ρS ⊗ ρE) = I(ρSE). (4.45)
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This indicates that the mutual information of SE behaves monotonically when the
dynamics are described by a CPTP map, that for definition, represents a Markov process
(see Sec. 4.2.1). If mutual information is not monotonic, the process is non-Markovian.

We can also look at states under (not necessarily local) completely positive maps as
quantum relative entropies [75,76], Quantum Fisher information [77], capacity measures [78],
and Bloch volume measure [79]. In the next section, we shall focus on two witnesses of
completely positive maps: trace distance and fidelity.

4.4 Trace Distance and Fidelity
It is worth drawing attention to trace distance and fidelity as witnesses of non-

Markovianity. These two concepts provide tools that not only identify non-Markovianity
but also quantify it. Fidelity and trace distance as witnesses of non-Markovianity come
intuitively from the definition of quantum Markov processes given in Sec. 4.2 and can be
applied in several numerical computations.

4.4.1 the BLP Quantifier

In Refs. [58, 80], Breuer, Laine, and Piilo define a witness of non-Markovianity
based on trace distance known as the BLP quantifier. To understand it, we may consider
an unbiased Helstrom matrix (Sec. 4.2.2), that is, with q = 1/2. In this case, we find
∆ = 1/2(ρ1 − ρ2) where the probability of finding ρ1 and ρ2 is the same. Since the trace
distance between ρ1 and ρ2 is defined as

D (ρ1, ρ2) := 1
2 ||ρ1 − ρ2||1 , (4.46)

where the L1-norm of ∆ becomes the trace distance between these two states. For some
time instant t and a posterior time t+ ε one can define a quantity σ(ρ1, ρ2, t) as

σ(ρ1, ρ2, t) := d

dt
D (ρ1, ρ2) := lim

ε→0+

D (ρ1(t+ ε), ρ2(t+ ε))−D (ρ1(t), ρ2(t))
ε

. (4.47)

Therefore, for any time interval (t1, t2), the dynamic is non-Markovian when the quantity∫
t∈(t1,t2),σ>0

σ(ρ1, ρ2, t)dt (4.48)

is nonzero for two states ρ1 and ρ2. The above integral is taken only when σ > 0 and the
trace distance increases for a time interval t and t+ ε with ε→ 0+, indicating an increase
in the distinguishability between ρ1 and ρ2 increases. This quantity can also be used to
quantify non-Markovianity by taking its maximal value in a time interval (0,∞),

NBLP = ρ1, ρ2
max

∫
t∈(t1,t2),σ>0

σ(ρ1, ρ2, t)dt. (4.49)

The larger NBLP, the larger the non-Markovinity of the system.
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4.4.2 Fidelity

Fidelity is a concept quite applied in information theory and was adapted to
quantum information theory. In general terms, fidelity is a quantifier that indicates the
accuracy of the signal received in comparison with the signal originally sent.

Consider a classical signal traveling in a communication channel. This signal can
suffer some interference and noise during the transmission. The maximal rate that we
can send signals by the channel with a vanishingly low probability of error is named
capacity C. Shannon proved in 1948 that in a discrete and memoryless channel, for all
transmission rates R < C, a sequence of N signals with a maximal probability of error
ε[n] → 0 exists [38]. Roughly speaking, this theorem shows that it is possible to send in a
rate R less than C where the error can be significantly minimized if we adjust the sequence
N . In this case, fidelity is a quantifier that indicates the accuracy of the signal received in
comparison with the signal originally sent.

In 1994, Jozsa and Schumacher Ref. [81] adapted the channel coding theorem to
quantum signals of pure states. The definition of Fidelity tor any two pure quantum states
|ψ1〉 and |ψ2〉 is the transition probability between then, that is,

F(|ψ1〉 〈ψ2| , |ψ1〉 〈ψ2|) := |〈ψ2|ψ1〉|2 . (4.50)

Soon later, Jozsa [82] extended fidelity of quantum system for mixed states ρ1 and ρ2 and
defined

F(ρ1, ρ2) : = ||√ρ2
√
ρ1||21 (4.51)

=
(
Tr
[(√

ρ1ρ2
√
ρ1

) 1
2
])2

. (4.52)

One of the properties of Fidelity is monotonicity under complete positive maps E ,
that is

F (ρ1, ρ2) ≥ F (E (ρ1) , E (ρ2)) . (4.53)

Fidelity is constant only when E is a unitary operator [83] and, therefore, Markovian. Any
increase of F implies a decrease in distinguishability, indicating non-Markovianity in the
process. Thus, fidelity can be a Markovianity witness.

As for trace distance, one can also use fidelity to quantify non-Markovianity [84].
Optimizing all pairs of states (ρ1, ρ2) in a time interval ∆t, one can define the non-
Markovianity degree as

NF(ρ1, ρ2) = max
ρ1,ρ2

∫
dF/dt>0

dF(ρ1, ρ2)
dt

dt. (4.54)

The maximization is taken by all possible pair (ρ1, ρ2), and dF/dt is integrated only
when its value is positive, that is, only when the fidelity is increasing. Therefore, for all
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pairs (ρ1, ρ2) and a given ∆t, the maximal value of the accumulated increase of F is a
non-Markovianity degree.

This quantifier was used to calculate the non-Markovianity of continuous-variable
Gaussian dynamical maps [84], and to relate quantum Darwinism and non-Markovianity
[40,50]. These two last references are detailed in Chap. 5.
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5 Quantum Darwinism and Non-
Markovianity

In this chapter, we present our main result. We investigated the effect of non-
Markovianity on the observation of quantum Darwinism. The primary reference to this
investigation is a work claiming that non-Markovianity hinders quantum Darwinism [50].
They used an open quantum system within an environment of quantum harmonic oscillators
in quantum Brownian motion.

In our work, we used a similar model. The main system and the environment are
composed of quantum harmonic oscillators, all in coherent states. Using both approaches
to quantum Darwinism, we showed that the averaged redundancy in a given time interval
∆T is not affected by non-Markovianity. We propose a new point of view to quantify
the quantum Darwinism in a given system and show that, in the model studied, the
observation of quantum Darwinism is not affected by non-Markovinanity.

In Sec. 5.1 we detail the model used in Galve et al. and then we briefly describe the
approaches used to connect quantum Darwinism and non-Markovianity concepts. Section
5.2 introduces the model and techniques used in our work and presents our results.

5.1 Quantifying Quantum Darwinism Through the Non-Monotonicity
of fδ
A relation between quantum Darwinism and non-Markovianity was first proposed in

Ref. [50], where the authors concluded that non-Markovianity hinders quantum Darwinism.
They used the same model of quantum harmonic oscillators in quantum Brownian presented
in Ref. [42] (Sec. 3.7.1) and computed the non-Markovianity degree using the BPL and
fidelity quantifiers (Sec. 4.4).

In this model, the system S is a quantum harmonic oscillator of frequency ωS

inserted in an environment E = ⊗N
k=1 Ek composed ofN other quantum harmonic oscillators

with frequency ωk = ω0 + k∆, with ∆ = (ωR − ω0)/N . The interaction between S and E
is given by

HI = κxS
N∑
k=1

ckxk, (5.1)

where xS and xk are the position operators of the system and the environment, respectively.
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The spectral density is given by

J(ω) =
N∑
k=1

c2
k

ωk
δ(ω − ωk). (5.2)

When N →∞, we can take the continuum limit and the sum in Eq. 5.2 can be substituted
by an integral in dω. Usually, it is used the approximation J(ω) ∼ ωsf(ω/ωR), where
f(ω/ωR) is the function cut-off. In the case of Ohmic environments, s = 1 and f(ω/ωR)
decays quickly for ω > ωR.

As this work aims to investigate the effects of non-Markovianity in quantum
Darwinism, it is important to vary and control the non-Markovianity of the system. In
Rubin’s model [49,85], the system is a heavy particle of mass M and the coordinate x and
interacts bilinearly with a half-infinite chain of harmonic oscillators of mass mi, coupling
strength g and spring constants f = mω2

R/4, where ωR is the highest frequency of the
reservoir modes. The spectral density is given by

J(ω) = κ
√
ω2 − ω2

0

√
ω2
R − ω2, (5.3)

where ωR =
√
ω2

0 + 4g. For ω0 = 0, the model achieves ohmic damping, and the non-
Markovianity can be controlled by detuning the system in relation to the bath. The system
is Markovian only when ωS = ω0 and the non-Makovianity grows with |ω0 − ωS|.

As in the work presented in Sec. 3.7.1, it was considered the initial state of the
system squeezed in momentum by a parameter sp

|ψ(0)〉S ∝
∫
dxe

−x2
2σ2 |x〉 , (5.4)

with 2σ2 = e2sp , and the environment initially in the vacuum state. As the system and
environment interact, the global state evolves to

|ψ(0)〉SE ∝
∫
dxe

−x2
2σ2 |x〉

⊗
i

|ψi(x)〉 , (5.5)

where |ψi(x)〉 is the state of the i-th subenvironment state in relation to the position x.

The perfect condition for the observation of quantum Darwinism in this model
happens when the distinguishability between any two subenvironments states is high, that
is

〈ψi(x)|ψi(x′)〉 ∼ δx,x′ . (5.6)

In the state |ψi(x)〉, each x is related to a pointer state of the system. When it is possible
to differentiate with certainty states with distinct values of x, one can infer the state of the
system by measuring a single subenvironment. In more realistic scenarios, it is required
more than one subenvironment to obtain an acceptable quantity of information about the
system. In this case, one can measure fractions of the environment, and the smaller the
fractions required, the larger the quantity of redundant information in the environment.
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Figure 11 – (Color) For N = 300, an initial sp = 10, δ = 0.05, ω0 = 0.3 and ωR = 0.7, this
3D plot shows fδ in function of ωS and t. This image was taken from Ref. [50].

As fidelity increases monotonically when a completely positive map can represent
the system’s dynamics, it can be used to quantify non-Markovianity. (Sec. 4.4) [84]. Then,
for two different possible states of the system ρ1 and ρ2, the non-Markovianity degree was
computed according to

N (ρ1, ρ2) = max
ρ1,ρ2

∫
dF/dt>0

dF(ρ1, ρ2)
dt

dt. (5.7)

Basically, this equation computes the accumulated value of the fidelity increasing and
takes the maximal value between all possible combinations of the states ρ1 and ρ2.

As in Ref. [42], the authors used the PIP approach (Sec. 3.4) where the correlations
between the system and the environment are given by the mutual information

I(S : f) = HS +Hf −HS,F , (5.8)

where HS, Hf , and HS,f are the von Neumann entropies of the system S, the fraction of
the environment f , and the system and environment jointly, respectively.

They first calculated fδ as defined in Sec. 3.4. For a system initially in a pure state,
they randomly choose the subenvironments of the fractions. For δ = 0.05 and ω0 = 0.3,
the plot in Fig. 11 shows the behavior of f5% varying on time and with ωS. Observe that
when ωS = ω0, f5% is minimal, meaning that the fraction necessary to obtain 95% of
information about the system available in the whole environment is quite small. Therefore,
in this situation, the redundancy is high, indicating that quantum Darwinism is held.
However, f5% grows quickly with the difference |ωS − ω0|; that is, f5% increases with
the system’s non-Markovianity. The larger f5%, the smaller the redundancy, decreasing
quantum Darwinism observation.
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Figure 12 – (Color). PIP for t = 40(a.u.), an initial sp = 3, ωR = 0.7, ω0 = 0.3, ωS = 0.3
(red-dashed line), ωS = 0.7 (green-dotted line), and ωS = 1 (blue-solid line).
This image was taken from Ref. [50].

This behavior is also clear in PIP. When ωS = ω0 (red-dashed line) in Fig. 12,
the plateau shape is evident, and as the difference |ωS − ω0| increases (green-dotted and
blue-solid lines), the plot becomes even more linear. To better visualize the relation between
non-Markovianity and quantum Darwinism, we can look at Fig. 13, where f5%, the spectral
distribution, and the non-Markovianity degree N are all plotted together. The fraction f5%

plot (blue-solid line) grows with |ωS − ω0|, and N (red-dotted line) has a similar behavior
up to the edges of spectrum J(ω) (shaded-gray area). This was interpreted as a connection
between the quantum Darwinism observation and the Non-Markovianity degree.

It was proposed the following quantifier of the fδ non-monotonic behavior:

Nf =
∫
dfδ/dt>0

dfδ
dt
dt. (5.9)

Nf infer how many “non-Darwinistic” is the system’s behavior; and it is similar to the
definition of non-Markovianity degree N . The quantity Nf is the accumulated value of
the fδ increasing; the integral over dfδ

dt
is only taken when fδ is increasing on time. The

plot in Fig. 13 shows that Nf (green-dashed line) behaves similarly to N even when the
system frequency exceeds the edges frequencies of J(ω). Therefore the authors used this
fact to conclude that non-Markovianity hinders quantum Darwinism.

This model shows a strong connection between quantum Darwinism and non-
Markovianity just by analyzing the PIP. However, the quantifier Nf can sometimes
be inappropriate. In some dynamics, the fluctuations of fδ with time can have larger
amplitudes. In such cases, fδ ranges between very small and very large values. At times
where fδ is small quantum Darwinism can securely be observed and, at times where fδ is
large, it can not. To be more precise, it is better to look at the average of fδ in a given time
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Figure 13 – (Color) For sp = 10, δ = 0.05, ω0 = 0.3, ωR=0.7, and t = 150, this graphic
shows spectral density J(ω) (shaded-gray line), non-Markovianity degree N
(red-dotted line), fraction fδ (blue-solid line) and non-monotonicity of fδ Nf
(green-dashed line). This image was taken from Ref. [50].

interval when comparing quantum Darwinism in Markovian and non-Markovian systems.

The next section presents the work where we compared quantum Darwinism and
non-Markovianity in a model where fluctuations amplitude of fδ are considerable and
present a new method to quantify quantum Darwinism in these situations.

5.2 Quantum Darwinism and non-Markovianity in a Model of Quan-
tum Harmonic Oscillators
To better understand quantum Darwinism (QD), we investigated how information

about an open quantum system is spread redundantly in the environment. In this model,
the system is a single quantum harmonic oscillator and the environment is an ensemble of
several other quantum harmonic oscillators. The degree of non-Markovianity is controllable
through the coupling between the system and the environment.

Sec. 5.2.1 and Sec. 5.2.2 describe the model and its dynamics. Sec. 5.2.3 deduces
the preferential observable. Sec. 5.2.4 and 5.2.5 analyze QD through the two approaches
presented in Sec. 3 and compare the obtained results. The BPH approach was shown to
be more robust than the PIP approach; though, both can identify the QD in the model.

As a simple parameter can alter the non-Markovianity in this model, we also
explored this concept. However, a metric is required to quantify the non-markovianity.
In Sec. 5.2.6, we defined the non-markovianity degree based on the distance between
states [58] as in Ref. [50], and studied in our model.
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With the methods to characterize the QD and non-Markovianity well-defined,
Sec. 5.2.7 examines the possible connections between these two concepts. The results
indicate that the time-varying curve of the redundancy in the environment is different from
distinct non-Markovianity degrees. However, the averaged redundancy in a specific time
interval does not change with the non-Markovinity degree, indicating that the observation
of the QD in this model does not depend on non-Markovinity.

5.2.1 The Model

The model consists of a single quantum harmonic oscillator, which is designated as
the “system”, and a set of quantum harmonic oscillators designated as the “environment”.
The system interacts individually with each oscillator of the environment and the environ-
ment oscillators do not interact with each other, see Fig. 3. The Hamiltonian that drives
this system is given by

H = ~ω0a
†a+ ~

N∑
k=1

ωkb
†
kbk + ~

N∑
k=1

γk(a†bk + ab†k), (5.10)

where ω0 is the main oscillator frequency, ωk is the k-th environment oscillator frequency,
a, a†, bk, and b†k are the creation and annihilation operators of the main system and the
k-th environment oscillator respectively, and γk are coupling constants for the interaction
between the k-th environment oscillator and the main oscillator. We shall set from
now on ~ = 1. This model has been used, to study dissipation in optical cavities [86],
the dynamical properties of multipartite entanglement [87], and principles of quantum
thermodynamics [88].

By using the ansatz presented in [86], if the system is initially in a coherent state
with a parameter α0 ∈ C and the environment is in a vacuum,

|α0〉 ⊗
N∏
k=1
|0k〉 , (5.11)

then, the evolved state is given by

|α(t)〉 ⊗
N∏
k=1
|λk(t)〉 , (5.12)

where |α(t)〉 and |λk(t)〉 denote coherent states of the main oscillator and the k-th envi-
ronment oscillator, respectively. Applying Schrödinger’s equation to the Hamiltonian in
Eq. (5.10), the parameters α(t) and λk(t) satisfy the relation (Appendix C)

iα̇(t) = ω0α(t) +
∑
k

γkλk(t), (5.13)

iλ̇k = ωkλk + γkα(t). (5.14)
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As the global system is closed, neither dissipation nor external forces exist, con-
serving the total amount of excitations. Moreover, Ref. [89] shows that in the absence of
external forces, a coherent state remains coherent during time evolution. For all times t,
the system excitations |α(t)|2, the bath excitations ∑k∈E |λk(t)|2, and the total excitations
|α0|2 follow the relation

|α(t)|2 +
∑
k∈E
|λk(t)|2 = |α0|2. (5.15)

Consider two kinds of coupling γk to each oscillator k, constant and non-constant.
In the constant case, each oscillator of the environment is coupled to the system with the
same magnitude,

γk = γ, for all k. (5.16)

For the non-constant coupling case, all oscillators of the environment are coupled with the
main oscillator with the same magnitude, except for one,

γk =

γ, if ωk 6= ω0

γ̄, if ωk = ω0
for some constants γ, γ̄. (5.17)

Consider a large number of oscillators in the environment. Taking the limit of a
continuum of oscillators for both couplings, the solution of Eqs. (5.13) and (5.14) can be
calculated analytically. One can make the following substitutions:

∑
k

→
∫
ρ(ω)dω

γk → γ(ω) (5.18)

λk(t) → λ(ω, t),

where ρ(ω) is the density of oscillators with frequency ω. Thus, ρ(ω)dω is the number of
oscillators in the environment with frequencies in the interval (ω, ω+dω) and |λ(ω, t)|2ρ(ω)
represents the density of excitations in oscillators with frequency ω at time t.

By assuming γ2(ω)ρ(ω) is constant, that is,

γ2(ω)ρ(ω) = γ2ρ = const = C, (5.19)

and that the distribution of modes is localized around ω0, the values of α and γk can be
obtained (Appendix C).

Constant Coupling

: By integrating Eq. (5.14) and substituting in Eq. (5.13), we get

α(t) = α0e
−Γt/2, (5.20)

λ(ω, t) = iα0γ
e(−Γ/2+i∆ω)t

Γ/2 + i∆ω , (5.21)
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where ∆ω = ω0 − ω and Γ = 4πγ2ρ (recall Eq. (5.19)).

Note the quantity (5.19) gives the rate at which the excitations of the main system
|α(t)|2 decays exponentially, Γ = 4πC.

For an asymptotic limit of time, the main system reaches the vacuum state and
the environment excitations follow a Lorentzian centered around ω0

|λ(ω, t→∞)|2ρ = |α0|2

π

Γ
(Γ/2)2 + (ω − ω0)2 . (5.22)

Non-Constant Coupling:

In this case, we made the same approximations as in the constant case and applied
the distribution of couplings defined in Eq. (5.17). Therefore, the result obtained is:

α(t) = α0

2Ωe
−Γt/4

[
Γ/4

(
e−Ωt − eΩt

)
+ Ω

(
e−Ωt + eΩt

)]
, (5.23)

λ(ω0, t) = iα0γ̄

2Ω e−Γt/4
(
e−Ωt − eΩt

)
, (5.24)

λ(ω, t) = −iα0γ

2Ω

(Γ/4 + Ω)
(
1− e−(Γ/4+i∆ω+Ω)t

)
Γ/4 + i∆ω + Ω

+
(Γ/4− Ω)

(
1− e−(Γ/4+i∆ω−Ω)t

)
−Γ/4− i∆ω + Ω

 , (5.25)

with Ω =
√

(Γ/4)2 − γ̄2.

Taking the asymptotic limit of t with γ̄ � Γ, the environment excitations distribute
approximately as a sum of two Lorentzian curves (instead of one) centered at ω0 + γ̄ and
ω0 − γ̄:

|λ(ω, t→∞)|2ρ ≈ |α0|2

4π

[
Γ

(Γ/4)2 + (ω − (ω0 + γ̄))2

+ Γ
(Γ/4)2 + (ω − (ω0 − γ̄))2

]
. (5.26)

Note Eq. (5.23) to (5.25) present two important exponentials, one describing the decay of
excitations in the system,

e−Γt/4,

and the other describing oscillations in the transfer of excitations,

e−Ωt − eΩt.

The exchange of excitations oscillates with amortization in the amplitude given by Γt. As
the total number of excitations remains constant, one can conclude that the system and
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environment excitations will oscillate with the same frequency Ω. Furthermore, as the
difference between γ and γ̄ becomes more significant, the frequency of the oscillations in
the transfer of the excitations becomes larger.

5.2.2 Model Dynamics

For the state in Eq. (5.12), the system and environment never correlate and the
composed system remains as a product state during time evolution. This correlation is
crucial for selecting the preferred states of the system by the environment (Sec. 2.2). We
set the system initially in a superposition of coherent states and the environment in the
vacuum

|Ψ(0)〉 = G

[
(a |α0〉+ b |−α0〉)⊗

N∏
k=1
|0k〉

]
, (5.27)

where |±α0〉 are coherent states with parameters ±α0, a, and b are complex coefficients,
and G is the normalization factor given by G = (|a|2 + |b|2 + ab∗ 〈−α0|α0〉+ c.c.)−1/2.

From the linearity of Schrödinger’s equation, the same ansatz from Eqs. (5.13) and
(5.14) can determine the evolved state of the global system at time t,

|Ψ(t)〉 = G (a |α(t)〉 ⊗ |Λ(t)〉+ b |−α(t)〉 ⊗ |−Λ(t)〉) , (5.28)

where |±Λ(t)〉 = ±⊗∏N
k=1 |λk(t)〉, and α(t) and λk(t) are the solutions of Eqs. (5.13) and

(5.14) subjected to the initial conditions α(0) = α0 and λk(0) = 0 for all k.

For both, constant and non-constant couplings, we assume the system is initially in
the “cat state” described by Eq. (5.27) with a = 1, b = 1, and α0 = 3. The global system
is given by

|Ψ(0)〉 = G

[
(|α0〉+ |−α0〉)⊗

N∏
k=1
|0k〉

]
(5.29)

with
G = 1

[2 (1 + e−2|α0|2)]1/2
. (5.30)

In both cases of coupling distributions, we have used N = 900 and ω0 = 1, with the
environment frequencies linearly distributed between 0.1 and 1.9. From the analytical
solution, we can estimate the decay rate as Γ = 4πγ2 N

∆ω , where ∆ω = 1.8 is the window
of frequencies of environment oscillators for a frequency interval between 0.1 and 1.9.
Therefore, N/∆ω is the (uniform) density of oscillators.

For the excitations dynamic with constant coupling, we took γk = 0.1/30 for all k.
As the excitations of the system decay exponentially, the environment excitations increase
such that the total amount of excitations is conserved. Note the excitations migrate
from the system to the bath monotonically (Fig.14(a)). Fig.14(b) shows the normalized
distribution (with a maximum of 1) of excitations in the environment. As expected from
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Figure 14 – Constant coupling: (a) Main oscillator excitations, |α(t)|2 (blue line) and
environment excitations ∑ |γk(t)|2 (orange dashed line) as a function of Γt. (b)
Distribution of the environment excitations for Γt = 0.35 (red line), Γt = 1.75
(orange dashed line), and Γt = 10 (blue dotted line).

Eq.(5.22), with Γt ∼ 1, most of the excitations are concentrated within the oscillators
with frequencies close to the frequency of the main oscillator for large t.

Since for a large enough time, all excitations of the system are transferred to the
environment, the system reaches a vacuum state, |0〉, decoupling from the environment.
Therefore, the global system turns back into a product state, and the correlations vanish

|Ψ(t→∞)〉 ∼ G

[
(|0〉)⊗

N∏
k=1

(|λk〉+ |−λk〉)
]

(5.31)

where ∑N
k=1 |λk|2 = |α0|2.

We set the non-constant coupling distribution as in Eq. (5.17), with γ = 0.1/30
and γ̄ ranging from 10γ to 100γ. In Fig. 15a, while the excitations of the system also
decay exponentially with the rate of Γ, the curve is no longer monotonic, and the exchange
of excitations oscillates. The exponential terms inside the squared brackets in Eq. (5.23)
can be rewritten as two sinusoidal terms highlighting the oscillations in the exchange of
excitations; the same analogy is valid for Eq.(5.24) and (5.25). Note that these oscillation
frequencies are proportional to the difference between γ and γ̄; the oscillation frequencies
increase with larger γ̄. As time progress, the single peak around ωk = ω0 in the distribution
of the environment excitations splits into two peaks, as predicted in Eq. (5.26) (Fig. 15(b)).

The monotonic behavior for the transfer of excitations with constant coupling can
mean that information about the system moves in just one direction: from system to
environment. However, in the non-constant case, the oscillations can be interpreted as a
“backflow” of information from the bath to the system, indicating that the system can be
non-Markovian in this regime. To elucidate the Markovianity in this model, sections 5.2.6
and 5.2.7 compute the non-Markovianity degree and discuss its effects on the system.

5.2.3 The preferential observable

QD observations are possible when information about the preferential observable of
the system is recorded redundantly in different portions of the environment. In this model,
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Figure 15 – Non-constant coupling: (a) Main oscillator excitations |α(t)|2 (blue line) and
environment excitations ∑ |γk(t)|2 (orange dashed line) as a function of Γt.
(b) Distribution of environment excitations for Γt = 7 (red line) and Γt = 10
(orange dashed line).

we identify the preferential observable and the preferential basis from the dynamics of the
excitations exchange. The measurement of the entire environment on a preferential basis
allows observers to infer the state of the system for t > 0. Therefore, this basis describes
the preferential observable (or POVM of observables) of the system. By describing the
states of the system on the proper basis, the reduced states of the environment will be
orthogonal. (Sec. 2.2.2 gives a very intuitive illustration of the preferential basis concept.)

It is easy to check that

| 〈α(t)| − α(t)〉 |2 = e−2|α(t)|2 (5.32)

| 〈Λ(t)| − Λ(t)〉 |2 =
∏
k∈E
| 〈λk(t)| − λk(t)〉 |2

= e−2(|α0|2−|α(t)|2). (5.33)

For simplicity, let us analyze the constant coupling case. From Eq. (5.20), if |α0| � 1
and Γt ∼ 1, 〈α(t)| − α(t)〉 ≈ 〈Λ(t)| − Λ(t)〉 is approximately e−c|α0|, for some constant
c ∼ 1. Note besides this approximation is valid for any |α0|2, the states of the system and
environment are approximately orthogonal for values of Γt around 1.

The analysis for the non-constant case follows similarly. However, one must consider
the oscillations of the amplitude of the excitations as shown in Eq. (5.23). Thus, except
at times when all excitations are in the environment, the system states and environment
states are also orthogonal. This indicates that the environment monitors the system,
and with the initial state of the system defined in Eq. (5.29), one can also identify the
preferential observable. Following Eq. (2.15) and the discussion presented in Sec. 2.2.1, we
see that our evolution closely matches the evolution of the von Neumann measurement
scheme.

Therefore, we can conclude that the preferential observable lies in any quadrature
of the plane whose axes are momentum and position where the observable to be monitored
will depend on the value of α0. For example, if α0 is a real number, with the states of
the system in a superposition of positions, the environment monitors it in the position
space, if α0 is a pure imaginary number, the preferential observable is in the momentum
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space, but if both, the imaginary and the real part of α0 are nonzero values, then the
environment monitors the system in a combination between momentum and position.

5.2.4 Quantum Darwinism from PIP Approach

The concept of QD relies on the “quantity” of redundant information about the
system spread in the environment named as redundancy. As shown in Sec.3.4, to determine
the redundancy, the PIP approach analyzes the curve shape of the mutual information
between the system and fragments of the environment as a function of fraction size f .
From PIP, we can infer the minimal environment fraction, fδ, necessary to obtain almost
all information available about the system but a small percentage δ of H(s).

To investigate QD using the PIP approach, the average of the partial mutual
information over all possible environment fragments F is taken for each possible size f .
However, this process becomes impracticable for a large number of oscillators. Thus, as
many fragments as possible were sorted before computing the partial information plot
and tanking the average. Therefore, the solutions obtained are very close to those of the
continuum limit.

Consider the same parameter configuration presented in Sec. 5.2.2 for the following
computations. To calculate the averaged mutual information between each fragment F
with a size f , (1) randomly select a set of individual oscillators Fi with a size f , (2)
compute the total excitation of this set of oscillators, (3) calculate the reduced density
matrices ρS, ρFi , and ρS,Fi , and their eigenvalues, Von Neumann entropies H(S), H(Fi),
and H(S, Fi), and, mutual information I(S : Fi) for this system and subenvironment, (4)
repeat steps (1) to (3) M times and calculate the averaged value of the mutual information
for a fragment with size f

Ī(S : f) ≈ 1
M

M∑
i=1

I(S : Fi). (5.34)

These steps were followed for each fraction, with f ranging from 0 to 1, where f is 1 when
accounting for all environment oscillators. In this work, we set M = 100.

Constant Coupling

Taking γk = 0.1/30 for all k, we computed the PIP from the excitations of the
environment oscillators calculated previously. In this model, the mutual information
I(S, F ) can be calculated for each fragment F at each time t of the evolution. Following
the algorithm described in Eq. (5.34), we computed I(S, F ) for Γt varying from 0 to
approximately 10 and f ranging from 0 to 1 (0 to 900 oscillators). After a large enough
time, the information about the system will be spread in the environment very redundantly
(Fig. 16a). However, for Γt ∼ 6.0, the averaged mutual information decreases quickly,
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Figure 16 – (a)Average mutual information Ī(f) map for a constant coupling with Γt going
from 0 to 10 and the environment fractions f from 1/900 to 1. (b) Mutual
information between the system and the whole environment, I(S : E), as
a function of Γt. (c)Normalized mutual information ĪN(f) for the constant
coupling case. The red (solid), orange (dotted), blue (dashed), and black
(dot-dashed) lines represent the PIP for Γt = 0.03, Γt = 0.17, Γt = 0.35, and
Γt = 6, respectively.

which agrees with the exact calculations of the dynamics of the excitations. For Γt ∼ 0.6,
nearly all excitations of the global system are concentrated in the bath. Therefore, the
average mutual information between the system and any fraction of the environment is
expected to be minimal. Thus, the time Γt = 6.0 is taken as the limit for the following
analysis given the magnitude of the averaged mutual information is negligible beyond this
time.

In the most common scenario of QD one can observe I(S : f) raising quickly with
f up to H(S)(1− δ) for f = fδ, raising slowly up to f close to 1, and once again raising
quickly until f = 1. If the information is spread redundantly, the PIP has a plateau shape
indicating that the quantity of information contained in a fraction grows fast with the
fraction size (see Fig. 16).

Fig. 16(a) shows that I(S : f = 1, t) increases quickly with t as the system and
environment interact. As the PIP approach analyzes fδ and the PIP shape we calculated
the normalized mutual information ĪN(f) as a function of f from 0 to 1 for each time.
Fig. 16c compares the PIP to different instants of time, from Γt = 0.03 to Γt = 6. For
Γt = 0.03 (red line), the PIP is practically linear; to obtain almost all information about
the system, one needs to include nearly half of the environment. This may be expected
for short times given the system and environment do not interact sufficiently to produce
sufficient correlations. With increasing time, the PIP changes form from the red solid
curve to the orange dotted curve, to the blue dashed curve, before reaching the closest
form of a plateau in the dot-dashed black line with Γt = 6.

The PIP curve provides a qualitative way to identify QD. However, this characteri-
zation can also be performed quantitatively by computing redundancy. As shown in Sec. 3.4,



Chapter 5. Quantum Darwinism and Non-Markovianity 69

redundancy requires defining how close we want to get to complete information about the
system H(S). Thus, we define a percentage δ of HS to find almost all information about
the system in the environment, HS(1− δ). The quantity fδ is the minimal fraction required
to obtain a quantity of HS(1 − δ) of information about the system in the environment.
Thus, the redundancy is given by:

Rδ = 1
fδ
. (5.35)

For constant coupling, we computed fδ and Rδ for different values of δ. Given that
the system and the environment share information as they interact (Fig. 17a-b), Rδ grows
with t, while fδ decreases with t, for all values of δ. One can expect that the longer the
system and environment interact with each other, the larger Rδ becomes. The quantity Rδ

also depends on the value of δ. Observe also that for a given time interval, the closer to
complete information about system H(S) we want to reach, the smaller the maximum
value of Rδ becomes. However, even for a small δ, the redundancy increases and we assert
that QD can be observed in this model.

Since the PIP approach defines QD from the concept of mutual information, it
does not make sense to classify QD at times instants at which the maximal mutual
information is insignificant. To quantify redundancy accurately, we need to consider the
mutual information between the system and the whole environment at each time instant.
Therefore, we define the relative redundancy Rr(t) as

Rr(t) = Rδ(t)I(S : E)(t), (5.36)

where I(S : E)(t) is the total mutual information between the system and the whole
environment at a time t.

In this dynamic, the global system is initially a product state between the system
and the environment states. After interacting for some time, the system and environment
correlate and increase the redundancy. However, for a long enough time nearly all excitations
will be concentrated in the environment (Fig. 16 (b)). In this case, even with high
redundancy, the number of correlations between the system and the environment becomes
negligible; and the global system will become increasingly close to a product state. Therefore,
relative redundancy is more appropriate to quantify the QD. Compared to the monotonic
growth of redundancy Fig. 17(b), the relative redundancy Rr grows with Γt to a maximal
value before decreasing to zero. Nevertheless, we can affirm that in this model, QD can be
observed in the interval between Γt ∼ 1.0 and Γt ∼ 5.0 with a maximum at Γt ∼ 2.5.

Non-Constant Coupling

Using the same parameters as the constant coupling case and the same initial cat
state, we assume the distribution of couplings between each oscillator of the environment
and the system follows Eq. 5.17 while varying the value of γ̄.
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Figure 17 – For δ = 0.01 in the red (solid line), δ = 0.05 in the orange (dashed line), and
δ = 0.1 in the blue (dotted line) in (a) is plotted the fraction fδ and in (b) the
Redundancy Rδ in function of time. For δ = 0.05, in (c) is plotted the relative
redundancy varying with time.

Figure 18 – For non-constant coupling with γ̄ = 50γ: (a)Average mutual information Ī(f)
map with Γt going from 0 to 10 and the environment fractions f from 1/900
to 1. (b) Mutual information between the system and the whole environment,
I(S : E), as a function of Γt. (c)Normalized mutual information ĪN (f) versus
f for Γt = 0.07 (red line), Γt = 0.52 (orange and dotted line), Γt = 1.04 (blue
and dashed line) and Γt = 6.0 (black and dot-dashed line).

As shown in Sec. 5.2.1, for γ̄ > γ, the transfer of excitations from system to
environment oscillates. These oscillations are also present in the mutual information. For
γ̄ = 50γ, PIPs were plotted for different lengths of time, with f between 0 and 1 (Fig. 18a).
Observe in Fig. 18b that the mutual information oscillates several times with the same
frequency as the oscillations during the exchange of excitations. These oscillations in PIPS
can indicate a backflow of information from the system to the environment that relates to
the non-Markovianity of the system.

In Fig. 18(c), as in the constant case, for time length Γt = 0.07 (red solid line), the
mutual information depends almost linearly on the fragment size f , since the number of
correlations created between the system and the environment is still relatively minimal. As
time increases from Γt = 0.52 (orange dotted line) and to Γt = 1.04 (blue dashed line), the
correlation between the system and environment increases and the plateau becomes more
evident. At Γt = 6.00 (black dot-dashed line), the plateau becomes even more defined.

This behavior repeats with each cycle. However, the PIP never returns to its
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Figure 19 – (a) Redundancy Rδ with with δ = 0.05 and γ̄ = 50γ varying with time.
Relative redundancy Rr with δ = 0.05 and varying with time for: (b) γ̄ = 10γ,
(c) γ̄ = 50γ, and (d) γ̄ = 10γ.

linear form, and the redundancy Rδ never returns to zero. Note that, where γ̄ = 50γ, the
redundancy again oscillates with the same frequency as the exchange of excitations and
the minimum value of each oscillation never decreases. However, as with the constant
coupling case, it is not correct to assume QD can be observed after any time instant. To
demonstrate, we calculated the relative redundancy Rr for non-constant coupling from
γ̄ = 10γ to γ̄ = 100γ. The frequency of the oscillations in Rr increases with γ̄ (Fig. 19a).

5.2.5 Quantum Darwinism from BPH Approach

This approach relies upon the fact that, from the quantum mechanics formulation,
there always exists a preferential observable or POVM for any quantum system. Also, in
cases of QD, there exists a map ΛF : DS → DF that describes the preferential observable
(or POVM) by connecting the states of the system DS to the states of the environment
fraction DF (see Sec. 3.5). We can, then, assume that the environment effectively prepares
its states accordingly with the result of the “measurement” that it performed on the
system. With this measure and prepare map, we can describe the preferential observable
as a POVM {Mi} and distinguish it by the condition

ΛF (ρ) ≈
∑
i

Tr(Miρ)σi,F ,

for every system operator ρ and some states σi,F for environment fraction F .

The map that describes the measurement of the initial state of the system ρS =
G2(a |α0〉+b |−α0〉)(a∗ 〈α0|+b∗ 〈−α0|) and preparation of the environment states for every
t can be computed from the evaluated global state in Eq. (5.27):

Λt
F (ρS) = TrS,E−F (|Ψ(t)〉 〈Ψ(t)|) (5.37)

= G2|a|2
∏
j∈F
|λj(t)〉 〈λj(t)| (5.38)

+G2|b|2
∏
j∈F
|−λj(t)〉 〈−λj(t)| (5.39)

+D(t)
∏
j∈F
|λj(t)〉 〈−λj(t)|+ H.c., (5.40)
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where
D(t) = G2ab∗ 〈α(t)| − α(t)〉

∏
j∈E−F

〈λj(t)| − λj(t)〉 .

As we are assuming that |α0| � 1, note that 〈α0| − α0〉 = e−2|α0|2 ≈ 0 and,
therefore, G ≈ 1. From these approximations, we can assume that D ≈ 0 and, then,

Λt
F (ρ) ≈ Tr(|α0〉 〈α0| ρ)

∏
j∈F
|λj(t)〉 〈λj(t)| (5.41)

+ Tr(|−α0〉 〈−α0| ρ)
∏
j∈F
|−λj(t)〉 〈−λj(t)| . (5.42)

Observe that, indeed, the maps described by Eq. (5.42) are approximately a measure
and prepare map in the subspace generated by |±α0〉 with the (approximate) POVM
{|±α0〉 〈±α0|}, and environment states σtF,± = ∏

j∈F |±λj(t)〉 〈±λj(t)|.

Let us check now two relevant regimes, Γt ∼ 1 and Γt � 1. At Γt ∼ 1 and the
constant coupling case, D(t) is small since 〈α(t)| − α(t)〉 = e−c|α(t)|2 ≈ 0 where c ∼ 1. For
the non-constant case coupling case, we have | 〈α(t)| − α(t)〉 |2 = 〈α0| − α0〉2Ξ(t), where
Ξ(t) is the proportional system excitations ranging from 0, none excitations, to 1, total
excitations in the closed system (see appendix C). Therefore, in the non-constant coupling,
we have D ∼ 0 for Γt ∼ 1 and Ξ(t) ∼ t, that is, in instants of time where the excitations
go back to the main oscillator (see Fig. 15).

For Γt� 1, we can assume that almost all excitations are in the environment. Then,
any environment fragment with size F will have |α0|2f excitations, where f = F/N is the
fraction of the environment. Therefore, the complementary part to this fraction (1− f)
will have |α0|2(1− f) excitations. Then, for f not too close to 1, ∏j∈E−F 〈λj(t)| − λj(t)〉 ≈
e−2|α0|2(1−f) ≈ 0 leading to D(t) ≈ 0.

Also for Γt � 1, for constant and non-constant coupling cases, we can infer
the quantum Darwinism by the distinguishability given by 1 − ∏j∈F | 〈λj(t)| − λj(t)〉 |.
Approximating the distinguishability by 1− e−2|α0|2f , note that it quickly converges to 1
with the environment fraction f .

In Sec. 3.6, we present two examples comparing the two approaches, PIP and
BPH, where in the first example, we can identify the quantum Darwinism through both
approaches but, in the second, just the second approach can characterize it. In this model,
for Γt ∼ 1, the dynamic of the distribution of information about the system in the
environment approximately

|α0〉 |0〉 7→ |α(t)〉
∏
j∈F
|λ(t)〉 ,

|−α0〉 |0〉 7→ |−α(t)〉
∏
j∈F
|−λ(t)〉 , (5.43)
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that is very similar to the first example. However, for Γt� 1 and taking to account the
whole dynamic, we have

|α0〉 |0〉 7→ |0〉
∏
j∈F
|λ(t)〉 ,

|−α0〉 |0〉 7→ |0〉
∏
j∈F
|−λ(t)〉 , (5.44)

which resembles the second example. In the second case, it does not make sense of talking
about quantum Darwinism from the PIP perspective since the number of correlations is
negligible. However, from the BPH perspective, we can infer the preferential observable,
since the environment recorded redundantly this information in its states. Then, in
this regime, even when there is no more a significant quantity of correlations, it is still
meaningful to address Darwinism from the BPH perspective.

5.2.6 Non-Markovianity degree in this model

As there are many ways to calculate the non-Markovianity degree, we need to set
up which method to use. Here, we used the same method as in [50], where the authors
compute the non-Markovinity degree by the distance between two states. As shown in the
Sec4.4, when a system is Markovian, the fidelity between two states, ρ1 and ρ2, increases
monotonically under the action of the completely positive and trace-preserving map.
When it is non-Markovian, besides the fidelity still increases for a long enough time, it
decreases temporarily for some time intervals. Therefore, it is possible to quantify the
non-Markovianity degree from Eq.(5.7) by optimizing all pairs of states. However, there
exists an infinite number of possible states in this system and, to make possible this
quantization, we approximated the fidelity by sorting 1000 values for α0 to determine the
initial states. In this way, we can rewrite Eq.(5.7) as,

N = max
1KRand.ρ1,ρ2

[
−
∫
Ḟ<0
Ḟ(ρ1, ρ2)dt

]
, (5.45)

where 1KRand means that the maximization will made be under 1000 initial sates ρ1(0)
and ρ2(0) chosen randomly.

When we set the coupling between the system and each environment oscillator with
the same magnitude, we observed that the fidelity increasing is monotonic (see Fig. 20(b)),
and, therefore, the quantity N is zero for any time interval; this is the case where the
dynamic is Markovian. The information about the system flows just in one direction, from
system to environment.

By defining the distribution as in Eq. (5.17), the scenario changes. In Figs. 20(b)
to (d) is shown that the fidelity behavior is no longer monotonic for non-constant coupling.
For a considerable time interval, the fidelity still increases; however, in shorter periods, it
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Figure 20 – Fidelity F as a function of time for (a) Constant coupling, (b) γ̄ = 10γ, (c)
γ̄ = 50γ, and (d) γ̄ = 10γ. (e) Non-markovianity degree as a function of γ̄. In
(e), we sort 1000 initial states coherent states and N was calculated for all
combinations of pairs.

decreases and increases again. By comparing the fidelity variation with Fig. 15(a), one can
note that the frequency of this oscillation is the same as the oscillation in the excitations.
Moreover, as in the excitations curve, the frequency of the oscillations in the fidelity curve
is proportional to |γ̄ − γ|.

From Eq. 5.45 we can see that, to quantify the non-Markovianity in the system,
the fidelity is integrated just in time intervals where its values are decreasing. Then it is
expected that the quantity N is proportional to oscillations frequency in F . Then, we can
connect qualitatively the type of coupling with the non-Markovianity degree. This relation
can be observed in Fig. 20(e), where it is plotted the N as a function of γ̄.

In this model, we understand the Markovianity dynamic, and the QD quantitative
and qualitatively. Therefore, now we have tools to check how the QD observation is affected
by the non-Markovianity.

5.2.7 Quantum Darwinism and Non-Markovianity

As in the model studied in Ref. [50] Rδ and fδ also oscillate in time when the
system is non-Markovian, the authors defined a method that quantifies the effect of the
non-Markovianity in the time evolution of the QD (see Sec. 5.1). They used the fraction
fδ instead of the redundancy Rδ in their calculations; which is essentially the equivalent,
since fδ = 1/Rδ. From this, they defined the non-monotonicity of fδ, Nf , similarly to the
non-Markovianity degree:

Nf =
∫
dfδ/dt>0

dfδ
dt
dt. (5.46)
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Note that, as they are interested in the time evolution of the QD, the integral in this
equation is calculated just when dfδ/dt is positive. This expression tells us, basically, how
significant is the number of oscillations in the curve fδ. Further, we can say that Nf also
computes the “quantity of non-Darwinism” in a time interval for a given dynamic. They
observed in their model that the curve Nf is very similar to the curve N and this shows
that, indeed, the time evolution fδ is different for different degrees of non-Markovianity.

We also calculated Nf in our model and got qualitatively the same result, see
Fig. 21(a). We could observe that Nf grows with γ̄ as N and, the more significant the
non-Markovianity degree is, the larger is the quantity Nf . This result can be expected
intuitively since as non-Markovianity grows, more oscillations in the redundancy and
fδ will be present. Then, if we integrate the values of fδ just when it is growing, the
non-monotonicity will increase with the oscillation frequency and, therefore, with γ̄.

Although this analogy is consistent with that particular model, we can not generalize
that the non-Markovianity hinders the QD. In a time interval ∆t > T , the quantity of
time that QD decreases is the same as the quantity of time that QD increases. When the
excitations are flowing from the system to the environment, the redundancy grows. When
the excitations are flowing back to the system, the redundancy decreases. Nevertheless,
even in the moments of excitations (and information) backflow, we can say that there
exists some redundancy in the system and, therefore, some degree of quantum Darwinism.
Hence, we present here a new point of view on this analysis. We believe that a more
sensitive figure of merit would be the averaged relative redundancy Rr(γ̄) for a certain
period ∆t = tmax − tmin, that is,

R̄r(γ̄) = 1
∆t

∫ tmax

tmin
Rr(t, γ̄)dt. (5.47)

This quantity, instead of calculating the amount of “non-Darwinism”, calculates the
averaged quantity of redundant information about the system spread in the environment.
In simple words, R̄r(γ̄) tells us the probability of finding the system in a “Darwinistic”
regime in a time instant, tr ∈ ∆t, chosen randomly.

We calculated this quantity for different values of γ̄ in a time window Γ∆t = 10.
We plotted R̄r infunction of γ̄ in Fig. 21(b). Observe that the averaged redundancy is
practically constant with γ̄, which implies that, for any random instant of time, the
probability of finding quantum Darwinism in the Markovian case is nearly the same in the
case as high non-Markovianity. Putting it in another way, even if the amount of quantum
Darwinism is non-monotonic in time in non-Markovian dynamics, on average, it is the
same as in the Markovian case.

Since the non-Markovianity of the main oscillator dynamics depends only on γ̄,
the asymptotic state of the environment keeps a record of the non-Markovianity. From
the BPH perspective, in the asymptotic regime Γt � 1, all excitations initially in the



Chapter 5. Quantum Darwinism and Non-Markovianity 76

Figure 21 – (a) Non-monotonicity Nf , and (b) averaged relative redundancy Rr versus
γ̄, with γ̄ going from 10γ to 100γ; the time interval of the integration is
Γ∆t = 10.

main oscillator go to the environment. Even when there are no more correlations, the
environment also keeps a record of the preferred state of the system. However, the record
of the preferred observable is essentially “independent” of γ̄. Then, from this perspective,
we conclude that leastwise in this model, we do not have evidence that does exist some
correlation between the non-Markovianity degree and the observation (or the probability
of detecting) QD; contrariwise, the averaged quantity of QD is pretty much the same for
any non-Markovianity degree.
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6 Quantum Darwinism in Ultracold Gases

We have focused on non-correlated subenvironments, which are well explored in the
literature through theoretical and numerical studies. The environment of the model used
in our work in Sec. 5 is non-correlated and is applicable experimentally; we can say that
this model is realistic. However, most of the subenvironments in nature become strongly
correlated between themselves, and preparing such a setup is quite tricky. Understanding
how information about the system spreads in an environment composed of correlated
subsystems could enable the application of Quantum Darwinism in other realistic models.
In this sense, cold atoms setups are promising frameworks since they have available
technologies for experimental implementations.

In search of more realistic models, we came across an exciting work of orthogonality
catastrophe [90] performed by T. Busch and his team. They studied the phenomenon in
a Fermi sea coupled to a two-level atom and showed that, under some conditions, such
coupling makes the Fermi sea states orthogonal. The orthogonality increases quickly with
the number of fermions even for very weak interaction between the atom and the Fermi
sea. Anderson predicted this effect by studying electrons subject to a potential V [91],
and as demonstrated in Ref. [90], it is also valid when the fermions are interacting with
an impurity. This work drew our attention, leading us to ask if quantum Darwinism and
orthogonality catastrophe can be related.

Working experimentally with fermions is hard, but there is a trick: bosons in a
gas can behave as fermions under some specific conditions. This gas, known as the Tonks
Girardeau gas [92], can be experimentally implemented with cold atoms. It was shown
that orthogonality catastrophe is also valid in Tonks-Girardeau limit [93], which makes
experiments of orthogonality catastrophe more feasible.

The goals of this chapter are to study quantum Darwinism in a model of ultracold
gas and investigate if quantum Darwinism and orthogonality catastrophe are related to
each other. We begin introducing Anderson’s work in Sec. 6.1 and then, we present the
work of orthogonality catastrophe in a Fermi sea coupled to an atom in Sec. 6.2. In Sec. 6.3
we present our work in progress where we use the model of Ref. [90] to investigate quantum
Darwinism and in Sec. 6.4 we finish giving motivation to using ultracold atoms in quantum
Darwinism studies.
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6.1 Anderson Orthogonality Catastrophe
P. W. Anderson introduced the concept of orthogonality catastrophe in a paper

published in 1967 [91]. He showed that this is an intrinsic effect in fermionic many-body
systems.

In Anderson’s work, the system is a non-interacting Fermi gas in the ground state.
For simplicity and with no loss of generality, he considered the gas composed by N fermions
in a spherical box with radius R and only l = 0 scattering states. The idea is to perturb
the state of the Fermi gas by suddenly applying a potential V and comparing it with the
non-perturbed state.

The spherically symmetrical Bessel functions give the unperturbed states φn(r) of
the n-th energy level of a particle, that is

φn(r) = kn

(2πR3)
1
2

sin (knr)
knr

, (6.1)

with kn = nπ/R and En = ~2k2
n/2m. By subjecting the fermions to a potential V , the

phase states shifts by a quantity δ(En), and the perturbed states ψn(r) are given by

ψn(r) ' kn

(2πR3)
1
2

sin (knr − δ(En))− [1− r/R]
knr

. (6.2)

Consider the two group of states, unperturbed {φn(r)} and perturbed {ψn(r)}.
The overlap between any pair (φi(r), ψj(r)) with i, j ∈ {1, · · · , N} is given by

Ai,j = 4π
∫ R

0
r2φi(r)ψj(r)dr '

sin δ(Ej)
π(i− j) + δ(Ej)

. (6.3)

From this result, we can construct a square matrix A with the values Ai,j. The overlap
Sφψ between the unperturbed |Φ(r1, · · · , rN)〉 and perturbed |Ψ(r1, · · · , rN)〉 global state
of the Fermi gas is given by

Sφψ = det |A| . (6.4)

The main factor changing the fermions states when the potential is turned on is the
phase δ(En) gained by each particle. When the fermions are localized in the sphere surface
the gained phases are minimal. Then, by setting δ = δn(E, r = R) for all n, Ref. [91] shows
that the overlap is given by

Sφψ . exp
[
− sin2 δ

3π2

]
. (6.5)

Therefore, for N and/or δ sufficiently large Sφψ goes to zero quickly what means that
|Φ(r1, · · · , rN)〉 and |Ψ(r1, · · · , rN)〉 become orthogonal. As the phase shift is caused by
the potential V , it is expected that its intensity makes the Fermi gas states orthogonal.
However, it is impressive that taking the limit N →∞, the states become orthogonal even
for V → 0.
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The exponential in Eq. (6.5) comes from the approximation

1
π2

∑
i<nF
j>nF

sin2 δ

(i− j + δ)2 '
− sin2 δ

π2 lnM, (6.6)

where nF is the Fermi level and M is the radius, R, in atomic units. Note, the phase shift
of each fermion contributes exponentially to the final state of the gas. Even when they are
small, if N is large enough, the joint effect on the final state is huge.

6.2 Orthogonality Catastrophe in Ultracold Fermi Gases
In the original article on orthogonality catastrophe, the quenching is caused exclu-

sively by a potential V [91]. Goold et al. present in Ref. [90] a model where the system
states are quenched through the interaction with a single particle impurity.

6.2.1 The model

The model consists of a non-interacting, spin-polarized Fermi sea in a one-dimensional
harmonic trap coupled with a two-level atom. This model is quite practical since the
many-body state of the Fermi sea is given by the overlap of individual particles facilitating
some calculations. To maintain consistency with the notation used in all previous chapters
and avoid miscomprehensions, we shall refer to the impurity as the system and the Fermi
sea to as the environment. With the atom neutral and highly localized, its free Hamiltonian
is given by

HS = ~Ω
2 (|e〉 〈e| − |g〉 〈g|) , (6.7)

where Ω is the frequency related to the energy difference ∆E = ~Ω between the states |e〉
and |g〉. The Hamiltonian of the Fermi sea is

HE =
∫

Ψ†(x)
(
− ~2

2m
d2

dx2 + 1
2mω

2x2
)

Ψ(x)dx, (6.8)

where Ψ†(x) and Ψ(x) are the fermionic creator and annihilator operators, respectively.

Assume that |e〉 has a proper s-wave scattering length, and |g〉 does not interact
with the environment. Considering that the system is confined in a point x = d by a strong
enough potential, the kinetic energy can be neglected. Thus, the interaction Hamilton is
given by

HI = κ
∫

Ψ†(x)δ (x− d) Ψ(x)dx, (6.9)

where κ is the magnitude of the scattering potential; that is related to the phase shift δ of
Eq. (6.5). Where the total Hamiltonian is

H = HS +HE +HI . (6.10)
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The system state is initially in a superposition of |g〉 and |e〉 with equal probabilities
and the Fermi sea in the fundamental state of the Harmonic oscillator:

|ξ(0)〉 = 1√
2

(|g〉+ |e〉)⊗ |φ〉 , (6.11)

where φ is the initial state of the Fermi sea. As the global system is closed, its evolution is
described by the unitary operator U = e−i(HE+HI)t, where HI |e〉 ≈ |e〉. Then we get

|ξ(t)〉 = 1√
2

(U |g〉 ⊗ |φ〉+ U |e〉 ⊗ |φ〉) (6.12)

= 1√
2
(
e−iHEt |g〉 ⊗ |φ〉+ e−i(HE+HI)t |e〉 ⊗ |φ〉

)
(6.13)

= 1√
2

(|g〉 ⊗ |Φg(t)〉+ |e〉 ⊗ |Ψe(t)〉) , (6.14)

with

|Φg(t)〉 = e−iHF t |g〉 ⊗ |φ〉 (6.15)

and (6.16)

|Ψe(t)〉 = e−i(HF+HI)t. (6.17)

At a given time t, the reduced density matrix of the Fermi Sea is

ρE = trS (|ξ(t)〉 〈ξ(t)|) = 1
2 (|Φg(t)〉 〈Φg(t)|+ |Ψe(t)〉 〈Ψe(t)|) , (6.18)

and the reduced density matrix of the system is

ρS = trE (|ξ(t)〉 〈ξ(t)|)

= 1
2 (|g〉 〈g|+ 〈Ψe(t)|Φg(t)〉 |g〉 〈e|+ 〈Φg(t)|Ψe(t)〉 |e〉 〈g|+ |e〉 〈e|) . (6.19)

As the system interacts with the environment, it loses coherence, and the off-diagonal
terms of ρS decrease quickly. The coherence of the system is, therefore, proportional to

〈Φg(t)|Ψe(t)〉 = ν. (6.20)

The quantity L(t) = |ν(t)|2 is known as Loschmidt echo and is frequently used to quantify
decoherence in many-body subenvironments [94, 95]. If |Φg(t)〉 and |Ψe(t)〉 are orthogonal,
the state of Eq. (6.14) becomes maximally entangled. Then, there is a clear connection
between Anderson’s orthogonality catastrophe and entanglement.

6.2.2 Overlaps

Now, let us analyze the Fermi Sea separately. As the Fermi sea is localized by a
harmonic trap and is in the ground state, each non-perturbed particle occupies one of the
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Figure 22 – Quantum harmonic oscillator levels {n} that a particle j can occupy without
interaction |φn(xj)〉 and with interaction |ψn(xj)〉.

harmonic oscillators’ lowest levels (see Fig. 22(a)). The wave function to each fermion at
each level is given by the Bessel functions

|φn(xj)〉 ≡ φn(kj, xj) = sin (kjxj)
kjxj

, (6.21)

where n is the level occupied by the j-th particle whose coordinate and wavenumber are
xj and kj , respectively. Since kj is directly related to n we drop it off in the ket. The state
of the Fermi sea is given by the Slater determinant of the individual states |φn(kj, xj)〉

|Φ(x1, · · · , xn)〉 = 1
N

∑
P

sgn(P ) |φ〉P (1) (x1) · · · |φ〉P (N) (xN), (6.22)

where N is the total number of fermions and P is the permutations over the possible
occupied states. The state |Ψ(x1, · · · , xn)〉 of the perturbed Fermi (Eq. (6.17)) sea is taken
similarly. Note that the interaction with the atom shifts the Fermi sea from the ground
state. Thus, the number of the maximal level occupied M can be larger than N (see
Fig. 22(b)).

The overlap 〈Ψ(x1, · · · , xN)|Φ(x1, · · · , xN)〉 is given by

ν = 〈Ψ(x1, · · · , xN)|Φ(x1, · · · , xN)〉 (6.23)

=
∑
PP ′

sign(P )sign(P ′)
∏
i

∆P (l),P (l′), (6.24)

where ∆m,n = 〈φm(x)|ψn(x)〉 =
∫
ψ∗n(n)φm(x)dx is the overlap between two fermions

states, with m = P (l) and n = P (l′).

The single particles overlap 〈φm(x)|ψn(x)〉 forms the matrix ∆

∆ =


〈φ1(x)|ψ1(x)〉 · · · 〈φ1(x)|ψN(x)〉

... . . . ...
〈φN(x)|ψ1(x)〉 · · · 〈φN(x)|ψN(x)〉

 . (6.25)
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Figure 23 – a) ν in function of the number of particles N at t = π/2 and with κ = 50
(blue-solid line), κ = 100 (red-dashed line), and κ = 200 (green-dotted line).
b) ν in function of t for N = 150 and with κ = 50 (blue-solid line), κ = 100
(red-dashed line), and κ = 200 (green-dotted line)

When there is no particle occupying a certain level n its wavefunction is ψn(x) = 0. As
the number of levels occupied can be different for the perturbed and unperturbed Fermi
sea, ∆m,n = 〈φm(x)|ψn(x)〉 = 0 for indexes m > n. Then, we can truncate the matrix to
the order N ×N , and the overlap of Eq. (6.24) becomes

ν = det∆ (6.26)

6.2.3 Orthogonality Catastrophe and Entanglement

In this model, the atom interacts and perturbs the Fermi sea only when the atom
is in |e〉. Thus, the orthogonality is maximal when the probability Pe to measuring the
atom |e〉 is maximal. For the system and environment in a product state initially and
with the dynamics driven by the Hamiltonian of Eq. (6.10), the orthogonality ν oscillates.
We calculate the orthogonality varying on time for fixed interaction magnitude κ and the
number of particles. The plots in Fig. 23(a) shows the behavior of ν in function of the
number of particles N at a fixed t = π/2, for κ = 50 (blue-solid line), κ = 100 (red-dashed
line), and κ = 200 (green-dotted line). We see that the orthogonality increases (and ν
decreases) with the number of particles N and with the interaction. Fig. 23(b) displays
one oscillation cycle on time of ν. Its minimal value is attained at time values multiple of
π/2, namely when Pe = 1.

Goold et al. also connect entanglement and orthogonality catastrophe with von
Neumann entropy:

S(t) = −
∑
i

λi(t) log λi(t), (6.27)

where {λi(t)} are the eigenvalues of ρE. In this model, S(t) gives the degree of entanglement
of the Fermi sea. Fig. 24 shows as a color scheme the von Neumann entropy entropy
varying with t and N for κ = 200 and κ = 50. We can see that the state becomes
maximally entangled at the resonance time t = Cπ/2 where C is an integer-positive
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Figure 24 – (Color) Von Newman entropy S varying with time t in units of the inverse of
the trapping frequency (ω−1) for (a)κ = 200 in units of l0/(~ω), and (b)κ = 50.
The inset in (a) shows the Von Neumann entropy varying with N at the time
resonance t = π/2. This image was taken from Ref. [90].

number for both strong (κ = 200) and weak (κ = 50) couplings. For strong coupling (see
the inset in Fig. 24 (a)), orthogonality catastrophe is observed even for small environments
(N ≈ 15). Furthermore, for large N , the entanglement is close to 1 at any time. For weak
coupling (Fig. 24 (b)), the state becomes maximally entangled for large environments
and around the resonance, t = Cπ/2. These results agree with Anderson’s Orthogonality
catastrophe and show that it is possible to associate the Fermi sea with a new system (the
impurity) without loss of generality. By comparing Figs. 23 and 24 becomes clear that the
orthogonality is maximal (and ν is minimal) when the entropy is maximal, indicating that
orthogonality catastrophe comes with decoherence.

This work brings a new perspective to orthogonality catastrophe. Now we see that
it can be applied to quantum information. Also, the measurement of large systems such as
a Fermi sea can be tricky experimentally, thus associating the entire many-body system to
a single particle can be very useful.

6.2.4 Tonks-Girardeau Gas

Tonks-Girardeau Gas is a kind of many-body bosonic system that can be mapped
into a Fermi sea. This mapping enables the investigation of Orthogonality catastrophe in a
bosonic environment. T. Busch and his team performed such analysis where they studied
two strongly interacting bosons coupled to an impurity atom, all trapped by a harmonic
potential Ref. [93]. By analyzing the Loschmidt echo and the entanglement degree, they
show that orthogonality catastrophe can be observed in bosons, even for small systems.
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Tonks-Girardeau gas is formed by strongly repulsive bosons where each boson
behaves as a hard-core. Consider a bosonic many-body system trapped in a nearly one-
dimensional trajectory with Hamiltonian

H =
N∑
n=1

[
− ~2

2m
d2

dx2
n

+ V (xn)
]

+ g1D
∑
i<j

δ (|xi − xj|) , (6.28)

where N is the number of bosons, V is the trapping potential and g1D > 0 is the interaction
intensity. When g1D →∞, the system reaches the Tonks-Girardeau limit. In this case, the
repulsion between the bosons is so strong that only one particle can occupy the same level.
This phenomenon is analogous to Pauli’s exclusion principle for fermions. Therefore, the
behavior of a Tonks-Girardeau gas is similar to the Fermi sea presented previously.

A Tonks-Girardeau gas can be mapped mathematically into a similar fermionic
system. M. Girardeau showed this in 1960 by the Fermi-Bose mapping theorem [92,96,97].
To do so, we first replace the last term in Eq. (6.28) with the boundary condition

|ψB〉 (x1, · · · , xn) = 0 if |xi − xj| = 0, (6.29)

for i 6= j and 1 ≤ i ≤ j ≤ N . When we calculate the Slater determinant of a Fermi sea
(Eq. (6.22)), such constraint is implicit. Since the boson wave functions are symmetric while
fermions are antisymmetric, we need to correct the symmetrization. Thus, we can apply
the symmentrizer operator (S) in the Fermi sea state to obtain |ΨB〉 (see Appendix B),

S(x1, · · · , xn) =
∏

1≤i≤j≤N
sgn(xi − xj). (6.30)

Therefore we get

|ΨB〉 (x1, · · · , xn) = S(x1, · · · , xn) |ΨF 〉 (x1, · · · , xn), (6.31)

where |ΨF 〉 (x1, · · · , xn) is the Fermi sea global state. And for the ground state Eq. (6.31)
simplifies to

|ΨB〉 (x1, · · · , xn) = | |ΨF 〉 (x1, · · · , xn) | (6.32)

The first Tonks-Girardeau experimental application was performed by I. Bloch and
his team in 2004 [98]. They used a Bose-Einstein condensate with approximately 3× 104

Rydberg atoms trapped in a 2D optical lattice. In the same year, the D.S. Weiss team [99]
used trapped Rubidium atoms, but they used a 1D lattice.

Therefore, Tonks-Girardeau gas fulfills the conditions in which we aim to inves-
tigate quantum Darwinism, it forms a strongly correlated environment and is realizable
experimentally.
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6.3 Quantum Darwinism in a Fermi sea
As shown in Sec. 6.1, orthogonality catastrophe is a consequence of the small

contributions with a phase shift δ(En) given by each particle of a fermionic environment.
We also see that the system and the environment interact, leading the system to lose
coherence; and as shown in Chap. 2, the decoherence process highlights the preferred basis
of the system. Therefore, the environment can acquire information about the system (See
Sec. 2.2).

The way how this information is distributed into the environment has significant
consequences. When it is spread redundantly, one can observe quantum Darwinism, where
a small fragment of the Fermi Sea contains almost all information about the system
available in the whole environment. With T. Busch and T. Fogarty, we are investigating
quantum Darwinism in the model of Ref. [90].

6.3.1 Preliminary Results

By using the BPH approach (Chap. 3) and the results presented in Sec. 6.2.3, we
could determine the preferential basis. The measure-and-prepare map that describes the
preferential observable is

ΛF (ρ) ≈
∑
i

Tr(Miρ)σi,E. (6.33)

The map in Eq. (6.33) applied to ρS is the partial trace of the system’s degree of freedom
of the density matrix given by Eq. (6.14),

Λt
F (ρS) = TrS,E−F (|ψ(t)〉 〈ψ(t)|) (6.34)

= Tr(|g〉 〈g| ρS)ρe(t)[F ] + Tr(|e〉 〈e| ρS)ρg(t)[F ], (6.35)

with ρg(t)[F ] = TrE−F |Φg(t)〉 〈Φg(t)|, ρe(t)[F ] = TrE−F |Ψe(t)〉 〈Ψe(t)| and F � N/2 is a
small fragment of the environment. From Eq. 6.35, one concludes that the preferential
basis is {|g〉 , |e〉} and the preferential observable is energy. The information about the
system’s preferential observable is spread redundantly when the fidelity between ρe(t)[F ]

and ρg(t)[F ] is close to zero; indicating that these states are orthogonal.

We calculated the overlap between ρg(t)[F ] and ρe(t)[F ] for a single fermion and
found that redundancy and orthogonality are minimal. This is expected due to the nature
of the problem. As shown in Sec. 6.1, the phase shift caused by the interaction in a
single fermion is very small, which means that its state change is small. Thus, a single
fermion gives essentially no information about the system. Does this imply that there is
no quantum Darwinism at all in this model? Not yet. As we increase the fraction size, the
correlations of ρg(t)[F ] and ρe(t)[F ] can (or not) increase the information about the system
redundantly.
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The particles of the Fermi Sea do not interact directly, but their wave function
is strongly correlated. Consequently, the reduced density matrices of the environment
fractions are quite complex. Thus, we are currently focused on improving our numerical
and analytical calculations to find the redundant information for fractions 1 ≤ F ≤ N/2.

6.4 Quantum Darwinism in Ultracold Atoms
Most of the environments in nature are huge and can be strongly correlated.

Therefore, the Fermi Sea and Tonks-Girardeau can help in studying quantum Darwinism
in more realistic systems. Ultracold atoms are well theoretically and experimentally
studied, and there is a large number of works in literature. As quantum Darwinism’s
observation requires well-controlled systems, cold atoms could be an excellent tool to
perform experiments of quantum Darwinism.

Thus, after computing quantum Darwinism in a Fermi sea, we shall investigate it
in quantum a Tonks-Girardeau Gas through the Fermi-Bose mapping theorem. This study
can make possible an experimental study in quantum Darwinism in highly correlated and
large environments.
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7 Conclusions and Future Perspectives

In this thesis, we presented the concept of quantum Darwinism and our works in
this area. In my Ph.D. We discussed the relationship between quantum Darwinism and
two, quantum non-Markovianity, and orthogonality catastrophe.

7.1 Quantum Darwinism and Non-Markovianity
In chap. 3, we analyze quantum Darwinism in a system under non-Markovian

dynamics. The recent work presented in Ref. [42] stated that non-Markovian dynamics
hinder quantum Darwinism. We showed that this effect is not general through a model of
quantum harmonic oscillators in coherent states.

This model is well known in the literature, and we adapted it to our necessities. The
analytical calculations of the system dynamics are in Appendices C and D. We computed
the quantum Darwinism quantifiers numerically with some approximations detailed in
Chap. 3.

We identified that the usual quantum Darwinism quantifier, redundancy Rδ, and
Nf used in Ref. [42] take into account neither the “information back-flow” oscillations nor
the quantity of information that the whole environment has about the system. We thus
propose a more suitable way to quantify quantum Darwinism, the averaged redundancy. It
is noticeable that when we use the averaged redundancy in this model, quantum Darwinism
can be observed in both PIP and BPH approaches (introduced in Chap. 3), for Markovian
and non-Markovian dynamics.

7.2 Quantum Darwinism in Ultracold Gases
In Chap. 6, we present our in-progress work where we are investigating quantum

Darwinism in a system inserted in a strongly correlated environment. The model of this
work is a two-level atom whose environment is a Fermi sea.

We found analytically one of the necessary conditions for the observation of quantum
Darwinism, and at this moment, we are working to improve our numerical calculations to
identify the others.

Albeit quantum Darwinism is broadly studied, there are only a few quantities of
works with more realistic models and experimental works. Therefore, models of Tonks
Girardeau gas can be advantageous since they can be applied in cold atoms experiments.
The observation of quantum Darwinism in this model can enable the application of such
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studies in a bosonic model through the Tonks Girardeau by the mapping (introduced in
Sec. 6.2.4) that can be implemented experimentally.

7.3 Future Perspectives
We aim to finish the studies of quantum Darwinism in a Fermi sea and find out if it

can be related to orthogonality catastrophe, as mentioned in Chap. 6. Thus, we will study
quantum Darwinism in Tonks Girardeau gas and propose an experimental realization.

There are many possibilities for applying quantum Darwinism studies, such as in
the Tonks-Girardeau experiment in Ref. [98], where the cold atoms and the impurity are
trapped in an optical lattice. Another possibility is in quantum electrodynamic cavities
(QEDC). Ref. [100] proposes a model of polaritons that moves freely in an array of resonant
optical cavities that form a strongly interacting many-body system. This model could also
be used to investigate quantum Darwinism.

Quantum Darwinism is a promising concept with many possible implications.
However, it is essential to improve some studies to understand it better. Therefore, we
need to understand it more generally to be able to apply it in more realistic systems.
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APPENDIX A – The Foundations of
Quantum Mechanics

This appendix recalls the quantum mechanics foundations. Even starting from the
same postulates, one can develop distinct immediate consequences. [55,101–103]. Therefore,
it is essential to mention that this chapter has Ref. [55] as the primary source of concepts
description and examples.

The basis of a physical theory is composed of two parts: the physical concepts
and the mathematical formalism. We can define the physical concepts from empirical
observations. For example, a simple object can be classified by a set of parameters such as
localization in space, velocity, mass, energy, and many others. However, to understand
the connection (if it exists) between these parameters and their dynamics a second tool is
needed, the mathematical formalism. With the combination of these two parts, we can
better understand the physical nature by describing and predicting behaviors.

Two physical concepts that are worth defining are the system and its state. A
physical system is an element of nature that exists objectively, and that we can somehow
detect, like, for example, a car, a ball, a molecule, an atom, or a photon. The state of a
physical system is a set of dynamical variables that describes it, as mass, position, velocity,
spin, polarization, between others. Such conditions, individually or in groups, are named
observables of the system; that is, they are parameters that we can observe direct or
indirectly.

The link between physical concepts and mathematical formalism in classical physics
is usually intuitive and straightforward. However, in quantum mechanics, this linking
can be tricky. The mathematical description of quantum states is more complicated than
classical ones, giving rise to several philosophic discussions [1–7].

When described by classical physics, some dynamical variables should take a
continuum of values, but the results of experiments show only discrete values. For example,
according to classical mechanics and electromagnetism, an electron should emit radiation
in a frequency varying continuously while it loses energy and moves in a spiral movement
toward the nucleus. Nevertheless, experimental observations show that the energy levels that
such electrons can occupy are discrete [104]. Thus, the radiation emitted is proportional
to the difference in energy between these levels. Some early experiments, like those
in Refs. [105, 106] showed evidence of another important phenomenon, the diffraction
of electrons. Beyond quantization, other phenomena such as quantum coherence and
entanglement make some systems peculiar, and quantum theory helps understand them.
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A.1 Linear Algebra and some Quantum Notation
Linear algebra describes linear equations and linear operations in vector spaces. A

quantum system state can be described by a vector or, more generally, an operator and
its evolution by linear operators that take a physical state into another physical state.
Therefore, it is crucial to understand the basic concepts of linear algebra to describe
quantum systems and their evolution. Refs. [55, 101,102] present a useful review of linear
algebra concepts that are essential in quantum mechanics.

Now, we shall recall some concepts of linear algebra and introduce some quantum
notation.

A.1.1 Vectors

Usually, the complex conjugate of a matrix A is represented by A∗, its transpose
by AT , and its Hermitian conjugate by A† = (AT )∗. It is also important to mention that
linear algebra is a tool, and our primary interest is in quantum mechanics. Thus, we shall
work with linear algebra in the standard quantum mechanics notation, also known as
Dirac’s notation. Consider a system state that is represented by a (n x 1) vector vnX1. We
denote the state vnX1 as |Ψ〉 using the Dirac’s notation, where

|ψ〉 =


a1

a2
...
an

 = v. (A.1)

The entire |ψ〉 is named ket and represents only vectors. The vector dual to |ψ〉 is its
transpose conjugate represented by the bra 〈ψ|.

A.1.2 Basis

A vector in a space vector can be written in terms of other vectors in the same
space V . For example, let v = |v〉 be a vector given by

|v〉 =
a1

a2

 . (A.2)

We can write v as |v〉 = a1 |v1〉+ a2 |v2〉 where

|v1〉 ≡

1
0

 and |v2〉 ≡

0
1

 . (A.3)

However, we can also write |v〉 as

|v〉 = a1 + a2√
2
|u1〉+ a1 − a2√

2
|u2〉 , (A.4)
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where

|v1〉 ≡
1√
2

1
1

 and |v2〉 ≡
1√
2

 1
−1

 . (A.5)

The set of vectors in Eqs. (A.3) and (A.5) are sets of linearly independent vectors. A set
of vectors |v1〉 · · · |vn〉 is called linearly dependent if there exists a set of complex numbers
a1, · · · , an such that

a1 |v1〉 · · · an |vn〉 = 0. (A.6)

Otherwise, it is called linearly independent. In a set of linearly dependent vectors, one
vector can always be written in terms of the others, and linearly independent vectors never
can be associated in this way. In the above example, the sets {v1, v2} are examples of
linearly independent vectors. These sets of linearly independent vectors form a basis in
the space vector V and the number of elements of this basis is the dimension of V .

A.1.3 Linear Operators

Linear operators can represent the evolution and operations performed in quantum
states. A linear operator A is a function that takes a matrix M in the space vector
V in another matrix M̃ in the space vector W , A : V → W . In the case of a vector
|v〉 = ∑n

i=1 ai |vi〉, one can write

A |v〉 = A

(
n∑
i=1

ai |vi〉
)

=
(

n∑
i=1

aiA |vi〉
)

= |w〉 . (A.7)

An operator A defined in V takes the vector |v〉 in V to another vector |w〉 in the same
space V , A : V → V . The identity operator I takes a vector on itself, I |v〉 = |v〉, and the
zero operator maps any |v〉 to the zero vector, 0 |v〉 ≡ 0.

A.1.4 Inner Products, Outer Products, and Tensor Products

The inner product is an operation that associates two vectors to a scalar number.
For two vectors |u〉 and |v〉, their inner product is given by (|u〉T )∗ |v〉 = 〈u|v〉. The norm
of a vector |v〉 is defined as

|| |v〉 || ≡
√
〈v|v〉, (A.8)

and we say that |v〉 is normalized if || |v〉 || = 1. Two vectors |u〉 and |v〉 are orthogonal
when 〈u|v〉 = 0, and, if normalized, are identical when 〈u|v〉 = 1.

The outer product associates two matrices to another matrix. The outer product of
the matrices M1 and M2 is given by M1(MT

2 )∗. For example, the outer product between
the vectors |v〉 and |w〉 is given by

|v〉
(
|w〉T

)∗
= |v〉 〈w| . (A.9)
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In quantum mechanics formalism, some quantum operators can be described as an outer
product. Such operators take a quantum state |v′〉 in another valid quantum state |w′〉,

(|w〉 〈v|) |v′〉 = |w〉 〈v|v′〉 = 〈v|v′〉 |w〉 = |w′〉 . (A.10)

Therefore, we can define the identity operator as

I ≡
∑
i

|i〉 〈i| . (A.11)

The tensor product defines a space vector composed of smaller space vectors. For
example, V and W ’s space vectors can be associated with a larger space vector given by
V ⊗W , where ⊗ is the tensor product symbol. The tensor product between two vectors
|v〉 and |w〉 is given by |v〉 ⊗ |w〉.

A.1.5 Eigenvectors and Eigenvalues

An eigenvector of an operator A is a nonzero vector |v〉 such that A |v〉 = v |v〉,
where v ∈ C is a scalar named eigenvalue. To find the eigenvectors and eigenvalues of an
operator, one can use the characteristic function

c(λ) = det |A− λI| , (A.12)

where I is the identity operator. The solution of the characteristic equation

c(λ) = 0 → det |A− λI| = 0, (A.13)

gives the eigenvalues and eigenvectors of A.

A.1.6 Eigenspaces

With the characteristic function of Eq. (A.13) one can find the eigenvectors and
eigenvalues of a given matrix A. Thus, we can define the set E composed of all vectors v
that satisfy

E = {v : det (A− λI) v = 0} . (A.14)

E is the set of all possible eigenvectors of A with eigenvalues λ that forms the eigenspace
of A.

A.2 Quantum states and Their Evolution
Postulate 1: Any isolated physical system can be associated with a Hilbert space

known as state space. The system state is completely described by a unit matrix, also
known as state operator, in the state space.
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This postulate defines the mathematical tool that shall be used in quantum
mechanics. The system states are described by unit matrices belonging to Hilbert space.

In a vector space, the linear combination of two or more state matrices generates
another matrix state. Since quantum systems are described with vector states, a combina-
tion of two or more quantum states is also a valid quantum state. A quantum state |ψ〉
can be described as a combination of n other quantum states

|ψ〉 =
n∑
i=1

ai |ψi〉 , (A.15)

where |a1|2 + · · ·+ |an| = 1 for a normalized |ψ〉. This concept is known as the superposition
principle. For example, consider a system that lives in a two-dimensional space state known
as a qubit. If |0〉 and |1〉 are two possible orthogonal states of the system, then

|ψ〉 = 1√
2

(a |1〉+ b |0〉) , (A.16)

a, b ∈ C and |a|2 + |b|2 = 1, is also a possible state. This fact is known as the superposition
principle of quantum states, and the condition |a|2 + |b|2 = 1 comes from 〈ψ|ψ〉 = 1 and
guarantees that |ψ〉 is a unitary vector.

Let us now define unitary operations and closed quantum systems. A quantum
operator takes a quantum system to another quantum system and can describe quantum
operations and quantum evolutions. A quantum operator U is unitary when U †U = I,
where I is the identity operator. Closed quantum systems are isolated systems that do
not interact with no other system. From these definitions, we can transcribe the second
postulate of quantum mechanics.

Postulate 2: The state’s evolution of a closed quantum system is always unitary;
this means that the evolution from the state |ψ〉 to the state |ψ′〉 of a closed quantum
system can be described by a unitary operator

|ψ′〉 = U |ψ〉 . (A.17)

Once the state vector of Eq. (A.15) is normalized, the squared coefficients |ai|2 give
the probability of the state being in the state |ψi〉. Therefore, the description of quantum
evolutions with unitary operators guarantees this probabilistic character of quantum states.

If we know the Hamiltonian H of the system, this unitary operation becomes the
Schrödinger equation and gives the time evolution.

Postulate 2′: The time evolution of a closed quantum system can be always
described by the Schrödinger equation,

i~
d |ψ(t)〉
dt

= H(|ψ(t)〉), (A.18)

where ~ is the Planck’s constant and the Hamiltonian is a Hermitian operator.
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A.3 Measurement of Quantum systems
As in classical cases, one needs to measure a quantum system to know its state.

Postulate 2 states how to describe the evolution of a closed quantum system. However,
measurement performance makes the system no longer closed since the measurement
apparatus has to interact with the system in some way.

When a quantum system is subject to a measurement process, there is a set of
possible results. Each result can be obtained with a certain probability. The description of
this measurement process requires the third postulate.

Postulate 3: Quantum measurements are described by a set of measurement
operators {Mi} acting on the system’s space. The index mi refers to each possible result
of the measurement. Consider a system in a particular state |ψ〉. The probability of the
measurement process getting an outcome mi is given by

p(mi) = 〈ψ|Mi|ψ〉 . (A.19)

The state of the system immediately after the measurement is given by

Mi |ψ〉√
〈ψ|Mi|ψ〉

, (A.20)

where the denominator is a normalization fraction. The set of measurement operators
obeys the completeness equation

∑
i

M †
iMi = I, (A.21)

guaranteeing that all probabilities sum up to one
∑
i

p(mi) =
∑
i

〈ψ|Mi|ψ〉 = 1. (A.22)

Note, as described in Eq. (A.20), the measurement process is described by operators
acting on the system, which can change the system state. In some cases, if the system is
initially in a superposition, after the measurement, this superposition can be destroyed.

To infer the system state correctly after a measurement process, it is essential to
distinguish the possible outcomes. Consider a system in the state

|ψ〉 = a |ψ1〉+ b |ψ2〉 (A.23)

under a measurement process where the possible results are |ψ1〉 with probability |a|2 and
|ψ2〉 with probability |b|2. When |ψ1〉 and |ψ2〉 are orthogonal, a lamp turns on a blue
light if the measurement result is |ψ1〉 and a yellow light if the measurement result is
|ψ2〉. However, if 〈ψ1|ψ2〉 > 0, the colors will mix up, and the light will become green (see
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Figure 25 – (Color) |ψ〉 is an arbitrary superposition state of a two-level system. If the
system state is measured in |ψ1〉 the apparatus turn on a lamp with a blue light
and if the state measured is |ψ2〉 the lamp light becomes yellow. When the
states are orthogonal the light colors can be clearly distinguished, otherwise
the colors mix up and we can not exactly infer the system state.

Fig. 25). The measurement apparatus can not distinguish between the possible states of
the system, and the answer is imprecise. Therefore, the orthogonality between the states
of the system gives the distinguishability between them, and non-orthogonal states can
never be distinguished correctly.

A.3.1 Projective Measurements

Projective measurements is a particular case of the measurement described in
postulate 3. Projective measurements are described by Hermitian observables M in the
system space with spectral decomposition

M =
∑
i

Pi, (A.24)

where Pi is a projector onto the eigenspace of M with eigenvalue i. Each i is related to a
possible outcome of the observable. Thus, the observable P outcomes are represented by
projectors Mi applied to a state |ψ〉. The relation

pM(i) = 〈ψ|Pi|ψ〉 (A.25)

gives the probability of obtaining an outcome i after the measurement. Soon after the
measurement, the state of the system becomes |ψ〉. Soon after the measurement, the state
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of the system becomes
|ψ〉 −→ Pi |ψ〉√

pM(i)
. (A.26)

Projectors of projective observables must satisfy three conditions: The completeness
relation ∑iM

†
iMi = I, the set of {Mi} is composed by Hermitian orthogonal projectors,

and MiM
′
i = δi,i′Mi.

One example is the measurement of the observable Z in a qubit system in the
state [55]

|ψ〉 = 1√
2

(|0〉+ |1〉) , (A.27)

where

Z =
1 0

0 −1

 = |1〉 〈1| − |0〉 〈0| (A.28)

whose eigenvalues of the respective eigenvectors |0〉 and |1〉 are λ = 1 and λ = −1. The
projectors are P1 = |1〉 〈1| with λ = 1 and P2 = |0〉 〈0| with λ = −1. The probabilities are,
therefore,

p(λ = 1) = 〈ψ|P1|ψ〉

= 1
2 (|0〉+ |1〉) |1〉 〈1| (|0〉+ |1〉) = 1

2 (A.29)

p(λ = −1) = 〈ψ|P2|ψ〉

= 1
2 (|0〉+ |1〉) |0〉 〈0| (|0〉+ |1〉) = 1

2 . (A.30)

The states after the measurement are
P1 |ψ〉√
p(1)

= 1√
2
|1〉 (A.31)

for the outcome related to λ = 1 and
P2 |ψ〉√
p(−1)

= 1√
2
|0〉 (A.32)

for λ = −1.

POVM

Projective measurement properties are quite useful due to their simplicity; they
are largely used in quantum computation studies. However, in general, the measurements
do not satisfy all conditions required to be projective, and we need to back to postulate 3.

POVM (Positive Operator-Valued Measure) is a mathematical tool extracted from
the measurement definition in postulate 3. Such measurements are useful when we are not
interested in the state after the measurement but in the probabilities of outcomes. Define

E ≡M †
iMi. (A.33)
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Figure 26 – Schematic illustrating a POVM kind measurement.

Then E is also a positive operator such that ∑iEi = I and p(i) = 〈ψ|Ei|ψ〉. Each Ei is a
POVM element and the set {Ei} forms a POVM.

In the example of Eqs. (A.27) and (A.28) the POVM elements are Ei = Pi, since
in this case PiPi′ = δi,i′Pi, and the probabilities are given by p(i) = 〈ψ|Ei|ψ〉 = 〈ψ|Pi|ψ〉.
In this case, the operators are orthogonal, meaning that it is always possible to distinguish
the outcomes. However, this is not general.

Consider the example where a system in a state |ψ〉 with the two possible outcomes

|ψ1〉 = |0〉 (A.34)

and

|ψ2〉 = 1√
2

(|0〉+ |1〉) . (A.35)

To perform a measurement to determine the system state one can apply a POVM with
the following elements

E1 ≡
√

2
1 +
√

2
|1〉 〈1| , (A.36)

E2 ≡
√

2
1 +
√

2
(〈0| − 〈1|) (|0〉 − |1〉)

2 , (A.37)

E3 ≡ I − E1 − E2, (A.38)

where it is easy to check that ∑iEi = I [55]. Suppose that the system is measured by a
POVM apparatus with three possible outcomes. Each outcome is the result of a POVM
element acting on the system’s state and turning on a lamp when activated (See Fig 26).
If the system state is |ψ1〉, the probability of observing E1 is p(E1) = 〈ψ1|E1|ψ1〉 = 0.
Thus, if the measurement outcome is E1 the system’s state is, for sure, |ψ2〉. Likewise,
if the state is |ψ2〉, the probability of observing the outcome E2 is null. If the result of
the measurement is E2, the system’s state must be |ψ1〉. However, if the result is |E0〉,
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we can not infer the system state, since both, 〈ψ1|E3|ψ1〉 and 〈ψ2|E1|ψ2〉, are nonzero.
If the outcomes are E1 or E2, this POVM gives the system’s state with precision and
says nothing when the outcome is E3. POVM measurements are an option to get some
information about systems whose possible outcomes are not orthogonal.

A.4 Composite Systems
It is quite rare to find wholly isolated systems in Nature. Systems, interacting

or not, can form a larger system named composite system. If the composite system is
closed, its evolution is governed by the Schrödienger equation and its description by tensor
product.

Postulate 4: A set composed by n systems, S = {S1, · · · , Sn} is described by
tensor products. Their state space H(S) is the tensor product of all individual state spaces
{H(S1), · · · ,H(Sn)}, that is,

H(S) = H(S)⊗ · · · ⊗ H(S). (A.39)

If the state of the i-th system Si is |ψi〉, the joint state |Ψ〉 of the global system S is given
by

|Ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψn〉 . (A.40)

Composite systems can also be in superposition states. For example, consider a
system SA on a basis {ai} and a system SB on a basis {bi}. A possible superposition state
|Ψ〉 for the composite system SAB is

|Ψ〉 ≡
∑
i

Ci |ai〉 |b1〉 , (A.41)

where Ci ∈ C are constants such that ∑i |Ci|2 = 1. In this case, the global sate |Ψ〉 can not
be written as a product state of the subsystems SA and SB. This superposition is known
as entanglement [107]. Entanglement can be quantified in different ways [73, 107,108] and
has an important role in quantum mechanics [109,110].

An example of a composite system is the set measurement M apparatus plus the
system S. When the composite system M + S is a closed global system, its evolution is
unitary and is described in postulate 4. Let {Mi} be the measurement operators on the
system S, whose orthonormal basis is {|mi〉}. If the unitary operator acts only on the
space state of M , U = IS ⊗UM , the initial state of the measurement operator is |m0〉, and
the system state is |ψ〉, the evolution is given by

U |ψ〉 |m0〉 ≡
∑
i

Mi |ψ〉 |mi〉 . (A.42)
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From the evolution of S +M , we can describe a measurement process. For a projective
measurement described by projectors Pi ≡ IS ⊗ |mi〉 〈mi|, the probability to obtain an
outcome i is

p(i) = 〈ψ| 〈0|U †PiU |ψ〉 |0〉 (A.43)

=
∑
i′,i′′
〈ψ|M †

i′ 〈mi′| (IS ⊗ |mi〉 〈mi|)Mi′′ |ψ〉 |mi′′〉 . (A.44)

As {|mi〉} are orthogonal, 〈mi′ |mi′′ = δi′,i′′〉, the probability p(i) becomes

p(i) = 〈ψ|M †
iMi|ψ〉 (A.45)

and the post-measurement state of the composite system following Eq. (A.26) becomes

Mi |ψ〉 |mi〉√
p(mi)

(A.46)

and the state of S is
Mi |ψ〉√
p(mi)

. (A.47)

In the last, the unitary operator does not act in the system, but it could. Let
us consider a unitary evolution described by U = US ⊗ UM and a system S with an
orthonormal basis {|ψi〉}. For S and M with initial states |ψ〉 and |m0〉, respectively, an
interesting evolution is given by

U |ψ〉 |m0〉 ≡
∑
i

Mi |ψi〉 |mi〉 . (A.48)

In this case, the S and M states can no longer be factorized. Now, each state of S and M
are correlated by a factor Mi. This phenomenon is known as entanglement.

A.5 Density Matrix
We can conveniently use an operator to describe a quantum system. In some

situations, the best description of a quantum system is a set of possible states {|ψk〉}, each
with a probability pk. This system state can be described through the density operator

ρ ≡
∑
k

pk |ψk〉 〈ψk| . (A.49)

Also known as the density matrix, this operator can describe any quantum state. If there
is a description of Eq. (A.49) state with only one element in the sum, this system is said
to be in a pure state; otherwise, it is in a mixed state.
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Notation and postulates

Any density matrix holds all postulates:

• Any ρ is associated to a Hilbert space H

• The evolution of closed systems is always unitary

ρ
U→ UρU † (A.50)

• The evolution of quantum systems is described by the Schrödinger equation

i~
dρ(t)
dt

= Hρ(t), (A.51)

• The measurement process of a state ρ can be represented by the set of operators
{Mi}.

• The state of composite systems with n subsystems is represented by tensor operators,
ρ1 ⊗ · · · ⊗ ρn.

Therefore, the unitary evolution of a general density matrix is given by

ρ =
∑
k

pk |ψk〉 〈ψk|
U−→ UρU † =

∑
k

pkU |ψk〉U † 〈ψk| . (A.52)

At this point, it is convenient to introduce a handy mathematical tool, the trace.
The trace of a matrix is simply the sum of its diagonal elements. For a matrix A with
elements ai,j, where i is the i-th row and j is the j-th column, the trace is defined as

trA ≡
∑
i

aii. (A.53)

Trace operations are cyclic tr(AB) = tr(AB) and linear tr(A+B) = tr(A) + tr(B).

Consider the identity matrix I = ∑
i |i〉 〈i|, where {|i〉} is an orthonormal basis.

Suppose A is an arbitrary operator acting in a system ρ = |ψ〉 〈ψ|. Applying the trace
properties, we have

tr (A |ψ〉 〈ψ|) =
∑
i

〈i| (A |ψ〉 〈ψ|) |i〉 (A.54)

=
∑
i

〈i|A|ψ〉 〈ψ|i〉 (A.55)

= 〈ψ|A|ψ〉 . (A.56)

Further, we can verify from the cyclic property that trace of density matrices (or any other
operator) are invariant under unitary transformations

tr
(
UρU †

)
= tr

(
U †Uρ

)
= ρ. (A.57)
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The measurement processes of mixed states can be described in a similar way to
pure states. The difference is that we shall take to account an ensemble of pure states.
Since ρ represents an ensemble of states |ψk〉, one needs to define which state k is being
measured and all possible outcomes mi. Consider the measurement process described by
the operators set {Mi} with possible outcomes {mi}. If the system state in the moment of
the measurement is |ψk〉, then the probability of obtaining the result mi for a given k is

p(mi|k) = 〈ψk|M †
iMi|ψk〉 . (A.58)

Observe that p(mi|k) using the cyclic property of trace we get

p(mi|k) = tr
(
M †

iMi |ψk〉 〈ψk|
)
. (A.59)

Thus, from trace definition in Eq. (A.53), the probability to get the outcome mi given all
possible |ψk〉 is

p(mi) =
∑
k

pkp(mi|k). (A.60)

=
∑
k

pktr
(
M †

iMi |ψk〉 〈ψk|
)

(A.61)

= tr
(
M †

iMiρ
)
. (A.62)

The density operator after the measurement is obtained in a similar way and is given by

MiρM
†
i

tr
(
M †

iMiρ
) (A.63)

A.5.1 Density Matrix Properties

As mentioned previously, the density matrix is a general form to describe quantum
systems that can not be represented by a single state vector |ψ〉, and it holds all quantum
mechanics postulates. Thus, it is interesting to describe the density matrix in a way more
general than an ensemble of vector states. From this, we present some general properties.

First, we connect the ensemble of the state’s interpretation to general characteristics.
Suppose we have a given operator ρ. It represents an ensemble of quantum states {pi, |ψi〉}
only if some conditions are satisfied.

Property 1: ρ is a density operator only if it has trace one. Consider the ensemble
ρ = ∑

i pi |ψ1〉 〈ψi|, thus

tr (ρ) = tr
(∑

i

pi |ψ1〉 〈ψi|
)

(A.64)

=
∑
i

pitr (|ψ1〉 〈ψi|) (A.65)

=
∑
i

pi = 1. (A.66)
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As tr (|ψ1〉 〈ψi|) and the probabilities pi sum up to one, the trace of |ρ〉 is one.

Property 2: ρ is a positive operator. Consider an arbitrary vector in state space
|φ〉, thus

〈φ|ρ|φ〉 = 〈φ|
∑
i

pi |ψ1〉 〈ψi| |φ〉 (A.67)

=
∑
i

pi 〈φ|ψ1〉 〈ψiφ〉 (A.68)

=
∑
i

pi |〈φ|ψ1〉|2 ≥ 0. (A.69)

Since |〈φ|ψ1〉|2 must be positive and the pi ≥ 0 for any state vector |φ〉, the positivity of ρ
must be satisfied.

Property 3: If ρ satisfies property 2, it must have a spectral decomposition (see
Ref. [55] for more details of spectral decomposition). That is, there exist orthogonal vectors
|i〉 and real non-negative eigenvalues λi such that

ρ =
∑
i

λi |i〉 . (A.70)

The set {|i〉} forms an orthonormal basis whose eigenvalues are {λi}. Therefore,
∑
i λi = 1

and 0 ≤ λ ≤ 1.

Property 4: A density matrix ρ represent a pure state only if

ρ2 = ρ. (A.71)

Consider the following spectral decomposition ρ = ∑
i λi |i〉 〈i|. One can write

ρ2 =
(∑

i

λi |i〉 〈i|
)∑

j

λj |j〉 〈j|

 (A.72)

=
∑
i,j

λiλj |i〉 〈i| |j〉 〈j|

=
∑
i,j

λiλj |i〉 〈j| 〈i|j〉

=
∑
i,j

λiλj |i〉 〈j| δi|j

=
∑
i

λ2
i |i〉 〈i| . (A.73)

Thus, ρ2 = ρ only when λ2 = λ, that is, only if λ = 1. A consequence of this property is
that tr(ρ2) = 1 only if ρ represents a pure state; otherwise, tr(ρ2) ≤ 1. The trace of ρ2 is
given by

tr
(
ρ2
)

=
∑
i

λ2
i . (A.74)

Since 0 ≤ λ ≤ 1, ∑i λ
2
i = 1 only for pure states. For non-pure states, λi < 1 for all i and,

therefore, tr(ρ2) ≤ 1.
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A.5.2 Composite Systems and Reduced Density Matrix

As in single systems, the density matrix can also represent composite systems.
Consider a composite system composed of two systems, SA and SB in the pure state

|ΨAB〉 = c1 |α1, β1〉+ c2 |α2, β2〉 , (A.75)

where |α1〉 and |α2〉 are related to SA and |β1〉 and |β2〉 to SB. Its density matrix is given
by

ρAB = |Ψ〉 〈Ψ| (A.76)

= |c1|2 |α1, β1〉 〈α1, β1|+ |c2|2 |α2, β2〉 〈α2, β2|+ c1c
∗
2 |α1, β1〉 〈α2, β2|+ c∗1c2 |α2, β2〉 〈α1, β1| .

(A.77)

The density matrix of non-pure states can also be represented as an ensemble of pure
states |αi, βi〉 with probability pi

ρ =
∑
i

pi |αi, βi〉 〈αi, βi| . (A.78)

The description of composite systems with density matrices, even for pure states,
is very convenient for finding the states of the subsystems; This is achieved by taking the
partial trace of the subsystem that we are not interested in, that is

ρA ≡ trB (ρAB) . (A.79)

The matrix ρA is known as the reduced density matrix for the system SA. Consider the
matrix ρ = |α1, β1〉 〈α2, β2|. Defining ρ = |α1〉 〈α2| ⊗ |β1〉 〈β2|, the partial trace of ρ for
|α1〉 〈α2| is defined as

trB (|α1〉 〈α2| ⊗ |β1〉 〈β2|) = |α1〉 〈α2| trB (|β1〉 〈β2|) . (A.80)

The partial trace ρA ≡ trB (ρAB) is also a density matrix where all degrees of freedom of
the subsystem SB was discarded remaining only the state of SA.

This tool is crucial in studies of open quantum systems. When an open quantum
system interacts with other systems for some time interval ∆t = tf − ti, its evolution can
not be described by a unitary operator and, therefore, we can not use the Schrödinger
equation to describe its final state. In this case, an option is to evolve the global state of
all systems and to trace out the systems of non-interest after the interaction time.

A state represented by Eq. (A.80) is a product state of the two systems, meaning
that the states of the subsystems can be factorized. However, this is not always the case.
Suppose the state of a composed system is

|ψ〉 = 1√
2

(|00〉+ |11〉) (A.81)
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whose density matrix is

ρ = 1
2 (|00〉 〈00|+ |11〉 〈11|+ |11〉 〈00|+ |00〉 〈11|) . (A.82)

By using the cyclic trace property, the reduced state of one subsystem S1 is

ρ1 = tr (ρ) (A.83)

= 1
2tr (|00〉 〈00|+ |11〉 〈11|+ |11〉 〈00|+ |00〉 〈11|) (A.84)

= 1
2 (|0〉 〈0| 〈0|0〉+ |1〉 〈1| 〈1|1〉+ |1〉 〈0| 〈0|1〉+ |0〉 〈1| 〈1|0〉) (A.85)

= 1
2 (|0〉 〈0|+ |1〉 〈1|) . (A.86)

Note, the global system ρ can be represented by a single state vector |ψ〉, the reduced
state ρ1 is not pure. It is easy to check that ρ2 = ρ and ρ2

1 6= ρ1.

It is important to mention that it is more convenient to describe the evaluation
of open quantum systems through master equations in some situations. These master
equations give the state of S at any time t and are obtained through the Liouville-von
Newmann differential equation (see Ref. [8]).

Another interesting tool is the Schmidt decomposition that describes the global
density matrix ρAB in such a way that reduced density matrices ρA and ρB with the same
eigenvalues. Consider a composite system in a state |ψ〉. Then there exists orthonormal
basis {|iA〉} related to the subsystem SA and {|iB〉} related to the subsystem SA such that

ρAB =
∑
i

λi |iA, iB〉 , (A.87)

where λi ≥ 0, λi ∈ R and ∑
i λi = 1. The coefficients λi are known as the Schmidt

coefficients. The set {|iA, iB〉} forms a basis for ρAB where the eigenvalues, also known as
Schmidt coefficients, are {λi}.

The partial trace over the Schmidt decomposition for SA and SB gives ρA =∑
i λ

2
i |iA〉 〈iA| and ρB = ∑

i λ
2
i |iB〉 〈iB|, respectively. Thus, the eigenvalues of both reduced

density matrices are identical. Schmidt decomposition is quite useful since the eigenvalues
are essential for many concepts of quantum theory.
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APPENDIX B – Some Fundamental
Concepts of Quantum Mechanics

This chapter recalls the main concepts used in the works described in this thesis.
The first is the uncertainty principle in Sec. B.1. In Sec. B.2 we introduce conceptually
an important class of quantum states: the coherent states. Then, we recall momentum
angular in quantum systems in Sec B.3 and identical particles in Sec B.4.

B.1 Uncertainty Principle
As shown in Sec. A.3, a projective measurement M can be described by a set of

projectors {Pi} acting on the system state where each projector represents a possible
outcome. In general, the same state is prepared and measured experimentally several times
to define the M and {Pi}. Then, the calculation of the probabilities in Eq. (A.19) is quite
opportune; this enables the computation of interesting quantities as average value and
standard deviation of a particular measurement.

B.1.1 Average Value and Standard Deviation

Following the probability theory [111], the average value of a measurement M of a
system in the state |ψ〉 is given by

Av(M) =
∑
i

mi p(mi) (B.1)

=
∑
i

mi 〈ψ|Pi|ψ〉 (B.2)

= 〈ψ|
∑
i

miPi |ψ〉 = 〈ψ|M |ψ〉 , (B.3)

that can be written as
〈M〉 ≡ 〈ψ|M |ψ〉 . (B.4)

Since the last notation is frequently used, we shall work with it.

Another important quantity is the standard deviation ∆(M), that is given by

(∆M)2 =
〈
(M − 〈M〉)2

〉
. (B.5)

The standard deviation of a measurement sequence quantifies how much the results
obtained deviate from the average value. It is crucial to determine the precision and
reliability of a measure.
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B.1.2 Heisenberg Uncertainty Principle

The application of average value and standard deviation concepts give rise to
an elegant result introduced in 1927 by Werner Heisenberg [112, 113] known as the
Heisenberg Uncertainty Principle. However, before describing the principle, let us define
some mathematical concepts.

Commutator: The commutator of two squared matrices A and B gives the
difference between the matrix multiplication AB and BA, that is,

[A,B] ≡ AB −BA. (B.6)

If [A,B] = 0 we say that the matrices A and B commute, otherwise it does not commute.

Anti-Commutator: The anti-commutator of A and B is given by

{A,B} ≡ AB +BA, (B.7)

and the matrices A and B anti-commutes if {A,B} = 0

Cauchy-Schwarz inequality: Consider two vectors in the Hilbert space |u〉 and
|v〉. The Cauchy-Schwarz inequality affirms that

|〈u|v〉|2 ≤ 〈u|u〉 〈v|v〉 , (B.8)

where the equality happens only if |u〉 and |v〉 are related for some scalar z, that is

|v〉 = z |u〉 or |u〉 = z |v〉 . (B.9)

The demonstration of this inequality is very well described in Ref. [55].

Consider two Hermitian operators A and B that can act on a system in the state
|ψ〉. Suppose that the averaged value for AB and |ψ〉 is

〈AB〉 = 〈ψ|AB|ψ〉 = x+ iy, (B.10)

for x, y ∈ R. The average value of the commutator and anti-commutator between A and
B are

〈ψ| [A,B] |ψ〉 = 2iy (B.11)

〈ψ| {A,B} |ψ〉 = 2x. (B.12)

Thus,
|〈ψ| [A,B] |ψ〉|2 + |〈ψ| {A,B} |ψ〉|2 = 4 |〈ψ|AB|ψ〉|2 . (B.13)

An operator O acting on a vector |ψ〉 generates another vector, O |ψ〉 = |ψ′〉. By
applying the Cauchy-Schwarz inequality to 〈ψ|AB|ψ〉 we get

|〈ψ|AB|ψ〉|2 ≤ 〈ψ|A2|ψ〉 〈ψ|A2|ψ〉 .. (B.14)
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Joining Eqs. (B.13) and (B.14), we get the following relation

|〈ψ| [A,B] |ψ〉|2 ≤ 4 〈ψ|A2|ψ〉 〈ψ|A2|ψ〉 . (B.15)

As A and B are Hermitian, they can represent the standard deviation of observables. Then,
suppose A = C − 〈C〉 and B = D − 〈D〉 and substitute in Eq. (B.15). The result is the
uncertainty Heisenberg principle:

∆(C)∆(D) ≥ |〈ψ| [C,D] |ψ〉|
2 (B.16)

This result lets clear what the commutator between two observables says. Note
that the uncertainty is zero only if [C,D] = 0. In this case, it does not matter the order
at which C and D are applied to |ψ〉; the result is the same. When [C,D] ≥ 0, there is
an uncertainty C and D are measured simultaneously. As we mentioned in Sec. A.4, a
measurement apparatus can behave as a quantum system and interact with the main
system, changing its states. Therefore, the Heisenberg principle in Eq. B.16 is a consequence
of possible disturbances caused by measurements in quantum systems.

A nice example is the application of the Pauli operators in a qubit state. The
Matrices operators are 2× 2 matrices given by:

σ0 ≡ I ≡

1 0
0 1

 σ1 ≡ σx ≡

0 1
1 0


σ2 ≡ σy ≡

0 −i
i 0

 σ3 ≡ σz ≡

1 0
0 −1

 . (B.17)

It is easy to check that these matrices have the following commutation relation:

[σi, σj] = 2i
3∑

k=1
εijkσk, (B.18)

where ε123 = ε231 = ε312 = 1, ε321 = ε213 = ε132 = −1, and εijk = 0 otherwise. Suppose that
|ψ〉 = |0〉. The uncertainty is given by

∆(σi)∆(σj) ≥
∣∣∣∣∣i 〈ψ|

3∑
k=1

εijkσk|ψ〉
∣∣∣∣∣ . (B.19)

The only situation where the uncertainty is non-zero is when i = 1 = x and j = 1 = y, at
which

∆(σx)∆(σy) ≥ |i 〈ψ|σz|ψ〉| =

∣∣∣∣∣∣i
(
0 1

)1 0
0 −1

0
1

∣∣∣∣∣∣ = 1. (B.20)

Otherwise, it is always zero.
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B.2 Coherent states
Coherent states are those that, when subject to a suitable harmonic potential, the

uncertainty is minimal at any time. The wave function of this state |ψ〉 is the closest to a
classical field and is frequently referred to as “classical” states. The description of coherent
states is compatible with the ground state wave function of the displaced simple harmonic
oscillator. Then, we shall recall some properties of quantum harmonic oscillators.

We can define coherent states from electromagnetic radiation or states of quantum
harmonic oscillators with the same result. Albeit both approaches are complete individually,
together, they provide an understanding of coherent states in a complementary way. From
the electromagnetic approach, one can deduce how to prepare a coherent state while the
quantum harmonic oscillator approaches make their properties more intuitive from the
quantum mechanics point of view. Therefore we will introduce both approaches.

In this section, we concentrate on the physics behind the concepts. Thus for more
details about the calculations, check the references quoted in the text. To start, let us
recall the quantum harmonic oscillator concept.

B.2.1 Quantum Harmonic Oscillators

The motion equation of a classical particle subject to a harmonic potential energy
V (x), where x = x(t) is the particle position, is given by

m
dx2

dt
= −dV (x)

dx
= −kx. (B.21)

Where k is a positive constant.

With the initial conditions, one can compute the general solution of this differential
equation. For x(0) = 0 and ẋ = 0, we get

x = A cos (ωt− φ) , (B.22)

ẍ = p

m
= −Aω sin (ωt− φ) (B.23)

where ω =
√

k
m
, A is the amplitude, and φ the phase. The kinetic energy is T = p2

2m , where
p = mdx

dt
is the momentum. Thus, the total energy is

E = T + V = p2

2m + 1
2mω

2x2. (B.24)

In quantum harmonic oscillators, X and P are operators whose commutation
relation is

[X,P ] = i~, (B.25)

H = P 2

2m + 1
2mω

2X2. (B.26)
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As this Hamiltonian is time-independent when applied to a quantum state |ψ〉 gives

H |ψi〉 = Ei |ψi〉 . (B.27)

Note that X and P have dimensions. To facilitate, we shall use dimensionless
operators defined as

X̂ ≡
√
mω

~
X (B.28)

P̂ ≡
√

1
mω~

P, (B.29)

and with H = ~ωĤ, the dimensionless Hamiltonian is

Ĥ = 1
2
(
X̂2 + P̂ 2

)
(B.30)

From this, the commutation relation becomes[
X̂, P̂

]
= i, (B.31)

Defining the creation a† and and annihilation a operators,

a ≡
√

1
2
(
X̂ + iP̂

)
a† ≡

√
1
2
(
X̂ − iP̂

)
, (B.32)

we get [
a, a†

]
= 1. (B.33)

By defining the operator
N ≡ a†a, (B.34)

we get
Ĥ = a†a+ 1

2 = aa† − 1
2 = N + 1

2 . (B.35)

When |ψ〉 = |n〉 is an eigenvalue of the Hamiltonian we get

N |n〉 = n |n〉 (B.36)

and Eq. (B.27) becomes

Ĥ |n〉 =
(
N + 1

2

)
|n〉 (B.37)

=
(
n+ 1

2

)
|n〉 . (B.38)
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The eigenvalues n can be interpreted as the number of excitations of quantum harmonic
oscillators and, the basis {|n〉} is known as the Fock basis. The names “creation” (a) and
“annihilation” (a†) operators can be understood intuitively from the following properties

a† |n〉 =
√
n+ 1 |n+ 1〉 (B.39)

a |n〉 =
√
n |n− 1〉 . (B.40)

In this respect, the creation (annihilation) operator can create (destroy) excitations when
applied to a system state. It is worth highlighting that the objective of this section is to
recall the quantum harmonic oscillator concept; to see these results in detail, please check
Ref. [103].

B.2.2 Radiation of a Classical Current

Coherent states are the result of radiation emitted by a classical current, with
current density J(r, t) is not an operator. Consider the case where J(r, t) is coupled to the
potential vector operator A(r, t) [86], whose interaction Hamiltonian is given by

HI =
∫

J(r, t) ·A(r, t). (B.41)

The state |ψ(t)〉 of this composed system evolves according to the Schrödinger equation

~
d

dt
|ψ(t)〉 = −iHI , (B.42)

such that
|ψ(t)〉 = exp

[
− i
~

∫ t

0
HI(t′)dt′

]
|0〉 (B.43)

In particular, the exponential above is given by

exp
[
− i
~

∫ t

0
HI(t′)dt′

]
=
∏
k
exp

(
αka

†
k − α∗kak

)
, (B.44)

where αk ∈ C is a time-dependent amplitude and k is the possible modes of the electro-
magnetic wave (for more details, please check Ref. [86]). If the initial state is the vacuum
state, |ψ(0)〉 = 0, Eq. B.43 becomes

|ψ(t)〉 =
∏
k
exp

(
αka

†
k − α∗kak

)
|0〉 . (B.45)

The state |ψ(t)〉 of Eq. (B.45) is named coherent state and can be written as a
tensor product of single-mode coherent state |αK〉

|ψ(t)〉 ≡ |{αk}〉 ≡
⊗
K
|αk〉 , (B.46)

that for a single mode becomes
|α〉 = eαa

†−α∗a. (B.47)
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Figure 27 – Coherent state α in the complex plane.

B.2.3 Coherent States of Quantum Harmonic Oscillator

Coherent states are those more close to a classical state. A quantum harmonic
oscillator state satisfies this condition when its position x(t) and momentum p(t) can be
measured at a time instant t with minimum uncertainty.

Consider a classic harmonic oscillator state denoted as α(t). We can describe it in
terms of x(t) and p(t) as

α(t) = 1√
2

[x(t) + ip(t)] , (B.48)

where X̂(t) and P̂ (t) are given by Eqs. (B.22) and (B.23), respectively. By integrating
Eq. B.48 we get

d

dt
α(t) = −iωα(t). (B.49)

The solution of this equation is

α(t) = α(0)e−iωt, (B.50)

where
α(0) = 1√

2
[x(0) + ip(0)] . (B.51)

For simplicity we define α(0) ≡ α0

The state α(t) is a complex number a + bi with a, b ∈ R where a = x(t)/
√

2
and b = p(t)/

√
2. By plotting in the complex plane (see Fig. 27), α(t) describes a circle

with radius Oα0, centered in the origin O, and angular velocity ω. The real axis is given
by x(t)/

√
2 while p(t)/

√
2 gives the complex plane. For this kind of state, the radius is

constant, and the angle between α and α0 is θ = ωt. Furthermore, with no dissipation,
the total energy E (Eq. (B.24)) is also constant.
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The state of a quantum harmonic oscillator is considered classic or quasi-classic
when the average values 〈X̂〉, 〈P̂ 〉 and 〈H〉, given by Eqs. (B.28) to (B.30), are

〈X̂〉 ≈ x(t) 〈P̂ 〉 ≈ p(t), and 〈H〉 ≈ E. (B.52)

For the arbitrary state |ψ(t)〉, the the evolution of the operation 〈a〉(t) = 〈ψ(t)|a|ψ(t)〉
is given by

i~
d

dt
〈a〉(t) = 〈[a,H]〉 (B.53)

where [a,H] = ~ωa (see Ref. [103]). From this, the solutions for 〈a〉(t) and 〈a†〉(t) are

〈a〉(t) = 〈a〉(0)eiωt (B.54)

〈a†〉(t) = 〈a†〉(0)eiωt. (B.55)

Observe that Eqs. (B.54) and (B.55) are quite similar to the solution of classical α(t) in
Eq. (B.50). This analogy leads to the relations

〈X̂〉 = 1√
2
[
〈a〉(0)e−iωt + 〈a†〉(0)eiωt

]
(B.56)

〈P̂ 〉 = − i√
2
[
〈a〉(0)e−iωt − 〈a†〉(0)eiωt

]
. (B.57)

As defined in Eq. B.53, quasi-classic states must satisfy some conditions. By
comparing Eqs. (B.54) and (B.55) the relations 〈X̂〉 ≈ x(t) 〈P̂ 〉 ≈ p(t) are valid when

〈a〉(0) = α0, (B.58)

and the condition
〈ψ|α|ψ〉 = α0, (B.59)

must be satisfied for a normalized state vector |ψ〉. The condition

〈H〉 = ~ω
2
(
〈a†a〉

(
0) + 1) ≈ E(t) (B.60)

is satisfied when
〈a†a〉(0) = 〈ψ|a†a|ψ〉 = |α0|2. (B.61)

The probability of finding of finding n modes of a quantum harmonic oscillator is
given by the Poisson distribution. Consider the Fock state |n〉, thus P (n) is

p(n) = 〈n|α〉 〈α|n〉 = |α|
2n e−〈n〉

n! = 〈n〉
ne−〈n〉

n! , (B.62)

as 〈n〉 = |α|2.
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B.2.4 Properties of Coherent states

Coherent states are eigenvalues of the annihilation operator a: Consider
an operator b(α0) defined as

b(α0) ≡ a− α0. (B.63)

Then, we get
b†(α0)b(α0) = a†a+ α∗0α0 − α0a

† + α∗0a. (B.64)

By expanding the quantity 〈ψ(0)|b†(α0)b(α0)|ψ(0)〉 in terms of the operators a† and a,
and applying Eqs. (B.59) and (B.61) it becomes

〈ψ(0)|b†(α0)b(α0)|ψ(0)〉 = α∗0α0 + α∗0α0 − α0α
∗
0 − α∗0α0 = 0. (B.65)

This means that b(α0) |ψ(0)〉 = 0 and then

a |ψ(0)〉 = [b(α0) + α] |ψ(0)〉 = α0 |ψ(0)〉 . (B.66)

The results of Eq. (B.66) show that coherent states are eigenvectors of the anni-
hilation operator a with eigenvalue α0. For convenience, we shall use the conventional
notation of coherent states where |ψ(0)〉 ≡ |α〉 and α0 ≡ α, where

a |α〉 = α |α〉 . (B.67)

Coherent states in the Fock basis: We can also write coherent states in the
Fock basis {|n〉} (see Ref. [103]). By expanding |α〉 using the fock states |n〉 we obtain

|α〉 = e−
|α|2

2
∑
n

αn√
n
|n〉 . (B.68)

Coherent states are dislocated fundamental states of quantum harmonic
oscillators: From Eq. (B.40), one can show that |n〉 = [(a†)n/

√
n] |0〉. Then, Eq. (B.68)

becomes
|α〉 = e−

|α|2
2 eαa

† |0〉 . (B.69)

As exp(α∗a) |0〉 = 0 we can rewrite the last equation as

|α〉 = D(α) |0〉 , (B.70)

where
D(α) = e−

|α|2
2 eαa

†
e−α

∗a. (B.71)

If two operators obey the relation

[[A,B] , A] = [[A,B] , B] = 0, (B.72)
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the relation
eA+B = e[A,B]/2eAeB (B.73)

is valid. Thus, from defining A = αa† and B = −α∗a, we get

D(α) = eαa
†−α∗a. (B.74)

Note that this approach gives a result completely compatible with Eq. (B.47).

The Operator D(α) is unitary behaves as a displacement operator when acting on
a and a†,

D−1(α)aD(α) = a+ α (B.75)

D−1(α)a†D(α) = a† + α∗. (B.76)

Therefore D(α) is frequently referred to as the displacement operator.

A coherent state is a result of a displacement operator applied in a vacuum state
of the harmonic oscillator; that is, it is a displaced vacuum state.

The uncertainty in position and momentum of coherent states is mini-
mum at any time: As shown in Eq. (B.31), the position and momentum operator of
quantum harmonic oscillators do not commute, meaning that the order that they are
applied matters. That is, for an arbitrary state vector |ψ〉,

PX |ψ〉 6= |ψ〉 . (B.77)

This generates uncertainty. The uncertainty of a quantum harmonic oscillator in an
arbitrary state is given by

∆(X)∆(P ) ≥ 1
2 . (B.78)

We expect that the quantum harmonic oscillator state closest to a classical state has the
smallest possible uncertainty.

Therefore, let us calculate the uncertainty of a coherent state. By using Eqs. (B.67)
and (B.32), the average value ∆(X) and ∆(P ) are given by

〈X̂〉 = 〈α|X̂|α〉 =
√

2 Re(α) (B.79)

〈P̂ 〉 = 〈α|P̂ |α〉 =
√

2 Im(α). (B.80)

Similarly,

〈X̂2〉 = 〈α|X̂2|α〉 = 1
2
[
4 Re(α)2 + 1

]
(B.81)

〈P̂ 2〉 = 〈α|P̂ 2|α〉 = 1
2
[
1− 4 Im(α)2

]
. (B.82)
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From Eq. B.5 the standard deviations are

∆X̂ = 1√
2

(B.83)

∆P̂ = 1√
2
, (B.84)

and therefore the uncertainty of coherent states are

∆X∆P = 1
~

∆X̂∆P̂ = 1
2 . (B.85)

The equality signal comes from the fact that the uncertainty of coherent states does not
depend on α, taking the same value at any time t. This means that the uncertainty of
coherent states is minimum making them quasi-classical states.

The scalar product between two coherent states, |α〉 and |α′〉: Unlike Fock
states, two different coherent states are not orthogonal. To verify we can calculate their
intern product with Eq. B.47,

〈α|α′〉 = e
1
2(−|α2|+α′α∗+α′∗α−|α′2|). (B.86)

However, |α〉 and |α′〉 are approximately orthogonal if α−α′ � 1 and the their overlap is

|〈α|α′〉|2 = e−|α−α
′|2 . (B.87)

From these facts, any coherent states can be written in terms of another by using
the following expansion:

|α〉 = 1
π

∫
d2α′ |α′〉 〈α′|α〉 = 1

π

∫
d2α′ |α′〉 e

1
2(−|α2|+α′α∗+α′∗α−|α′2|). (B.88)

and are said to form an overcomplete set.

The fact that coherent states can be prepared experimentally from classical currents,
as shown in Sec. B.2.2, is a great advantage, and their properties them suitable for various
studies of quantum systems. This concept is largely used in different fields of quantum
theory, and several excellent results were found [40,88,114–117]. In Chap. 5, we present
a work where coherent states were used to investigate quantum Darwinism and non-
Markovianity.

B.3 Angular Momentum
Momentum is an important concept in physics that gives a quantity related to the

mass and velocity of some particle or set of particles. In classical physics, linear momentum
~P is a vector quantity related to the linear motion of a particle and is given by the product
between its mass m and velocity ~v, that is, ~p = m~v. Angular momentum ~L is related to
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the rotational motion of a particle and is given by the cross product ~L = ~r × ~p, where ~r
is the position vector. Both linear and angular momentum carry interesting properties
when combined with conservation law and other basic concepts, allowing the dynamical
description of physical systems. For example, the angular momentum of an isolated system
is a constant of motion.

Analog to the classical case, linear and angular momentum can be defined for
quantum systems with similar properties. The linear and angular momentum of a quantum
system is associated with an operator of an observable. Linear momentum operators
are usually denoted by p and are related to the velocity of a quantum system. Angular
momentum is composed of two parts: Orbital and spin angular momentum. Orbital angular
momentum L always has a classical counterpart, while spin angular momentum S is
intrinsic of elementary particles. These two angular momenta together form the total
angular momentum J of quantum a system such that

J = S + L. (B.89)

Such operators have important properties that are largely used in investigations
of quantum mechanics. We describe the most basic of these properties in the following
subsections. For more details and deductions, please check Refs. [103,118].

B.3.1 Orbital Angular Momentum

Analog to the classical angular momentum, L can be written in terms of the angular
momentum with operator P and the particle position with position operator X, that is,

L = X×P. (B.90)

The observable L can be decomposed in three observables Lx, Ly, and Lz, where x, y,
and z are the directions of a three-dimensional Cartesian space. These components are
associated with the quantized angular momentum ~L in the x, y, and z directions of a
spinless particle. By using the commutation relations between X and P (Eq. B.25), the
commutation operation between Lx, Ly, and Lz are given by

[Li, Lj] = i~
3∑

k=1
εijkLk, (B.91)

where x ≡ 1, y ≡ 2, and z ≡ 3, ε123 = ε231 = ε312 = 1, ε321 = ε213 = ε132 = −1, and εijk = 0
otherwise. Another relevant operator is

L2 ≡ L2
x + L2

y + L2
z. (B.92)

For a system composed of N particles with no spin, S = 0, the total angular momentum
is given by

L =
N∑
i=1

Li, (B.93)
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with Li given by Eq. (B.90).

By applying Lz and L2 to their eigenvectors |l,m〉 we get

Lz |l,m〉 = ~m |l,m〉 (B.94)

L2 |l,m〉 = ~2l(l + 1) |l,m〉 , (B.95)

where l = 0, 1/2, 1, 3/2, · · · and m = −l,−l + 1, · · · , l − 1, l, · · · . The discrete quantities
l and m come from the schrödinger equation solutions for a quantum state in spherical
coordinates, |ψ〉 = |l,m〉 (see Ref. [118]). Therefore, these operators represent the quantized
orbital linear moment L of a particle or a set of particles.

B.3.2 Spin Angular Momentum

As mentioned before, spin is an intrinsic property of elementary particles, and this
is confirmed by Lorentz or Galilean group analysis [119]. A notable example of spin is the
electron spin. The experimental observation of electron spin was essential for understanding
this concept.

The algebraic theory of spins follows the same steps as the orbital angular mo-
mentum. The spin S can also be decomposed in the x, y, and z directions satisfying the
commutation relation

[Si, Sj] = i~
3∑

k=1
εijkSk, (B.96)

and with
S2 ≡ S2

x + S2
y + S2

z . (B.97)

Furthermore, the eigenvectors of S2 and Sz must to satisfy

Sz |s,m〉 = ~m |s,m〉 (B.98)

S2 |s,m〉 = ~2l(l + 1) |s,m〉 . (B.99)

One can also associate S2 and Sz to the operators

S± ≡ Sx ± iSy (B.100)

and obtain

S± |s,m〉 = ~
√
s(s+ 1)−m(m± 1) |s, (m± 1)〉 , (B.101)

where s = 0, 1/2, 1, 3/2, · · · and m = −s,−s+ 1, · · · , s− 1, s, · · ·

B.3.3 Spin 1/2

The case s = 1/2 is quite important since it can be the first step to understanding
higher spins’ formalism. Electrons are good examples of spin 1/2 particles since they
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were used in the first experimental studies of spins like the Zeeman effect [120] and the
Stern-Gerlach experiment [121].

Spin 1/2 operators have only two possible eigenstates

|↑〉 ≡ |s = 1
2 ,m = 1

2〉 (B.102)

and (B.103)

|↓〉 ≡ |s = 1
2 ,m = −1

2〉 , (B.104)

where |↑〉 and |↓〉 are known as spin up and spin down.

From Eqs. (B.98) to (B.100) one can deduce

S2 = 3
4~

2σ0, (B.105)

Sz = 1
2~σz, (B.106)

Sx = 1
2~σx, (B.107)

Sy = 1
2~σy, (B.108)

where σ0, σx, σy, and σz are the Pauli’s matrices given in Eq. (B.17).

An interesting fact is that the operators S+ and S− can flip the states on the basis
{|↑〉 , |↓〉}. Define

|↑〉 ≡

1
0

 (B.109)

|↓〉 ≡

0
1

 (B.110)

. (B.111)

Thus, by applying S+ to |↓〉 and S− to |↑〉 we get

S+ |↓〉 =
0 1

0 0

0
1

 = ~

1
0

 = ~ |↑〉 , (B.112)

S− |↑〉 =
0 0

1 0

1
0

 = ~

0
1

 = ~ |↓〉 . (B.113)

B.3.4 Addiction of Spin Angular Momentum

Elementary particles, such as electrons, protons, neutrons, etc., have spin 1/2. The
total spin of a system composed of two spin 1/2 particle is the sum of individual spins,

S ≡ S1 + S2, (B.114)
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with

S1 = S[1] ⊗ I2 (B.115)

S2 = I1 ⊗ S[2]. (B.116)

That is, S1(2) acts only on system 1(2).

By applying the component Sz in a state |s1,m1〉 |s2,m2〉, we get

Sz |s1,m1〉 |s2,m2〉 =
(
s[1]
z ⊗ I2 + I1 ⊗ S[2]

z

)
|s1,m1〉 |s2,m2〉 (B.117)

= (m1 +m2) |s1,m1〉 |s2,m2〉 . (B.118)

For each possible state of two spin 1/2 particles, we have

|↑↑〉 : m = 1, |↑↓〉 : m = 0, |↓↑〉 : m = 0, and |↓↓〉 : m = −1. (B.119)

Since m ranges between −s and s, s has just two possible values s = {0, 1}. The possible
states with s = 1 are

|11〉 = |↑↑〉 (B.120)

|10〉 = 1√
2

(|↑↓〉+ |↓↑〉) (B.121)

|1− 1〉 = |↓↓〉 . (B.122)

This set of three states is known as triplet. For s = 0, there is only one possible state

|01〉 = 1√
2

(|↑↓〉 − |↓↑〉) , (B.123)

that is known as singlet.

Due to their simplicity and experimental applicability, spin systems are quite useful
in investigating many quantum properties such as entanglement, decoherence, etc. They
are also frequently used in quantum computation and quantum information. In Chap. 3,
we present a nice work where spin systems were used to study quantum Darwinism.

B.4 Identical Particles
Identical particles are whose intrinsic properties are precisely the same. That is,

such particles have all the same mass, charge, spin, etc. Consequently, it is impossible to
distinguish these particles experimentally. We can safely affirm that electrons, protons, and
hydrogen atoms are examples of identical particles. However, an electron and a positron
are not identical to each other since they have different charges.

In classical mechanics, identical particles can be distinguished by their trajectory
since the position and momentum of a particle are well-defined. In quantum mechanics,
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Figure 28 – Two particles a and b that can follow two different trajectories after colliding.
The detector D can not distinguish which particle was detected if they are
identical.

there is an uncertainty associated with the particle trajectory preventing the distinction
of identical particles. Thus, if the wave packet of the particles overlaps, we can never
distinguish them accurately. For example, consider that two particles a and b moving in
different directions collide, see Fig. 28. After the collision, they can perform two different
trajectories, 1 or 2. If they are identical, the detector D can only detect a particle; it can
not differentiate which one was detected.

B.4.1 Different State Vectors Associated to a Same Physical State

Some difficulties arise when dealing with identical particles. When they form
a composed system, some mathematical descriptions can not distinguish the particles.
Different state vectors can describe the same physical system. This difficulty is evident in
a system composed of two spin 1/2 particles. Consider two spin observables S1 and S1

and the orthonormal basis {|e1, e2〉} where e1 and e2 can be ↑ or ↓ each one. Consider the
state |ψ〉 = |e1, e2〉 where the composite system is a particle with spin up and another
with spin down. The mathematical representation of this state could be

|ψ〉 = |e1 =↑, e2 =↓〉 , or (B.124)

|ψ〉 = |e1 =↓, e2 =↑〉 . (B.125)

Furthermore, by the superposition principle |ψ〉 also could be

|ψ〉 = α |↑, ↓〉+ β |↓, ↑〉 , (B.126)

where |α|2 + |β|2 = 1 for any α, β ∈ C. This phenomenon know as exchange degeneracy.

Exchange degeneracy is not exclusive to two-level systems. It is general and can
create troubles in the applications of the postulates of quantum mechanics (see Chap. A)
since the physical predictions can not depend on the Kets chosen [103].
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B.4.2 Symmetric and Antisymmetric Wave Functions

The symmetry of a wave function represented by the ket |ψ〉 in an isomorphic space
state has significant consequences in quantum systems. Consider two particles not identical
but with the same spin s. As the space is isomorphic, they can be described in the same
basis {|ui〉}. If, for example, particle 1 is a proton and particle 2 an electron-composed
system can be described on the basis {|u[1]

i , u
[2]
j 〉}. The order does not matter in a product

state, thus
|u[1]
i , u

[2]
j 〉 = |u[2]

j , u
[1]
i 〉 (B.127)

However, for i 6= j

|u[1]
i , u

[2]
j 〉 6= |u

[1]
j , u

[2]
i 〉 . (B.128)

Since the space of the particle’s state are isomorphic, there is a linear operator P2,1,
such that

P21 |u[1]
i , u

[2]
j 〉 = |u[1]

j , u
[2]
i 〉 , (B.129)

where P21 is Hermitian, since P21 = P †21 and P 2
21 = 1. P21 is known as permutation

operator [103].

As the eigenvalues of P12 must be real and their squares are 1, the only possible
values are +1 and −1. The wave function is said to be symmetric if

P12 |ψS〉 = |ψS〉 (B.130)

and antisymmetric if
P12 |ψA〉 = − |ψA〉 . (B.131)

Now, let us define two projectors

S = 1
2 (1 + P12) and (B.132)

A = 1
2 (1− P12) . (B.133)

Thus, the following relations are valid

S2 = S ; A2 = A (B.134)

, S† = S ; A† = A (B.135)

, SA = AS = 0, andS + A = 1. (B.136)

When S is applied to an arbitrary state |ψ〉, the state vector S |ψ〉 is symmetric while
when A is applied, A |ψ〉 is antisymmetric, that is

P12S |ψ〉 = S |ψ〉 (B.137)

P12A |ψ〉 = −A |ψ〉 . (B.138)
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Thus, the projectors A and S are called symmetrizer and antisymmetrizer.

It is important to mention that the permutation operators, A and S, can also be
defined for systems with an arbitrary number of particles, See Ref. [118].

B.4.3 Symmetry of Bosons and Fermions

Bosons are particles with integer spins that follow the Bose-Einstein statistics,
while Fermions are particles with half-integer spins that follow the Fermi-Dirac statistics
(see Ref. [122]).

Important properties arise when permutation, symmetrization, and antisymmetriza-
tion concepts are applied to identical particle states. As shown before, exchange degeneracy
can be a problem in dealing with identical particles. One way to overcome this is by
symmetrizing the global state if the particles are bosons, that is

|ψ〉B = S
(
|u[1]
i , u

[2]
j 〉+ |u[1]

j , u
[2]
i 〉
)
, (B.139)

and antisymmetrizing if they are fermions

|ψ〉F = A
(
|u[1]
i , u

[2]
j 〉+ |u[1]

j , u
[2]
i 〉
)
. (B.140)

Therefore, we can say that fermions have symmetric wave functions and bosons antisym-
metric wave functions.

From this, we can deduce the fact that fermions cannot occupy the same state,
that is, j = i, since

|ψ〉F = A
(
|u[1]
i , u

[2]
i 〉 − |u

[1]
i , u

[2]
i 〉
)

= 0. (B.141)

This is known as the Pauli exclusion principle and has relevant physical consequences [118].

The symmetrization processes are frequently used in studies of composed quantum
systems with identical particles since they make viable physical prediction calculations of
identical particles.
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APPENDIX C – Dynamics of a Many-Body
Quantum Harmonic Oscillators in coherent

states

This appendix shows how we computed the state evolution of the many-body
system presented in Sec. 5.2. The model consists of a quantum harmonic oscillator, referred
to as the system, coupled to N other quantum harmonic oscillators, the environment. All
environment oscillators are coupled to the system but do not interact directly between
themselves. The Hamiltonian is given by

H = ~ω0a
†a+ ~

N∑
k=1

ωkb
†
kbk + ~

N∑
k=1

γk(a†bk + ab†k), (C.1)

where ω0 and ωk are the system oscillator frequency and k-th environment oscillator
frequency, respectively; a† and a are the creation and annihilation operators for the system
and b† and b are the same operators that act only in the k-th environment oscillator; and
γk is the constant coupling between the system and the k-th environment oscillator.

In this model, the system and all subenvironments are in a coherent state (Sec. B.2).
The environment is initially in the vacuum state |0〉 = |0〉1 . . . |0〉N and the system in a
coherent state |α0〉. Considering the system and the environment initially decoupled, the
global state at t = 0 is

|ψ(0)〉 = |α0〉 ⊗
N∏
k=1
|0k〉 , (C.2)

and at some time t we get

|ψ(t)〉 = |α(t)〉 ⊗
N∏
k=1
|λk(t)〉 . (C.3)

The system plus the environment forms a closed system, and as mentioned in
Sec. A.2, the dynamics of such a state are given by the Scrödinger equation,

H |ψ(t)〉 = i~
d

dt
|ψ(t)〉 . (C.4)

Thus, by substituting Eq.(C.3) in the right side of Eq. (C.4) we get

d

dt
|ψ(t)〉 = d

dt

(
|α(t)〉 ⊗

N∏
k=1
|λk(t)〉

)
(C.5)

= |α(t)〉
dt
⊗

N∏
k=1
|λk(t)〉+ |α(t)〉

∑
i

d

d

(
N∏
k=1
|λk(t)〉

)
. (C.6)
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From the definition and properties of coherent states, the time derivative of an
arbitrary coherent state |β(t)〉 is

d

dt
|β(t)〉 = d

dt

(
e−
|β|2

2
∑
n

βn√
n
|n〉
)

(C.7)

= −1
2

(
d

dt
|β(t)|2

)
|β(t)〉+ β̇(t)a† |β(t)〉 . (C.8)

Thus, Eq (C.6) becomes

d

dt
|ψ(t)〉 = −1

2

(
d

dt
|α(t)|2 +

∑
k

|λk(t)|2
)
|ψ(t)〉+

(
α̇(t)a† +

∑
k

λ̇k(t)a†
)
|ψ(t)〉 . (C.9)

As there are neither external nor dissipative forces, the excitations number is conserved;
that is

−1
2

(
d

dt
|α(t)|2 +

∑
k

|λk(t)|2
)

= 0, (C.10)

and we get
i~
d

dt
|ψ(t)〉 = i~

(
β̇(t)a† |α(t)〉+ β̇(t)a† |λk(t)〉

)
|ψ(t)〉 . (C.11)

Applying the Hamiltonian to |ψ(t)〉 as in the left side of Eq. (C.4) we get

H |ψ(t)〉 = ~ω0α(t)a† |ψ(t)〉+
∑
k

~ωkλk(t)b†k |ψ(t)〉+
∑
k

γk
(
λk(t)a† + α(t)λ†k

)
|ψ〉 . (C.12)

As from Eq. (C.4), these two last expressions are equal, we get(
iα̇(t)− ω0α(t)−

∑
k

γkλk(t)
)
a† |ψ(t)〉+

∑
k

(
iλ̇k(t)− ωkλk(t)− γkα(t)

)
b†k |ψ(t)〉 = 0.

(C.13)
As a† |ψ(t)〉 and b†k |ψ(t)〉 are linearly independent, the motion equations of |α(t)〉 and
|λk(t)〉 are

i
dα(t)
dt

= ω0α(t) +
∑
k

γkλk(t) (C.14)

i
dλk(t)
dt

= ωkλ(t) + γkα(t). (C.15)

In the interaction picture, these equations become

i
dα̃(t)
dt

=
∑
k

γkλ̃k(t)ei(ω0−ωk)t (C.16)

i
dλ̃k(t)
dt

= γkα̃(t)e−i(ω0−ωk)t, (C.17)

where α̃(t) = α(t)eiω0t and λ̃k(t) = λk(t)eiωkt. The only difference between these pictures
is a global phase that does not affect the system’s dynamics.

The way that the system loses excitations for the environment is defined by the
coupling. Here we consider constant coupling and a specific kind of non-constant coupling.
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C.1 Constant Coupling
For constant coupling, γk = γ for all k. Thus, the motion equations are given by

i
dα̃(t)
dt

=
∑
k

γλ̃k(t)ei∆ωkt (C.18)

i
dλ̃k(t)
dt

= γα̃(t)e−i∆ωkt, (C.19)

where ∆ωk = ω0 − ωk. By integrating Eq. (C.19) and substituting in Eq. (C.18) we get

˙̃α(t) = −
∑
k

γ2
∫ ∞

0
ei∆ωk(t−t′)α̃. (C.20)

By considering N large enough we can take the continuum limiting to solve
Eq. (C.20). In particular, we get

∑
k

−→
∫
ρ(ω)dω (C.21)

γk −→ γ(ω), (C.22)

where ρ(ω) is the modes density that gives the number of modes between ω and ω + dω

and γ(ω) is a continuum function dependent on ω. Therefore, Eq. (C.20) becomes

˙̃α(t) = −
∫ t

0
dt′α̃(t′)

∫ ω0+δω

ω0−δω
dωγ2(ω)ρ(ω)ei∆ωk(t−t′). (C.23)

This equation is general and is valid for any kind of coupling; the only approximation
is the continuum limiting. However, we want to analyze an environment with constant
coupling and a constant modes distribution, that is,

γ2(ω)ρ(ω) = c, (C.24)

where c is a constant value. We are interested in the dynamics where the difference |ω0−ωk|
is not too large; this makes the interaction between the system and the environment relevant.
Thus, the integral in the frequency can be taken from −∞ to ∞ without loss of generality
and we get

˙̃α(t) = −c
∫ t

0
dt′α̃(t′)

∫ ∞
−∞

dωei∆ωk(t−t′) (C.25)

= −2πc
∫ t

0
dt′δ(t− t′)α̃(t′) (C.26)

= −2πcα̃(t). (C.27)

The solution of this differential equation is

α̃(t) = α0e
−Γt, (C.28)

where α0 is the amplitude of the initial coherent state of the system and Γ = 2πc.
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Figure 29 – System and environment excitations Ξ(t) and Θ(t) in function of Γt for
constant coupling.

By substituting Eq. (C.28) in Eq. (C.19) we get

˙̃
kλ(t) = −iγα0e

−(i∆ωk+Γ)t, (C.29)

and therefore
λ̃k(t) = iα0γ

e−(Γ+i∆ωk)t − 1
Γ + i∆ωk

. (C.30)

The quantity |α(t)|2, |λk(t)|2, and
∑N
k=1 |λk(t)| give the system, k-th environment

oscillator and entire environment excitations, respectively. We back to use the Schrödienger
picture since |α(t)|2 = |α̃(t)|2 and |λ(t)|2 = |λ̃(t)|2.

As the total excitation in the global system must be conserved, we have

|α0|2 = Ξ(t) + Θ(t), (C.31)

where Ξ(t) = |α(t)|2 and Θ(t) = ∑N
k=1 |λk(t)|

2. By analyzing the oscillator’s dynamics,
one can observe the system excitations being transferred to the environment with an
exponential rate Γ. Through exact numerical calculations, we analyzed the dynamic of an
environment composed by N oscillators, with Γ = 4πγ2 N

∆ω ≈ 0.07 with ∆ω = 1.8, α0 = 3,
γ = 0.1/30 and c ≈ 0.06. The plot in Fig. 29 shows that the excitations of the system
(blue-solid line) decrease exponentially while the environment excitations (orange-dashed
line) increase with the same proportion in total agreement with Eq. C.31.

C.2 Non-Constant coupling: γ and γ̄
Another interesting case is where only the environment oscillator in resonance with

the system (that is, the j-th oscillator whose ωj = ω0) has a different coupling γ̄, and the
rest has the same coupling γ. We shall investigate the case where γ̄ � γ.
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By separating the environment oscillator in resonance with the system, Eqs. (C.18)
and (C.19) become

˙̃α = −iγ̄λ̃0(t)− i
∑
k

γke
i∆ωktβ̃k(t), (C.32)

˙̃λ0(t) = −iγ̄α̃(t) (C.33)
˙̃λk(t) = −i

∑
k

γke
i∆ωktα̃(t), (C.34)

where λ0(t) is related to the resonant environment oscillator. By integrating Eq. (C.34)
and substituting in Eq. (C.32) we get

˙̃α = −iγ̄λ̃0(t)−
∑
k

|γk|2
∫ t

0
dt′ei∆ωk(t−t′)α̃(t′). (C.35)

By taking the continuum limiting Eq. (C.35) becomes

˙̃α = −iγ̄λ̃0(t)−
∫ t

0

∫ ω0+∆ω

ω0−∆ω
dt′dωγ2(ω)ρ(ω)ei∆ωk(t−t′)α̃(t′). (C.36)

The integral in this equation is related to the non-resonant environment oscillators that
have the same coupling. Therefore, once again, we can set γ2(ω)ρ(ω) = c = const. and
consider the case where the environment frequencies are concentrated around ω0, extending
the integral limits to −∞ and ∞. Thus, we have

˙̃α = −iγ̄λ̃0(t)− c
∫ t

0

∫ ∞
−∞

dt′dωei∆ωk(t−t′)α̃(t′). (C.37)

Following the steps of Eqs. (C.25) to (C.27), the differential equation of α(t), λ0(t),
and λk(t) are given by

˙̃α = −iγ̄λ̃0(t)− 2πcα̃(t′) (C.38)
˙̃λ0 = −iγ̄α̃(t). (C.39)

The solution of these differential equations are

α̃(t) = α0

2Ωe
−πct

[
πc
(
e−Ωt − eΩt

)
Ω
(
e−Ωt + eΩt

)]
(C.40)

λ̃0(t) = iα0γ̄

2Ω e−πct
(
e−Ωt − eΩt

)
, (C.41)

with Ω =
√

(πc)2 − γ̄2. By substituting these solutions in Eq. (C.34) and solving ˙̃λk(t) we
find

λ̃k(t) = −iα0γ

2Ω

(πc+ Ω)
(
1− e−(πc+i∆ω+Ω)t

)
πc+ i∆ω + Ω

(πc− Ω)
(
1− e−(πc+i∆ω−Ω)t

)
−πc− i∆ω + Ω

 . (C.42)

Note that for this kind of coupling transfer of excitations will oscillate. By taking
the limit γ̄ � γ, Ω becomes complex, and oscillations can be described in terms of sins
and cosines. The excitations of the system will be transferred to the environment with a
decay rate Γ with additional oscillating behavior. With the same parameters of Fig. 29
and γ̄ = 50γ, we plotted the transfer of excitations in Fig. 30. We can see that even with
the total number of excitations conserved, the transfer of excitations oscillates.
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Figure 30 – System and environment excitations Ξ(t) and Θ(t) in function of Γt for
non-constant coupling γ̄ = 50γ
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APPENDIX D – Many-Body Environment
as a Two Level System

A technical problem that arises when dealing with a quantum many-body system
is building the density matrix. The larger the number of particles in the system, the more
difficult it is to work with the density matrix. Separating a fraction of the system is even
more difficult in this case.

Writing the part of the system’s interest and complementary part on a qubit basis
is an easy trick to fractionate the environment. However, it is necessary to describe the
system and all subenvironments on an orthonormal basis.

Consider a two-level system coupled to a many-body environment composed of N
particles whose state described as

|Ψ〉 = 1√
2

(|e, ψe〉+ |g, ψg〉) , (D.1)

Where {|e〉 , |g〉} are the states of the system and {|ψe〉 , |ψg〉} are the states of the whole
environment, and

|ψe〉 = |ψ[1]
e , ψ

[2]
e , · · · , ψ[N ]

e 〉

|ψg〉 = |ψ[1]
g , ψ

[2]
g , · · · , ψ[N ]

g 〉 . (D.2)

If we can separate the part of the interest of the complementary part of the
environment, we can rewrite the global system as

|Ψ〉 = 1√
2
(
|e, ψ[I]

e , ψ
[c]
e 〉+ |g, ψ[I]

g , ψ
[c]
g 〉
)
, (D.3)

where |ψ[I]
e 〉 and |ψ[I]

g 〉 are the states of the part of the interest of the environment, and
|ψ[c]
e 〉 and |ψ[c]

g 〉 are the states of the complementary part of it.

To get the part of the interest of the environment, we need to trace out the
complementary part and the system of the environment. In this case, the density matrix
of the global system is

ρ = |Ψ〉 〈Ψ| , (D.4)

and the density matrix of the part of interest in the environment is

ρfI = TrSfcρ (D.5)

= 1
2
(
|ψIg〉 〈|ψIg〉|+ |ψIe〉 〈|ψIe〉|

)
.
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To write |ψ[I]
e 〉 and |ψ[I]

g 〉 in an orthonormal basis we need to write them as

|1′〉 = cosµ |ψ[I]
e 〉+ eiθ sinµ |ψ[I]

g 〉 (D.6)

|0′〉 = − sinµ |ψ[I]
e 〉+ eiθ cosµ |ψ[I]

g 〉 ,

with θ ∈ R. To get 〈ψ[I]
e |ψ[I]

g 〉 = 0. We need to define

µ = π

4 , (D.7)

and
eiθ =

〈ψ[I]
e |ψ[I]

g 〉
| 〈ψ[I]

e |ψ[I]
g 〉 |

. (D.8)

Then we have

|1′〉 = 1√
2
(
|ψ[I]
e 〉+ eiθ |ψ[I]

g 〉
)

(D.9)

|0′〉 = 1√
2
(
− |ψ[I]

e 〉+ eiθ |ψ[I]
g 〉
)
,

and normalizing it, we get

|1〉 = |1′〉√
〈1′|1′〉

= |1′〉√
1 + | 〈ψ[I]

g |ψ[I]
e 〉 |

(D.10)

|0〉 = |0′〉√
〈0′|0′〉

= |0′〉√
1− | 〈ψ[I]

g |ψ[I]
e 〉 |

.

In this way, the states |ψ[I]
e(g)〉 can be written as

|ψ[I]
e 〉 = S+ |1〉 − S− |0〉 (D.11)

|ψ[I]
g 〉 = eiθ (S+ |1〉+ S− |0〉) ,

with

S± ≡

√√√√1± | 〈ψ[I]
e |ψ[i]

g 〉 |
2 . (D.12)

To construct the density matrix of the system and interest part on an orthonormal
basis, we need first to trace out the complementary part

ρsfI = trfcρ (D.13)

= 1
2
(
|g, ψIg〉 〈|g, ψIg〉|+ |e, ψIe〉 〈|e, ψIe〉|+ νc |g, ψIg〉 〈|e, ψIe〉|+ ν∗c |e, ψIe〉 〈|g, ψIg〉|

)
,(D.14)

where νc = 〈ψ[c]
e |ψ[c]

g 〉. Next, describing the states |ψ[I]
e(g)〉 as in (D.11), we get

ρ = 1
2
(
S2

+ |e, 1〉 〈e, 1| − S+S− |e, 1〉 〈e, 0|+ S2
+z |e, 1〉 〈g, 1|+ S+S−z |e, 1〉 〈g, 0|

−S+S− |e, 0〉 〈e, 1|+ S2
− |e, 0〉 〈e, 0| − S−S+z |e, 0〉 〈g, 1| − S2

−z |e, 0〉 〈g, 0|

S2
+z
∗ |g, 1〉 〈e, 1| − S+S−z

∗ |g, 1〉 〈e, 0|+ S2
+ |g, 1〉 〈g, 1|+ S+S− |g, 1〉 〈g, 0|

S−S+z
∗ |g, 0〉 〈e, 1| − S2

−z
∗ |g, 0〉 〈e, 0|+ S−S+ |g, 0〉 〈g, 1|+ S2

− |g, 0〉 〈g, 0|
)
, (D.15)
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with z = νce
iθ.

With this basis changing, we can get the density matrix of the system and the part
of the interest of the environment, and the parameters that we need to know are |ψIe〉,
|ψIg〉, |ψce〉 and |ψcg〉.
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