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“Nobody exists on purpose, nobody belongs anywhere,
everybody is gonna die. Come watch TV!”

(Morty Smith - Rick and Morty, episode 8: Rixty Minutes)



Resumo
Nessa tese reportamos o uso de uma molécula virtual do tipo HD como sonda para o
estudo de ambientes moleculares. A sonda tem momento de dipolo que pode ser ajustado
pela modificação das massas nucleares com o uso da FNMC. Ela pode ser usada para
fazer análise de ambientes moleculares, em particular, para sondar regiões polarizaveis e
para calcular campos eletrostáticos moleculares, os quais são propostos como uma nova
métrica para intensidade de ligações intermoleculares. Para testar a sonda, usamos sis-
temas simples (hidrogênio, água, benzeno e clorobenzeno). Uma vez que a performance
da sonda foi comprovada, aplicamos o método para analisar a cavidade de um par de
Lewis frustrado, e contribuir para a discussão do mecanismo de ativação da molécula de
hidrogênio. Nossos resultados estão de acordo com o modelo de ativação por transferên-
cia de elétrons. Além disso, aplicamos o método ao estudo de dois tipos de interações
intermoleculares, ligações contendo π- e σ-hole. Essas interações são criadas por regiões
de potencial eletrostático positivo em moléculas, e são capazes de produzir interações
não covalentes com regiões negativas, por exemplo, com pares de elétrons de moléculas
contendo nitrogênio ou oxigênio. Baseado no teorema de Hellmann-Feynman, que afirma
que ligações intermoleculares são completamente descritas por interações Coulombianas
(eletrostática mais polarização), usamos a sonda para calcular os campos elétricos das
ligações e usar como um quantificador para as interações.

Palavras-chave: Sonda isotópica, Interações moleculares, Física Molecular, Química
Quântica, Campos elétricos moleculares, Potencial elétrico molecular, Pós Born-Oppenheimer,
Ambientes Moleculares.



Abstract
In this thesis we report the use of an HD-like virtual molecule used as a probe to study
molecular environments. The probe has a dipole moment which is tuned by modifying
its nuclear masses using FNMC. It can be used to analyse molecular environments, in
particular to probe polarisable molecular regions and to calculate molecular electrostatic
fields, which we propose to be used as a new metric of intermolecular bond intensity.
To test the probe we used simple systems (hydrogen, water, benzene and chlorobenzene).
Once the performance of the probe was assessed, we applied it to analyse the cavity inside
a frustrated Lewis pair and contribute to the discussion of the mechanism for hydrogen
activation. Our results are in concordance with the electron transfer activation mecha-
nism. We later applied the method to study two types of inter molecular interactions,
π- and σ-hole bonds. These interactions are created by regions of positive electrostatic
potential in molecules, capable of producing non-covalent interactions with negative re-
gions, for example, lone pairs of molecules containing nitrogen or oxygen. Based on the
Hellmann-Feynman theorem, which states that intermolecular bonds are fully described
by Coulombian interactions (electrostatic plus polarisation), we used the probe to calcu-
late the electric fields of the bonds and use it as a quantifier for the interactions.

Keywords: Isotopic probe, Molecular Interactions, Molecular Physics, Quantum Chem-
istry, Molecular Electrostatic Fields, Molecular Electrostatic Potential, Post Born-Oppenheimer,
Molecular Environments.
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1 Introduction

In this chapter, we will give an overview of what the molecular electrostatic po-
tential is, the ways it can be calculated, how it is used in molecular science and what
are the problems concerning its use. We will also present our work, the development of
an isotopic probe, able to calculate molecular electrostatic fields, which will be used to
quantify interactions and to identify polarisable sites.

In the last decades, ab initio methods of quantum chemistry have increased their
applicability to the study of structural and spectroscopic properties. However, many im-
portant processes in modern science, including the ones involving biological systems, de-
mand a next step, specifically the theoretical knowledge of the properties of molecular
environments. This demands the thorough study of the interactions that happen in such
environments, and the identification of the reactive sites where each of them happen [1,2].
Molecular electrostatic fields and potentials are considered good auxiliaries to important
topics, i.e. identification of reactive sites and the study of hydrogen bonds [3–5], and much
of the research done in this area depend on the molecular electrostatic potential (MEP).
This observable is, in principle, easy to calculate and, ever since computers had their
efficiency increased to perform accurate calculations of electronic structure, it has been
used in general to determine electrostatic properties of molecular systems. [6].

The MEP is given by

V (⃗r) =
∑
A

ZA

|R⃗A − r⃗|
−
∫ ρ(⃗r′) d⃗r′

|⃗r′ − r⃗|
, (1.1)

in which ZA and R̃A are respectively the charge and position of nucleus A and ρ(⃗r′) is
the electron density. Its computation is simple and the calculation of the potential in one
arbitrary point is very accurate; on the other hand, many points are needed in practical
applications, and the computational cost grows with the square of the number of functions
used, which is especially costly for large systems [7]. Besides, this calculation depends on
the quality of the description of the density ρ(⃗r′) [8] and therefore, describing well the
electron density is the key to an accurate calculation for the MEP, and the methods used
to describe it vary in performance and accuracy. The main one is the point charge method
[9–13], which consists in assigning point charge values at the atoms, in a way to replicate
the potential that would be obtained by the continuous charge distribution by considering
the density simply as the density of point charges plus some distortion caused by the
interactions; however, this partitioning of the molecular density into atomic densities is
not unique for any molecule [14]. Although there is no physical basis to assigning point
charges to atoms, the point charge model is very successful because it is computationally
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cheap and easy to implement despite its problems, which include calculations near lone
pairs of electrons [15,16], around atoms of sulphur [17], and anisotropic effects [18].

Other methods that have been proposed to calculate the MEP include: building
the potential by molecular fragments [19,20], using multipolar expansions centered at the
nucleus [6,21–23] or distributed [15,16,24,25], and also the representation of the electron
density in terms of spherical harmonic expansions [7,14,26,27]. These methods are a great
addition to the field, and they can perform well in their own niche, but we are still missing
a more general method to understand what happens when large molecules approach each
other, although some attempts were made to try to solve this problem [28–30].

In the study of molecular interactions, the MEP is used as a guide to which regions
of the molecule interact with regions of other molecules. Here, the MEP is calculated at
the surface of the molecule, a region defined by Bader [31] as the ρ(⃗r) = 0.01 a.u. contour
surface, which encompasses around 97% of the molecule’s electronic charge. Figure 1 shows
an example of a molecular electrostatic potential surface, in which the blue indicates more
positive potential, and the red indicates more negative potential.

Figure 1 – Example MEPS of C6H3BrF2

Source – Adapted from reference [32]

This only works under the assumption that the intermolecular interactions are
Coulombic (electrostatic plus polarisation) in nature1 [33–35]. A disadvantage of this kind
of surfaces is that predictions based on it, specially for the molecular interactions focused
in this work, are mainly based on the molecular potentials of the isolated molecules. As the
molecules approach each other two kinds of problems appear. First, MEP surfaces are very
1 What this means for quantum chemistry is that given an accurate electronic density and geometry,

quantum mechanics has no further role in the characterisation of the interactions.
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difficult to interpret in the critical region of the very bond; second, further polarisation
effects due to the interaction are not taken into account [8, 36].

Important topics like biological recognition [37], hydrogen bonding [38], computer
simulations and modelling of molecular complexes and new materials [28, 39, 40], rely on
electrical properties of atoms and molecules. And yet, we remain with no general approach
to the problem of predicting what happens when large molecules approach each other.

Considering what has been presented, the purpose of this work is to develop a
novel way of quantifying intermolecular interactions. This was done by using an isotopic
computational probe. The probe is a modified molecule of H2, with nuclear masses that
do not correspond to those of natural hydrogen (or isotopes), and tuned to have a large
dipole moment compared to natural isotopologues of H2. When the symmetry of mass
is broken in the probe, there is an isotopic dipole moment, due to the displacement
of the electron cloud towards the heavier mass, which cannot be calculated by using
traditional Born-Oppenheimer (BO) calculations, because it considers that the nucleus
have infinite masses. Our group developed a method to correct the BO Hamiltonian by
including effects of finite nuclear mass [41–44], which has been used to produce many
results dependant on properties that arise because of the mass asymmetry. The most
noteworthy for the development of the isotopic probe are the ones regarding the isotopic
dipole moment [45–50], calculated via the ISOTOPE upgrade [49, 51] for the programs
DALTON [52,53] and GAMESS [54].

With this finite nuclear mass correction (FNMC), we can calculate the system’s
electric field by its influence on the probe, using the relation

U = −µ⃗ · E⃗, (1.2)

being U the energy, µ⃗ the probe’s dipole moment, and E⃗ the molecular electrostatic field
on the dipole.

The use of the electric field as an interactions quantifier is based on the Hellmann-
Feynman theorem [55, 56], which states that the forces in molecules are all Coulombian
in nature, i.e. arising from electrostatics and polarisation. This is the same principle that
allows the use of the MEP as a quantifier, but the use of the probe gives us a more
in-depth understanding of the interaction as a physical phenomenon.

The probe has the advantage of being as small as the smallest molecule, H2, with
only 1.4 a.u. of internuclear distance, so it can easily fit in regions of intermolecular
interactions with distances larger than 3.55 a.u.2. We have chosen to use the probe to
calculate the electric fields inside interactions involving π- and σ-holes, molecular regions
2 This is the area of study of supramolecular chemistry, which is the field of chemistry that studies molec-

ular assemblies and intermolecular bonds. It encompasses molecular devices and machines, molecular
recognition, self-assembly and self-organisation, and has interfaces with the emergent fields of complex
matter and nanochemistry [57].
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that deserved much attention in the recent literature, as they represent a new kind of
chemical bond [32]. π- and σ-holes are both regions of positive electrostatic potential
that appear in some molecules, being able to make non-covalent bonds with negative
sites of other molecules. They have been detected both in simple and complex molecular
systems and the knowledge of their properties, mainly their strength, is very important
for supramolecular chemistry.

For better understanding of the concepts and results presented, this thesis is or-
ganised as follows. Chapter 2 is an overview of the molecular approximations typically
employed in quantum chemical calculations and the basis of the FNMC method, which
allows us to calculate isotopic effects in molecules. Chapter 3 is an overview of the com-
putational methods of calculation that we used in the process of refining the probe, and
afterwards, in determining the strength of the interactions, namely HF, CI and DFT.
Chapter 4 is a review of the work done in our lab about symmetry breaking in molecules,
most importantly the work with isotopic dipole moments which inspired the creation of
the isotopic probe. Chapter 5 shows the process of creation, calibration and programming
of the probe, with preliminary results. Finally chapter 6 shows the calculations of electric
fields inside molecules and systems of molecules of interest, and proposes the use of the
electric field as a quantifier of molecular interactions. Chapter 7 gives a summary of what
was discussed, and presents the plans for future work using the isotopic probe.
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2 Molecular approximations

In this chapter, we will give an overview of a few molecular approximation theories.
All this chapter is based on chapter 8 of reference [58], unless stated otherwise.

Since the periodic table of elements was developed, chemistry’s knowledge began to
be systematised around basic concepts, encompassed in the general concept of Molecular
Structure. We consider the molecules to be made from atoms of chemical elements, that
are classified based on their physical-chemical properties.

Our objective is to solve the time-independent non-relativistic Schrödinger equa-
tion, a task that we are not able to perform analytically for systems of the size we work
with without approximations. One of such approximations consists in considering the
electrons as moving and adapting to the movement of the nuclei almost instantly, adi-
abatically. This is called the adiabatic model, in which the electrons are light and fast,
and the nuclei perceive only a mean field due to the electrons, aside from mutual repul-
sion. This means that the calculation of the electronic wave function takes into account
the electron-nucleus interactions, but the coupling is not dynamic, there is no exchange
of kinetic energy between electrons and nuclei. This creates a Potential Energy Surface
(PES), which is where the nuclei move. The PES is the most fundamental instrument of
physical-chemistry.

The adiabatic approximation allows us to separate electronic and nuclear move-
ments, which happens when we introduce an electronic Hamiltonian operator, that de-
pends parametrically on nuclear coordinates. The most utilized adiabatic approximation,
the Born-Oppenheimer Approximation (BOA), considers static nuclei to solve the elec-
tronic problem.

We will use atomic units, defined by electron’s mass, electron’s charge, Bohr’s
radius and Planks constant all equal to the unity, i.e. m = e = a0 = ℏ = 1. This theory
is non-relativistic.

2.1 Born-Huang theory
As noted above, our goal is to solve the non-relativistic time-independent Schrödinger

equation
HΨ(r,R) = EΨ(r,R), (2.1)

in which H is the Hamiltonian operator for a system of nuclei and electrons, r represents
the coordinates for the electrons and R represents the coordinates of the nuclei. To solve
equation (2.1) is to find a wave function that satisfies this relation when the operator H is
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applied on it. For simplicity, we consider a diatomic molecule AB. The total Hamiltonian
operator, in the laboratory reference frame (LAB) is

H = − ∇2
A

2MA

− ∇2
B

2MB

−
∑

i

∇2
i

2
+ Vel + ZAZB

R
, (2.2)

A and B being the two nuclei, with masses MA and MB and charge ZA and ZB. The
Laplace operator ∇2

A(B) acts on the coordinates of nucleus A(or B) and the index i refers
to the electrons. Vel represents electrostatic potentials for the electrons and the last term
is the nuclei repulsion.

It is convenient to use a coordinate system with origin coinciding with the center
of mass of the nucleus (hereafter known as MOL). This is done in order to eliminate
translation for the system. In this system, the Hamiltonian is given by:

H = − ∇2
R

2µAB

−
∑
i,j

1
2M

∇i · ∇j −
∑

i

∇2
i

2
+ V, (2.3)

in which M = MA + MB, µAB = MAMB

MA+MB
is the nuclei reduced mass, ∇2

R is the Laplace
operator relative to the nuclear coordinate and V = Vel + ZAZB

R
.

It is also usual to separate the Hamiltonian operator in two terms.

H = TN +Hel, (2.4)

TN being the nuclear kinetic energy, and Hel being the electronic Hamiltonian that leads
to the electronic basis functions. If we separate the operator in LAB, it leads directly to
the BOA

Hel = HBO ≡ −
∑

i

∇2
i

2
+ V, (2.5)

but if we do the same in MOL, we get an operator that contains the nuclear mass [59].
First we need to define our wave function.

We can expand a generic wave function in a basis of electronic functions Φk(r,R)
(the bar under R means that it is a parametric dependence),

Ψ(r,R) =
∑

k

χk(R)Φk(r,R) =
∑

k

χkΦk. (2.6)

The coefficients χk are the nuclear functions obtained as we solve equation 2.1.

Now we must substitute equations (2.6) and (2.3) in equation (2.1),− ∇2
R

2µAB

−
∑
i,j

1
2M

∇i · ∇j −
∑

i

∇2
i

2
+ V

∑
k

χkΦk = E
∑

k

χkΦk. (2.7)
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We then apply the following Laplace operator property: ∇2
RχΦ = Φ∇2

Rχ+χ∇2
RΦ+2∇Rϕ·

∇Rχ, and we get

∑
l

{
− 1

2µAB

[
Φl∇2

Rχl + (∇2
RΦl)χl + 2∇RΦl · ∇Rχl

]}

−
∑ 1

2M

∑
i,j

∇i · ∇j

χl + 1
2
χl

∑
i

∇2
i Φl − V Φlχl

 = E
∑

l

Φlχl. (2.8)

Now we left multiply by Φ∗
k and integrate over the electronic coordinates, which is what

we symbolise by ⟨ ⟩, and we have

∑
l

[
− 1

2µAB

(⟨Φk|Φl⟩ ∇2
Rχl + ⟨Φk|∇2

R|Φl⟩χl + 2 ⟨Φk|∇R|Φl⟩ · ∇Rχl)
]

+
∑

l

− 1
2M

∑
i,j

⟨Φk|∇i · ∇j|Φl⟩χl − 1
2
∑

i

⟨Φk|∇2
i |Φl⟩ + ⟨Φk|V |Φl⟩χl


= E

∑
l

⟨Φk|Φl⟩χl. (2.9)

Considering an orthonormal basis, ⟨Φk|Φl⟩ = δkl, and adopting the notation ⟨Φk|A|Φl⟩ = Akl,
we then arrive to{

− 1
2µAB

[∇2
R + (∇2

R)kk + 2(∇R)kk · ∇R]

− 1
2M

(
∑
i,j

∇i · ∇j)kk − 1
2

(
∑

i

∇2
i )kk + Vkk − E

}
χk

=
∑
l ̸=k

 1
2µAB

[(∇2
R)kl + 2(∇R)kl · ∇R] + 1

2M
(
∑
i,j

∇i · ∇j)kl + 1
2

(
∑

i

∇2
i )kl − Vkl

χl,

(2.10)

in which we have separated diagonal terms on the left, and non-diagonal terms on the
right. Finally we can write{

− ∇2
R

2µAB

+Hkk − (∇·R)kk · ∇R

µAB

− E

}
χk =

∑
l ̸=k

{
−Hkl + (∇R)kl · ∇R

µAB

}
χl. (2.11)

This is a set of coupled equations, whose solution gives the nuclear functions χk, and
consequently, via equation (2.6), total wave functions and molecular energies. Electronic
functions are already known in this stage (eigenfunctions of Hel) and they depend on the
particular choice of Hel. Although the solution for equation (2.11) is usually non-viable,
this set of equations is the starting point for more viable approximations, like the adiabatic
approximation.
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2.2 Adiabatic approximation
If we assume the complete decoupling of electronic states, only one term is left in

equation (2.6) for each molecular state,

Ψ ≡ Ψad = χkΦk, (2.12)

and we have what is called the adiabatic approximation. With this approximation, the
coupling terms vanish and equations (2.11) reduce to{

− ∇2
R

2µAB

+Hkk − (∇R)kk · ∇R

µAB

− E

}
χk = 0. (2.13)

As for the validity of this approximation, it is possible to show that the non
diagonal coupling terms involve the energy difference of the states in question [58]. That
means that the more isolated a state is, the better the approximation for said state, which
is usually the case for ground states.

The above equation represents, for a given k, Schrödinger’s equation for a particle
of mass µAB moving in a potential Uk(R),

Uk(R) = Hkk − (∇R)kk · ∇R

µAB

. (2.14)

This means that Uk(R) represents the PES for nuclear movement. The second
term is called diagonal coupling of nuclear moments. This term is usually small, due to
the presence of µAB in the denominator. If the electronic functions are normalised,

⟨Φk|Φk⟩ = 1 ⇒ ∇R ⟨Φk|Φk⟩ = 0, (2.15)

and, if they are real
(∇R)kk = ⟨Φk|∇R|Φk⟩ = 0. (2.16)

This result nullifies the second term in Uk(R). It is possible to redefine Φk, if they
are complex, by multiplying by a phase A(R), so that the above relation remains valid.
This is usually assumed in adiabatic calculations and it is true for isolated PES. Therefore,
we consider the diagonal coupling term null. Our PES is then given by

Uk(R) = Hkk. (2.17)

The choice of Hel, which defines the basis {Φk}, is called a representation. For each
chosen representation we get a particular set Uk(R) with its respective set of electronic
states.
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2.3 The Born-Oppenheimer approximation
The BO representation is defined by making the nuclear masses tend to infinity in

H, i.e.

Hel = HBO = −
∑

i

∇2
i

2
+ V, (2.18)

HBOΦk = (ϵBO)kΦk. (2.19)

The coupled equations (2.11) become
− ∇2

R

2µAB

+ (ϵBO)k +

− ∇2
R

2µAB

−
∑
i,j

∇i · ∇j

2M


kk

− E

χk

=
∑
l ̸=k


 ∇2

R

2µAB

+
∑
i,j

∇i · ∇j

2M


kl

+ (∇R)kl · ∇R

µAB

χl. (2.20)

and, in the BO adiabatic approximation, we have the following nuclear equation:− ∇2
R

2µAB

+ (ϵBO)k +

− ∇2
R

2µAB

−
∑
i,j

∇i · ∇j

2M


kk

− E

χk = 0. (2.21)

The BOA is an infinite nuclear mass approximation. If we take infinite nuclear
masses in the HBO operator, i.e. the electronic part of (2.21) (recall that the first term is
TN from (2.4)), that leads to{

− ∇2
R

2µAB

+ (ϵBO)k − E

}
χk = 0. (2.22)

The PES are generated by the electronic energies Uk(R) = (ϵBO)k(R) added to
the nuclear repulsion terms.

2.4 The adiabatic correction
As we have seen, in the BOA, neither the electronic functions, nor the PES have

information about nuclear masses. We can correct the PES with the Diagonal Born-
Oppenheimer Correction (DBOC), also called adiabatic correction,

DBOC(R) =

− ∇2
R

2µAB

−
∑

i

∇2
R

2M
−
∑
i ̸=j

∇i · ∇j

2M


kk

. (2.23)

The PES is corrected in this procedure, but not the wave function, which remains
with no isotopic signature. DBOC is specially important in systems with hydrogen atoms.
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2.4.1 The model Hamiltonian operator

An alternative to DBOC that makes the electronic wave functions dependent on
the nuclear masses is the so called FNMC [43,51]. This is the basis of most of the research
in our group. Also based on chapter 8 of reference [58].

Starting from the Hamiltonian operator for a molecule with m nuclei and n elec-
trons in LAB,

H = −
n∑
i

1
2

∇2
i −

m∑
A

1
2MA

∇2
A + V = −

m∑
A

∇2
A

2MA

+HBO, (2.24)

conservation of linear momentum on a generic atom, A, implies ∇A = −∑nA
i ∇i and

∇2
A ≈ ∑nA

i ∇2
i , in which we have neglected terms i ̸= j, because they are much smaller

than the i = j ones. In MOL, this equation becomes

H = −
nA∑
j=1

1
2MA

∇2
j −

nA+nB∑
k=nA+1

1
2MB

∇2
k + ...−

N∑
i=1

1
2

∇2
i + V. (2.25)

This is a purely electronic Hamiltonian operator, with nA representing the electrons of
nucleus A and nB representing the electrons of nucleus B; but since each electron was
assigned to a specific nucleus, this violates the principle of the indistinguishability for the
electrons.

To solve this problem, we postulate that the matrix elements are null when it deals
with different atoms. We use a projector, PA, in order to do that, and we define the model
Hamiltonian operator as

H =
m∑
A

−
n∑
i,j

PA
∇i · ∇j

2mA

PA

−
N∑
i

1
2

∇2
i + V, (2.26)

in which PA projects the full electronic wave function over the space of atomic functions
of nucleus A.

Using this approximation, both the PES and the states have being adiabatically
corrected, and we can use it to study effects of finite nuclear mass during the electronic
calculation.

This approximation is a central component of this work, since we need to be able
to calculate isotopic dipole moments and it cannot be done using BOA alone. The origin
of this effect is the difference between the Bohr’s radii of isotopes. An example is the
molecule of HD (D = deuterium). This molecule presents a dipole moment because D
atoms have a smaller Bohr radius than H atoms. It is a very small dipole moment, when
compared with polar molecules, as we can see in table 1. Vibrational effects increase
the dipole moment [48], but they are not relevant in this work, because we use a static
dipole. Previous calculations were performed for CH3CD3 e SiH3SiD3 and compared with
experimental spectroscopy results, with accuracy within 10−4 debye [49], for which the
inclusion of the purely electronic effects has shown to be fundamental..
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Table 1 – Dipole moments for
HD and some polar
diatomic molecules.

Molecule Dipole moment (debye)

H2O 1.855
LiH 5.880
HF 1.820
HD 8.1x10−4

Source – Reference [60]
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3 Computational Methods

In this chapter, we will give a brief overview of the computational methods used
in this thesis for electronic calculations, i.e. Hartree-Fock (HF), Configuration Interaction
(CI), and Density Functional Theory (DFT). This chapter is based on reference [58], unless
stated otherwise.

3.1 Hartree-Fock
As stated in the last chapter, in general, it is impossible to determine the real

solution to the Schrödinger equation, and we must use approximations. The HF method
is the most popular computational method employed to determine approximate solutions
to the electronic problem. It has the advantage of being used as a starting point for other
methods, like the CI method that we will discuss in a following section.

Since the electrons are indistinguishable fermions, the describing wave function is
required to be antisymmetric with respect to the exchange of the global coordinates of
two electrons. We can use a determinant to generate a valid antisymmetric wave function,
because determinants are antisymmetric by default. This determinant of spin orbitals is
called a Slater Determinant:

Φ0 = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) · · · χN(x1)
χ1(x2) χ2(x2) · · · χN(x2)

... ... ...
χ1(xN) χ2(xN) · · · χN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣
, (3.1)

in which the χs are one electrons spatial and spin functions, and 1/
√
N ! is a normalisation

constant.

Exchange of two electrons is the same as exchanging two lines of the determinant,
which implies the inversion of the determinant’s sign. In other words, the HF wave function
defined in terms of a Slater determinant is antisymmetric with respect to the exchange of
the global coordinates of two electrons. It is also zero if two molecular spin-orbitals are
the same, represented by two columns being equal to each other in the determinant, a
characteristic required by Pauli’s exclusion principle.
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For each spatial orbital, there are two possible spin orbitals:

χ(x) =

ϕ(r)α(1)

ϕ(r)β(1)
, (3.2)

α and β representing up-spin and down-spin, respectively, and ϕ being one electron spa-
tial functions. The method is called Unrestricted Hartree-Fock(UHF), if we make no
restrictions to the orbitals. If we impose the restriction that every orbital has to have
two electrons, one with up-spin and one with down-spin, the method is called Restricted
Hartree-Fock (RHF). There is also a Resctricted Open-Shell Hartree-Fock (ROHF) which
is an attempt at using a restricted wave function to describe a system with unpaired
electrons.

We have to calculate the energy of the system, i.e. the expected value of the
Hamiltonian

E = ⟨Φ|H|Φ⟩ , (3.3)

and we know, from the variational principle, that this approximate energy is an upper
bound on the true energy of the system. So we vary the parameters of |Φ⟩ in order to
minimise the energy.

But first we’ll write the Hamiltonian in a different way, separating the one electron
and the two electron parts

H = O1 +O2, (3.4)

being

O1 =
N∑

i=1
h(i), (3.5)

with
h(i) = −1

2
∇2

i −
M∑

A=1

1
riA

, (3.6)

and
O2 =

N∑
i=1

N∑
j>i

1
rij

. (3.7)

With some algebraic tricks we can write the HF energy in terms of one and two electron
integrals

E =
N∑
a

⟨χa|h|χa⟩ + 1
2

N∑
a,b

[⟨χaχb|χaχb⟩ − ⟨χaχb|χbχa⟩], (3.8)

in which ⟨χaχb|χaχb⟩ is short for

⟨χaχb|χaχb⟩ = ⟨χaχb|
1
rab

|χaχb⟩ . (3.9)
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So, in order to calculate the energy (3.3), we must minimise the energy expression
(3.8) with respect to changes in the orbitals χi → χi +δχi. We can use Lagrange’s method
of undetermined multipliers which consists in minimising the functional

L[χ] = E[χ] −
∑
a,b

ϵba(⟨χa|χb⟩ − δab). (3.10)

We impose the condition for L to be real, and with that the multipliers must
constitute elements of an hermitian matrix. After some more algebra, we get

δL =
∑

a

⟨δχa|h |χa⟩ +
∑
a,b

{⟨δχaχb|χaχb⟩ − ⟨δχaχb|χbχa⟩}

−
∑
a,b

ϵba ⟨δχa|χb⟩ + c.c., (3.11)

and then we can define the Coulomb and exchange operators, respectively Jb and Kb:

Jb(1)χa(1) = ⟨χb(2)| 1
r12

|χb(2)⟩χa(1), (3.12)

Kb(1)χa(1) = ⟨χb(2)| 1
r12

|χa(2)⟩χb(1), (3.13)

so we can write

δL =
∑

a

|δχa(1)⟩


[
h(1) +

∑
b

[Jb(1) − Kb(1)]
]

|χa(1)⟩

−
∑

b

ϵba |χb(1)⟩

+ c.c.. (3.14)

We need δL = 0 for L to have a minimum, which is equivalent to making{
h(1) +

∑
b

[Jb(1) − Kb(1)]
}
χa(1) =

∑
b

ϵbaχb(1). (3.15)

The term between braces is called the Fock operator F :

F(1) = h(1) +
∑

b

[Jb(1) − Kb(1)]. (3.16)

Now, the HF equations are only

F(1)χa(1) =
∑

b

ϵbaχb(1), (3.17)

and for trial functions we can use a linear combination of atomic orbitals (LCAO):

ϕp(r) =
∑

ν

= 1kCνpgν(r), (3.18)
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k being the number of functions and Cνp are coefficients to be determined. And by plugging
this into the HF equations, we can obtain the Rootham equations:

F′C′ = C′ϵ, (3.19)

which is a canonical eigenvalue equation and can be easily solved, being ϵ the diagonal
matrix of the orbital energies ϵi and S the overlap matrix.

3.2 Configuration Interactions
RHF suffers from a problem when calculating dissociation energies for molecules

whose fragments have open shells. An example would be the hydrogen molecule with spin-
orbitals 1σgα and 1σgβ, i.e. given by the Slater determinant

∣∣∣1σgα 1σgβ
∣∣∣. The molecular

orbital can be expressed as a LCAO, a combination of two atomic functions:

1σg = C(1sA + 1sB). (3.20)

We can expand the determinant as

D0 = C2{1sA(r1)1sA(r2) + 1sB(r1)1sB(r2) + 1sA(r1)1sB(r2)

+ 1sB(r1)1sA(r2)} × {α1β2 − β1α2}/
√

2, (3.21)

with the first two terms corresponding to H−
A +H+

B and H+
A +H−

B , and the last two terms
corresponding to the dissociation responsible for the RHF problem. We could use UHF
to deal with this, but other problems arise.

What we’ll do is use more Slater determinants to write the wave function, for
example, we could use two:

Ψ(x1, x2) = c0D0(x1, x2) + c1D1(x1, x2), (3.22)

in which
D1(x1, x2) =

∣∣∣1σuα 1σuβ
∣∣∣ , (3.23)

and
1σu = C(1sA − 1sB). (3.24)

By using this D1 determinant, we lower the total energy of the system compared to
using only D0, as table 2 shows. The difference in the energy is called electronic correlation
energy, and this is the basis of the CI method, the use of more Slater determinants to
write the wave function, in order to correct the HF energy. The CI wave function is an
expansion of Slater determinants, that can be generated as all the possible excitations of
electrons of one of more occupied orbitals to the virtual orbitals created by the basis used.
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Table 2 – HF and CI ener-
gies for the wave
function from
equation (3.22).

R/ EHF ECI

0.80 -0.947308 -0.97599
0.90 -1.019497 -1.031043
1.00 -1.065999 -1.078970
1.10 -1.094564 -1.109137
1.20 -1.110334 -1.126699

Source – Adapted from reference
[58]

This, of course, makes this method not practical for systems with more than 20 electrons,
due to the expansion having an excessive number of terms. To easily indicate the number
of excitations used in the calculation, the terminology created by the users is very clear:
CISD for single and double excitations, or full-CI for all the possible excitations, for
example.

A critique to the method is CI not being size-consistent, that is, the sum of the
energies from the system’s fragments is not equal to the energy of the system

EAB−XY ̸= E(AB) + E(XY ). (3.25)

Some chemists argue that this is not a harmful problem, because they rarely calculate en-
ergies using CISD starting from a HF determinant, which makes the difference negligible.

3.3 Density Functional Theory
DFT was a paradigm change in computational chemistry since the publishing

of the Hohenberg and Kohn theorems in 1964 [61], in which they demonstrate that the
electron density could be used in place of spatial coordinates in order to perform quantum
chemistry calculations, which could facilitate the computation for large systems.

Starting from the electronic BO molecular Hamiltonian, (2.18), we separate the
potential V in two terms, one representing the external potential, U, which we’ll write as

U =
N∑
i

M∑
A

− ZA

RA −Ri

=
N∑
i

v(ri), (3.26)

and a repulsion term, Ve, which we’ll write as

Ve =
N∑

i<j

N∑
j

1
|ri − rj|

. (3.27)
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The electron density can be written as

ρ(r) =
∫

· · ·
∫

Ψ(r1, r2, · · · , rN) ∗ Ψ(r1, r2, · · · , rN)dr1dr2 · · · drN , (3.28)

with Ψ(r1, r2, · · · , rN) being the solution to the ground state Hamiltonian.

The external potential U can be separated in a trivial functional of the electron
density, so that the energy of the system can be written as:

E0 = ⟨Ψ|T + Ve|Ψ⟩ +
∫
ρ(r)v(r)dr, (3.29)

with T being the kinetic energy. We can see now that the number of electrons, N, and the
external potential, define completely the Hamiltonian of the system.

Hohenberg-Kohn’s first theorem states that the external potential is a unique
functional of ρ(r) plus an additive constant. In other words, we can use the density in
order to determine the number of electrons and the potential, both of which can be used
to determine the Hamiltonian and then calculate the energy of the system.

Hohenberg-Kohn’s second theorem establishes that any approximate functional
will generate an approximate energy that’s an upper bound to the exact energy of the
system, since each ρ̃(r) generates its own ṽ(r) that will be used to calculate the energy.

The two theorems show how we can use the density in place of the N-electron wave
function to determine the state of the system, so instead of 3N variables for each electron,
we have only the three coordinates of the density. The first problem with that method is
to guarantee that ρ̃(r) is v-representable and N-representable. Being v-representable is to
guarantee that ρ̃(r) can determine the real external potential, and being N-representable
is to guarantee that ρ̃(r) can be generated by an anti symmetric wave function. The
density is always N-representable if the following conditions are satisfied:

ρ(r) ≥ 0, (3.30)∫
ρ(r)dr = N, (3.31)∫

|∇ρ(r)1/2|2dr < ∞. (3.32)

The v-representability can be sidestepped with Levy Constrained Search:

F [ρ] = ⟨Ψo|T + V |Ψo⟩ = min
Ψ→ρ

⟨Ψo|T + V |Ψo⟩ , (3.33)

that is, performing the Constrained Search is testing all the tentative densities and, for
each of them, find the wave functions that minimise F[ρ]1.

We have to follow Kohn and Sham method to solve DFT problems without any
loss of accuracy [62]. This consists in mapping the system of interacting electrons onto a
1 In this equation, the wave function does not tend to ρ, it means that the functional takes the minimum

value of the expectation value with respect to all states Ψ which give the density ρ.
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system on non-interacting “electrons”

δ

{
Ev[ρ] − µ

[ ∫
ρ(r)dr −N

]}
= 0. (3.34)

Kohn and Sham separated the above equation into three parts, making explicit
the Coulomb electron-electron repulsion and defining a new function G[ρ]:

Ev[ρ] = G[ρ] + 1
2

∫ ∫ ρ(r1)ρ(r2)
|r1 − r2|

dr1dr2 +
∫
ρ(r)v(r)dr, (3.35)

in which
G[ρ] = Ts[ρ] + Exc[ρ], (3.36)

and Ts[ρ] is the kinetic energy functional for the non-interacting “electron” system.

It is possible to use this system with a Hamiltonian that has an effective potential,
vef (r)

HKS = −1
2

∇2 + vef (r). (3.37)

The wave function is obtained the same way we obtained it in HF, equation (3.1).
Therefore, Kohn-Sham orbitals are obtained from the one electron Schrödinger equation:

(
−1

2
∇2 + vel

)
ψKS

i = ϵiψ
KS
i . (3.38)

We then choose the effective potential in a way to make the density equal to the funda-
mental electron density:

ρs =
N∑
i

2|ψKS
i |2 = ρ0(r). (3.39)

We calculate the kinetic energy using a self-consistent method,

Ts[ρ] =
N∑
i

⟨
ψKS

i

∣∣∣−1
2

∇2
i

∣∣∣ψKS
i

⟩
, (3.40)

and we minimise it to obtain the effective potential, with the restriction that the one
electron functions are orthonormal:

vef (r) = v(r) +
∫ ρ(r1)

|r − r1|
dr1 + vxc(r), (3.41)

with
vxc(r) = δExc[ρ]

δρ(r)
. (3.42)

The self-consistent method to solve the Kohn-Sham equations is

a) Choosing the initial set of Kohn-Sham orbitals ψ0
i

b) Calculation of the electron density, equation (3.39)
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c) Calculation of the Kohn-Sham effective potential, equation (3.41)

d) Solving Schödinger’s equation with Hamiltonian (3.37) and forming a new set
of one electron functions ψd

i

e) Convergence check

– if positive, terminate
– if negative, replace ψ0

i with ψd
i and go to b

f) Termination: calculation of the final energy and other properties
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4 Breaking nuclear mass symmetry

The Stanford Encyclopedia of Philosophy defines symmetry in modern science as
“invariance under specified groups of rotations and reflections” [63], and it is useful to
think about it in terms of group theory, especially in the case of molecules. Symmetry
can be broken, though, but that does not mean that the system is no longer symmetric,
it just has a state with lower symmetry than the original. This is important in the field of
quantum chemistry, because many properties can be described as arising from a symmetry
breaking. In this chapter, we will explore a specific type of symmetry breaking in molecular
physics, the symmetry breaking of nuclear mass, done at LATME (Laboratório de Atomos
e Moléculas Especiais; special atoms and molecules laboratory), and its most important
consequence for our work: the isotopic dipole moment.

Our groups work with symmetry breaking on molecules started in 1999, when pro-
fessor Mohallem showed that by using a Modified Electronic Mass Correction (MEMC) in
the electronic Hamiltonian, it became possible to correct the BO energy for the adiabatic
effect, even accounting for isotopic effects [41]. Later it was shown that this approach could
generate results comparable to the diagonal Born-Oppenheimer correction (DBOC) [42]
and was generalised to bigger molecules [44].

The method was renamed FNMC, and was able to show symmetry breaking effects
in isotopologues (molecules containing isotopic substitution), when it was considered not
possible for any methods beyond the BOA to observe point group symmetry [64]. The
symmetry breaking arises from the different nuclear mass. For example, in water, when we
replace a hydrogen atom (H) for a deuteron (D), the molecule loses part of its symmetry,
and the resulting HDO molecule only has the identity symmetry operation [45, 64]. This
is responsible for a small dipole moment, that can be verified by Mulliken population
analysis (D has higher electron population than H). The dipole moment of HDO was later
calculated in the equilibrium geometry [46] and with zero-point vibrational correction [50].
Isotopologue water clusters’ dipole moments were studied in 2010 by Mohallem [65]

In 2008, Diniz and Mohallem studied the effects of symmetry breaking in hydrogen
dimers and isotopologues [47], and were able to identify that the most stable configurations
for the systems is a T configuration (meaning one molecule perpendicular to the other),
as can be seen in Figure 2. We can see that the dipoles, when they exist, do not align,
meaning that this effect is smaller than the rest of the interactions, which justified the
future use of isotopic masses.

The dipole moment (DM) is a very important observable, which is used experimen-
tally as a means to measure the polarity of a chemical interaction, i.e., the separation of
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Figure 2 – T configuration for hydrogen dimer and isotopologues.

The T configuration for the dimers, with the dipole moments’ direction shown.

Source – Adapted from [47]

the positive and negative centers of charge in the molecule. It is measured via the electric
field - dipole moment coupling

U = −µ · E⃗. (4.1)

The electronegativity is the ability for the nucleus to attract electrons, and the atomic
property that normally defines the dipole moment in molecules. It is unique for each dif-
ferent nucleus, which means that when two elements interact, the difference in electroneg-
ativity causes the electron cloud to shift slightly from the less electronegative element
(leaving it with charge −δ) to the more electronegative element (leaving it with charge
+δ). Each interaction has a dipole moment which may be represented by a vector point-
ing in the direction −δ → +δ, and the molecular dipole moment is the sum of each of
those. Many molecules have permanent dipole moment, and are called polar molecules,
e.g. H2O, HCl, O3, NH3. Other molecules can have the dipole moment induced by an
external electric field, but show no permanent dipole, as is the case of diatomic molecules
with the same two atoms, since the two atoms have the same electronegativity, and thus,
have net charge displacement equal to zero. The criteria we use to differentiate atoms is
the number of protons in the nucleus: atoms with the same number of protons are of the
same element, and that is what was later denominated as the atomic number. However,
the nucleus contains not only protons, but also neutrons that, although have no charge,
also have an impact on electronic properties (albeit a small one) and can be in different
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number between two atoms even if they are of the same element. These atoms that are
classified as being of the same element, by having the same number of protons, but have
a different number of neutrons, are called isotopes [66].

As we have seen in chapter 2, if you calculate electronic problems using only the
BOA, you cannot differentiate between isotopes, because the BOA considers that the
nucleus have infinite masses, thus there is no way to add or remove neutrons. So we chose
to use the model Hamiltonian operator (2.26), which can calculate isotopic electronic
properties, due to its consideration of the nuclear masses in the calculations.

Arapiraca [48] made a very thorough review of isotopic dipole moments. He calcu-
lated the dipole moment of isotopologues of hydrogen, ethane, ethilene, propane, propyne,
benzene, water, and used his calculations to create rotational spectra for ones with as-
trophysical interest [49, 50, 67]. His work and expertise helped us immensely in the first
stages of the development of the probe, although we did not use ro-vibrational corrections
when calculating properties with the probe.
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5 The isotopic probe

The purpose of this work is to develop a novel way of analysing molecular environ-
ments and quantifying intermolecular interactions. We do this by programming and using
a fictitious probe in quantum chemistry calculations, together with a system of interest.
The probe is a virtual molecule, programmed as an HD-like molecule, but with variable
nuclear masses. Its HD-“likeness” comes from the fact that the probe has two atoms, each
with one proton, same equilibrium distance as HD, and two electrons; but the “protons”
don’t have the usual proton mass, they each have a different mass. We will go into more
detail later in this chapter.

The virtual probe was built this way because we needed a small dipole moment
to align itself with the electric fields generated by near systems, since all intermolecular
interactions can, in principle, be studied by a Coulombic point of view [33–35], i.e. elec-
trostatics plus polarisation. This is done already in many methods of analysis which rely
on the MEP as a pointer for different molecular regions.

5.1 The Molecular Electrostatic Potential
The MEP is a physical observable, and it is used to calculate electrical properties

of molecular systems since computer efficiency increased enough to perform accurate
electronic structure calculations [6], it is given by

V (r) =
∑
A

ZA

|R⃗A − r⃗|
−
∫ ρ(⃗r′)d3r′

|⃗r − r⃗′|
, (5.1)

being ZA and RA the charge and position of nucleus A, respectively, and ρ(r′) the elec-
tronic density. Figure 3, from ref. [3], depicts this procedure. It is simple to calculate
using modern computers, only limited by the quality of ρ(r′)’s description, which is heav-
ily dependent on the basis used [7]. Besides, it does not take into account approaching
molecules and their effects, and it also cannot give information about the nature of the sec-
ond molecule [8,36]. Nonetheless, the MEP is the basic observable to calculate properties
of electrostatic nature in quantum chemistry.

Since ρ(r) has to be determined in order to calculate the MEP, one must choose
a method to do so. One of the first methods proposed, if not the first, was the method
of point charges. This method consists in representing atoms by point charges [9–13].
Questions arose about the validity of such representations, because there is not a unique
way to determine what charge to assign to each atom, in order to best approach ρ(r).
It can be chosen, for example, based on electrostatic models, population analysis, and
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Figure 3 – Electrostatic potential

Electrostatic potential generated by a continuous charge distribution ρ(r′). Potential gen-
erated at r is due to an infinitesimal charge ρ(r′)d3r′.

Source – Reference [3]

atoms in molecules, and it is clear that the choice is purely based on what is useful given
a specific problem [27]. Other recent methods to determine ρ(r) include a construction
based on molecular fragments [19,20], multipole expansions centred on the nuclei [6,21–23]
or distributed [15,16,24,25], and also an expansion in spherical harmonics [7, 14,26,27].

No matter the method, what is noteworthy is that even the simplest one give a
way to “discuss chemical effects, rationalise chemical reactivity or to search for empirical
correlations between different types of experimental results” [26]. And of course, each
method has specific regions and/or situations for which the method just is not suited.

5.1.1 MEP surfaces

There is another specific use of the MEP that is important for this work: the use
of a MEP calculation in a region called the molecular surface. The molecular surface is
a region which was proposed by Bader, in 1987 [31], as a good delimiter of molecular
volumes. It is also called the ρ(r) = 0.001 a.u. surface, and it contains roughly 97% of a
molecule’s electronic charge. MEP surfaces are used as a way to quantify intermolecular
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interactions [34, 68], and it gives valuable indications as to which regions can interact
with other molecules. Figure 1, repeated for convenience, shows an example MEP for
C6H3BrF2. Blue represent the most positive regions, and red the most negative, as it is
shown in the scale (kJ · mol−1).

One of MEP surfaces problems appears when it is used to calculate surfaces for
interacting molecules. When two molecules approach each other, the surfaces can “merge”
in the region between the two, exactly the region of interest if ones wish is to analyse the
interaction. An example of this problem is shown in a 2012 paper by Parker et al. [69],
who calculated the effects of halogen bonding in the stabilisation of DNA molecules. Some
of their calculations show the MEP surfaces merging in between the molecules. This is a
region of importance to us, therefore novel methods to study intermolecular interactions
are welcome, since by using MEP surfaces that region is not accessible.

Figure 1 - Example MEP surface of C6H3BrF2

Source – Adapted from reference [32]

5.2 Developing the probe

5.2.1 Probe choice and calibration

As we have said at the beginning of this chapter, the probe needs to have a small
dipole moment, to disturb the system as little as possible, and yet it has to be large
enough for us to be able to study its effects on its neighbourhood. That makes polar
molecules, like LiH or HF, bad candidates to be probes, since their dipole moment is too
large compared with that of HD, which was our first candidate, with a dipole moment
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Figure 4 – Dipole moment of the probe versus mass of the lighter particle.

The graph displays the possible dipole moments for the probe when one of the atoms
remains with the mass of the proton.

Source – The authors

of µ = 8.5 × 10−4 debye1. However, that is too small for our objectives, and so we had
to “construct” a virtual molecule to use in our quantum chemistry calculations. We need
only to manipulate the probe’s nuclear masses to amplify the isotopic effects on the dipole
moment, and we have a good molecule to start our calibration.

We now have a two electrons and two protons probe, and the ability to alter
nuclear masses in our calculations. The equilibrium distance of the probe is kept the
same as H2 equilibrium distance (req = 1.4 a.u.) the reason for that will be explained in
a later section. Figure 4 shows our study for the variation of the dipole moment of the
probe with the change of mass. In this graph, one of the protons remains with its natural
1836.15 u.a. mass. As we can see, it is possible to produce large DM, compared to HD,
if we use very small masses; the problem with that is that the adiabatic approximation
is not valid for such small values of mass, so we have to take that in consideration. After
some initial tests, we settled for masses M = 10000 a.u. and m = 50 a.u., for the heavy
mass and the light one, respectively. This difference of mass is able to produce a dipole
moment of µ = 0.086 debye. This is two orders of magnitude larger than that of HD,
and the three decimal figures remain the same even if we change computational methods
(we used mainly configurations interactions and density functional theory throughout this
work) and basis set. The choice of mass is a good compromise between having the largest
isotopic dipole moment and maintaining adiabatic approximation valid for the probe.

The isotopic dipole moment points from M to m, because M is more effective in
1 We chose the HD molecule as a starting point. It was the first candidate to be a valid probe, but this

DM is very small, and FNMC is not very accurate for HD [49].
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attracting electrons, so it corresponds to the negative region of a rigid dipole, as shown
in Figure 5.

Figure 5 – The isotopic probe

Source – The authors

5.2.2 Calculations of probe-molecule system energy with FNMC

Using the Hamiltonian operator for FNMC, equation (2.26), we can separate the
energy of the probe-molecule system as

E = EBO + Edm = EBO + Edf + Edp + Ed+m, (5.2)

being EBO the BO energy of an equivalent calculation for the probe-molecule system, Edm

is the interaction energy of the probe dipole and the molecule, Edf is the energy of the
dipole in the molecular electrostatic field, Edp is the dipole-polarisation energy, and Ed+m

is the constant FNMC contribution of the isolated molecule and probe. EBO accounts for
all lead, non-isotopic energy terms, so Edm only has terms for the dipole interaction with
the source molecule. Despite not being an issue, we do not neglect the positive constant
term Ed+m, since the approach is not restricted to methods having size-consistency in
FNMC calculations. On the other hand, for simplification purposes, whenever we refer to
the isolation of a term in the right-hand side of equation (5.2), we will neglect Ed+m.

The probe-system energy interaction involves all classical and quantum contribu-
tions. Since we want to reduce this interaction to just the terms involving the isotopic
dipole, we subtract the BO energy from equation (5.2). This is the reason why we chose
to keep the equilibrium distance of the probe the same as that for H2, for the consistency
of this procedure. When we subtract EBO, Edm becomes

Edm = E − EBO = Edf + Edp + Ed+m = −µϵ cos θ + Edp + Ed+m, (5.3)

in which θ is the angle between the electric field ϵ and the probe’s dipole moment µ. The
above equation allows us to identify two components of Edm, which we can use to fit the
data: the first term is the dipole field energy, and the second term is the energy due to



Chapter 5. The isotopic probe 40

the polarisation of the molecule by the probe, Edp. In some situations, explained in a later
chapter, we found out that we can use the following classical formula for Edp:

Edp = −αµ2(3 cos2 θ + 1)
2r6 , (5.4)

in which α is the isotropic polarisability.

Then, after we isolate Edf , we can obtain the electric field via the following equation:

ϵ = δ(Edf )0→π

2µ
, (5.5)

that is, the electric field is the difference of energy when the probe is parallel and anti-
parallel with the field, divided by two times the moment of dipole of the probe. Another
way of looking at this is, if the probe rotates in space, the plot of the angle of the probe
relative to an arbitrary axis versus the energy of the system would be sinusoidal. In
practice, this is how we programmed the probe. As exemplified in Figure 6, we place
the probe in a point in space, and rotate it, in order to analyse the sinusoidal energy
spectrum that we acquire as a result of the calculations. All calculations in this chapter
were performed with CI/cc-pcVDZ.

Figure 6 – The isotopic probe between molecules
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5.2.3 The probe’s rotation in space: a computational explanation

We will briefly explain how we actually use scripts to rotate the probe and perform
single point energy calculations.

In general we only know the atom’s positions described by an xyz file, which is a
Cartesian description of the molecule, or system of molecules. We choose the point where
the electric field will be evaluated to be the center of the probe. We have to calculate
BO and FNMC energies. Using BO, the probe is simply a hydrogen molecule, since both
atoms have infinite mass. We rotate the probe in both sets of calculations around its
geometric centre.
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The easiest way we found to calculate the electric field is to rotate the probe in
three planes 2, the xy plane, the xz plane, and the yz plane. For each one we define an
angle variable, which starts at zero, and variables for the atom’s positions. The code below
shows the declarations for xy plane: x1 and y1 are the two coordinates for the first atom,
and x2 and y2 are the coordinates for the second atom. The probe is already included in
the molecular Cartesian file, but with generic positions X1 Y1 Z1, X2 Y2 Z2. We then
make a copy of the molecule’s file and use the sed command to change the parameters
directly in the file in order to request the calculation.

1 x1 =0
2 y1 =0
3 x2 =0
4 y2 =0
5 z1 =0
6 z2 =0
7 a=`echo "(${b}/10) *4*a(1) /180" | bc -l | awk '{ printf "%3.9 f", $0}'`
8 x1=`echo "(${cx }+(0.4* c(${a})))" | bc -l | awk '{ printf "%3.9 f", $0}'`
9 y1=`echo "(${cy }+(0.4* s(${a})))" | bc -l | awk '{ printf "%3.9 f", $0}'`

10 x2=`echo "2*(${cx }) -(${x1 })" | bc -l | awk '{ printf "%3.9 f", $0}'`
11 y2=`echo "2*(${cy }) -(${y1 })" | bc -l | awk '{ printf "%3.9 f", $0}'`
12 cp molecule .mol system .mol
13 sed -i -e "s/X1/${x1 }/" system .mol
14 sed -i -e "s/Y1/${y1 }/" system .mol
15 sed -i -e "s/X2/${x2 }/" system .mol
16 sed -i -e "s/Y2/${y2 }/" system .mol
17 sed -i -e "s/Z1/${cz }/" system .mol
18 sed -i -e "s/Z2/${cz }/" system .mol

This is repeated for both xz and yz planes. Each of the planes let us calculate two
electric field vector’s components. We perform BO and FNMC energy calculations, and
then we subtract the first from the second. This subtraction generates three data sets, xy,
xz and yz.

1 dalton -N 6 fnmc.dal system .mol
2 En=`cat fnmc_system .out | awk '{if ($1 ==" Total " && $2 ==" energy ") print

$3 }'`
3 echo "${a} ${En}" >> FNMCxz
4 dalton -N 6 bo.dal system .mol
5 Enbo=`cat bo_system .out | awk '{if ($1 ==" Total " && $2 ==" energy ") print

$3 }'`
6 echo "${a} ${Enbo}" >> BOxz

2 Although we think it is possible to perform the probe’s rotation with spherical coordinates, making
one data set instead of three, it is beyond our programming abilities at this point in time.
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7 b=`echo "${b} + 360" | bc `

For each data set we fit the sinusoidal function (5.3), and from the fit we capture
the amplitude of the cosine function, and a phase angle. This phase angle exists because
the electric field’s direction is not known a priori. The probe starts in the direction of
one of the axis (the first letter on the data set name), and we calculate the first energy
value. After this calculation, we capture the energy for the configuration, it generates new
values for the probe’s atom’s position, based on a predetermined value, which is a step
the angle gets every iteration. The code loops until the probe’s rotation is complete.

We fit the data using the following equation:

f(x) = a cos (x− b) + c, (5.6)

and with the adjusted parameters for the three data sets, we can calculate the
electric field using a simple equation of this type:

ϵ =

√√√√(axy

µ
cos bxy

)2

+
(
axy

µ
sin bxy

)2

+
(
axz

µ
sin bxz

)2

. (5.7)

axy, axz, bxy, and bxz are the adjusted parameters of equation (5.6), the indices
show to which data set they belong. The fit is done with GNUPLOT’s implementation of
the nonlinear least-squares (NLLS) Marquardt-Levenberg algorithm [70].

This procedure is enough to calculate the electric field. There are some cases where
we would not have an electric field in the region, and in those cases we would fit the data
sets with an equation like the following:

f(x) = a(3 cos x2 + 1) + b, (5.8)

which is an implementation of equation (5.4).

The most general case, in which both Edp and Edf are important, we would fit
both functions together to analyse. The study of Edp via this method is still on its early
stages, as we are not sure that the classical equation can be used to analyse molecular
systems in every scenario.

5.3 Tests with H2, H2O, benzene and chlorobenzene
Having determined the method of analysis, the next step is to perform tests with

simple systems to gauge the performance of the probe. All of our calculations were done
with either GAMESS [54] or Dalton [52,53] programs.

First test was done with an H2 molecule, that has no permanent dipole moment,
so the interaction of the probe and the molecule is lead by its quadrupole moment. There
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were three tests, all shown in figure 7. The first one was to check the behaviour when the
probe distances itself from the molecule, with a fixed angle. The data is shown as triangles
in the graph, with the green line representing the fit of an r−4 function that was done
from r = 8 a.u.. So, if the probe is far from the molecule, we see its interaction mainly
with the quadrupole moment, and when it is near, we see that the interaction gets more
complicated, and the polarisation term, r−6, is the leading dependence in the energy in
that region.

Then we fixed the probe-molecule distance as 5 a.u. and rotated the probe. Edm

for that calculation is in inset (a). This is very close to what we would expect from a
classical dipole-polarisability interaction, equation (5.4), but it has other contributions,
at least Edf . After that, we subtracted the polarisation contribution in Edm, and obtained
inset (b) in the graph, representing Edf . This quadrupole electric field was evaluated to
be ϵ = 2.6 × 10−4 a.u.. This is a very small electric field, and an indicative that we had
developed a highly accurate method of analysis.

Figure 7 – Interaction of the probe with an H2 molecule
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The next test was performed with water, one of the most important molecules in
our universe, constant target of both theoretical and experimental research. Although be-
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ing widely studied, and having many models and computational methods, some of water’s
properties are yet to be determined with sufficient precision [71]. Beyond liquid phase, the
study of water’s crystallisation is important in climate research and has applications in
diverse areas of engineering, i.e. aviation, transmission of electric energy, and eolic energy
production [72]. Going even further, the study of non-crystalline states may help build a
better understanding of water’s liquid state [73–75].

Water is also the system of choice in the study of hydrogen bonds [76–78]. Under-
standing hydrogen bond is of universal importance: physicists, chemists, biologists and
material scientists have being studying this kind of interaction for over a century, not
just for the understanding of water and its clusters, but also the general formation of the
interaction.

One of the first tests we did was to plot the electric field around a water dimer,
shown in Figure 8. This image has no information about the field intensities, but it allows
us to know that the probe was aligning correctly with the molecule’s field.

Figure 8 – Electric field around a water dimer
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Further analysis of the electric field was done with an isolated water molecule.
Since water is a highly polar molecule, the fit of Edm to a pure cosine function is very
accurate, because Edf is strongly dominant, as we can see in the results presented in
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Figure 9. If we isolate Edp for one of them, we see a different behaviour than what we’ve
seen previously, depicted on the inset of figure 9. We assumed this is due to the oxygen’s
electron pairs, and maybe this might contribute to better understanding of hydrogen
bonds. At this point we are not sure, but this deserves future investigation.

Figure 9 – Interaction of the probe with an H2O molecule
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We then analysed two ring systems, benzene and chlorobenzene, both with the
probe placed at the center of the ring. The difference between the two is that benzene
does not have an electric field in its center, whereas chlorobenzene has.

Inside the benzene ring, the interaction is purely due to Edp, but we cannot use
the point approximation, since the probe is surrounded by the molecule. BO and FNMC
show minima at the C-C bonds, as expected. Edm, though, shows minima when the probe
points to the C atoms, which are the polarisable centers for the molecule. Data is shown
on Figure 10.

Besides, we also calculated the electric field on the axis perpendicular to the plane
of the benzene molecule, with each hydrogen being replaced by deuteron atoms. Table 3
shows that the electric field decreases very slowly with each additional hydrogen replace-
ment. The configuration represents the position of each H or D atoms, H being shown as
1, and D as 2. These electric fields are very small, smaller than our error margin, but the
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Figure 10 – Interaction of the probe with a benzene molecule

2.062

2.063

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

C
1

In
te

ra
c
ti
o
n
 e

n
e
rg

y
 o

f 
th

e
 p

ro
b
e
 w

it
h
 t
h
e
 m

o
le

c
u
le

 E
d

m
 (

x
 1

0
−

2
 E

h
)

θ (rad)

Energy of the probe’s interaction with a benzene molecule. Probe is located at the center
of the ring, identifying the C1 carbon atom.
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result is systematic, and gave us better understanding of the capabilities of the probe as
an electric field evaluator.

On the other hand, chlorobenzene has an electric field at its center. We see the
fitted data in Figure 11. We used the point approximation in this case, considering the chlo-
rine atom as a point particle. The inset of figure 11 shows Edf for this system, acquired after
the subtraction of the classical Edp. We evaluated the electric field as ϵ = 5.3 × 10−3 a.u.,
pointing at the chlorine atom.

The use of the probe to analyse molecular environments represents a change in
paradigm compared with the use of the MEP and other methods. The probe works well
in many different environments, and can be used to evaluate electric fields and to identify
polarisable, possibly reactive, sites in molecules.
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Table 3 – Electric field of benzene
with isotopic substitu-
tions.

Configuration Electric Field (a.u.)

111111 0.033979
211111 0.034082
221111 0.034080
212111 0.034080
211211 0.034081
222111 0.034077
221211 0.034077
212121 0.034077
222211 0.034076
222121 0.034076
221221 0.034076
122222 0.033967
222222 0.034070

Source – The authors.

Electric field of benzene with isotopic substitutions. Configuration column shows the
position of hydrogen (1) and/or deuteron (2) atoms.

Figure 11 – Interaction of the probe with a chlorobenzene molecule
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6 Applying the method

Having calibrated the probe, and knowing well what it could do, we started search-
ing for systems of interest in which we could utilise the method. Firs of them, published
together with the method in [79] was a problem associated with the electric field inside
the phosphine-borane frustrated Lewis pair (FLP).

6.1 Phosphime-borane FLP

6.1.1 Lewis pair

Lewis’ pairs, proposed by G. N. Lewis in 1923 [80], are molecule pairs, one being
an electron donor (Lewis’ base) and the other one being an electron receptor (Lewis’
acid). This concept is central to the understanding of a large part of the chemistry of the
principal group and the chemistry of transition metals. This proposition was an attempt
to break the line of thought that Lewis called “cult of the proton”, in which only proton
donors were considered as acids.

This new acid-base notion was used to understand many reactions. A classic ex-
ample is the system NH3 · BCl3, shown in Figure 12. The system is neutralised, similarly
to what happens to a Brønsted acid-base pair, but it doesn’t generate water, the result is
an adduct.

Figure 12 – NH3 · BCl3 Lewis pair.

NH3 · BCl3 Lewis pair. NH3 is a Lewis base, and BCl3 is a Lewis acid. The pair reacts
and forms an adduct.

Source – Adapted from Wikipedia [81].
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6.1.2 Frustrated Lewis pairs

FLP are compounds containing a Lewis acid and a Lewis base that cannot form
an adduct because of steric hindrance, caused by its large substituents [82,83], as can be
seen in figure 13. FLP have great importance for fundamental transformation processes
and also for biological functions.

Figure 13 – FLP (C6F5)3B − P(tBu)3.

FLP (C6F5)3B − P(tBu)3. Hindrance caused by large substituents makes it impossible
the formation of an adduct.

Source – Adapted from [84]

One of the most important uses of FLP is hydrogen activation [85]. Transition
metal systems are known by their ability to free or react with H2, but non-metallic systems
that do the same are rare. Some of those compounds were studied by Welch et al. [86,87],
even before the term FLP was proposed by Stephan, in 2008 [82].

Since then, many research groups have worked to understand this hydrogen ac-
tivation reaction mechanism by FLP [88–94], and also the reason for some FLP not to
perform the same reaction with H2 [95]. Two different mechanisms were proposed for
this activation. One was an electron transfer mechanism, indicating the activation of the
molecule by a complex electron transfer between the FLP and the hydrogen. The other
one, which we tested, was the activation of the hydrogen molecule solely because of the
electric field inside the FLP.

The first method to verify if the activation occurs because of FLP’s electric field
[88, 89] does not consider the FLP explicitly, but calculates the required electric field
to activate an H2 molecule, and conjectures that it would be the electric field inside
the FLP. According to this model, the electric field should be larger than 0.1 u.a.. The
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distance between the phosphorus and the boron atoms is very large, 7.9 u.a., so this would
be a huge electric field inside the FLP’s “cavity”. The other method devised to explain
this phenomenon was a complex and dynamic electron transfer mechanism [93, 94, 96].
Simulations helped this electron transfer method by including transition states.

DFT MEP calculations evaluated the electric field inside the FLP as between
0.08 u.a. and 0.1 u.a. [90], but according to the literature, this method fails near phospho-
rus atoms, overestimates charge polarity, exaggerates correlation effects between electrons,
and does not have better performance than HF MEP [3, 97, 98]. Therefore, checking the
EF inside the FLP becomes a good application of the isotopic probe.

Figure 14 – Probing points and results for the FLP.

Probing of the FLP’s cavity. Distances 1-2 and 2-3 are 0.44 a.u.. Inset (A) shows Edm

for Rokob’s geometry of the FLP [90]. Inset (B) shows calculations in the TS1 state from
Liu [93].

Source – The authors

This was our first system analysed using DFT1. The number of electrons was too
big for us to use CI with our available computers. Electric field was calculated in three
1 Cartesian coordinates for the systems are on appendix A, Tables 13 and 14
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regions, points 1, 2 and 3, shown in Figure 14, and were evaluated as ϵ1 = 0.009 a.u.,
ϵ2 = 0.013 a.u., ϵ3 = 0.021 a.u. as shown in Table 4. This means that our results did
not support the assumption of the electric field model, but they seem to agree with the
electron transfer model for the hydrogen activation by a phosphine-borane FLP, also
reported in [79]. Inset (a) of Figure 14 shows Edm for one of those calculations. Inset
(b) shows Edm of a calculation for the electric field from the TS1 configuration reported
by Liu [93]. This configuration shows practically no Edp contribution, and that shows
us that the electric field there is purely electrostatic. This result is consistent with the
displacement of the FLP electron pair in TS1, which makes Edp negligible.

Table 4 – Electric field inside the
FLP’s cavity.

System Position Electric Field (a.u.)

FLP
1 0.009
2 0.013
3 0.021

Source – The authors.

Electric field inside the FLP’s cavity. Positions shown are the ones depicted in Figure 14.

6.2 Probing of intermolecular interactions: π- and σ-holes
Another application we’ve found for the probe is the study of intermolecular in-

teractions. The probe is small, having 1.4 a.u. of internuclear distance, but its actual size
is larger because we have to account for its electron cloud volume. Most intermolecular
distances are about 5.7 a.u..

Intermolecular interactions are assumed to be fully described as Coulombian in-
teractions, i.e. electrostatic plus polarisation [33–35]. This is why we can use the MEPS
in order to study them [68]. As we explained in chapter 5, MEPS are maps of the elec-
trostatic potential around the molecule, taken over a region defined as the surface of
the molecule [31], and it is one of the main techniques used to analyse intermolecular
interactions.

However, we have already shown that MEPS is not appropriate to study the kind
of bonds we are concerned here, as it does not have good resolution in said regions. In
consequence, we now use the isotopic probe to analyse several intermolecular interactions
of molecules containing π- and/or σ-holes. Based on the Hellmann-Feynmann theorem
[56,99], which states that intermolecular forces are all electrostatic in nature, we propose
the electric field as a quantifier for the intermolecular bonds.
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6.2.1 π- and σ-holes

Both π and σ holes are non-nuclear molecular regions of positive electric potential
that interact with negative regions, e.g. electron pairs of other molecules like H2O or NH3.

σ-holes are extensions of sigma bonds. Covalent bonds can be amphoteric and cause
an outer atom to have both positive and negative surface potential, for example a halogen
that has his electron cloud disposed in a ring with radius perpendicular to the bond [100].
This phenomenon makes it so that the atom, although having high electronegativity, can
have a positive electrostatic potential opposite to its covalent bond that can interact with
negative sites. This region of positive electrostatic potential is called a σ-hole. Specifically,
if the atom is an halogen, the bond created by this type of interaction is called a halogen
bond. A σ-hole interaction is very similar to a hydrogen bond: both are highly linear
(hydrogen bonds are slightly less linear than halogen bonds [33]) and have similar strength.
They can even compete in some situations, showing a potential for the design of biological
macromolecules [101].

π-holes, on the other hand, are regions more central to the molecule that happen
when a group of outer atoms are more electronegative than the central atoms, so that
they attract the electrons to the edges of the molecule, leaving behind a positive center,
a “hole” in the electron cloud, that we call a π-hole. One of the earlier theoretical and
experimental studies on π-holes was only a few decades ago by Alkorta [102, 103], who
compared the differences between C6F6 and benzene, C6H6. He concluded that the fluorine
atoms invert the electron-donor characteristics of the carbon atoms. Most of the studies
that followed showed the importance of the π-hole lone pair interaction, with oxygen being
the electron donor, certainly because of the importance to understand biochemically this
interaction, since water is the most important molecule for life [104, 105]. Many more
studies were carried on the topic; to cite a few, there are articles showing lone pair -
π-hole interactions in synthetic molecules [106], competition between π-hole and σ-hole
interactions on the same molecule [107], intramolecular π-hole bonds [108], cooperation
of non-covalent bonds [76], π-hole - water interactions [109], and estimating that these
bonds can be as strong as hydrogen bonds [110].

In order to verify this last statement, we calculated the electric field in the middle
of a hydrogen bond between two ammonia molecules, to compare with the other kinds of
interaction. All the calculations for these interactions were performed with DFT, using
6-31G** basis and three different functionals: B97-D, PBE0-D3 and B3LYP-D3. The D3
in PBE0 and B3LYP stands for Grimme’s DFT-D3 correction for dispersion interactions
[111]. The probe was always placed in the midpoint of the interaction, unless stated
otherwise.

The geometry that we used for the ammonia dimer was optimised by Jurecka et
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al. [112]2. For the ammonia dimer, Figure 15, with Req= 4.72 a.u. a proper sinusoidal fit
was found, so that the EF could be evaluated and used as a basis of comparison between
a hydrogen bond and the π and σ-hole bonds. As we mentioned at the start of this
section, we expected the hydrogen bond to be similar in strength to σ-holes, and perhaps
to some of the π-holes. The results of the electric field calculations are contained in Table
5. Different DFT functionals generated a very good accordance with the larger difference
being about 7%. The average electric field among the functionals was 0.1 a.u., which is a
very large electric field. Recall that the field needed to separate a hydrogen molecule is
about 0.1 a.u..

Figure 15 – Edm of the hydrogen bond between two ammonia molecules.

Hydrogen bond between two ammonia molecules. Triangles are the calculated Edm values
from the xy data set, while the line is the fit to the best sinusoidal curve used to evaluate
the electrostatic field

Source – The authors

All the systems whose interactions were analysed are listed in Table 6. Those sys-
tems have been experimentally characterised, and their π- and σ-holes have been properly
identified. The Table also shows their equilibrium distance and energy, calculated using
DFT/B3LYP-D3.

We started studying the interactions of the C6F6 · · · H2O system, which were ex-
perimentally characterised by [109], who used infrared spectroscopy and also optimised
the geometries with B3LYP/aug-cc-pVTZ calculations. They encountered three configu-
2 Cartesian coordinates for the system are on appendix A, Table 15.
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Table 5 – Electric field in the hydrogen bond
between two ammonia molecules.

System Functional Bond EF (a.u.)

Ammonia dimer
(2NH3)

B97-D 0.11
PBE0-D3 0.12

B3LYP-D3 0.12
Source – The authors

Table 6 – Equilibrium distances and energies for analysed
systems.

System Req (a.u.) Energy (Eh)

NH3 dimer 4.724 -113.04919
C2F4 and TMI 5.575 -649.69735
C2F3Cl and TMI - π 5.518 -1010.03062
C2F3Cl and TMI - σ 5.631 -824.43113
C2F3Br and TMI - π 5.518 -3123.91052
C2F3Br and TMI - σ 5.386 -3123.91178
C6F6 and water - Above the center 6.198 -903.73291
C6F6 and water - Above the bond 6.085 -903.65368
C6F6 and water - Above the atom 5.348 -903.64397
C6Cl6 and water - Above the center 5.726 -3065.66083
C6Br6 and water - Above the center 5.820 -15748.93034

Source – The authors

Equilibrium distances (Req) and energies of the analysed systems, calculated with B3LYP-
D3/6-31G**.

rations for the system, that we will call “above the center”, “above the bond” and “above
the atom”, following Wang’s nomenclature [32]. The three configurations can be seen in
Figure 163. In the “above the center” configuration, calculations show no electric field in
planes parallel to the ring; as expected, the electric field for this configuration is in the
direction of the ring’s axis. This first configuration shows the larger electric field of the
three shown in Figure 16, being slightly larger than that of the ammonia dimer. We can
see the results in Table 7. Figure 17 shows Edm calculations for one of the data sets of
the “above the center” configuration.

We have calculated the bond electric fields at the midpoint of the dashed lines in
Figure 16, this is what we call the midpoint of the interaction. For the “above the center”
structure, we can justify that the bond should be in that direction, but, for the other
two, it is possible that there were other points of interest for the interaction. However,
we decided to restrict the calculations to the smaller distance between the two molecules.
For instance, the “above the atom” structure has the water molecule rotated in a way
3 Cartesian coordinates can be seen in Tables 16, 17 and 18, on appendix A.
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Figure 16 – C6F6 · · · H2O configurations.

The three configurations for C6F6 · · · H2O reported by Amicangelo [109], and whose bond
electric field were studied during this work.

Source – The authors

that the oxygen’s pairs of electrons face the center of the ring, and one of the hydrogen
atoms is closer to a fluorine atom. It is possible that the bond is not along the shorter
O-C distance, but actually occurs in the O-center direction and simultaneously in the H-F
direction. That being said, we do not think the determination of a “bond direction” is
a simple matter. As we interpret it, the whole molecule is responsible for the bond, and
by analysing the electric field in the region where they are closer together we can better
understand the interaction.

Table 7 – Electric fields in the π-hole interac-
tion of C6F6 · · · H2O.

C6F6 and water Functional Bond EF (a.u.)

Above the center
B97-D 0.14

PBE0-D3 0.15
B3LYP-D3 0.14

Above the bond
B97-D 0.05

PBE0-D3 0.06
B3LYP-D3 0.06

Above the atom
B97-D 0.07

PBE0-D3 0.08
B3LYP-D3 0.08

Source – The authors

Electric field in the π-hole interaction of the C6F6 · · · H2O system for the different func-
tionals.

We have also calculated the electric field of C6Cl6 · · · H2O and C6Br6 · · · H2O, both
in the “above the center” configuration. Wang et al. [32] have proposed that, for cyclic
systems, the π-hole strength is proportional to the strength of the electron-withdrawing
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Figure 17 – Edm of C6F6 · · · H2O.

Calculation of Edm for the C6F6 · · · H2O system, “above the center” configuration, as
shown in the image. Energies are calculated in the midpoint of the interaction. Triangles
are the calculated energies of the xz data set, and the line is the sinusoidal fit of equation
(5.3).

Source – The authors

substituent groups, in this case, the electronegativity of the outer atoms. This proposition
matches our results, shown in Table 8, which is an indicative that the electric field can
be used as a quantifier for the bonds.

π-hole interactions are not exclusive to cyclic molecules though, and we’ve analysed
some open chain molecules that also show π-holes. C2F3X (X=F,Cl,Br) were experimen-
tally characterised with infrared and Raman spectroscopy by Geboes et al. [113] while
interacting with trimethylamine (TMA, C3H9N). Some of these molecules also show σ-
holes and interact via this region with TMA, but we will start the analysis with the π-hole
compounds. Figures 18, 19 and 20 show Edm for the C2F4 · · · TMA, C2F3Cl · · · TMA and
C2F3Br · · · TMA systems, respectively4.

Contrary to what we have seen for the cyclic systems, these systems do not show
correlations based on the electronegativity of the substituents. The electric fields of the
systems are shown in Table 9. We can see that the electric field drops to about half of
the value of the ones generated by the cyclic complexes. The correlation described by
4 Cartesian coordinates for the systems are on appendix A, Tables 19, 20 and 21
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Table 8 – Electric fields in the π-hole interac-
tion of C6X6 · · · H2O.

C6F6 and water Functional Bond EF (a.u.)

C6F6 and water
B97-D 0.14

PBE0-D3 0.15
B3LYP-D3 0.14

C6Cl6 and water
B97-D 0.12

PBE0-D3 0.13
B3LYP-D3 0.13

C6Br6 and water
B97-D 0.11

PBE0-D3 0.13
B3LYP-D3 0.12

Source – The authors

Electric field in the π-hole interaction of the C6X6 · · · H2O, (X = F, Cl, Br) systems for
the different functionals, on the “above the center” configuration.

Figure 18 – Edm of C2F4 · · · TMA.

Edm calculation for the C2F4 · · · TMA system, as shown in the image. Energies are calcu-
lated in the midpoint of the interaction. Triangles are the calculated energies of the xy
data set, and the line is the sinusoidal fit of equation (5.3).

Source – The authors
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Figure 19 – Edm of π-bonded C2F3Cl · · · TMA.

Edm calculation for the C2F3Cl · · · TMA system, as shown in the image. Energies are
calculated in the midpoint of the interaction. Triangles are the calculated energies of the
yz data set, and the line is the sinusoidal fit of equation (5.3).

Source – The authors

Wang et al. is not present: in this case, the electric field increases with the inverse of the
electronegativity.

Table 9 – Electric fields in the π-hole interac-
tion of C2F3X · · · TMA.

C6F6 and water Functional Bond EF (a.u.)

C2F4 and TMA
B97-D 0.06

PBE0-D3 0.07
B3LYP-D3 0.07

C2F3Cl and TMA
B97-D 0.07

PBE0-D3 0.08
B3LYP-D3 0.08

C2F3Br and TMA
B97-D 0.06

PBE0-D3 0.07
B3LYP-D3 0.07

Source – The authors

Electric field in the π-hole interaction of the C2F3X · · · TMA (X = F, Cl, Br) systems for
the different functionals.
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Figure 20 – Edm of π-bonded C2F3Br · · · TMA.

Edm calculation for the C2F3Br · · · TMA system, as shown in the image. Energies are
calculated in the midpoint of the interaction. Triangles are the calculated energies of the
yz data set, and the line is the sinusoidal fit of equation (5.3).

Source – The authors

Finally, we studied the σ-hole bonded systems: C2F3Cl · · · TMA and C2F3Br · · · TMA5,
with results shown in Table 106.

Table 10 – Electric fields in the σ-hole interac-
tion of C2F3X · · · TMA.

C6F3X and TMA Functional Bond EF (a.u.)

C2F3Cl and TMA
B97-D 0.07

PBE0-D3 0.08
B3LYP-D3 0.08

C2F3Br and TMA
B97-D 0.09

PBE0-D3 0.10
B3LYP-D3 0.11

Source – The authors

Electric field in the σ-hole interaction of the C2F3X · · · TMA (X = Cl, Br) systems for
the different functionals.

5 C2F4 does not present a σ-hole.
6 Cartesian coordinates for the systems are on appendix A, Tables 22 and 23
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In the case of these σ-hole bonded complexes, our results are, again, in accordance
with Wang’s proposition that the strength of the σ-hole is proportional to the size of the
atom. Figures 21 and 22 show the sinusoidal fit for one of the data sets of both systems.

Figure 21 – Edm of σ-bonded C2F3Cl · · · TMA.

Edm calculation for the C2F3Br · · · TMA system, as shown in the image. Energies are
calculated in the midpoint of the interaction. Triangles are the calculated energies of the
xy data set, and the line is the sinusoidal fit of equation (5.3).

Source – The authors

Table 11 shows the angles between the electric field and the “bond direction” repre-
sented in the systems’ Figures. Angles for π-hole bonded C2F3Cl · · · TMA and C2F3Br · · · TMA
are larger than that of C2F4, but that is expected, because of the symmetry breaking when
compared with C2F4. For now we think that if we could propose a direction for the in-
termolecular interaction, the direction of the electric field would be a good candidate. As
we’ve said earlier, this is a matter that deserves more research and consideration in the
future.

The electric fields generated by the σ-hole bonded complexes is higher than the
ones analysed in π-hole complexes, as expected. The σ-hole bond intensity increases with
the increase of the size of the halogen involved in the interaction. We speculate that the
chemical properties of the atom are more important than the symmetry breaking effect in
determining the bond intensity. Fluorine atoms are the most electronegative, and because
of that it tends to remain negative, even at the outside portion of the molecule, therefore
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Figure 22 – Edm of σ-bonded C2F3Br · · · TMA.

Edm calculation for the C2F3Br · · · TMA system, as shown in the image. Energies are
calculated in the midpoint of the interaction. Triangles are the calculated energies of the
yz data set, and the line is the sinusoidal fit of equation (5.3).

Source – The authors

Table 11 – Angles between the electric
field and the “bond direc-
tion”.

System Angle (degrees)

NH3 dimer 0.7
C6X6 - Above the center 0.0
C2F4 6.8
C2F3Cl - π 18.4
C2F3Br - π 22.7
C2F3Cl - σ 8.5
C2F3Br - σ 8.9

Source – The authors
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it cannot produce σ-holes. This effect is smaller the bigger the atom gets, so it is easier
for a large halogen, like Br, to generate a σ-hole.

6.2.2 Electric field of the separated parts of the systems

We have also calculated the electric field with the two molecules separated, and
compare it with the electric field of the system. We kept the probe in the same position,
and removed one of the molecules to perform this calculations. Initially we thought that
the interaction would increase the electric field in all cases, because the process induces
polarisation, and we believe it would make the electric field increase in the region. However,
we have seen that it is not that simple, there could be factors that make the electric field
decrease after the bond is established. In our analysed systems, we have one of such cases.
We believe that the decrease of the electric field, in this case, has to do with the presence
of the four fluorine atoms, which apparently revert part of the original process of creating
the hole and thus weaken the electric field.

Every system other than from C2F4 · · · TMA answered as expected, i.e. the sum of
the electric field of the parts is smaller than (or equal to) the electric field of the complex
(Table 12.

Table 12 – Electric field for separated molecules.

System A B A+B Complex’ EF

C2F4 · · · TMA 0.02 0.06 0.08 0.07
C6F6 · · · H2O - Above the center 0.04 0.09 0.13 0.14
C2F3Cl · · · TMA - σ 0.01 0.07 0.08 0.08
C2F3Br · · · TMA - σ 0.01 0.08 0.09 0.11
NH3 dimer 0.10 0.02 0.12 0.12

Source – The authors

Electric fields calculated with only one of the molecules. “A” refers to the first molecule
named in the row, and “B” to the second one. “A+B” refers to the sum of their separated
electric field, and the Complex’ EF is the electric field for the complex, the same shown
earlier.

Another interesting fact arises when we analyse the σ-holes of C2F3Cl and C2F3Br.
Edm in this region is almost a perfect fit for the sum of equations (5.3) and (5.4). We
can see it in Figure 23, for C2F3Br. As we’ve hinted in section 5.2.2, there seem to be
some cases in which we can consider Edp as as interaction between a rigid dipole and a
polarisable point, and this is one of those cases. The probe is interacting closely with only
one atom in this case, either Cl or Br, and it “notices” its polarisation potential in the
neighbourhood. This is similar to what we have seen for chlorobenzene, with the difference
that in that case we had a symmetric ring around the probe, and the lone chlorine atom
was the standoff.
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Figure 23 – Edm of solo C2F3Br.
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Edm calculation for the C2F3Br molecule, as shown in the image. Energies are calculated
in the midpoint of the interaction. Triangles are the calculated energies of the yz data
set, and the line is the sinusoidal fit of equation (5.3) together with a polarisation energy
from equation (5.4).

Source – The authors

The results for the analysis of π- and σ-hole bonds were published in [114].
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7 Concluding remarks

This work encompasses the development and applications of a computational iso-
topic probe to be used as a tool for the study of molecular environments. This is a new
method, developed as an alternative to the ones that rely on the MEP, which is an impor-
tant observable for molecular environments. The isotopic probe is based on the FNMC,
which is a correction of the electronic BO Hamiltonian operator. FNMC is what gives us
the ability to consider nuclear masses during quantum chemical calculations, and allows
us to calculate isotopic dipole moments, a key characteristic of the computational probe.

The probe was developed and tested with simple systems, namely H2, H2O, ben-
zene and chlorobenzene, which gave us basic understandings of its interaction with the
target molecule. We then started using the probe to study systems of interest in the
field, starting with the analysis of the electric field of a phosphine-borane FLP, giving
our contribution to the discussion on the mechanism of activation of hydrogen inside the
molecule.

Besides, the study of the intermolecular interactions of ten systems already exper-
imentally characterised, has shown that the electric field can be used as a quantifier of
molecular bonds, supported by the Hellmann-Feynman theorem. Our results are in accor-
dance with previous qualitative descriptions of molecular interactions, which give us even
more security in our method and its results. The probe has proven very reliable in the
analysis of the various types of bond, i.e. hydrogen bond, π-hole interactions and σ hole
interactions.

Unfortunately, due to its size, the probe cannot be used in every region, but most
intermolecular environments are large enough for the probe to “fit”. In our view, the use
of the isotopic probe as a tool for the analysis of molecular environments has proven
successful. And we feel secure in recommending its use in future analysis.

Future work using this method may include:

a) A better understanding of the relationship of Edp with the rotation angle θ,
beyond the classical point approximation. A preliminary idea is the utilisation
of many classical points to try and fit the Edf + Edp curve;

b) Probing of the region between the tip and the substrate in an AFM (atomic
force microscope) environment;

c) Study of molecular reactivity, including a better understanding of the effects
of lone pairs of electrons on the Edm.
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APPENDIX A – Molecular Cartesian
coordinates

In this appendix, we show the Cartesian coordinates for all the systems described
in this work. All coordinates are in Angstroms.
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Table 13 – Cartesian coordinates for the phosphine-borane FLP.

Atom x y z Atom x y z

C 4.367882 -0.047101 -1.420151 C 2.706810 -0.673442 2.251067
C 3.653265 0.953404 -0.782326 C -2.763434 0.237760 3.046858
C 2.275799 0.976986 -0.895767 C -1.525137 -1.164313 4.674664
C 1.553258 0.009827 -1.591124 C 0.171547 1.818542 3.151437
C 2.316222 -0.965444 -2.233002 C 1.602672 2.357901 2.973412
C 3.696901 -1.006912 -2.163243 C -0.223271 2.034563 4.619726
B -0.015855 -0.019597 -1.582477 C -0.710412 2.702797 2.245136
C -0.826679 1.324064 -1.582283 C 1.256479 -2.483355 3.039272
C -2.006233 1.472533 -0.856085 C 1.896071 -0.693333 4.631720
C -2.672126 2.678012 -0.736549 H -3.681113 -0.304958 3.299060
C -2.181421 3.791034 -1.399007 H -2.511524 -1.540919 4.969754
C -1.035188 3.683009 -2.172436 H -2.858326 -2.393617 2.674464
C -0.382049 2.466213 -2.247837 H -2.707464 1.095817 3.715582
F -3.762163 2.778072 0.016026 H -2.872537 0.596737 2.024488
F -2.534879 0.437984 -0.202231 H -1.278684 -0.336166 5.340007
F -2.808475 4.950721 -1.302427 H -1.275018 1.825215 4.810976
F -0.576659 4.743814 -2.825290 H -0.810440 -1.966205 4.855429
F 0.714206 2.417607 -3.005353 H -2.077225 -1.630524 1.282677
F 1.647997 1.970722 -0.266871 H -1.765641 2.435847 2.268834
F 1.721898 -1.911210 -2.961176 H -1.163868 -2.724208 2.328131
F 4.289324 1.867989 -0.058807 H -0.051955 3.084565 4.884346
F 4.382650 -1.952996 -2.792876 H 0.371715 1.424460 5.300155
F 5.686182 -0.082053 -1.329237 H -0.628833 3.745792 2.571662
C -0.774828 -1.392995 -1.550591 H 0.503522 -2.857023 3.732115
C -2.002164 -1.583697 -2.184847 H -0.366849 2.648003 1.209523
C -2.728488 -2.756088 -2.080832 H 1.074240 -0.887073 5.321936
C -2.231464 -3.795905 -1.309224 H 0.973077 -2.767729 2.026980
C -1.006468 -3.659565 -0.677234 H 2.191762 -3.004271 3.272014
C -0.297316 -2.482295 -0.825300 H 2.237805 0.328415 4.792576
F -2.920829 -4.917034 -1.185361 H 2.723347 -1.356311 4.910958
F -3.891977 -2.894148 -2.704540 H 1.593006 3.430834 3.194745
F -0.531121 -4.647069 0.073371 H 2.321061 1.899846 3.652095
F -2.525448 -0.616449 -2.938986 H 1.962978 2.243379 1.952197
F 0.878636 -2.417517 -0.200638 H 2.481777 -0.973482 1.224933
C -1.924208 -1.945061 2.317658 H 3.002681 0.374323 2.243087
C -1.575923 -0.729827 3.202566 H 3.571384 -1.255608 2.589735
P 0.025749 0.030687 2.460922
C 1.504913 -0.969538 3.172601

Source – Reference [90]
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Table 14 – Cartesian coordinates for the TS1 of phosphine-borane FLP.

Atom x y z Atom x y z

H -3.409338 3.418224 -3.097296 C 1.864947 1.377899 -0.154472
H -5.215611 1.634499 -3.140616 H -1.545434 3.535702 1.327550
H -2.930975 1.287943 -3.829260 C 2.746789 3.638135 0.394544
F 1.102698 3.747691 -2.873672 H -5.726552 -0.392232 0.191474
C -3.323029 3.209034 -2.011053 H -0.821024 0.061322 -0.801093
H -4.053291 3.845607 -1.479513 H -0.154479 -0.415527 -0.796524
H -2.301877 3.513402 -1.706071 F -0.067417 -2.616894 -0.894412
F 3.993099 -4.988845 -1.314496 C 2.550866 2.280244 0.694921
C -5.009973 1.306289 -2.099475 B 1.461462 -0.080845 0.359438
H -5.746813 1.772618 -1.418759 F 3.389887 4.419403 1.281085
F 5.415202 -2.768239 -0.417579 C -3.350090 -1.499825 -0.698841
C -2.603308 1.011850 -2.801299 H -2.312926 -1.538143 -1.083286
H -5.158197 3.435195 0.047882 C -4.981452 -0.624074 0.976870
C -3.548934 1.697310 -1.772737 C -3.523282 -0.485113 0.472819
F 0.839634 1.165002 -2.311659 H -3.592053 -2.516412 -0.314819
H -5.118085 0.206856 -2.067618 H -5.180058 0.025267 1.847960
C 1.614104 3.303512 -1.703155 C -3.356517 2.027447 2.700880
H -1.558416 1.365828 -2.680381 H -5.122937 -1.679318 1.296622
F 2.457109 5.511331 -1.093604 F 2.989095 1.866315 1.932971
C 3.354716 -3.834847 -1.030856 H -3.566222 2.860475 3.408226
C 4.079375 -2.721978 -0.565177 H -4.030372 1.192153 2.965748
H -2.677618 4.288453 0.164899 H -2.310396 1.718765 2.899208
H -2.590705 -0.091937 -2.755796 C 0.937087 -0.178338 1.853941
C 1.454015 1.935858 -1.383934 F 0.027726 2.060419 1.857714
H -5.206526 3.826903 1.789108 F 1.641171 -2.476949 2.186757
C 2.275998 4.190969 -0.815759 H -1.535499 -1.078935 1.197902
F 1.324031 -4.937630 -1.520459 C -2.572406 -1.013421 1.582769
C -5.001266 3.010959 1.058540 H -2.568827 -0.391462 2.492847
C 1.948976 -3.790308 -1.135355 C 0.432883 0.965007 2.546999
F 4.064769 -0.502495 0.252593 C 1.233354 -1.288184 2.690515
C 3.365502 -1.553504 -0.249646 H -2.885751 -2.045482 1.861593
H -5.740277 2.204354 1.225396 C 0.319757 1.044989 3.940880
C -2.606607 3.795952 1.149917 C 1.146026 -1.239066 4.090096
H -2.924402 4.540762 1.911661 F -0.147152 2.146953 4.548639
H -4.022602 -1.301833 -1.554141 F 1.515313 -2.271590 4.861299
C 1.279504 -2.597396 -0.790125 C 0.714038 -0.059164 4.709457
C 1.965690 -1.434394 -0.337179 F 0.674495 0.026378 6.042723
P -2.857185 1.277696 -0.018785
C -3.538403 2.549458 1.253427

Source – Reference [93]



APPENDIX A. Molecular Cartesian coordinates 80

Table 15 – Cartesian coordinates for
the ammonia dimer.

Atom x y z

N -1.578718 -0.046611 0.000000
N 1.578718 0.046611 0.000000
H -2.158621 0.136396 -0.809565
H -2.158621 0.136396 0.809565
H -0.849471 0.658193 0.000000
H 2.158621 -0.136396 -0.809565
H 0.849471 -0.658193 0.000000
H 2.158621 -0.136396 0.809565

Source – Reference [112]

Table 16 – Cartesian coordinates for
C6F6 · · · H2O - Above the center.

Atom x y z

C 0.00000000 1.39304900 -0.34466900
C 1.20724000 0.69672900 -0.34493200
C -1.20724000 0.69672900 -0.34493200
C 1.20724000 -0.69672900 -0.34493200
C -1.20724000 -0.69672900 -0.34493200
C 0.00000000 -1.39304900 -0.34466900
F 0.00000000 2.73436200 -0.33612000
F 2.36792500 1.36760700 -0.33723100
F -2.36792500 1.36760700 -0.33723100
F 2.36792500 -1.36760700 -0.33723100
F -2.36792500 -1.36760700 -0.33723100
F 0.00000000 -2.73436200 -0.33612000
O 0.00000000 0.00000000 2.94256400
H 0.00000000 0.76397200 3.53216800
H 0.00000000 -0.76397200 3.53216800

Source – Reference [109]
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Table 17 – Cartesian coordinates for
C6F6 · · · H2O - Above the bond.

Atom x y z

C 0.24673000 0.29276100 1.39331600
C 0.59166000 -0.86383400 0.69667800
C -0.09867500 1.45078900 0.69705700
C 0.59166000 -0.86383400 -0.69667800
C -0.09867500 1.45078900 -0.69705700
C 0.24673000 0.29276100 -1.39331600
F 0.24162200 0.29126700 2.73423200
F 0.91408200 -1.97733000 1.36808900
F -0.42839400 2.56347900 1.36807600
F 0.91408200 -1.97733000 -1.36808900
F -0.42839400 2.56347900 -1.36807600
F 0.24162200 0.29126700 -2.73423200
O -2.16785400 -2.52069500 0.00000000
H -2.31266900 -3.09224600 0.76398200
H -2.31266900 -3.09224600 -0.76398200

Source – Reference [109]

Table 18 – Cartesian coordinates for
C6F6 · · · H2O - Above the atom.

Atom x y z

C -0.61651300 -1.02744100 0.00000000
C -0.42290900 -0.35993400 1.20733200
C -0.42290900 -0.35993400 -1.20733200
C -0.03475200 0.97919500 1.20772100
C -0.03475200 0.97919500 -1.20772100
C 0.15938100 1.64893600 0.00000000
F -0.98124000 -2.31834500 0.00000000
F -0.60280700 -1.00600500 2.36706900
F -0.60280700 -1.00600500 -2.36706900
F 0.15208200 1.62308000 2.36849000
F 0.15208200 1.62308000 -2.36849000
F 0.52977800 2.93731800 0.00000000
O 2.00375300 -2.67238500 0.00000000
H 1.46504500 -3.47323100 0.00000000
H 2.91587100 -2.98591000 0.00000000

Source – Reference [109]
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Table 19 – Cartesian coordinates for
C2F4 · · · TMA.

Atom x y z

C -1.801931 -0.291177 0.000000
C -1.085165 0.834930 -0.000001
F -0.716791 1.460715 -1.113179
F -0.716787 1.460714 1.113177
F -2.179558 -0.920645 1.113934
F -2.179562 -0.920644 -1.113933
N 1.686389 -0.189331 -0.000001
C 2.756812 0.804237 -0.000015
H 2.668986 1.441161 -0.892555
H 2.668987 1.441183 0.892510
H 3.766540 0.335983 -0.000010
C 1.772906 -1.021558 -1.196933
H 0.948332 -1.750760 -1.202146
H 1.684252 -0.390221 -2.093412
H 2.733341 -1.580918 -1.253650
C 1.772908 -1.021528 1.196950
H 1.684256 -0.390169 2.093414
H 0.948335 -1.750731 1.202183
H 2.733344 -1.580887 1.253679

Source – Reference [113]

Table 20 – Cartesian coordinates for
π−bonded C2F3Cl · · · TMA.

Atom x y z

C 0.723806 0.995773 -0.450233
C 1.535134 0.225429 0.288012
F 1.769890 0.538744 1.581018
F 0.156211 2.102555 0.014249
F 0.449127 0.767019 -1.727473
Cl 2.276733 -1.210807 -0.269392
N -1.845187 -0.291088 0.084319
C -1.926261 -1.477360 -0.764452
H -2.030983 -1.172765 -1.816220
H -1.002938 -2.067658 -0.663656
H -2.789410 -2.127472 -0.497978
C -1.676040 -0.685631 1.480489
H -0.757174 -1.282166 1.588635
H -1.584398 0.211515 2.110895
H -2.531047 -1.292362 1.853552
C -3.051579 0.518688 -0.065762
H -2.971295 1.419878 0.559845
H -3.158136 0.831392 -1.115017
H -3.970171 -0.035289 0.230912

Source – Reference [113]
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Table 21 – Cartesian coordinates for
π−bonded C2F3Br · · · TMA.

Atom x y z

C 0.092482 1.225808 -0.517521
C 1.006428 0.713604 0.319356
F 1.108138 1.206880 1.576026
F -0.704157 2.237191 -0.191199
F -0.076426 0.820671 -1.769225
Br 2.131492 -0.705412 -0.089668
N -2.196447 -0.481178 0.096640
C -2.065481 -1.724554 -0.658965
H -2.212303 -1.523120 -1.730364
H -1.055277 -2.137695 -0.518026
H -2.806360 -2.491305 -0.339564
C -1.971835 -0.733258 1.517759
H -0.964703 -1.152553 1.665177
H -2.040334 0.211663 2.077402
H -2.712450 -1.447857 1.941149
C -3.523294 0.094537 -0.107422
H -3.604209 1.040932 0.447332
H -3.674550 0.303648 -1.176771
H -4.334695 -0.585548 0.235928

Source – Reference [113]

Table 22 – Cartesian coordinates for
σ−bonded C2F3Cl · · · TMA.

Atom x y z

C 1.848688 0.565730 -0.006706
C 2.712265 -0.460391 0.000331
F 2.345620 -1.739207 -0.001384
F 4.034905 -0.309281 0.009960
F 2.327646 1.829414 -0.004058
Cl 0.146026 0.411278 -0.019041
N -2.797640 -0.039468 -0.004405
C -3.674754 1.087346 -0.312929
H -3.514229 1.892228 0.419360
H -3.439420 1.475600 -1.314797
H -4.749924 0.801211 -0.290574
C -3.081072 -0.544440 1.336882
H -2.399126 -1.375551 1.570576
H -2.920703 0.255476 2.074764
H -4.127424 -0.909884 1.435906
C -2.980942 -1.103274 -0.988860
H -2.745993 -0.721860 -1.993558
H -2.298199 -1.936292 -0.764370
H -4.022598 -1.494526 -0.995753

Source – Reference [113]
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Table 23 – Cartesian coordinates for
σ−bonded C2F3Br · · · TMA.

Atom x y z

C -1.871658 0.493138 0.000004
C -2.793545 -0.481349 -0.000003
F -2.504214 -1.780915 0.000006
F -4.107730 -0.260063 -0.000019
F -2.295355 1.781855 -0.000006
Br -0.023389 0.229736 0.000026
N 2.804891 -0.122529 0.000003
C 3.188330 -0.869845 -1.197024
H 2.688752 -1.849801 -1.195701
H 2.871020 -0.317593 -2.093777
H 4.286654 -1.033285 -1.252866
C 3.189517 -0.861142 1.202040
H 2.873085 -0.302403 2.095078
H 2.689949 -1.841084 1.208316
H 4.287897 -1.024170 1.257984
C 3.433423 1.197823 -0.005096
H 3.116095 1.753779 -0.899574
H 3.116972 1.760257 0.885634
H 4.543246 1.131600 -0.005400

Source – Reference [113]
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APPENDIX B – Published papers

Two papers were published with the results of this thesis, the first one reporting
the method, early calibration of the probe and analysis of the Frustrated Lewis Pair, titled
“Probing molecular environments with a fictitious isotopic dipole” [79], and one reporting
the analysis of the compounds containing π- and σ-hole interactions, titled “Probing
internal electric fields of π- and σ-hole bonds” [114]. Both papers were published in the
International Journal of Quantum Chemistry, in 2019.
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