

Id: EN-001

ANÁLISE NEUTRÔNICA DOS REATORES CANDU E ACR

Andressa A. Cunha¹, Claubia Pereira¹, Clarysson A.M. da Silva¹ e Gabriel H. P. Dias¹

> Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais Avenida Antônio Carlos, 6627 31270-90 Belo Horizonte, MG dessaamaralcunha@gmail.com

Palavras-Chave: ACR-1000, neutrônica, combustível reprocessado, CANDU-6, criticalidade

RESUMO

Reatores nucleares são amplamente utilizados na geração de energia elétrica em diversos países. Argentina, China, Canadá, Coreia do Sul, Índia, Paquistão e Romênia utilizam reatores moderados e refrigerados a água pesada (D2O), tendo como combustível o urânio natural. O CANDU (*Canadiam Deuterium Uranium*) é um exemplo desse tipo de reator. Atualmente, encontra-se em fase de projeto, em países como Canadá e Coreia do Sul, uma variação do CANDU, o ACR (Advanced CANDU Reactor). Enquanto o CANDU usa D₂O como refrigerante e moderador, o ACR emprega H₂O como refrigerante e D₂O como moderador. Esta alteração visa a reduzir o volume de D₂O, que é um recurso mais caro sob o ponto de vista econômico. Como consequência, o ACR deve ser alimentado com urânio levemente enriquecido. Neste trabalho, avalia-se a inserção de combustível reprocessado no ACR que possui percentual de material físsil maior que o urânio natural. O objetivo é avaliar o comportamento neutrônico dos reatores CANDU-6 e ACR-1000, utilizando o código MCNPX 2.6.0 (Monte Carlo N-Particle Extended – versão 2.6.0). O ACR-1000 foi avaliado considerando diferentes frações de combustível reprocessado no núcleo do reator. Tal metodologia tem por objetivo obter valores de k_{eff} mais próximos a do CANDU tradicional. Os resultados mostram características positivas do ACR-1000 em relação ao seu predecessor, bem como o uso do combustível reprocessado.

1. INTRODUÇÃO

O CANDU tradicional (*CANadian Deuterium Uranium*) é um tipo de reator que opera a base de urânio natural como combustível e água pesada (D₂O) como refrigerante e moderador. Atualmente está em fase de desenvolvimento o conceito do CANDU avançado (ACR – *Advanced CANDU Reactor*) o qual emprega água pesada como moderador, mas utiliza água leve (H₂O) como refrigerante [1]. Como a razão de moderação da água leve é menor do que a água pesada, o ACR utiliza urânio levemente enriquecido (aproximadamente 1,0%) [1][2]. Este percentual é menor do que os 1,5% de material físsil do combustível queimado de um PWR típico (*Pressurized Water Reactor*). Assim, após o reprocessamento deste combustível, o pecentual adequado poderia ser utilizado em um ACR. Neste contexto, o presente trabalho estuda o núcleo de um ACR-1000 considerando diferentes frações de combustível reprocessado. O objetivo deste

trabalho é avaliar o comportamento neutrônico do ACR-1000 comparando-o com o tradicional CANDU-6. Tais reatores foram modelados utilizando o código MCNPX 2.6.0 (*Monte Carlo N-Particle eXtended*), o qual é uma ferramenta que possibilita analisar o comportamento neutrônico de sistemas nucleares.

2. METODOLOGIA

2.1 Modelagem dos Núcleos do CANDU-6 e ACR-1000

Uma das principais diferenças entre os reatores estudados é a dimensão de seus núcleos. A Tab. 1 apresenta propriedades dos principais elementos de tais reatores.

Descrição	ACR- 1000[1]	CANDU-6[7]
Potência (total)	1165 MWe	728 MWe
Lattice	24,0 cm	28,6 cm
Raio Interno Calandria	8,0 cm	6,5 cm
Raio Externo Calandria	8,3 cm	6,6 cm
Raio da Vareta Combustível	0,575 cm	0,610 cm
Raio da Vareta Combustível Central	0,950 cm	0,610 cm
Comprimento do Elemento Combustível	48,2 cm	48,2 cm
Raio do Revestimento da Vareta	0,625 cm	0,652 cm
Combustível		
Raio do Revestimento da Vareta	1,000 cm	0,652 cm
Combustível Central		
Comprimento do Revestimento	46,90 cm	48,69 cm
Raio Anel 1	1,75 cm	1,45 cm
Raio Anel 2	3,14 cm	2,88 cm
Raio Anel 3	4,50 cm	4,33 cm
Raio Interno Tubo de Pressão	5,19 cm	5,17 cm
Raio Externo Tubo de Pressão	5,84 cm	5,60 cm
Temperatura Operacional do	1000 K	1000 K
Combustível		
Temperatura Operacional do	1000 K	1000 K
Revestimento		
Temperatura Operacional do Moderador	330, 15 K	343 K
Temperatura Operacional do	548,15 K	573 K
Refrigerante		

Tab. 1. Principais características do ACR-1000 e CANDU-6

A Fig. 1 ilustra, respectivamente, os núcleos do ACR-1000 e CANDU-6 configurados no MCNPX 2.6.0. O núcleo do ACR é composto por 520 canais combustíveis, os quais possuem 43 varetas combustíveis revestidas por *Zircaloy*. Já o CANDU apresenta 380 canais com 37 varetas cada [1][7]. A placa espaçadora é composta por uma mistura homogênea de 29% de *Zircaloy* e 71% de água pesada. Para ambos os reatores, cada canal de combustível está dentro do canal de pressão, o qual é circundado pelo moderador. A calândria é a parte mais externa que compreende os canais de pressão e o moderador. Nas simulações através do MCNPX 2.6.0 foram consideradas 5000 partículas, distribuídas em três fontes neutrônicas simetricamente posicionadas, computando 300 ciclos ativos.

Fig. 1. Dimensionamento dos núcleos de ACR-1000 e CANDU-6, bem como a geometria da célula combustível destes reatores, respectivamente

2.2 Casos avaliados e Composição do Combustível

Foram estudados nove casos para o ACR-1000, que compreendem o uso do combustível óxido de urânio (UO₂) e de combustíveis reprocessados pelas técnicas AIROX (*Atomics International Reduction Oxidation*) e OREOX (*Oxidation Reduction of Oxide Fuel*)[3]. A reatividade do núcleo ACR-1000 para tais combustíveis foi comparada com um típico CANDU-6 que utiliza urânio natural (0,711%). Como o ACR emprega H₂O como refrigerante, o percentual de material físsil deverá ser maior que 0,711%. Assim, nas análises de criticalidade do núcleo ACR preenchido apenas com UO₂, variou-se o percentual de enriquecimento de tal combustível para obter um fator de multiplicação efetivo (k_{eff}) próximo a do CANDU-6. Em relação aos casos em que se se utiliza material reprocessado, o núcleo é composto por um misto de combustível reprocessado e urânio natural indicados na Tab. 2.

Tipo de Combustíval	Técnica de	Material	Fração de preenchimento no núcleo ACR-1000		
Compustivei	Reprocessamento	118811	UO2	Reprocessado	
Óxido de		0,711%			
urânio	-	0,800%	1	0	
(UO2)		0,900%			
Misto:		2 1000/	3/4	1/4	
Reprocessado	OPEOV	2,188%	2/3	1/3	
e UO2 natural	UKEUA	2,190%	1/2	1/2	

Tab.2. Tipos de combustíveis avaliados para o ACR-1000

A composição do combustível irradiado foi obtida a partir de estudos anteriores [4] que consideram o ciclo típico de um PWR com enriquecimento inicial de 4,5% e queima de 50 GWd/MTU. O combustível queimado permanece na piscina para decaimento por cinco anos. O inventário de isótopos após este período é a base para o cálculo da composição dos combustíveis reprocessados. Este cálculo usa os percentuais de extração dos produtos de fissão relativos às técnicas AIROX [5] e OREOX [6]. Nas tabelas (Tab. 3 e Tab. 4) a seguir, estão expressas as composições referentes aos respectivos combustíveis obtidos, em fração de massa, através de reprocessamento.

Isótopo	Fração de						
-	Massa	-	Massa	-	Massa	-	Massa
He ⁴	1,0561 10 ⁻⁶	Ni ⁶²	3,4551 10-7	Sn ¹¹²	2,5332 10-7	Ba ¹³⁸	4,8618 10 ⁻⁴
O ¹⁶	1,1951 10 ⁻¹	Ni ⁶⁴	8,8040 10 ⁻⁸	Sn ¹¹⁴	1,6975 10 ⁻⁷	Nd ¹⁴³	1,0738 10 ⁻³
Cl ^{nat}	5,8046 10 ⁻⁶	Y ⁸⁹	1,2659 10 ⁻⁷	Sn ¹¹⁵	8,8791 10 ⁻⁸	Nd ¹⁴⁵	8,8968 10 ⁻⁴
Ca ⁴⁰	6,4080 10 ⁻⁶	Zr ⁹⁰	2,1759 10 ⁻⁴	Sn ¹¹⁷	2,0056 10-6	Sm ¹⁴⁷	1,1163 10 ⁻⁴
Ca ⁴²	4,2769 10 ⁻⁸	Zr ⁹³	9,5430 10 ⁻⁴	Sn ¹¹⁸	6,3251 10 ⁻⁶	Sm ¹⁴⁹	3,3179 10-6
Ca ⁴³	8,9238 10 ⁻⁹	Nb ⁹³	5,3018 10 ⁻⁹	Sn ¹¹⁹	2,2407 10-6	Sm ¹⁵⁰	3,9332 10 ⁻⁴
Ca ⁴⁴	1,3789 10 ⁻⁷	M0 ⁹⁵	9,3129 10 ⁻⁴	Sn ¹²⁰	8,5109 10 ⁻⁶	Sm ¹⁵¹	2,1069 10 ⁻⁵
Ca ⁴⁶	2,644 10-10	Tc ⁹⁹	1,0650 10 ⁻³	Sn ¹²²	1,2091 10 ⁻⁶	Sm ¹⁵²	1,5501 10 ⁻⁴
Ca ⁴⁸	1,2361 10 ⁻⁸	Ru ¹⁰¹	1,0685 10 ⁻⁴	Sn ¹²⁴	1,5121 10-6	Eu ¹⁵¹	2,6186 10-6
Ni ⁶⁰	6,4725 10 ⁻⁶	Ru ¹⁰³	5,7639 10 ⁻⁴	Cs ¹³³	1,4987 10 ⁻⁴	Eu ¹⁵³	1,6351 10 ⁻⁴
Ni ⁶¹	2,4932 10-6	Pd ¹⁰⁶	3,1922 10 ⁻⁴	Cs ¹³⁵	7,5388 10 ⁻⁵	Gd ¹⁵⁵	1,3659 10 ⁻⁷
Ni ⁵⁸	1,0893 10 ⁻⁷	Ag ¹⁰⁹	1,0676 10 ⁻⁴	Cs ¹³⁷	8,4414 10 ⁻⁴	Th ²³⁰	1,0065 10 ⁻⁸
U ²³³	7,0661 10 ⁻⁹	Np ²³⁷	7,7557 10 ⁻⁴	Pu ²⁴¹	9,0473 10 ⁻⁴	Am ²⁴³	2,1972 10 ⁻⁴
U ²³⁴	2,1219 10-4	Pu ²³⁸	3,1922 10-4	Pu ²⁴²	7,4246 10-4	Cm ²⁴²	4,9857 10-9
U ²³⁶	5,7355 10-3	Pu ²³⁹	7,0749 10-3	Am ²⁴¹	1,0349 10-3	Cm ²⁴⁵	5,5116 10-6
U ²³⁸	8,4320 10-1	Pu ²⁴⁰	2,8186 10-3	Am ²⁴²	1,9095 10 ⁻⁶	Cm ²⁴⁶	5,5063 10-7

Tab.3 Composição do combustível obtido por reprocessamento AIROX

Tab. 4 Composição do combustível obtido por reprocessamento OREOX

Isótopo	Fração de	Isótopo	Fração de	Isótopo	Fração de	Isótopo	Fração de
	Massa		Massa		Massa		Massa
He ⁴	1,2007 10-6	Tc ⁹⁹	1,2108 10 ⁻³	Nd ¹⁴³	1,2209 10 ⁻³	Th ²³⁰	1,1444 10 ⁻⁸
C ¹⁴	4,7355 10 ⁻⁹	Ru ¹⁰¹	2,4297 10 ⁻⁴	Nd ¹⁴⁵	1,0115 10 ⁻³	U ²³³	8,0338 10 ⁻⁹
Cl ³⁶	6,5995 10 ⁻⁶	Rh ¹⁰³	6,5532 10 ⁻⁴	Sm ¹⁴⁷	1,2692 10 ⁻⁴	U ²³⁴	2,4126 10-4
Ca ⁴¹	7,5154 10 ⁻⁶	Pd ¹⁰⁷	3,6294 10 ⁻⁴	Sm ¹⁴⁹	3,7723 10-6	U ²³⁵	1,0769 10 ⁻²
Ni ⁵⁹	1,0810 10 ⁻⁵	Ag ¹⁰⁹	1,2138 10 ⁻⁴	Sm ¹⁵⁰	4,4718 10 ⁻⁴	U ²³⁶	6,5210 10 ⁻³
Y ⁹⁰	1,4393 10 ⁻⁷	Sn ¹²⁶	2,9691 10 ⁻⁵	Sm ¹⁵¹	2,3954 10 ⁻⁵	U ²³⁸	9,5868 10 ⁻¹
Zr ⁹⁰	2,4739 10-4	I ¹²⁹	2,4246 10- ⁶	Sm ¹⁵²	1,7624 10 ⁻⁴	Np ²³⁷	8,8178 10-4
Zr ⁹³	1,0850 10-3	Cs ¹³³	1,7040 10 ⁻⁵	Eu ¹⁵¹	2,9772 10-6	Pu ²³⁸	3,6294 10 ⁻⁴
Nb ^{93m}	6,0279 10 ⁻⁹	Cs ¹³⁵	8,5713 10-6	Eu ¹⁵³	1,8590 10 ⁻⁴	Pu ²³⁹	8,0439 10 ⁻³
M0 ⁹⁵	2,1177 10-4	Ba ¹³⁷	1,3346 10 ⁻⁵	Gd ¹⁵⁵	1,5530 10 ⁻⁷	Pu ²⁴⁰	3,2047 10-3
Am ²⁴¹	1,1766 10-3	Cm ²⁴²	5,6685 10 ⁻⁹	Cm ²⁴⁶	6,2604 10-7	Pu ²⁴¹	1,0286 10-3
Am ^{241m}	2,1710 10-6	Cm ²⁴⁵	6,2664 10-6	Pu ²⁴²	8,4414 10-4		

2.3 Parâmetros Avaliados

O principal parâmetro avaliado pelas simulações do reator é o k_{eff} , o qual foi calculado pelo código MCNPX. O núcleo foi simulado em condições normais de operação (descritas na Tab.1 e sem inserção de frações de vazio), em condições de variação de temperatura do combustível e também em condições de variação de densidade do refrigerante. Assim, nesta análise estuda-se o coeficiente de reatividade de temperatura do combustível (α_c) e o Coeficiente de Reatividade de Vazio (CVR). O α_c foi estimado através da seguinte equação:

$$\alpha_{C}\left(\frac{pcm}{K}\right) = \left[\frac{k_{2}-k_{1}}{k_{2}\cdot k_{1}}\right] \cdot \frac{1}{\Delta T} \cdot 10^{5}$$

onde k_1 e k_2 se referem aos valores de k_{eff} dos limites no intervalo de variação de temperatura.

Avaliou-se o Coeficiente de Reatividade de Vazio (CRV) a partir da variação de densidade e da seguinte relação:

$$CRV(pcm) = \left[\frac{1}{k_1} - \frac{1}{k_2}\right] \cdot 10^5$$

na qual k_1 e k_2 são os respectivos valores de k_{eff} calculado em condições normais de operação e em condição de variação na densidade do refrigerante.

Ao assumir valores positivos, o parâmetro representa um acréscimo da criticalidade conforme a variação de densidade do refrigerante; os valores negativos, no entanto, expressam o decréscimo de k_{eff} , o qual é o comportamento mais esperado.

3. RESULTADOS

A Tab. 3 apresenta os valores de k_{eff} para os casos estudados. Como esperado, O ACR torna-se subcrítico quando utiliza urânio natural (enriquecimento 0,711 %) enquanto o CANDU-6 apresenta $k_{eff} \ge 1,0$. O refrigerante do ACR (H₂O) possui menor razão de moderação do que o refrigerante presente no CANDU-6 (D₂O). Esta característica reduz a criticalidade do ACR, e para que este reator apresente valores de k_{eff} próximos ao do CANDU-6, é necessário utilizar UO₂ enriquecido a aproximadamente 0,9% (Tab. 5).

CAN	DU-6		ACR-1000					
Combustivel UO		Combustivel UOs		Técnica de Reprocessamento				
Compusi	Ivel UO2	Combustivel UO ₂		Combustive UO2 Combustível Mist				
Material	le u	Material	le	Fração de	OREOX	AIROX		
Físsil	Keff	Físsil	Keff	Reprocessado	<i>k_{eff}</i>	k eff		
		0,711%	0,93201	1⁄4	0,98745	0,98266		
0,711%	1,01139	0,800%	0,97911	1/3	1,00631	1,00062		
		0,900%	1,02495	1/2	1,03167	1,02324		

Tab.5. Fator de multiplicação efetivo em condições normais de temperatura e densidade para o ACR-1000 e CANDU-6.

Tais resultados corroboram com estudos anteriores, os quais indicam enriquecimento na faixa de 0,8 a 1,0%[2]. Em relação aos combustíveis reprocessados, o núcleo ACR-1000 preenchido com um terço apresenta valor de k_{eff} mais próximo do CANDU-6. Entre os dois tipos de combustíveis reprocessados, o OREOX apresenta valores de k_{eff} ligeiramente superiores aos do AIROX devido à pequena diferença no percentual do material físsil nestes combustíveis.

Utilizando os combustíveis configurados segundo os resultados do item anterior, variouse em intervalos de 100K, a temperatura do combustível de 300K a 1200K. A Tab. 4 mostra a variação do k_{eff} em função da temperatura e o α_C correspondente. É possível observar que o ACR apresenta α_C positivo para alguns intervalos de temperatura. Contudo, considerando o desvio padrão estimado pelo código (aproximadamente ~ 1,7x10⁻⁴), nota-se que a variação de k_{eff} em ΔT possui a mesma ordem de grandeza para todos os testes.

Tem	CAN	NDU-6	ACR-1000		ACR-1000		ACR-1000		
p.	U	O ₂	U	UO ₂		AIROX		OREOX	
(K)	k eff	α	k eff	α _c	k eff	α	k eff	α _c	
300	1,01704	_	1,02571	—	1,00628	_	1,00769	_	
400	1,01626	-0,75466	1,02772	1,90676	1,00596	-0,31611	1,00759	-0,09848	
500	1,01530	-0,93040	1,02699	-0,61643	1,00611	0,14820	1,00750	-0,08865	
600	1,01432	-0,95160	1,02699	0,00000	1,00640	0,28640	1,00665	-0,83809	
700	1,01349	-0,80739	1,02637	-0,58819	1,00602	-0,37532	1,00725	0,59174	
800	1,01344	-0,04868	1,02594	-0,40835	1,00587	-0,14823	1,00663	-0,61148	
900	1,01250	-0,91608	1,02564	-0,28510	1,00539	-0,47464	1,00649	-0,13818	
1000	1,01139	-1,08395	1,02495	-0,65637	1,00512	-0,26718	1,00631	-0,17771	
1100	1,01124	-0,14666	1,02515	1,90344	1,00620	1,06788	1,00658	0,26655	
1200	1,01019	-1,02786	1,02475	-0,12460	1,00494	-1,24608	1,00634	-0,23692	

Tab. 6	. k _{eff} e	α_C dos	casos	avaliados.
--------	----------------------	----------------	-------	------------

O próximo parâmetro avaliado foi a criticalidade segundo variações de densidade no refrigerante e seu CRV (indicado na Fig.2). A criticalidade sofre um acréscimo conforme a redução na densidade do refrigerante (aumento da fração de vazio em condições normais de temperatura). Apesar dos valores positivos, é possível inferir que o comportamento do reator operado com combustível reprocessado é o mais próximo do desejado, uma vez que a criticalidade aproxima-se mais do valor simulado através do CANDU-6.

Fig.2. Comportamento do CRV para cada caso estudado.

4. CONCLUSÃO

O núcleo ACR-1000 contendo UO₂ apresenta criticalidade próxima a do CANDU-6 para combustível enriquecido a 0,9%. Em relação ao combustível reprocessado, a inserção em 1/3 do núcleo ACR-1000 gera valores de k_{eff} próximos a do tradicional CANDU-6. No estudo da variação de temperatura, o coeficiente de reatividade de temperatura possui valores negativos para a maioria dos intervalos de temperatura avaliados. Como se espera em reatores tipo CANDU, verifica-se acréscimo do Coeficiente de Reatividade de Vazio em função da redução da densidade do refrigerante. Apesar deste não ser um comportamento indicado, o CANDU possui sistemas de inserção de reatividade negativa os quais garantem a segurança do reator. Os valores de CRV para os casos com combustível reprocessado foram reduzidos em relação aos simulados com urânio. No geral, o uso do combustível reprocessado mostrou-se vantajoso e apresentou criticalidades aproximadas às do CANDU-6. A partir desses resultados, será possível executar novos estudos sobre a queima do combustível do reator e a inserção de veneno queimável e urânio empobrecido.

AGRADECIMENTOS

À UFMG e ao Departamento de Engenharia Nuclear por possibilitar a aquisição de conhecimento e pelo incentivo a pesquisa, à FAPEMIG por fomentar e financiar esse projeto e ao professor Clarysson da Silva pela orientação e prestatividade.

REFERÊNCIAS BIBLIOGRÁFICAS

[1] AECL. "ACR-1000 Technical Description Summary". Ontario, 1^a Ed., January (2010)

[2] G. Dias et al. "Comparação de Parâmetros Neutrônico entre um Reator CANDU e um ACR". Belo Horizonte, ABEN INAC, Novembro (2017).

[3] C. Silva et al. "Analysis of DUPIC Fuel Cycle Using the MCNPX Code". Belo Horizonte (2017).

[4] G. Radulescu and J. Wagner. "Burn-up Credit Criticality Benchmark. Phase VII. UO₂ Fuel: Study of Spent Fuel Compositions for Long-Term Disposal". *Nuclear Energy Agency (NEA)*. ISBN 978-92-64-99172-9, NEA No. 6998. France (2012).

[5] D. Majumdar et al. "Recycling of Nuclear Spent Fuel with AIROX Processing", U.S. Department of Energy. Report DOE/ID-10423, USA (1992).

[6] E. Parent. "Nuclear Fuel Cycles for Mid-Century Deployment". McGill University (Master Thesis). Canada (2003).

[7] UNENE. "The Essential CANDU". University Network of Excellence for Nuclear Engineering. Ontario (2014).

[8] John R. Lamarsh. "Introduction to Nuclear Engineering". Cap. 6, pp-27. Prentice Hall Professional Technical Reference, 2^a Ed., March (1983).