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Abstract: This study is concerned with the problem of designing a robust model predictive control (MPC) for a class of uncertain
discrete-time Markov jump linear systems. The main contribution is a set of linear matrix inequality (LMI) conditions obtained
under new control policies for the unconstrained as well as the constrained MPC when uncertainties are present both in the
system's matrices and in the transition probabilities of the modes. For the constrained MPC, hard constraints are considered
over the input control and the states and results are extended to the so-called multi-step mode-dependent state-feedback
control design. To illustrate the improvements obtained with the new set of LMI conditions, numerical simulations are carried out
and compared with a recent reference in the literature.

1 Introduction
Model predictive control (MPC), also known as receding horizon
control, is a popular technique used in different kinds of real-world
control applications, mainly because of its inherent capacity of
handling simultaneously constraints, optimising performance and,
depending on the methodology, ensuring stability. The idea behind
the MPC is to use a given model of the plant to predict the future
output in the context that the input is tailored in such a way that the
expected system response attains the desired outcome. See, for
instance [1–6] for further discussions.

In the classical MPC formulation, the uncertainties of the
parameters and constraints are not taken into account. As a matter
of fact, in several real-world applications, exact models may be
difficult to obtain either due to model uncertainty, error modelling
or external disturbances, which can result in poor control
performance. In this context, a robust MPC approach could be
considered more appropriate since it deals with constraints and
uncertainties in the model to guarantee stability and meet constraint
specifications. For more details about robust MPC, see for instance
[1, 7, 8]. However, when considering uncertainties on the
deterministic MPC, the control inputs obtained may be
conservative, reducing system performance. Furthermore, if the
worst case uncertainty realisations considered are unlikely to occur,
a stochastic MPC approach may be more appropriate because it
takes into account probabilistic information about the uncertainty.
In the stochastic version of the MPC, sometimes depending on the
characteristics of the model, system constraints can be modelled as
hard constraints such that no constraint violation is allowed and the
constraints must be satisfied in a deterministic way or stochastic
constraints may be considered and a partial violation of constraints
is allowed (see, e.g. [9–11]). In [8], a MPC problem for a class of
linear discrete-time systems subject to saturated inputs and
randomly occurring uncertainties is investigated and a non-
conservative stochastic MPC algorithm that considers uncertainty
and stochastic disturbances is proposed in [12]. In the context of
stochasticity, MPC applications can be seen in traffic management
[13], data losses [14], in networked and distributed predictive
control of non-linear systems [15]. For an overview of the
developments in the area of stochastic MPC in the last few years
for both linear and non-linear systems, the interested reader is

referred to [10]. For a good discussion about the classic, robust and
stochastic MPC, see [16].

Markov jump linear systems (MJLSs) constitute a popular class
of stochastic systems that represent systems subject to abrupt
changes in their structure (see [17, 18] and references therein for
real world applications). Such changes can be, for instance, due to
environmental disturbances, component failures or repairs, changes
in subsystem interconnections or changes in the operation point.
The interested reader can see a recent case study presented in [19],
where the modelling of a wind turbine generator system driven by
the switching wind speed is described as a class of linearised
Markov jump controlled systems. MPC for discrete-time MJLSs
with disturbances has been treated in [20, 21]. A method to solve
the constrained MPC of MJLS problem with noisy inputs and
unobservable Markov state is given in [22]. MPC for discrete-time
MJLSs without uncertainty but taking into account constraints has
been proposed, e.g. in [23, 24]. Considering a more challenging
scenario, the constrained MPC for discrete-time MJLSs with
uncertainty in both model parameters and transition probabilities
has been analysed in [25].

In this study, new relaxed linear matrix inequality (LMI)-based
conditions to MPC for discrete-time MJLSs with parameter and
transition probability uncertainties for both mode-dependent hard
constraints on input control and states as well as the unconstrained
case are proposed. As the main discussion in this study is inspired
from [25], some results are extended directly from that reference as
well as most of the numerical comparisons. The main results
proposed here are also extended to the context of multi-step mode-
dependent state-feedback control as it was done in [25].

This paper is organised as follows. The constrained MPC
problem for MJLSs with uncertainties is formulated in Section 2
following closely to what was laid out in [25]. The new LMIs and
the main results are given in Sections 3 and 4. Section 5 presents a
numerical example to illustrate the effectiveness of the proposed
conditions together with comparisons with results in the literature.
Finally, in Section 6, some conclusion remarks are presented.

The notation employed in this paper is the following: for a
matrix A, A

−1 is its inverse (if it exists), A
T is its transpose. The

matrix inequality A ≻ 0 (A ⪰ 0) means that A is both square
symmetric and positive definite (semi-definite). ℐ and 0 represent,
respectively, the identity and null matrices with appropriate
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dimensions. x(k + n k) and u(k + n k) are the predicted values of
the vector x and u at a future time k + n, respectively, based on the
information available at time k. Ek¯[v] denotes the expected value of
v conditioned on the information available at time k¯, and E[v] is the
expected value of v using all the available information.

2 Problem formulation
Consider the uncertain discrete-time MJLS described as

x(k + 1) = Aξ(k)(θ(k))x(k) + Bξ(k)(θ(k))u(k) (1)

in which x(k) ∈ ℝnx, u(k) ∈ ℝnu and θ(k) are the system state,
control input and system mode, respectively; the initial state is x0,
the initial mode is θ0, and Aξ(k)(θ(k)) and Bξ(k)(θ(k)) are matrices of
appropriate dimensions. It is assumed that the mode process
{θ(k); k = 0, 1, …} is a discrete-time Markov chain taking values in
the discrete finite integer set M = {1, …, M} with transition
probabilities given by pk(i, j). The transition probability matrix Pk

Pk = [pk(i, m)]i, m ∈ M

with

pk(i, m) = Pr(θ(k + 1) = m θ(k) = i) (2)

is assumed to be not exactly known but belongs to a polytopic set
given by

Pk ∈ ΩP = Co{P
1, P

2, …, P
Γ}, (3)

where Co denotes the convex hull, and for τ = 1, …, Γ,
P

τ = [p(i, m; τ)]i, m ∈ M are stochastic matrices, i.e.
0 ≤ p(i, m; τ) ≤ 1, and ∑m = 1

M
p(i, m; τ) = 1, ∀i ∈ {1, 2, …, M} and

∀τ ∈ {1, 2, …, Γ}.
It is also assumed that for θ(k) = i, i ∈ M, the matrices Aξ(k)(i)

and Bξ(k)(i) are affine dependent upon the time-varying parameters
ξ(k) ∈ S

L, with
S

L = {ξ ∈ ℝL; ξℓ ≥ 0, ∑ℓ = 1
L

ξℓ = 1, ℓ = 1, 2, …, L}, such that

Aξ(k)(i) = ∑
ℓ = 1

L

ξℓ(k)Aℓ(i) and Bξ(k)(i) = ∑
ℓ = 1

L

ξℓ(k)Bℓ(i) .

In this study, hard constraints on the control input and state are
considered in the following way:

[u(k + n)(i)] j ≤ [ū(i)] j, n ≥ 0, i ∈ M, j = 1..., nu, (4)

[ψ] jx(k + n) ≤ x̄ j, n ≥ 1, i ∈ M, j = 1, …, nψ, (5)

where ψ ∈ R
nψ × nx and [ . ] j denotes the jth row of a given matrix or

the jth element of a given vector.
Considering (1)–(5) for the MPC design, the following

minimisation problem can be formulated:

min
u(k + n k), n ≥ 0

max
[Aξ(k + n)(i) Bξ(k + n)(i)],

Pk + n ∈ ΩP, ξ(k + n) ∈ S
L,

i = θ(k + n k), n ≥ 0

J∞(k),

s . t . (1) − (5) .

(6)

in which the infinite horizon cost function is written as

J∞(k) = Ek ∑
n = 0

∞

x(k + n k)
Q(i)

2
+ u(k + n k)

ℛ(i)

2
, (7)

where Q(i) is the state weighting matrix and ℛ(i) is the input
weighting matrix, for the mode i = θ(k + n k). In this MPC ‘min–

max’ problem, the minimisation corresponds to choosing the time-
varying plant [Aξ(k + n)(i) Bξ(k + n)(i)], for all i ∈ M, n ≥ 0 using a
prediction model to achieve the largest or ‘worst-case’ value of
J∞(k).

Following [25], the definition for stochastic stability in this
study is given in terms of the following mean-square stability
notion.
 

Definition 1: The system given in (1) is mean-square stable for
a given initial state x0 and initial mode θ0 if E[xT(k)x(k)] → 0
whenever k → ∞.

2.1 Two control policies

The general structure of the control policies to be adopted in the
MPC strategy is similar to the one considered in [25]. At each time
step, the control history is defined by the composition of an
optimised value to be applied at the current step, followed by a
state-feedback control law for the next steps in the prediction
horizon

u(k + n k) =
u(k), n = 0;

Fξ(k + n)(θ(k + n k))x(k + n k), n ≥ 1;
(8)

where u(k) ∈ ℝnu is computed by solving (6) at each time step.
However, a key difference with respect to [25] is in the choice

of feedback matrices, for each mode i ∈ M, as convex
combinations of a finite number L of matrices

Fξ(k + n)(i) = ∑
ℓ = 1

L

ξℓ(k + n)Fℓ(i), i = θ(k + n k) ∈ M; (9)

such that the feedback gains Fℓ(i) are optimised together with u(k).
As an alternative – more similar to the one in [25] – it is

possible to use a control policy at each time step k given by

u(k + n k) =

u(k), n = 0;

Fξ(k + n)(θ(k + n k))x(k + n k),

1 ≤ n ≤ N − 1;

Fξ(k + N)(θ(k + n k))x(k + n k),

n ≥ N;

(10)

where N is the number of steps in the prediction horizon for which
feedback matrices must be optimised to solve problem (6). In this
particular case, considering θ(k + n k) = i, i ∈ M, each feedback
gain matrix Fξ(k + N)(i), for each mode i, optimised at n = N, is re-
used for n > N.

It is noteworthy that, in [25], a control policy similar to (10) is
employed, but based on optimising a feedback matrix for each time
step during N steps without relying on the idea of having convex
combinations of vertex matrices, such that the total number of
matrices to be considered is proportional to N (see [25, expression
(8)]). Here the number of matrices to be considered is proportional
to L in the cases (8) and (9), and proportional to L N in the case
(10). Numerical results (Section 5) indicate that the two approaches
proposed in this study can possibly enlarge the set of feasible
solutions to problem (6).

3 New LMI for MPC unconstrained case
In this section, new LMI conditions for the design of an
unconstrained MPC for MJLSs with uncertainties in both system
matrices and transition probabilities are presented, considering (8)–
(9).

The following affine parameter-dependent Lyapunov function
[26] is selected:

V(k + n) = x(k + n k) Pξ(k + n)(θ(k + n k))

2

, n ≥ 1. (11)
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For θ(k + n k) = i, i ∈ M, the symmetric positive definite
weighting matrix Pξ(k + n)(i) is defined by the convex combination

Pξ(k + n)(i) = ∑
ℓ = 1

L

ξℓ(k + n)Pℓ(i) . (12)

Following [25], the stochastic contractivity constraints are
given by

V(k + n) − Ek + n[V(k + n + 1)]

≥ x(k + n k)
Q(i)

2

+ u(k + n k) ℛ(i)

2

, n ≥ 1,
(13)

where i = θ(k + n k) will be enforced to obtain an upper bound on
the cost function (7). The new LMI conditions to check if the
stochastic contractivity constraints in (13) are satisfied are
presented in the next Lemma.

 
Lemma 1: The stochastic contractivity constraints in (13) are

satisfied if there exist matrices Gℓ(i), Yℓ(i), Wh(i), Zh(i), and
symmetric matrices Qℓ(i) > 0; for all ℓ, h = 1, …, L, τ = 1, …, Γ

and i ∈ M+
j, τ, with M+

j, τ = {i ∈ M; p(i, j; τ) > 0}, such that the
following LMIs are feasible:

Gℓ
T(i) + Gℓ(i) − Qℓ(i) * *

Aℓ(i)Gℓ(i) Q
^

ℓh(1) *

Aℓ(i)Gℓ(i) −Rℓh(i) Q
^

ℓh(2)

⋮ ⋮ ⋮

Aℓ(i)Gℓ(i) −Rℓh(i) −Rℓh(i)

Q
1
2(i)Gℓ(i) 0 0

ℛ
1
2(i)Yℓ(i) 0 0

−Yℓ(i) Z
^

ℓh(i) Z
^

ℓh(i)

… * * * *

… * * * *

… * * * *

⋱ ⋮ ⋮ ⋮ ⋮

… Q
^

ℓh(M) * * *

… 0 ℐ * *

… 0 0 ℐ *

… Z
^

ℓh(i) 0 0 Zh
T(i) + Zh(i)

≻ 0,

(14)

where

Q
^

ℓh( j) =
1

p(i, j; τ)
Qh( j) − Rℓh(i), j = 1, 2, …, M,

Z
^

ℓh(i) = Zh
T(i)Bℓ

T(i) − Wh(i),

Rℓh(i) = Bℓ(i)Wh(i) + Wh
T(i)Bℓ

T(i) .
 
Proof: For n ≥ 1, θ(k + n k) = i, suppose that the LMIs in (14)

are feasible for some symmetric positive definite matrices Qℓ(i)
and matrices Gℓ(i), Yℓ(i) of appropriate dimensions. Therefore, it is
possible to conclude that Gℓ

T(i) + Gℓ(i) − Qℓ(i) > 0. Since

[Gℓ(i) − Qℓ(i)]T
Qℓ

−1(i)[Gℓ(i) − Qℓ(i)]

= Gℓ
T(i)Qℓ

−1(i)Gℓ(i) − Gℓ
T(i) − Gℓ(i) + Qℓ(i) ≥ 0,

it can be concluded that
Gℓ

T(i)Qℓ
−1(i)Gℓ(i) ≥ Gℓ

T(i) + Gℓ(i) − Qℓ(i) > 0 and the LMIs in (14)
imply that

Gℓ
T(i)Qℓ

−1(i)Gℓ(i) * *

Aℓ(i)Gℓ(i) Q
^

ℓh(1) *

Aℓ(i)Gℓ(i) −Rℓh(i) Q
^

ℓh(2)

⋮ ⋮ ⋮

Aℓ(i)Gℓ(i) −Rℓh(i) −Rℓh(i)

Q
1
2(i)Gℓ(i) 0 0

ℛ
1
2(i)Yℓ(i) 0 0

−Yℓ(i) Z
^

ℓh(i) Z
^

ℓh(i)

… * * * *

… * * * *

… * * * *

⋱ ⋮ ⋮ ⋮ ⋮

… Q
^

ℓh(M) * * *

… 0 ℐ * *

… 0 0 ℐ *

… Z
^

ℓh(i) 0 0 Zh
T(i) + Zh(i)

≻ 0.

(15)

Now, multiplying (15) by

Gℓ
−T(i) 0 0 … 0 0 0

0 ℐ 0 … 0 0 0

0 0 ℐ … 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 … ℐ 0 0

0 0 0 … 0 ℐ 0

0 0 0 … 0 0 ℐ

on the left and by its transpose on the right yields

ℳℓh(i, τ) =

Qℓ
−1(i) * *

Aℓ(i) Q
^

ℓh(1) *

Aℓ(i) −Rℓh(i) Q
^

ℓh(2)

⋮ ⋮ ⋮

Aℓ(i) −Rℓh(i) −Rℓh(i)

Q
1
2(i) 0 0

ℛ
1
2(i)Fℓ(i) 0 0

−Fℓ(i) Z
^

ℓh(i) Z
^

ℓh(i)

… * * * *

… * * * *

… * * * *

⋱ ⋮ ⋮ ⋮ ⋮

… Q
^

ℓh(M) * * *

… 0 ℐ * *

… 0 0 ℐ *

… Z
^

ℓh(i) 0 0 Zh
T(i) + Zh(i)

≻ 0,

(16)

where Fℓ(i) = Yℓ(i)Gℓ
−1(i).

Taking the convex combination of (16) over ℓ associated with
time k + n, and over h associated with time k + n + 1; i.e.
computing the matrix

ℳ(i, τ) = ∑
h = 1

L

ξh(k + n + 1) ∑
ℓ = 1

L

ξℓ(k + n)ℳℓh(i, τ) ;
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since both ξ(k + n + 1), ξ(k + n) ∈ S
L and Mℓh(i, τ) ≻ 0, one has

that

ℳ(i, τ) =

Qξ(k + n)
−1 (i) * * …

Aξ(k + n)(i) Q
^
(i; 1) * …

Aξ(k + n)(i) −R(i) Q
^
(i; 2) …

⋮ ⋮ ⋮ ⋮

Aξ(k + n)(i) −R(i) −R(i) …

Q
1
2(i) 0 0 …

ℛ
1
2(i)Fξ(k + n)(i) 0 0 …

−Fξ(k + n)(i) Z
^
(i) Z

^
(i) …

* * * *

* * * *

* * * *

⋮ ⋮ ⋮ ⋮

Q
^
(i; M) * * *

0 ℐ * *

0 0 ℐ *

Z
^
(i) 0 0 Zξ(k + n + 1)

T (i) + Zξ(k + n + 1)(i)

≻ 0,

(17)

where

Q
^
(i; j) =

1
p(i, j; τ)

Qξ(k + n + 1)( j) − R(i), j = 1, 2, …, M,

Z
^
(i) = Zξ(k + n + 1)

T (i)Bξ(k + n)
T (i) − Wξ(k + n + 1)(i),

and

R(i) = Bξ(k + n)(i)Wξ(k + n + 1)(i)

+Wξ(k + n + 1)
T (i)Bξ(k + n)

T (i) .

Multiplying (17) by

ℐ 0 … 0 0 0

0 ℐ … 0 0 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 … ℐ 0 0

0 0 … 0 ℐ 0

0 0 … 0 0 ℐ

0 −Bξ(k + n)
T (i) … −Bξ(k + n)

T (i) 0 0

on the right and by its transpose on the left results in

Qξ(k + n)
−1 (i) *

Aξ(k + n)
e (i) p

−1(i, 1; τ)Qξ(k + n + 1)(1)

Aξ(k + n)
e (i) 0

⋮ ⋮

Aξ(k + n)
e (i) 0

Q
1
2(i) 0

ℛ
1
2(i)Fξ(k + n)(i) 0

… * * *

… * * *

… * * *

… ⋮ ⋮ ⋮

⋱ p
−1(i, M; τ)Qξ(k + n + 1)(M) * *

… 0 ℐ *

… 0 0 ℐ

≻ 0,

(18)

where

Aξ(k + n)
e (i) = Aξ(k + n)(i) + Bξ(k + n)(i)Fξ(k + n)(i) .

Let Pξ(k + n)(i) = Qξ(k + n)
−1 (i), for all n ≥ 1. By Schur complement,

matrix inequality (18) is equivalent to the following quadratic
Lyapunov-like inequality:

Pξ(k + n)(i)

− Aξ(k + n)
e (i)

T
∑
j = 1

M

p(i, j)Pξ(k + n + 1)( j) Aξ(k + n)
e (i)

− Q(i) + Fξ(k + n)
T (i)ℛ(i)Fξ(k + n)(i) ≥ 0,

which is equivalent to

Pξ(k + n)(i) − Aξ(k + n)
e (i)

T
×

Ek + n Pξ(k + n + 1)(θ(k + n + 1 k)) Aξ(k + n)
e (i)

− Q(i) + Fξ(k + n)
T (i)ℛ(i)Fξ(k + n)(i) ≥ 0.

Finally, by multiplying this last expression by xT(k + n k) on the
left and by x(k + n k) on the right, one obtains (13). □

Now, following the same ideas as in [25, Section 3], an upper
bound on the worst-case infinite horizon expected cost function in
(7) can be obtained, namely
J∞(k) ≤ ∥ x(k) ∥Q(i)

2 + ∥ u(k) ∥ℛ(i)
2 + Ek[V(k + 1)] ≤ γ1 + γ2, with

∥ x(k) ∥Q(i)
2 + ∥ u(k) ∥ℛ(i)

2 ≤ γ1 and Ek[V(k + 1)] ≤ γ2. In other
words, an upper bound is found if the following minimisation
problem is feasible at each time instant k

min
γ1, γ2, u(k), Gℓ(i), Qℓ(i), Yℓ(i)

γ1 + γ2

s.t. (14), (20) and (21)
(19)

with γ1 and γ2 satisfying the following LMIs:

γ1 * *

x(k) Q
−1(i) *

u(k) 0 ℛ−1(i)

⪰ 0, (20)
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γ2 *

Aℓ(i)x(k) + Bℓ(i)u(k) p
−1(i, 1; τ)Qℓ(1)

⋮ ⋮

Aℓ(i)x(k) + Bℓ(i)u(k) 0

… *

… *

⋱ ⋮

… p
−1(i, M; τ)Qℓ(M)

⪰ 0,

(21)

for all ℓ = 1, …, L, τ = 1, …, Γ and for all . Constraints (20) and
(21) are the same as those in (15) and (16) in [25], respectively. For
i ∈ M+

j, τ, the matrices Q1(i) in (16) in [25] were replaced in (21) by
Qℓ(i) for all ℓ = 1, …, L.

The closed loop stability condition under the MPC controller
design obtained via (19) is stated in the following theorem.

 
Theorem 1: Consider the unconstrained uncertain MJLS

described in (1)–(3). If there exists a feasible solution to the
optimisation problem (19) at instant k for initial state x(k) and
initial mode i = θ(k), there also exists a feasible solution at any
instant n + k ≥ k; and the MPC controller based on (19) guarantees
the stability of the closed-loop system in the mean-square sense.

The proof of Theorem 1 follows in a similar way the one in [25,
Theorem 1], and therefore it is omitted here.

4 New LMIs for MPC constrained case
In this section, a new set of LMIs with respect to the ones used in
[25, Section 4] are proposed, in the context of the constrained MPC
design for the MJLS (1)–(3), while considering (4) and (5).
Specifically, significant improvements can be achieved, as is
shown in Section 5, by considering (28) instead of inequalities [25,
expression (21)]. Unless stated otherwise, the same steps from [25,
Section 4] are followed below.

Consider the following Lyapunov function:

V
¯ (k + n) = ∥ x(k + n k) ∥Wξ(k + n)

−1
(θ(k + n k))

2
, n ≥ 1. (22)

For θ(k + n k) = i, i ∈ M, Wξ(k + n)
−1 (i) are symmetric positive

weighting matrices given by the convex combination
Wξ(k + n)

−1 (i) = ∑ℓ = 1
L

ξℓ(k + n)Wℓ
−1(i), such that Wℓ

−1(i) are
determined by solving the optimisation problem associated with
the MPC.

Furthermore, the following constraints on V
¯ (k + n) are

important to guarantee recursive feasibility as shown in [25]:

V
¯ (k + 1) ≤ 1; (23)

V
¯ (k + n + 1) ≤ V

¯ (k + n), n ≥ 1. (24)

Note also that inequality (5), for n = 1, is equivalent to

− x̄ j ≤ ψ j[Aℓ(i)x(k) + Bℓ(i)u(k)] ≤ x̄ j,

j = 1, …, nψ, ℓ = 1, …, L, i ∈ M;
(25)

and (4), for n = 0, can be written as

−[ū(k)(i)] j ≤ [u(k)(i)] j ≤ [ū(k)(i)] j,

j = 1, …, nu, i ∈ M .
(26)

The next Lemma presents LMI-based conditions that ensure
constraints (23) and (24) hold.

 
Lemma 2: The hard constraints on inputs given in (4) for n ≥ 1,

and on the states given in (5) for n ≥ 2, together with inequalities
(23) and (24) are satisfied if inequality (25) is true and there exist
symmetric matrices Wℓ(i), Uℓ(i), Xℓ(i), Gℓ(i), Yℓ(i), Zh(i) and

Wh(i), with i ∈ M+
j, τ = {i ∈ M; p(i, j; τ) > 0}, j ∈ M and

ℓ, h = 1, …, L; such that the following LMIs are feasible:

1 *

Aℓ(i)x(k) + Bℓ(i)u(k) Wℓ(i)
⪰ 0, (27)

Gℓ
T(i) + Gℓ(i) − Wℓ(i) *

Aℓ(i)Gℓ(i) Wh( j) − Rℓh(i)

−Yℓ(i) Zh
T
Bℓ

T(i) − Wh(i)

… *

… *

… Zh(i) + Zh
T(i)

≻ 0,

(28)

Uℓ(i) Yℓ(i)

* Gℓ
T(i) + Gℓ(i) − Wℓ(i)

≻ 0,

Uℓ(i) j j ≤ [ū(i)] j
2,

(29)

Xℓ(i) ψWℓ(i)

* Wℓ(i)
⪰ 0,

Xℓ(i) j j ≤ x̄ j
2,

(30)

where [ . ] j j denotes the jth diagonal element of the corresponding
matrices and

Rℓh(i) = Bℓ(i)Wh(i) + Wh
T(i)Bℓ

T(i) .
 
Proof: By Schur complement and assuming that (5) is satisfied

for n = 1; i.e. (25) is satisfied, then inequality (23) is a
consequence of inequalities (27). Constraints (4) for n ≥ 1 are
guaranteed by (29), and constraints (5) for n ≥ 2 are guaranteed by
(30) (see [25] for further details). Thus, it remains to prove that the
feasibility of the LMIs in (28) guarantees that the constraint (24) is
verified.

Assume that (28) holds for some symmetric positive definite
matrices Wℓ(i) and matrices Gℓ(i), Yℓ(i) of appropriate dimensions.
Similar to Lemma 1, it can be concluded that
Gℓ

T(i)Wℓ
−1(i)Gℓ(i) ≥ Gℓ

T(i) + Gℓ(i) − Wℓ(i) > 0 and (28) implies
that

Gℓ(i)Wℓ
−1(i)Gℓ

T(i) *

Aℓ(i)Gℓ(i) Wh( j) − Rℓh(i)

−Yℓ(i) Zh
T
Bℓ

T(i) − Wh(i)

… *

… *

… Zh(i) + Zh
T(i)

≻ 0

multiplying the last inequality by

Gℓ
−T(i) 0 0

0 ℐ 0

0 0 ℐ

on the left and by its transpose on the right, one obtains

Wℓ
−1(i) *

Aℓ(i) Wh( j) − Rℓh(i)

−Fℓ(i) Zh
T
Bℓ

T(i) − Wh(i)

… *

… *

… Zh(i) + Zh
T(i)

≻ 0,

(31)
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where Fℓ(i) = Gℓ
−1(i)Yℓ(i). Taking the convex combination of (31)

over ℓ and h, and associating them with ξ(k + n) and ξ(k + n + 1),
respectively, as it was done in the proof of Lemma 1, gives

Wξ(k + n)
−1 (i) *

Aξ(k + n)(i) Wξ(k + n + 1)( j) − R(i)

−Fξ(k + n)(i)
Zξ(k + n + 1)

T (i)Bξ(k + n)
T (i)

−Wξ(k + n + 1)(i)

… *

… *

… Zξ(k + n + 1)(i) + Zξ(k + n + 1)
T (i)

≻ 0,

(32)

where

R(i) = Bξ(k + n)(i)Wξ(k + n + 1)(i)

+Wξ(k + n + 1)
T (i)Bξ(k + n)

T (i) .

Multiplying (32) by

ℐ 0

0 ℐ

0 −Bξ(k + n)
T (i)

on the right and by its transpose on the left, it follows that

Wξ(k + n)
−1 (i) *

Aξ(k + n)(i)

+Bξ(k + n)(i)Fξ(k + n)(i)
Wξ(k + n + 1)( j)

≻ 0.

Using the Schur complement, this last expression implies that

xT(k + n k) Wξ(k + n)
−1 (i) − Aξ(k + n)(i)

+Bξ(k + n)(i)Fξ(k + n)(i)
T

× Wξ(k + n + 1)
−1 ( j)

× Aξ(k + n)(i) + Bξ(k + n)(i)Fξ(k + n)(i) x(k + n k) ≥ 0,

which corresponds to (24). □
The constrained MPC design can be solved as a minimisation

problem and can be seen as an extension of (19) with the inclusion
of Lemma 1 to ensure the stochastic contractivity constraints in
(13). In addition, to guarantee the satisfaction of the input
constraint at n = 0, and of the state constraint at n = 1, by properly
choosing u(k), it is necessary to explicitly consider (25) and (26).
Finally, the MPC controller is then obtained if the following
optimisation problem is feasible:

min
γ1, γ2, u(k), Gℓ(i), Qℓ(i),

Yℓ(i), Wℓ(i), U(i), X(i)

γ1 + γ2

s.t. (14), (20), (21), (25) − (30) .

(33)

The closed-loop stability condition under the constrained MPC
controller obtained via (33) is stated in the following theorem.

 
Theorem 2: Consider the constrained uncertain MJLS described

in (1)–(5). If there exists a feasible solution to the optimisation
problem (33) at time instant k for initial state x(k) and initial mode
i ∈ M, there also exists a feasible solution at any time instant t ≥ k;
and the MPC controller based on (33) guarantees the stability of
the closed-loop system in the mean-square sense.

The proof of Theorem 2 follows similar steps as Theorem 2 in
[25] and it is omitted.

4.1 Extension to the multi-step MPC case

Theorems 1 and 2 in this study can be adapted to encompass the
multi-step mode-dependent state-feedback control law case (10)
similar to the one investigated in [25].

A possible strategy to derive sufficient conditions to solve
problem (6) in this case is simply to rewrite some variables in a
proper way in Lemmas 1 and 2. Indeed, it is enough to replace, on
these lemmas, Yℓ(i) by Yℓ

n(i), Qℓ(i) by Qℓ
n(i) and Gℓ(i) by Gℓ

n(i), for
all ℓ = 1, …, L, n = 1, …, N and i ∈ M+

j, τ. Furthermore, in LMI
(14) Q

^

ℓh(α) is replaced by Q
^

ℓh

n + 1
(α) = p

−1(i, α; τ)Qh
n + 1(α) − Rℓh(i),

and in LMI (27) Wℓ(i) is replaced by Wℓ
1 (i).

Additionally, the Lyapunov matrices Pξ(k + n)(i) in (11) are
replaced by

Pξ(k + n)
n (i) = ∑

ℓ = 1

L

ξℓ(k + n)Pℓ
n(i), ∀i ∈ M, ∀n ≥ 1,

where, for n ≥ N, Pξ(k + n)
n (i) = Pξ(k + N)

N (i). Also, the same is done for
the Lyapunov matrices Wξ(k + n)(i) in (22), which are replaced by

Wξ(k + n)
n (i) = ∑

ℓ = 1

L

ξℓ(k + n)Wℓ
n(i), ∀i ∈ M, ∀n ≥ 1,

where, for n = N, j ∈ M, Wξ(k + n)
n (i) = Wξ(k + N)

N (i).
Taking these modifications with respect to n into account, new

possibly less conservative LMI based conditions for multi-step
mode-dependent state-feedback control can be derived just in the
same way as it was done in [25], with the possible disadvantage of
having to optimise a number of feedback matrices L times greater.

5 Numerical examples
This section presents three examples to illustrate the effectiveness
of the proposed results. In all the examples, the following discrete-
time MJLS borrowed from [25] with three operation modes is
considered.

For the mode i = 1, the system matrices are

A1(1) =
0 1

−2.6 3.3
, A2(1) =

0 1

−2.4 3.1
,

B1(1) =
0

1
, B2(1) =

0

1
.

For the mode i = 2, the matrices are

A1(2) =
0 1

−4.4 4.6
, A2(2) =

0 1

−4.2 4.6
,

B1(2) =
0

1
, B2(2) =

0

1
.

Also, finally for the mode i = 3, the system matrices are

A1(3) =
0 1

5.4 −5.3
, A2(3) =

0 1

5.2 −5.1
,

B1(3) =
0

1
, B2(3) =

0

1
.

The vertices of the transition probability matrix are

P
1 =

0.55 0.23 0.22

0.36 0.35 0.29

0.32 0.16 0.52

, P
2 =

0.79 0.11 0.10

0.27 0.53 0.20

0.23 0.07 0.70

.

For more details, the reader is referred to [25].

5.1 Example 1

The first example follows directly from the constrained one-step
(N = 1) MPC controller (controller III) in the example given in
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[25]. In this particular case, the maximum input is set to 1; i.e.
ū(i) = 1, i ∈ M; the initial state is x0 = [1 1]T, the initial mode is
θ0 = 1 and 250 possible realisations of the Markov chain were
considered.

Fig. 1 depicts the average state response of the MJLS under
controller III designed using the approach proposed in [25]
(henceforth called original) and using the control sequence
obtained via the optimisation problem in (33) in the MPC
approach. Note that a faster state response was obtained using the
proposed controller. The average control input is shown in Fig. 2. 

To further illustrate that the new controller achieves better
results, the control cost for both controllers was calculated and is
shown in Table 1. [Note that the results presented here are slightly
higher than the ones in [25] due to the longer simulation, 100
instead of 80, and to the larger number of realisations, 250 instead
of 100.] 

The proposed controller obtained by the minimisation problem
(33) was tested in many other examples adapted from [25] and the
performance was, at least, equal to the performance of the
controller in [25]. For instance, if N = 3 is chosen the results using
controller IV of [25] and the one obtained using the multi-step
MPC extension to (33), as discussed in section 4.1, are quite
similar with a greater advantage for the first as far as computational
cost is concerned.

5.2 Example 2

In this example, only a small change in the control matrix, B, of
one of the modes from the previous example is made, namely

B1(2) =
0.4

1

is considered instead of

B1(2) =
0

1
,

for one step (N = 1). In this new situation, the maximal feasible
region calculated using the proposed control obtained by (33) in
the MPC approach is larger than the region calculated using
controller III given in [25] (i.e. using the original) as can be seen in
Fig. 3. 

It is worth mentioning that using different solvers such as
lmilab, mosek [28] and sdpt3 makes no difference as far as finding
the feasible region is concerned.

In case the number of steps ahead is set to N = 3, the maximal
region calculated using the proposed multi-step MPC extension to
(33), as discussed in section 4.1, is again larger than the one using
controller IV in [25] as it can been in Fig. 4. Note that the maximal
feasible region becomes larger for both controllers as N increases. 

5.3 Example 3

In this example, the input matrix is again modified to show that the
proposed control strategy can still find a solution when the one in
[25] cannot. Fig. 5 depicts the maximal feasible region for both
methods in the case of one-step (N = 1). The region found using
the method in [25] is a small region around the origin. 

The modified input matrices used in this example are

B1(1) =
0.1

1
, B2(1) =

−0.1

0.9
,

B1(2) =
0.2

1
, B2(2) =

−0.1

1
,

B1(3) =
0.2

0.85
, B2(3) =

−0.2

0.9
.

In order to check if the maximal feasible region becomes larger
with the increase in the number of steps ahead, namely N = 3,
using the proposed multi-step MPC extension to (33), as discussed
in Section 4.1. Figure 6 shows an increase in the maximal feasible
region for the proposed approach in this study. Also, although an
increase in the region obtained for controller IV in [25] could be

Fig. 1  State response
(a) x1(k) and, (b) x2(k). Solid line indicates the average state response using controller
III in [25] and dash-dotted line indicates the average state response using (33)

 

Fig. 2  Control input: the solid line indicates the average control input
using controller III in [25] and the dash-dotted line indicates the average
control input using (33)

 
Table 1 Average control cost over 250 realisations for one-
step N = 1

[25] – Controller III Proposed MPC controller
0.1744 0.1599
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detected, the maximal feasible region is still quite small and resides
within a circular region with a radius equal to 1 × 10−4 around the
origin. 

6 Conclusions
In this study, the MPC problem for discrete-time MJLSs subject to
polytopic uncertainties both in system matrices and in transition

probabilities between modes was investigated. Results were proved
for the unconstrained and constrained cases, ensuring mean square
stability and satisfaction of hard constraints on system inputs and
states. An extension to the multi-step case studied in [25] was also
proposed. When compared to other numerical results available in
[25], the simulations in this study, using the proposed methods
illustrate the effectiveness of the new strategy in terms of cost,
stability, and feasibility.
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Fig. 3  Maximal feasible region, input constrained problem: ū(i) = 1,
∀i ∈ M, and N = 1. The parser Yalmip [27] and the solver sedumi were
used to plot the region

 

Fig. 4  Maximal feasible region, input constrained problem: ū(i) = 1,
∀i ∈ M, and the extension multi-step N = 3 in minimisation problem (33),
as discussed in Section 4.1, and controller IV in [25]. The parser Yalmip
[27] and solver sedumi were used to plot the region

 

Fig. 5  Maximal feasible region, input constrained problem: ū(i) = 1,
∀i ∈ M, with N = 1 in the approach [25]. The parser Yalmip and solver
lmilab were used to plot the region. The feasible region computed using the
method proposed in [25] is probably only comprised by the origin

 

Fig. 6  Maximal feasible region, input constrained problem: ū(i) = 1,
∀i ∈ M, and N = 3 for both the approach in [25] and in extension multi-
step (33), as discussed in Section 4.1. The parser Yalmip and solver lmilab
were used to plot the region. The maximal feasible region of the algorithm
proposed in [25] is a small region within a circular area with a radius
equal to 1 × 10−4 around the origin
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