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Abstract
Our success in understanding the retina is partially due to its layered structure, that
facilitates the study of circuit motifs and neuronal function. We can understand retinal
information processing in three broad stages: I. encoding of light stimuli via electrical
signals; II. signal processing by retinal circuits; and III. generation of the retinal code. In
this thesis, I focus in the study of the first and third stages from an information-theory
perspective.

On the first stage, we investigate color coding in zebrafish retinal circuits based on recent
experimental findings showing evidence of efficient coding. We propose a theoretical
framework to study the encoding performance of different types of outer retinal networks,
contrasting the role of excitation and inhibition. More specifically, we use a neuronal
population model with chromatic stimulation to study the dynamical properties of such
networks. Our findings suggest that inhibition plays a key role in encoding color information
reliably, which is not guaranteed in networks with strong excitatory inter-cone couplings.
Similarly, we find that networks optimized to encode aquatic spectral information are
similar to that observed in zebrafish, providing more general understanding of zebrafish-
like retinal circuits of color coding. These results provide quantitative evidence that
the zebrafish retina is adapted to efficiently encode information from the environment,
enhancing this animal’s color vision capabilities.

Studies in other species show that animals can adopt different strategies to improve
color vision. For instance, in birds and turtles oil droplets serve as a filter to provide a
plethora of distinguishable colors. Oil droplets and adapted retinal circuits have been
investigated separately. Nevertheless, studies on the combination of both remain unknown.
We implement a light transmission model of droplets to investigate the encoding perfor-
mance of zebrafish-like retinal circuits exhibiting efficient coding. Our findings suggest
that introducing droplets in a circuit for chromatic efficient coding creates a trade-off
between coding efficiency and color-space gamut. That is, droplets decrease the network
encoding performance while increasing the number of distinguishable colors.

Regarding the third stage of processing, we focus on the theoretical study of neuronal
interactions in the ganglion layer and their compressibility as a path to building simpler
models of neuronal activity. Conventional models of neuronal activity introduce assumptions
about neural interactions inspired in condensed-matter systems. But these models fail
when the number of neurons increases, leading to an exponential explosion in the number
of parameters. Here, we implement information theory and renormalization group ideas
to explore efficient descriptions of neuronal activity. More specifically, we apply the
compression-bottleneck formalism to a population of ganglion cells in the salamander
retina. We find that compression leads to a vast simplification in the description of neuronal



activity, outperforming conventional pairwise-interaction models. As a generalization, we
implement this approach in a population of hippocampus neurons, yielding broadly similar
results, suggesting that compressibility is a general feature of spiking neuronal networks.

Keywords: Neuronal code; Visual system; Retina; Efficient coding.



Resumo
O nosso sucesso no entendimento da retina se deve em parte à estrutura de camadas que
facilita o estudo de diferentes tipos de circuitos e funções neuronais. O processamento de
informação na retina pode ser entendido em três etapas: I. Codificação de estímulos visuais
em sinais elétricos. II. Processamento desses sinais por circuitos na retina. III. Geração do
código retinal. O meu trabalho de tese está focado no estudo da primeira e última etapa
desde uma perspectiva da teoria da informação.

Na primeira etapa, investigamos a codificação de cor pelos circuitos retinais do zebrafish,
baseados em resultados experimentais recentes que mostram evidencia de codificação
eficiente. Nós propormos um modelo teórico para estudar codificação em diferentes tipos
de redes retinais nas camadas externas, contrastando o papel da excitação e inibição. Os
nossos resultados sugerem que a inibição joga um rol importante na codificação reliable de
cor, o que não é garantido em redes com fortes interações excitatórias entre cones. De forma
similar, os nossos resultados mostram que as redes otimizadas para codificar informação
espectral em ambientes aquáticos são similares a aquelas observadas no zebrafish, validando
os resultados experimentais e provendo um entendimento mais geral de circuitos retinais
para codificação de cor com estruturas similares a aquelas do zebrafish. Estes resultados
sugerem que a retina do zebrafish poderia ter se adaptado para fazer uma codificação
eficiente da informação do ambiente, melhorando as capacidades de visão colorida.

Estudos em outras espécies mostram que os animais podem adoptar diferentes estratégias
para melhorar a visão colorida. Por exemplo, em pássaros e tartarugas, a existência de
gotas oleosas serve como um filtro para expandir a quantidade de cores distinguíveis. Gotas
oleosas e circuitos retinais adaptados tem sido investigados de forma separada. Porém
estudos sobre a combinação dos dois continuam desconhecidos. Nós implementamos um
modelo de transmissão de luz das gotas para investigar a codificação de circuitos similares
a aqueles do zebrafish que mostram uma codificação eficiente. Nossos resultados sugerem
que a introdução de gotas oleosas naqueles circuitos gera um trade-off entre codificação
eficiente e espaço de cor. Isto é, gotas oleosas diminuem a qualidade de codificação da rede
enquanto expandem o numero de cores potencialmente distinguíveis pelo animal.

Relacionado à última etapa de processamento retinal, o nosso trabalho se foca no estudo
teórico da atividade neuronal na camada ganglionar e a compressibilidade como um caminho
para construir modelos simples de atividade neuronal. Modelos convencionais de atividade
neuronal fazem suposições sobre interações neuronais inspiradas em sistemas de matéria
condensada. Mas, esses modelos falham quando o número de neurônios aumenta, levando a
um aumento exponencial no número de parâmetros. Neste trabalho implementamos ideias



de teoria de informação de grupo de renormalização para procurar descrições eficientes
da atividade neuronal. Mais especificamente, aplicamos o formalismo de compression-
bottleneck numa população de células ganglionares na retina da salamandra. Os nossos
resultados mostram que a compressão leva a uma grande simplificação da descrição da
atividade neuronal, ultrapassando os resultados de modelos convencionais tais como o
de interação entre pares. Como uma generalização, implementamos o nosso modelo de
compressão numa população de neurônios do hipocampo, achando de forma geral os
mesmos resultados. Isto leva a concluir que a compressão é uma característica geral de
redes neuronais de spikes.

Palavras-chave: Código neuronal; Sistema visual; Retina; Codificação eficiente.
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From an anthropomorphic perspective, the visual system represents one of the
most important sensory mechanisms in nature. Early efforts to grasp the principles behind
vision started with psychophysical experiments and anatomical studies of the retina,
leading to a greater understanding of perception and the neuronal basis for visual stimuli
processing. Similarly, functional studies of ganglion cells (GCs) in the inner retina, allowed
a detailed characterization of the neuronal processing of visual features, such as spatial
or temporal patterns [1–6]. Remarkably, the characterization of different types of retinal
neurons (approximately 100 in vertebrates) [7, 8], as well as the identification of specific
circuit motifs, such as the ON-OFF pathways [9–12], has led to a solid retinal model of
coding and processing of specific visual stimuli. On one hand, such a model has shown
high performance at predicting neuronal responses to visual stimuli [13,14], demonstrating
our good understanding of retinal information processing. On the other hand, it raises
questions, from an evolutionary perspective, as to why retinas have evolved such specific
features. The efficient coding theory has been quite successful at explaining, from an
information theory perspective, some of these features [15–21]. However, we still lack
answers to fundamental questions that seem to be consistent across species, such as the
existence of about a hundred of different types of retinal neurons.

The success in our understanding of the retina is partially due to its organized
and layered structure that allows a systematic study of the circuit motifs and neuronal
diversity. Broadly, we can divide the retina information processing into three stages: I.
Codification of visual information into electrical signals; II. signal processing by retinal
circuits, and III. generation of the retinal code. The first is done by photoreceptors (cones
and rods) and horizontal cells (HCs), the second by HCs, bipolar cells (BCs), and amacrine
cells (As) and the last by GCs. This thesis is focused in the study of the first and last
stages, both from an information theory perspective.

For the first stage, I focused in the study of photoreceptor codification from an
efficient coding perspective. Specifically, in the circuits in charge of chromatic codification,
that is, circuits that differentiate spectral features in the stimulus. Several studies have
linked the spatial distribution of photoreceptors in some species with the spatial distribution
of spectral information in their typical environments, supporting ideas of coding efficiency
[16, 22]. In this work, I investigate the encoding of such spectral information by retinal
circuits in the outer layer, showing that typical neuronal architectures can also be explained
by coding efficiency ideas.

For the last stage, I focused in the theoretical study of neuronal interactions and
their plausible compressibility as a path to building simpler models of neuronal activity. In
the last decade, we have seen a remarkable advance in experimental techniques that allow
us to observe the simultaneous activity of thousands of neurons, even across different brain
regions [23–26]. Nevertheless, we still lack a solid theoretical framework to understand such
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huge amounts of data. Conventional models of neuronal activity, inspired in condensed
matter systems, make assumptions on neuronal interactions. Nevertheless, these models fail
when the number of neurons dramatically increases, leading to an exponential explosion
in the number of parameters. Here, we implement ideas of information theory to explore
efficient approaches to describe neuronal activity accurately. More specifically, we use the
compression bottleneck formalism as a means to investigate compressibility in a population
of GCs in the salamander retina. As a generalization, we implement this approach in
a population of hippocampus neurons, yielding broadly similar results, suggesting that
compressibility is a general feature of spiking neuronal networks.
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1 Efficient coding in the outer retina

1Visual stimuli are discriminated by specific features such as contrast, color or
motion. In retinas, neurons make specific synaptic connections in a layered structure,
forming specialized circuits in charge of processing each of these features [28–30]. For many
species, color represents a crucial cue to thrive in nature [31–33]. For instance, for animals
living in dense forests, color allows the quick discrimination of mature fruits in a complex
background (see Fig.1a and ref. [34]). For other species, such as butterflies, color seems to
play a key role in crucial behaviors, such as mating [31,35].

The study of color processing in the retina has a long tradition, leading to a deep
understanding of the biological mechanisms behind it. Cones are the main photoreceptor
neurons in charge of codifying this feature (for more details on the biological structure of
the retina see Appendix B). Depending on the species, the retina can have from one to
twelve different type of photoreceptors, characterized by their spectral response functions
(see Fig. 1b and ref. [35]).

Discriminating colors requires at least two photoreceptor types with different
spectral responses. The reason is that a single photoreceptor is unable to differentiate
color from intensity. As an example, consider the situation shown in Fig. 1c. The black
curve represents the sensitivity function of a photoreceptor and the green and orange bars
represent two stimuli, S1 and S2, with different intensities. The photoreceptor responses,
R1 and R2, to these stimuli (white circles) is indistinguishable since it is proportional to
the sensitivity function multiplied by the stimuli spectral function.

Visual systems with more than one photoreceptor type can discriminate colors by
using principles of color-opponency [36,37], in which photoreceptor responses are subtracted,
eliminating information of the stimulus intensity. Several experiments have provided
evidence of the biological implementation of such opponency in retinal ganglion cells and
downstream neuronal circuits via receptive fields [38, 39]. More recent experiments [40, 41]
have shown evidence of early color opponency in the photoreceptor layer of certain species.
Here, we focus on zebrafish, a model organism of visual neuroscience. First, we propose
a theoretical model to investigate the neuronal dynamics of typical retinal architectures
in charge of chromatic encoding as a function of their synaptic couplings. Second, we
analyze our findings in the context of coding efficiency, by introducing the statistics of
chromatic information available in zebrafish environments. Finally, we compare zebrafish
photoreceptors with other possible combinations to test how efficient is this species in
1 Remark: Some results, text and figures are from the paper Data-driven models of optimal chromatic

coding in the outer retina, written in collaboration with Ronald Dickman. The article has available in
the preprint server bioRxiv [27].



Chapter 1. Efficient coding in the outer retina 19

Mouse

Human

Zebrafish

a) b) c)

Figure 1 –

a) Image of fruits in a forest background. Grey scale (above) and colored (below). b)
Spectral sensitivity curves of mouse (above), human (middle) and zebrafish (below). c)

Photoreceptor responses, R1, R2, to the two stimuli, S1, S2 with intensities 0.5 and 1 and
characteristic wavelengths 470nm and 530nm respectively.

codifying chromatic information.
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2 Efficient chromatic coding in retinal net-
works: zebrafish

Coding efficiency theory postulates that sensory circuits evolve and organize to
optimize the encoding and transmission of external information. The formalization of these
ideas started with Barlow’s hypothesis on redundancy reduction [42], where the definition
of redundancy was equal to the one introduced by Shannon [43,44], that is, the amount
of channel capacity, C, that remains unused when transmitting certain message with
entropy H in a certain time period T . The formalization of this idea for noiseless binary
channels – neurons– suggested that an efficient strategy to minimize such redundancy and
optimize the encoding process was to reduce spiking activity, such that it is mostly used to
codify rare events in nature. Further efforts to model more realistic scenarios lead to the
formalization of these ideas for noisy channels, allowing important predictions on neuronal
features such as receptive fields [20,45].

As mentioned, these works were based in the definition of redundancy by Shannon.
Nevertheless, some experimental and theoretical works evidenced the limitations of this
definition applied to the brain [46,47]. For instance, Simoncelli and others [48] investigated
the statistical structure of naturalistic images, evidencing a large characteristic redundancy
which explains why humans, for instance, are good at visual-prediction tasks1 [49]. Similarly,
work by Atick, Field, Bialek and others [49–53] demonstrated that to capture these
redundancies typically found in nature is necessary to use joint probabilities between
symbols –neurons–, accounting for higher order correlations. In a revised work [54], Barlow
discusses and integrates all these works, redefining the ideas of efficient coding in a Bayesian
probabilistic framework. He proposes that the goal of coding efficiency is still to identify
these high-order redundancies, encoding them efficiently to make more accurate and
efficient predictions about the world.

Although coding efficiency theory is still in progress, its prediction power in
sensory systems is notable [14,18,19,28,55]. For our purposes, we will adapt these ideas
hypothesizing that neuronal circuits evolve and adapt to efficiently extract redundancies
from their external world while preserving all relevant bits of information. For example,
some works [16,22] have shown that the spatial distribution of the spectrum in naturalistic
images typical of species such as mice is largely structured, exhibiting a gradient from
ultraviolet to green in the vertical axis (see Fig. 2a). Remarkably, experiments in the
outer layer of the mouse retina, evidence that the spatial distribution of photoreceptors
1 An example of one of these tasks is guessing the missing pixels of an incomplete image. Experiments [49]

show that humans have a good performance if using naturalistic images, otherwise their prediction
power quickly decreases.
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(UV- and green-sensitive) also follows such gradient, suggesting that retinas have evolved
to optimize the encoding of this natural spectral redundancy, as predicted by coding
efficiency theory [16, 22]. Other species, such as zebrafish, exhibit similar heterogeneity
in their photoreceptor spatial distribution, suggesting similar matches to their specific
environmental conditions [16,22].
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Figure 2 –

a) Above: spatial distribution of co-expression ratio of M-cones in the mouse retina; V:
ventral, D: dorsal, T: temporal and N: nasal. Below: Sketch of a typical natural scene
from the mouse view field. UV light in upper regions is more abundant than in lower

regions. b) Zebrafish photoreceptor responses. Above: sensitivity curves of red-, green-,
blue- and ultraviolet-sensitive cones. Below:in vivo cone responses (see ref. [40])

These experiments show evidence of efficient coding in the organization of retinal
circuits. From a functional perspective, the question is whether information in the stimuli
is efficiently encoded by retinal circuits. Recent experiments in zebrafish larva [40] show
the in vivo activity of photoreceptors in response to chromatic stimuli. The upper plot
of Fig. 2b shows the typical sensitivity curves of the four zebrafish photoreceptor types,
ultraviolet (UV), blue (B), green (G) and red (R) in isolation. The lower plot of Fig. 2b
shows the in vivo activity of the same photoreceptors, evidencing that at this early stage,
chromatic photoreceptor responses are already opponent, that is, inhibitory in some ranges
of the spectrum and excitatory otherwise.

In this chapter, we investigate typical outer retinal circuits enabling the above-
mentioned opponent signals. Specifically, we investigate the role of excitatory vs inhibitory
feedback mechanisms in a broad set of network architectures. Subsequently, we investigate
efficient coding in zebrafish by comparing these opponent photoreceptor responses with the
statistics of natural chromatic stimuli. Specifically, we use natural spectral correlations by
implementing a principal component analysis on hyperspectral data from zebrafish natural
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images. Finally, we search for efficient retinal networks that match typical chromatic
statistics of the zebrafish environment to quantify the efficiency of the zebrafish visual
system. In this work, we use the experimental data of zebrafish photoreceptors from [56],
and the hyperspectral data of zebrafish naturalistic images from [57,58].

2.1 Neuronal population model of the outer retinal layer
Broadly, outer retinal circuits for color discrimination tasks have N types of

photoreceptors and M types of horizontal cells (HCs), as sketched in fig. 3a. Photoreceptors
connect to HCs, leading to an inhibitory feedback mechanism that modifies the originally
independent photoreceptor responses. Networks with excitatory and inhibitory feedback
have additional cone-cone connections, as indicated by the dashed connection lines of
Fig. 3a. We denote networks with dominant inhibitory feedback and weak inter-cone
connections as Type I; networks with strong excitatory inter-cone connections are denoted
as Type II. In zebrafish, experimental observations show that there are N = 4 cone
photoreceptor types and M = 1 HC type that contribute to color discrimination circuits.
As shown in Fig. 2b, the original independent signals correspond to the sensitivity curves
(above), while the modified responses correspond to the in vivo observations, mediated by
one type of HC (below).

In retinas, photoreceptor types and their retinal connectivity determine the species-
specific color space [35, 59]. For instance, human retinas have three types of cone photore-
ceptors, sensitive to long-, middle-, and short-wavelength stimuli, that shape a trichromatic
visual system. Broadly, the number of cones in a vertebrate retina can be of the order
of millions, which can be further categorized into N populations; one for each cone type.
We can study the population dynamics of each population i via the average membrane
potential, hi(t). That is,

τi
∂hi

∂t
= −hi + h0 IG(t), (2.1)

where we have defined the resting potential at zero. The variable h0 on the right hand side
(r.h.s.) corresponds to the membrane potential change when applying a unit of current, that
is h0 = Ri u0; with Ri the membrane resistance and u0 = 1mA the current. The variable
IG corresponds to the dimensionless intensity of both internal and external currents in
the circuit. In the outer retina, external currents come from light stimuli while internal
currents come from synaptic connections with the other populations, that is,

IG = IS +
N∑
j

I
(E)
ij +

M∑
j

I
(I)
ij . (2.2)

The second term on the r.h.s. corresponds to synaptic connections between cone-
cone populations, which in the vertebrate retina are normally excitatory. The last term on
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the r.h.s. corresponds to the cone-HC synaptic connections, which are normally inhibitory.
Depending on the nature of the pre-synaptic population, excitatory or inhibitory, the
post-synaptic population might exhibit a different response, FE[u] or FI [h] respectively, so
that we can write Eq. 2.2 as,

IG = IS +
N∑
j

wijFE[u] +
M∑
j

wijFI [h], (2.3)

where the parameters wij correspond to the synaptic connection strengths. We multiply
both sides of Eq.2.1 by (h0)−1, such that we get,

τi

h0

∂hi

∂t
= −hi

h0
+ IG(t). (2.4)

To model the response functions, we must consider photoreceptor responses as a
function of the input intensity. Experimental works show that cone responses saturate at
strong stimulus intensity [60]. To model this, we use the function,

F [h] = tanh(γh + β), (2.5)

where γ and β are free parameters. Fig. 3b shows this function for three different sets
of parameters. In the subsequent sections, we set γ = 1 and β = 0; we show later that
changes in these values do not affect our conclusions.

Regarding the first term on the right hand of Eq. (2.2), we know that one way of
characterizing visual stimuli is via the spectral density, S(λ), which contains all relevant
chromatic information. To calculate the isolated cone response intensity, I(i)

s , to a stimulus
with spectral density S(λ), we integrate the product of Θi(λ), the corresponding sensitivity
function, and S(λ), over the spectrum:

I(i)
s = tanh

(∫
Θi(λ) S(λ) dλ

)
. (2.6)

Determining responses to specific wavelength intervals requires stimuli with a
narrow spectral distribution, conveniently represented by Gaussian distributions centered
at a characteristic wavelength λ0, and having a small standard deviation (see Fig. 3c),
that is,

S(λ) = α exp
(
−(λ− λ0)2

2σ2

)
, (2.7)

with α representing the normalized luminosity and σ the standard deviation. Fig. 3d
shows the current curve of three photoreceptors as a function of different color pulses, with
σ = 1nm and α = 0.5. To evidence the current dependence on the stimuli free parameters,
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Figure 3 –

a) Sketch of an outer retinal network with N types of cone photoreceptors and M types
of HCs. S(λ) represents the external stimuli, while Ii and I

′
i represent the independent

and modified cone responses respectively. b) Example of a green gaussian-like stimulus
with σ = 10, α = 1 and λ0 = 450nm. c) Response function F [h] = tanh(γh + β) with

three different sets of adjust parameters. d) Independent responses of photoreceptors to
narrow gaussian stimuli. Dashed curves are red, green and blue zebrafish sensitivity

curves and colored distributions correspond to five Gaussian stimuli normalized to exhibit
a maximum intensity of α = 0.5, with variance σ = 1nm. Markers correspond to the

independent responses, described by Eq. 2.6, of the three photoreceptors. Colored markers
show the response to the five plotted stimuli. e) Cone response as a function of the pulse

standard deviation, σ (dashed line), and intensity, α (solid line).

we used a light pulse centered at λ0 = 500nm, and calculated the current intensity I(i)
s as

a function of σ and α. Fig 3e shows the current behavior for both σ (dashed line) and α

(solid line). In the case of sigma, we observe saturation for σ > 2nm, while in the case of α,
we observe saturation at unity. Considering these results as well as our goal of modeling
responses to specific wavelengths, we use narrow standard deviation σ = 1nm. Regarding
the intensity parameter, we fix the value α = 0.5, such that we avoid any saturating
behavior and we keep the same light intensity over all different stimuli pulses.

Replacing Eqs. (2.2) and (2.6) into Eq. (2.4), we get the population equations,

τi
∂hi

∂t
= −hi + tanh

(∫
Θi(λ) S(λ) dλ

)
+

N∑
j

wijFE[h] +
M∑
j

wijFI [h], for i = 1, . . . , N,

(2.8)
where we have set h0 to unity without loss of generality. For simplicity, in the subsequent
text we refer to the variables hi and I0 as the membrane potential and the current
respectively. But, the reader must remember that these quantities are dimensionless as
follows from Eq. 2.8 and 2.4.
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2.2 Dynamics of outer retinal networks
In this work, we focus in dichromatic, trichromatic and tetrachromatic networks,

which are the most abundant across species. Nevertheless, it is worth to mention that
this network model can be applied to more complex networks with a larger number of
photoreceptors and HCs.

2.2.1 Dichromatic networks

As previously described, photoreceptors in dichromatic networks can be grouped
into two main populations characterized by their sensitivity function. Similarly, horizontal
cells can be grouped into one or more populations depending on their functional properties.
We focus in the dichromatic network sketched in Fig 3a, composed of two excitatory
populations, R and G, for red and green photoreceptors, and a single horizontal-cell
population, H. Following Eq. 2.8, we get,

τE
∂hR

∂t
= −hR + RR tanh

(∫
ΘR(λ) S(λ) dλ

)
+ wRGFE[hG] + wRHFI [hH ] (2.9)

τE
∂hG

∂t
= −hG + RG tanh

(∫
ΘG(λ) S(λ) dλ

)
+ wGRFE[hR] + wGHFI [hH ] (2.10)

τI
∂hH

∂t
= −hH + wHRFE[hR] + wHGFE[hG]., (2.11)

where Ri is the membrane resistance, which we set to unity [61]. Since HCs do not
interact directly with photons, the current terms contributing to the dynamics of the
membrane potential, hH , correspond to synaptic connections with cone populations. The
last two terms on the r.h.s. of Eqs. (2.9) and (2.10) correspond to excitatory and inhibitory
connections, respectively, with coupling parameters, wij, which are positive for excitatory
currents and negative otherwise; the first (second) subscript denotes the postsynaptic
(presynaptic) population.

The membrane time constants on the left hand side of Eqs. (2.9)-(2.11), τE for
excitatory neurons and τI for inhibitory neurons, introduce two time scales that are related
to neuron responses and the latency of the feedback mechanism. Some experimental
works, reviewed in ref. [62], show the existence of two fast feedback mechanisms from
HCs; ephaptic and proton-mediated feedback, highlighting the suitability of HC for tasks
involving fast adjustment of cone responses. We take this into consideration by assuming
that the membrane time constant of inhibitory neurons is much smaller than that of
excitatory neurons, i.e., τI ≪ τE, which allows us to simplify Eqs. (2.9)-(2.11) as,
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∂hR

∂t
= −hR + IR + wRHFI [ wHR FE[hR] + wHG FE[hG] ] + wRG FE[hG]

∂hG

∂t
= −hG + IG + wGHFI [ wHR FE[hR] + wHG FE[hG] ] + wGR FE[hR]

hH = wHR FE[hR] + wHG FE[hG] (2.12)

where we have set τE = 1.

As previously mentioned, the experimental observations of zebrafish outer retinal
layers lead us to ask whether networks of Type I (weak inter-cone connections) provide an
advantage in terms of chromatic information encoding and transmission. As noted above,
inter-cone gap-junctions and chemical synapses have been observed in some vertebrates;
the question is whether they are involved in chromatic discrimination. The set of equations
(2.12) provides a simplified framework to study the time evolution of population membrane
potentials in dichromatic networks as a function of the synaptic strengths, allowing us
to compare Type I networks, with only inhibitory feedback, and Type II networks, with
strong inter-cone connections. Comparing the dynamics of the two types of network should
provide insights into encoding performance.

A Type I network is characterized by weak inter-cone connections, that is, wRG =
wGR ≈ 0 in Eq. (2.12). This regime allows an analytic solution of the stationary state
as a function of the four remaining coupling parameters, and all the chromatic stimuli
illustrated in Fig. 3d, that is,

h∗
r = wRH h∗

G + wGH IR − wRH IG

wGH

. (2.13)

From Eq. (2.13), we conclude that for any set of parameters, there is a unique
stable fixed point in the two dimensional domain {hr × hg, ∈ R2}. Figure 4a shows a
typical phase portrait. We determine the stability of the fixed points via the Jacobian
matrix, that is,

J =
 −1 + wRH wHR sech2 hR sech2 D sech2 hG(wRH wHG sech2 D + wRG)

sech2 hR(wGH wHR sech2 D + wGR) −1 + wGH wHG sech2 hG sech2 D.


=

J
(1)
11 + J

(2)
11 J

(1)
12 + J

(2)
12

J
(1)
21 + J

(2)
21 J

(1)
22 + J

(2)
22

 , (2.14)

with D = tanh(wHR FE[hR] + wHG FE[hG]) + 1.

The trace of this matrix is negative for all coupling parameters. On the other hand,
the determinant sign depends on the coupling parameter strengths. If Det < 0 the fixed
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(a, b) Phase portraits of Eq. 2.12 for a dichromatic network with red and green
photoreceptors, and with the parameters wHR = 1.5, wRH = −1.7,

wHG = 0.9, wGH = −1.1, S(λ) = N (λ = 380, 1), and a) wGR = wRG = 0 corresponding to
Type I, and b) wGR = wRG = 1.8, corresponding to a Type II network. c) Bifurcation

diagram of hR for the inter-cone coupling parameters wGR = wRG = [1, 3.5]. d)
Trichromatic sketch of a fully connected network with an external stimulus, S(λ). R: red

cones, G: green cones, B:blue cones, H: horizontal cells. Solid black arrows represent
inhibitory synaptic conections on cones from horizontal cells. Dashed black arrows
represent excitatory synaptic connections between cones. e) Proportion of networks

exhibiting multistability. Color intensity represents the normalized sum over the discrete
interval wRG = [0.1, . . . , 2.0], for a fixed combination of the excitatory parameters, wGR

and wBR. All points correspond to the same combination of inhibitory parameters used
before.

point is classified as a saddle point. Otherwise, it is a stable sink. The existence of a single
fixed point implies that the stationary response to a stimulus S(λ) is unique and inde-
pendent of the initial state. Our results show that regardless of variations in the coupling
strengths among neuronal populations, networks with only inhibitory feedback exhibit
a unique response to a given chromatic stimulus, hence reliable encoding of chromatic
stimuli. In the outermost retinal layers, this is desirable to avoid ambiguity in chromatic
encoding and transmission.

We now ask whether such behavior persists in a Type II network. We calculate the
fixed points of Eqs. (2.12) by determining the intersection of the nullclines minimizing the
cost function,

L2 = (−hR + IR + wRHFI [ wHR FE[hR] + wHG FE[hG] ] + wRG FE[hG])2

+ (−hG + IG + wGHFI [ wHR FE[hR] + wHG FE[hG] ] + wGR FE[hR])2
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We calculate the solutions for all coupling parameters in the discrete space
wij ∈ [0.1, 0.2, . . . , 10.0) for excitatory and wij ∈ (−10.0, . . . ,−0.1, 0) for inhibitory param-
eters. This parameter range is sufficient to investigate the regimes of strong and medium
excitatory connections, wRH/wRG ≪ 1 and wRG/wRH ≈ 1 respectively. As shown in Figures
4b-c, we find that, in contrast to Type I networks, Type II networks with strong inter-cone
couplings (compared with HC-couplings), can exhibit three fixed points, two of them stable
and one saddle node. Under this scenario, a photoreceptor may exhibit multiple responses
to the same stimulus, which, as previously mentioned, could lead to misleading or ambigu-
ous chromatic signals. Networks with other photoreceptor combinations, such as red-blue
and green-blue, have similar equations and solutions. Fig. 5 shows that such combinations
lead to similar phase portraits and dynamical properties, reinforcing our general conclusion.
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Figure 5 –

a) Green and blue zebrafish photoreceptor sensitivity curves. (b, c) Phase portraits of Eq.
(2.12) for a dichromatic network with green and blue photoreceptors, and with the

parameters a) wHG = 0.9, wGH = −1.1, wHB = 1.5, wBH = −1.5, wBG = 0 and
S(λ) = N (λ = 412, 1), corresponding to a Type I network, and b)

wHG = 0.9, wGH = −1.1, wHB = 1.5, wBH = −1.5, wBG = 1.6 and S(λ) = N (λ = 412, 1),
corresponding to a Type II network. d) Bifurcation diagram as a function of the coupling
parameter wGB = wBG. e) Red and blue zebrafish sensitivity curves. (f, g) Phase portraits
of Eq. (2.12) for a dichromatic network with red and blue photoreceptors, with parameters
a) wHR = 0.9, wRH = −1.1, wHB = 1.5, wBH = −1.7, wRB = 0 and S(λ) = N (λ = 390, 1),

corresponding to a Type I network, and b) wHR = 0.9, wRH = −1.1, wHB = 1.5,
wBH = −1.7, wRB = 1.7 and S(λ) = N (λ = 390, 1), corresponding to a Type II network.

h) Bifurcation diagram as a function of the coupling parameter wRB = wBR.

2.2.2 Trichromatic networks

The preceding study of networks with two populations of photoreceptors sensitive
to different spectral ranges, allows extrapolation of our results to other species with dichro-
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matic retinas. Generalizing these results to species with more complex visual systems,
however, is not straightforward. We advance in this direction by investigating trichromatic
systems, expanding considerably the diversity of color-vision systems. The trichromatic
networks studied here include long- (R), middle- (G) and short-wavelength (B) photore-
ceptors, and a single horizontal cell population (H) that provides inhibitory feedback to
cone populations (see Fig.5d). Assuming that, as in the dichromatic network, τI ≪ τE,
the equations of motion are,

τE
∂hi

∂t
= −hi + I i

s + wiHFI

∑
j

wHjFE[hj]
+

∑
j

wijFE[hj], i, j = {R, G, B},

FE[h] = FI [h] = tanh h + 1 (2.15)

We first investigate whether trichromatic networks with dominant inhibitory feed-
back (Type I) are also advantageous for chromatic encoding, as found in dichromatic
networks. The nullcline equations of Type I networks reduce to,

hR = wRHhG + (wGH IR − wRH IG)
wGH

hG = wGHhB + (wBH IG − wGH IB)
wBH

.

Similarly to the dichromatic case, type I networks exhibit a unique response to the
same chromatic stimulus regardless of the coupling parameters strength. To investigate
Type-II networks, we characterize the fixed points of Eq. (2.15) for a discrete set of
coupling combinations and for all the chromatic stimuli considered previously. In contrast
to dichromatic networks, such fixed points, if any, are embedded in a three-dimensional
phase portrait. To locate the fixed points, we minimize a cost function similarly as in
the dichromatic case, L, that is zero if and only if ḣi = 0 for all three photoreceptor
populations in Eq. 2.15, that is,

L =
∑

i

−hi + Ii + wiHFI

∑
j

wHjFE[hj]
+

∑
j

wijFE[hj]
2

. (2.16)

We use a gradient-descent algorithm to find the global minima of L for each
parameter combination. It is easy to verify that, depending on the parameter combination,
the network can exhibit one, two or three fixed points. Similarly to the dichromatic case,
multiple fixed points are common in Type II networks with strong inter-cone connections.
To see this in detail, note that Eq. 2.16 has six excitatory parameters corresponding to
the couplings between red, green and blue cone populations. Considering a symmetric
interaction between populations, only three free parameters, wRG = wGR, wRB = wBR
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and wGB = wBG, remain. For each combination of inhibitory couplings previously studied,
we calculate the number of fixed points for all combinations of these three remaining
excitatory couplings, finding that the stronger the excitatory parameters, the larger the
likelihood of bistability. We summarize this result in the intensity plot of Fig. 5e. For each
fixed combination of the parameters wGB and wRB, we count the number of networks ex-
hibiting multiple stable fixed points when varying the discrete values wRG = [0.1, 0.2 . . . 2].
We find that networks with at least one strong excitatory inter-cone coupling tend to
exhibit multiple responses to the same chromatic stimulus. This behaviour is similar for
all Gaussian stimuli studied.

We conclude that adding a third type of photoreceptor to the outermost retinal
networks does not change our general conclusion regarding population interactions. In
fact, these results support the hypothesis that networks with predominantly inhibitory
feedback provide an advantage for reliable and unambiguous chromatic encoding.
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Figure 6 –

Sensitivity curves (left) and number of networks with multiple fixed points when varying
wRG = [0, 0.1, . . . , 2.0), for the fixed parameters Wrh = Whg = 0.1, Whr = Wbh = 0.2 and
Wgh = Whb = 0.3, for: (a) Honeybee. (b) Human. (c) Spider. (d) Damselfish. (e) Giant

clam. (f) Triggerfish. Data on sensitivity curves were extracted from ref [35].

As previously discussed, different species might exhibit combinations of opsins
with other spectral sensitivity ranges. To test whether our results depend on the specific
choice of opsins, we study six different trichromatic species, assuming the same network
architecture. For type I networks, the analytic solution remains the same as in Eq. (2.16).
Changes across species will be reflected in the stimuli current, IS, which does not change
the number of fixed points. For type II networks, the values of these external currents
contribute to determine the bistability. Nevertheless, in all cases we observed networks
exhibiting a bifurcation as a function of the excitatory inter-cone synaptic strength (see
Fig. 6).
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2.3 Optimal architectures of retinal circuits for chromatic encoding
In the previous section, we focused on the synaptic strengths between populations

that yield stable responses. In this section, we use both zebrafish in vivo photoreceptor
activities [40] and hyperspectral data –spectral measurements from ≈ 300nm to 700nm in
steps of 1nm per pixel– from zebrafish environments [63] to investigate the architecture of
outer retinal networks from the viewpoint of efficient coding and transmission of chromatic
information.

The lower plot of fig. 2b shows the in vivo spectral responses of zebrafish pho-
toreceptors. Remarkably, interactions with horizontal cells cause green and blue neurons
to exhibit opponent responses to chromatic stimuli, which as discussed above, suggests
early optimization of chromatic information transmission. Adopting this optimization
hypothesis, we expect: (1) Reduced redundancy of network responses in spectral space [37];
(2) efficient coding of the environmentally available chromatic information. As a proxy for
optimal chromatic encoding, we use a principal component analysis of the hyperspectral
data of aquatic naturalistic images typical of zebrafish environments [63].

a) b) c)

Figure 7 –

a) Examples of natural images from zebrafish environment. Each image contains 1000
sample points of the hyperspectra. b) Z-normalized hyperspectral data from a total of 31
images, with 1000 sample points each. c) First three principal components (PC1, PC2 and

PC3) of the hyperspectral curve. Explained variance:
{PC1} = 0.88, {PC1, PC2} = 0.93, {PC1, PC2, PC3} = 0.97 .

Fig. 7a shows two examples of typical natural images from zebrafish environments.
Each image contains a total of 1000 sample points with the corresponding hyperspectral
measure. The total data set contains 31 images, for a total of 31000 sample points. Fig.
7b shows the average spectrum curve. We calculated the principal components of the
hyperspectal data by diagonalizing the covariance matrix between spectral intervals over
all sampling points. We find that the first three principal components (PC1, PC2 and
PC3) explain ≈ 0.97 of the hyperspectral data variance, in accordance with the analysis of
ref. [40]. Figure 7c shows these three principal components (PC1-PC3), the first without
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zero-crossings, the second with one zero-crossing, and the third with two. Comparing
the in vivo responses (lower plot of Fig. 2b with these principal component curves, we
observe that the red and green cone responses match the first two principal components
qualitatively, supporting the hypothesis of efficient coding of chromatic stimuli in zebrafish
outermost retinal layers.

We begin our analysis by studying the dichromatic network described by Eq.
(2.12). We adjust the coupling parameters, wij, such that the spectral responses of the
photoreceptor populations, hR and hG, match the first two principal components, which
together explain more than 91% of the hyperspectral data variance. (We use the L-BFGS-B
minimization algorithm to obtain the coupling parameters yielding the best match). Figure
8c shows the solutions of Eq. 2.12 for a network with only inhibitory feedback (in red
and green), with both a no zero-crossing and a single zero-crossing curve, as expected for
color-opponent signals [37,64]. The inset shows the probability densities of the coupling
parameter absolute value |wij| of Eq. 2.12 over different basins of attraction. Similarly, we
adjust the parameters of a network with both inhibitory feedback and excitatory inter-cone
connections; in all cases, the optimal excitatory couplings are weak or negligible, leading
to results similar to those found for the inhibitory network.
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Figure 8 –

a) in vivo responses of red, green and blue zebrafish opsins [58]. b) Upper panel:
Hyperspectral data from 31 images of aquatic natural images typical of the zebrafish

larvae environment [58]. Lower panel: First three principal components obtained from the
hyperspectral data. (c, d, e) Stationary solutions of Eq. (2.12) for the optimal coupling
parameters of a dichromatic network with a) red and green b) red and blue c)green and
blue photoreceptors. Inset a) shows the distributions of the optimal parameters (absolute
value, |wij|) over 20 repetitions of the gradient descent algorithm starting from different

initial values; inhibitory parameters wiH are negative by definition; we used a KDE
method to infer the curves. Red, green and blue curves correspond to the stationary

solutions of the membrane potentials hr, hg and hb, respectively. Dashed curves
correspond to the principal component curves in b.

As expected from our previous dynamical analysis, we find a unique stationary
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fixed point for all networks that exhibit the expected opponent chromatic responses. This
means that the membrane-potential dynamics is the same (at least for τI ≪ τE) for any
initial condition, allowing reliable information encoding of chromatic stimuli. We also
studied other opsin combinations, leading to the results shown in figures 8(d, e). We
observe that having only blue and red photoreceptors provides a qualitatively good fit to
the first principal component, but not to the second. Moreover, dichromatic networks with
only blue and green photoreceptors cannot fit either of the first two principal components.
Contrasting the results for these two-photoreceptor combinations, we conclude that dichro-
matic networks with long -and middle-range photoreceptors have the best performance
when codifying chromatic information typical of the zebrafish environment.

Next, we analyze trichromatic networks, restricting the parameter space to repro-
duce the expected opponent responses, as we have done for dichromatic networks. Following
the same procedure as before, we fit the membrane potential response of each photoreceptor
population, hR, hG and hB, to the first three principal components of the naturalistic
images. As shown in Fig. 8a, the optimized network yields a poor fit to the third principal
component, and the network responses do not match qualitatively the expected efficient
responses. Instead, we find a single zero-crossing in the blue photoreceptor response curve.
We note, though, that in vivo recordings of photoreceptor responses do not match this
third principal component either, as shown in Fig.8a.

For trichromatic systems, type I and type II networks are unable to reproduce all
three principal components, leading as to ask whether us to ask whether an expanded
network, e.g., with a second parallel inhibitory feedback or with a fourth type of photore-
ceptor, is capable of realizing this task. We begin by including a second type of horizontal
cell, H2, integrating responses from only two of the three cone populations (see Fig. 9b),
that is,

τE
∂hi

∂t
= −hi + I i

s + wiH1FI [hH1 ] + wiH2FI [hH2 ] +
∑

j

wijFE[hj], i, j = {R, G, B},

hH1 = wH1R FE[hR] + wH1G FE[hG] + wH1B FE[hB]
hH2 = wH2R FE[hR] + wH2G FE[hG]. (2.17)

Repeating the previous analyses, we find that networks with two parallel inhibitory
feedback mechanisms do not eliminate the errors in fitting of the third principal component.
To study whether a fourth photoreceptor type would improve the network response, we
include an ultraviolet photoreceptor in our formalism (see Fig. 9a), that is,
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Figure 9 –

Tetrachromatic network: a) sketch of a network with an external stimulus, S(λ). R: red
cones, G: green cones, B:blue cones, U: uv cones, H: horizontal cells. Solid black arrows
represent inhibitory synaptic conections between cones and horizontal cells. Dashed black
arrows represent excitatory synaptic connections between cones. b) Sensitivity functions
of independent red, green, blue and uv zebrafish opsins. d)in vivo responses of red, green,
blue and uv zebrafish opsins. c) Stationary solutions for the optimal coupling parameters
of the tetrachromatic network sketched in a). Red, green and blue curves correspond to
the stationary solutions of the membrane potentials hr, hg and hb, respectively. Dashed
curves correspond to the principal component curves of Fig. 3b. d) Trichromatic network
sketch of a fully connected network with an external stimulus, S(λ), and two inhibitory
feedback mechanisms. R: red cones, G: green cones, B:blue cones, H1: first population of
horizontal cells, H2: second population of horizontal cells. Solid black arrows represent
inhibitory synaptic conections between cones and horizontal cells. Dashed black arrows

represent excitatory synaptic connections between cones.

τE
∂hi

∂t
= −hi + I i

s + wiHFI [hH ] +
∑

j

wijFE[hj], i, j = {R, G, B, U},

hH = wHR FE[hR] + wHG FE[hG] + wHB FE[hB]. (2.18)

As shown in Fig. 9b, the responses of both the functional and isolated UV cones
are similar, suggesting the absence of significant feedback from other populations to UV
cones. We include a new population (U) that feeds the HC population (H), but does not
receive excitatory/inhibitory feedback. The equation of motion remains the same as Eq.
2.15, but now with i, j ∈ {R, G, B, U}, and WUi = WUH = 0. As shown in Fig. 9c, the
gradient-descent algorithm to fit the coupling parameters yields a poor fit to the third
principal component, as in the trichromatic network. We also included unilateral excitatory
connections WUi, finding a maximum improvement of < 2% in the blue photoreceptor
response. This suggests that ultraviolet cones do not play a key role in the chromatic
opponent process of red, blue and green zebrafish photoreceptors. We conclude that adding



Chapter 2. Efficient chromatic coding in retinal networks: zebrafish 35

such a UV cone population has little effect on the functional responses of the other cones,
in agreement with the experimental analysis of zebrafish by Yoshimatsu et al. [40].

From these results we conclude that in zebrafish retinas, trichromatic networks
are incompatible with obtaining the first three principal components of environmental
chromatic data at the first synaptic connection. This motivates us to add a second synaptic
connection, or network layer, to verify whether such a network can be optimized to
reproduce the expected results. Figure 10b shows a sketch of such a network, with a second
type of horizontal cell, H2∗, integrating the first layer responses, and providing feedback
only to population B, which is the one unable to fit the third principal component. The
blue cone population response, h∗

B, at the second layer is described by equation,

∂h∗
B

∂t
= −h∗

B + hB + wH∗
2 R hR + wH∗

2 G hG. (2.19)

with wH∗
2 R, wH∗

2 G < 0. Figure 10c shows the responses of the optimal network after learning
the parameters of equations 2.15 and 2.19. The improved agreement between response
curves and PCs suggests that obtaining the three optimal chromatic channels requires a
second synaptic contact (or network layer), including a second type of inhibitory neurons.
Although we modeled this population as a second type of horizontal neuron, other neuronal
populations in inner retinal layers, such as bipolar cells, might also realize this task. We
also stress that the first three principal components explain more than 97% of the hyper-
spectral data variance, but that the third PC alone explains less than 6%. Consequently,
despite the fact trichromatic networks with a unique inhibitory feedback mechanism
do not reproduce the expected third principal component, the other two channels cap-
ture more than 91.3% of the hyperspectral data variance, which is still a good performance.

In summary, adopting ideas from information theory and chromatic opponency,
we have shown that after the first synaptic connection, dichromatic networks can yield
efficient responses when red cones are available. Otherwise, responses of photoreceptor
populations are suboptimal. Generalizing to trichromatic networks, we find that, after
the first synaptic connection, photoreceptors are unable to exhibit all three opponent
responses. Only by including a second synaptic connection, or network layer, with a fourth
neuronal population, can photoreceptor responses match the PCs.

2.4 Efficient opsin combinations in zebrafish
Our study identified networks that optimize the encoding of chromatic information

available in the zebrafish environment, using as a template of photoreceptor responses the
set of zebrafish sensitivity curves. Now we ask whether the zebrafish opsins are efficient at
fitting the given chromatic information, or if instead, there are other opsin combinations
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Figure 10 –

a) Stationary solutions of Eq. (2.15) for the optimal coupling parameters of the
trichromatic network sketched in the inset. b) Sketch of a fully connected trichromatic
network with two types of horizontal cells providing two successive inhibitory feedback

mechanisms. c) Stationary solutions of Eq. (2.15, 2.19) for the optimal coupling
parameters of the trichromatic network sketched in the inset. Red, green and blue curves

correspond to the stationary solutions of the membrane potentials hr, hg and hb,
respectively. Dashed curves correspond to the principal component curves of Fig. 8b.

leading to more precise chromatic encoding. Altough optimization is not the only feature
that determines visual system properties, it has been shown that some species adapt
aspects, such as the sensitivity functions, to fit the environmental conditions [65,66].

To answer this question, we contrast the performance of networks composed of
different opsin combinations obtained by varying the wavelength of maximum sensitivity
of zebrafish cones, while maintaining the shape of the distribution fixed (we use a discrete
step interval of ∆λ ≈ 12nm). For all opsin combinations, we calculate the optimal two-layer
network, described by Eqs. (2.15) and (2.19), fitting the first three principal components of
the zebrafish environment, as in the previous sections. To quantify the network performance,
we define the cost function,

C2
o = (hR − PC1)2 + (hG − PC2)2 + (h∗

B − PC3)2 . (2.20)

Using the same invertal ∆λ for blue and green opsins, we calculate the cost function
for all possible combinations within the interval (350, 650)nm, and search for an optimal
set of opsins. Figure 11a shows the intensity plot of the cost function for all green and
blue opsin combinations given a fixed red sensitivity curve. We find the global minimum
is reached at Θ∗

R(λ) = ΘR(λ + 2∆λ), Θ∗
G(λ) = ΘG(λ−∆λ) and Θ∗

B(λ) = ΘB(λ− 3∆λ), as
illustrated in Fig. 11b,c.

We conclude that compared with zebrafish, the more efficient set of cones improves
performance by approximately 13%, suggesting that retinal networks with zebrafish
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Figure 11 –

a) Intensity plot of the cost function ( Eq. 2.20) for different opsin curves combinations,
darker colors represent smaller values. Red opsin was first fixed to optimize all possible

combinations; the optimal curve is shown in the upper plot. X and y labels in the
intensity plot represent the number of shifts (in steps of 5nm) of blue and green curves

respectively, with the sign indicating the shift direction. b) Comparison between
experimentally observed sensitivity functions (dashed lines) and the optimal fitting curves
(solid lines). Arrows indicate the shift direction yielding the most efficient responses. c)

Network responses for this optimal set of opins.

cones are quite efficient to encode chromatic information. Extrapolating these results
to other species with similar environmental chromatic conditions requires knowledge of
the independent cone responses, or sensitivity curves to properly compare the networks.
Studies involving species with different environmental conditions would naturally require
analysis of the corresponding environmental hyperspectral data.

2.5 Discussion
Identifying the retinal circuits specialized in chromatic discrimination leads to an un-

derstanding of how organisms extract spectral information from their environment [67,68].
in vivo experiments on outer retinal circuits, though, are only feasible in a restricted
number of species, limiting a broader study. In this situation, theoretical models are useful
to predict general features that can be tested in such model organisms and extrapolated
to others beyond experimental access. Our study attempts to identify features of zebrafish-
inspired outer retinal networks to understand more broadly the biological fundamentals of
chromatic encoding and transmission in visual systems. As mentioned earlier, we focused
our work on networks that mediate chromatic information via HCs. Other species, such as
butterflies [69], with different network architectures will be studied in future work.



Chapter 2. Efficient chromatic coding in retinal networks: zebrafish 38

In the first part of our study, we found that in outer retinal networks with fast in-
hibitory feedback, inter-cone excitatory connections can lead to bistability, so that network
responses to a given chromatic stimulus could be ambiguous. Ideally, one expects photore-
ceptors to codify as much relevant visual information as possible from the environment
and transmit it reliably to downstream circuits. More complex tasks, such as perception
or recognition, for which such bistability might be desirable, are supposed to take place
later in the visual system. Our results suggest that, in retinas, inter-cone gap junctions,
if present, are likely not involved in chromatic encoding. Some experimental studies on
macaques and other vertebrate species [70–72] have shown evidence of both cone-cone and
cone-rod gap junctions in the foveal region. The role of such connections, however is not
fully understood. In ground squirrel retinas, for instance, such connections seem to play an
important role in increasing the signal-to-noise ratio [71]; similar behaviour has been found
in macaque retinas [73]. Noise reduction is highly relevant in low-luminance environments.
At high luminance, where color discrimination is possible, the effects of gap junctions seem
to be negligible, supporting the hypothesis that gap junctions are involved in achromatic
tasks. Some other works [74] have shown evidence of excitatory feedback in individual
synapses between HCs and cones, which might lead to other effective connections, not
considered in our model.

In addition to studying different types of feedback, we investigated network archi-
tectures leading to efficient coding of the available chromatic information. Determining
whether outer retinal circuits are optimized to codify available chromatic information
allows one to gauge the relevance of color discrimination in a given species. Such findings
might afford insights into other areas, such as ecology and animal behavior. As suggested
by Yosimatsu et al. [40], zebrafish seem to codify of the chromatic information efficiently,
qualitatively matching the first two PCs of the hyperspectral data. With our model, we find
similar results. Specifically, we found that zebrafish-inspired outer retinal networks with a
single HC layer can reproduce only the first two PCs of the zebrafish hypterspectral data,
explaining 91% of the variance. Capturing more than 97% of the variance requires fitting all
three PCs. We find that a more complex network, with two interneuron layers is necessary.
We would expect retinas to optimize the trade-off between information transmission and
metabolic cost, such that information transmission is guaranteed at the lowest energy
expenditure. Nevertheless, even with an optimal architecture, more complex networks
are necessary to transmit specific information, as suggested by our results. Whether it is
advantageous for an organism to invest energy in adding an additional retinal layer to
improve chromatic discrimination depends on species-specific interactions with its habitat.
These results are general for networks with inhibitory interneuronal layers and similar
environmental conditions.
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Our study of network architecture was performed using zebrafish opsin curves
as a reference. Subsequently, we investigated whether other opsin combinations might
lead to further optimization of the network, that is, whether it would be possible to
improve zebrafish performance at codifying environmental chromatic information. We find
that optimizing opsin combinations leads to an improvement of approximately 13% in
zebrafish performance. As mentioned earlier, in some species, such as bees, photoreceptor
sensitivity functions are highly tuned to the environmental chromatic spectrum, leading
to an efficient coding of color information [65, 66]. Our results on zebrafish show that
they are quite efficient at chromatic encoding, but that there are other photoreceptor
combinations yielding modest improvements. Other relevant features, such as movement
or edge detection, might favor retinal circuits that optimize other general aspects of visual
stimuli, by penalizing slightly chromatic information. As before, these results hold for
zebrafish-inspired retinal circuits under similar environmental conditions.



40

3 Trade-off between coding efficiency and
color space in outer retinal circuits with
oil droplets

Retinal circuits of color discrimination are quite diverse [67]. Across species, a variety
of biological mechanisms and strategies allow animals to discriminate relevant spectral
information in their environments. One such mechanism is the colored oil droplet organelle
thought to improve color vision by expanding the space of distinguisable colors [75,76].
These organelles are typical for instance in birds, whose retinal basis provides them with
over-average chromatic-discrimination abilities [77–79]. Other species, that also rely on
chromatic information to thrive, such as the teleost zebrafish [80], do not develop oil
droplets. Instead, as described in the previous chapter, their retinal circuits are apparently
adapted to efficiently encode spectral information of their environment [40,81]. Studies of
these strategies show how each of them separately leads species to optimize their color
vision capabilities. Nevertheless, the interplay between them is unclear since functional
retinal circuits for color vision have yet to be analyzed in species with droplets.

Colored oil droplets are organelles filled with carotenoids, located within the inner
segment of cones, right before the corresponding visual pigment [35, 75]. Different cone
types are related to a specific oil droplet [75,77]. For instance, in birds we find the cone
types SMW1, MMW and LMW with the corresponding colored droplets C-type, Y-type
and R-type [77]; UV cones have transparent droplets without known spectral effects [79].
Such organelles act as optical filters with a full-absorbance limit characterized by the
cut-wavelength λcut; all wavelengths below λcut are absorbed by the oil droplet before
reaching the cone visual pigment. As a result, the sensitivity function of the different cone
types shrinks and diminishes, reducing their spectral range of response as well as their
photon-capture probability. On one hand, the response overlap among cone types decreases,
reducing cone-signal redundancy and expanding the potential color space [82, 83]. On the
other hand, the attandant reduction in of the photon-capture probability worsens the signal-
to-noise ratio, limiting chromatic discrimination in dim-light environments [84,85]. Some
works [86] have also suggested that clear and transparent droplets might serve as micro-
lenses to enhance light focusing. However, regarding color vision in photopic conditions,
droplets are considered as optical filters whose transmittance can be theoretically modeled
using electrodynamics [87,88].

Experimental and theoretical work (see previous chapter) in species without droplets,
such as zebrafish [40, 81], has documented the functional circuits of color in the outermost
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retinal layers, revealing the network architecture that allows an efficient coding of environ-
mental spectral information. We use data on oil droplets from different species [87–89]
to implement a model of cone spectral responses that we incorporate in previously in-
vestigated zebrafish-like retinal networks [81] (see previous chapter). We investigate the
combination of both strategies by quantifying the chromatic coding performance, and the
corresponding gain in color space of these networks. To this end, we structure this chapter
in three sections. In Section 1, we study the optical properties and spectral responses of
droplets and cones from 18 different bird species, contrasting them with the few available
data from aquatic species. In section 2, we introduce the Maxwell triangle for red, green
and blue zebrafish cones to quantify changes in color space when oil droplets are included.
Finally, in Section 3 we introduce the population model for the network with droplets,
defining a cost function based on the hyperspectral images of the zebrafish environment.
We model a variety of droplets with different optical properties to contrast color encoding
performance in networks with and without such organelles.

3.1 Effects of oil droplets on cone sensitivity curves
Light transmission models [87, 88] have been used to estimate the responses of

visual pigments with oil droplets, matching experimental observations. Here, we implement
the transmittance model of Ref. [87] to estimate the sensitivity curves of zebrafish cones if
oil droplets were present.

Oil droplets serve as an optical filter characterized by the transmittance function
T (λ). Depending on the droplet properties, some light wavelengths are either partially
or completely blocked, leading to a narrower spectral response of cones. Oil droplet
transmittance is fully characterized by two parameters: the cut wavelength λcut and the
mid wavelength λmid, the latter being the wavelength at which the oil droplet has half of
its maximum absorbance [87]. Such characterization leads to the function,

T (λ) = exp [−2.93 exp [−2.89 m(λmid) (λ− λcut)]] , (3.1)

with m(λmid) = 0.5/(λmid − λcut) [89]. Details on the derivation of Eq. (3.1) are provided
in Appendix E.

We are interested in modeling colored droplets feasible for aquatic species, as is
the case of zebrafish. Nevertheless, only a few of them develop these organelles, such as
lungfish [89]. In contrast, oil droplets are common in birds, allowing a broad characterization
of their optical properties. Here, we use bird data to model the wavelength parameter λmid

as a function of λcut, and, as a proof of concept, we use the data available from lungfish
to test whether the model is suitable to describe droplets from aquatic species. Fig. 12a
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Figure 12 –

a) Relation between the parameters λmid and λcut. Circle markers correspond to the
experimental data from 18 different bird species [89]. Each color corresponds to a different

type of oil droplet; C-type (gray), Y-type (Yellow) and R-type (red). The blue line
corresponds to the linear fit with line equation λmid = 1.05± 0.0097 λcut − 3.57± 4.92.
Square markers correspond to the experimental data of lungfish while the error bars

correspond to predictions of the linear fit. b) Transmittance function T (λ) as a function of
the wavelength. Dark lines correspond to the mean transmittance curve for each type of
oil droplet represented with light curves. c) Sensitivity curves with oil droplets. Dashed

lines correspond to inferred curves from experiments with lungfish [89]. Solid lines
correspond to the implementation of the transmittance model of Eq. (3.1).

shows experimental data on both λcut and λmid for different bird species [87], with gray,
yellow and red circle markers representing C-, Y- and R-type droplets respectively. We
fit a linear model to describe all bird droplets (dashed line), that we subsequently use to
infer the wavelength parameters corresponding to C- and R-type droplets of lungfish [89].
More specifically, we use the experimental value of λcut of lungfish to estimate the relative
error of the parameter λmid, corresponding to a linear model. As shown in Fig. 12a,
experimental measurements of lungfish (square markers) are within the error bars of the
model predictions, leading to relative errors of 0.1% and 1.26% for C and R droplets
respectively. This result suggests that filter properties of droplet organelles might be
unaffected by the specific environmental conditions of the species, in this case, aquatic or
terrestrial habitats. Altogether, we expect the transmittance model of Eq. (3.1) and the
linear relation between the parameters λmid and λcut to be suitable across species.

Figure 12b shows the mean transmittance curves of Eq. (3.1) corresponding to
the C-, Y- and R-type oil droplets used in Fig. 12a. As expected, we observe that the
larger the λcut the larger the zero transmittance region in the visible spectrum. To esti-
mate the cone spectral function, we multiply the droplet transmittance function with the
sensitivity function of the visual pigment. For instance, Fig. 12c shows the experimentally
estimated sensitivity functions of lungfish cones (dashed lines) and the model predictions
(solid lines). We observe that the model is in good agreement with both MWS and LWS
sensitivity functions, but it fails at predicting the correct shape of the SWS cone in the
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short-wavelength range –UV sensitivity remains unchanged due to their lack of colored
droplets. Still, the model predicts correctly the wavelength peaks of maximum sensitivity
as well as the overlap regions between the three red, green and blue cone responses.

So far, we have shown that by using the transmittance model of Eq. (3.1), we
can estimate the sensitivity functions of different cone types with a variety of oil droplet
combinations. For instance, Fig. 13a shows the zebrafish sensitivity curves without (above)
and with (below) oil droplets, illustrating the narrowing and decrease of the response
profile; we relate red, green and blue cones with R-, Y- and C-type droplets as found in
birds. Considering that oil droplets cause both a red-shift and narrowing in the sensitivity
functions, we use the wavelength of maximal sensitivity, λOi

max, and the full width at half
maximum (FWHM), σOi , to characterize the response changes as a function of the droplet
cut-wavelength parameter. Fig. 13b shows the normalized red-shift effect for red, green and
blue cones, which follows a linear relation with slope ≈ 1 regardless of the droplet type. By
contrast, for the FWHM, we find that red and green cones suffer the strongest narrowing
compared to the original sensitivity function, while blue cones only lose sensitivity in the
ultraviolet spectral range. This means that the longer the peak-sensitivity wavelength, the
more significant the droplet effect on the cone spectral response.
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Figure 13 –

a) Predicted sensitivity curves in zebrafish a) without oil droplets. and b) with oil
droplets. We used the cut wavelength parameters λcut = {400, 490, 540} for the C-, Y- and
R-type oil droplets respectively. b) Normalized maximal sensitivity wavelength, λOi

max, and
c) Normalized FWHM, σOi , as a function of the oil droplet parameter λcut for red, green

and blue zebrafish cones.

3.2 Color space and color encoding
To discriminate colors, spectral features of visual stimuli must be distinguised from

brightness. Experimental works on functional retinal circuits show that different species
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implement color-opponent responses to achieve this task [67]. For instance, experiments
in zebrafish retina [40] suggests that color circuits involving red, green and blue cones in
the outermost layers yield functional chromatic channels that exhibit opponent responses.
Furthermore, when compared to the statistics of hyperspectral images of zebrafish environ-
ment, these responses are found to be adapted to optimize color information encoding [81]
(see previous chapter). Broadly, color-opponent channels combine the spectral-wide cone
responses, preserving the relevant spectral information and decreasing response redundan-
cies [37]. Interestingly, the overlap reduction between cone responses caused by droplets
also leads to a direct redundancy decrease. To investigate the combination of droplets
and adapted retinal circuits, we add the droplet model to the zebrafish outer retinal
circuit, focusing in the color encoding performance of the network as well as in the gain in
color-space.

For some species, such as birds, the expansion of color space allows the possible
discrimination of more colors playing a key role in their ecological context [35, 90]. Never-
theless, for other species, such an expansion might not be critical given the environmental
conditions. To examine the case of zebrafish, we use the Maxwell color triangle for red,
green and blue cones. Fig. 14a shows the case of cones without droplets, in which the col-
ored curve inside the triangle corresponds to the locus, limiting the zebrafish distinguisable
color-space. Star markers indicate some typical colors extracted from the hyperspectral
natural images in Ref [57]. We observe that most colors are distinguishable by zebrafish,
but still, many are quite near to the locus boundary. As shown in Fig. 14b, the insertion
of oil droplets leads to a larger locus with a less restrictive color-space; including the three
oil droplets increases the zebrafish color-space volume approximately four times.

Figure 14c shows the color-space volume variation with the parameters λC
cut and

λR
cut, corresponding to the C- and R-type droplets respectively, and the parameter λY

cut

fixed. We observe that once all three oil droplets are included in the system, the color space
is only slightly affected by variations of the droplet parameter λi

cut. Variations including
the parameter λY

cut lead to the same results. Some retinas, tough, are found to have mixed
combinations of cones with and without oil droplets, leading to the narrowing of only
some sensitivity curves. We study these possible combinations for the zebrafish sensitivity
curves. Fig. 14d shows the area estimation for different combinations represented by the
colored code above. We observe that the red cone droplet (R-type) plays a key role in
increasing the color space by decreasing considerably the overlap between cone responses.
For instance, we find that the combination of only Y- and R-type droplets lead to an
expansion similar to that generated by all three types of droplets. In contrast, combinations
without R-type droplets lead to smaller area expansions and in some cases to an area
decrease, as is the case of the combination 3 with only Y-type droplets. As shown in Fig.
14e, this combination with only Y droplets red-shifts the green-cone sensitivity, increasing
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Figure 14 –

(a, b) Maxwell triangle of zebrafish trichromatic system a) wihout oil driplets, and b) with
C-, Y- and R-type of oil droplets with the cut wavelengths λcut = {460, 510, 530}nm
respectively. c) intensity plot of the color-space normalized area for the fixed value
λcutG = 530nm. d) Color-space volume for different combinations of cones with and

without droplets. The x-axis shows the combination of droplets in each case, such that
colored (empty) spaces represent the presence (absence) of an oil droplet in the

corresponding cone; blue, green and red cones are represented by the first, second and
third row respectively. When present, the droplets have the same parameters used on the
plot a). e) Sensitivity functions corresponding to the combination 3 (orange marker) in

plot d.

the response redundancy between green and red cones, which decreases considerably the
color-space volume.

3.3 Functional retinal circuits for color discrimination
Including oil droplets can also modify the outputs of the underlying chromatic

channels in the visual system. In the previous chapter we discussed the network structures
capable of efficient color encoding at early retinal stages (see Fig. 15a), which allows a
systematic study of retinal networks with different cone types. We use the trichromatic
model describing the dynamic responses of the network shown in Fig. 15a. For convenience
we recall the corresponding equations:

∂hi

∂t
= −hi + Ii +

∑
j ̸=i

(wij FE[hj])− wiH

∑
j

(wHj FE[hj]) ,

∂hB

∂t
= −hB +

∑
i

wH2ihi (3.2)

with FE[h] = tanh(h)+1 the gain function and i the index representing the cone population;
red (R), green (G) or blue (B’); the second equation corresponds to the output of the blue
cone via the second inhibitory layer (see Fig. 15a and previous chapter). The parameters
wij represent the coupling strength between populations, with wij > 0 (wij < 0) for
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excitatory (inhibitory) pre-synaptic populations. The term Ii represents the independent
response of cones to external visual stimuli. In our previous work, such a response is
estimated with the cone sensitivity function, Θi(λ), and the stimulus spectral function,
S(λ). Here, we include the effect of oil droplets by adding the transmittance function of
Eq. (3.1), that is,

Ii =
∫

Θi(λ) T (λ)S(λ) dλ. (3.3)

We quantify the encoding performance of networks with different droplet combina-
tions by comparing the statinary responses in Eq. (3.2) with the principal components of
the hyperspectral data of zebrafish environments (see dashed lines in Fig. 15b) [40, 81].
First, for a given droplet combination, we optimize the coupling parameters wij that
minimize the cost function

C2
o = (hR − PC1)2 + (hG − PC2)2 + (hB − PC3)2 , (3.4)

that is, the squared distance between the principal components and the network responses;
we use the same same minimization methods as in the previous chapter. For instance,
Fig. 15b shows the responses (solid lines) of a network with only Y-type droplets after
optimizing the coupling parameters. To quantify the effects of oil droplets in chromatic
encoding, we use the cost function of Eq. (3.4) as a performance measure. We use the
linear extrapolation in Fig. 12 to systematically calculate the transmittance function of
different droplet types and combinations. More specifically, we use the data in Fig. 12a to
delimit the ranges λR

cut = [550, 600]nm, λG
cut = [500, 550]nm and λB

cut = [400, 450]nm for
the droplet parameters corresponding to red, green and blue cones respectively.

We begin by studying combinations of droplets with the minimal value of the
parameter λcut, that is λR

cut = 550, λY
cut = 500 and λC

cut = 400. Fig. 15c shows the
corresponding cost function for the different droplet combinations represented by the
colored plot below. We observe that, on average, including oil droplets decreases the
performance of the network to fit the expected principal components, as indicated by the
growing linear trend (dashed blue line). In more detail, we find that the presence of R-type
droplets contributes considerably to such a decrease, reducing the network efficiency to
encode color information from natural images.

Finally, to investigate the effects of the droplet properties, we study the role of the
parameter λi

cut. Given a droplet combination (from the possible 23), we vary systematically
the cut-wavelength parameters in steps of ∆λcut = 5nm, within the intervals previously
defined for each droplet. As before, for each droplet parameter combination, we infer
the network coupling parameters wij that minimize the cost function of Eq. (3.4). Here,
we show the results corresponding to the combination of only R and Y oil droplets,
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Figure 15 –

a) Trichromatic network with excitatory inter-cone couplings and inhibitory feedback
from two layers of horizontal cells. Circles above cone symbols represent oil droplets. b)
Stationary responses of a network with only Y-type droplets, as represented in the inset.
Dashed lines correspond to the principal components from the hyperspectral images and
solid lines correspond to the mean network responses for different coupling parameters

minimizing the cost function in Eq. (3.4). c) Cost function of Eq.(3.4) for different
combinations droplets represented by the colored plot below; colored (empty) spaces

indicate the presence (absence) of droplets; red, green and blue colors represent R, Y and
C droplets respectively. d) Intensity plot of the cost function for networks with R- and

Y-type droplets. The cut-wavelength parameters of red (λR
cut) and green (λG

cut) cones were
varied in steps of 5nm within the corresponding spectral intervals.

which as shown in the previous section, lead to the largest color-space expansion (see
Fig. 14d). Nevertheless, we emphasize that, as expected from Fig. 15c, the results with
other droplet combinations remain similar. Fig. 15d shows the intensity plot of the cost
function, suggesting that the smaller the cut-wavelength the smaller the cost function and
consequently, the better the chromatic encoding performance.
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Figure 16 –

a) Spectra of three different datasets of images above water. Dataset1, Dataset2 and
Dataset3 correspond to the hyperspectral images in Refs [40,91,92] respectively. b)

Principal components of hyperspectral data. Solid lines correspond to the mean over all
three datasets above water. Dashed lines correspond to hyperspectral data underwater.



Chapter 3. Trade-off between coding efficiency and color space in outer retinal circuits with oil droplets48

Altogether, our results suggest that including oil droplets in a zebrafish-like network
that exhibits efficient coding affects its performance, keeping it from matching the ex-
pected efficient responses. Depending on the specific droplet combination and their optical
properties, the encoding performance differs. For instance, we found that including R-type
droplets leads to a large decrease of encoding performance compared to other droplet
types. One possible reason is that zebrafish-like retinal networks are adapted to use largely
overlapping cone responses, facilitating the expected efficient responses. Since R-type
droplets produce the largest effect, by blocking the sensitivity of a large spectral range in
red cones, such network based in feedback mechanisms might exhibit encoding limitations.
By contrast, regarding color space, R-type droplets lead to the largest expansion, increasing
significantly the possible distinguishable colors of zebrafish. Similarly, Y-type droplets
lead to a smaller but still significant effect compared to the R-type droplet. In fact, the
combination of both R and Y droplets lead to the largest changes in both color space gain
and coding performance decrease. This opposing effect of droplets in the zebrafish-like
retinal network suggests the existence of a trade-off between color-space capacity and cod-
ing efficiency which is caused by the overlap decrease of cone responses in the spectral range.

Whether such a trade-off plays a role in animals with droplets, such as birds,
depends on (i) the specific retinal circuits of color discrimination and (ii) the ecological
conditions. Fig. 16a shows the spectra of three different data sets of natural images above
water [40, 91, 92]. We perform a principal component analysis of these data to contrast
the differences with the underwater scenario. Fig. 16b shows the first three principal
components of aquatic environments (dashed lines) and the mean principal components
over the three data-sets above water (solid lines). We observe differences in the wavelength
crossing-points as well as in the intensity peaks. Nevertheless, the functional form of these
curves remain quite similar, suggesting that zebrafish-like network architectures might
be feasible to encode color information under the trade-off introduced by the presence of
oil droplets. Although feasible, the extrapolation of zebrafish retinal circuitry to birds is
not straightforward. In contrast to zebrafish, they also have double cones, which might
provide broader spectral information decreasing the trade-off effects. Similarly, depending
on the functional circuitry, UV cones could be involved at this early stage of color coding.

3.4 Discussion
As mentioned in the Introduction, several species rely in color vision to meet

many of their ecological needs [35]. This has lead to the specialization and adaptation
of retinas to optimize the encoding and processing of chromatic information at early
visual stages. Among these possible specializations, we focused on two: the encoding of
chromatic information via functionally efficient retinal circuits and the expansion of color
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space via oil droplets. Experimental studies of functional retinal circuits are available
only in few species, such as zebrafish, lacking oil droplets, while experiments in other
species with oil droplets, such as birds, are still challenging. Nevertheless, over the last
decades, experimental and theoretical works [77, 82, 85, 87, 88, 93–97] have elucidated some
key optical and functional aspects of colored oil droplets in visual systems, allowing a
computational study of the interplay between oil droplets and efficient retinal circuits. It
is important to mention that color vision enhancement is one of the strongest advantages
conferred by such organelles in photopic conditions, refining the spectral sensitivity of
cones and consequently expanding the visual color space [75]; other optical properties
regarding high-acuity vision have also been investigated and related mostly to colorless
droplets [86].

We have shown that including droplets in zebrafish-like networks for chromatic
coding poses a trade-off between efficient coding and color-space, being R and Y droplets
the organelles inducing the largest effects. Our findings suggests that zebrafish retinal
circuits for color efficient coding require largely overlapping cones responses. Consequently,
their refining via oil droplets leads to a marked change of the incoming signal, keeping
the system from exhibiting the expected responses. Regarding color space, we found that
colors from the zebrafish natural environment are mostly embedded within the loci of
cones without droplets, meaning that a potential expansion of color space might not lead
to a direct benefit for zebrafish. Nevertheless, it is important to mention that the available
hyperspectral images are limited and lack potentially relevant chromatic information. For
instance, spectral information of zebrafish skin patterns is not included and might lead
to color points outside of the dropless loci. Such a case might motivate the need for a
color-space expansion as in the case of some bird species [90].

The reason why some species have oil droplets and others do not is not clear. A
plausible explanation arises from phylogeny studies [75] suggesting that oil droplets are
evolutionarily inherited. That is, taxa without colored oil droplets, such as Actinopterygii,
are a consequence of a common ancestor lacking these organelles. As a consequence, some
of such species, such as zebrafish, have adopted other biological strategies to improve color
vision that seem to be obstructed by the presence of oil droplets. Our findings suggest
that, If possible, the development of these organelles or other similar chromatic filters in
zebrafish-like retinas might require circuit adaptations that optimize the trade-off between
efficient color coding and color space capacity.
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4 Compression as a path to simpler models
of neuronal activity

As discussed in the Introduction, ganglion neurons perform the final step of retinal
information processing by generating the spiking code which contains the extracted bits of
information from the complex visual stimuli. Understanding this final stage can provide
us with important insights into the general principles behind neuronal network encoding.
In contrast to other neurons in the retina, ganglion cells (GCs) exhibit peaks of activity
that are known as spikes. Fig. 17a shows a typical activity profile in which after certain
threshold, θ, the neuron fires an action potential or spike that is transmitted to postsynaptic
neurons. Each type of neuron has a characteristic threshold, θi, and spike duration, τ (i)

s .
For instance, GCs in the salamander retina have a typical spike duration (including the
refractory period) of τs ≈ 20ms [98].

Considering the characteristic spike duration, neuronal activity can be discretized
into bins of size ∆t ≈ τs, leading to two simplified states; σ(t) = 1 for spike and σ(t) = 0
otherwise. This simplification becomes relevant when a large number of neurons, N ,
are recorded simultaneously such that we can define the state of the population in a
certain time bin j as σtj

= {σ1(tj), σ2(tj), . . . , σN(tj)}. Figures 17(b,c) show a raster plot
representation in which the activity of N neurons is discretized into bins of M = T/τs,
with T the total time.
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Figure 17 –

a) Action potential profile of a neuron with a threshold of θ = −55mV. The action
potential comprises three phases: depolarization, repolarization and refractory period.

The typical temporal scale an action potential is ≈ 2ms. b) Neuronal activity
discretization. The y-axis represents the neuron index and the x-axis the temporal

samples; spikes (no spike) are represented by the state 1 (0). c) Raster plot representation
of the discretized activity. Empty (filled) spaces represent absence (existence) of activity

in some specific time window.



Chapter 4. Compression as a path to simpler models of neuronal activity 52

The resemblance of this two-state description to typical condensed matter systems
has motivated the study of large neuronal populations from a theoretical perspective. For
instance, spin models have been actively used to explain the global activity patterns and
correlations observed in large neuronal population recordings [98–102]. Nevertheless, the
number of parameters in such models grows with the number of neurons as 2N , becoming
impractical for real neuronal populations with at least thousands of neurons. Recent works
have implemented inference methods, such as the maximum entropy, to model neuronal
activity in the hippocampus with pairwise models [103]. However, these models fail at
explaining the typical correlations observed experimentally in other neuronal populations,
such as the ganglion cells of the salamander retina [98].

One possible path to tackle this problem is to develop more sophisticated inference
methods that allow the implementation of models with higher order interactions that
capture most of the correlations. Another path is to explore new models of neuronal
activity that do not rely on assumptions of neuronal interactions. In this chapter, we focus
in the latter by exploring ideas of compressibility of interactions [104] from an information
theory perspective, as a path to build simpler models of neuronal activity.
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5 Models of neuronal activity and compress-
ibility of interactions in the retina: Salaman-
der ganglion cells

We begin by introducing in more detail the ideas behind the compressibility of
interactions which are inspired in spin systems and have been broadly discussed in Ref. [104].
Let us consider the N-spin lattice shown in Fig. 18a, in which each spin has two possible
states si = up or down, leading to 2N network states. One possible way to describe this
system is via the joint probability p({sj}). By contrast, if we want to describe the spin
interactions, we can focus in the conditional probability p(si|{sj}), with si a single spin
and {sj} the other N − 1 spins.

In principle, we can solve this conditional problem by defining an effective field,
heff({sj}), that describes the influence that each possible state in {sj} has on si. Nev-
ertheless, following ideas of renormalization group (RG) [105], this solution with 2N−1

parameters might be inefficient if the system allows a scaling in which the number of
degrees of freedom are reduced by some amount b while still preserving the physical
properties of the system, such as the spin correlations. In our example, this would imply
that the group {sj} can be scaled to a group {s∗

j} with (N − 1)/b degrees of freedom.
If possible, this scaling allows a vast simplification of the effective field describing the
conditional probability p(si|{sj}). In the context of neuronal networks, we ask whether
we can extrapolate these ideas such that we can describe the state of a single neuron σ0

conditional to the state of the rest of the network, σσσ, with a significant reduction of the
expected 2N−1 states (see Fig. 18b). That is, we want to find a compressed representation,
σ̃σσ, of the variable σσσ for all possible choices of σ0 such that we can determine the conditional
distribution p(σ0|σ̃σσ) that describes all neuronal interactions.

5.1 Compression model
In a nutshell, the RG formalism leads to a reduction in the number of degrees of

freedom while preserving essential physical features, such as the correlations. In the context
of neuronal populations with thousands of neurons, such a renormalization might lead to
a vast simplification, making possible simpler models of neuronal activity. Nevertheless,
in contrast to typical spin systems, neuronal networks do not have a well defined spatial
interaction range that we can use to formalize our problem. As an alternative path, we
propose a compression approach in which we can similarly decrease the total number of
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Figure 18 –

a) Sketch of a lattice of interacting spins. Arrow orientations represent spin states s =up
or s = down The highlighted area indicates the correlation length in the horizontal

direction of the network. H1 and H2 represent the left and right halves of the lattice. b)
Sketch of an N -neuron population. The variable σ0 represents the state of a single neuron
in the population and {σ} represents the state of the complementary network, where the
network states can be mathematically treated as an effective field with 2N−1 parameters.

2N−1 expected states while preserving all the neuron correlations.

To quantify such neuronal correlations from neuronal activity data, we use the
mutual information that captures linear and non-linear correlations between neurons1.
[44].For two non-overlapping groups of neurons, σσσ1 and σσσ2, the mutual information is
defined as,

I(σσσ1;σσσ2) =
∑

σσσ1,σσσ2

p(σ1, σ2) log2
p(σ1, σ2)

p(σ1)p(σ2)
(5.1)

where p(σ1, σ2) is the joint probability distribution and p(σ1) and p(σ2) are the marginal
probability distributions for σ1 and σ2.

Using this measure of neuronal correlations, we define our compression problem as
follows: for all possible choices of σ0 from a neuronal population with N neurons, we will
determine the conditional probability p(σ0|σ̃σσ), with σ̃σσ a compressed representation of σσσ

such that: I) the compressed variable has a significantly reduced number of states, that is
|σ̃σσ| ≪ |σσσ|, and II. the mutual information or correlation between σ0 and σσσ is preserved,
that is I(σ0; σ̃σσ)/I(σ0;σσσ) ≈ 1. To find these compressed representations, we will use the
compression bottleneck method in the hard clustering limit.

5.1.1 Compression bottleneck method

As previously mentioned, the number of states in σσσ grows as 2N , with N the
number of neurons. For example, in a 1-neuron population, we have a total of 21 states,
that is, σ = {1, 0}. If we include another neuron, we get a 2-neuron population with 22

1 Consider the following example: For the random variable X[x] with x = {−1, 0, 1} and probabilities
P [X = x] = 1/3, we define the variable Y = X2. If we use the covariance as a measure of correlation
between X and Y we get Cov(X, Y ) = 0 despite the fact that these variables are statistically dependent.
In contrast, if we use the mutual information, I(X; Y ), we get a non-zero correlation as expected [44].
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states, that is, σσσ = {00, 01, 10, 11}. Regarding the conditional probability p(σ0|σσσ), we ask
whether we can reduce this number of states while preserving an accurate description of
σ0.

Since we know that correlations can be generally quantified by the mutual informa-
tion, I(σ0;σσσ), we can compress the states in σσσ by finding an optimal mapping of σσσ → σ̃̃σ̃σ

that preserves the mutual information I(σ0;σσσ). This problem, known as the information
bottleneck, is defined by the Markov chain σ0 ← σσσ ← σ̃̃σ̃σ, such that the optimal mapping
is determined though the conditional probability p(σ̃|σ) [106]. That is, we attempt to
minimize

L[p(σ̃σσ|σσσ)] = I(σσσ; σ̃σσ)− βI(σ̃σσ;σσσ) (5.2)

where σ̃σσ is the compressed representation of σσσ, and β is a Lagrange multiplier that
determines the amount of mutual information preserved. The solution to this variational
problem is,


p(σ̃|σ) = pt(σ̃)

Zt(β,σ) exp(−βDKL [p(σ0|σ)||p(σ0|σ̃)])

p(σ0|σ̃) = 1
p(σ̃)

∑
σ0 p(σ0, σ)p(σ̃|σ)

p(σ̃) = ∑
σ p(σ)pt(σ̃|σ),

, (5.3)

where the DKL is the Kullback–Leibler divergence [106]; the details on the derivation are
in Appendix C. These solution depends on the specific value of β and the cardinality
(number of states) of the mapping, |σ̃̃σ̃σ|. The structure of these solutions is sketched in
the information plane of Fig. 19a, where each curve corresponds to a fixed cardinality |σ̃|
and a continuous variation of the lagrange multiplier β. Note that at each cardinality, the
solution saturates in the limit of β →∞, which is known as the hard clustering limit [107].
In this limit, each state in σσσ is assigned to a unique state in σ̃̃σ̃σ, that is,



p(σ̃|σ) =

1 if σ ∈ σ̃

0 otherwise
∀σ ∈ σσσ

p(σ0|σ̃) = 1
p(σ̃)

∑|σ̃|
i=1 p(σi, σ0) ∀σ0 ∈ σ0σ0σ0

p(σ̃) = ∑|σ̃|
i p(σi).

, (5.4)

where we have taken the limit of β →∞ in Eq. 5.3 (see Appendix C). Each state in σσσ is
assigned to one state in σ̃σσ, such that |σ̃σσ| ≪ |σσσ|. That is, the conditional probability p(σ̃|σ)
is nonzero only if the state σ is clustered in σ̃. Fig. 19b shows three different examples of
typical solutions in this limit. Each curve shows the normalized information as a function
of the cardinality of σ̃ – each point corresponds to the saturation value of each curve in the
original problem sketched in Fig. 19a. The green squares show an example of sub-optimal
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compression, where the information curve does not reach the plateau at small cardinalities,
meaning that the compressed variable do not preserve all the information about σ0. The
blue curve shows an early saturation curve with an optimal preservation of information.
The orange curve represents the intermediate case, in which compression is still significant.

In this work, we are interested in compressing σ while preserving most information
about σ0. Consequently, we will use the solution of the information bottleneck method in
the hard clustering limit. To quantify the compression quality, we introduce the fractional
information variable,

FI = I(σ0; σ̃σσ)
I(σ0;σσσ) , (5.5)

with values ranging between 0 and 1, indicating total loss or preservation, respectively, of
the original information of σ0.

Densely 
connected

Sparsely 
connected

c)a) b)

Figure 19 –

a) Structure of the IBM solutions in the information plane. Each curve corresponds to
different values of β with a fixed cardinality |σ̃|. In the limit of β →∞ (hard clustering
limit) the information curve saturates. b) Typical solutions of the hard clustering limit

where the variable σσσ is compressed into the variable σ̃σσ while maximizing the mutual
information I(σ0;σσσ). The green curve corresponds to a compression with early saturation
and poor preservation of the mutual information. The orange curve corresponds to a late
saturation curve. The blue curve corresponds to an early and optimal preservation of the

mutual information.

5.2 Neuronal interaction models
After compression, we reduce the number of states in σσσ and consequently, the

number of parameters describing the effective field acting on σ0, heff(σσσ) (see Fig. 18b). A
fully detailed description of such an effective field is given by,

heff(σσσ) =
∑

i|σi∈σσσ

hiσi. (5.6)



Chapter 5. Models of neuronal activity and compressibility of interactions in the retina: Salamander
ganglion cells 57

Some inference methods, such as maximum entropy, are useful to infer these weight
parameters, hi. Nevertheless, using this detailed description has several inconveniences.
First, the total number parameters grows quickly with the number of neurons making the
inference problem computationally expensive. Second, the number of experimental samples
needed to infer reliably these weights grows quickly with the population size. Third, there
is a high risk of overfitting in the models.

Conventional models of neuronal activity use approximations of this effective field
based on assumptions about neuronal interactions, that is,

heff ({σj}) = h0 +
∑

j
J

(2)
0j σj + 1

2
∑
j,k

J
(3)
0jkσjσk + · · · , (5.7)

where each term determines a model with different order of interactions. For instance,
the first term corresponds to the independent model, where there is a constant term that
describes all neuronal interactions. A truncation up to the second term provides us with
the pairwise model, where interactions between neuron pairs are considered. Higher order
interactions are contained in the subsequent terms of the expansion.

Some studies of the mouse hippocampus [103] have shown that the pairwise model
successfully describes and predicts the neuronal correlations observed experimentally in
groups of up to hundreds of neurons. Nevertheless, similar approaches applied to populations
of retinal ganglion cells [98] show that the pairwise model fails at predicting experimental
observations, demanding higher-order interaction terms that are computationally expensive
to deduce.

In addition to the computational and experimental limitations associated with this
expansion, it is not clear that these models, inspired in condensed matter physics, provide
an optimal fit for neuronal populations. The reason is that neuronal connectivity does not
have a fixed spatial structure (as in the spin-lattice example), impeding the generalization
of local interactions to the whole network. Figure 19c provides an example of a population
with spatially disorganized, dense and sparse connections.

To test models of neuronal activity, we can use ideas of information theory. More
specifically, each truncation of the series in Eq. (5.7) leads to a probabilistic model,
p(σ0|h(i)

eff), with some codification of the data that we can quantify using the mean code
length definition,

L = ⟨− log2 p(σ0|h(i)
eff)⟩. (5.8)

The optimal codification from the true model of the data, Lmin, has a mean code
length equal to the entropy. Other models lead to mean code length values, Lapprox, larger
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than the entropy. For instance, each truncation of order i in the series expansion of Eq.
(5.7) provides an approximate model with the mean code length,

L(i)
approx =

〈
− log2

exp(−σ0h
(i)
heff(σ))∑

⟨σ,σ0⟩ exp(−σ0h
(i)
heff(σ)

〉

= −⟨σ0heff⟩
log 2 + ⟨log2 (1 + exp heff)⟩ . (5.9)

Several experimental studies [98, 100, 103] demonstrate that neurons from large
populations are structurally correlated, meaning that their activity is far from being
independent. Consequently, we expect that the truncation up to the first term in the
expansion of Eq. (5.7) – the independent model – provides the poorest model of the data,
with the mean code length,

Lapprox = −heff ⟨σ0⟩
log 2 + log2 (1 + exp heff) . (5.10)

As previously mentioned, we know that L(i)
approx < Lmin. Similarly, Lind < L(i)

approx.
Consequently, we can quantify the model quality by defining the coding cost variable,

C =
L(i)

approx − Lmin

Lind − Lmin

, (5.11)

with values ranging from zero to unity.

Equations (5.5) and (5.11) are defined in terms of the same conditional probability
p(σ0|heff), that depends on the specific model of heff. This means that the compression
approach provide us with a model that we can relate to the mean code definition as follows,

FI = I(σ0; σ̃)
I(σ0; σ)

= ⟨log2 p(σ0|σ̃)⟩ − ⟨log2 p(σ0)⟩
⟨log2 p(σ0|σ)⟩ − ⟨log2 p(σ0)⟩

= −Lcomp + Lind

Lind − Lmin

= 1− C + Lapp − Lcomp

Lind − Lmin
. (5.12)

This means that in the limit of proper compression, C = 1−FI, we expect a coding
cost near zero, providing a means to quantitatively compare the performance between the
series expansion and the compression approaches.
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5.3 Experimental data: ganglion cells in the salamander retina
As previously discussed, we are interested in studying the neuronal activity of

ganglion cell populations. In this section, we describe in greater detail the data we intend
to analyze, which has been collected by our experimental collaborators in Berry’s lab at
Princeton University and published in Ref. [98].

The data correspond to the neuronal activity of GCs in the tiger salamander
retina. More specifically, the population is composed of N = 160 neurons responding to
naturalistic visual stimuli. The neuronal activity was recorded using a multi-electrode
array which provides a continuous trace of the membrane potential as a function of time.
As previously discussed, we can discretize these traces by considering the neuronal activity
within specific time windows of size ∆t. A statistical analysis of these data leads to the
choice of ∆t ≈ 20ms; further details are provided in refs [98,99,108].
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Figure 20 –

a) Raster plot of 80 neurons in the retinal population responding to repeated naturalistic
movies of 19.2s duration each. The green dashed line marks the end of the first movie. b)
Distribution of the ratio of observed states, Rs = Sexp/S, for different groups of neurons
of size k. Sexp corresponds to the number of states observed in the data set and S to the

number of expected states, 2k. The distribution is calculated over random groups of k
neurons from the retinal population. c) Finite size study of the states ratio as a function

of the data sample fractions. The black marker corresponds to the mean value of the
observed states over random groups of size k. The red marker corresponds to the linear
extrapolation of the fraction of data samples needed to observe the expected number of

states, 2k.

The visual stimulus used in the experiment was a movie composed of grey-scale
naturalistic images typical from the salamander habitat (see Fig. 20a). The movie was
systematically repeated 297 times, leading to approximately two hours of neuronal activity
recording time. After discretizing these neuronal activity traces, we got a total of Ts =
283041 experimental observation events per neuron.
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The inference of the conditional probability, p(σ0|σσσ), requires information of the
state probabilities p(σ), which we can infer from the frequency of each state. If the number
of states in σσσ is large, the number of experimental samples needed to get a reliable inference
of these probabilities is also large. Consequently, having a limited experimental sample
establishes a restriction in the network sizes that can be studied reliably. To establish
the network sizes that we can investigate with our retinal data, we analyze different
subnetworks of size k. First, we define the ratio of observed states as,

Rs = sexp/s, (5.13)

with sexp the number of states observed in the data and s the number of expected states,
2k. Fig. 20 shows the distribution of this ratio over 150 randomly chosen subnetworks of
sizes k = {7, 8, 9, 10}. For networks of seven neurons, with an expected number of 128
states, we have good statistics. For networks of eight neurons, the statistics worsens, but
still, for most subnetworks (> 90%), we get samples of at least 90% of the expected states.
For subnetworks of size k > 8 the statistics worsen quickly, such that the probability of
observing more than 90% of the states decays to less than 0.5.

From these analysis, we conclude that subnetworks of size k ≤ 8 have information
of more than 90% of the expected states. These results are necessary but not sufficient
to get a reliable statistics of the states in σσσ. In addition, we need to ensure that the
inferred state probabilities do not change drastically with the size of the experimental
sample. In Fig. 20c, we show a finite size analysis of the ratio of observed states as a
function of the fraction of data samples. First, we randomly choose a subnetwork of size
k. For that group, we calculate the ratio Rs for different fractions of the data samples,
F = {0.5, 0.6, . . . , 0.9}. To get an unbiased result, we perform 300 random permutations of
the samples, preserving the temporal data structure, per subnetwork. We run this analysis
for the same 150 subnetworks previously studied. In the figures, solid lines correspond to
the linear extrapolations of each independent case. The black marker corresponds to the
mean value of the experimentally observed ratio for all the 150 subnetworks, with all the
data. The red marker corresponds to the linear extrapolation of the number of samples
needed to observe the total number of expected states, that is Rs = 1. We see that for
subnetworks of size k < 8, the data provide reliable statistics on these states.

5.4 Compression implementation in the GC population
Considering the previous analysis, we reformulate our original problem such that

we consider subnetworks instead of the full network of GCs. Since in our approach we
are interested in compressing a large number of states, we will consider the largest group
that we can reliably investigate, that is, k = 8; we denote these subnetworks as σσσi, with
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i = {1, . . . , N−1
k
}. If these variables σσσl are compressible, we can implement a coarse-graining

procedure to increase the size of the subnetworks that we can reliably investigate. Fig.
21a shows a sketch of this implementation, where the first coarse-graining step is the
compression of networks of size k = 8, the second step is the compression of the coarse-
grained networks of size k = 16, and so on. The number of states of each coarse-grained
variable depends on the number of states of the compressed variables in the previous step.
This allows to get a reliable sampling of larger subnetworks with fewer expected states.
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Figure 21 –

a) Coarse-graining and compression diagram. The base level (yellow) represents the
groups of k = 8 neurons, σ

(1)
i , which are compressed into σ̃

(1)
i . Upper levels represent the

coarse-grained variables, σ
(j)
i , which are compressed into σ̃

(j)
i . b) Normalized mutual

information between pairs of neurons, I(σ0; σj)/I(σ0; σ1), for all choices of σ0 in the
population; blue lines correspond to the different choices of σ0 and the black curve

corresponds to the mean value. The inset corresponds to the distribution of the
information between σ0 and its most informative partner in the population, σ1. c)

Normalized mutual information between σ0 and the first 10 groups of k = 8 neurons, σσσi,
sharing the most information with σ0; red lines correspond to the different choices of σ0

and the black curve corresponds to the mean value. The inset corresponds to the
distribution of the information between σ0 and its most informative partner in the

population, σσσ1

As previously discussed, we are interested in compressing σσσl into σ̃σσl while preserving
the mutual information I(σ0;σσσl). To form the subnetworks of k = 8 neurons, we first
pick one neuron σ0 from the population. Then, we calculate the mutual information
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between pairs of neurons, that is, I(σ0 | σj), with j ∈ {1, 2, . . . , N − 1}. Fig. 21b shows the
normalized mutual information for all choices of σ0 and the 80 most informative neurons.
The plot shows the probability density of the mutual information between each choice of
σ0 and its most informative partner in the population, σ1.

To create the subnetworks, we rank neurons from the most informative to the least
informative with respect to (w.r.t.) σ0, and subsequently, we divide the sorted neurons into
(N − 1)/k groups. For instance, the first subnetwork, σσσ1, contains the eight neurons that
share the most information with σ0, the subnetwork σσσ2 contains the next most informative
eight neurons and so on. Similarly to the plot for the pairs of neurons, Fig. 21c shows the
mutual information curve of each of these subnetworks. The mutual information between
these subnetworks and the corresponding neuron σ0 decreases quickly. This suggests that,
on average, each neuron is correlated non-uniformly with the whole network.

5.4.1 Compression implementation

Based on the previous discussion, we implement the first coarse-graining step of
compression by following the hard clustering limit of the information bottleneck solution in
Eq. (5.4). We start by choosing one neuron σ0 and ranking the (N − 1)/k groups according
to the mutual information I(σ0;σσσl). Each group has 2k possible states that we denote as
σσσl = {σ1, σ2, . . . , σ2k} – note that the notation is the same used to refer the single neurons,
but, we highlight that here we refer to the states contained in the groups σσσl. For each of
these groups, σσσl, we start with some random assignment σσσl → σ̃σσl and compute

P (σ0; σ̃i) =
∑

σj∈σ̃i

P (σ0|σj) P (σj) , (5.14)

P (σ̃i) =
∑

σj∈σ̃i

P (σj) , (5.15)

with σj ∈ σlσlσl, σ̃i ∈ σ̃̃σ̃σl and P (σ0|σ̃i) = P (σ0; σ̃i)/P (σ̃i) as usual. Then for each
particular state we compute the Kullback–Leibller divergence

DKL (σi; σ̃i) =
∑
σ0

P (σ0|σi) ln
[

P (σ0|σi)
P (σ0|σ̃i)

]
, (5.16)

and reassign

σi → arg min
σ̃σσi

DKL (σi; σ̃i) . (5.17)

Iterating, we arrive at a mapping σσσl → σ̃σσl that maximizes I (σ0; σ̃σσl) for the
corresponding cardinality |σ̃σσl|. We implement this solution for all cardinalities, |σ̃σσi| ∈
{2, 3, . . . 2k}, and define the optimal cardinality as the one satisfying FI(σ̃σσi) = 1 ±∆FI;
with ∆FI the experimentally determined error bars.
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5.4.1.1 Two-neuron network

Before applying the compression algorithm to the retinal population, we analyze
a simpler system of k = 2 neurons to develop a better intuition regarding the approach.
This subnetwork σσσ has 22 states which we will compress, if possible, while preserving the
information about the neuron σ0. We study the two cases shown in Tables a and b in figure
22. In both cases, we set the state probabilities p(σj) = 0.25 and p(σ0) = 0.5 with σj ∈ σσσ

and σ0 ∈ {0, 1}. The mutual information between the neuron σ0 and the subnetwork σσσ is,

I(σ0;σσσ = {σ1, σ2}) =
∑
{σ}

p(σ0|{σ1, σ2}) log2
p(σ0|{σ1, σ2})

p(σ0)p({σ1, σ2})
, (5.18)

that is 1 bit for case 1 (table a) and 0.57 bits for case 2 (table b). In case 1, we see
that since the states σ = {(0, 0), (1, 0), (1, 1)} are completely redundant about σ0, we can
compress them into a unique state preserving the single bit of information. Following
equations (5.4), we find |σ̃| = 2, with

p(σ̃ = 0) = p(σ = {0, 0}) + p(σ = {1, 0}) + p(σ = {1, 1}) = 0.75 (5.19)
p(σ̃ = 1) = p(σ = {0, 1}) = 0.25, (5.20)

and the conditional probabilities shown in the table c in Fig. 22. The mutual information
between σ0 and the new compressed variable σ̃ remains equal, that is I(σ0; σ̃) = 1 bit.

a)

b)

a) c)

d)

e)

Figure 22 –

(a, b) Table of conditional probabilities p(σ0|σ) for (a) Case 1 and (b) Case 2. (c, d, e)
Table of conditional probabilities of the compressed states for (c) case 1 and (d, e) case 2.

Case 2 represents a non-trivial example with the conditional probabilities shown
in Fig. 22b. As before, the states σ = {(0, 0), (1, 0)} are redundant, and consequently, we
can compress them into a unique state while preserving all the mutual information about
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σ0; the conditional probabilities for this compression step are shown in the table d in
Fig. 22. Further compression of the remaining states is not trivial. The first table of Fig.
22e shows the conditional probabilities after compressing σσσ into σ̃0 = {(0, 0), (1, 0)} and
σ̃1 = {(0, 1), (1, 1)}. The second table of Fig. 22e shows the conditional probabilities after
compressing σσσ into σ̃0 = {(0, 0), (1, 0), (1, 1)} and σ̃1 = {(0, 1)}. The mutual information
in both cases decreases to 0.51 bits and 0.46 bits respectively. This example shows that
the outcome of the compression is strongly related to the network correlation structure.

5.5 Compression of GCs
The previous examples provide some intuition on how the compression algorithm

works in neuronal networks with different correlation structures. Next, we apply our
approach to the first coarse-graining step of the ganglion-cell population previously
described. Specifically, we ask whether all the states in σσσi (see the raster plot of Fig.
23) are necessary to describe the conditional probability p(σ0|σσσi). As previously shown,
this compression is strongly related to the structure of interactions within the retinal
population. We seek to compress the variable σσσi into the variable σ̃, while preserving all
the relevant bits about σ0.
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The effective field heff ({σj}) as a function of the states {σj}, in rank order. Mean, with
error bars estimated from the standard deviation across random halves of data (black),
and best least squares fit to Eq (5.7) truncated at third order (orange circles). Ranked

states are represented in the figure below the trace, with black indicating that a neuron is
“on," σj = 1. States at far right are not observed in data.
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Fig. 24b shows the fractional information curve as a function of the number of
states or cardinality, M , of the compressed variable σ̃0. The error bars are calculated using
a finite-size analysis of the data, as discussed in Appendix D. For this subnetwork σσσi and
neuron σ0, we find that the optimal number of states is M = 8, at which the fractional
information reaches unity within experimentally intrinsic error bars. Now, we repeat this
compression procedure for all possible choices of σ0 and their corresponding first group of
k = 8 most informative neurons. To show the overall result, we calculate the probability
density of the fractional information using a weighted kernel density estimator (wKDE);
details on this method are provided in Appendix A. As shown in Fig. 24c, the number of
states leading to an optimal compression at the population level is M ≈ 10.

Estimates of mutual information come with errors, and so statements about the
number of states needed to capture a given fraction of the information also have uncertainty.
For each choice of σ0 and σσσl, estimates of FI are accompanied by an error ∆F I(σ0,σσσl),
and as a global measure ∆F I we take the median of these errors (see inset of Fig. 25b). If
we choose a fixed number of states M for the compression, then across all choices of σ0

and σσσl we will find a fraction DF I for which the estimate of FI is larger than 1−∆F I , i.e.
the information captured is within errors of the information available. Fig. 25a highlights
this interval 1−∆F I in the probability densities of the fractional information for different
number of states M . Fig. 25b shows the plot of the fraction DF I as a function of the
number of states M . The colored markers correspond to the same probability densities
shown in the plot of Fig. 25a.

To compare the performance of our compression method with the performance of
the expansion defined in Eq.5.7, we now calculate the coding cost quantity of Eq. (5.11).
For each subnetwork σσσl we can calculate the effective field as a function of the states
following the equation,

heff (σσσl) = ln
[

P (σ0 = 1|σσσl)
P (σ0 = 0|σσσl)

]
. (5.21)

The black markers in Fig. 23 show the effective field for a randomly chosen σ0

and its group of k = 8 most informative neurons, σσσl. The error bars are calculated using
random halves of the data, as described in Appendix D. The raster plot below represents
each state sorted by the corresponding effective field value above; the states at the far right
are not observed in the data and consequently do not have any inferred effective field.

To calculate the coding cost, we infer the series parameters using 60% of the
data and calculate the coding cost on the other 40%. We iterate 100 times to get the
corresponding error bars. For instance, for the pairwise model in Eq. (5.7), the effective
field is
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Figure 24 –

Series expansion [see Eq. 5.7] vs compression. (a) Coding cost [Eq (5.12)] as a function of
the number of parameters for the series expansion in Eq (5.7). Black points from analysis
with all data, error bars are standard deviation across random choices of learning from
60% of the data and testing on the remaining 40%. (b) Fraction of mutual information
captured as a function of the number of states M in the compressed representation σ̃i.
Error bars from analyses of random subsets of the data. (c) Coding cost probability
density over all possible choices of σ0. Each curve corresponds to a different order of
truncation, J

(i)
0j , of the expansion [Eq. (5.7)]. (d) Probability density of the fractional

information over all possible choices of σ0. Each curve correspond to a different value of
M . We used a weighted-KDE method for the inference of the probability densities,

considering the measured error bars of each choice of σ0.

heff (σσσi) = h0 +
∑

j
J

(2)
0j σj. (5.22)

We fit the k + 1 parameters using a least square method. Orange markers in Fig.
23 show the model predictions. With these parameters, we calculate the coding cost on the
other 40% of the data. We repeat this calculation for 100 random permutations of the data
set to estimate uncertainties. Fig. 24a shows the coding cost curve for the same choice of
σ0 and σσσi used to calculate the compression of Fig. 24b. As previously discussed, at proper
compression we expect the coding cost to be near zero, which in this case is accomplished
with models with more than 150 parameters, representing high order interactions. To
summarize, in this network we can describe the influence of K = 8 neurons on one neuron
using just M = 11− 15 parameters, but this most efficient description does not correspond
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to a simple choice of pairwise or other low order interactions.

As shown in Fig. 24c, we calculated the probability density of the coding cost
for all possible choices of σ0 and their corresponding group of k = 8 most informative
neurons. Similarly to the compression case, we find that our results for the single neuron
also hold at the population level. On one hand, we find that only high order interaction
models lead to a good encoding of the retinal activity data. On the other hand, with
our compression approach we show that only a few degrees of freedom are necessary to
describe this population.
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(a) Probability density of the fractional information of the first group, σσσ
(1)
1 , sharing the

most information with σ0, for all choices of σ0. Each color represents a different
cardinality of the compressed variable σ̃σσi. The red dashed line represents the threshold

value FI = 1−∆FI; the distribution red area represents the population percentage, DFI,
exhibiting a proper compression with the corresponding cardinality M . (b) Percentage of
the population with proper compression, DFI(%), as a function of the number of states M .
The inset shows the distribution of the different error bars, ∆FI, over all choices of σ0. (c)

Fraction of cells σ0 and groups σσσi such that compression into M states captures the
available mutual information, within error bars. Successive coarse-graining steps as

described in the text. We define M∗ as the minimum number of states needed to achieve
complete compression in 90% of the cases. (d) Minimum number of states M∗ as a
function of the coarse-graining step. Dashed curves (grey) correspond to different

compression iterations, which vary because of noise in our estimates, together with linear
fit (orange)

We can perform this analysis not only for interactions between a single cell σ0

and its K most informative partners, σσσ1 = {σ1, . . . , σ8}, but also for interactions with
successively less informative groups σσσl = {σk(l−1)+1, . . . , σk(l−1)+k}, and the results are the
same. The blue curve in the figure 25c shows the fraction of cells and groups for which
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which we can capture the available information within errors with M states, and this
fraction is computed across the first eight groups of eight neurons each, for all N = 160
choices of σ0. Note that with l = 8 we are covering 0.4N of the cells in the entire population,
and that I(σ0;σσσl) is within error bars of zero for l > 8. We conclude that in 90% of all
the relevant groups we achieve essentially perfect compression with M∗ ∼ 11 states. In
a nutshell, we conclude that at the first coarse-graining step (see Fig. 21a), the data of
neuronal activity in retinal populations is compressible, allowing a significant description
simplification.

As previously mentioned and sketched in Fig. 21a, the compression σσσi → σ̃σσi is
reminiscent of the block spin construction in the renormalization group (RG) [109,110].
We recall that block spins are coarse–grained variables that replace groups of spins. In the
present context, it is important to remember that coarse–graining can be thought of as
data compression, and vice versa. By analogy with RG, then, we would like to do iterative
compression.

Concretely, we are focused on a variable σ0 and have ordered the remaining variables
σj by their mutual information with σ0. Our first coarse-graining step has been to take these
variables in groups of K = 8, and compress according to the solution of the optimization
problem in Eq (5.4), which gives us

{σ1, σ2, · · · , σ8} → σ̃σσ
(1)
1 (5.23)

{σ9, σ10, · · · , σ16} → σ̃σσ
(1)
2

· · · ,

where each of the variables σ̃σσ(1)
n has M states. To iterate, we take pairs of these variables

and compress again, e.g.

(
σ̃σσ

(1)
1 , σ̃σσ

(1)
2

)
→ σ̃σσ

(2)
1 , (5.24)

where again the mapping is chosen to maximize the mutual information I(σ0; σ̃
(2)
1 ).

We can keep iterating,

(
σ̃σσ

(2)
1 , σ̃σσ

(2)
2

)
→ σ̃σσ

(3)
1 , (5.25)

always with the same principle of choosing the compression that maximizes the mutual
information with σ0.

It is not surprising that successive stages of compression or coarse-graining require
more states to capture all the available mutual information, as shown in Fig 25(c,d). What
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is surprising is that the minimal number of states M∗ seems to grow linearly rather than
exponentially as we proceed through multiple stages, as seen in Fig 25d. After three stages,
we are describing the interactions of σ0 with 32 other cells using only M∗

3 = 32 states.
The linear growth of M∗ with the number of neurons is explicit evidence that we have
tamed the combinatorial explosion, combining the compressibility of interactions with an
RG–inspired iteration scheme.

The scaling of M∗ is what we might expect in a model with pairwise interactions,
or if single neurons coupled only to the total activity of other neurons, but neither of
these simplifications is correct. Rather than digging into the details of the compressed
states, which will be different for every group of cells, we can ask about the amount of
information that we identify as shared between single neurons and their most informative
partners, I(σ0; σ̃σσ). Since the neurons we are analyzing are the output neurons of the retina,
a natural comparison is between this information and the information that individual
neurons carry about the visual stimulus, I(σ0; s).

As previously discussed, the experiments done to get the neuronal activity data from
the salamander retial population include repeated presentations of the same naturalistic
movie (see Fig. 20a). We expect these neuronal responses to contain relevant bits of
information about this stimulus movie. Consequently, we can estimate I(σ0; s) directly
without any assumptions about which features of the visual stimulus are being encoded,
following [111].
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Figure 26 –

Information shared with the network vs information about the stimulus. Plot corresponds
to the first (blue, 8 neurons), second (green, 16 neurons) and third (red, 32 neurons)

coarse-graining steps. Estimates and errors as in Ref [111].

Figure 26 shows that as we consider larger groups of neurons, the information that
single neurons share with the network, I(σ0; σ̃σσ), approaches the information that these
neurons carry about the visual stimulus, I(σ0; s), reaching equality within (small) error
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bars. This has a surprising consequence for our understanding of neural coding. The k

neurons that go into defining σ̃σσ carry some information about the visual stimulus, I(σσσ; s),
and adding the extra neuron σ0 provides additional information,

∆I(σ0; s) = I(σσσ, σ0; s)− I(σσσ; s)
= I(σσσ, σ0; s)− I(σσσ; s)− I(σ0; s) + I(σ0; s)

=
∑

p(σσσ, σ0, s)
[
− log2

p(σσσ, σ0)
p(σσσ)p(σ0)

+ log2
p(σσσ, σ0|s)

p(σσσ|s)p(σ0|s) + log2
p(σ0, s)

p(σ0)p(s)

]
= I(σ0; s)− I(σσσ; σ0) + I(σσσ; σ0|s), (5.26)

where I(σ0;σσσ|s) is the (average) mutual information between σ0 and the network given
that visual stimulus is known. The fact that we achieve lossless compression means we can
replace I(σ0;σσσ) by I(σ0; σ̃σσ), and Fig 26 tells us that I(σ0; σ̃σσ) = I(σ0; s), so that

∆I(σ0; s) = I(σ0;σσσ|s). (5.27)

If neurons respond independently to the visual inputs, so that all correlations are inherited
from the stimulus, then this term would be zero and the neuron at the center of our analysis
would be completely redundant with the other K neurons, ∆I(σ0; s) = 0. Stated in a
more positive way, the global correlation structure of the retinal population is such that
the extra information carried by individual neurons depends entirely on their departure
from conditional independence. Although there is ample experimental evidence for these
correlations [112], conditional independence remains a widely held intuition; our analysis
indicates that the retina is far from this regime.

As a further test of these ideas we have looked at experiments on a very different
network of neurons, in the mouse hippocampus [103,113]. The results, to be described in the
next chapter, are very much the same, but perhaps less surprising since maximum entropy
models with only pairwise interactions already provide an excellent description of these
data, matching the higher order correlations within experimental error [103]. In contrast,
as emphasized in Ref [98] for the population of cells in the retina the pairwise models
show small but significant deviations from the data, and this has led to the exploration
of several alternatives [98, 114, 115]. The point of our discussion is not to identify the
correct model, but to understand why any simple model can succeed. Previous work has
focused on simple forms of the interactions, taking intuition both from physics and from
neurobiology. The arguments given here suggest, strongly, that what is essential for a
simplified description is the compressibility of interactions [104].

5.6 Discussion
As discussed in the Introduction, the study of the final stage of information

processing in the retina might provide important insights into the principles of information
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encoding by neuronal networks. The reason that the output signals of GCs are transmitted
to downstream regions in the brain that might have similar decoding/encoding principles.
Some works have suggested that information is encoded in the interspike time, while others
consider that it is the spike which directly carries the encode information [116]. Here, we
have focused our study using the latter approach, in which we have taken into account the
spike count and the different patterns of activity in the whole retinal population.

Under this scenario, we discussed some conventional models that make assumptions
on the neuronal interactions to predict the spike activity. More specifically, we discussed
how depending on the specific network, these models require high order interactions to get
an accurate prediction of the observed neuronal activity. Based on the limitations of these
theoretical approaches, we motivated our work of compression of interactions as a path
to build simpler models of neuronal activity. First, we described the population neuronal
activity as a conditional problem for which we defined the compression approach allowing a
direct comparison with the conventional interaction-based models. We demonstrated that
the compression is feasible in GC-populations from the salamander retina, and, we show
that the efficient description that we get from our approach does not correspond to a simple
choice of pairwise or other low order interactions. As we illustrated in the two-neuron
example, the outcome of compression strongly depends on the correlation structure among
neurons. The fact that the investigated retinal subnetworks can be consistently compressed
into a few states might indicate that there is an intrinsic structure of interactions and
correlations that could be analogous to the spatial structure in the spin-lattice systems.
Consequently, we conclude that simple models of neuronal activity are feasible but not
based in assumptions on neuronal interaction motifs.

Finally, we introduced a coarse-graining procedure as a RG-analog. We showed that
instead of an exponential growth in the number of parameters, typical from conventional
models of neuronal activity, we find a linear growth. Such a simplification allowed us to
investigate our conditional problem with larger subnetworks, providing important insights
into the correlation structure of retinal GCs. More specifically, we concluded that the
information carried by individual neurons is completely dependent on its departure from
conditional independence. That is, conditionally independent neurons are expected to be
completely redundant with the other neurons in the population.

To understand how general are our findings, we implement our approach in neuronal
populations from the hippocampus, which are also characterized by their spiking activity.
The results are described in the next chapter.
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6 Compression in a population of hippocam-
pus neurons

The hippocampus of vertebrates is located deep in the brain, such that neuronal
activity is driven by inter-neuronal connections among different populations. In contrast
with retinal populations, the relation between such neuronal activity and external stimuli is
not quite evident. In mouse, nevertheless, experimental works have evidenced the key role
of hippocampus in navigation-related tasks, bridging this gap between neuronal activity
and external inputs. More specifically, these works have characterized different types
of neurons, such as place cells, whose activity is largely correlated to specific physical
locations of the moue environment [117].

The mouse hippocampus is composed of thousands of spiking neurons leading to
the same theoretical and computational limitations discussed in the previous chapter.
That is, network models based on neuronal interactions lead to a combinatorial growth
of parameters that become impractical for real neuronal populations. In the previous
chapter, we found that the number of states in retinal ganglion populations is significantly
compressible, suggesting that we can avoid such combinatorial problem while still preserving
a detailed description of neuronal correlations. In this chapter, we investigate whether
this compressibility is characteristic of retinal populations or instead, it is a more general
property that can be generalized to spiking neuronal populations.

The reader can find all the theoretical formalism of this work in the previous chapter,
in which we described in detail the compression bottleneck method and its algorithm
implementation in spiking neuronal networks. In this chapter, we first discuss the details
of the hippocampus data-set as well as the relevant statistics to define our compression
problem. Second, we show the results and discussion.

6.1 Experimental data: mouse hippocampus
In this section, we describe in detail the data that we intend to analyze, which has

been collected by our experimental collaborators in Tank’s lab at Princeton university and
published in ref. [103].

The data correspond to the neuronal activity of N = 1485 hippocampus cells in
the mouse brain. Neurons were recorded while the animal navigated in a virtual reality
set-up, described in Ref. [103]. The mouse head is fixed, but the body is free to move
on a rotating ball that is synchronized with a projected video of a maze scenario. This
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experiment simulates real navigation and allows the recording of thousands of neurons via
calcium imaging1.

Similarly to the retinal population, the calcium activity was discretized into the
two states σ = {1, 0} for presence and absence of spike respectively [103]. The final number
of experimental samples per neuron after discretization was Ts = 70338. As described
in the previous chapter, our compression approach requires the inference of the state
probabilities p(σ), whose reliability depends on the data statistics. Consequently, to define
our compression problem, first we must define the maximal number of neurons in the
subnetworks that can be reliably described with these data. To do that, we calculate the
ratio of observed states defined in Eq. (5.13). Fig. 27a shows the distribution of this ratio,
over a thousand of randomly chosen subnetworks of sizes k = {6, 7, 8, 9}. We observe that
the neuronal activity in the mouse hippocampus is sparse, keeping us from observing all
the possible 2k states. In Fig. 27b we show the probability of observing a ratio higher than
0.5 as a function of the group size. We see that this probability quickly decreases with the
group size.
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Figure 27 –

a) Distribution of the ratio of observed states over 1000 randomly chosen groups of size k.
Different colors correspond to different group sizes. b) Probability, P50, of observing more

of the 50% of the states as a function of the group size, k. c) Finite size study of the
states ratio as a function of the data sample fractions. The black marker corresponds to

the mean value of the observed states over 1000 random groups of size k.

Compared to the retinal population, the number of observed states in the hip-
pocampus is much smaller but still enough to admit a significant compression. To define
the optimal group size, we study how sensitive is the ratio of observed states as a function
of the number of experimental samples. In Fig. 27c, we show the finite size plots as a
function of the fraction of data that we have. The black marker corresponds to the mean
value, over all neurons, for the total amount of data that we have. Markers correspond
1 This experimental technique allows the recording of calcium activity inside different regions of neurons,

known as regions of interest (ROI). These recordings allow an indirect measure of the neuronal activity
of thousands of ROI, simultaneously. Spikes are related to huge increments of calcium inside the ROI.
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to the values calculated with fractions of the data and lines correspond to the linear
extrapolation. We calculate the mean slope, ak, of the normalized data for each group size
to quantify the dependence of the states ratio on the number of samples. Similarly to the
discussion in the previous chapter, we expect that groups with a strong dependence on
the data size will have a poorer inference than groups with less dependence, and because
larger groups have more states, we expect that the larger the group size, the larger the
statistics variability for our data-set. Indeed, we find that the average slope of these linear
extrapolations is ak < 0.5 for K ≤ 8, corresponding to the increase in variability with
size. Larger values of K lead to larger variations and slope ak. Based on these analysis,
we conclude that the most reliable and large groups are k = 7 and K = 8, for which we
observe a large number of states with a weak dependence on the data size. Consequently,
we will investigate both cases, contrasting the compression differences when varying the
number of neurons within the subnetworks σσσ.
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Figure 28 –

a) Normalized mutual information between pairs of neurons, I(σ0; σj)/I(σ0; σ1), for all
choices of σ0 in the population; blue lines correspond to 100 different choices of σ0 and

the black curve corresponds to the mean value over all 1485 neurons. The inset
corresponds to the distribution of the information between σ0 and its most informative

partner in the population, σ1. b) Normalized mutual information between σ0 and the first
10 groups of K = 8 (K = 7) neurons in red (blue), σσσi, sharing the most information with
σ0; marker lines correspond to 200 different choices of σ0 and the solid curves in red and
blue correspond to the mean value for K = 7 and K = 8 respectively. c) Distribution of
the information between σ0 and its most informative partner in the population, {σ}K

1 : red
(blue) for k = 7 (k = 8). The distribution in black corresponds to the mutual information

for groups with randomly chosen neurons.

6.2 Compression implementation in the hippocampus population
Considering the previous analysis, we will study subnetworks of sizes k = 7 and

k = 8 instead of the full network of hippocampus neurons. Similarly to the case of
ganglion neurons, we use the mutual information to define these subnetworks. That is,
for a given neuron σ0, we calculate its mutual information with all other neurons in the
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whole population I(σ0; σj), with j = {1, 2, . . . , N − 1}. Then, we sort them such that
we make disjoint groups starting with the most informative neurons about σ0. Fig. 28a
shows the normalized mutual information for all choices of σ0 and the 80 most informative
neurons. The inset plot shows the probability density of the mutual information between
each choice of σ0 and its most informative partner σ1 in the population. Based on this
mutual information values, we build the disjoint groups of k neurons. Fig. 28b shows the
normalized mutual information, I(σ0;σσσj)/I(σ0;σσσ1) , for the cases of k = 7 (in red) and
k = 8 (in blue). Fig. 28c shows the distribution of the mutual information between σ0

and its most informative group σσσ1, which overlaps for k = 7 (red) and k = 8 (blue). To
compare how informative are these sub-networks, we compare them with sub-networks
created at random as shown in Fig. 28c. We see that compared to random sub-networks
(black), groups of ranked neurons share more information with σ0.
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Figure 29 –

The effective field heff(σσσ) as a function of the states in σσσ, in rank order for a) for k = 7 and
b) for k = 8. Mean, with error bars estimated from the standard deviation across random
halves of the data (black) and best least squares fir to Eq (5.7) truncated at third order

(orange). Ranked states are represented in the figure below the trace, with black
indicating that a neuron is “on," σj = 1. Only experimentally observed states are shown.

c) Mean firing rate for k = 7 (above) and k = 8 (below).

Compared to the retinal population (see Fig. 21b), in the hippocampus we observe
a larger variability in the mutual information curves among different choices of σ0. More
specifically, we observe more neurons which are weakly correlated to most of the neurons in
the population. Regarding the main curve of the groups of k neurons, we observe a slower
decrease of the mutual information I(σ0;σσσ), meaning that there are more groups sharing
significant information with σ0 related to the most informative group σσσ1. By comparing the
inset plots of figures 21c 28b, we observe that, on average, groups in the hippocampus share
less bits of information with their corresponding σ0 than retinal groups. Broadly, we have
found that in terms of mutual information, both hippocampus and retinal neuron groups
share similar properties. Nevertheless, the error bars, ∆(ret)

F I and ∆(hip)
F I of the retinal and

hippocampus populations respectively, are significantly different, such that ∆(ret)
F I

∆(hip)
F I

= 0.125.
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Because our compression approach is based on the mutual information values and their
corresponding error bars, we expect to get a higher uncertainty in the number of optimal
states for the hippocampus compared to the retinal population.
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Figure 30 –

Series expansions vs compression for (a, b, c) k = 7 and (d, e, f) k = 8. (a,d) Coding cost
[Eq (5.12)] as a function of the number of parameters for the series expansion in Eq (5.7).
Black points from analysis with all data, error bars are standard deviation across random

choices of learning from 60% of the data and testing on the remaining 40%. The inset
shows the coding cost probability density over all possible choices of σ0. Each curve

correspond to a different order truncation, J
(i)
0j , of the series expansion [Eq. (5.7)]. (b, e)

Fraction of mutual information captured as a function of the number of states M in the
compressed representation σ̃i. Error bars from analyses of random subsets of the data. (c,
f) Probability density of the fractional information over all possible choices of σ0. Each
curve correspond to a different value of M . We used a weighted-KDE method for the

inference of the probability densities, considering the measured error bars of each choice
of σ0.

Similarly to the previous chapter, we will compare our compression approach with
the effective field expansion of Eq (5.7). The plots a and b in Fig. 29 show the effective
field for a given choice of σ0 with k = 7 and k = 8 respectively. For k = 7 we observe
the 50% of the possible states, while for k = 8, we observe the 36%. Fig. 29c shows the
mean firing rate distribution – the mean number of spikes per time window per neuron,
evidencing that neurons in the hippocampus have a sparse neuronal activity with a mean
firing rate of ≈ 0.3 spikes per neuron per time window.

Based on this effective field, we calculate the coding cost for different truncations
of the series expansion of Eq. (5.7). Fig. 30a shows the result for a given choice of σ0

and a group of k = 7 neurons. Similarly, Fig. 30d shows the coding cost for a group
of k = 8 neurons. Compared to the retinal population (Fig. 24a,c), we observe that in
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the hippocampus, the pairwise model has a better performance, yielding a coding that
is nearest to zero. At the population level, we calculate the probability density over all
possible choices of σ0 as shown in the corresponding insets. This shows that, on average,
the pairwise model achieves a better performance in describing the neuronal activity of
the hippocampus when compared to the retinal population. Still, the coding cost is non
zero, meaning that we can do better with other models.

a) c)

N
um

be
r o

f s
ta

te
s

Number of neuronsNumber of states

b)

Figure 31 –

Fraction of cells σ0 and groups σσσ
(i)
l such that compression into M states captures the

available mutual information, within error bars for a) k = 7 and b) k = 8. Colors
represent successive coarse-graining steps as described in the text. We define M∗ as the
minimum number of states needed to achieve complete compression in 90% of the cases. c)
Number of states as a function of the number of neurons for k = 7 (orange markers) and

k = 8 (black markers). The dashed line shows the possible number of states 2k.

In the previous chapter, we shown that retinal populations are compressible, allowing
us to estimate the minimal number of parameters that we need to efficiently describe the
effective field heff(σσσ) while preserving all bits of information about a single neuron σ0. Such
a compressibility, though, depends on the network correlations and structure. Here, we test
whether hippocampus populations are also compressible and whether the minimal number
of degrees of freedom is similar to that one found in the retinal population. Similarly,
we begin by choosing a neuron σ0 and its group of K most informative neurons in the
population. The plots b and e in Fig. 30 show the results for two randomly chosen σ0 and
the groups of k = 7 and k = 8 respectively. We observe that in both cases, compression
with FI ±∆F I ≈ 1 is possible with a small number of states. At the population level, we
compress the groups of k neurons for all possible choices of σ0, leading to the probability
densities shown in Fig. 30c,f. We observe that with a number of M ≈ 8 states we already
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get a good compression. We highlight that the estimates of mutual information in the
hippocampus have larger error bars, leading to larger values of ∆F I . Subsequently, this
leads to broad distributions of the fractional information.

These results suggest that compressibility is a more general property of neuronal
populations, such that it does not depend on external conditions, e.g. stimuli, or neuronal
features, such as brain regions. In addition, our results imply that our compression approach
provides a description of the neuronal activity with an order of 10 parameters, which does
not correspond to the conventional pairwise model.

As a last step, following equations (5.24)-(5.25), we implement the coarse graining
compression, in which we can increase the number of neurons in σσσ while taming the
combinatorial growth of parameters. The plots a and b in Fig. 31 show the result of the
first three steps for k = 7 and k = 8 respectively. We find that the optimal number of
states do not increase exponentially, rather, we get a saturating growth as shown in Fig.
31c. Compared to the compression results in the retina, we observe that states in the
hippocampus population are similarly compressible while preserving most information
about the chosen neuron σ0.

6.2.1 Estimating errors in compression

If compression ideas work in the hippocampus population, several iterations of this
compression should lead to a coarse-grained description of the original conditional problem
with a much smaller number of parameters than the exponential 2N−1. To get an intuition
of our results, we discuss in greater detail the error estimation in compression as well as
the expected error introduced by this coarse grained procedure.

Estimating the mutual information from data is done by using finite-size corrections
while errors are estimated with variations among random halves of the data (see Appendix
D for further details). As previously described, compression is quantified via the fractional
information, FI, which is expected to be one when reaching perfect compression. Neverthe-
less, since estimates of mutual information come with errors, the fractional information also
has an error ∆F I propagated from the corresponding information ratio; plots a and b in Fig.
?? show the corresponding error distributions over different choices of σ0. Consequently,a
proper compression of {σ}K

i into σ̃K
i satisfies FI = 1±∆F I .

Following the ideas of coarse-graining, pairs of these compressed sub-networks
σ̃

(K)
i can be treated as new sub-networks of size 2K with a much fewer number of states

than 22K that can be further compressed. Successive iterations of this coarse-grained
compression lead to a large sub-network preserving most bits of information with σ0. This
construction works only if compressed parts of the network when merged preserve most of
the information of the corresponding σ0. More specifically if,
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Figure 32 –

a) Error density distribution of (above) the mutual information I(σ0; {σ}K
i ) and (below)

the fractional information; over thousands of groups of size K = 8. b) Plateau probability
in Eq. (6.2) as a function of the number of states M for K = 7 and K = 8; markers

correspond to data and solid lines correspond to the fit to a hyperbolic tangential function
F (M). c) Gradient ∇M (PP) as a function of M ; markers correspond to numeric estimation

from data and solid lines correspond to the derivative of the fitted function. F ′(M).

MFI = I(σ0; {σ̃K
i , σ̃K

i+1})
I(σ0; {σ}2K

i ) ∼ 1 (6.1)

Estimating reliably the mutual information I(σ0; {σ}2K
i ) is not possible for large

K. Nevertheless, we expect MFI to be a saturating function of the number of states M ,
meaning that we can use the gradient of MFI to estimate if with a small number of
states M the system reaches a plateau. As we did with the fractional information, we can
estimate the probability density ρ (MFI), over all possible choices of σ0, with a plateau
interval MFI ∼ 1±∆MF I . Figure ??b shows the plateau probability,

PP =
∫ 1+∆MF I

1−∆MF I

ρ (MFI) , (6.2)

as a function of the number of states M for K = 7 and K = 8 respectively. Markers
correspond to the data while solid lines correspond to the fit to an hyperbolic tangential
function. Figure ??c shows the gradient ∇M(PP) which quickly decays for M > 15. Such
decay as a function of M means that few bits of information are gained when including
more states in the compressed sub-networks. Consequently, we expect the coarse-grained
compression to work in the hippocampus, preserving most relevant bits of σ0.
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7 Discussion and perspectives

The rapid evolution of experimental techniques has allowed the observation and
better understanding of the brain in a few model organisms, such as zebrafish or mice [118].
Nevertheless, the extrapolation of these techniques to other non-model organisms remains
challenging, leading to a narrow range of observations across species. Such a limitation
might lead to a potentially biased understanding of the principles underlying neuronal
function [118]. To overcome such a limitation without fully relying in experiments, we
can develop theoretical frameworks valid across species. One such example is the efficient
coding hypothesis which proposes that systems adapt to their environmental conditions,
optimizing information processing at a minimal energetic cost. Such a theory is species-
independent, providing a powerful framework to investigate functional and anatomical
features in sensory systems.

In this direction, we proposed a model of neuronal population dynamics of outer
retinal circuits, using zebrafish experimental observations as a baseline. This data-driven
approach provided a deepest understanding of the role of inhibitory and excitatory feedback
mechanisms in circuits with N number of cones and one type of horizontal-cell. For instance,
we shown that the emergence of bistability in networks with strong excitatory feedback
implies a disadvantage for chromatic coding that networks with dominant inhibitory
feedback do not exhibit, providing support to the predominant inhibitory couplings
observed in zebrafish. In addition, such a model allows a straightforward extrapolation
to species with similar functional circuits. For instance, other vertebrate species with
interneuronal circuit motifs might exhibit a similar bistability, predicting weak or negligible
inter-cone couplings for color coding. Similarly, other circuit motifs with different number
of interneurons and time scales are feasible to investigate with this dynamical formalism,
providing a broad data-driven approach to study outer retinal networks of color coding
across species.

As a generalization, we used this neuronal population model to investigate the
combination of two independent strategies for color coding identified in different clades.
In more detail, we contrasted the coding efficiency of circuit motifs with and without oil-
droplets, identifying a trade-off between coding performance and color-space gamut. From
these studies, we identified the importance of independent overlapping cone responses in
circuits exhibiting efficient encoding. Such overlap is considerably reduced when including
droplet organelles, decreasing the encoding performance while increasing the total color-
space gamut. Unfortunately, data on the functional responses of outer retinal circuits in
birds or other species with droplets are yet to be collected. Nevertheless, based in our
results, we might expect to observe a circuit motif optimizing such a trade-off, yielding
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both an efficient processing of environmental chromatic information and a large number of
distinguishable colors. In a nutshell, these data-driven studies on the outer retinal layer
illustrate how theoretical approaches serve as a generalization of our understanding of
sensory systems and neuronal circuits from a few species.

Along the retinal pathway, neuronal responses go from being smooth to exhibit
spikes, allowing a signal diascretization that simplifies considerably theoretical approaches
at a large scale. In this work, we proposed a new compression approach to describe
neuronal activity without imposing constraints on the neuronal interactions as is done in
conventional models inspired in condensed matter systems, where neurons are treated as
interacting binary particles. This approach allows the accurate description of experimental
observations with a number of parameters that grows much slower than the maximum
2N , leading to more feasible descriptions of neuronal activity for large scale systems
with typically thousands of neurons. For instance, using this compression coarse-grained
approach, we were able to study large groups of neurons from the retina while preserving
an accurate description of the experimental data, outperforming pairwise models with the
same number of parameters. As a generalization, we tested our approach in the mouse
hippocampus, suggesting that such compressibility is a more general property of neuronal
populations, allowing the investigation of different brain areas across species. Beyond
neuronal networks, our approach also shows promising for systems where the mutual
information is subextensive, which seems to be a feature from natural systems [104].
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APPENDIX A – Kernel density estimation
(KDE)

The kernel density estimation is a smooth method to estimate the probability
distribution of a given data-set X; we use them as a smooth version of the histogram.
Instead of producing a discrete distribution, the KDE provides a continuous estimation of
the data distribution; for our purposes, we restrict our discussion to Gaussian KDE. The
general idea consist in assigning a kernel distribution, K(x) = (x−Xi), to each sample
Xi from the data-set. For a Gaussian Kernel that is,

K(x) ≡ Kh(x−Xi) = 1
h
√

2π
exp

(
−(x−Xi)2

2h2

)
, (A.1)

where h is the standard deviation of the Gaussian kernel, also known as the bandwidth
parameter of the KDE; this is a free parameter whose value is optimized for each data-set
(see below). The estimated distribution is calculated as,

f(x, h) = 1
n

n∑
i

Kh(x−Xi)

= 1
n

n∑
i

1
h
√

2π
exp

(
−(x−Xi)2

2h2

)
(A.2)

with n the total number of samples. As mentioned above, the bandwidth is a free parameter
adapted to the specific data-set. The larger the parameter the naiver the final distribution
and the smaller the parameter the more complex the distribution; both extremes produce
bad estimations. There are different methods to calculate an optimal bandwidth based on
the specific data-set; here, we restrict our discussion to the rule-of-thumb method, which
is the one we use to develop our work. The main assumption of this method is to consider
that the unknown probability distribution belongs to the family of Gaussian distributions
(see Ref. [119]). Under this assumption, the optimal bandwidth value is,

h = 1.06σ̃√
n

(A.3)

where σ̃ is the standard deviation of the data. This method is the more straightforward
and computationally cheap. Nevertheless, depending on the data-set, this method could
yields a poor bandwidth estimation. More details are provided in Ref. [120].

When data is accompanied of error bars, we cannot consider all data equal anymore.
Data with small error bars should get a strongest contribution to the KDE than data with
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Figure 33 – Kernel distribution estimation (KDE) of C and FI for the whole population
of neurons in the hippocampus data-set. The intensity plots show the KDE
per M in the case of FI and for each number of parameters in the case of C.
Both figures correspond to the case of the first 8 neurons sharing the most
information with each independent σ0.

large error bars (see the example of Fig. 33 c). The weighted-KDE considers a different
optimal bandwidth for each datum depending on its error bar. A full implementation is
available in python, by scipy.

On the left panel of Fig. 33, we show three examples of data-sets, generated from
normal distributions. The first data-set (measure 1) is composed of two data clusters
drawn from the distributions N (−∈,∞) and N (∈,∞). The second data-set (measure 2)
is drawn from the distribution N (′,∞). The third data-set (measure 3) is equal to the
first data-set, but with error bars included – data drawn from the distribution N (−∈,∞)
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have larger error bars than those ones of the data drawn from N (∈,∞). On the right side
of each data plot, we observe the superposition of both the histogram and KDE associated
to the data-set. Note that in the first two cases, the KDE is a smooth approximation of
the histogram. In the last case, we used a weighted-KDE to get a better estimation based
on the uncertainties of data. Note that the larger the error-bar of a datum, the smaller its
contribution.

The KDEs used to develop our work were compared with the corresponding
histograms to avoid large statistical errors. We used the function stats.gaussian_ KDE
from the scipy library in python. This library uses the kernel of Eq. A.1 and calculated
the optimal bandwidth with the rule-of-thumb.
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APPENDIX B – Neurons

In this appendix, we discuss the basic biology of neurons. In the first section,
we describe general anatomical and functional aspects. Following this, we describe the
interaction mechanisms among neurons, known as synapses.

B.1 Basic concepts
Neurons are the unit cells of the nervous system, ramifying all over the animal’s

body. The anatomy of these cells vary across regions, but most of them have three principal
parts: soma, axon and dendrites (see Fig. 34a). Typically, the dendrites feed the neuron
with external stimulation from other neurons. The soma contains the nuclei and other
organelles of the neuron, and it is in charge of integrating the inputs from the dendrites
to generate a unique response. Finally, the axon send the responses to other neurons via
synapses.

Dendrites 

Axon 

Soma 

Ions 

Cleft 

a) b) 
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Figure 34 –

Typical neurons and synapses. a) Sketch of a typical neuron. The inset, in red, shows both
the intracellular and extracellular ionic concentrations. Ions move across the membrane
using specific ion-channels. The inset, in blue, shows a typical action potential of a spike
neuron. b) Sketch of a dendrite-soma synapse. The activation of the pre-synaptic neuron

generates an ionic flux to be released into the cleft. The post-synaptic neuron has
ion-specific channels opening when the ionic concentration at the cleft increases. Created

with BioRender

All neurons have a celular membrane allowing the flux of ions in specific sites called
ion-channels. In general, the ions with the larger concentration around the membrane are
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Potassium K+, Calcium Ca− and Sodium Na− (see Fig. 34a). The charge difference on
both the inside and outside of the membrane defines the membrane potential which at
rest -when there is no external stimulation- equals the Nernst potential [121].

The external stimulation of a neuron produces an ionic flux causing a depolarization
of membrane potential. If the depolarization is continuous in time, the neurons are non-
spiking. On the other hand, when the depolarization suddenly increases after a threshold1,
we define the neurons as spiking. The inset in figure 34a shows the typical behavior of the
membrane potential of spiking neurons. Notice that after reaching the threshold (solid
grey line), the membrane potential increases up to a maximum and starts decreasing. This
phenomenon, known as action potential or spike, is triggered by an external stimulation,
but once the threshold is reached, the behavior becomes independent of external stimuli.
After reaching the maximum, the neurons initiates a process of hyperpolarization known
as refractory period; the typical duration of this period is approximately 2ms.

B.1.1 Synapses

So far, we described the general anatomy and dynamics of neurons. Now, we will
describe how these neurons communicate among them2. As previously discussed, a neuron
(post-synaptic) activates when receiving stimuli from other neurons (pre-synaptic) via
ionic fluxes. The place at which this stimulation happens is known as synapse. There are
diverse types of synapses in the nervous systems. For practical purposes, we will discuss
only chemical synapses, where neurons do not interact physically. Figure 34b shows a
sketch of a typical synapse between a neuron’s dendrite and a neuron’s soma3.

When a pre-synaptic neuron spikes, the ionic flux produced flows throughout the
axon. The synapses are in charge of releasing this ionic concentration into specific places
outside the neuron called clefts. When the ionic concentration at the cleft changes, the ion
channels of the post-synaptic cell open allowing the entrance of the ionic flux. Synapses
are plastic, meaning that neurons can create and delete synapses changing the neuronal
connectivity; it is the basis of learning.

1 The membrane potential threshold varies across neurons, but it is fixed for each neuron.
2 For practical purposes, we restrict our discussion only to spiking neurons.
3 In general, synapses can be created in any place over the neuron. The ionic flux always goes from the

pre-synaptic neuron to the post-synaptic neuron.
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APPENDIX C – Solution IBM

As discussed in the main text, the goal of the information bottleneck method is to
find an optimal mapping of σ → σ̃ with the constraint on the mutual information I(σ0; σ̃).
This problem is defined by the Markov chain σ0 ← σ ← σ̃, such that the optimal mapping
is determined though the conditional probability p(σ̃|σ) [106]. That is,

L[p(σ̃|σ)] = I(σ̃; σ)− βI(σ̃; σ0)−
∑
σ,σ̃

λ(σ)p(σ̃|σ), (C.1)

where we have included the normalization of the conditional probability p(σ̃|σ). Note that
this solution depends on the specific mapping σ → σ̃. We minimize Eq. (C.1) such that
we get

0 = ∂

∂p(σ̃|σ)

∑
σ,σ̃

p(σ, σ̃) log2
p(σ, σ̃)

p(σ)p(σ̃) − β
∑
σ̃,σ0

p(σ0, σ̃) log2
p(σ0, σ̃)

p(σ0)p(σ̃) −
∑
σ,σ̃

λ(σ)p(σ̃|σ)
 .

(C.2)

For the first term on the right hand side (r.h.s.), we get

∂

∂p(σ̃|σ)

∑
σ,σ̃

p(σ, σ̃) log2
p(σ, σ̃)

p(σ)p(σ̃)

 = p(x) log2

(
p(σ̃|σ)
p(σ̃)

)

+ p(σ)p(σ̃)
(

1
p(σ̃) −

p(σ̃|σ)
p(σ̃)2

∂p(σ̃)
∂p(σ̃|σ)

)

= p(x) log2

(
p(σ̃|σ)
p(σ̃)

)
. (C.3)

For the second term on the r.h.s. we get,

∂

∂p(σ̃|σ)

β
∑
σ̃,σ0

p(σ0, σ̃) log2
p(σ0, σ̃)

p(σ0)p(σ̃)

 = β

[∑
σ0

log2
p(σ̃|σ0)

p(σ̃)
∂p(σ̃|σ0)
∂p(σ̃|σ)

∑
σ0

p(σ0)p(σ̃) ∂

∂p(σ̃|σ)

(
p(σ̃|σ0)

p(σ̃)

)]

= β

[∑
σ0

p(σ0|σ)p(σ) log2
p(σ0|σ̃)
p(σ0)

]
. (C.4)

For the third term on the r.h.s. we get,
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∂

∂p(σ̃|σ)
∑
σ,σ̃

λ(σ)p(σ̃|σ) = λ(σ) (C.5)

Replacing Eqs. (C.3)-(C.5) into Eq. (C.2) we get,

0 = p(σ)
[
log2

p(σ̃|σ)
p(σ̃) − β

∑
σ0

p(σ0|σ) log2
p(σ0|σ̃)
p(σ0)

− λ(σ)
p(σ)

]
. (C.6)

that leads to the solution

p(σ̃|σ) = p(σ̃)
Z(σ, β) exp (−βDKL [p(σ0|σ)||p(σ0|σ̃)]) , (C.7)

with
Z(σ, β) = exp[βλ̃(x)] =

∑
σ̃

p(σ̃) exp (−βDKL [p(σ0|σ)||p(σ0|σ̃)]) (C.8)

the partition function.

This problem follows the Markov chain σ0 ← σ ← σ̃, consequently we have,

p(σ0|σ̃) =
∑

σ

p(σ0|σ)p(σ|σ̃). (C.9)

Similarly, using baye’s rule,

p(σ̃) =
∑

x

p(σ̃|σ)p(σ). (C.10)

This solution leads to an iterative solution in which the probabilities p(σ̃|σ), p(σ0|σ̃)
and p(σ̃) are determined such that they simultaneously minimize the free energy functional,
leading to the iterative solution,


pt(σ̃|σ) = pt(σ̃)

Zt(β,σ) exp(−βDKL [p(σ0|σ)||p(σ0|σ̃)])

pt+1(σ0|σ̃) = 1
p(σ̃)

∑
σ0 p(σ0, σ)p(σ̃|σ)

pt+1(σ̃) = ∑
σ p(σ)pt(σ̃|σ).

,

In the limit of β →∞, the Kullback–Leibler divergence DKL [p(σ0|σ)||p(σ0|σ̃)] is
minimized, and the solution reduces to



p(σ̃|σ) =

1 if σ ∈ σ̃

0 otherwise
∀σ ∈ σσσ

p(σ0|σ̃) = 1
p(σ̃)

∑|σ̃|
i=1 p(σi, σ0) ∀σ0 ∈ σ0σ0σ0

p(σ̃) = ∑|σ̃|
i p(σi).

. (C.11)
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APPENDIX D – Error estimation

In this appendix we describe the finite-size approach that we used to determine
the error bars of the second part of this thesis.

D.1 Fractional information
Estimating the mutual information between a single neuron, σ0, and a group of K

neurons, σσσi, means inferring first all the 2K+1 state probabilities. As previously discussed,
choosing K = 8 provide us with a good statistics to reliably infer such probabilities. Figure
20 shows the probability density of the ratio of observed states in data for all choices of
σ0, indicating that in the retinal population, we have statistics of more than 90% of the
possible states.

Estimating the mutual information directly from data leads to finite-size sampling
errors that must be corrected. To do so, we implement an extrapolation method to estimate
the truth value. We calculate the mutual information as a function of the inverse of the
sample size, by using fractions of the data, f = (50, 60, 70, 80, 90)%. We use a linear fit to
estimate the intercept value which is equivalent to the extrapolated mutual information.
We repeat this procedure a hundred times from random permutations of the data and take
the mean value as the truth mutual information. To calculate the error of the extrapolated
mutual information, we calculate the mutual information for random halves of the data
and calculate the standard deviation.

To calculate the fractional mutual information, FI, we propagate the error of
Imax(M) divided into I(σ0,σσσ). Doing a proper compression means reaching the plateau
FI = 1 within error bars ∆FI, coming from finite-size corrections. Note that each choice of
σ0 leads to a different value of mutual information, and consequently, to a different error
estimator – figure 25b shows the ∆FI distribution over all choices of σ0.

D.2 Coding cost
Calculating the coding cost as a function of the number of parameters requires

performing several least-squares fits of the effective field for different truncations of Eq.
5.7. To calculate the error bars, we perform this fit using 40% of the data, and with the
inferred parameters, we estimate C in the other 60% of the data. We repeat this procedure
a hundred times to get an estimation of the standard deviation that we use as an error
estimator. We use all the data to estimate the mean value of the coding cost, ensuring it
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is always within the estimated error bars – figure 24a shows the error bars in red and the
main values in black.

D.3 Error bar estimation of the extrapolated mutual information
for a system following Zipf law

To get a better understanding about the correct way to estimate the error bars
in our data, we study a simple case in which we can estimate analytically the mutual
information. Lets assume the same problem of having one neuron σ0 and a group of K

neurons, σσσi, with the mutual information I(σ0,σσσi). Assuming that the probability mass
function of the 2K states in σσσi follows a Zipf law, we get,

p(σσσi) = 1/k∑
k 1/k

, (D.1)

where k represent the rank of the state. In addition, assigning to each of these
states k an effective field hk acting on the single neuron σ0, we get,

p(σ0|σσσi) = exp(σ0hk)
1 + exp(hk) . (D.2)

We draw the effective fields, hk, from a normal distribution and we use Bayes
theorem to estimate the mutual information, I(σ0;σσσi) = 0.1559 bits1. Assuming now that
we do not have access to the probability distribution, but instead to a finite number of
samples, N , we expect to get an estimation error proportional to 1/

√
N . Considering

N = 10000, we expect an error of ≈ 0.01 bits.

Applying the extrapolation method discussed in the previous subsections, we can
estimate the mutual information in the limit N →∞ by iterating fractions of the data
(see Fig. 35). Using a linear fit to calculate the intercept values, we estimate the mutual
information to be ≈ 0.1546 bits – we also used a quadratic fit without significantly changes.
Comparing the effective-size estimation with the truth mutual information give us a
relative error of ≈ 1%, which agrees with the expected error.

So far, we can conclude that the linear extrapolation method provides a good
estimation of the mutual information, within the theoretical expected error. Estimating
the error magnitude directly from data can be achieved by calculating several times the
mutual information on random halves of data and taking the standard deviation. Figure 35
shows that the magnitude of the expected error bar (red line) is the same as the magnitude
of the estimated error bar (green line).
1 Calculations were made in python using the numpy random generator with the initialized seed zero
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Figure 35 –

Estimation of the mutual information I(σ0, {σj}) for the Zipf system via linear
extrapolation. (black) Expected mutual information (red) Expected error from finite-size
sampling. (blue) Mutual information estimation of one hundred iterations from fractions
of the sample as a function of the fraction size. (green) Linear extrapolation fit of all the
iterations; the intercept value correspond to the extrapolated mutual information and, the

error bar corresponds to the standard deviation from random halves of the data.

Despite we know that neuronal populations do not follow an exact Zipf law, we
know that there is a strong dependence between both the state frequency and the rank.
Also, when observing the extrapolation curves of real data, we observe a similar linear trend
as the one observed in the Zipf example. Consequently, we apply this linear extrapolation
method to estimate the mutual information between groups of neurons, and we estimate
the magnitude of the error by calculating several times the mutual information from
random halves of the data.
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APPENDIX E – Transmittance model

As shown in Fig. 36a, carotenoides inside an oil droplet absorb a portion of the
incident light, I0, transmitting I1. Such a process is described by the transmittance defined
as,

T = I1

I0
, (E.1)

that is related to the material absorbance as,

A = − log10 T. (E.2)

Since carotenoids are the molecules responsible for light absorption in the droplet,
the transmittance depends on the molecular density inside the droplet. Assuming that
carotenoids are homogeneously distributed in the droplet, we can use the Beer-Lambert
law to describe light absorbance, that is,

A = α(λ) l c, (E.3)

where l is the mean light path, c is the carotenoid concentration and α(λ) is the absorption
coefficient. Following, the logarithmic absorbance has an exponential decay for wavelengths
far from the absorption peak, that is,

log A = −aλ + b. (E.4)

With equations (E.2), (E.3) and (E.4) we get,

T = exp(−lcβ exp(−a(λ− λs))) (E.5)

with α(λ) = β exp(−a(λ−λs) and λs the minimum wavelength at which the linear relation
of Eq. (E.4) holds. That is, α(λs) is the maximum droplet absorption. For wavelengths far
from the absorption peak, the transmittance must be large, meaning that lcα(λs) >> 1.
The case of dense carotenoids is the one satisfying c >> 1/(lα(λs)).

Experiments on droplets provide information of the wavelength parameters λcut

and λmid, which are related to the transmittance function as shown in Fig. 36B. The
parameter λmid corresponds to the wavelength at which the transmittance has half of its
maximum value, while λcut is related to the wavelength at which the linear extrapolation
from the mid point is zero. We rewrite Eq. (E.5) as,
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Figure 36 –

a) Sketch of a droplet of radius r with incident and transmitted light, I0 and I1
respectively. b) Sketch of a typical transmittance function (red dashed line). The green

line shows the tangent line corresponding to the point (λmid), with λmid the wavelength at
which the transmittance has half of its maximum value (black dashed line). The

parameter λcut is defined as the wavelength at which the tangent line cuts the λ-axis.

T = exp(− exp(−a(λ− λ0))) (E.6)

with λ0 = λs + 1/a log(lcβ). From Eq. (E.6), we calculate the mid wavelength parameter
to be,

λmid = − log(log(2))
a

+ λ0 (E.7)

≈ 0.37
a

+ λ0 (E.8)

We calculate the parameter λcut using the tangent line at T (λmid). We calculate
the derivative of the function in Eq. (E.6) to estimate the slope of the tangent line, that is,

m = T ′(λmid) = log 2
2 a (E.9)

≈ 0.35a. (E.10)

Using this slope m and the line point (λmid, 1/2), we get the line equation,

T = a log 2
2 λ− a log 2

2 λ0 + log 2
2 log(log 2) + 1

2 (E.11)
≈ 0.35 a λ− 0.35 a λ0 + 0.37. (E.12)
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From this equation, we calculate the cut wavelength,

λcut ≈ λ0 −
1.06

a
. (E.13)

With Equations (E.8) and (E.13) we write the parameters in Eq. E.6 as

a ≈ 1.43
λmid − λcut

(E.14)

λ0 ≈ 0.74λmid + 0.26λcut (E.15)

m = 0.5
λmid − λcut

, (E.16)

such that we can rewrite Eq. (E.13) as,

T (λ) = exp
[
− exp

(
− 1.43

λmid − λcut
(λ− 0.74λmid + 0.26λcut)

)]
(E.17)

= exp
[
− exp

(
− 1.43

λmid − λcut
(λ− λcut)

)
exp(1.06)

]
(E.18)

= exp [−1.82 exp(−2.85 m (λ− λcut))] (E.19)
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