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Abstract: In this study, several linear regression models were tested to predict the cumulative 30-day 
methane yield produced in mesophilic solid-state anaerobic digestion, employing diverse lignocellulosic 
biomass sources. Data collected from 13 studies were utilized, totalizing 86 experimental points, divided into 
regression and validation. Models containing higher order terms, the inverse of variables and interactions 
among all eleven input variables were tested. Simple linear models utilizing a single variable were unable 
to describe the methane production, giving an R² lower than 0.37. However, combinations of multiple 
variables and its inverses as only independent variable permitted an increase in simple linear models 
predictive capacity up to 63% of experimental variability. Higher order models presented an improvement 
in predictive quality: for a fourth-order multiple linear model, a validation R² of 0.8329 was achieved. In 
view of the obtained results, the proposed linear regression models consist in an attractive tool to propose 
experimental routines and to investigate new biomass sources for methane production using solid-state 
anaerobic digestion, significantly reducing time and cost requirements to experiments’ execution.
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digestion.
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INTRODUCTION

Anaerobic digestion (AD) is a natural process, in 
which organic matter is converted by microbes 
into gases which present energetic potential, 
such as methane (CH

4
) and hydrogen (H

2
), under 

oxygen-free conditions (Baêta et al. 2016). AD is 
currently explored to produce biogas using various 
lignocellulosic feedstock sources, such as fruit and 

vegetable waste, grape pomace, rice straw, wheat 

straw, yard waste, tree trimming and yard trimming 

(Brown et al. 2012, Liew et al. 2012, Zhao et al. 

2014, Sheets et al. 2015, Baêta et al. 2016, El 

Achkar et al. 2017, 2018, Pezzolla et al. 2017, 

Edwiges et al. 2018). 

Traditionally, biogas is produced by means of 

liquid anaerobic digestion (L-AD). However, recent 

studies have highlighted the alternative use of solid-

state anaerobic digestion (SS-AD), which occurs 

for solid concentration above 15% (Ge et al. 2016, 

Xu et al. 2016, Pezzolla et al. 2017). In comparison 
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to L-AD, SS-AD requires smaller reactor volume 

for the same total solids content and reduced energy 

demand for heating and mixture (Xu et al. 2014, 

Ge et al. 2016). Nevertheless, mecanism reactions 

in SS-AD, as well as the influence of total solids 
amount (TS), feedstock composition, heat and mass 

transfer and temperature, are not yet clear (Xu et al. 

2015). 

Studies have demonstrated the influence of 

variables related to biomass in SS-AD process, 

such as cellulose, hemicellulose and lignin 

amounts. Inoculum characteristics, including total 

ammonia nitrogen (TAN) and alkalinity, also affect 
biogas production. Besides, SS-AD performance 

exhibits dependence from process variables, such 

as total solids content, carbon-to-nitrogen ratio 

(C/N), feedstock-to-effluent ratio (F/E) and particle 
size (Li et al. 2011b, Xu et al. 2013, 2016, Ge et al. 

2016). 

The performance of SS-AD processes is 

commonly evaluated by biochemical methane 

potential (BMP) tests. BMP is defined as the 

maximum methane amount produced by gram of 

volatile solid (VS) in a laboratorial experiment 

(Angelidaki et al. 2009, Brown et al. 2012, Liew 

et al. 2012). However, in literature it is brought 

attention to the use of alternative methods to 

determine methane yield, especially due to the 

long time required to perform a BMP test (at least 

30 days) and intensive labor (Lesteur et al. 2010, 

Thomsen et al. 2014, Xu et al. 2014).

Mathematical models are an attractive 

alternative to BMP test, since these models allow 

a rapid estimation of methane production, reducing 

the requirement for laboral analyses (Thomsen et 

al. 2014, Xu et al. 2015, Kafle and Chen 2016). 
Linear regression models are relevant tools to 

propose experimental routines of little understood 

systems, since these models do not require a deep 

knowledge of the involved phenomena in the 

processes, which applies for solid-state anaerobic 

digestion employing lignocellulosic biomass.

In studies performed by Gunaseelan (2007), 

methane yield produced by L-AD from different 
biomass sources (fruit and vegetable solid wastes, 

sorghum and napiergrass) is predicted using linear 

regression models with basis on feedstock chemical 

composition. Simple linear regression models were 

inefficient to correlate methane yield and biomass 
individual components (carbohydrates, proteins, 

fibers, lignin and cellulose), highlighting the 

contribution of multiple factors to the process. On 

the other hand, regression models containing more 

than one independent variable – multiple linear 

regression (MLR) – were more effective to predict 
the methane yield.

Xu et al. (2014) considered for the first time 
the combination of feedstock characteristics and 

operational parameters in the development of MLR 

models for SS-AD from lignocellulosic biomass. 

The developed models considered solely variables 

linearly correlated to methane yield, which were 

determined by principal component analysis (PCA) 

method. Besides, the influence of terms containing 
interactions between the explanatory variables, as 

well as quadratic and cubic terms, was investigated 

only for terms containing feedstock-to-effluent ratio 
(F/E). This approach might have disconsidered 

relevant information, having in sight the probable 

non-linear relation between the input variables and 

methane yield, in addition to interactions among 

variables other than F/E ratio.

The present work proposes the development of 

linear regression models, in order to predict the 30-

day cumulative methane production during SS-AD, 

utilizing varied lignocellulosic biomasses. Models 

containing all eleven explanatory variables, its 

inverses and combinations were constructed. 

Combinations of all explanatory variables were 

tested, including those which presented a low linear 

correlation to methane yield. Besides, a data set 

containing more experimental points, comparing 

to previous publications, was used for models’ 
creation.
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MATERIALS AND METHODS

DATA COLLECTION

Data utilized in this study were collected from 

thirteen publications, which provided 86 points. 

Explanatory variables were divided into feedstock 

characteristics, inoculum characteristics and SS-AD 

process parameters. The feedstock characteristics 

applied to this study are volatile solids (VS), 

extractives, lignin, cellulose and hemicellulose. 

These variables are presented in Table I as ranges, 

grouped into each feedstock source. Inoculum 

characteristics are alkalinity and total ammonia 

nitrogen (TAN). SS-AD process parameters consist 

in feedstock-to-effluent ratio (F/E), particle size, 
carbon-to-nitrogen ratio (C/N) and total solids 

(TS). The response variable is defined as the 

30-day methane yield. Some experiments were 

performed in a longer period than 30 days, however, 

only yields until the 30th day were considered 

at this publication. Value ranges for inoculum 

characteristics, process parameters and yields are 

presented in Table II.

The data set presents a significant variability, 
covering a wide range in the variables (Tables I 

and II), permitting the application of proposed 

models for several experimental conditions. Due 
to reduced data availability in literature for a 
statistical test, factors such as inoculum source, 
digester type, operation temperature, co-digestion 
and biomass pretreatment were not considered in 
this study. Therefore, experimental data contain 
solely information of mesophilic SS-AD systems, 
with sewage sludge as inoculum source, non-
treated lignocellulosic biomass as feedstock and a 
TS content around 25%.

LINEAR REGRESSIONS AND STATISTICAL 
ANALYSIS

A statistical analysis was developed employing 
a correlation matrix (software R, version 3.3.1), 
constituted by several correlation coefficients (r) 
values, which calculate the linear dependence of 
each two variables, generally called x and y, as 
described by Equation (1).
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In this equation, 
ix  and iy  represent the i-th 

measured value of variables x and y, respectively; 
x and y  are the mean values for the variables, and  

TABLE I 
Ranges of feedstock characteristics.

Feedstock
VS Extractives Lignin Cellulose Hemicellulose

g/100g dry biomass

Corn stovera 89.00 - 95.97 6.50 - 9.90 15.20 - 21.70 33.70 - 42.23 15.30 - 22.87

Wheat strawb 83.40 - 94.68 13.40 - 17.00 15.20 - 22.10 32.30 - 37.90 15.20 - 21.80

Switchgrassc 89.90 - 96.90 11.90 - 12.10 17.80 - 19.30 31.00 - 32.30 16.70 - 19.50

Leavesd 86.90 - 93.01 34.70 - 36.02 22.70 - 23.10 11.10 - 12.20 4.20 - 11.50

Maplee 92.20 5.10 22.00 36.50 9.20

Pinef 90.50 14.20 28.30 26.00 4.40

Yard trimmingg 91.70 - 96.53 14.70 - 23.40 21.00 - 26.02 20.70 - 27.40 9.00 - 14.20

Tree trimmingh 98.90 - 99.60 9.60 - 17.00 27.10 - 32.90 23.30 - 30.80 11.50 - 15.90
a(Zhu et al. 2010, Li et al. 2011b, Brown et al. 2012, Liew et al. 2012, Xu and Li 2012, Shi et al. 2013, Xu et al. 2013); b(Cui et al. 
2011, Brown et al. 2012, Liew et al. 2012); c(Brown et al. 2012, Sheets et al. 2015); d(Liew et al. 2011, 2012, Brown et al. 2012); 
e(Brown et al. 2012); f(Brown et al. 2012); g(Brown et al. 2012, Liew et al. 2012, Xu et al. 2016); h(Cherosky 2012, Zhao et al. 
2014).
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n is the number of data points used to calculate the 

correlation coefficient.
The value of r varies between -1 and 1, being 

-1 when correlation is total and negative, and 1 

when correlation is total and positive. When the 

variables have no correlation, r equals 0. In order 

to evaluate whether linear correlation between two 

variables is significant, hypothesis tests, such as 
t-test, shall be performed. The test statistic ( *t ) in 

t-test is given by Equation (2):

*

2
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r n
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r

⋅ −
=

−
 (2)

This value has t-Student distribution with n –2 

degrees of freedom. p-value of  *t  is then compared 

to the p-value established for the test – which 

was adopted as 0.05 in this study – and, if it is 

smaller than the latter, the variables’ correlation is 
statistically significant. 

The coefficient of determination, denoted by 
2R , is calculated as described in Equation (3):
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In this equation, iy  represents the predicted 

value for i-th experiment. 2R  is a statistical measure 

of the dependent variable behavior which can 

be explained by the independent variables. 2R  

approaches 1 as the output variable variability is 

more accurately described by the regression.

F statistic describes the significance of a 

regression model. For models which have intercept 

different from 0, it is calculated as described by 
Equation (4):
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0F  has an F-distribution with p degrees of 

freedom 1 and n – p – 1 degrees of freedom 2.

When the intercept is defined as 0, F is given 

by Equation (5):
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TABLE II 
Ranges of inoculum, process characteristics and yields.

Feedstock
Alkalinity 

(gCaCO
3
/kg)

TAN (gN/kg)
F/E (VS

feed
/

VSeffluent)
Particle 

size (mm)
C/N ratio TS (%)

CH
4 
Yield (L/

VS
feed

)

Corn stovera 13.20 - 19.90 2.00 - 4.20 2.00 - 7.41 5 - 15 15.10 - 39.00 18.50 - 27.00 4.21 - 237.12

Wheat strawb 13.20 - 18.30 3.30 - 4.20 2.00 - 6.00 5 - 10 18.79 - 36.00 18.50 - 22.00 6.14 - 123.90

Switchgrassc 13.20 - 14.23 3.30 - 4.47 3.00 5 15.00 - 43.00 18.50 - 30.00 46.76 - 116.90

Leavesd 8.90 - 18.30 3.30 - 4.20 2.00 - 8.20 5 - 9 14.25 - 25.00 18.50 - 26.00 0.61 - 75.30

Maplee 13.20 3.30 3.00 5 50.30 18.50 46.90

Pinef 13.20 3.30 3.00 5 46.20 18.50 17.00

Yard 
trimmingg 13.20 - 18.30 3.30 - 4.30 0.26 - 5.00 5 - 9 11.85 - 31.92 18.50 - 35.00 0.00 - 227.81

Tree 
trimmingh 14.50 - 16.50 2.00 - 2.90 2.00 - 4.00

6.35 - 
12.70

17.80 - 34.90 13.90 - 20.00 9.50 - 19.06

a(Zhu et al. 2010, Li et al. 2011b, Brown et al. 2012, Liew et al. 2012, Xu and Li 2012, Shi et al. 2013, Xu et al. 2013); b(Cui et al. 
2011, Brown et al. 2012, Liew et al. 2012); c(Brown et al. 2012, Sheets et al. 2015); d(Liew et al. 2011, 2012b, Brown et al. 2012); 
e(Brown et al. 2012); f(Brown et al. 2012); g(Brown et al. 2012, Liew et al. 2012, Xu et al. 2016); h(Cherosky 2012, Zhao et al. 
2014).
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In this case, 0F  has an F-distribution with p 

degrees of freedom 1 and n – p degrees of freedom 

2.

Standard error of prediction (SEP) is a 

measurement of the predicted data deviation, 

comparing to the experimental data. It is calculated 

as described by Equation (6).
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Among the 86 data points obtained for this study, 

68 – which corresponds to approximately 79% of 

the data set – were used to construct the correlation 

matrix, as well as the statistical models, and the 

remaining 18 were used for models’ validation. 
The correlation matrix and the statistical models 

were built using commercial softwares. Validation 

points were randomly selected, in such a manner 

that values for each variable were comprised within 

regression interval for every variable.

Initially, first to seventh order single linear 

regression models were developed. Multiple linear 

regression models were also evaluated, from first 
to fourth order. All cases were tested by evaluating 

effects of the variables and its inverses. In some 
situations, predicted methane yield was found to 

be lower than 0. As it happened, the prediction 

was set to 0, since a negative methane yield is not 

experimentally possible. All terms were evaluated 

in relation to statistic significance, including the 
linear coefficient, and only statistically significant 
terms were included, adopting the criterion of 

p-value smaller than 0.05.

RESULTS AND DISCUSSION

CORRELATION MATRIX

Correlation coefficients obtained for the data 

employed in the models’ construction – regression 
data – are presented in Table III. Highlighted values 

are those which present a p-value smaller than 0.05, 

meaning that pair of variables have a statistically 

significant correlation one with the other.
Results suggest that two feedstock variables 

(VS and lignin) and two process parameters (F/E 

and C/N) are strongly correlated to methane 

yield. Also, all these variables have a negative 

correlation with the yield, indicating a decrement 

in methane yield as these variables are linearly 

increased. Xu et al. (2014) also observated a 

strong negative correlation between feedstock-to-

effluent ratio and methane production, using the 
Principal Component Analysis (PCA) method. This 

correlation is probably justified by the reduction 
of microbial population and alcalinity as F/E is 

increased (Shi et al. 2014). 

C/N ratio is also a relevant factor for the 

anaerobic digestion process, being its maintenance 

within an optimum range (typically 20-30) crucial 

to avoid excess of total ammonia nitrogen and 

volatile fatty acids (VFAs) in the digestor (Li et 

al. 2011a). Elevated TAN and VFAs concentration 

might diminish methanogenic activity, causing 

damages to AD process (Li et al. 2011a). In Xu et 

al. (2014), no significative correlation between C/N 
ratio and cumulative methane yield was observed. 

The authors justify such a result as a function of 

data collection, since most of collected C/N values 

are comprised between 18 and 30. According to 

Xu et al. (2014), C/N ratio plays little influence in 
methane yield, since it presents itself within the 

optimum range. In the present work, a significant 
experimental points quantity with C/N ratio below 

20 was employed, which might have been a cause 

for the negative correlation observed.

In literature, a consensus about the 

relationship between biomass constituents and 

methane production through AD can be observed 

(Gunaseelan 2007, 2009, Lesteur et al. 2010, Xu et 

al. 2014). Among the constituents, lignin content 

has been considered as one of the essential factors 

which restrain anaerobial biodegradation (Liew 
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et al. 2012, Xu et al. 2014). In the present study, 

cellulose content did not present a strong linear 

correlation with the response variable, differently 
from the observations in Xu et al. (2014), in which 

a strong linear correlation between cellulose and 

methane yield was observed. 

Fig. 1 illustrates the relationship between 

methane yield and each of the four variables 

with significant linear correlation, as presented 

in the correlation matrix (Table III). Plots in Fig. 

1 confirm the yield diminution for largest values 
observed in each explanatory variable, however, the 

intermediate points do not exhibit a clear tendency. 

These results indicate that the mathematical 

phenomenon description might be complex, and, 

therefore, correlation between exploratory variables 

might be significant. The results presented in Table 
III corroborate with this hypothesis, since several 

significant correlations (p-value < 0.05) between 

exploratory variables are exhibited. For example, 

correlations between cellulose and extractives 

and between cellulose and hemicellulose were 

evaluated as -0.94 and 0.81 respectively. Such 

results reinforce the necessity to investigate linear 

regression models containing higher order terms 

and interactions among input variables. Having in 

sight feedstock sources diversity and operational 

parameters considered in this story, as well as SS-

AD process complexity, the variables with little 

correlation to methane yield were not disconsidered 

for the models’ testing.

LINEAR REGRESSIONS

Several linear regression models were tested in 

order to predict the methane yield, namely: (i) 

simple linear regression; (ii) first-order multiple 
linear regression and (iii) higher-order multiple 

linear regression.

Table IV exhibits results for simple linear 

regression models, going from first to seventh 

order, including the exploratory variables and 

its inverses. With only one explanatory variable, 

the simple linear regression models were unable 

to describe methane yield as a function of any 

exploratory variable. Similar conclusions were 

verified in previous studies about methane yield 
prediction based on feedstock characteristics 

(Gunaseelan 2007, Xu et al. 2014) and operational 

parameters (Xu et al. 2014). 

The best result for validation involved the 

inverse of feedstock-to-effluent ratio, which gave 
an R² of 0.3601 and an SEP of 47.80 for validation 

TABLE III 
Correlation matrix for regression data.

Variable VS Ext. Lig. Cell. Hcell. Alk. TAN F/E Size C/N TS Yield

VS 1.00 -0.31* 0.24* 0.15 0.28* 0.19 -0.22 0.18 0.35* -0.04 -0.11 -0.26*

Extractives -0.31* 1.00 0.43* -0.94* -0.69* -0.35* 0.28* -0.10 0.14 -0.37* 0.13 -0.10

Lignin 0.24* 0.43* 1.00 -0.57* -0.64* -0.18 -0.17 -0.06 0.18 0.06 -0.17 -0.30*

Cellulose 0.15 -0.94* -0.57* 1.00 0.81* 0.26* -0.31* 0.18 -0.13 0.33* -0.10 0.18

Hemicellulose 0.28* -0.69* -0.64* 0.81* 1.00 0.27* -0.07 0.17 0.09 -0.08 0.14 0.23

Alkalinity 0.19 -0.35* -0.18 0.26* 0.27* 1.00 0.37* -0.22 0.10 -0.12 0.11 0.08

TAN -0.22 0.28* -0.17 -0.31* -0.07 0.37* 1.00 -0.27* -0.05 -0.37* 0.40* 0.02

F/E 0.18 -0.10 -0.06 0.18 0.17 -0.22 -0.27* 1.00 -0.01 0.56* -0.08 -0.59*

Particle size 0.35* 0.14 0.18 -0.13 0.09 0.10 -0.05 -0.01 1.00 -0.20 0.08 -0.03

C/N -0.04 -0.37* 0.06 0.33* -0.08 -0.12 -0.37* 0.56* -0.20 1.00 -0.27* -0.38*

TS -0.11 0.13 -0.17 -0.10 0.14 0.11 0.40 -0.08 0.08 -0.27* 1.00 -0.14

Yield -0.26* -0.10 -0.30* 0.18 0.23 0.08 0.02 -0.59* -0.03 -0.38* -0.14 1.00

*Significant correlations (p-value <0.05).
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Figure 1 - Methane yield as a function of (a) volatile solids, (b) lignin content, (c) feedstock-to-effluent ratio and (d) carbon-to-
nitrogen ratio.

TABLE IV
Summary of simple linear regression models.

Model
Significance 

F
R² 

regression
SEP 

regression
R² 

validation
SEP 

validation

Y = 154.65 - 24.722FE 1.35 . 10-7 0.3528 56.60 0.3310 48.87

Y = 45.733 + 61.211/FE 6.44 . 10-8 0.3598 56.29 0.3601 47.80

Y = 21.591 + 1721.4/(Ext . FE) 2.72 . 10-11 0.4918 50.15 0.6109 37.27

Y = 136.36 . Hcell/(Ext . FE) 1.19 . 10-15 0.5521 47.09 0.5821 38.63

Y = 3.8469 . Cell²/(Lig . FE) 7.23 . 10-16 0.5591 46.72 0.5300 40.97

Y = 19.350 + 6374.6 . Cell/(Lig² . TAN . FE) 3.23 . 10-14 0.5847 45.34 0.6369 36.01

Y = 18.814 + 281.53 . Hcell²/(Lig . TAN . FE . Size) 1.65 . 10-14 0.5930 44.89 0.6123 37.20

Y = 17.131 + 122.20 . Cell . Hcell . Alk/(VS . Lig . 
TAN . FE)

8.53 . 10-15 0.6009 44.45 0.6109 37.27

data (Table IV). For these regressions including 

only F/E or its inverse, the model containing the 

inverse presented better results for both regression 

and validation. Such a result highlights the gain in 

accuracy which can be obtained as the variables’ 
inverses are included to regression models.

Including more variables, the model which 

most accurately adjusted to regression data 

was a seventh-order model, which presented a 

regression  R² of 0.6009 and an SEP of 44.45. For 

validation, these values were 0.6109 and 37.27 

respectively (Table IV). This model includes 

cellulose, hemicellulose, alkalinity, volatile solids, 
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lignin, total ammonia nitrogen and feedstock-to-

effluent ratio. The model which most accurately 
adjusted to validation data was a fifth-order model, 
capable of predicting 63.69% of the results, with a 

SEP of 36.01 (Table IV). This model included as 

variables: cellulose, lignin, total ammonia nitrogen 

and feedstock-to-effluent ratio. Comparison plots 
between experimental and predicted data for both 

regression and validation for these two highlighted 

models are given in Fig. 2. Results for these 

mentioned models are considered to be relevant, 

since a simple linear model was employed. 

However, an improvement of the result is expected 

as multiple linear regressions are developed.

In Table V, results for multiple linear regression 

models are presented, and Fig. 3 exhibits plots 

comparing experimental and predicted yields for 

regression and validation of these models. The 

first-order MLR model is capable of describing 

71% of experimental variability – with a SEP of 

32.05 – and includes as explanatory variables: 

feedstock extractives, inoculum alkalinity and 

feedstock-to-effluent ratio. This result is already 
more accurate than the results obtained for simple 

linear regression. In order to improve the accuracy, 

higher-order models were tested. A fourth-order 

model presents an R² value of 0.8329 and an SEP 

of 24.42, and this result is considered as quite 

satisfactory, due to experimental methane yield 

broad range (0 – 237.12). The smallest SEP found 

by Xu et al. (2014) by multiple linear regression 

was 10.07, however, a range of 1-157.3 for yield 

was used. Also, the study developed by Xu et al. 

(2014) employed 40 data points for regression 

Figure 2 - Comparison between experimental and predicted yield for (a) regression and (b) validation of the simple linear model 
with the highest regression R², and for (c) regression and (d) validation for the model with the highest validation R². SEP: Standard 
error of prediction.
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and 9 for validation, and the present work used 68 

and 18 data points for regression and validation, 

respectively. Therefore, Xu et al. (2014) obtained 

lower SEP values, however, this present study 

employed more data points and a wider methane 

yield range, being more generalist.

Inclusion of terms involving interactions among 

input variables – cross terms – to linear regression 

models was necessary to improve prediction 

performance, possibly due to the complexity 

of SS-AD and the significant correlation among 
the process’ exploratory variables. Feedstock-to-

effluent ratio was found to be essential in methane 
prediction, since it composes all regression 

models presented in this study. Besides, cellulose, 

hemicellulose and extractives were recurrent, in 

particular for models which presented a significant 
prediction quality, i. e. validation R² greater than 

0.80.

Xu et al. (2014) evaluated simple and multiple 

linear regression models for a data basis similar to 

the one used in this study. The authors highlighted 

the relevance of F/E ratio, as well as lignin, cellulose 

and extractives contained in the feedstock, to 

TABLE V
Summary of models obtained by multiple linear regression.

First order

Y = -778.07 - 3.27107 Ext + 31.541Alk - 26.869FE + 7174.9/Alk + 42.551/FE

Significance F: 5.38  . 10-11

R² model: 0.6056

SEP model: 44.19

R² validation: 0.7124

SEP validation: 32.05

Second order

Y = -402.72 + 10.280Cell/FE - 36.402/FE² + 12.523Hcell/TAN + 8931.8/(Cell . Size) - 611.61Alk/TS + 1.0404Alk² + 9547.7/
TS

Significance F: 2.87 . 10-15

R² model: 0.7395

SEP model: 35.91

R² validation: 0.8100

SEP validation: 26.04

Third order

Y = -92.922 - 3452.2/FE - 34.099/FE² - 16.785*Ext + 6825.6/Cell + 22.999 . Hcell + 337580/(VS . FE) - 313.31Hcell . TAN/VS 
- 806.84FE/(Ext . TAN)

Significance F: 1.65 . 10-19

R² model: 0.8265

SEP model: 29.31

R² validation: 0.8303

SEP validation: 24.62

Fourth order

Y = -3699.0/FE + 0.0080732Ext² . Lig - 2.0551Ext² . Cell/VS - 36.940/FE² + 21.454Hcell + 361590/(VS . FE) - 289.43Hcell . 
TAN/VS - 764.84FE/(Ext . TAN)

Significance F: 1.52 . 10-20

R² model: 0.8310

SEP model: 28.93

R² validation: 0.8329

SEP validation: 24.42
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Figure 3 - Comparison between experimental and predicted data for regression and validation, for (a), (b) first-order, (c), (d) 
second-order, (e), (f) third-order and (g), (h) fourth-order models. SEP: Standard error of prediction.
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accurately estimate the cumulative 30-day methane 

yield by using multiple linear regression models. In 

addition, the interaction between lignin and F/E and 

the presence of quadratic and cubic terms involving 

F/E were crucial for prediction quality.

Although C/N ratio presented a significant 

correlation with methane yield, as demonstrated 

in the correlation matrix (Table III), this variable 

was not verified in any developed model with 

satisfactory predictive capacity. 

Results presented in this study corroborate 

with conclusions achieved by Xu et al. (2014) 

about the relevance of terms which contemplate 

non-linear correlation between the exploratory 

variables and methane yield, as well as interaction 

among two or more variables as a single term in 

the linear models, due to the complex nature of the 

SS-AD process.

Differently from published papers in literature, 
variables which did not present a significant linear 
correlation to methane yield (Table III) were 

included in tested models, and a positive effect of 
such an inclusion was observed in the polynomials 

predictive quality. These results confirm the 

initial hypothesis, which is the nontriviality in the 

exploratory variables selection to describe methane 

production in linear regression models, due to the 

complexity of SS-AD phenomenon. Other highlight 

is the achievement of models constructed by means 

of simple and multiple linear regression, involving 

terms containing multiple combinations among 

variables and its inverses, improving the predictive 

quality as the polynomial order was increased.

CONCLUSIONS

Simple and multiple linear models were developed 

to predict solid-state anaerobic digestion methane 

yield. Predictions models involved explanatory 

variables, its inverses and combinations, and the 

regression accuracy was improved for higher-

order models. The input variables considered as 

relevant were: feedstock-to-effluent ratio, amounts 
of cellulose, hemicellulose and extractives 

contained in the feedstock and total ammonia 

nitrogen concentration in the inoculum. Among 

those variables, F/E ratio was essential to methane 

yield prediction, being identified in all satisfactory 
models. The developed linear models might be 

used as references to propose experiments and to 

evaluate a biomass source potential to produce 

methane through SS-AD. In this manner, it is 

possible to reduce costs and time required to 

perform laboratorial studies.
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