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“Creativity is the ability to introduce order into the randomness of nature.”
—Eric Hoffer



Resumo

Mapas caóticos digitais vêm sendo bastante utilizados no meio científico, a exemplo de
aplicações envolvendo simulação de Monte Carlo e geração de números pseudoaleatórios.
Contudo, sabe-se que o uso de uma representação finita faz com que mapas caóticos digitais
apresentem necessariamente órbitas periódicas que degeneram suas propriedades caóticas.
Além disso, nota-se, também, que há na literatura um número significativo de trabalhos
que propõem métodos para mitigar o processo de degradação do caos. Por exemplo, pode-se
utilizar um registrador de deslocamento com realimentação linear como uma fonte de
perturbação para esses sistemas. No entanto, poucos estudos visam a analisar o impacto do
uso de diferentes representações numéricas no processo de degradação do caos em mapas
caóticos digitais. Dado isso, este trabalho propõe uma arquitetura de hardware utilizando
o formato HUB (Half Unit Bias), em ponto fixo, que acopla o mapa tenda com o mapa de
Bernoulli e que apresenta propriedades pseudoaletórias, sendo que, para tal arquitetura,
foi realizada uma análise comparando o uso do formato HUB com relação a representação
padrão em ponto fixo. Além disso, este trabalho também propõe uma implementação, em
software, de um novo sistema baseado no mapa seno que, usando a representação posit,
utiliza inferência fuzzy de Sugeno para aproximar a função senoidal. Com isso, para tal
sistema em software, também é proposta uma análise que compara a influência do uso
da representação posit em relação a representação padrão IEEE 754 em ponto flutuante.
Em ambos os sistemas propostos, a análise comparativa feita acerca das representações
numéricas adotadas foi realizada tendo-se por base, sobretudo, propriedades caóticas e
pseudoaleatórias dos sistemas, por meio de métricas como, por exemplo, o expoente de
Lyapunov e a suíte de testes do NIST SP 800-22, que consiste em um conjunto de testes
estatísticos para geradores de números pseudoaleatórios (PRNGs). Resultados mostram
que, para a arquitetura de hardware proposta, a representação em ponto fixo que usa o
formato HUB consome menos recursos em hardware e que ela pôde fazer com que o sistema
não entrasse em pontos fixos de anulação de caos. Para o sistema baseado no mapa seno,
foi constatado que, pelo fato da representação posit possuir uma maior entropia por bit,
tal representação foi capaz de ter melhores resultados, em termos de pseudoaleatoriedade,
quando comparada com a implementação usando o formato IEEE 754 em ponto flutuante.
Ademais, ambos os sistemas propostos passaram em todos os testes do NIST SP 800-22, o
que evidencia, portanto, que eles podem ser usados como um PRNG.

Palavras-chave: Representações numéricas. Mapa tenda. Mapa de Bernoulli. Mapa seno.
Ponto fixo. Half unit bias. IEEE 754 em ponto flutuante. Posit. PRNG.



Abstract

Digital chaotic maps have been used in a variety of applications in the scientific field,
such as in the Monte Carlo simulation and in the generation of pseudorandom numbers.
However, it is known that the usage of finite precision makes digital chaotic maps necessarily
present periodic orbits that degenerate their chaotic properties. Furthermore, it can be
noted that there has been a significant number of works that proposes different methods
to mitigate chaos degradation in the literature. For instance, one can utilize a linear
feedback shift register as a source of perturbation in such systems. Nevertheless, a few
papers intend to analyze the impact of using different numeric representations in the
process of chaos degradation in digital chaotic maps. Thus, this work aims to provide
a hardware architecture using the HUB (Half Unit Bias) format, in fixed-point, that
bi-couples the tent map with the Bernoulli map, and presents pseudorandom properties,
on which, for such architecture, it was performed a comparative analysis that evaluates
the use of the HUB format in contrast with the standard fixed-point representation. In
addition, this work also presents an implementation, in software, of a novel system based
on the sine map using the posit representation, on which it was utilized the Sugeno fuzzy
inference to approximate the sine function. Herewith, for such a system in software, it was
also proposed an analysis that compares the use of the posit representation in relation
to the standard IEEE 754 floating-point representation. In both proposed systems, the
comparative analysis of the numerical representations adopted was made based mainly
on chaotic and pseudorandom properties of the systems, through metrics, such as the
Lyapunov Exponent and the NIST SP 800-22 test suite, which consists of a set of statistical
tests for pseudorandom number generators (PRNGs). Results show that, for the proposed
hardware architecture, the fixed-point representation using the HUB format uses fewer
hardware resources and it could also avoid the system from falling into chaos annulling
conditions. For the system based on the sine map, it was observed that, because the posit
representation has a higher entropy per bit, such representation was able to have better
results, in terms of pseudorandomness, when compared with the implementation using the
IEEE 754 floating-point format. Besides, both proposed systems have passed all the tests
of the NIST SP 800-22 test suite, evidencing that they can be used as a PRNG.

Keywords: Numerical representations. Tent map. Bernoulli map. Sine map. Fixed-point.
Half unit bias. IEEE 754 floating-point standard. Posit. PRNG.
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Chapter 1

Introduction

Chaotic systems present attractive properties to scientific and industrial com-
munities, such as complex behavior, high sensitive dependence on initial conditions, and
unpredictability Corless [1994]. For instance, Fortuna et al. [2003] proved that the pecu-
liarity of chaos enhanced the performance of the ultrasonic sensors’ instruments that use
unique sequences to identify their echo. In addition, Garcia-Bosque et al. [2019] proposed a
new chaos-based pseudorandom number generator that can be applied in Monte Carlo sim-
ulations while keeping low hardware resource consumption. In Perez-Resa et al. [2019], an
encryption scheme based on a chaotic algorithm has been successfully used in the Ethernet
1000Base-X standard. Furthermore, Pisarchik and Zanin [2008] proposed a cryptosystem
for color images based on coupling chaotic maps, presenting good confusion and diffusion
properties that guarantee high security.

Although there are significant applications involving chaotic systems in the lit-
erature, preserving chaotic properties in digital chaotic maps can be a non-trivial task
when using finite precision Corless [1994]. Whenever using a word length of n bits, the
iterations of the digital chaotic map can only take a maximum of 2n distinct values for any
given number representation, and, because the value of a given iteration determines the
value of the next one, its iterations will necessarily enter in periodic cycles Garcia-Bosque
et al. [2019], Liu et al. [2018]. Additionally, this process, called dynamical degradation of
chaos, can lead to digital chaotic systems with periods that are significantly lower than
the maximum number of distinct values available for the number representation adopted
Garcia-Bosque et al. [2019], Liu et al. [2018]. Herewith, the dynamical degradation of chaos
can significantly degenerate chaotic properties, resulting in systems with poor performance,
such as a slow cryptography system that lacks security Baptista [1998].

Nonetheless, if the period of the digital chaotic system is sufficiently large, it can
still be used in a variety of applications Cardoso et al. [2021], Pisarchik and Zanin [2008].
Consequently, an intuitive method to mitigate the process of chaos degradation is using
higher bit resolutions, although it might result in the use of considerable hardware resources.
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Thus, to solve this problem, researchers have been studying different methods to reduce
the effects of dynamical degradation. Hereby, the methods for mitigating the effects of
chaos degradation can be divided into the following main categories: (1) using higher
precision, (2) cascading chaotic maps, (3) perturbing the output of the chaotic system, (4)
switching multiple chaotic maps, (5) analog-digital mixed control method, and (6) using a
control feedback loop on the system Deng et al. [2015], Liu et al. [2018]. For example, as a
common approach, one can use a Linear Feedback Shift Register, a series of combinations
of flip-flops and XOR or XNOR logic gates Mishra et al. [2016], as a source of perturbation
Cardoso et al. [2021].

In addition, given the advantages and capabilities of reconfigurable hardware,
recent papers have presented new hardware architectures for chaotic systems. Neverthe-
less, optimizing performance and hardware resources can be a challenge when designing
such systems, and, therefore, this subject is of interest to recent studies. For instance,
Cardoso et al. [2021] proposed a hardware architecture for the exponential chaotic map
that uses the Maclaurin series along with the Horner’s method. In this way, it was shown
that the exponential chaotic map could be implemented in a Field Programmable Gate
Array (FPGA) with only one block of addition and one of multiplication to perform
mathematical arithmetic operations.

Considering fixed-point numbers, a significant amount of papers have been adopt-
ing this representation in digital chaotic systems, such as in Garcia-Bosque et al. [2019],
Teh et al. [2018], Cardoso et al. [2021], Hobincu and Datcu [2018]. Specifically, in Teh et al.
[2018], a chaos-based hash function using fixed-point arithmetic was implemented, showing
that the proposed system has low computational complexity. However, additional logical
circuits would be necessary to perform rounding to the nearest number using such a format,
which could considerably increase the hardware resources. Besides, most of the applications
involving digital chaotic maps in the literature use the fixed-point representation because
of its simplicity and low hardware consumption.

The use of the IEEE 754 floating-point representation is also presented in recent
papers, as in Cardoso et al. [2021], François et al. [2014], Aboulseoud and Ismail [2019],
Hassan and Ismail [2018]. For instance, Aboulseoud and Ismail [2019] introduced a hardware
implementation of the generalized fractional-order logistic map using the IEEE 754
floating-point format to achieve high accuracy and precision. This numerical representation
significantly increases the dynamic range. However, it is noticeable that algebraic operations
are more complex to be accomplished in floating-point arithmetic when compared with
the fixed-point format.

Furthermore, new non-conventional formats to represent numbers have been stud-
ied in the literature, such as the Half-Unit-Bias (HUB) format Hormigo and Villalba [2014].
In such a format, numbers have implicitly one bit set with the value “1” on the least
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significant bit, and, with this, some operations are simpler to be executed. As proof, one
can perform the rounding to the nearest approximation with only the cost of truncation,
which decreases substantially the hardware resources necessary to perform this operation
Hormigo and Villalba [2014].

Moreover, another recent number representation, called posit, has been proposed
by Gustafson and Yonemoto [2017] that consists of a type of universal number (unum).
Herewith, unums consist of a family of number formats designed to be an alternative to the
IEEE 754 floating-point standard. Thus, posit numbers, which is equivalent to unums type
III, exhibit a higher dynamic range compared with the IEEE 754 standard counterpart and,
at the same time, it presents a tapered accuracy, in the sense that numbers on the interval
[-1, 1] have higher accuracy than numbers that have an extremely high magnitude. However,
most of the personal computers currently do not natively support this representation.

In such a way, it can be inferred that the number representation being used in
digital chaotic maps not only can influence their required resources, but it can also directly
influence their iterations. Nevertheless, a few works in the literature aims to analyze
the influence of the usage of different numeric representations in the process of chaos
degradation on digital chaotic maps. Therefore, this work compares the influence of using
the HUB format in fixed-point against the standard fixed-point representation in a system
that utilizes the tent map in conjunction with the Bernoulli map. Furthermore, since
the method applied in this system could not be performed for the posit representation,
a second system, based on the sine map, is presented that compares the usage of the
posit representation against the IEEE 754 floating-point representation. In both systems,
the comparison analysis was focusing on metrics involving chaotic and pseudorandom
properties, such as the Lyapunov Exponent and pseudorandom statical tests.

1.1 General Objective

Analyze the influence of using different numeric representations in digital chaotic
systems, focusing on chaotic and pseudorandom properties. To perform it, a novel hardware
architecture that bi-couples the tent map with the Bernoulli map was proposed, and it was
compared the usage of the HUB format in fixed-point against the usage of the standard
format in fixed-point. Additionally, this work presents a software-based implementation
of a system based on the Sine Sugeno Fuzzy approximation map that uses the posit
representation and compares the performance of this system to that of the IEEE 754
floating-point standard representation.
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1.2 Specific objectives

• Highlight the main advantages and disadvantages of each non-conventional represen-
tation applied.

• Propose a mechanism to reduce the chaos degradation in both systems, keeping key
design parameters, such as performance.

• Perform statistical test suites which demonstrate the pseudorandomness of the
proposed systems.

• Demonstrate that the systems can be used as a PRNG (pseudorandom number
generator).

• Minimize the resources being used.

• Compare the results with state-of-the-art works.

1.3 Publications

The following publication has been accomplished during the development of this
dissertation:

1. S. S. d. Silva, M. Cardoso, L. Nardo, E. Nepomuceno, M. Hübner and J. Arias-Garcia,
"A New Chaos-Based PRNG Hardware Architecture Using the HUB Fixed-Point
Format," in IEEE Transactions on Instrumentation and Measurement, vol. 72, pp.
1-8, 2023, Art no. 2001208, doi: 10.1109/TIM.2023.3235457.

2. S. S. d. Silva, L. Nardo, E. Nepomuceno, J. Yudi, and J. Arias-Garcia, "A novel
Chaos-based PRNG using fuzzy inference approximation and POSIT numerical
representation," submitted into a high impact journal, and it is currently under
review.

1.4 Textual organization of the dissertation

The rest of this document is divided as follows: section 2 presents preliminary
concepts and state-of-the-art to have a better understanding of this work. Section 3
contains details involving the development of the systems. Section 4 has the results and a
comparative analysis of the systems regarding different numeric representations. Finally,
section 5 shows the conclusions concerning this work.

https://ieeexplore.ieee.org/document/10013689
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Chapter 2

Preliminary Concepts and
State-of-the-Art

2.1 An introduction to chaotic systems

2.1.1 Definition of chaotic system

It is known that non-linear systems can converge to equilibrium, oscillation, or
chaos range Robinson [2009]. Nevertheless, chaos theory has emerged from recognizing
that physical systems can appear unpredictable even though they follow deterministic
laws Robinson [2009]. Herewith, a chaotic system is a non-linear system that presents high
sensitive dependence on initial conditions in the sense that small modifications on the
input of the system result in vastly different outputs. Therefore, chaotic systems present a
set of characteristics such as complex behavior, and unpredictability Muthuswamy and
Banerjee [2015], Rüdisüli et al. [2013].

One classical example of a chaotic system is the logistic map Phatak and Rao [1995],
which is given by the equation 2.1:

xn+1 = λxn(1− xn) with n ∈ Z+
0 (2.1)

Where λ is a control parameter on which 0 < λ < 4 and the initial value x0 belongs to the
interval [0, 1]. In addition, depending on the value of λ, the system can assume different
states Phatak and Rao [1995], which are:

• For 0 < λ < 1: x = 0 is a stable fixed point, in the sense that for any value of x0

inside its domain interval, there will be an integer number i ≥ 0 on which, xi = 0.

• For 1 ≤ λ ≤ 3: x = (λ− 1)/λ is a stable fixed point.
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• For 3 < λ < 4: the logistic map will present period doubling events, and, for specific
values of λ on this range, it exhibits chaotic behavior, presenting, therefore, high
sensitivity to initial conditions.

The behavior described can be visualized through the bifurcation diagram of the
logistic map. The plot of the values taking into account the iterations of a chaotic map as
a function of its control parameter, after the transient part, is called a bifurcation diagram.
Hence, the bifurcation diagram of the logistic map is shown in Figure 1, reaffirming the
aforesaid behavior:

Figure 1 – Bifurcation diagram of the logistic map.

Mathematically, a system is considered chaotic if it presents at least one positive
Lyapunov Exponent for a given value of the control parameter. Herewith, the Lyapunov
Exponent can be interpreted as the rate of divergence of nearby trajectories in dynamical
systems, and, for discrete one-dimensional maps, it can be calculated following the equation
2.2:

λa(x0) := lim
N→∞

1

N

N−1∑
n=0

ln

∣∣∣∣dFdx (xn)

∣∣∣∣ (2.2)

Where F corresponds to the mathematical equation of the discrete one-dimensional
map.

For instance, it can be demonstrated that the logistic map assumes positive
Lyapunov Exponent values when the control parameter is between 3.569946 and 4 Arif
et al. [2022]. Thus, for this specific interval, the logistic map is considered chaotic.
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2.1.2 A brief history of chaos

The first significant work on chaotic systems was done by Henri Poincaré, a
professor at the University of Paris in the 19th century, during his studies on celestial
bodies. Poincaré’s investigation of the three-body problem revealed chaotic behavior, as it
became clear that it was impossible to precisely predict the movements of certain celestial
bodies over a long period Muthuswamy and Banerjee [2015]. Subsequently, the ergodic
hypothesis of Boltzmann became another influential work in the field. Koopman’s efforts to
prove the ergodic hypothesis demonstrated that a nonlinear problem with finite dimensions
could be translated into a linear problem with infinite dimensions Cvitanović et al. [2016].

However, one of the first definitive observations of deterministic chaos didn’t occur
until 1927, when Van Der Pol and Van Der Mark proposed a nonlinear oscillator that
produced irregular noise at specific frequencies Muthuswamy and Banerjee [2015], Ginoux
and Letellier [2012]. In 1950, Edward Lorenz used a computer with only 16KB of internal
memory to solve 12 differential equations of an atmospheric model Alligood et al. [1997].
Lorenz found the model too complex, so he simplified it using three differential equations,
as described in 2.3.


ẋ = σ(y − x)

ẏ = rx− y − xz

ż = xy − bz

(2.3)

Where x, y, and z are three quantities that depend on time.

The equations in 2.3 revealed the chaotic properties of the model, such as sensitivity
to initial conditions, aperiodicity, bounded trajectories, and complex attractor Muthuswamy
and Banerjee [2015]. For instance, the attractor of the Lorenz system can be obtained in
simulation, as it was obtained, using the Python programming language, in Figure 2.

It is noticeable that chaos can also be found in discrete dynamical systems
Devaney [1987]. Moreover, May [1976] popularized the logistic map1, a simple discrete
mathematical equation, in 1976, on which, on his work, he reviewed the dynamics of
first-order difference equations highlighting its applications in the context of biological,
economic, and social sciences. However, even though the logistic map exhibits a simple
mathematical equation, it presents complex dynamics, from stable points to apparently
random behavior. Nowadays, it is known that the logistic map can be used in various
applications, for instance, in a secure cryptography system with high performance Pareek
et al. [2006].

Furthermore, the history of chaotic systems is also intertwined with electronic
1 Further described in section 2.1.3.
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circuits. For example, researchers had been trying to demonstrate the realization of the
Lorenz system through electronic circuits since the 1970s. However, it wasn’t until 1983
that Leon O. Chua, a professor at the University of California, developed the first chaotic
electronic circuit. Since then, numerous electronic circuits exhibiting chaotic behavior have
been proposed, such as hysteresis-based chaos generators, and chaos from synchronized
oscillators Muthuswamy and Banerjee [2015].

Figure 2 – Lorenz attractor considering σ = 10, b = 8/3, and r = 28.

2.1.3 Chaotic maps

Chaotic maps are discrete chaotic systems that have at least one positive Lyapunov
Exponent and can be represented by the mathematical equation 2.4, as described in
Aguirre [2023]:

xk = F (xk−1) (2.4)

Where xk ∈ Rn, and F is a mathematical function on which F : Rn → Rn.

One example of a one-dimensional chaotic map is the logistic map, which is
given by equation 2.1. Thus, from an initial value x0, the value of the next iteration,
x1, can be obtained through the map recurrence equation, on which, specifically for the
logistic map, x1 = λ · x0 · (1− x0). In this way, we can successively compute the iterations
x2, x3, x4, ... , xn, and this set of iterations is called “orbit” of the map. Nevertheless, when
using finite precision in a computer, rounding is necessary to be executed. Consequently, the
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value obtained after each iteration of a chaotic map represented in a computer will not be
necessarily the same as the orbit of the same chaotic map from its mathematical definition.
Thus, the set of iterations of a digital chaotic map, x̂1, x̂2, ... , x̂n, is called “pseudo-orbit”.
For instance, Figure 3 presents the pseudo-orbit of the logistic map obtained in software
simulation, using the Python programming language, with x0 = 0.1 and λ = 1.95, and
with floating-point numbers in double precision, on which each interaction corresponds to
a red circle on the figure. In this case, it is clear that, for this parameter of λ, the system
does not present a chaotic behavior, and it has a stable fixed point at (λ− 1)/λ ≈ 0.487.
Nevertheless, results show that the logistic map can present a chaotic behavior for values
of λ close to the number 4, with, therefore, a positive Lyapunov Exponent. To demonstrate
it, Figure 4 presents the time series of the pseudo-orbits of the logistic map for x0 = 0.1

and λ = 3.97. Notice that there is no apparent correlation between its interactions, even
though the system is deterministic.

Figure 3 – Time series of the logistic map for x0 = 0.1 and λ = 1.95.

Figure 4 – Time series of the logistic map for x0 = 0.1 and λ = 3.97.
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Besides, in the rest of this subsection, it will be described all the chaotic maps
utilized in this work. It is valid to mention that these chaotic maps were chosen based on
their simplicity to be implemented in both hardware and software schemes.

2.1.3.1 Tent Map

The tent map is a discrete system that presents chaotic behavior depending on
the value of its control parameter. It is represented by 2.5:

xn+1 =

{
µxn, if xn ∈ [0, 1/2)

µ(1− xn), if xn ∈ [1/2, 1),
(2.5)

where xn ∈ [0, 1) and the control parameter µ ∈ [0, 2]. The chaotic behavior of this map is
obtained for 1 < µ ≤ 2 Yoshida et al. [1983]. Herewith, the time series of the tent map for
x0 = 0.1 and µ = 1.95 is shown in Figure 5.

Figure 5 – Time series of the tent map for x0 = 0.1 and µ = 1.95.

Its bifurcation diagram is illustrated in Figure 6. It is clear that, for µ ≤ 1, the
map does not present a chaotic behavior, having a stable fixed point. Nonetheless, as the
µ parameter increases, it can be seen as a continuum on the bifurcation diagram, on which
it presents a chaotic behavior.
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Figure 6 – Bifurcation diagram of the tent map.

Moreover, Figure 7 shows the state space of this map. The name “tent map” is
due to the tent-like shape of its attractor.

Figure 7 – State space of the tent map for µ = 1.95.

2.1.3.2 Bernoulli Map

The one-dimensional Bernoulli map is a discrete system defined by 2.6:

xn+1 =

{
2xn, if xn ∈ [0, 1/2)

2xn − 1, if xn ∈ [1/2, 1),
(2.6)

It is noticeable that xn ∈ [0, 1) and the map does not have a control parameter.
The Bernoulli map has a positive Lyapunov Exponent, equal to ln(2) = 0.693; therefore, it
presents chaotic behavior Driebe [1999]. Its time series is presented in Figure 8.
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Figure 8 – Time series of the Bernoulli map for x0 = 0.721.

Furthermore, since it does not have a control parameter, obtaining a bifurcation
diagram for such a system is not possible. Additionally, the state space of this map is
shown in Figure 9.

Figure 9 – State space of the Bernoulli map.

2.1.3.3 Sine map

The sine map is given by the equation 2.7:

xi+1 = η sin(πxi) (2.7)

Where η is the control parameter, and η ∈ [0, 1]. It exhibits chaotic behavior when
η ∈ [0.87, 1], and its domain is [0, 1], as described in Mansouri and Wang [2020]. The time
series for x0 = 0.1 and η = 0.97 is shown in Figure 10.
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Figure 10 – Time series of the sine map for x0 = 0.1 and η = 0.97.

Furthermore, the bifurcation diagram and its state space have a similar shape to
the logistic map, as can be seen in Figure 11, and Figure 12, respectively.

Figure 11 – Bifurcation diagram of the sine map.

Figure 12 – State space of the sine map for η = 1.
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2.2 Numerical representations

2.2.1 Fixed-point standard representation

A real number, A, represented in fixed-point by a set of “n” bits is divided into
the parts shown in Figure 13, on which the most significant bit (MSB) is the signal
bit, the m2 least significant bits (LSBs) are the bits of the fractional part and the
m1 = n − 1 −m2 remaining bits are used for the integer part. Herewith, given a set of
“n” bits, bn−1bn−2 . . . b1b0, on which b0 is the LSB, b1 is the second LSB, and so on, the
exactly represented number of this set of bits is equal the equation 2.8. Besides, it is valid
to mention that most of the applications involving digital chaotic maps in the literature
use this numeric representation because of its simplicity and because it demands a low
computational cost to perform arithmetic operations.

A = (−1)bn−1 × (bn−2 × 2n−m2−2 + bn−3 × 2n−m2−3 + . . .

+bm2 × 20 + bm2−1 × 2−1 + bm2−2 × 2−2 + . . .+ b0 × 2−m2)
(2.8)

Figure 13 – Fixed-point representation.

For instance, when using a word length of 5 bits, with 1 bit for the sign part, 1 bit
for the integer part, and the 3 remaining bits for the fractional part, consider the following
bit vector:

011102 (2.9)

For this specific example, we can infer that:

• The signal part is equal to 0, and, therefore, it is a positive number.

• The integer part is 12.

• The fractional part is equal to 1102.

Thus, the bit vector described in 2.9 represents the number given by equation
2.10:

011102 = (−1)0 · (1 · 21 + 1 · 2−1 + 1 · 2−2 + 0 · 2−3) = 1.7510 (2.10)
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2.2.2 IEEE 754 floating-point

The standard for floating-point arithmetic (IEEE 754) is a numerical representation
largely employed in the industry nowadays. It supports two formats, which are: (1) single
and (2) double precision Jiménez et al. [2014]. The single precision format uses a word
length of 32 bits, in which the MSB is used for the sign bit, the 23 LSBs are utilized for
the mantissa part, and the 8 bits remaining are used for the exponent part, as can be
seen in Fig. 14-A. In addition, the double precision representation has a word length of 64
bits, in which the most significant bit is for the signal part, the 52 least significant bits
are designated for the mantissa part, and the 11 remaining bits are used for the exponent
part, as illustrated in Fig. 14-B.

1 bit 52 bits11 bits

Signal

Signal

1 bit
Mantissa

Mantissa

Exponent

Exponent

23 bits8 bits(A)

(B)

Figure 14 – IEEE 754 Floating-point representation: (A) single precision. (B) double
precision.

In both precisions, the sign bit assumes the value “1” for negative numbers.
Otherwise, the sign bit will assume the value “0”. Furthermore, when using the single
precision, the 8-bit exponent has a bias of 127, and the bits of the mantissa are normalized.
Whereas for the double precision, the 11-bit exponent has a bias equal to 1023, and the
mantissa is also normalized.

The floating-point number FP is represented by equation 2.11.

FP = (−1)S · (1.mantissa) · 2exponent−bias (2.11)

For instance, consider the following bit vector in single precision:

010000100010111000000000000000002 (2.12)

For this specific case, the following is inferred:

• The signal part, S, is equal to 0.

• Since it is using single precision, then bias = 12710.

• The exponent is given by: exponent = 100001002 = 13210.

• The mantissa part is 010111000000000000000002 and it represents the fraction
0.35937510.
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Thus, the decimal number represented by the bit vector 2.12 is equal to equation
2.13:

010000100010111000000000000000002 = (−1)0 · (1.359375) · 2132−127 = 43.510 (2.13)

However, it is worth noting that this standard has several special values that do
not follow equation 2.11. They are:

• Zero: represented when both exponent and mantissa bits are equal to zero. Notice
that one can represent positive zero and negative zero using this standard.

• Infinity: when the exponent bits are all set to “1”, and the mantissa bits are all zero.
In this case, we can also represent positive and negative infinity, depending on the
sign bit.

• Not a number (NaN): occurs when the exponent bits are all set to “1” and the
mantissa part is non-zero.

2.2.3 Half-Unit-Biased Format

Half-Unit-Biased (HUB) is a representation format where numbers necessarily
have an implicit least significant bit constant and equal to one, and it is important to
note that this least significant bit does not bring any extra storage cost Hormigo and
Villalba [2014]. Herewith, considering the term “Exactly Represented Number” (ERN) as
the number value that is represented after performing the rounding in a given operation,
the ERN of a bit vector under the HUB format corresponds to the ERN of the same bit
vector using the conventional format added a value of half unit in the last place (ulp)
Hormigo and Villalba [2014]. As an example, when using one bit for the sign part, one bit
for the integer part, and three explicit bits for the fractional part for a HUB number in
fixed-point, consider the following bit vector:

001102 (2.14)

For the example of 2.14, we conclude the following:

• The sign part is 0.

• The integer part is 0.

• The explicit bits of the fractional part are equal to 1102, but it has implicitly one
least significant bit equal to one.
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Thus, the ERN of the bit vector 001102 is given by equation 2.15:

001102 = (−1)0 · (0 · 20 + 1 · 2−1 + 1 · 2−2 + 0 · 2−3 + 1 · 2−4) = 0.812510 (2.15)

One advantage of using the HUB format is that it performs operations, such as
the 2’s complement, in a simpler way. The 2’s complement can be performed by bit-wise
inversion. Then, as an example, the 2’s complement of the HUB number 001102 is given
by 110012. Furthermore, the ability to round to the nearest number can be done only by
the cost of truncation Hormigo and Villalba [2014]. Thus, the HUB format can remarkably
reduce the hardware resources needed to perform the round-to-the-nearest operation when
compared with the conventional format. In contrast, in applications that need an effective
rounding down, additional logic circuits would be necessary to be performed when using
this format.

Fig. 15 illustrates, in (A), the process of truncating a number in a conventional
fixed-point representation, using three bits for the fractional part. The non-ERNs are shown
in the figure in black circles, whereas the ERNs are shown in light blue circles. In this figure,
it is clear that rounding is necessary to be done to represent the non-ERN when using
only three bits for the fractional part. Therefore, when using the standard representation
in (A), the truncation operation is responsible for an effective rounding down. However,
due to the implicit least significant bit when using HUB numbers, truncating a number in
(B) leads to rounding to the nearest ERN. Additionally, it is important to mention that,
in (B), the ERN uses three explicit bits for the fractional part, and their implicit bit is
shown in red for convenience.

Figure 15 – Process of truncating a number using: (A) standard fixed-point representation
for numbers using three bits for the fractional part. (B) the HUB fixed-point
format for numbers using three explicit bits for the fractional part. The
non-ERNs are represented in black circles, and the ERNs after truncation is
represented in blue circles.

Furthermore, to work with the HUB fixed-point format, a general rule can be
applied to compute arithmetic operations. Firstly, the bit vector used is extended with an
additional least significant bit set to one. Then, one can apply the conventional arithmetic
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operations considering the extended bit vector. Finally, after calculating the result of such
an arithmetic operation, one can have the output HUB format simply by truncating it,
obtaining the desired number of bits Hormigo and Villalba [2014].

2.2.4 Posit

Posit numbers are a data type that has been designed to replace the IEEE 754
standard for floating-point arithmetic Gustafson and Yonemoto [2017], Cook [2018]. The
key differences between posit arithmetic and its counterpart are that posit arithmetic
never overflows to infinity Gustafson and Yonemoto [2017], Cook [2018], and, at the
same time, posit arithmetic provides a higher dynamic range with tapered precision, on
which its values mass around 0. Therefore, numbers inside the interval [−1, 1] have more
accuracy and precision than extremely high numbers or extremely small numbers Murillo
et al. [2020]. As disadvantages, it can be noted that most hardware implementations and
personal computers do not natively support this numerical representation, limiting its use.

The posit representation is specified by two numbers, which are: the word length
(n), and the maximum number of bits (es) of the exponent part. Thus, it is a common
practice to designate a posit number representation using the notation: posit<n, es>.
Furthermore, a posit number has the following parts: (1) sign, (2) regime, (3) exponent,
and (4) fraction bits.

The sign bit behaves similarly to the IEEE 754 floating-point numbers. The sign
bit “0” indicates positive numbers, and “1” indicates negative values. However, if the
sign bit is “1”, it is necessary to take the twos complement of the rest of the bits, before
computing the regime, exponent, and fraction bits of the number.

Moreover, the regime is a sequence of identical bits right after the sign bit. The
regime ends when either it achieves the maximum bit length (n) or when the sequence of
identical bits ends by an opposite bit. For example, if the first bit after the sign part is “0”,
the regime part will be composed of a sequence of bits “0”, until either the bit “1” is found
or when it runs out of bits. It is valid to mention that the opposite bit that indicates the
end of the regime sequence is not included in the regime for computing posit values.

The exponent bits are the ones after the regime part if there are any. Their
maximum length will be equal to es. Furthermore, if there is a number of bits less than
es after the regime part, then the rest of the bits after the regime will be assigned to
the exponent part. Besides, the remaining bits, if any, after the sign, the regime, and the
exponent bits, are set to the fraction part.

Herewith, the representation of a posit number P is given by 2.16:

P = (−1)Suk2ef (2.16)
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Here S corresponds to the sign bit; e is the exponent bits taken as an unsigned
integer; the value u, known as “used”, is represented by equation 2.17; k is given by equation
2.18, and f is the value represented by the fraction bits added a value of 1.

u = 22
es

(2.17)

k =

{
−m, if regime has m 0’s

m− 1, if regime has m 1’s
(2.18)

For example, consider the following bit vector using posit<32, 2>:

011010111101101000000000000000002 (2.19)

For this case, the following is inferred:

• The signal part, S, is equal to 0.

• The useed is u = 22
es
= 22

2
= 1610.

• The regime bits are 112, and, therefore, k = 110

• The exponent bits are 102, representing the integer value 210.

• The fraction part is 111101101000000000000000002, and, consequently,
f = 1.962890625.

Thus, the ERN of the bit vector of 2.19 is shown on equation 2.20:

011010111101101000000000000000002 = (−1)0 · 161 · 22 · 1.962890625 = 125.62510 (2.20)

In addition, there are only two posit special values, which are:

• Zero: represented by all n bits set to zero.

• ± infinity: when only the first bit is “1”, and the rest of the bits are “0”. Note that
there is no distinction between positive or negative infinity in this representation.

In addition, it is worth mentioning that, for 32 bits, a common practice in the
literature is using posit<32, 2>.
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2.3 Sugeno fuzzy inference

The Sugeno fuzzy inference Sugeno [1985], also referred to Takagi-Sugeno-Kang
fuzzy inference, is a method for mapping from a given input to an output using fuzzy
logic. Herewith, this procedure is typically composed by a set of “N” rules in the following
pattern:

If x is Ai and y is Bi, then zi = f(x, y). (2.21)

Where x and y are inputs of the system; Ai and Bi are fuzzy sets; zi is either a
linear function of the input values or a constant for the rule i. In addition, to compute a
single number from the set of rules, the output zi is weighted by a value wi, on which for
an “and” rule, as in 2.21, wi is given by equation 2.22:

wi = t-norm(F1(x), F2(y)) (2.22)

Where F1 and F2 are the membership functions of the fuzzy sets, and the t-norm
is usually the minimum operator. Consequently, the final output of the system is presented
in equation 2.23:

Output =
∑N

i=1 wizi∑N
i=1wi

(2.23)

As it will be shown in Section III, this scheme can be used to approximate the
sine function.

2.4 State-of-the-Art

To conduct a short introduction of the state-of-the-art works in the literature, it
was employed the platform Web of Science, a database and selective citation index which
is currently owned by Clarivate Analytics. The search applied the following fields in the
platform: “chaotic maps”, “chaos degradation”, “chaotic systems”, “applications”. Herewith,
a comprehensive number of papers were listed and analyzed.

Considerable research in the literature has applied chaotic maps as a component
of pseudorandom number generators, such as those by Liu et al. [2018], Kopparthi et al.
[2022], Cardoso et al. [2021]. For instance, Liu et al. [2018] proposed a coupled chaotic
model that can be universally applied in such a way that the output of one chaotic map
is used to compute the control parameter of another chaotic map. Herewith, the paper
presents two coupled models: one that couples two logistic maps, and the other that couples
the Chebyshev map with the Baker map. As an application, the paper demonstrated

https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/webofscience-platform/
https://clarivate.com/
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that the coupled logistic maps can be used as a pseudorandom bit generator (PRBG),
passing all statistical tests of the NIST test suite, a well-known set of statistical tests for
pseudorandom sequences.

In addition, Kopparthi et al. [2022] proposed a hardware implementation of the
Piecewise Linear Chaotic Map (PWLCM), on which XORed shift registers were used to
mitigate chaos degradation. The designed PWCLM was implemented in the Xilinx Zynq
7000 FPGA, and the results showed that the proposed system can effectively be used as a
PRNG. Moreover, the proposed design’s effectiveness in producing random outcomes was
validated through statistical and security analyses, such as phase space, key sensitivity,
correlation, and information entropy.

Another common application involving chaotic maps relates to cryptography. As
an example, in Sharma and Bhargava [2016], it is presented an image encryption scheme
designed for gray-scaled images. The proposed scheme generates a chaotic sequence from
a two-step iterated logistic map that was used to change pixel positions. Consequently, it
was proven that the scheme provides high security and acceptable speed, being, therefore,
evidence that the properties of digital chaotic maps, such as high sensitivity and long
periods, are suitable for designing such a system.

Other examples include the image algorithm that cascades two chaotic maps pro-
vided by Zheng and Bao [2022]. They introduced an improved cascaded two-dimensional
map, a 2D-Cosine-Logistic-Sine map (2D-CLSM), offering advantages in terms of complex-
ity and sensitivity. Nevertheless, it is valid to mention that the efficiency of the proposed
scheme was reduced due to the implementation of two rounds of encryption, one at the bit
level and another at the pixel level.

An application involving instrumentation and measurements is presented in Garcia-
Bosque et al. [2019]. A hardware implementation of a chaotic system based on the logistic
map is applied, and, to mitigate chaos degradation, the control parameter of the map is
dynamically changed. The proposed system was employed in a Virtex 7 FPGA with a total
of 510 lookup tables (LUTs) and 120 registers, consuming, therefore, low resources. In
addition, it was shown that the proposed system passed all NIST tests, being suitable to be
used in the Monte Carlo simulation, an important application involving instrumentation
and measurements.

Besides, Table 1 contains chaotic maps used by the state-of-the-art papers cited
in this section:



Chapter 2. Preliminary Concepts 37

Table 1 – Comparison of state-of-the-art works in terms of chaotic maps being used.

Paper Chaotic maps used
Liu et al. [2018] Logistic map/ Chebyshev map/ Baker map
Kopparthi et al. [2022] Piecewise linear chaotic map
Cardoso et al. [2021] Exponential chaotic map
Hobincu and Datcu [2018] Generalized Henon Map
Sharma and Bhargava [2016] Logistic map
Zheng and Bao [2022] Logistic map / Sine map
Garcia-Bosque et al. [2019] Logistic map

Table 2 summarizes applications on each state-of-the-art paper as well as their
approach to mitigate chaos degradation:

Table 2 – Comparison of state-of-the-art works in terms of application and their MFMCD
(method to mitigate chaos degradation).

Paper Application MFMCD
Liu et al. [2018] PRBG Coupling chaotic maps
Kopparthi et al. [2022] PRNG XORed LFSR
Cardoso et al. [2021] PRNG XORed LFSR
Hobincu and Datcu [2018] PRNG XORed three variables operation
Sharma and Bhargava [2016] Image encryption Two-step logistic map
Zheng and Bao [2022] Image encryption Cascading maps
Garcia-Bosque et al. [2019] Monte Carlo simulation Changes on the control parameters

It is noteworthy that chaotic maps may be employed not only in the applications
referenced in this section but also in a diverse array of other problem domains, including,
for instance, optimization Rani et al. [2023], and control theory Chen et al. [2016]. This
serves to underscore the significance that such systems hold in contemporary times.
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Chapter 3

Development

In this work, we propose two systems to analyze the influence of using different
numeric representations on chaos degradation. To do it, the first one, which is called
“Bi-coupled system” from now on, is a hardware architecture bi-coupling the tent map
with the Bernoulli map. The second one, called “Sine system” from now on, was made in
software and it is based on the sine map. Herewith, the next two subsections present the
details regarding the development of these systems.

3.1 Bi-coupled System

In this system, it was used VHDL for the description of the digital circuit along
with the Xilinx Vivado 2019.1 synthesis tool. In addition, the hardware architecture was
mapped into the FPGA device Artix 7 XC7A100TCSG324 . Furthermore, to reproduce
the experimental tests done in this work, one can use the hardware setup shown in Fig. 16,
which uses a Nexys 4 board along with a system generator tool and Matlab on a personal
computer.

For the fixed-point representation used in this first system, we chose to represent
the numbers using 0 bits for the integer part and 32 bits for the fractional part. Such
a decision was made based on the fact that the domain of both the tent map and the
Bernoulli map belongs to the interval [0, 1).

To implement the tent map in hardware, it was necessary to pay attention to
the singularities of the algebraic operations of its recurrence equation. It is known that
to compute the subtraction of two real numbers x1 and x2, i.e., x1 − x2, when using
the standard fixed-point format, one can simply add x1 with the 2’s complement of x2.
Nonetheless, once the 2’s complement of a number in the HUB format is performed
by bit-wise inversion Hormigo and Villalba [2016], the subtraction can be obtained by
extending the implicit least significant bit of x1 and the 2’s complement of x2, adding
x1 with the 2’s complement of x2, and then, performing truncation to have the desired
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Figure 16 – Experimental setup using the Nexys 4 board with the low-cost FPGA Xilinx
Artix 7 XC7A100TCSG324 .

number of bits. For example, considering x1 = 110000000000000000000000000000002 and
x2 = 010000000000000000000000000000002, we can compute x1 − x2, in HUB format,
using the following steps:

1. Obtain the twos complement of x2 performing an operation of bit-wise inversion,
that is: 101111111111111111111111111111112

2. Extend the implicit least significant bit of x1, on variable x̂1, as well as the implicit
bit of the twos complement of x2, on variable x̂2, as so we have the following:
x̂1 = 1100000000000000000000000000000012 and
x̂2 = 1011111111111111111111111111111112.

3. Add x̂1 with x̂2, resulting in: 1000000000000000000000000000000002.

4. Truncate the result obtained in the last step to have the desired number of bits,
which is 32 bits in this example, resulting in 100000000000000000000000000000002.

Herewith, the proposed tent map using the HUB format can be implemented as
shown in Fig. 17-A. Since the subtraction only occurs when xn ≥ 1/2, as seen in (2.5), and
because of 1/2 = 0.100...02, the most significant bit, xn[31], is the only bit that matters to
verify the aforesaid condition. Thus, if the most significant bit is set to ‘1’, then the input
of the tent map is greater than 1/2. Otherwise, the number is less than 1/2.

Seeing Fig. 17-A, the selector of the multiplexer (MUX) is set to “0” if xn is
less than half, making the output of the map be xn+1 = µxn. Otherwise, the selector
of the MUX would be set to “1” and the output of the chaotic map would be equal to
xn+1 = µ(1−xn). Since all the 32 bits of the word length were being used for the fractional
part, and as the control parameter of the tent map needs to belong to the interval (1, 2] to
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(A) (B)

(C) (D)

Figure 17 – Proposed hardware architectures using the HUB format for the following cases:
(A) Tent map. (B) Bernoulli Map. (C) Bi-coupled map. (D) Bi-coupled map
using an LFSR. For the addition and multiplication operations, the following
steps were taken: first, explicitly extend the least significant bit of the operands;
second, operate using conventional arithmetic; third, truncate the result to
have 32 bits. The block “Concatenate” indicates the concatenation of bits, the
symbol “<< 1” corresponds to the shift left of one bit, and xn[31] corresponds
to the most significant bit of the word length of 32 bits.

present a chaotic behavior, the parameter µ was computed in such a way that it also had
implicitly one bit set for the integer part, which makes sure that the control parameter µ
is greater than one and that it belongs to the interval in which the tent map has a positive
Lyapunov Exponent. Furthermore, once it is not possible to represent exactly the integer
number “1” in the HUB format, the symbol “1 + 1/2 ulp” indicates that the ERN of it
consists of the value “1” added half ulp.

For the Bernoulli map, a similar approach was used (see Fig. 17-B). Since it is
not possible to represent exactly the number “2” in the HUB format, to approximate
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the multiplication by two, the following steps were taken: first, shift left the bits of the
represented number by one bit, and then set the least explicit significant bit to “1”. The
multiplexer in Fig. 17-B works the same way it was used for the tent map.

As will be demonstrated in section 5, empirical tests indicate that the iterations of
the hardware architectures of the tent map and Bernoulli map (Fig. 17-A and Fig. 17-B)
have short periods for a variety of values of the control parameter, which makes these
systems not suitable in certain applications, such as in image encryption. This limited
period is due to the dynamical degradation when using finite precision.

Nevertheless, to mitigate the dynamical degradation process, this project applies
a bi-coupling approach, which consists of a particular case shown in Liu et al. [2018]. Thus,
the output of the tent map influences the input of the Bernoulli map and vice versa. In the
proposed system, the least significant 29 explicit bits of the parameter µ of the tent map
are set to be equal to the least significant 29 explicit bits of the output of the Bernoulli
map, whereas the 3 remaining explicit bits of the µ parameter was set to have a fixed value
of “1112”, making the parameter µ assume values in the interval [1.75, 2]. This decision was
made based on the fact that the Lyapunov Exponent of the tent map is high for values
of the control parameter close to “2”, as well as it guarantees that the tent map presents
a chaotic dynamic behavior in the system. Thus, the control parameter of the tent map
of the architecture is dictated by the output of the Bernoulli map. Fig. 17-C shows the
proposed architecture done in this work. Note that the control parameter of the tent map
is determined based on the iterations of the Bernoulli map; therefore, the parameter µ is
not an input of the hardware architecture.

A D flip-flop with an input set to the logical high was used in Fig. 17-C. The
flip-flop makes the selector (S) of the MUX to be equal to the logical low in the first
iteration, and, therefore, the output of the MUX will be equal to the initial condition
(x0) of the proposed chaotic system. Then, after the first iteration has been computed,
the output of the flip-flop will assume the logical high, as it will receive a clock pulse,
making the output of the MUX equal to the previous value generated by the hardware
architecture.

Furthermore, to make the proposed hardware architecture produce uniformly
distributed sequences, an operation called “modified BT” was used, which is slightly
different from the bit transformation (BT) suggested in Jiang and Wu [2009]. The “modified
BT” operation takes as input an array x, of 32 bits, as described in (3.1). Then, it inverts
half of the input bits, as shown in (3.2). The other half, described in (3.3), is also used to
compute fh (see (3.4)), where the bit-wise XOR operation is performed. The result of the
“modified BT” operation, called “MBT{x}”, shown in (3.5), is obtained by concatenating fh

and fl. Finally, after computing it, an adder is introduced into the proposed chaotic system,
adding two sub-states of the system, contributing to avoiding its dynamical degradation.
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x = b31b30b29 . . . b3b2b1b0, (3.1)

fl = b0b1b2 . . . b15, (3.2)

f
′

h = b31b30b29 . . . b16, (3.3)

fh = f
′

h ⊕ fl, (3.4)

MBT{x} = fh, fl. (3.5)

For comparison purposes, the proposed hardware architecture in Fig. 17-C was
also made using the standard fixed-point representation. However, it was not possible to
represent this hardware architecture using the IEEE 754 single-precision floating-point
standard since the “modified BT” operation can make the system produce values that are
outside of the domain of both the tent map and Bernoulli map for such arithmetic.

Additionally, another approach to reduce the dynamical degradation was made
in this project, as can be seen in Fig. 17-D. Hence, instead of using the “modified BT”
operation along with an adder, this approach does a bit-wise XOR operation between the
output of the tent map and the output of a Linear Feedback Shift Register (LFSR), similar
to what was done in Cardoso et al. [2021]. Nevertheless, as it will be described in the
next section, this approach does not present better results compared with the architecture
shown in Fig. 17-C.

The following nomenclature will be used to refer to the proposed hardware
architectures in the rest of this dissertation:

• Bi-HUB: the proposed Bi-coupled map using the HUB fixed-point format.

• Bi-Standard: the proposed Bi-coupled map using the standard fixed-point format.

• Bi LFSR-HUB: the proposed Bi-coupled map using the HUB fixed-point format in
conjunction with the LFSR.

3.2 Sine System

The second system is based on the sine map, and it was implemented using the
Python programming language, as it is a high-level language, and, to perform operations
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with posit numbers, the library SoftPosit was employed. As most sine function implementa-
tions support only floating-point numbers, an approximation of this function using Sugeno
fuzzy inference was applied. Unlike most of the approximations for the sine function, such
as the Bhaskara’s approximation Stroethoff [2014], the Sugeno fuzzy inference implemented
in this work enabled performing the approximation with only simple operations of multi-
plication and addition. Therefore, while currently implemented in software, the scheme
can also be implemented in hardware. Moreover, as will be shown in section 4, the errors
introduced by the approximation of the sine function did not affect the pseudorandomness
of the system.

We used the posit<32,2> representation, which has a 32-bit length and a maximum
of two exponent bits. This format is widely used in the literature Zhang and Ko [2021]. For
comparison purposes, we also implemented the sine map using IEEE 754 single-precision
floating-point format.

We implemented the sine function using Sugeno fuzzy inference and considering
three rules based on the graphical properties shown in Fig. 18, and described as follows:

• if x is A1, then z1 = a1x+ b1;

• if x is A2, then z2 = a2x+ b2;

• if x is A3, then z3 = a3x+ b3;

where A1, A2, and A3 are fuzzy sets with triangle membership functions w1, w2, and w3,
as shown in Fig. 19. The membership functions are described by (3.6)-(3.8):

w1(x) =


x
π
+ 1 if − π < x ≤ 0,

−x
π
+ 1 if 0 < x < π,

0 otherwise.
(3.6)

w2(x) =


x
π

if 0 < x ≤ π,

−x
π
+ 2 if π < x < 2π,

0 otherwise.
(3.7)

w3(x) =


x
π
− 1 if π < x ≤ 2π,

−x
π
+ 3 if 2π < x < 3π,

0 otherwise.
(3.8)

We chose these membership functions because their sum is always equal to 1 for
0 ≤ x ≤ 2π, which simplifies the computation of the sine approximation.

The values of z1, z2, and z3 are given by (3.9)-(3.11):
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z1(x) =
2

π
x, (3.9)

z2(x) = − 2

π
x+ 2, (3.10)

z3(x) =
2

π
x+ 4. (3.11)

Figure 18 – Rules z1, z2, and z3 used in Sugeno fuzzy inference to approximate the sine
function. The sine function is shown in this picture only for reference.

Figure 19 – Membership functions w1, w2, and w3 of the fuzzy sets A1, A2, A3, respectively.

Thus, (3.12) shows how we can compute the approximation of the sine function
through Sugeno fuzzy inference. The approximation of the sine function using such an
equation is illustrated in Fig. 20.

sin(x) ≈ w1(x)z1(x) + w2(x)z2(x) + w3(x)z3(x)

w1(x) + w2(x) + w3(x)
. (3.12)
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Figure 20 – Sine function approximated in comparison with the function natively imple-
mented in Python.

Since the sine map domain is limited to the interval [0, 1], w3(x) and w3(x)z3(x)

will always be equal to zero. Moreover, within this interval, the sum of w1(x) and w2(x)

is always equal to 1 due to the chosen membership functions. Therefore, (3.12) can be
simplified to (3.13) specifically for the sine map domain:

sin(x) ≈ w1(x)z1(x) + w2(x)z2(x). (3.13)

By combining the sine map model (2.7) with the sine function approximation
(3.13), we obtain (3.14):

xi+1 = η [w1(πxi)z1(πxi) + w2(πxi)z2(πxi)]. (3.14)

Section IV reveals that the sine map shown in (3.14) does not show good results
in terms of randomness, not passing in most of the tests in the NIST SP 800-22 test suite.
Therefore, a perturbation method as a post-processing is necessary.

The perturbation method used in this paper is similar to the one in Öztürk and
Kılıç [2018], which applies a LFSR. We perturb the 27 LSBs by performing a bit-wise
XOR operation between the sine map iterations and the LFSR output with a feedback
loop. It is worth noting that this method cannot be used with the IEEE standard for
floating-point arithmetic. If we disturb the 27 LSBs with a feedback loop, some exponent
bits will be disturbed, causing the system to go outside the sine map domain.

Furthermore, the sine map always outputs positive numbers within the interval
[0, 1]. As a result, the most significant bits of the sine map iterations - which correspond to
the sign and regime bits - will not change significantly after each iteration. This behavior
is not desirable for pseudorandom number generators, which should produce bit sequences
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with no apparent correlation or consistent repetition. To increase the entropy of the 5
MSBs, which were not disturbed by the LFSR, we applied an XOR operation between
these bits and a 5-bit-length mask. This mask was generated by XORing the 5 least
significant bits of the last iteration of the scheme and the next iteration of the sine map,
as shown in Fig. 21. However, to prevent the system from falling outside the sine map
domain, we did not apply a feedback loop to the five most significant bits. By using this
approach, we can take all 32 bits of the output of the scheme into consideration, and the
output of the complete scheme will be the set of real numbers.

Figure 21 – Diagram block of the complete scheme using the sine map with perturbation.
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Chapter 4

Results

4.1 Bi-coupled System

To demonstrate the effects of the perturbation method of this first system, the
proposed hardware architectures were all tested to evaluate the period of its pseudo-orbits.
Once it is being used a finite precision (32 bits), it can be inferred that the proposed
systems have necessarily periodic pseudo-orbits. However, if the period of a digital chaotic
system is sufficiently large, it can be used in a variety of applications. Thus, Table 3 shows
the period identified after testing each hardware architecture when using the HUB format.
A million iteration was generated for testing each hardware architecture, considering the
initial condition x0 ≈ 0.71. For the tent map, the value of the µ parameter used is µ ≈ 1.75.
Nonetheless, for the final implementation, the value of the µ parameter changes on each
iteration. Moreover, similar results were obtained when testing the same systems for a
variety of other initial conditions and also when using the standard fixed-point format.

Table 3 – Period and transient of the chaotic hardware architectures using the HUB format.
The term “Transient” is used here to refer to the number of iterations that occurs
initially that do not belong to the period of the pseudo-orbit itself. Similar
results were obtained when testing for other initial conditions.

Hardware Architecture Period Transient
Tent map (Fig. 17-A) - µ ≈ 1.75 20013 41279
Bernoulli map (Fig. 17-B) 1 30
Bi-HUB Not identified within the sample Not identified within the sample
Bi LFSR-HUB 63563 17155

Based on Table 3, it is clear that the process of dynamical degradation makes the
Bernoulli map converge to one unique value, which is 0.49 when using the HUB format.
Furthermore, Table 3 shows the tent map has periodic pseudo-orbits with a period of
2.0013 × 104, for x0 ≈ 0.71 and µ ≈ 1.75. Nevertheless, this period is not high enough
for some applications. For example, in some image encryption schemes, when encrypting
images of size 512× 512, it would be necessary to iterate at least 2.62144× 105 times the
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chaotic system, which invalidates this system to be used in this kind of application. In
addition, when using the perturbation method proposed in Fig. 17-C, it was not identified
a period. Thus, in this case, it is possible to generate a sequence of 1× 106 values, each
value with 32 bits, without a defined period. Therefore, this is evidence that the proposed
perturbation method in Fig. 17-C mitigates chaos degradation for this sample, justifying
its use. Moreover, the perturbation method using an LFSR is able to mitigate chaos
degradation as its period increases in relation to when using only the tent map or the
Bernoulli map. However, a period of 6.3563× 104 is identified in this case, which limits its
use in some specific applications.

Table 4 – P-value results after running the SP 800-22 test suite for the proposed hardware
architectures, considering the bi-coupled systems.

Bi-HUB Bi-Standard Bi LFSR-HUB
Test P-value Proportion P-value Proportion P-value Proportion
Frequency 0.514124 100/100 0.437274 98/100 0.437274 97/100
Block Frequency (m = 128) 0.779188 99/100 0.534146 99/100 0.000199 100/100
Cusum-Forward 0.153763 100/100 0.779188 98/100 0.897763 97/100
Cusum-Reverse 0.595549 100/100 0.366918 98/100 0.834308 97/100
Runs 0.071177 98/100 0.021999 98/100 0.000000 83/100
Longest Runs of Ones 0.319084 100/100 0.574903 99/100 0.678686 97/100
Rank 0.534146 100/100 0.739918 100/100 0.779188 99/100
FFT 0.153763 100/100 0.383827 100/100 0.016717 98/100
Non-overlapping Templates 0.595549 99/100 0.678686 99/100 0.016717 98/100
Overlapping Templates (m = 9) 0.153763 98/100 0.191687 100/100 0.554420 99/100
Universal 0.657933 99/100 0.616305 98/100 0.000000 95/100
Approximate Entropy 0.699313 99/100 0.224821 98/100 0.045675 97/100
Random Excursions (x = +1) 0.897763 56/57 0.057146 64/65 0.153763 52/54
Random Excursions Variant (x = −1) 0.062821 56/57 0.723129 64/65 0.236810 53/54
Linear Complexity (M = 500) 0.045675 99/100 0.678686 99/100 0.334538 98/100
Serial (m = 16, ∇Ψ2

m) 0.574903 99/100 0.108791 99/100 0.816537 99/100

To validate the proposed hardware architectures, the bi-coupled system was
submitted to the NIST SP 800-22 test suite Bassham et al. [2010]. Accordingly, the
NIST SP 800-22 test suite consists of a set of 15 statistical tests for random and pseudo-
random number generators Bassham et al. [2010]. Each test has as output a number called
“P-value”, which belongs to the interval [0, 1). If the output of the corresponding test has
a P-value greater than a significance level α, typically equal to 0.01, then the sequence
is considered random for the given statistical test. Thus, a system is considered to have
pseudorandom properties if, for all tests, its P-values are greater than α. Herewith, Table
4 shows the results obtained for the NIST SP 800-22 test suite, considering 100 sequences
of one million bits and a significance level α = 0.01. Therefore, it is noticeable that, in the
Bi-HUB and Bi-Standard cases, the proposed systems have passed all tests, as all P-values
obtained were greater than α. Moreover, for the Bi LFSR-HUB case, the system has passed
most of the tests, but not all of them, since some tests present P-value < α. Herewith,
although the bi-coupled system with an LFSR did not pass all tests, it is known that using
an LFSR as a source of perturbation is a common practice Cardoso et al. [2021], Ahmed
et al. [2018], Garcia-Bosque et al. [2016], and, therefore, the results obtained for the Bi
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LFSR-HUB architecture are presented in this document only for compassion purposes.

In contemplation of validating the use of the proposed bi-coupled system as a
PRNG, we also submitted the generated bitstream in the ENT test suite, a tool that
has been extensively used to prove pseudorandom features of numerical sequences. By
running 6 different statistical tests, this series of tests present a satisfactory indicator of
the quality of random generators. Table 5 shows the results obtained for each numerical
representation used, which reaffirms what was shown by NIST SP 800-22 test suite. These
tests confirm that the bi-coupled system using HUB fixed-point or the standard fixed-point
format presents outstanding pseudorandom features. Furthermore, the ENT result proves
that the proposed PRNG can effectively be used in the Monte Carlo simulation as it got
values close to π in the “Monte Carlo value for Pi” test.

Table 5 – ENT test suite results obtained for the hardware architectures and Lyapunov
Exponent calculated based on Hegger et al., considering the bi-coupled systems.

Test Expected value Bi-HUB Bi-Standard Bi LFSR-HUB
Entropy (bits per bit) 1.0 1.0 1.0 1.0
Chi-square (abs) - 3.12 1.06 3.88
Chi-square (percentage) 10 ∼ 90 7.72 30.31 4.88
Arithmetic Mean 0.5 0.5001 0.5000 0.5001
Monte Carlo Value for Pi 3.14159265 3.14103 3.14051146 3.14490
Serial Correlation 0.0 0.000139 0.000091 -0.001353
Lyapunov Exponent > 0 5.15388 5.15332 0.8514

Due to the nature of the perturbation method applied, the complexity of calculating
the Lyapunov Exponent analytically is very high. Thus, an approximation of the Lyapunov
Exponent was evaluated. The Lyapunov Exponent was calculated based on the method
described by Kantz [1994]. Table 5 shows the results obtained for the proposed hardware
architectures using different numerical representations. In each case, it was used the
software available in Hegger et al., and results exhibit that the systems have a positive
Lyapunov Exponent, an important factor to indicate the presence of chaotic properties.

The state space of the system is shown in Fig. 22. For all cases, the state space
presents a complex shape due to the perturbation method applied. Moreover, Fig. 22
shows that the autocorrelation approximates a Dirac delta function in all approaches,
showing that the sequence generated does not have an apparent correlation between its
values. Ultimately, the histogram was obtained, as shown in Fig. 22, and the distribution
for the cases (A) and (B) presented is close to a uniform distribution. However, in (C), it
is seen a non-uniform distribution, reaffirms the results of the NIST SP 800-22 test suite,
on which the system failed for the block frequency test.

Furthermore, Fig. 23-A exhibits the time series of the system evaluating the
Bi-HUB and Bi-Standard approaches. Clearly, Fig. 23-A shows that the numerical format
used could influence directly the output of the system since the pseudo-orbits of the
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(I) Return map (II) Auto-correlation (III) Probability
distribution

(A)

(B)

(C)

Figure 22 – Results for the proposed hardware architectures. Column (I) corresponds to
the chaotic state space, column (II) shows the autocorrelation obtained, and
column (III) exhibits the histograms of the systems. Cases (A), (B), and (C)
correspond, respectively, to the following architectures: Bi-HUB, Bi-Standard,
and Bi LFSR-HUB.

systems diverge after the first iteration. Additionally, Fig. 23-B reveals that using the HUB
format has a positive effect of avoiding the chaos annulling condition when all 32 explicit
bits of the initial condition are set to zero. Since this numerical representation has a half
unit in the last place, such a condition makes the output of the chaotic maps different
than zero, not degenerating the chaotic behavior. In contrast, for the same hardware using
the standard fixed-point representation, if the input is set to be a bit vector with all bits
set to zero, it will completely degenerate chaos as the output of the system will always be
zero. Additionally, it is valid to mention that empirical tests were made to find more chaos
annulling conditions for the architecture of Fig. 17-C, but no such values were found.

Table 6 summarises the hardware resources achieved for different representations.
Notice that the proposed system, employing the HUB format (Bi-HUB), uses slightly
fewer logical resources than the standard fixed-point representation (Bi-Standard). This
is because, when adopting the HUB format in a given representation, some operations
are simpler to be accomplished, such as the two’s complement and rounding to the
nearest. Moreover, the Bi-Standard architecture performs rounding by truncation, which
corresponds to an effective rounding down. However, if we use the standard fixed-point
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(A)

(B)

Figure 23 – Time series of the Bi-HUB architecture (in red) and the Bi-Standard archi-
tecture (in blue). In (A), both systems had the same bit vector as the initial
condition. In (B), an initial condition of a bit vector full of zeros was used.

Table 6 – Comparison analysis in terms of hardware resources of different approaches. The
following terms were used: LUT (look-up table), FF (flip-flop), DSP (digital
signal processor), IO (input/output).

Chaotic system Reference LUT FF DSP IO
Bi-HUB This work 242 65 8 66
Bi-Standard This work 258 65 8 66
Bi LFSR-HUB This work 226 65 8 66
PRNG - Exponential map (32 bits) Cardoso et al. [2021] 915 1101 6 66
PRNG - Exponential map (64 bits) Cardoso et al. [2021] 1466 1256 48 130
PRNG - Henon Map Hobincu and Datcu [2018] 856 521 32 20
CSS-2 Gugapriya et al. [2019] 549 192 72 97
PRNG - LCM Modified Saber and Eid [2021] 5806 - - -
PWLCM Kopparthi et al. [2022] 4215 578 0 -
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Table 7 – Comparison analysis in terms of performance.

Chaotic system Reference Power
(mW)

FMax
(MHz)

Throughput
(Mbps)

Latency
(clock
cycles)

Lyapunov
Exponent

Bi-HUB This work 114 61.94 991.040 2 5.15388
Bi-Standard This work 114 63.90 1022.400 2 5.15332
Bi LFSR-HUB This work 113 64.81 2073.920 1 0.8514
PRNG - Exponential map (32 bits) Cardoso et al. [2021] 96 121.95 23.508 166 0.7576
PRNG - Exponential map (64 bits) Cardoso et al. [2021] 90 43.47 111.283 25 2.2733
PRNG - Henon Map Hobincu and Datcu [2018] 128 - 470.592 - -
CSS-2 Gugapriya et al. [2019] - - - - 0.00154
PRNG - LCM Modified Saber and Eid [2021] 300 80.592 - - -
PWLCM Kopparthi et al. [2022] 10 106 1296.000 31 1.16

representation performing rounding to the nearest, it would be necessary to use even more
hardware resources, as additional logic circuits would be required.

Furthermore, Table 6 compares the state-of-the-art chaotic system implementa-
tions regarding resource consumption, and Table 7 compares the approaches in terms of
performance. These tables show that the proposed hardware architectures are competitive
with the state-of-the-art papers in terms of hardware resources and performance. The
power consumption calculated for the hardware architectures of this paper, in Table 7,
corresponds to the total on-chip power indicated by the Xilinx Vivado 2019.1 synthesis
tool, being equivalent to the sum of static and dynamic power obtained. Besides, for this
work, the throughput calculated in Table 7 was based on equation 4.1:

T =
Fmax ·B
Latency

(4.1)

Where, Fmax is the maximum operating frequency, B is the number of output
bits of the architecture, and Latency corresponds to the number of clock cycles necessary
to produce an iteration of the system.

Summarising, the hardware architecture that presents the best trade-off between
chaotic properties, pseudorandom features, and consumption of logical resources is the
Bi-HUB architecture. The main advantages of using the HUB format identified are:

• It prevents the system from falling into a chaos-annulling condition when having an
input with a bit vector full of zeros.

• It had a positive effect on lowering the use of hardware resources. This can make
a considerable impact in platforms that have tight constraints, such as embedded
systems, on which resources available are a key factor.
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4.2 Sine System

The sine map implemented without any perturbation was submitted to the NIST
SP 800-22 test suite Bassham et al. [2010]. Thus, Table 8 shows the results obtained
for the sine map without any perturbation method using the IEEE 754 floating-point
representation with single precision, as well as the posit<32,2> format. It is clear that in
both cases, the sine map failed all tests, proving the necessity of applying a perturbation
method to mitigate dynamical degradation and increase the randomness. Table 8 also
shows the P-values obtained when applying the proposed perturbation method. It can
be seen that the complete scheme passed all the tests of the NIST SP 800-22 test suite,
demonstrating that it possesses pseudorandom properties.

Table 8 – The results obtained using the SP 800-22 test suite for all architectures using
the sine map. In all cases, η = 0.962 was used, and 100 sequences of one million
bits each were generated.

Sine Map - Float Sine Map - Posit Sine Map - Posit
with Perturbation

Test P-value Proportion P-value Proportion P-value Proportion
Frequency 0.000000 0/100 0.000000 0/100 0.437274 100/100
Block Frequency (m = 128) 0.000000 0/100 0.000000 0/100 0.171867 100/100
Cusum-Forward 0.000000 0/100 0.000000 0/100 0.383827 99/100
Cusum-Reverse 0.000000 0/100 0.000000 0/100 0.236810 100/100
Runs 0.000000 0/100 0.000000 0/100 0.474986 100/100
Longest Runs of Ones 0.000000 0/100 0.000000 0/100 0.798139 100/100
Rank 0.000000 0/100 0.000000 0/100 0.719747 100/100
FFT 0.000000 0/100 0.000000 0/100 0.249284 100/100
Non-overlapping Templates 0.000000 0/100 0.000000 0/100 0.350485 98/100
Overlapping Templates (m = 9) 0.000000 0/100 0.000000 0/100 0.554420 98/100
Universal 0.000000 0/100 0.000000 0/100 0.946308 99/100
Approximate Entropy 0.000000 0/100 0.000000 0/100 0.574903 98/100
Random Excursions (x = +1) - - - - 0.494392 58/58
Random Excursions Variant (x = −1) - - - - 0.739918 57/58
Linear Complexity (M = 500) 0.000000 0/100 0.000000 0/100 0.085587 97/100
Serial (m = 16, ∇Ψ2

m) 0.000000 0/100 0.000000 0/100 0.978072 98/100

Furthermore, we submitted the sine map implemented without perturbation
to the ENT test suite Walker [2008], another tool commonly used in the literature to
validate pseudorandom sequences. As shown in Table 9, the sequence generated using
posit numbers had higher entropy per bit and a serial correlation closer to zero than the
sequence generated employing floating-point numbers. This is an advantage of using the
posit over floating-point representation because more bits are being used in the fractional
part in the interval [0, 1], which is the domain of the sine map. In contrast, when using the
standard floating-point representation, the 9 most significant bits (sign bit and exponent
bits) have a lower variation through the map iterations.

Additionally, the Lyapunov Exponent is an important factor in determining if a
map presents chaotic behavior. A system is considered chaotic if it has at least one positive
Lyapunov Exponent Dingwell [2006]. Table 9 shows the Lyapunov Exponent calculated for
the schemes proposed in this work when η = 0.98 and using the Kantz’s method Hegger
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Table 9 – Results of the ENT test suite and the estimated Lyapunov Exponent for the
architectures presented in this second system.

Test Expected value Sine Map - Float Sine Map - Posit Sine Map - Posit
with Perturbation

Entropy (bits per bit) 1.0 0.993711 0.999688 1.000000
Chi-square (abs) - 27859.75 1383.28 0.51
Chi-square (percentage) 10 ∼ 90 0.01 0.01 47.50
Arithmetic Mean 0.5 0.5467 0.5104 0.4998
Monte Carlo Value for π 3.14159265 3.635196352 3.499955000 3.128371284
Serial Correlation 0.0 0.122755 0.041227 0.002370
Lyapunov Exponent > 0 0.5488 0.49807 6.0158

et al.. For all cases, the systems exhibit a positive Lyapunov Exponent.

Furthermore, Fig. 24 presents, in lines (A) and (B) of column (I), the return
map of the sine map using the Sugeno fuzzy inference approximation with posit numbers,
and with floating-point numbers. For the complete scheme with perturbation, line (C) of
column (I), it is noticeable that the shape of the attractor is more complex than in cases (A)
and (B), in accordance with the specified objectives, and it has been completely modified
due to the perturbation method applied. The auto-correlation function is presented in
column (II), in which, for the complete scheme, the auto-correlation obtained approximates
a delta Dirac function, indicating that there is no apparent linear correlation between the
numbers generated of each sequence.

Figure 24 also shows, in column III, the histogram obtained of each scheme. For
cases (A), (B), and (C), the histogram has non-uniform distribution. For the complete
scheme, in line (C), this happens mostly because, as posit representation has tapered
precision, its values will mass around zero, and it will have a higher precision for numbers
in the interval [−1, 1], in contrast to extremely high or extremely low numbers Murillo et al.
[2020]. Therefore, we conclude that using the posit format will result consequently in a non-
uniform distribution. However, since most personal computers and hardware architectures
do not support posit numbers natively, one might need to do a representation number
conversion for the schemes that use posit numbers in most scenarios. As an example, line
(D), it is presented the results after taking all 32 bits of the output of the complete posit-base
scheme and converting the sequence of bits into integer numbers. For instance, if the output
of the complete scheme using posit numbers is 000000000000000000000000000010012, this
value will be converted into the integer number 910. For this case, in line (D), we have
obtained a histogram distribution close to a uniform shape because, for integer numbers,
we have the same precision for all of their domain values.

Moreover, in column (IV) of Fig. 24, it is presented the bifurcation diagram for the
approaches. For the sine map without a perturbation method being applied, it can be seen
that, as the control parameter is increasing, there are double period events until it gets
close to the value of 1, where there is a continuum. This is expected, once the sine map
presents a chaotic behavior only for control parameter values inside the interval [0.87, 1],
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as described in Mansouri and Wang [2020]. Nonetheless, when applying the perturbation
method proposed, the bifurcation diagram approximates a continuum in a considerable
part of the control parameter domain, evidencing that the perturbation approach mitigates
dynamical degradation and increases the chaotic range of the map.

(I) Return map (II) Auto-correlation (III) Probability
distribution

(IV) Bifurcation
diagram

(A)

(B)

(C)

(D)

Figure 24 – Results for the proposed scheme. Column (I) corresponds to the return map,
column (II) shows the autocorrelation obtained, and column (III) exhibits
the histograms of the systems. Cases (A), (B), (C), and (D) correspond,
respectively, to the following: sine map using floating-point numbers; sine map
using posit numbers; sine map with perturbation using posit numbers; sine
map with perturbation taking all the 32 bits of the output of the complete
posit-base scheme and converting the sequence of bits into integer numbers. For
case (C), it was plotted only values between -1 and 1, for better visualization.

Hence, in contemplation of the results obtained, the main advantages of using the
posit representation in the algorithm proposed, in summary, are:

• The posit number representation used has a higher entropy per bit than floating-point
numbers, mitigating dynamical degradation.



Chapter 4. Results 56

• Although other methods could be employed to obtain similar results in floating-point,
the posit representation allowed perturbing more bits without making the sine map
diverge, thereby allowing for more possibilities to mitigate the process of chaos
degradation. Specifically in this paper, the least 27 significant bits of the sine map
were perturbed.

As a trade-off, the disadvantage identified when using posit numbers for this
chaos-based scheme is:

• As most hardware architectures and personal computers do not support natively
posit numbers, one might need to do a conversion of posit numbers into another
representation, depending on the application.
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Chapter 5

Conclusions

In this work, we described two systems in order to analyze the influence of using
different numerical representations on the process of chaos degradation. In the first system,
a new chaos-based PRNG employing the HUB format that bi-couples the tent map in
conjunction with the Bernoulli map is proposed. We effectively implemented the hardware
architecture in the low-cost FPGA XC7A100TCSG324 . Results show the proposed system
has chaotic behavior as well as pseudorandom properties, with a positive Lyapunov
Exponent, a uniform histogram, an auto-correlation function similar to a Dirac delta
function, and passing in statistical test suites for random sequences. These characteristics
validate the use of the proposed chaotic system as a PRNG, being suitable for use in some
applications involving, for instance, instrumentation and measurements, such as the Monte
Carlo simulation. Moreover, the adoption of the HUB format has a positive impact since it
avoids the system from having chaos annulling conditions when using an input vector with
all zeros as an initial condition, and it also makes the architecture employ fewer hardware
resources. Besides, results show that the proposed Bi-coupled system is competitive with
other state-of-the-art systems, as it demands low resources and power consumption.

It was proposed, in the second system, a novel chaos-based PRNG that uses
the sine map and employs the Sugeno fuzzy inference to approximate the sine function
with simple arithmetic operations. In this chaotic map, it was employed both the IEEE
standard for floating-point arithmetic and the posit<32,2> format. The results indicate
that the novel algorithm presents better performance when using posit numbers than the
floating-point representation. For instance, the algorithm shows higher entropy and no
serial correlation when using posit arithmetic. Additionally, we found that the proposed
perturbation method could only be applied to posit numbers due to the potential risk of
the algorithm leaving the domain of the sine map when using floating-point numbers. It
was also observed that the proposed algorithm scheme passed all NIST SP 800-22 tests,
demonstrating its suitability as a PRNG. However, it is important to note that most
hardware/software platforms as well as personal computers do not natively support posit
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numerical format, which could limit its wider application.

We conclude that this work has made contributions to evaluating the influence
of using non-conventional formats on digital chaotic systems, such as using the posit
representation. Nevertheless, the sine system was evaluated on software even though it
demands only a few basic arithmetic operations. Therefore, future works could produce a
hardware implementation of the proposed sine system using reconfigurable hardware, such
as the FPGA XC7A100TCSG324 . Furthermore, future works could explore the dynamics
of the systems when using 64 bits for the word length. Thus, in this way, a comparison
analysis could also be performed for different numerical precisions.

Finally, future works could also apply the systems in image encryption schemes
to demonstrate and evaluate their usage in more applications. Thus, as the proposed
systems can produce sequences that appear random, they could be used as a component
to contribute to the confusion and diffusion properties of encryption schemes. This could,
therefore, potentially produce cipher images that have no valuable information for an
intruder, contributing to security systems.
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