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“Knowledge is a process of piling up facts;
wisdom lies in their simplification.”

(Martin H. Fischer)



Resumo

O crescente interesse em aplicações de aprendizado de máquina levantou uma discussão
na comunidade de inteligência artificial sobre a transparência do modelo. No centro desta
discussão estão questões sobre a explicação e a interpretabilidade do modelo. Embora
alguns métodos sejam sistematicamente apontados como interpretáveis por humanos, por
exemplo, Programação Genética (PG) e Árvores de Decisão (AD), sabemos que quanto
mais complexo o modelo se torna, menos interpretável ele é. Esta tese enfoca na expli-
cabilidade dos modelos de regressão. As abordagens propostas não explicam o processo
seguido por um modelo para se chegar a uma decisão. Em vez disso, elas justificam
as previsões que o modelo faz. Quatro métodos agnósticos de modelo foram propostos
para ajudar a justificar as previsões: dois métodos baseados em atributos, denomina-
dos Explicação por Aproximação Local (ELA) e Explicação Dinâmica por Aproximação
Local (DELA), um método baseado em protótipos, denominado Explicação Multiobje-
tivo Baseada em Protótipos para Regressão (M-PEER) e um método híbrido multinível
denominado Explicação Multinível Híbrida (HuMiE). ELA é um método de explicação
simples que encontra os vizinhos mais próximos da instância que queremos explicar e
realiza uma regressão linear usando este subconjunto de instâncias. Os coeficientes dessa
regressão linear são então usados para gerar uma explicação local para o modelo. Os
resultados mostram que os erros obtidos pelo método ELA são semelhantes aos da re-
gressão realizada com todos as instâncias. Além disso, propomos o uso de visualizações
simples baseadas em gráficos de áreas empilhadas para mostrar as explicações do método
ELA. Assim, observamos que os resultados obtidos resultam em informações adicionais
aos usuários sobre os atributos mais relevantes para as previsões. DELA é um método
que aprimora ELA deixando-o com uma estrutura interna mais dinâmica e adaptável às
características do conjunto de dados trabalhado. Para tanto, DELA realiza a normal-
ização dos conjuntos de dados de entrada, escolhe a métrica de distância mais adequada
em cada contexto ao comparar as instâncias, define dinamicamente o número de vizinhos
que serão selecionados para a explicação local de acordo com a densidade local e calcula
a importância dos recursos com base na localização da instância de teste. Desta forma,
DELA demonstrou ser menos afetado por conjuntos de dados com altas variâncias nos
atributos, além de retornar interpretações semanticamente corretas, o que nem sempre
ocorre nos métodos explicativos concorrentes. O terceiro método proposto, M-PEER,
utiliza protótipos para fornecer explicações globais e locais para problemas de regressão.
Este método leva em consideração os recursos de entrada e também a saída do modelo.



Definimos protótipos como casos exemplares no domínio do problema. O M-PEER é
um método baseado em um algoritmo evolutivo multiobjetivo que minimiza o erro do
modelo explicável e também outras duas medidas semanticamente baseadas no contexto
de interpretabilidade. Os resultados mostram ganhos significativos do M-PEER sobre
outras estratégias, com uma melhoria média de 12% em uma métrica proposta denomi-
nada Fidelidade e Estabilidade Global (GFS) e 17% na Raiz do Erro Quadrático Médio
(RMSE) quando comparado com ProtoDash, um método considerado estado-da-arte em
explicações baseadas em protótipos. Por fim, o método denominado HuMiE é capaz de
criar explicações híbridas multinível para problemas de regressão. Por híbrido entende-
mos que a explicação fornecida engloba tantos elementos de uma explicação baseada em
exemplos quanto de explicações baseadas em atributos. Por multinível HuMiE apresenta
em formato de árvore as explicações globais do modelo, explicações locais para instâncias
de teste específicas e também explicações intermediárias, retratando subgrupos semanti-
camente semelhantes. Experimentos com conjuntos de dados do mundo real mostraram
quantitativamente que os protótipos escolhidos por HuMiE foram melhores que todos os
concorrentes (M-PEER e ProtoDash) em relação à métrica de fidelidade. HuMiE tam-
bém foi melhor que M-PEER com um único nível em relação às métricas de estabilidade e
GFS. Qualitativamente HuMiE é capaz de diversificar na escolha de protótipos de acordo
com as características do conjunto de dados apresentado, tanto em termos de saída do
modelo quanto dos atributos. Além disso, HuMiE foi capaz de encontrar subgrupos de
instâncias semelhantes, proporcionando uma interpretação intermediária entre as escalas
local e global.

Palavras-chave: regressão; explicação; interpretabilidade.



Abstract

The growing interest in machine learning applications has raised a discussion in the arti-
ficial intelligence community about model transparency. In the center of this discussion
is the question of model explanation and interpretability. Although some methods are
systematically pointed out as interpretable by humans, e.g., genetic programming (GP)
and Decision Trees (DT), we know that the more complex the model becomes, the less
interpretable it is. This thesis focuses on explainability of regression model. The pro-
posed approaches do not explain the process followed by a model to reach a decision.
Instead, they justify the predictions the model makes. Four model-agnostic methods were
proposed to help justifying predictions: two features-based methods, called Local Approx-
imation Explanation (ELA) and Dynamic Explanation by Local Approximation (DELA),
a prototype-based method, called Multiobjective Prototype-basEd Explanation for Re-
gression (M-PEER) and a multilevel hybrid method called Hybrid Multilevel Explanation
(HuMiE). ELA is a simple explanation method that finds the nearest neighbors of the
instance we want to explain and performs a linear regression using this subset of instances.
The coefficients of this linear regression are then used to generate a local explanation to
the model. Results show that the errors of ELA are similar to those of the regression
performed with all instances. Furthermore, we propose the use of simple visualizations
based on stacked area plots to show explanations of the ELA method. Thus, we observed
that the results obtained can give many insights to the users about the most relevant
features to the predictions. DELA is a method that improves ELA, leaving it with a more
dynamic and adaptable internal structure to the characteristics of the dataset worked on.
To do so, DELA normalizes the input datasets, chooses the most appropriate distance
metric in each context when comparing the instances, dynamically defines the number of
neighbors that will be selected for the local explanation according to the local density and
calculates the importance of features based on the location of the test instance. In this
way, DELA proved to be less affected by datasets with high variances in the features, in
addition to returning semantically correct interpretations, which does not always occur in
competing explanatory methods. The third proposed method, M-PEER, uses prototypes
to provide global and local explanations for regression problems. This method takes into
account the input features as well as the output of the model. We define prototypes as
exemplary cases in the problem domain. M-PEER is based on a multi-objective evolu-
tionary algorithm that optimizes both the error of the explainable model and two other
semanticall-based measures of interpretability. The results show significant gains of the



M-PEER over other strategies, with an average improvement of 12% in a proposed metric
called Global Fidelity and Stability (GFS) and 17% in Root Mean Squared Error (RMSE)
when compared to ProtoDash, a state-of-the-art method in prototype-based explanations.
Finally, the method called HuMiE is capable of creating multilevel hybrid explanations
for regression problems. By hybrid, we mean that the explanation provided encompasses
as many elements of an example-based explanation as it does of features-based explana-
tions. By multilevel HuMiE presents in a tree format the model’s global explanations,
local explanations for specific test instances and also intermediate explanations, portray-
ing semantically similar subgroups. Experiments with real-world datasets quantitatively
showed that the prototypes chosen by HuMiE outperformed all competitors (M-PEER
and ProtoDash) on the fidelity metric. HuMiE was also better than M-PEER with a
single level regarding stability and GFS metrics. Qualitatively HuMiE is able to diversify
in the choice of prototypes according to the characteristics of the presented dataset, both
in terms of model output and features. Furthermore, HuMiE was able to find subgroups
of similar instances, providing an intermediate interpretation between local and global
scales.

Keywords: regression; explanation; interpretability.
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Chapter 1

Introduction

Machine learning models are increasingly being used to make critical decisions. As Aris-
totle once said, “we do not think we understand something until we have grasped the why
of it” [72]. This same reasoning applies to most machine learning models widely used
today. In many cases, these models are able to create good generalizations by predicting
outputs for unprecedented events, even though we are not able to understand why or how
their internal mechanisms work and, consequently, why a specific output was obtained.
Hence, preeminent models are often opaque and difficult to interpret, and because of that
we call these models black-boxes.

However, as the most accurate models are usually black-box models, works fo-
cusing on model explainability and interpretability have grown in importance [68, 49].
Explainable/Interpretable models are especially important in domains where decisions
lead to critical consequences. For instance, the use of black-box machine learning models
has already led to unfairly long prison sentences (e.g., prisoner Glen Rodriguez had his
parole denied due to an incorrect COMPAS 1 score) [116].

Note that there is a difference between interpretable and explainable models. In-
terpretable models are those that are inherently understandable by human beings, such as
linear models, decision rules, decision trees and logistic regression. But even interpretable
models can be difficult to understand by a human, and there many possible causes for
that: the high dimensionality of the data, the large volume of instances to be analyzed,
complex mathematical functions returned, big sets of rules or extensive trees.

Explanable models, on the other hand, are obtained by elucidating a black-box
model in order to make its internal mechanisms, which led to a given prediction, minimally
comprehensible to humans [101, 62]. Most research on explainable models for machine
learning refers to classification tasks [106, 108, 99, 110, 41, 103, 52, 85, 14, 112, 26, 65, 96].
However, some initiatives have already been proposed to explain regression models [87,
7, 62, 101, 51].

Briefly summarizing, classification problems consist in learning a model that ex-
presses the relationships between a set of features that describe a given instance and a

1COMPAS is a case management and decision support proprietary system used by U.S. courts to
assess the likelihood of a defendant becoming a recidivist.
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fixed predefined set of classes. Thus, the goal is to predict the correct class of instances
not previously labeled. In regression problems, in contrast, the output is continuous,
leading to an unlimited number of possible values to be predicted by the model. In this
thesis we will focus on the task of providing explanations for regression problems.

Two more popular approaches used by explanation methods are: feature-based and
example-based [82]. Feature-based approaches analyze data characteristics – including,
for example, statistical summaries and importance of features – that make a particular
black-box model perform a predict.

In contrast, example-based or prototype-based approaches select or create instances
that can represent the black-box model or a specific test instance prediction. We call these
explanatory instances prototypes. The idea behind finding the best prototypes to explain
predictions is in line with the mode of human reasoning that seeks to find cases similar to
a certain phenomenon when trying to understand it, and is crucial to construct effective
strategies for tactical decision-making [1, 104]. However, isolated prototypes are not
enough to explain predictions. The set of selected prototypes needs to be able to both
describe the data distribution considering the fitted machine learning model while also
explaining individual predictions.

This thesis investigates the problem of making the internal behavior of black-box
regression models understandable to humans using explanation methods. To achieve that,
we propose feature-based and prototype-based methods, as well as a new hybrid multi-
level approach that combines elements of the two previously mentioned approaches to
provide an hierarchical understanding of the model developed. Our hypothesis is that
we can improve the quality of explainability of black-box regression models. By quality
we mean that the explanations provided should be consistent with the domain expert
knowledge and, at the same time, capable of minimizing error metrics in relation to
the model and the instances to be explained. Finally, the proposed methods should be
intrinsically simple, preferably using elements that can be extracted from the model’s own
training set. This makes explanations more accessible and easy to understand, even for
users with little technical knowledge. In summary, this thesis contributes to advancing
the understanding of black-box models and may have important implications in different
areas of everyday life where regression models are used.

1.1 Motivation

As stated before, understanding the reasons certain regression models make specific
predictions is crucial in application problems that can directly affect individuals. Better
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understanding of the models can help: i) developers to improve the results obtained
by a model [76] by, for example, identifying resources that should not be used in the
prediction; ii) users to gain insights on how to improve their services or methods [76, 62];
and iiii) assess fairness and privacy [30]. Furthermore, explanations may be required by
law [62, 122, 44] for individuals to obtain appropriate feedback of results obtained by
models who used their personal data.

Much has been done in this area in recent years [88, 49, 18, 76]. Despite that,
there are still many open questions regarding the methods of explanation, especially when
working with regression problems. Below we detail four of these open issues that will be
investigated in this thesis:

Issue 1: In general, explanation methods were not designed and evaluated specifically
for the context of regression.

The main focus of some of the current explanation methods is the classification
task, requiring some adaptations to work in regression. For example, methods for feature-
based explanations need adaptations to be used in regression problems or even discretize
the regressor output in classes to be used for explanation in regression models, such as
LACE [97], Anchors [108], and CEC [27]. Other works did not use datasets of regression
problems (LIME [105]) or used only a small regression set in their tests (MAME [101]),
making it difficult to provide conclusive results in this scenario. We also observe works
with prototypes-based explanations that do not use the continuous output provided by
the regressor to obtain the most adequate explanations (PS [14], MMD-critic [68] and
ProtoDash [51]), i.e., they end up focusing their explanations on the original distribution
of the data and not on the evaluated model.

Issue 2: The local explanation is not always coherent with the global explanation pro-
vided by the same explanation method.

Explaining the output given to a specific instance is considerably simpler than
given an overall explanation of the model, since it only requires understanding the local
behavior of a model. A valid analysis for this task would be to place a magnifying glass in
a specific region of the model’s solution space. Some proposed methods perform this task,
for example, by creating perturbation instances from the instance of interest [107, 62, 122],
creating fictitious instances through genetic algorithms [48], while others analyze the lo-
cal distribution of data [68, 51]. However, generalizing this local observation to a global
explanation of the entire model and, at the same time, preserving its local characteristics
is not a trivial task. When trying to do that we have the risk that the global explana-
tion provided will be as difficult to understand as the initial model. For example, if the
global model explanation turns out to be a complex equation, we are actually replacing
a black-box regression model by a black-box explanation also incomprehensible to humans.



1.2. Objectives 24

Issue 3: Semantically invalid instances for the application can be created by locally
explaining the model.

Usually, the algorithms that deal with local explanation create a perturbation
around samples of interest in order to create fictitious samples and then describe the local
behavior [107, 62, 122]: this can generate semantically invalid instances that would simply
not be observed in the real world.

Issue 4: Metrics to measure the similarity of instances and to evaluate the explanatory
power of methods are little explored, and significantly impact the results of explanations.

Most current explanatory methods need, at some point, to use similarity metrics
to compare different instances. The most widely used metric is the Euclidean distance
when evaluating tabular dataset [105, 101, 62, 48] . However, the misuse of the Euclidean
distance can generate not faithful comparisons of pairs of instances, especially when deal-
ing with high dimensional data in terms of the number of features, leading to the problem
of the curse of the dimensionality [29, 4].

In addition, when evaluating different methods of explanation, it is common to use
only one error-based metric [14, 68, 51, 52, 48, 87], which we consider is not always ap-
propriate. The use of metrics that can qualitatively assess the quality of the explanations
can be considered the holy grail of this area, which still heavily relies on qualitative and
expensive analysis from humans.

1.2 Objectives

The main objective of this thesis is to provide mechanisms for a user to understand
the internal reasons that drive the behavior of a given black-box regression model, i.e.,
the factors that led to a certain predict. In order to achieve that, we pose the following
research questions:
Research Question 1 (RQ1): Is it possible to generalize local explanations learned
from black box regression models in order to create globally coherent and semantically
valid explanations when compared to those provided by domain knowledge specialists?
(Relates to Issue 2)

Research Question 2 (RQ2): Is it really necessary to create fictitious instances in
order to provide a local explanation of a given instance? (Relates to Issue 3)
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Research Question 3 (RQ3): Which distance metric performs better, especially when
working with high-dimensional data, when used to measure the similarity of instances in
regression problems in order to provide explanations? (Relates to Issue 4)

Research Question 4 (RQ4): How does explanation quality – measured by error –
improve when we consider not only the distribution of datasets in regression problems
but also the continuous nature of the outputs from regression problems? (Relates to Issue
1)

Research Question 5 (RQ5): What evaluation measures can be used to assess the
quality of an explanation beyond the error? (Relates to Issue 4)

Research Question 6 (RQ6): Can we create an intermediate level of explanations that
bridges the gap between global and local explanations in regression models? (Relates to
Issue 2)

1.3 Publications

This thesis has resulted in the following publications so far:

• R. Miranda Filho, A. M. Lacerda and G. L. Pappa, Explaining Symbolic Regression
Predictions, 2020 IEEE Congress on Evolutionary Computation (CEC), 2020, pp.
1-8, doi: 10.1109/CEC48606.2020.9185683.

• R. Miranda Filho, A. M. Lacerda, and G. L. Pappa. 2023. Explainable Regression
Via Prototypes. ACM Trans. Evol. Learn. Optim. 2, 4, Article 14 (December
2022), 26 pages. https://doi.org/10.1145/3576903.

During the doctoral program, we also collaborated with other professors and stu-
dents, generating the following publications related to the field of Machine Learning.

• Pedro V. Brum, Matheus C. Teixeira, Renato Miranda, Renato Vimieiro, Wagner
Meira Jr, and Gisele L. Pappa. 2020. A Characterization of Portuguese Tweets
Regarding the Covid-19 Pandemic. In Anais do VIII Symposium on Knowledge
Discovery, Mining and Learning, outubro 20, 2020, Evento Online, Brasil. SBC,
Porto Alegre, Brasil, 177-184. DOI: https://doi.org/10.5753/kdmile.2020.11974.
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In addition, we also contribute to the elaboration of the platform LEMONADE
(Live Exploration and Mining Of a Non-trivial Amount of Data from Everywhere) docu-
mentation.

Another paper was submitted and is currently under review:

• R. Miranda Filho, G. S. I. Aldeia, F. O. França and G. L. Pappa, Understanding ex-
planations in regression: What can state-of-the-art explanatory methods say about
a model?. Machine Learning. 2023.

Finally, two other papers are completed and ready for submission. The first one is
about our proposal to improve feature-based explanation (DELA), and the other is about
our proposal for a hybrid multi-level explanation (HuMiE).

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 presents the funda-
mental concepts and related works on methods for explaining regression models. Chapter
3 presents ELA, a method that we proposed for explanation feature-based and that par-
tially answers questions RQ1, RQ2 and RQ3. Next, Chapter 4, studies improvements that
can be made in explanation methods to gain a deeper understanding of RQ3 and provide
a direct response to RQ4. Additionally, we introduce the second version of the feature-
based explanation method (DELA). Chapter 5 presents a third method, M-PEERs, that
follows an explanation approach prototype-based, which directly address questions RQ5
and RQ6. Chapter 6 presents a fourth method, HuMiE, which provides a hybrid explana-
tion multilevel, composed of feature-based elements and prototype-based elements, which
directly address questions RQ1 and RQ6. Finally, Chapter 7 draws conclusions and points
out possibilities for future work.
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Chapter 2

Related Work

The use of machine learning models is already common in our daily lives. Several tasks are
performed with models produced by these techniques including, for example, predicting
the credit score for an individual, selecting job interview candidates or recommending
movies. In this context, understanding the results provided by machine learning models
has become a very relevant problem in the literature, specially after many cases pointed
out to the danger associated with automatic decisions made by models [88, 49, 18, 120].

Machine learning models are usually divided into two broad categories: intrinsi-
cally interpretable and black-box models. Intrinsically interpretable models (or white-box
models) are those based on simple structures — including linear regression, decision trees,
decision rules, logistic regression, or kmedoids — that humans can understand. Note that
even models considered interpretable can have internal behaviors extremely difficult to
understand. Some examples of how difficult the human understanding of these models
can be: complex mathematical expressions with many variables (describing the different
features of the problem), very deep decision trees or with many branches, extensive and
complex rules, and a large amount of considered instances relevant.

In contrast, black-box models work based on complex internal mechanisms mostly
difficult for humans to understand. They include models such as artificial neural networks,
support vector machines, and ensembles of different kinds [75].

Black-box models often generate the best results in terms of accuracy for classifi-
cation and regression problems [49]. However, in many situations, the need to understand
how decisions have been made by a model — to convince a specialist to trust the model
or to comply with current regulations to explain algorithm decisions [64] — makes these
models not the most appropriate. To be able to better understand decisions made by
black-box models, explanation methods were proposed.

Most explanation methods are built after generating the black-box model and
produce an auxiliary tool to help humans understand the outputs of the original black-box
model. While there has been extensive literature on explanation methods for classification,
there is still a lack of studies on how these methods might help in regression tasks [73]. For
many, there are still difficulties in understanding why we even need to explain regression
models.
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Regression analysis methods aim to model the associations between a set of vari-
ables and an observed outcome. They can be used for (i) prediction — when, given the
values of the predictions, we want to interpolate or extrapolate from the observations to
estimate the outcome, (ii) to find associations between the independent variables and the
outcome and how strong these associations are, or (iii) to find causal relations — given
that the independent variables cause the outcome, one can check how much change a
variable causes to the outcome given a unitary change.

Nevertheless, a regression model should not only make predictions. It may also be
desirable that the model informs us about the shape and strength of these associations.
Because of that, linear regression and the generalized linear model are often the choices
of practitioners to make this type of analysis. Their main advantage is that they provide
a straightforward value to the extent of the association strength of a specific variable.

However, non-linear models are required in many scenarios to capture genuine as-
sociations between variables and outcomes. In this case, understanding these associations
and their strength depends on understanding a complex model, in which explanation
methods become crucial in prediction tasks.

There are many questions we might want to be able to answer regarding regression
models, such as: What does the generated prediction mean? What motivated a particular
prediction? Is there any causal relationship? Can I trust the result? How can I improve
the model? Several approaches have been proposed in the literature to answer these
questions [88, 49, 18].

The field of eXplanainable Artificial Intelligence (xAI) has skyrocketed in the last
few years, with hundreds of methods proposed to explain a black-box model. Several
strategies were proposed, some of which are highly cited – such as LIME [106] and SHAP
[76], and many recent works performed literature reviews of the field [79, 49, 16, 12, 3, 18].
There are also many attempts to provide useful measures to quantify the performance of
explanatory methods [98, 83] and extensive benchmarks to evaluate which explanatory
method has the best overall performance [9, 56, 119]. Some papers criticize the direction
the field is going, pointing out pitfalls and challenges in explanation methods. [109, 40, 6].

2.1 Explaining regression models

Before going into details on how to explain complex regression models, let us first
define the problem. Given a finite set of n input-output pairs representing the training
instances T = {(xi, yi)}ni=1 — with each pair (x, y) ∈ Rd ×R and xi = {xi,1, xi,2, . . . , xi,d}
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Figure 2.1: Characteristics of methods for explaining regression problems. Methods differ
in three aspects: the explanation type (whether it is intrinsic to the model or needs a
post-hoc method), scope (if the whole model is explained at once or the model is explained
for each prediction), and approach (there are different ways of providing explanations).

 Intrinsic

 Model-dependent

Post-hoc Explanation

Feature relevance

 Model-agnostic

Global explanations Local explanations

Explanation by ExamplesExplanation by Simplification

Visual explanations

Explanation scope

Explanation approach
Counterfactual

Explanation type

Source: created by the author.

— we define X = [x1,x2, . . . ,xn]
T and y = [y1, y2, . . . , yn]

T as the input matrix n × d,
and the n-element output column vector, respectively. We then formulate the regression
problem as learning a function f̂ : Rd → R such that f̂(xi) = yi + ϵi,∀xi ∈ X ,∀yi ∈ y,
where ϵi is the measurement error of the i-th data point.

Learning a regression model can be formalized as an optimization problem [16, 79],
which we define as:

f̂ = argmin
f∈H

1

n

n∑
i=1

L(f(xi), yi), (2.1)

where f̂ is the best model found, H is the set of models (hypotheses) in the search space,
and L(·, ·) is a cost function to evaluate the error between the expected target value yi and
the predicted value generated by the model according to the values of the independent
features xi

1.
The final model f̂ , considered the best, can have different levels of complexity and

make it possible – or not – for a human to understand the mechanisms that lead to the
prediction of a certain output. This is when explanation methods become relevant.

At this point, it is important to mention that, following the definitions presented in
[102, 62], we make a clear distinction between intrinsically interpretable models and
explanation methods (those concerned with understanding the behavior of black-box
models). Some authors use the terms interpretability and explainability interchangeably
[88], but that is not the case here.

1The word feature is widely used in classification, whereas variable or independent variable is more
comon in regression. We use the terms feature and variable interchangeably to refer to the different
attributes of a dataset, being the latter preferred in the classical regression literature.
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Fig. 2.1 illustrates three characteristics of explanation methods, starting from this
distinction between intrinsically interpretable models and post-hoc explanation methods.
Post-hoc explanation methods are built after the original black-box model and produce
an auxiliary tool to help humans understand the outputs of the original black-box model.
Concerning explanation methods, they can be model-dependent or model-agnostic, and
can present explanations in different scopes – local or global.

Our primary interest here is in post-hoc explanation methods. Still, before going
into detail on them, it is essential to say that even models intrinsically interpretable can
have internal behaviors challenging for a human to understand. To give a few examples:
consider complex mathematical expressions with many features, very deep decision trees
or with many branches, extensive and complex rules, and a large number of instances
considered relevant. Even simple structures become very difficult to interpret in the
abovementioned cases and may require post-hoc explanations [53, 77].

Post-hoc explanation methods can be subdivided into two contexts: model-dependent
and model-agnostic. Model-dependent explanation methods are tailored to the learning
models they want to explain. Examples include explainability for Deep Neural Net-
works [38, 71, 113, 17], Support Vector Machines [48, 80, 59, 39], Bayesian networks [63],
and Naive Bayes [90].

Model-agnostic methods, on the other hand, provide explanations regardless of the
type of the original black-box model created [106, 36, 7, 48, 62, 102, 68, 51]. They include
SHAP [76] and LIME [106], whose main approach is to locally replace a complex model
with a linear model that is simpler to extract explanations from.

Regarding the scope of the explanation, methods can provide global or local ex-
planations. While global explanations focus on understanding the general behavior of a
model [88, 31], local explanations are usually interested in understanding the behavior
of the model in a neighborhood close to an instance of specific interest [88, 31]. It is
interesting to note that the method proposed in [102] denominates itself as intermediate,
as its approach to understanding the black-box model works in a multilevel way, ranging
from a global view to a local one.

Finally, there are many different approaches for generating post-hoc explanations,
which can use visual explanation [3, 11, 36], feature importance [76, 106, 36, 21, 10],
representative prototypes [51], and counterfactual explanation (an input that contradicts
a prototype) [89] to reduce the lack of transparency of the model. Next, we first make a
brief review of intrinsically interpretable models, followed by a more in-depth description
of post-hoc explanation methods.
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2.1.1 Intrinsically interpretable models

As previously stated, one of the goals of regression analysis is to understand a sys-
tem of interest. In some situations, the interpretation of the model can be more important
than the inference. Consequently, many methods were developed to find associations or
the causal relation of the variables with the target feature. These methods generate inher-
ently interpretable models (white-box) and provide a deeper understanding of the studied
phenomena. In addition, some works that suggest that, in some scenarios, interpretable
models should always be the choice [109, 55]. The main argument against explanation
methods is that, since black-box models tend to model functions of high dimensionality
and complexity, they may end up requiring explanation methods that are too complex to
capture their behavior.

Following, we briefly review two types of white-box models and how to interpret
their predictions, namely Linear Models and Tree-based Models.

2.1.1.1 Linear Models

A linear model describes the association between the d variables x and the output
as a linear relationship of the form:

f̂(x) = f(x, β) = β0 +
d∑

i=1

βixi, (2.2)

where β0 is the intercept, βi is the i-th coefficient of the independent variable xi, and ϵ

represents an unobserved random variable. This kind of regression model is parametric
since the regression function is defined by a parameter vector β, and assumes the data
has properties such as normality, homoscedasticity, and independence.

The coefficient of a linear model describes the association of the feature with the
output, so when we observe a unitary change to xi we expect to observe a change of βi

units in the output2. Knowing these associations can lead to a more thorough investigation
of the studied systems. For the sake of the example, suppose we are minimizing the fuel
consumption of a car, and our linear model says that a unitary change in the weight of
the vehicle increases the consumption by 3 units. In that case, we can create car design
simulations by replacing certain vehicle parts made of different materials and choosing
the one with the most negligible weight while keeping the safety up to a threshold.

2Recall that association does not imply causality.
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Figure 2.2: Example of a Decision Tree for regression. Inner nodes are predicates in-
volving one input feature, a comparison operator, and a constant value. The leaf nodes
contain information about the data instances corresponding to this path of the tree. This
information can be a single prediction, an interval of values, or the distribution of values.

x1 ≤ 10.1

x3 ≤ −0.3

x1 ≤ 2.1

y = [−0.1 . . . 1.3] y = [2.5 . . . 7.2]

y = [1 . . . 3]

x6 ≤ 3.2

y = [−1.5 . . .− 0.4] y = [8.5 . . . 9.7]

Source: created by the author.

Assuming that ϵ follows a normal distribution, we can calculate a confidence in-
terval (CI) for each coefficient, which should be observed when looking at associations
between features and the output. If the CI of a feature is strictly positive or negative, we
have some insurance that the observed association will increase or decrease the output.
On the other hand, if the interval contains a zero, it means we are uncertain of the effect
of this feature, and, in some situations, we may choose to discard the features or follow
up with a further investigation.

2.1.1.2 Tree-based Models

Tree-based models search for a binary tree structure describing a non-linear se-
quence of predicates that leads to a prediction. Each internal node of the tree is a
predicate of the input features that returns either True or False. The leaves contain the
prediction output for the target variable, being a numerical value for the regression task,
or a categorical value for the classification task.

The main idea of a tree model is that each branch splits the decision space into two
regions, maximizing the purity of the training data. For classification, purity means that
the majority of the data instances in that region belong to the same class. For regression,
it means that they differ by a small value ϵ.

Fig. 2.2 illustrates a decision tree for regression. The prediction starts at the root of
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the tree, and, for every predicate that evaluates to False, it walks left. For those evaluated
to True, it walks right. Whenever it reaches a leaf node, it applies an aggregation function
to the values of the training instances following that path (e.g., mean, median) to obtain
the prediction.

Each path from the root to a leaf node can be seen as a conjunction of a list of
predicates that are easy to understand. To illustrate, a prediction generated by going
left then right in Fig. 2.2 means that x1 > 10.1 and x3 ≤ −0.3. This gives us a discrete
explanation of a prediction. Looking at this model, we can say that a large value of x1

is associated with a prediction ranging between −0.1 and 7.2, and a smaller value of x1

can either mean a prediction smaller within −1.5 and −0.4 prediction if x6 is large or a
high-valuated prediction if x6 is smaller.

From this explanation, we can see that this type of model is capable of capturing
the interaction of the features and the non-linearity of the generating process. We can
also calculate the feature importance of this model as the sum of the importance of nodes
involving that feature. The importance of a node is the product of how much it improves
the optimization criteria by the probability of reaching that node.

Despite the limitations of this model imposed by how space divisions are made,
some tree-based models are among the most accurate when applied together with bagging
(e.g., Random Forest) and boosting (e.g., Gradient Tree Boosting) techniques. However,
tree ensembles have reduced interpretability when compared to stand-alone tree models.

2.1.2 Gray-box models

Gray-box models are in-between the white-box and black-box spectrum, being
partially interpretable. A gray-box model is one where symbols are partially interpretable
[118], or uses a mixture of black-box and white-box models [75], or makes it possible to
partially dazzle their internal design, structure and implementation [3].

One example of gray-models in the context of regression analysis is Symbolic Re-
gression (SR) [95, 70]. This procedure returns a mathematical expression that can be
further analyzed to obtain insights into the prediction process.

SR has the potential to find the governing equation of a dataset if the equation
can be expressed through the mathematical elements used by SR in the search procedure.
However, SR is often seen as a challenging task and demands a larger sample set than
traditional regression techniques [60] since it is non-parametric and optimizes both the
expression and its free-parameters together.

As SR returns an analytic model, it is possible to apply analysis related to the
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effects and associations of a feature similar to what we have with linear regression. For
instance, we can study the association of a variable and the output with the partial deriva-
tives of the model. The partial derivatives return a function describing the observable
change of the output when slightly changing a certain feature. In linear models, this
change is constant, but, in non-linear models, it can vary depending on the region of
interest.

2.1.3 Post-hoc explanation methods

In the scope of post-hoc methods of explanation we have several types of explana-
tion recurrently found in the literature, including those reported in Fig. 2.1: i) explanation
by simplification; ii) visual explanations; iii) feature relevance; iv) explanation by exam-
ples; and v) counterfactual.

Approaches based on explanation by simplification modify the structure of the re-
sulting model to make it easier to understand. Simplifications can be elaborated in differ-
ent ways. One possibility is to perform mathematical substitutions generating equivalent
algebraic expressions, generally shorter and with more trivial operands to understand.
The model must be constructed by composing a mathematical expression. Another possi-
bility is to replace the original model with substitute models that try to approximate the
original and more complex model in a given region of the solution space. For instance, a
white-box model, such as linear regression, can be used to generate a local explanation for
specific outputs of the original model. This second approach is used internally in various
explanation methods such as LIME (Local Interpretable Model-Agnostic Explanations)
[106]. GPX (Genetic Programming Explainer) [35] and Symbolic Meta-modeling [7] use
an evolutionary algorithm to produce a mathematical expression capable of explaining
the region of the sample.

Concerning visual explanations, we find methods that use graphical representa-
tions to show how the different features that describe the problems can interact or even
contribute to modifying the predicted target output. Examples of visual explanations
include the Individual Conditional Expectation (ICE) [3] and Partial Dependence Plot
(PDP) [121] explanation methods, which provide a global visual explanation of the model
of interest. ICE shows the dependence between a specific input feature and the output,
while PDP considers the dependence of the effect resource average and the output. Ad-
ditionally to PDP, Accumulated Local Effects (ALE) plots explains visually the model,
which is more appropriate to understand if there is a correlation between the different
features of the model. For that, ALE calculates the difference between the outputs along
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a reduced interval for a feature of interest.
Other visual explanation methods proposed in the literature are dedicated to specif-

ically elucidating models that work with images, e.g., LIMEcraft [57] and XRAI [66], and
work by identifying the specific regions of the image that most influence a given model
prediction.

Explanations based on feature relevance, in turn, are probably the most explored
type of explanations explored in the literature with several representatives, among them:
SHAP (SHapley Additive exPlanations) [76], LIME, GPX, SAGE (Shapley Additive
Global importancE) [21], Partial Effects [10], and Integrated Gradients [114].

These methods follow three main approaches. The first tries to approximate the
black-box with an interpretable model and then uses the interpretable model as a proxy
to explain the black-box model. The second removes the features from the model, then
measures how much the behavior of the model changes in the absence of the removed
features. In practice, to remove a feature, one would need to modify the inner structure
of the black-box model. As this is not possible, these methods fix it to specific values
or permute the feature to make it uncorrelated, behaving as a noise feature. The third
approach uses the information of the gradient or sensitivity to small changes on the input
— calculated by approximations — to determine how the model prediction varies with
input variations.

Concerning methods following the first approach, which generates local approxi-
mations of the black-box model, LIME is a pioneer and probably one of the most popu-
lar. It explains an observation locally by generating a linear model (considered human-
interpretable) using random instances generated in the neighborhood of the instance of
interest. The linear model is then used to portray the importance of features based on
the coefficients of the model.

Extrapolating the limit of explaining the regression models only by means of linear
functions, [7] introduce the Symbolic Metamodeling approach. In this approach, in order
to create a complete mathematical description of the model, a replacement for the black-
box is created using a symbolic regression with familiar mathematical functions combined
by elementary arithmetic operations such as addition and multiplication. For datasets
with a large number of features, this method may be infeasible, as it would make it
considerably harder to understand the equations provided and the possible interactions
between the features. In addition, the space of potentially used mathematical functions
must be carefully evaluated for each type of user to avoid losing the desired explanatory
power and simply replacing a black-box model with another.

Considering that the synthetic generation of neighbors is an important step in sev-
eral methods of explanation, [62] proposes a new approach based on the LID measure
(Local Intrinsic Dimensionality) capable of measuring the quality of the generated neigh-
bors. The idea behind LID is to represent the distribution of data from the vicinity of
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an instance of interest and, therefore, a neighborhood with an average LID close to the
LID of a test instance would be ideal. This method was named LEAP (Local embedding
aided perturbation), and it works by initially adjusting the local subspace around a given
instance using the LID of the test instance as the destination dimensionality, and then
generating neighbors at the local embedding and projecting them back into the original
space. The proposed technique can be used as a modular procedure in any existing local
explanation method and in experiments performed it has shown to be able to generate
more realistic neighborhoods than the methods previously described in the literature. To
estimate the LID value, the work uses the maximum likelihood estimate and the Euclidean
distance. As we know, especially for high dimensional data, the Euclidean distance can
lose significance. In addition, the work does not use the value of the model output to
generate the neighborhood, instead, the neighborhood ends up being based on the initial
training dataset and not on the black box model that is the target of explainability.

[122] argues that the most important aspects of perturbation-based local explana-
tion methods for finding the nearest neighbors of an instance of interest are stability and
reproducibility. They consider that repeated executions of the algorithm under the same
conditions should ideally produce the same results. Therefore, a hypothesis testing frame-
work based on the central limit theorem, called S-LIME, is presented to automatically
determine the number of disturbance samples that are needed to guarantee the stability
of the resulting explanation.

SHAP is another popular method following the second category (feature removal)
of feature importance methods. It is based on a concept from coalition game theory: the
importance of a feature d is given by evaluating, for each possible subset of features in the
problem, the changes in the model’s performance when d is present in or absent from a
given subset [76]. Each subset is considered because the impact of a feature may depend
on its co-features. Since a feature cannot be removed, its absence is simulated by setting
it to a reference value.

The method SAGE also uses game theory and the Shapley value to understand
interactions between features, showing how each feature contributes to the model’s ob-
served loss. As argued by SAGE authors in [21], SHAP global explanations were applied
only heuristically, observing output changes instead of loss decrease.

Unlike the methods previously presented, [101] proposes a multilevel explanation
based on a decision tree set (explaining different degrees of cohesion depending on the
level of the tree) aggregated with independent local explanability on the leaves (similar
to LIME). The approach, called MAME (Model Agnostic Multilevel Explanation), pro-
vides both global, intermediate and local explanations. As criticisms, we have once again
the use of only Euclidean distance in the generation of the explanations. Additionally,
the quantitative testing was limited to only one regression dataset, which contained 392
instances and 7 attributes. In addition, for the specific case of regression, the obtained
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result was very similar to that of the main baseline, Two Step (which is a hierarchical
convex clustering [19, 117] where a median explanation is computed for each cluster), and
outperformed SP-LIME. Observations like these make the work carried out less conclusive
for use in explaining regression problems.

Partial Effects, in turn, is an example of the third approach followed by feature
importance explanation methods and explores the partial derivatives of the expected
values for the features concerning the regressor. It quantifies the amount of change that
a modification in a feature value would cause on the output, if the other features were
fixed at a representative value. It relates to PDP since the Partial Effects represent the
derivatives of the Partial Dependences.

In this same category, we have the Integrated Gradients method, which calculates
the gradient of the model’s prediction output to its input features and thereby computes
its importance.

In the field of explanations by examples (or prototypes), relevant instances are
crafted or chosen from training data to explain the whole model or local predictions. This
type of explanation is similar to the human way of interpreting problems by analogy. As
pointed out in the work of [88], any clustering algorithm that returns instance points as
cluster centers would qualify to select prototypes. Similarly, prototypes could be found
using hub points. Hub points are training instances that appear unusually often among
the k nearest neighbors of other instances [74]. Hub points could be used as prototypes
since the frequency in the list of neighbors of many points is an indicative of similarity
with many examples, which is a desirable property for prototypes. In the case of instance
selection for classification problems, a common approach is to maintain/identify the class
edge instances [94, 111]. There are also few works on instances selection for regression
problems [111, 69, 126, 86]. A method that manages to obtain good results in this
task and that we can easily adapted to our problem is the traditional single objective
Genetic Algorithm (GA), where each individual will be composed of k prototypes and the
evolutionary process will take place in order to minimize the error obtained.

In work [105] SP-LIME (Submodular Pick - LIME) was presented, a method that
provides a global explanation of the evaluated model. Therefore, the goal is to make a
non-redundant selection of instances in relation to the features of the problem. As negative
points of this method are the limitation of taking into account only the diverse features to
select the explanatory instances, disregarding characteristics such as the capacity of the
instances to reconstruct the model, common approach to analyze works whose purpose
is to select instances. The presented baseline can also be considered fragile since the
implementation is compared only with a random selection of instances, known approaches
in other areas such as clustering could be compared to the presented proposal.

Among methods for instance selection in regression, the authors in [14] propose
a method based on the set coverage problem, which has as a significant advantage the
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automatic choice of the appropriate number of prototypes. [68] propose MMD-critic, a
method based on Maximum Mean Discrepancy (MMD), a measure that captures data
distribution. Based on this metric, MMD-critic selects prototypes and criticism (e.g.,
outliers) and compares the training data distribution and the distribution of the candi-
date prototypes by MMD. The method selects the set of prototypes that minimize the
discrepancy between these two distributions.

MMD-critic is extended in [51], generating ProtoDash. ProtoDash returns, to-
gether with the generated prototypes, a set of non-negative weights indicating their im-
portance. It is not directly intuitive for ProtoDash to explain the regression model, but
the data. Thus, the authors show that both in problems of explanability in regression and
in classification ProtoDash is capable of achieving results equal to or better than other
related works in the literature. Despite explicitly dealing with a regression problem, we
see some limitations in this work: i) a single database in the context of a regression prob-
lem was evaluated: 80 million customers of a large retailer whose objective is to predict
total spending per customer; ii) only RMSE was considered to quantitatively evaluate the
method compared to competitors; iii) in the quantitative study by the RMSE metrics, a
set of instances was selected that would hardly help a human to understand the problem:
1.5 million (after this value, the improvement in the objective became incremental). In
the qualitative study, experts were shown a much smaller subset, 100 instances (a value
that we still consider high to be analyzed by a human being), which reinforces our intu-
ition that the metrics RMSE is not the most adequate to evaluate explanations; and iv)
no more formal studies were carried out capable of guaranteeing the statistical difference
between the proposed method and the analyzed competitors.

In another context, [52] proposes a model that uses hierarchically organized proto-
types to classify images, making it possible to find different explanations for a prediction
at each level of the taxonomy. [85], in turn, use prototypes allied to Recurrent Neural
Networks (RNNs) to provide interpretability for classification in sequential data. They
highlight the importance of prototypes being simple, sparse, and diverse.

In counterfactual explanations the objective is to find an input that contradicts
an instance of interest and use this instance to circumvent the lack of transparency of
the model. An example of a method in this category is DiCE (Diverse Counterfactual
Explanations) [89]. This type of explanation can be of great value in many contexts, i.e.,
when we want to identify unfair models or those that considerably modify the output
when looking at some sensitive characteristic that should be protected, such as gender or
race [45].

Another method of this approach is LORE (LOcal Rule-based Explanations), intro-
duced in [48], provides explanations based on decision and counterfactual rules, allowing
the user to identify the minimum modification required to assign a different class. Al-
though originally designed for non-regression problems, we believe LORE could be easily
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adapted. The method uses a genetic algorithm to choose the local neighborhood based
on similarities between instances in relation to the features and the desired class (for
two-class problems). To extend the method to regression problems, neighbors could be
selected based on not only feature distance but also model output for each instance, and
the binary decision tree could be replaced with an appropriate explainer for regression.

Finally, several other works dedicated exclusively to classification problems could
be used for regression if we can map the output classes to successive integers, regardless
of the loss of precision resulting by this choice. Some works in this line are: i) Anchors
[108]: find anchor rules, which are usually easy to interpret and capture non-linear rela-
tionships. They are sufficient rules where (almost always) changes in other non-present
resource values do not affect the predict; ii) LACE (Local Agnostic attribute Contribution
Explanation) [97]: method also based on rules that assesses the effect of attributes and
values, either individually or together, on the output assigned to a given test instance.
Such rules are learned locally in the neighbors of the test instance, with the use of an asso-
ciative classifier, and the relevant characteristics found for the classification are evaluated
in subsets without the need to use brute force on all initially possible combinations, which
would be unfeasible in real applications. The neighborhood is considered as the k training
elements closest to the test instance (a specific method to determine the k value has not
been proposed); and iii) CEC (Constraints based Explanation for Classifications) [27]:
looking for the least semantically valid modification to change the class, for this purpose
this method requires access to the complete model of the classifier and clear definitions
of the restrictions of the problem domain in order to carry out local perturbations.

Table 2.1 presents a summary of the methods discussed in this section.

2.2 Evaluation of explanation methods

Evaluating explanations is not a simple task. [31] discusses how the explanations
can be evaluated. Three possibilities are listed:

1. Application level evaluation (real task): domain experts participate in the evalua-
tion;

2. Human level evaluation (simple task): laymen are used to test more general functions
of the quality of an explanation; and

3. Function level evaluation (proxy task): it does not require humans and uses previous
knowledge. In this case, it is assumed that someone has tested it with humans
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Table 2.1: Summary of explanation methods for regression. Methods indicated with an *
have their explanations evaluated in the in the Appendix A of this work.

Method Type Scope Approach

Linear model (*) intrinsic global feature relevance
Decision tree (*) intrinsic global visual
SR GP-NLS (*) intrinsic/post-hoc global feature relevance
SHAP (*) post-hoc local feature relevance
LIME (*) post-hoc local feature relevance
SAGE (*) post-hoc global feature relevance
Partial Effects (*) post-hoc local/global feature relevance
Integrated Gradients post-hoc local feature relevance
MAME post-hoc intermediary feature relevance
GPX post-hoc local feature relevance and visual
Symbolic Metamodeling post-hoc local/global feature relevance and visual
ICE/PDP (*) post-hoc global visual
ALE post-hoc global visual
SP-LIME post-hoc global explanation by examples
MMD-critic post-hoc global explanation by examples
ProtoDash (*) post-hoc global explanation by examples
DiCE (*) post-hoc local counterfactual
LORE post-hoc local counterfactual

before. For example, it is known that humans can interpret the simple results of
linear regression or decision rules, so this knowledge is used during evaluation.

In the specific case of works that deal with explanations of regression problems,
we can observe that there is no agreement on how to evaluate the quality of the results
obtained, as shown in Table 2.2. Domain experts contributed to the evaluation for MAME
and ProtoDash. This is expected, as this type of evaluation requires a greater amount
of time and resources. For MAME, the evaluation involved experts from the oil and
gas industry, as they used a real world dataset regarding industrial pump failure. In
Protodash, two datasets were used in this evaluation context. The first refers to retail
electronic commerce, and the task was to predict customer spending and possible loyalty.
The second dataset refers to a set of questionnaires produced by the US Department of
Health.

In general, lay users contributed to the evaluations of the LIME, SP-LIME, ProS-
eNet and MAME methods. In LIME and SP-LIME, users were used to select the best
explanation model presented after the insertion of noise in the datasets. In addition,
LIME also assessed whether users can gain new insights into the model when faced with
the explanation provided and in SP-LIME assessed the user’s ability to improve the model,
for example, indicating which features could be removed from the set of training. In Pros-
eNet, the Amazon Mechanical Turk was used to assess how comprehensive and accurate
the explanations of the input strings were in a sentiment classification dataset. MAME
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Table 2.2: Mechanisms used to evaluate the quality of results obtained by regression
models.

Reference Evaluation metrics

Feature-based explanations

LIME [107]

Average of recovered features compared with interpretable algorithms
Average F1 of trustworthiness
Adding Noisy Data
Users on Amazon Mechanical Turk

SP-LIME [107] Non-specialist humans

Symb. Met. [7]
R2
Median of selected features
Verification of most important features in a real dataset

LORE [48]

Average accuracy of rules and coverage
Jaccard coefficient
Average hit rate
Predict fidelity
Comparison of density and location of the neighborhood
Qualitative study

LEAP [62] Cosine similarity
F1

S-LIME [122] Jaccard index

MAME [101]

Generalized Fidelity metric
Feature importance rank correlation
Non-specialist humans
Domain experts

Examples-based explanations

PS [14] Classification error

MMD-critic [68] Classification error

ProtoDash [51]
Accuracy
RMSE
Domain experts

HPnet [52] Accuracy

ProSeNet [85] Accuracy
User on Amazon Mechanical Turk

was also evaluated by non-specialists using a database in the context of public loans,
where evaluators decided on the approval or rejection of a person’s loan application based
on explanations about their financial characteristics.

Finally, other types of evaluations were diversified and mostly based on quantitative
analysis metrics. These included the accuracy or error of the explanatory model (PS,
MMD-critic, ProtoDash, HPnet, ProSeNet, and LORE), the RMSE when the explanations
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were used to reconstruct a given model (ProtoDash), the cosine similarity obtained in
the explanation (LEAP), the R2 of the function discovered with the true function in
synthetic bases (Symbolic Metamodeling), the fraction of features that were recovered in
the explanation when compared with inherently interpretable algorithms (LIME), and the
Jaccard index to measure the similarity of the top 5 selected features in different executions
to explain a specific instance (S-LIME) to measure the stability of explanations.

2.3 Contracting the output obtained by different

explanation methods

In Appendix A, we selected some of the most popular methods to contrasts their
results in terms of prediction error and explanations. For that, we will use one synthetic
and one real-world dataset.

In this way, we show that often white-box regression models (e.g., linear or decision
trees) or gray-box models (considered partially interpretable) can provide an appropriate
intrinsic interpretation to the model. By understanding and evaluating different explana-
tion methods, we point out which methods are complementary and those that superpose
in terms of explanations. Based on that, we indicate a set of methods that, when used
together, can give the user the best possible explanation using different types of model
understanding.

Concerning methods that use features to provide explanations, our discussion
shows that SAGE (Shapley Additive Global importancE) [21] can show the importance
of each feature (around an average), and Partial Dependence Plots (PDP) [121] explains
the behavior of the model by varying the values of the features. Concerning changes in
instances, ProtoDash [51], in turn, shows which are the most representative instances of
the training set and uses them to explain new methods. DiCE (Diverse Counterfactual
Explanations) [89] shows how minimal changes in specific instances are capable of sig-
nificantly altering the output for a given value. On the other hand, we also observed
methods that provide similar explanations, whose concomitant use will not bring much
new information to the user, e.g., PDP together with ALE (Accumulated Local Effects)
[11].
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2.4 Summary

This chapter we illustrated and explored different explanation techniques for re-
gression models, from inherently interpretable models to model-agnostic explainers.

Regarding the interpretable models, linear regression provides a simple and clear
explanation for the chosen datasets. Even though it is easy to understand the behavior
of the model, it does not reflect the reality of the data. The same can be said about the
decision trees, which even though can handle non-linearity, the discretization of the model
may create a rough explanation of the system’s behavior.

With Symbolic Regression, we have an analytical model that the practitioner can
manually inspect. Since it returns a non-linear model, it requires some support tools to
fully understand its behavior. Combined with Partial Effects, this model can provide a
pointwise association analysis of every variable to the target.

When we have a black box model we need explanation tools to extract useful
information from the generated model. A similar interpretation to the linear coefficients
and partial effect can be achieved using graphical explanations such as Partial Dependence
and Accumulated Local Effects plots.

Another form of explanation is those that revolve around a single data point,
called local explanation. In this situation, we can measure the local variance of a variable
using LIME, with an interpretation similar to a linear model. We can also measure the
contribution of each variable to the prediction when compared to a baseline data point
(usually the average prediction) with SHAP. Another possible global explanation is to find
representative points with ProtoDash, such that they encompass a different region of the
prediction space. Those points can be studied individually to understand the behavior of
the model in each defined region.

Finally, we can search for the slight change in the data point that makes a change
in the prediction such that it reaches the desired target. This is called counterfactual
explanation, represented by DiCE in this work, and it can give an insight of the possible
changes we can make to a single point to reach a desired goal.

As we can see from all these possible explanations, we can extract different infor-
mation from our models that can help us gather useful information from the system we
are studying or the behavior of the model itself. It is important that, when analyzing the
prediction model, the practitioner takes time to understand the output of each explana-
tion method to go beyond the feature importance analysis. By doing so, they can find
important questions and answers about the studied dataset.
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Chapter 3

ELA: A feature-based explanation
method for regression

In this chapter we present our first contribution for explanation methods based on features.
The proposed approach, named Explanation by Local Approximation (ELA), is simple,
effective and model agnostic (i.e., it can be applied to any regression model): it finds
the nearest neighbors of the point we want to explain and performs a linear regression
using this subset of points. This approach uses the coefficients of the linear regression
to generate a local explanation to the model. We used a linear regression in this process
because it is a well-known and inherently interpretable method. Moreover, this algorithm
allows for a clear understanding of how each feature contributes to the local output of the
model, making it an ideal choice for our purposes.

It is important to note that while the ELA method is model-agnostic, it is desir-
able to have continuous-valued features for the problem being analyzed. This is because
local explanations are obtained using linear models, which require continuous features to
generate meaningful explanations. If categorical or discrete features are present, they can
be transformed into continuous features through pre-processing techniques. However, this
transformation should be done carefully, as it may affect the performance and accuracy of
the model. Therefore, when possible, it is preferable to use continuous features in order
to obtain more reliable and accurate local explanations.

The experiments carried out in this step used as a regression model to be explained,
constructed by a Genetic Programming (GP) algorithm. GP is a bio-inspired method,
where a population of solutions representing models is evolved for a number of generations.
The models are evaluated according to a fitness function, and probabilistic selected to
undergo mutation and crossover operators. One of the main advantages of models evolved
by GPs is the fact that the evolved models can be interpreted by humans [32, 81]. However,
in the same way as other supervised models that are considered interpretable – including
decision trees, decision rules or linear regression – the more complex the model becomes,
the less interpretable it is.

It will be shown in our experimental study, when non-linear relationships are
present in the data, even for synthetic datasets with two attributes (explainable vari-
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ables), as the maximum depth of the GP tree increases (potentially increasing the model
complexity) and the root mean square error (RMSE) decreases, the number of nodes in
the tree grows from an average of 5 nodes (maximum depth 2) to more than 65 nodes
(maximum depth 6), making the original model difficult for human understanding

We perform a quantitative analysis of the proposed approach in a set of 10 synthetic
benchmarks with known non-linear relations between the predictive and target variables.
We then present a qualitative analysis in a real-world dataset where we do not need
very specialized knowledge to interpret the resulting justifications, as evaluation of the
interpretability of the models is complicated and, for most datasets, require specialized
expertise.

Results show that the errors of the local approximations are similar to those of
the regression performed with all points. It also shows that simple visualizations can
provide insights to the users about the most relevant model attributes. Finally, we also
concatenate the results of many local interpretations into a single, global explanation,
which can also aid the process of understanding predictions.

After looking at these initial results, Chapter 4 presents DELA (Dynamic Expla-
nation by Local Approximation). In this case, we will study which distance measures are
most appropriate for each dataset. In addition, we will perform experiments considering a
variable neighborhood size instead of a fixed neighborhood. Finally, we will also improve
the calculation of the local feature importance.

The remainder of this chapter is organized as follows. Section 3.1 introduces the
proposed method, while Section 3.2 presents the quantitative and qualitative experiments.
Finally, Section 3.3 draws conclusions.

3.1 Method outline

This section describes ELA (Explanation by Local Approximation) in the context
of symbolic regression with GP, although ELA can be easily generalized to any other type
of regression method.

Let us assume we have a training set T = pi = {(xi, yi)}ni=1 and a test set T ′ =

pj = {(xj)}mj=1 — with xi ∈ Rd, yi ∈ R for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. ELA works
by generating a non-linear regression model (e.g., symbolic regression) for predicting the
value y′ of data points in T ′, and then performs a local approximation with a linear
regression method to generate explanations for the predictions generated by the first
model, as illustrated in Algorithm 1.

The algorithm receives as input the training and a test sets, T and T ′, and the



3.1. Method outline 46

Algorithm 1 Explanation by Local Approximation (ELA)
Require: T (train), T ′ (test), k (# of neighbors)
1: SR = Run GP(T )
2: for each p ∈ T ′ do
3: y′= SR(p)
4: NN = Find k nearest neighbours of p considering only attributes in SR
5: LR = Run linear regression(NN)
6: Compute importance of attributes in LR
7: Show local explanation for predicting y′

8: end for
9: Plot global explanation

value k of the number of neighbours to be considered in the local explanation. First, we
run the GP in the training set to find the function that describes in the T (line 1). Having
this function, we explain (or justify) its prediction for each test point considering a local
linear regression over a set of k neighbour points. Note that at this point we could use
any other regression algorithm that creates a model capable of making output predictions
on the instances.

Given a test point p, we first use the original GP model SR to find the predicted
value y′ (line 3). Each GP function is represented by a tree, generated respecting a
maximum tree depth. The GP functions are evaluated using the RMSE as the fitness
function. A tournament selection is used to select the individuals that undergo crossover
and mutation operators.

Next, we find the k neighbours of p (line 4 and Equation 3.1). We use a Euclidean
distance in this process, as shown in Equation 3.2.

NNp = argmin
pi

{dist(x, xi)} (3.1)

dist(x, xi) =

√√√√ d∑
a=1

wa(xa − xia)2 (3.2)

In this equation, d is the number of predictive attributes, and wa represents the
weight of the a-th attribute selected by the GP. If the attribute is present in the SR

function returned by the GP, its weight is set to 1, and the attribute is considered in the
calculation. Otherwise, the weight is set to 0.

Having the k nearest points of an examples p, we use a linear regression method to
find the function that best represents these k points (line 5). This linear equation is able to
provide a local explanation of the prediction given to p considering its neighbours. Being a
linear equation, the interpretability of LR is more straightforward than the interpretability
of the function returned by the GP. Of course there are exceptions, specially if the number
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of nodes of the GP tree is small. However, note that this method is recommended for
cases where the original function SR is difficult to be read and understood by a human.

Next, we analyze the coefficients of LR by calculating a measure of importance of
each attribute x to the final prediction (line 6). Importance is defined as the contribution
that each attribute exerts to the final value of the output of p, given by y′. As shown in
Equation 3.3, we look at the module of the importance of each attribute by multiplying
its coefficient by its value in p and normalizing it.

Importancexi
=

|coefficientxi
× xi| × 100∑d

a=1 |coefficientxa × xa|
(3.3)

This measure of importance, where the signal is ignored, is able to provide extra
information about the proportional contribution of each attribute during the regression
task, both from a local or a global. Recall that the user can also access the coefficients
found by the local linear regression directly, providing an additional way of explaining the
result obtained by the regressor.

In order to provide a visual interpretation of the result to the user, we use the
following procedure (line 7). We start by checking how different are the outputs of the
K training examples in NN from the test point of interest p. As they are neighbours, we
expect than to be similar. We consider that a difference higher than 10% of the maximum
range of the output values in T should be disregarded. For example, if the outputs y in
T are in the interval [1,10], a variation of 1 in the neighborhood is considered as the
threshold of similarity for visual explanations. This threshold is used to reduce the risk
of considering noisy data in the explanations, damaging the method. For the subset of
neighbours in NN within this defined threshold, we look at the variation of the values
of each attribute x in the local explanation. The process aforementioned is repeated for
each test set, providing a justification for each prediction.

Finally, the proposed method also presents an global explanation of the behavior
of the symbolic regression obtained when we have a large set of explanations for different
test points. In order to obtain that, all test points are discretized according to the output
variable in z equally spaced intervals. For each interval, the average importance of the
subset of input attributes x is calculated. The result is then plotted on a graph of stacked
areas, given insights of the importance of different attributes to the whole dataset (see
Figure 3.3).

Figure 3.1 illustrates the results of ELA using one of the synthetic datasets con-
sidered in the experimental analyzes reported in Section 3.2. The real function, shown in
black in the figure, is defined by Equation 3.4.

f(x) = 0.3x sin(2πx) (3.4)
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Figure 3.1: Example of the approximation performed by the ELA method (red line) for
the synthetic dataset keijzer-1 (black line).

Source: created by the author.

The test point p we want an explanation for is represented by the black diamond,
and the red line going over the black diamond was generated by ELA. The other functions
shown in the figure were generated by the GP using different maximum depths (a param-
eter that has a direct impact on model interpretability) and a simple linear regression
using the whole set of training points in T . Note that the line produced by ELA follows
the same direction of the function generated by the symbolic regression with depth 6, also
represented in red.

3.2 Experimental Analysis

This section presents an experimental analysis of the interpretability of the pro-
posed method. The symbolic regression method was implemented using the Python pack-
age Deap[37]. The method was also implemented in Python and is available for download1.

The results of the proposed method are compared to the original function found
by the GP and to a linear regression method run with no regularization, an L1 and an
L2 normalization [15]. These models were chosen as they are considered interpretable
regression methods, as the coefficients give us a notion of attribute importance.

Results are analyzed in three steps. First we perform an analysis of the different
methods using all training points, considering both RMSE and model complexity. Next,
we make a quantitative analysis of ELA using 10 synthetic datasets. Finally, we perform

1https://github.com/renatomir/ELA-WCCI2020
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Table 3.1: Dataset used in the experiments of the explanatory ELA method.

Dataset # Attributes # Train # Test Nature

keijzer-1 2 21 2001 Synthetic
keijzer-4 2 101 101 Synthetic
keijzer-7 2 100 991 Synthetic
vladislavleva-1 3 100 2025 Synthetic
vladislavleva-2 2 100 221 Synthetic
vladislavleva-3 3 600 5083 Synthetic
vladislavleva-4 6 1024 5000 Synthetic
vladislavleva-5 4 300 2700 Synthetic
vladislavleva-7 3 300 1000 Synthetic
vladislavleva-8 3 50 1089 Synthetic
wineRed 12 1279 320 Real

a qualitative case study considering a real-world dataset, namely the wineRed dataset.

3.2.1 Experimental Setup

We tested the proposed method in a set of 10 synthetic and one real-world dataset,
which will be later used in a qualitative case study. The datasets are described in Table 3.1,
which shows the total number of attributes (predictive and target (Attributes), number
of data points used in the training (Train) and test (Test) phases. All synthetic datasets
were originally presented in [67]. The real dataset is available at the UCI repository
[28, 20]. Note that we varied the size of the training set in order to observe its impact on
the model’s explanation.

The GP functions are defined by the binary operations of addition (+), subtraction
(-) and multiplication (x), in addition to the analytic quotient (AQ) [92], which has the
general properties of division but without discontinuity (see Equation 3.5). The terminals
are the predictive attributes of the datasets.

Aq(m,n) =
m√
1 + n2

(3.5)

After a preliminary parameter tuning, the GP was executed with an initial popula-
tion of 1,000 individuals evolved for 250 generations, using a tournament selection of size
7. The probabilities of crossover and mutation were defined as 0.8 and 0.2, respectively.
The depth limit of the trees was varied to show the differences in the number of nodes of
the solutions found and their impact in interpretability.
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Table 3.2: Mean and standard deviation of the RMSE obtained by regression models on
the training set.

Dataset Genetic Programming Linear Regression
Depth 2 Depth 3 Depth 6 LR L1 L2

keijzer-1 0.120 (0.000) 0.090 (0.002) 0.041 (0.012) 0.110 0.110 0.110
Keijzer-4 0.320 (0.000) 0.320 (0.000) 0.272 (0.057) 0.320 0.320 0.320
Keijzer-7 0.990 (0.000) 0.515 (0.075) 0.150 (0.061) 0.410 0.410 0.410
Vladislavleva-1 0.131 (0.005) 0.103 (0.010) 0.055 (0.014) 0.130 0.230 0.130
Vladislavleva-2 0.320 (0.000) 0.319 (0.004) 0.228 (0.057) 0.320 0.320 0.320
Vladislavleva-3 1.090 (0.000) 1.087 (0.005) 0.913 (0.132) 1.090 1.090 1.090
Vladislavleva-4 0.193 (0.005) 0.181 (0.003) 0.158 (0.011) 0.190 0.190 0.190
Vladislavleva-5 0.346 (0.034) 0.290 (0.069) 0.118 (0.075) 0.600 0.610 0.600
Vladislavleva-7 3.372 (0.011) 2.648 (0.385) 1.738 (0.239) 3.670 3.680 3.670
Vladislavleva-8 1.719 (0.002) 1.490 (0.056) 0.764 (0.108) 1.760 1.780 1.760

Table 3.3: Mean and standard deviation of the RMSE obtained by regression models on
the test set.

Dataset Genetic Programming Linear Regression
Depth 2 Depth 3 Depth 6 LR L1 L2

keijzer-1 0.120 (0.000) 0.080 (0.002) 0.042 (0.012) 0.110 0.110 0.110
Keijzer-4 0.320 (0.000) 0.320 (0.000) 0.272 (0.057) 0.320 0.320 0.320
Keijzer-7 0.960 (0.000) 0.510 (0.074) 0.149 (0.060) 0.380 0.380 0.380
Vladislavleva-1 0.151 (0.004) 0.127 (0.008) 0.096 (0.025) 0.190 0.210 0.190
Vladislavleva-2 0.300 (0.000) 0.300 (0.003) 0.217 (0.053) 0.300 0.300 0.300
Vladislavleva-3 1.010 (0.000) 1.006 (0.005) 0.855 (0.123) 1.000 1.010 1.000
Vladislavleva-4 0.209 (0.004) 0.196 (0.008) 0.166 (0.014) 0.190 0.190 0.190
Vladislavleva-5 0.508 (0.043) 0.443 (0.088) 0.214 (0.113) 0.840 0.840 0.840
Vladislavleva-7 3.763 (0.014) 3.031 (0.423) 2.070 (0.288) 4.050 4.040 4.050
Vladislavleva-8 2.225 (0.020) 2.166 (0.085) 1.537 (0.346) 2.280 2.280 2.280

Considering the non-deterministic character of the results obtained by GP, all tests
presented were executed 30 times, and the average RMSE and number of tree nodes are
reported.
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3.2.2 Regression with all points

We first analyze the error results of the symbolic regression and linear regression
methods when run with all test points. This is important for two reasons: first, to show
we need more than a linear regression to solve the problem; second, to ensure the results
of the local explanations will not increase the test error.

Tables 3.2 and 3.3 shows the mean RMSE followed by their standard deviations
in the training and test sets, respectively. Three maximum depths of GP trees were
considered: 2, 3 and 6, to show the impact of the complexity of the model to the RMSE.
The linear regression was run without any regularization and using both L1 and L2. The
parameter that defines the regularization force (alpha) of the methods with L1 and L2
was set at 1.0.

Observe that the results of RMSE of the GP improved as we increased the depth
of the tree. The results of the linear regression with and without regularization present
no statistical difference for the synthetic datasets. The results of the GP with depth 6
are the best among all tested methods in all the 10 synthetic datasets.

As we are interested in model interpretability, Table 3.4 shows the complexity
of the functions obtained by all methods. For the GP, the complexity is given by the
number of nodes present in the trees of the returned individuals. For the linear regression
methods, we report the number of coefficients different from 0.

Note that, for all datasets, the number of nodes of the GP trees when with maxi-
mum tree depth 2 and 3 are low, but the RMSE is high when compared to the version run
with maximum tree depth 6. Also observe that the linear regression with L1, for most
cases, returns a constant as the function that describes the data.

When a maximum tree depth of 6 is used, allowing for more complex models to
be generated, the resulting number of nodes is high, which would preclude a level of
interpretability suitable for the function to be understandable by a human being. Thus,
from now on, our efforts are focused on locally approaching the curve obtained by the GP
- D6 in order to have an interpretation of the model produced.

3.2.3 Quantitative Evaluation of ELA

ELA finds a local explanation to the model predictions based on the nearest neigh-
bours of the point being predicted. This section tests the performance of the method and
compares with the performance of the original functions obtained with all points.
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Table 3.4: Complexity of the functions found by the methods, where for GP methods it
is based on the average number of nodes present in the trees of the best individuals, and
for LR methods it is based on the number of coefficients that are different from zero.

Dataset Average size of the best individual Non-zero coefficients
GP (D2) GP (D3) GP (D6) LR LR L1 LR L2

keijzer-1 4.9 13.6 67.9 0 0 0
keijzer-4 4.3 6.3 76.4 1 0 1
keijzer-7 7.0 15.0 78.5 1 1 1
vladislavleva-1 7.0 13.5 55.9 2 0 2
vladislavleva-2 3.9 7.2 67.7 1 0 1
vladislavleva-3 4.0 10.0 70.3 2 0 2
vladislavleva-4 6.4 11.1 50.0 5 0 5
vladislavleva-5 7.0 13.4 45.2 3 0 3
vladislavleva-7 7.0 14.8 75.5 2 0 2
vladislavleva-8 7.0 14.5 79.2 2 0 2

Figure 3.2: RMSE variation of the local explanations with different numbers of neighbors.

Source: created by the author.

Influence of the value of k: We first make an analysis of the impact of the single
parameter the proposed method has on the synthetic datasets, which is the number k of
neighbors in the training set that will be considered in the local linear regression. We
varied the value of k from 2 to 19.

As observed in Figure 3.2, the smaller the number of neighbors the smaller the
error, but the higher the chances of overfitting the model to a very small set of points
and generating a “false" explanation. We understand that by increasing the number of
neighbors, we take the risk of selecting instances that are far from the point of interest,
increasing the error. In order to allow for a better generalization without significantly
increasing the error, a value of k equals to 5 will be used in further experiments, as it
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Table 3.5: Mean RMSE of neighborhood of test points.

Dataset Real/GP Real/ELA GP/ELA

keijzer-1 0.039 0.057 0.029
keijzer-4 0.181 0.181 0.003
keijzer-7 0.128 0.130 0.006
vladislavleva-1 0.044 0.044 0.008
vladislavleva-2 0.144 0.144 0.005
vladislavleva-3 0.496 0.495 0.014
vladislavleva-4 0.128 0.128 0.000
vladislavleva-5 0.086 0.088 0.008
vladislavleva-7 1.607 1.607 0.045
vladislavleva-8 0.635 0.654 0.145
wineRed 0.610 0.610 0.000

represents a good trade-off between error and generalization. Note that in Chapter 4
we present an improved process for neighbor selection by making this parameter more
dynamic in relation to the local density of the instance of interest.

Results of local approximation: Table 3.5 shows the results of the RMSE found
when comparing the real values of the training points used as neighbours for the local
approximation by ELA with the predictions found by GP and ELA, and also compares
the values predicted by GP and ELA. Note that these results consider the average RMSE
of the points used to generate the local approximation for all test points. For example, in
a hypothetical scenario with 10 test points and k equals 5, we have an average RMSE over
50 different training points. The rationale behind these results is to evaluate the impact
that local models have in the errors of the training points. Observe that, for most cases,
the real versus GP and real versus ELA errors are very similar, showing both functions
are not very different in those regions of the space. On the other hand, it does not make
sense to calculate the errors on the test set, as the predictions are made by the original
model produced by the GP, and only the explanation uses this local model.

As we can see, the RMSE average results between the real data and ELA are very
close to the ones comparing the real data with the GP predictions. Additionally, the
difference between the GP and ELA RMSE is considerably lower, in all cases, than the
mean RMSE between GP and the real data. From that we can conclude that the proposed
method is actually locally describing the behavior of the function obtained by the GP.

Observing the GP/ELA results when compared with the error of the linear regres-
sion approximation, we can also have an intuition of whether the provided explanation
was good or not. Note that a small training set (from where neighbors are selected to
construct the linear regression) hinders the approximation of the ELA explainer with the
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Table 3.6: Wine: Complexity of the functions found by the GP methods.

Average size of the best individual
GP (D2) GP (D3) GP (D6)

7.0 14.5 52.3

Table 3.7: WineRed: Mean RMSE of the GP models.

TRAINING SET TEST SET
Depth 2 Depth 3 Depth 6 Depth 2 Depth 3 Depth 6

0.724 (0.037) 0.672 (0.020) 0.647 (0.013) 0.739 (0.035) 0.691 (0.030) 0.667 (0.016)

model. In Table 3.5, the datasets with smaller training sets (keijzer-1 and vladislavleva-8)
are among the three worst results of the approximation with the model.

Finally, we show an example of the results found by ELA for a one-dimensional
dataset, keijzer-1, with different regression methods and using ELA. As previously men-
tioned, the function this dataset represents is defined in Equation 3.4. As previously
reported, the GP returned tree with an average number of nodes of 65.8 when running
with maximum tree depth 6. The linear regression for the same dataset, either by the
common method or using L1 and L2, resulted in the following line:

LR(T ) = −0.04397 (3.6)

We chose the following point to explain the prediction given by the GP: (0.647,−0.129).
After selecting its 5 nearest neighbors, the function found was:

LR(NN) = −0.489x+ 0.183 (3.7)

Figure 3.1 shows that the local explanation we generate approximates well the
equation obtained by the symbolic regression and is much simpler to interpret than the
original function.

3.2.4 Qualitative case study: Wine dataset

Here we analyze the dataset wineRed. We chose this dataset for two main reasons.
First, it presents a nonlinear relationship between the attributes and the output. Next,
the subject of the dataset, which describes the characteristics of wines of the red type and
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Figure 3.3: Global explanation for attributing quality to a wine. The x-axis represent the
note the wine received, the y-axis the relative importance of the feature when that note
is attributed to a wine.

Source: created by the author.

the output the quality, with notes varying between 0 and 10, can be interpreted with a
low degree of expertise in the problem.

The set of attributes used to describe each instance in wineRed is as follows: fixed
acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total
sulfur dioxide, density, pH, sulfates, and alcohol.

Analogously to what was observed in the synthetic datasets, in WineRed there is a
relationship between the growth of the maximum tree depth of the GP and the complexity
of the model in terms of the average size of the best individual (Table 3.6) and smaller
RMSE averages (Table 3.7).

Table 3.8 shows an example of explanation found by ELA in GP (D6), where we
show the test point and the value of the variable to be predicted. In this case, for a wine
receiving note 6, there is an error of 0.223 (6.453 for GP and 6.676 for ELA). The table
lists, apart from the coefficients of the linear regression produced by ELA, the importance
of the attributes in the analyzed test instance.

A relevant feature that we can highlight at this point is that the ELA tool provides
an additional interpretability feature that is the importance of attributes for regression
of the test instance.Looking at the values of attribute importance, we can highlight two:
alcohol (75.9%) and fixed acidity (8.8%).

The last lines in Table 3.8 show the range of the values of the attributes of neigh-
bors considering a maximum range of 10% of variance in the output. By verifying the
modifications of the values of the attributes we can understand how wines similar to the
presented could be manufactured. For example, the residual sugar attribute could range
between 1.6 and 3.3.
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Table 3.8: Information of the regression methods and ELA for the wineRed dataset.

Test point analyzed
= [10.8, 0.29, 0.42, 1.6, 0.084, 19, 27, 0.99545, 3.28, 0.73, 11.9]
Real value = 6.0
Value predicted by GP= 6.453
Value predicted by Local Explanation= 6.676
Coefficients of linear regression
= [-0.09, 0.32, 0.05, -0.17, -0.04, 0.03, -0.01, 0.02, 0.11, 0.18, 0.74]
Intercept= -1.8424176877057139
Importance of attributes
= [8.82, 0.79, 0.17, 2.39, 0.03, 5.46, 1.82, 0.14, 3.24, 1.17, 75.95]
Variation of attributes among neighbors within a maximum range
of 10% of variance (6.4313 - 6.6138):
7.9 <= fixed acidity <= 10.8
0.2 <= volatile acidity <= 0.33
0.35 <= citric acid <= 0.42
1.6 <= residual sugar <= 3.3
0.054 <= chlorides <= 0.084
6.0 <= free sulfur dioxide <= 19.0
15.0 <= total sulfur dioxide <= 27.0
0.99458 <= density <= 0.99545
3.28 <= pH <= 3.32
0.73 <= sulfates <= 0.8
11.8 <= alcohol <= 12.0

Finally, since we have a large set of explanations for different test points, we can
also provide an overall explanation of the model using a graph of stacked areas2, as shown
in the Figure 3.3, where the x axis represents the output of the method (in this case,
the quality of the wine) and the y axis the relative importance of that attribute for a
wine receiving that note. In this graph the attributes are sorted following the same order
they are listed in Table 3.8: the first attribute is in the lower portion of the graph is
fixed acidity in dark blue, the second is volatile acidity in dark green and so on, up to
alcohol shown in red at the top of the graph area. Looking at this graph we observe that,
regardless of the quality attributed to a wine, in general the most relevant attributes are
alcohol (red) and total sulfur dioxide (green). The alcohol feature has an importance
above 20% regardless of the quality of the wine. The Total sulfur dioxide feature is more
important for intermediate quality wines, more than 30%, when compared to high and
low quality wines. In addition, we also observed that the Fixed acidity and pH features
have a behavior opposite to Total sulfur dioxide, that is, they are more relevant in the
qualification of lower and upper wines and less important in intermediate wines.

2https://www.chartjs.org/
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Sulfur dioxide is used in wine-production as a preservative due to its anti-oxidative
and anti-microbial properties, but also as a cleaning agent for barrels and winery facilities.
Studies have shown that wines may have their sensorial attributes deteriorated (e.g.,
oxidise) if the concentration of free sulfur dioxide falls below a particular critical level,
specific for each particular wine. Also, wines with higher pH values may deteriorate at
higher critical levels of free sulfur dioxide [43].

We can also note that the fixed acidity attribute is more important in the task of
assigning notes for low and high quality wines, losing its importance among intermediate
quality wines.

3.3 Summary

This chapter presented ELA, a method capable of generating interpretable explana-
tions for the results provided by regression algorithms. Differently from other approaches
previously presented in the literature, the proposed method uses the neighborhood con-
cept of a certain test point of interest to carry out a local linear regression and identify
how much each input attribute influences the output. The strategy adopted also pro-
vides ranges by which the attributes can be changed locally, bringing more information
for interpretation. In addition, a graph-based view of stacked areas is proposed to pro-
vide an overview of the overall behavior of the model. The experiments showed that
the explanations provided have a strong approximation with the results obtained by the
symbolic regression method in terms of RMSE, besides providing useful explanations for
understanding the results.
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Chapter 4

DELA: Dynamic Explanation by Local
Approximation

In this chapter, we propose an improved version of ELA, named DELA (Dynamic Ex-
planation by Local Approximation). DELA tackles the main challenge of ELA, which
despite its simplicity, could have its explanations enhanced by carefully defining its three
main hyperparameters: i) the distance metric used to measure the similarity between
instances (Euclidean distance); ii) the number of neighbors used to perform the local
linear regression (5 neighbors are currently recommended); iii) the way to determine the
importance of the features: calculated based solely on the instance of interest. Moreover,
initial experiments showed the performance of ELA in non-normalized input data. This
can make the explanations unstable for datasets with features of high variability. Hence,
the impact of data normalization is also studied in this chapter.

DELA has the ability of better adapting to the characteristics of the dataset the
regression model was created to. In sum, the main improvements added to ELA’s core
regard decisions that are now automatic and made according to each dataset, including:

(i) A more appropriate distance measure for each specific dataset is selected - Subsec-
tion 4.1.1.

(ii) The number of neighbors selected to provide the explanation is chosen automatically
according to the local density of the instance of interest - Subsection 4.1.2.

(iii) Feature importance is calculated locally but considers the contribution to the output
of the target instance provided by the neighborhood, rather than just considering
the evaluated test instance. - Subsection 4.1.3.

In addition, in this chapter we perform a quantitative analysis of the proposed ap-
proach in a significantly larger of datasets: 10 synthetic datasets and 20 real benchmarks,
with known non-linear relations between the predictive and target variables. To demon-
strate the agnostic capability of DELA, we present the explanatory results of the output
obtained by a Random Forest (RF) regression algorithm, while the initial proposal of the
ELA explanation method used a genetic programming (GP) algorithm. Then, to fill the
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gap of adding a human specialist to the loop, we perform a case study in a real-world
medical dataset, where the task is to predict the level of severity of a patient in terms of
the diagnosis of rheumatic heart fever (RHD).

Finally, the explanations provided by DELA were compared quantitatively and
quantitatively with ELA and LIME. The results show that DELA is able to obtain local
explanations with errors that are statically similar to ELA, with the advantage of being
less affected by datasets with high variance in features and setting the value of different
hyperparameters. Furthermore, DELA was able to qualitatively identify the importance
of features underestimated by ELA, be less abrupt in global explanations by varying the
model output and return semantically valid local patterns in its explanations – something
that LIME, for instance, is not able to do.

The remainder of this chapter is organized as follows: Sect. 4.1 presents the
proposed method of DELA, while Sect. 4.2 discuss the impacts of the proposed changes
to the original method. In Sect. 4.3 presents the quantitative and qualitative experiments.
Finally, Sect. 4.4 draws conclusions.

4.1 Proposed Methodology

This section introduces DELA (Dynamic Explanation by Local Approximation),
an extended version of ELA that makes it adaptable to the characteristics of different
datasets.

Let us assume we have a training set T = pi = {(xi, yi)}ni=1 and a test set T ′ = pj =

{(xj)}mj=1 — with xi ∈ Rd, yi ∈ R for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Analogously
to ELA, DELA is model-agnostic and can be used to explain the predictions y′ of non-
linear regression models. For that, DELA performs a local approximation with a linear
regression method to generate explanations for each prediction y′ generated by the original
applied model.

Among the main drawbacks of ELA we mention: the use of a fixed number of
neighbors chosen to perform the linear regression (currently we recommend using 5) at
the time of the local explanation, (ii) the indiscriminate use of the Euclidean distance
metric to compare the instances, which can be high-dimensional and suffer from the curse
of dimensionality, (iii) consider only the evaluated instance to calculate the local features
importance.

Each of these limitations will be tackled by DELA by taking into consideration the
individual characteristics of each dataset. For that, we propose:
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(i) A study of different distance measures: In the ELA method, a distance metric (more
specifically, the Euclidean distance) is used to find the training instances closest to
the instance to be explained. The use of an inappropriate distance measure can
directly affect the quality of the explanation produced by regression models. Hence,
we analyze different distance measures in Subsection 4.1.1 and discuss which is the
most appropriate.

(ii) An adaptive choice of neighborhood for local explanation: Different strategies can be
used to generate local explanations. Some methods, such as LIME, proposed using
local perturbation around the test instance to generate fictitious instances that are
close to the point of interest – which can generate semantically invalid points. In
ELA, instances from the neighborhood of the instance of interest were selected, but
the number of instances was fixed and set up by the user. This strategy can neglect
regions where solutions are more spread out in the space, where neighbors may
not be as close as desired. In this case, using a small number of neighbors can be
appropriate, even increasing the risk of overfitting. On the other hand, being in a
dense region, a larger number of neighbors can help decrease the local error of the
model. Hence, we propose a method to automatically set the value of k according
to the local density of the neighborhood of the evaluated test point, as discussed in
Subsection 4.1.2.

(iii) The importance of the features of the problem: The ELA method measures the
importance of features by taking into account the proportional contribution of each
linear regression coefficient to the output of the instance of interest. For DELA, we
propose that the importance value should be considered locally, not pointwise. Thus,
the new feature importance calculation will take into account the feature averages of
all instances selected as neighbors in the local explanation of a particular instance.
This means that feature importance will be evaluated not only in the instance in
question but also in other nearby instances that may influence the local explanation
of the model. This subject is discussed in Subsection 4.1.3.

Further, we show that by not normalizing the input data, the explanations provided
by ELA become more susceptible to bias embedded by features with different scales. Sub-
section 4.2.1 presents a data normalization process that should be used as a preprocessing
method for both ELA and DELA.
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4.1.1 Instance distance measures for regression

For ELA to work and provide explanations compatible with the regression per-
formed, a suitable distance metric for finding the neighbours of a point is of great im-
portance. The growth of the dimensinality of datasets can make it trick for traditional
distance metrics, such as the Euclidean distance, to capture the actual distances between
instances due to the curse of dimensionality. ELA used the Euclidian distance (Eq. 4.1)
to find neighbors, where d is the number of input features.

dist(x, xi) =

√√√√ d∑
a=1

(xa − xia)2 (4.1)

Given its drawback, this section proposes to evaluate other distance metrics which
can better capture distances in high dimensional spaces.

There are a few studies in the literature that evaluate which distance/similarity
metrics are most appropriate for high-dimensional data, but generally these studies are
performed for classification or clustering problems. [5], for instance, evaluated the behav-
ior of the Ls norm (also known as the Minkowski distance) and showed how the results
can vary when we modify the value of s. After observing that smaller values are more ap-
propriate in high dimension data, e.g., the L1 norm (Manhattan distance) being preferred
over the L2 norm (Euclidean distance), fractional values were tested. They observed that
fractional values of s improve the effectiveness of clustering algorithms.

Both [61] and [42] have also evaluated distances in the context of microarray data
for clustering and classification tasks. In the former, 15 different distance metrics were
evaluated for 52 datasets. They showed that the appropriate metric depends directly on
the scenario in question. In the latter, the authors also mention that there is no consensus
in the literature about which metric works best. After experiments with Hierarchical and
K-means clustering algorithms they found that the distances of Minkowski, Cosine, and
Pearson’s correlation were the best options for their context.

Here, to address regression problems, appropriate measures are required. There-
fore, we evaluate the effectiveness of 8 different distance/similarity measures, including
a parameter variation in the Minkowski measure that will result in 30 alternatives. For
all measures, u and v are instances of the datasets, and d corresponds to the number of
input features. The measures being considered are:

(i) Minkowski:

dist(u, v) = (
d∑

a=1

|ua − va|s)1/s, (4.2)
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where we evaluated values of s in the interval [0.1,3.0] in steps of 0.1.

(ii) Cosine
dist(u, v) = 1− u · v

||u|| × ||v|| , (4.3)

where ||x|| is the length of the vector x defined by
√∑n

i=1 xi
2 and u · v is the dot

product of u and v.

(iii) Correlation

dist(u, v) = 1− (u− u) · (v − v)

||u− u||2||v − v||2
, (4.4)

where u and v are the mean of the elements of u and v and, again, u · v is the dot
product of u and v.

(iv) Bray-Curtis

dist(u, v) =

∑d
a=1|ua − va|∑d
a=1|ua + va|

. (4.5)

Note that the Bray-Curtis distance is in the range [0, 1] if all coordinates are positive,
and is undefined if the inputs are of length zero.

(v) Canberra

dist(u, v) =
d∑

a=1

|ua − va|
|ua|+ |va|

(4.6)

when ua and va are 0 for a given i, the fraction 0/0 = 0 is used to avoid undefined
values.

(vi) Chebyshev
dist(u, v) = maxa|ua − va| (4.7)

(vii) City Block (Manhattan)

dist(u, v) =
d∑

a=1

|ua − va| (4.8)

(viii) Standardized Euclidean

dist(u, v) =
d∑

a=1

|ua − va|2 (4.9)
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Note that we are expanding the possibilities for distance measures by relaxing the
properties that a distance metric must have, i.e., non-negativity, identity, symmetry, and
the triangle inequality By relaxing these properties, we can consider different ways of
measuring the distance between points. These measures may be more suitable for certain
types of complex data, such as high-dimensional data or data that do not follow a normal
distribution. However, it is important to remember that by relaxing the properties of
the distance metric, we may introduce distortions in the data analysis and influence the
results obtained. Therefore, our proposed approach will individually choose the most
appropriate measure for each dataset.

The choice of the metrics listed above rely on the fact that they have been previ-
ously shown to be effective in various contexts in the literature. Specifically, Minkowski
measures with fractional parameters can be suitable for high-dimensional data, particu-
larly when the instance density is low relative to the number of dimensions. This allows
for capturing subtle changes between instances. We will vary the Minkowski metric pa-
rameter from 0.1 to 3.0. This parameter controls the degree of sensitivity of the metric
to differences in feature values, with lower values giving more weight to small differences
and higher values giving more weight to large differences.

The cosine metric is traditionally used for vector comparison, while correlation may
be useful for evaluating the relationship between independent variables and the dependent
variable. The Bray-Curtis metric is particularly useful when evaluating the dissimilarity
between the proportions of features in two different instances, while the Canberra metric
is useful for sparse data.

The Chebyshev metric, in turn, is a measure of maximum distance and is useful
for data with outlier values. The City Block metric considers only absolute differences
between values and performs well when the relationship between instances is linear. Fi-
nally, the standardized Euclidean metric is suitable for data with different variances, as
it takes into account standardized differences between variables. By considering a diverse
set of metrics, we can explore different aspects of the data and evaluate which metric is
best suited for a particular regression model.

Our evaluation approach starts with the assumption that instances with close out-
put values must have relatively close predictive features. Hence, the proposed distance
selection method assumes the existence of linearity between the model output for each
instance and the distances that separate these instances. The distance measure that
presents greater correspondence between the input features and the output feature is
considered the best to be used in the specific dataset D.

Algorithm 2 presents the proposed distance measure selection method. The al-
gorithm receives as input a training set T , composed of a matrix of features X and an
output vector Y , and a list of distance measures to be evaluated LM . In line 1, the
output set is sorted in ascending order and the indices of these instances are stored in
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Algorithm 2 Distance measure selection for dataset D.
Require: T (training set), LM (list of distance measurements to be evaluated)
1: YidxSort = Sort TY in ascending order
2: Iy−smlest = returns instance of lowest output(YidxSort, I)
3: measurementCounters = [ ]
4: for each M ∈ LM do
5: Distances = calculates distances between Iy−smlest and all others in I(M)
6: DistxidSorted = Sorts Distances
7: counter = 1
8: for each p ∈ YidxSort do
9: aux = 0

10: for each p’ ∈ DistxidSorted do
11: if p == p’ then
12: counter += aux
13: Remove p’ from DistxidSorted)
14: else
15: aux += 1
16: end if
17: end for
18: end for
19: measurementCounters.append(counter)
20: end for
21: return LM(minidx(measurementCounters))

YidxSort. In line 2, the lowest output instance (top of the ranking) is identified and stored
in Iy−smlest. In line 3, an empty list is created to store the result obtained by each distance
measure that will be evaluated. In the loop between lines 4 and 20, we will individually
assess the pertinence of using each of the distance measures in that specific dataset. Line
5 calculates the distance, according to the measure being evaluated (M), between Ismlest

and all others in TX . Next, these distances sorted by ascending value and their indices are
stored in DistxidSorted. This step is followed by a comparison between the vectors YidxSort

and DistxidSorted, made in the loop between lines 8 and 18. In the loop, for each point
in YidxSort, we count how many positions are accessed in DistxidSorted until we find it.
When found, the point is removed from DistxidSorted (line 13). The rationale behind this
approach is to compare the order of the outputs regarding the inputs. With our linearity
assumption, the perfect distance would generate 0, i.e., both rankings in DistxidSorted

and YidxSort would be equal. In line 19 we store in measurementCounters the counter
obtained by using the distance measure evaluated in that iteration. We can then say that
the distance measure with the lowest value (line 21) is more appropriate for regression
problems for the dataset being analyzed.
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4.1.2 A heuristic for choosing the number of neighbors

As already mentioned, ELA works by finding the k nearest points of each inter-
est point p to perform a linear regression on that neighborhood and then get a local
interpretation of the prediction.

In the initial version of ELA, the value k was a user-defined parameter, and in
order to get an idea of the influence of the number of neighbors in the results of a local
linear model, we performed experiments varying the values of k from 2 to 19. These
experiments showed that the smaller the number of neighbors the smaller the error, but
the higher the chances of overfitting the model to a very small set of points and end up
generating a “fake” explanation. After preliminary analysis in ELA, k was set to 5, as it
represented a good balance between error and generalization.

In this section we propose a way to automatically find the value of the neighborhood
size k for each point being analyzed according to the density of the region it belongs to.
The heuristic proposed is based on the fact that data is not usually equally distributed
in the instance space. The proposed heuristic for defining variable neighborhoods is
presented in Algorithm 3, and was inspired by the clustering algorithm DBSCAN [34].
The algorithm receives as input the set of training data T , the test point t we want to find
the neighborhood for and the parameters MinP – which represents the minimum number
of points that will be accepted as input for the local linear regression, and MaxD, which
represents the maximum acceptable distance between neighbors.

Note that by defining the minimum number of accepted neighbors (MinP ), we
aim to avoid overfitting. The fewer the instances, the higher the chance of the regression
to overfit and fail to capture the true relationship between features. Moreover, the lack
of data can lead to greater variability in the results, making it difficult to evaluate the
accuracy of the model. By defining the maximum acceptable distance to consider points
as neighbors (MaxD), we avoid including instances too different in the neighborhood,
which may not be locally relevant. Additionally, including instances that are too far away
can increase variability and negatively affect the accuracy of the local model. Finally,
limiting the maximum distance can also help reduce the processing time for obtaining
explanations.

In line 1, the distances between the test point t and all training points p ∈ T is
calculated. These points are then sorted in ascending order according to their distance to
t (line 2.) In the loop between lines 4 and 13, for each ordered point distance, we check
whether it respects the limit imposed by MaxD (line 5). If yes, the point is considered
as a neighbor (line 6). If not, we check if the minimum number of neighbors has already
been reached (line 8). If the minimum has not yet been reached, then MaxD value is
redefined in line 9 and the training point is considered as a neighbor (line 10).
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Algorithm 3 Local definition of k: variable neighborhood.
Require: T (training set), t (test point), MaxD, MinP = 5
1: Distances = vector of pairs < p ∈ T, dist(p, t) >
2: Distancessorted = sort points in Distances according to dist
3: neighbors = [ ]
4: for each point p ∈ Distancessorted do
5: if p.dist < MaxD then
6: neighbors.append(p)
7: else
8: if length(neighbors) < MinP then
9: MaxD = p.dist

10: neighbors.append(p)
11: end if
12: end if
13: end for
14: return neighbors

In this problem we consider MinP with a value of 5, as it was previously found by
ELA to represent a good balance between error and generalization. In addition, if values
close to the minimum are chosen by the method only for local region with few instances,
i.e., a low density region, this can help avoiding overfitting.

The value of MaxD, on the other hand, was chosen according to the heuristics
adopted for defining the parameters of DBSCAN [100], and we can use: i) the median of
the distance between the two closest neighbors of all training points; ii) the third quartile
of the distance of the two closest neighbors of all training points; iii) the maximum distance
between the two closest neighbors of all training points.

4.1.3 Feature Importance in Local Linear Regression

We define feature importance as the contribution that each feature exerts to the
final value of the output of an example p, given by y′. Intuitively, the initial version of
ELA used the values of the coefficients returned by the local regression multiplied by its
normalized value in p. This value is expressed as a percentage of importance, taking into
account the importance of all features, as shown in Equation 4.10.

Importancexi
=

|coefficientxi
× xi| × 100∑d

a=1|coefficientxa × xa|
(4.10)

There are studies that have already proposed several metrics for measuring feature
importance from the values of the returned coefficients with different, being the simplest
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and most straightforward way to look at the values of the coefficients, which has a big
problem since they are not invariable in scale. Other approaches with different levels of
complexity have been proposed [46, 2, 115], such as to use the model’s variance [46].

Here we consider that identifying the most important features for the local approx-
imation performed, i.e., features of locally selected neighbors, is the key point. For similar
contexts, where the level of importance is not sample-independent, [2] first introduced the
importance level metric:

LevelImportancei = bi ×mean(Vi) (4.11)

where bi is the coefficient returned for feature i and Vi the vector of values found in the
neighboring examples for feature i. This metric was more recently revisited in the works
of [54] and [46].

In addition, we want this metric of importance to reflect the relevance that a given
feature has in the predicted value of a local region in relation to other features. Thus, we
look at the importance module of each feature and normalize it (Equation 4.12), making
it into a percentage.

Importancexi
=

|LevelImportancei| × 100∑d
a=1|LevelImportancea|

(4.12)

4.2 Experimental Setup

In this section we show the results obtained in the application of the proposed
improvements to the ELA explanation method in order to build DELA. The dataset used
in the experiments is described in Table 4.1, which shows the total number of features
(predictive and target (Attributes), Number of data points used in the training (Train) and
test (Test) phases. In total there are 10 synthetic and 20 real-world dataset. All synthetic
datasets were originally presented in [67]. The real datasets are publically available from
UCI and Kaggle [28, 20, 22].
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Table 4.1: Dataset used in experiments involving internal improvements in feature-based
explanation methods.

Id Dataset # Attributes # Train # Test Nature Variance

1 keijzer-1 2 1,415 607 Synthetic 0
2 keijzer-4 2 141 61 Synthetic 0
3 keijzer-7 2 764 327 Synthetic 0
4 vladislavleva-1 3 1,487 638 Synthetic 0
5 vladislavleva-2 2 225 96 Synthetic 0
6 vladislavleva-3 3 3,978 1,705 Synthetic 0.001
7 vladislavleva-4 6 4,217 1,807 Synthetic 0.002
8 vladislavleva-5 4 2,100 900 Synthetic 0.045
9 vladislavleva-7 3 910 390 Synthetic 0
10 vladislavleva-8 3 797 342 Synthetic 0
11 cholesterol 14 209 88 Real 2630.956
12 auto-mpg 8 279 119 Real 9.29e+5
13 sensory 12 403 173 Real 0.231
14 strike 7 437 188 Real 5.32e+5
15 day_filter 12 510 221 Real 2.910
16 house 80 1,022 438 Real 1.33e+6
17 wineRed 12 1,279 320 Real 115.431
18 abalone 8 2,924 1,253 Real 0.329
19 wineWhite 12 3,918 980 Real 1459.797
20 cpu_act 22 5,734 2,458 Real 7.62e+10
21 bank32nh 33 5,734 2,458 Real 2.585
22 puma32H 33 5,734 2,458 Real 0.450
23 compactiv 21 5,734 2,458 Real 6.86e+10
24 tic 85 6,876 2,947 Real 13.061
25 ailerons 41 9,625 4,125 Real 16.621
26 elevators 19 11,619 4,980 Real 59.350
27 california 8 14,448 6,192 Real 5.21e+5
28 house_16H 17 15,949 6,835 Real 1.11e+5
29 fried 11 28,538 12,230 Real 0
30 mv 10 28,538 12,230 Real 1.11e+5

4.2.1 Input data normalization

Both DELA and ELA were conceived to be agnostic explanation methods, and we
know some algorithms are very susceptible to feature scaling. A large variance between
the different features that describe the instances can cause bias, such as disregarding
values on a smaller scale in the prediction process.

Internally, the method of explanation can also be subject to the same phenomenon,
since from the nearest neighbors of a point of interest a linear regression is performed,
and feature importance measures are derived from the model.
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Figure 4.1: Histogram with distances to the instances.

(a) Fried dataset (small variance) (b) CPU_ACT dataset (large variance)

Source: created by the author.

In order to avoid biases that may be embedded both during the learning process of
the regression model and in the explanation method, we propose that input data for DELA
always undergo a normalization process. Therefore, before the model training process, all
data will be normalized by the algorithm known as z-score, as shown in Equation 4.13,
which accounts for the mean and standard deviation of the values for each feature.

z =
x−mean(x)

stdev(x)
(4.13)

In order to better understand the process of input feature normalization (or its
absence) on explanation methods, and to validate its relevance, we performed the fol-
lowing analysis on the datasets: we calculated the median value of each feature among
all instances of training the same dataset, and measured the variance of values among
the different features. The results obtained are shown in the last column of Table 4.1.
Observe that, in our datasets, there are both cases with small and large variance. The
latter represents the cases where the normalization process is more essential.

In a complementary way, the histograms in Figure 4.1 show the distances between
all points of the same dataset, combined 2 by 2. Figure 4.1a represents a small variance
dataset and Figure 4.1b a large variance dataset, and these histograms are similar for all
other datasets.

Observe that datasets with lower variance have a behavior close to a normal distri-
bution, making it simpler to distinguish between instances and, consequently, to choose
the closest neighborhood. Datasets with a lot of variance tend to lose the significance
of similarity, and the process of distinguishing between instances becomes possible only
after the normalization process.

In another aspect, we can also look at how much a regression model can be affected
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Table 4.2: Impact of the dataset normalization process on the RMSE of the model trained
with a Random Forest regressor.

Dataset RMSE
Normalized Non-normalized

cholesterol 1.03 55.85
auto-mpg 0.38 2.74
sensory 0.93 0.75
strike 0.89 503.04
day_filter 0.37 741.58
house 0.41 3,3683.99
wineRed 0.87 0.70
abalone 0.73 2.35
wineWhite 0.79 0.70
cpu_act 0.15 2.69
bank32nh 0.77 0.09
puma32H 0.27 0.01
compactiv 0.14 2.56
tic 1.11 0.26
ailerons 0.43 0.00
elevators 0.52 0.00
california 0.45 51,529.31
house_16H 0.62 32,885.45
fried 0.28 1.40
mv 0.01 0.09

by the normalization of the data. The results shown in Table 4.2 report the Root Mean
Squared Error (RMSE) obtained by a Random Forest algorithm for the real datasets.
Note that the predictions obtained for the test set have a lower error for normalized
datasets in 12 of the 20 analyzed sets, and higher in 8 datasets. This justifies that fact
that not normalizing data in this context is not a good practice.

Finally, we also want to verify how much the model’s explanation is also influenced
by data normalization. For that, we compare the local explanations obtained by ELA,
LIME and DELA.

Table 4.3 shows the intersection of the 5 most important features found for each
instance of the test set, considering the normalized and non-normalized datasets. We
selected 4 datasets to demonstrate this result: 2 datasets of small variance (Fried and
Sensory) and 2 datasets of large variance (Cpu_atc and House).

In addition, we also analyzed the outputs obtained by the models when we nor-
malized and did not normalize the input data. We aimed to identify the datasets where
normalization resulted in significant differences in the model’s output. To conduct this
comparison, the outputs of the models using normalized data were reprocessed to revert
to the original data scale. Subsequently, we calculated the square root of the sum of dif-
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Table 4.3: Feature Intersection and differences obtained in instance outputs considering
normalized and non-normalized datasets.

Feature Intersection Normalization Difference
LIME ELA DELA LIME ELA DELA

Fried 5 3 3 0.0 0.5 0.4
Sensory 3 3 3 0.2 0.3 0.4
House 4 0 0 3,115.4 19,586.1 16,987.6
Cpu_act 4 2 1 1.1 4.1 3.8

ferences between the two outputs obtained (considering normalized and non-normalized
inputs) for each instance, as described in equation 4.14. The results are presented in
Table 4.3.

normalizationDifference =

√√√√ 1

|T ′|

|T ′|∑
i=1

(ŷi − ŷi))2 (4.14)

where ŷi is the model output with the data without normalization and ŷi is the model
output with the data normalized (back to original scale).

Observe that the impact of the normalization process is smaller in small variance
datasets but can be huge in large variance datasets. The method that suffer less is LIME,
as it generates 5,000 random fictitious neighborhood points for each test instance to be
explained before performing the linear regression. ELA and DELA methods, in turn,
select examples from the training set, and hence have, in general, a smaller number of
neighbors for each point. Because of that, these methods are more susceptible to small
changes in neighborhoods, and data normalization can completely change the results of
model explanations.

4.2.2 Distance Measure Evaluation

Having established that the proposed method needs to run over normalized data,
we start looking at the components we want to improve. First, we focus our attention on
the distance measures, starting with Minkowski and its parameters.

We run Algorithm 2 with the Minkowski distance and different values of s for all
normalized datasets. Recall that we varied the parameter s in the range [0.1, 3.0] with
steps of 0.1, where s controls the degree of sensitivity of the metric to differences in feature
values.. Algorithm 2 returns a count for each evaluated variation of the parameter s in
the Minkowski measure. We normalized this count, where the best result is considered as
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Figure 4.2: Result for Minkowski measure: heuristic counter mean.

Source: created by the author.

1 and the others in the list receive a value proportional to 1. We executed Algorithm 2
for all variations of the parameter s across all 30 datasets listed in Table 4.1. The graph
in Figure 4.2 shows the average of the normalized counts for each value of s across all
datasets. As we can observe, the best values were obtained when s takes the values of
1.1 and 1.2, with a value of 1.095. When we consider the 30 observations using these two
values of s, we found that the standard deviation was lower when the parameter was set
to 1.1. Thus, in this context, setting s to 1.1 would represent the best solution with less
variability.

After that, for the Minkowski measure, we also calculated how many times each
possible value for s achieved the best result across all 30 datasets. In this analysis, the
best value found for s was 3.0, as shown in Figure 4.3. Note that in some datasets, more
than one distance measure achieved the best result. For instance, in datasets with only
2 attributes (keijzer-1, keijzer-4, keijzer-7, and vladislavleva-2), all measures performed
equally well (the blue line in the plot was included for ease of visualization when excluding
scenarios where the variation of the parameter s did not modify the results).

Finally, we plot a critical diagram from a Friedman test followed by a Nemenyi post-
hoc with a usual significance level of 0.05 and Bonferroni correction. In these diagrams,
the main line shows the average ranking of the methods, i.e., how well one method did
when compared to the others. This ranking takes into account the absolute value obtained
by each method according to the evaluated metric. The best methods are shown on the
left (lowest rankings). The critical difference interval (CD in the plots) is determined by
the Friedman test according to the significance level defined. If the average difference
between two algorithms is greater than CD, then the null hypothesis that the algorithms
have the same performance is rejected. Finally, the diagram connects groups of methods
that do not present statistically significantly differences. Note that the size of the lines
connecting the methods corresponds to the size of the CD interval.
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Figure 4.3: Number of times the Minkowski measure with value s obtained the best result
for the heuristic counter. The blue line indicates that in 4 datasets, all variations of the
Minkowski measure obtained the same results.

Source: created by the author.

Figure 4.4: Result for Minkowski measure: critical diagram.

Source: created by the author.

This showed that none of the values tested for parameter s is statistically superior.
The parameter with the best numerical result was s with a value of 1.7, as observed in
Figure 4.4.

Now we comparing the Minkowski measure (s = 1.7) with the other measures
listed above. The evaluation procedure is similar to the previous one. We define the
best performer for each measure (across all datasets) as 1 and scale the other values
proportionally. When plotting the critical diagram we found that numerically the best
result would be obtained using the Euclidean distance metric, as shown in Figure 4.5.
But, when checking how many times each of the measures managed to obtain the best
result, we found that the best was the Canberra metric, as shown in Figure 4.6.

It can be concluded that there is no universally superior measure, as the best one
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Figure 4.5: Result for distance measure: critical diagram.

Source: created by the author.

Figure 4.6: Result for distance measure: times that got the best result for the heuristic
counter.

Source: created by the author.

varies depending on the dataset in question. Therefore, selecting a suitable measure is
crucial to effectively discriminate among instances for a given dataset.

After that, we verified the time it would take to specifically choose the best measure
through the proposed heuristic, in each of the datasets that used in this work. The
results are shown in Figure 4.7. These experiments were performed on a computer with
the following configurations: Intel(R) Xeon(R) E5620 2.40GHz, with Ubuntu 16.04 LTS
operating system. As we can see, the heuristic is simple and takes only a few minutes to
run, even on the largest datasets. Thus, we consider that the best strategy is for DELA
to choose, prior to the explanation process, which distance measure is more appropriate
for each specific dataset, once this process needs to be executed only once and then reused
in new executions.
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Figure 4.7: Result for distance measure: time needed (in minutes) to find the best distance
measure, according to the proposed heuristic.

Source: created by the author.

4.2.3 Number of neighbors

To define the value of MaxD, we evaluated the three heuristics mentioned in Sec-
tion 4.1.2, namely: i) the median of the distance between the two closest neighbors of all
training points (Median); ii) the third quartile of the distance of the two closest neighbors
of all training points (Q3); iii) the maximum distance between the two closest neighbors
of all training points (Max). The results in terms of the minimum, median, and maximum
number of neighbors selected for each instance in each dataset are presented in Table 4.4.

Observe that when using the median of the distances between the two nearest
neighbors (first three column in the table), the instances tend to have the smallest number
of neighboring points allowed by the proposed heuristic for use in local linear regression,
that is, 5 neighbors. This is not appropriate, as regardless of the number of available
instances or the size of the dataset, the chosen neighborhood value tends to be fixed,
both for the minimum and median values. If we observe the maximum value of the
neighborhood size determined for the instances using this strategy, we can obtain larger
values, but even this maximum value is sometimes still smaller than the number of features
o the dataset. This phenomenon occurs in 9 out of the 20 real datasets. Having a
smaller number of instances to create the local linear regression compared to the number
of features can make it difficult to identify the relationships between the independent
variables and the dependent variable, and thus impair the local model’s ability to provide
good explanations.

When applying the heuristic of selecting the maximum distance between the two
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Table 4.4: Minimum, Median and Maximum number of neighbors chosen when we vary
the heuristic to determine the maximum distance that should be used to choose the
neighborhood.

Dataset
Number of neighbors selected when using:

Median distance Q3 distance Max distance
Min Median Max Min Median Max Min Median Max

keijzer-1 5 5 6 5 5 9 156 700 714
keijzer-4 5 6 6 5 6 6 5 16 22
keijzer-7 5 5 7 5 5 7 5 7 11
vladislavleva-1 5 5 5 5 5 11 5 184 257
vladislavleva-2 5 5 6 5 5 6 5 86 104
vladislavleva-3 18 275 1,157 18 275 1,157 18 275 1,157
vladislavleva-4 5 5 15 5 5 38 5 385 674
vladislavleva-5 5 6 12 5 6 12 5 13 29
vladislavleva-7 5 5 6 5 5 8 5 13 27
vladislavleva-8 5 5 6 5 5 6 5 45 53
cholesterol 5 5 19 5 5 35 5 49 97
auto-mpg 5 5 6 5 5 12 8 53 107
sensory 5 5 8 5 5 8 5 7 14
strike 5 5 6 5 5 13 6 66.5 151
day_filter 5 5 8 5 5 14 5 27 64
house 5 5 44 5 6 81 5 150 302
wineRed 5 5 10 5 5 33 7 169 331
abalone 5 5 56 5 5 104 5 2,896 2,922
wineWhite 5 5 30 5 6 52 22 3,427 3,428
cpu_act 5 5 424 5 9 542 8 321.5 1,758
bank32nh 5 5 74 5 5 193 19 4,501 5,628
puma32H 5 5 7 5 5 8 5 13 26
compactiv 5 5 443 5 8 584 5 236.5 1,304
tic 5 7 313 5 14 636 10 6,870 6,872
ailerons 5 5 213 5 9 567 179 5,219 6,579
elevators 5 5 134 5 6 488 11,618 11,618 11,618
california 5 5 72 5 6 194 30 14,447 14,448
house_16H 5 5 3,737 5 167 6,114 14 12,353 14,927
fried 5 5 9 5 5 15 5 34 84
mv 5 5 11 5 5 19 5 96 714

nearest neighbors, the resulting instances tend to have a very large number of neighbors
(varying from 7 to 14.447). Note that in 7 datasets, the maximum number of neighbors
selected for an instance was very close to the total number of instances in the training set
(abalone, wineWhite, bank32nh, tic, elevators, california, and house_16H). As a result,
instances far from the location of the test point are used for explanation, which is also
not ideal.

A better balance is obtained by the heuristic that chooses as neighborhood points
those that are less than the third quartile of the two closest neighbors. In this case, we
manage to obtain, for 12 datasets, a median value that exceeds the minimum and, at the
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same time, we prevent the neighborhood from getting too large and distort the locality of
the explanation. In this way, this will be the heuristic used to choose the neighborhood
of the DELA explanation method.

4.3 Results

This section evaluates the explanations provided by the proposed method (DELA)
and compare them to the explanations obtained by previously proposed explanation meth-
ods in the literature (ELA and LIME).

We will begin by evaluating the errors obtained in the task of predicting the out-
put using regression models trained with the following algorithms: Linear Regression,
Symbolic Regression with Genetic Programming, and Random Forest Regression (Sec-
tion 4.3.1). The datasets used are described in Table 4.1. We show that inherently
interpretable models yield inferior results in terms of error when compared to models
built by black-box algorithms, justifying the need for explanation methods.

Next, we will conduct a quantitative (Subsection 4.3.2) and qualitative (Subsec-
tion 4.3.3) analysis of the explanations proposed for each of the datasets. Finally, to
validate the explanations based on human domain experts’ knowledge, we will conduct a
case study on a real-world medical dataset (Subsection 4.3.4), where the task is to predict
the severity level of a patient in terms of Rheumatic Heart Disease (RHD) diagnosis.

4.3.1 Regression with all points

In this section, we perform an analysis using different regression algorithms with all
training and test points, considering both RMSE and model complexity. This is important
for two reasons: first, to show we need more than a linear regression to solve the problem;
second, to ensure the results of the local explanations will not increase the test error
substantially.

As DELA is model agnostic, we used two regression methods considered state of
the art: i) Symbolic regression with genetic programming (GP), implemented using the
Python package Deap [37]; and ii) Random Forest Regressor (RF), found in the Scikit
Learn library1. The parameters for these two methods were defined as follows.

1https://scikit-learn.org/
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The GP algorithm required defining a set of functions and terminals to generate
the regression models from. We defined as operators the binary operations of addition
(+), subtraction (-) and multiplication (x), in addition to the analytic quotient (AQ),
which has the general properties of division but without discontinuity , as proposed in
[92]. The terminals are the predictive features of the datasets and ephemeral constants,
which can randomly assume the values -1, 0 or 1.

After a preliminary parameter tuning, the GP was executed with an initial pop-
ulation of 1,000 individuals evolved by 250 generations, using a tournament selection of
size 7. The probabilities of crossover and mutation were defined as 0.8 and 0.2, respec-
tively. The depth limit of the trees was varied to show the differences in the number of
nodes of the solutions found and their impact in interpretability. For the Random Forest
Regressor, all the default parameters of the Sklearn tool were preserved.

In addition, we also evaluated the performance of the model with a linear regression
method run with no regularization, and L1 and L2 normalization [15]. These models were
chosen as they are considered interpretable regression methods (remembering that with
the increasing complexity of the model, interpretability is increasingly difficult).

Tables 4.5 and 4.6 present the RMSE in the training and test sets, respectively
(except for the fried and mv datasets due to the high computational cost required to
run GP). Considering the non-deterministic nature of the results obtained by RF and
GP, all tests presented were executed 10 times, and the median RMSE reported. Two
depth of GP trees were considered: 2 and 6, to show the impact of model complexity
on RMSE. The linear regression was run without any regularization and using both L1
and L2 regularization. The parameter that defines the regularization force (alpha) of the
methods with L1 and L2 were chosen in order to better fit the model to the training set,
performing a grid search considering values in the range from 0.1 to 6.0, in intervals of
0.3.

Note that the results of RMSE of the GP improved as we increased the depth of the
tree. The results of the linear regression with and without regularization present no statis-
tical difference for the synthetic datasets according to a t-test with 95% confidence. The
results obtained with RF were better in all datasets for the training cases and overall were
also the better than the GP results for the test cases. Thus, in the following experiments
we will focus on the task of explaining models built by RF regression algorithms.
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Table 4.5: Median RMSE in the complete training set.

Dataset Random Forest Genetic Programming Linear Regression
10 trees Depth 2 Depth 6 No regular. L1 L2

keijzer-1 0.00 0.69 0.25 1.00 1.00 1.00
keijzer-4 0.05 0.99 0.45 1.00 1.00 1.00
keijzer-7 0.00 0.42 0.20 0.43 0.44 0.43
vladislavleva-1 0.03 0.71 0.31 0.77 0.79 0.77
vladislavleva-2 0.03 1.00 0.34 0.99 1.00 0.99
vladislavleva-3 0.03 1.00 0.51 1.00 1.00 1.00
vladislavleva-4 0.13 1.00 0.77 1.00 1.00 1.00
vladislavleva-5 0.06 0.47 0.07 1.00 1.00 1.00
vladislavleva-7 0.07 0.35 0.33 1.00 1.00 1.00
vladislavleva-8 0.05 0.68 0.30 0.99 1.00 0.99
cholesterol 0.45 0.94 0.76 0.89 0.93 0.89
auto-mpg 0.17 0.49 0.38 0.44 0.46 0.44
sensory 0.38 0.96 0.90 0.97 0.99 0.97
strike 0.45 0.96 0.92 0.94 0.96 0.94
day_filter 0.15 0.57 0.44 0.43 0.49 0.43
house 0.18 0.59 0.53 0.36 0.44 0.36
wineRed 0.31 0.86 0.81 0.78 0.82 0.78
abalone 0.30 0.72 0.68 0.68 0.78 0.68
wineWhite 0.30 0.90 0.87 0.86 0.89 0.86
cpu_act 0.06 0.66 0.45 0.52 0.57 0.52
bank32nh 0.32 0.85 0.72 0.69 0.74 0.69
puma32H 0.12 0.69 0.45 0.88 0.89 0.88
compactiv 0.06 0.63 0.35 0.51 0.56 0.51
tic 0.52 1.00 0.99 0.97 1.00 0.97
ailerons 0.18 0.58 0.49 0.42 0.48 0.42
elevators 0.18 0.71 0.49 0.42 0.69 0.42
california 0.19 0.73 0.63 0.61 0.72 0.61
house_16H 0.27 0.93 0.90 0.86 0.92 0.86

4.3.2 Quantitative Evaluation of DELA

This subsection evaluates the performance of the DELA method compared to the
predictive capability of the local linear model approximation in relation to the original
model trained with the Random Forest (RF) algorithm. It also verifies the compatibility
of the feature importance returned by the explainer compared to the values returned
by the model. To evaluate the local linear model, we compare the predictions using the
explanation methods ELA and LIME for the same test instances. For feature importance,
we compare only with ELA using all training instances. The LIME method is not used
in comparing feature importance because it does not return this type of information.

Table 4.7 shows the results of the median absolute difference found when comparing
the predicted values of the test points from the datasets shown in Table 4.1 for the local
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Table 4.6: Median RMSE in the test set.

Dataset Random Forest Genetic Programming Linear Regression
10 trees Depth 2 Depth 6 No regular. L1 L2

keijzer-1 0.01 0.68 0.25 1.01 1.01 1.01
keijzer-4 0.23 1.25 0.45 1.25 1.26 1.25
keijzer-7 0.01 0.39 0.16 0.39 0.39 0.39
vladislavleva-1 0.05 0.74 0.30 0.81 0.83 0.81
vladislavleva-2 0.08 0.97 0.38 1.01 1.00 1.01
vladislavleva-3 0.05 0.97 0.51 0.97 0.97 0.97
vladislavleva-4 0.28 0.98 0.77 0.99 0.98 0.99
vladislavleva-5 0.11 0.45 0.07 0.92 0.92 0.92
vladislavleva-7 0.15 0.35 0.34 0.94 0.93 0.94
vladislavleva-8 0.08 0.64 0.26 0.82 0.82 0.82
cholesterol 1.05 1.05 1.02 1.00 0.94 0.99
auto-mpg 0.37 0.51 0.42 0.48 0.52 0.49
sensory 0.93 1.04 1.01 1.04 1.04 1.04
strike 0.89 0.96 0.93 0.91 0.93 0.91
day_filter 0.37 0.59 0.48 0.49 0.51 0.48
house 0.41 0.61 0.56 0.56 0.53 0.56
wineRed 0.87 0.92 0.90 0.87 0.89 0.87
abalone 0.73 0.72 0.70 0.70 0.79 0.70
wineWhite 0.78 0.84 0.81 0.81 0.84 0.81
cpu_act 0.15 0.65 0.45 0.51 0.57 0.51
bank32nh 0.77 0.90 0.74 0.71 0.76 0.71
puma32H 0.27 0.71 0.47 0.91 0.91 0.91
compactiv 0.14 0.60 0.34 0.52 0.55 0.52
tic 1.10 0.95 0.95 0.93 0.95 0.93
ailerons 0.43 0.57 0.49 1.57e+12 0.47 0.42
elevators 0.52 0.77 0.53 0.46 0.76 0.46
california 0.45 0.72 0.61 0.59 0.71 0.59
house_16H 0.62 0.90 0.87 0.84 0.89 0.84

approximation by DELA, ELA, and LIME with the predictions returned by the RF model.
The best results are highlighted in the table. Considering the non-deterministic nature of
the methods involved in this process, all experiments were performed 10 times.

The logic behind these results is to evaluate the impact that local models have on
the errors of the test points. We compare these results using an adapted Friedman test
followed by a Nemenyi post-hoc test with a usual significance level of 0.05 and Bonferroni
correction. The critical diagram plot is shown in Figure 4.8. As we can see, the ELA
explanation method obtained a statistically superior result in the model prediction ap-
proximation compared to the values found by LIME. Regarding the DELA method, no
statistical difference was found compared to the competing methods.

Since the model to be explained was trained by the RF algorithm, we can also
compare the importance of the features according to the original model and compare
with the global explanations of ELA and DELA. Recall that the feature importance in
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Table 4.7: Median of the absolute difference found when comparing the predicted values of
the test points using local approximation by ELA, DELA, and LIME with the predictions
made by RF.

Dataset ELA DELA LIME

keijzer-1 0,00 0,00 0,03
keijzer-4 0,02 0,02 0,27
keijzer-7 0,00 0,00 0,13
vladislavleva-1 0,00 0,00 0,08
vladislavleva-2 0,00 0,01 0,11
vladislavleva-3 0,01 0,24 0,20
vladislavleva-4 0,04 0,05 0,07
vladislavleva-5 0,02 0,02 0,28
vladislavleva-7 0,14 0,15 1,96
vladislavleva-8 0,02 0,03 0,76
cholesterol 20,94 22,47 14,26
auto-mpg 1,29 1,33 1,23
sensory 0,34 0,27 0,29
strike 100,40 99,79 142,73
day_filter 353,38 388,73 419,56
house 13359,63 13491,83 13541,25
wineRed 0,22 0,26 0,21
abalone 0,94 0,87 2,16
wineWhite 0,27 0,31 0,25
cpu_act 1,11 1,11 5,17
bank32nh 0,03 0,04 0,03
puma32H 0,02 0,02 0,02
compactiv 1,10 1,13 4,78
tic 0,03 0,08 0,09
ailerons 0,00 0,00 0,00
elevators 0,00 0,00 0,01
california 24254,48 25778,47 60327,90
house_16H 7160,54 7961,15 21560,82
fried 1,06 1,09 1,23
mv 0,49 0,40 2,88

Figure 4.8: Critical diagram comparing the output of the explanation methods with the
outputs provided by the original model.

Source: created by the author.
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ELA is calculated according to Equation 4.10, and in DELA, it is calculated according
to Equation 4.12. These calculations are performed for each of the training instances
and aggregated into output intervals as requested by the user. In the RF algorithm, the
feature importance is measured by calculating the decrease in the average impurity that
each attribute provides when used to construct the decision trees. By default, the Sklearn
tool calculates the impurity by the Gini metric. The results obtained are presented in
Table 4.8.

It is essential to observe that an RF model identifies the importance of a feature
using the entire solution space of the problem. Therefore, to compare the importance
of the features calculated by the RF with the explanation methods, it was necessary to
delimit the global explanation generated by the model to only one output interval. Note
that different regions of the solution can have different resource importance. Therefore,
the ELA and DELA explanation methods have the additional advantage over the RF
model of showing the importance of resources in different output intervals as needed
by the user and not just in one. In addition, other models created by other regression
algorithms may have no ability to estimate feature importance. In this case, using the
explanation generated by explanation methods such as ELA or DELA would be the only
alternative to understanding the model.

Thus, for each feature, we calculated its importance in ELA and DELA by aggre-
gating the importances found in all training instances. We compared this result with the
feature importance of the RF by calculating the RMSE between the values obtained by
each of the features. In this process, we obtained as a result that there is no statistical
difference between the importances calculated by the two methods during the explanation
process.

These experiments show that the DELA explanation method can achieve quanti-
tative results as good as its main competitors (ELA and LIME) during the local approx-
imation process in obtaining explanations.

4.3.3 Qualitative Evaluation of DELA

This section presents a qualitative evaluation considering 3 datasets that have
nonlinear relationships between input features and the output feature. Our interest is to
verify of the results obtained by DELA make sense both in terms of the explanations for
specific samples and the overall explanation provided by the method. In particular, in
this section we are also interested in verifying the differences in global explanations when
compared with the results obtained by ELA. The datasets analyzed were: i) wineRed; ii)
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Table 4.8: RMSE of feature importance returned by the original model when compared
with the ELA and DELA explanation methods.

Dataset ELA DELA

keijzer-1 0.00 0.00
keijzer-4 0.00 0.00
keijzer-7 0.00 0.00
vladislavleva-1 2.77 6.95
vladislavleva-2 0.00 0.00
vladislavleva-3 17.04 14.26
vladislavleva-4 0.59 0.60
vladislavleva-5 3.13 2.16
vladislavleva-7 1.99 2.11
vladislavleva-8 2.78 2.29
cholesterol 4.76 6.19
auto-mpg 9.31 9.14
sensory 2.85 3.93
strike 6.23 5.93
day_filter 10.70 9.96
house 6.23 6.06
wineRed 6.88 6.96
abalone 13.41 12.91
wineWhite 4.58 4.54
cpu_act 12.05 11.96
bank32nh 5.51 5.37
puma32H 11.35 11.36
compactiv 14.44 14.83
tic 1.12 1.22
ailerons 6.61 7.30
elevators 10.19 10.54
california 14.71 15.40
house_16H 5.59 6.90
fried 10.67 10.61
mv 15.14 15.48

auto-mpg; and iii) cholesterol.

WineRed: This dataset describes the characteristics of wines of the red type and the
output the quality, with notes varying between 0 and 10. The set of 11 features used
to describe each instance is as follows: fixed acidity, volatile acidity, citric acid, residual
sugar, chlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sulfates, and alcohol.

We randomly selected examples of explanations to illustrate the algorithm output.
Table 4.9 shows that, for a wine receiving note 3, the absolute error of the explanation
compared to the model’s output was 0.09 (5.20 for RF and 5.11 for DELA). In addition,
looking at the importance metric, we can highlight the following features: citric acid
(26.58%), alcohol (17.00%) and sulfates (14.48%).
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Table 4.9: Information of the regression methods and DELA for the wineRed dataset.

Features Test point DELA Neighb. Var.Feat. Import Coeffic

fixed acidity 11.6 5.13 -0.071 10.4 <= x <= 12.7
volatile acidity 0.58 2.59 -0.425 0.39 <= x <= 0.6
citric acid 0.66 26.58 0.440 0.61 <= x <= 0.66
residual sugar 2.2 2.18 0.409 2.2 <= x <= 2.6
chlorides 0.074 1.72 0.247 0.063 <= x <= 0.091
free sulfur dioxide 10.0 1.20 -0.053 6.0 <= x <= 11.0
total sulfur dioxide 47.0 11.02 0.664 18.0 <= x <= 47.0
density 1.001 12.85 0.214 0.9997 <= x <= 1.0008
pH 3.25 5.23 -0.139 3.03 <= x <= 3.25
sulfates 0.57 14.48 0.736 0.49 <= x <= 0.69
alcohol 9.0 17.0 0.595 9.0 <= x <= 9.9

Intercept DELA -0.464

Quality (y) 3
DELA (y’) 5.11
RF (y’) 5.2

Finally, the last column in Table 4.9 shows the range of values of the features of
neighbors considering a maximum range of 10% of variance in the output. This strategy
is used by ELA to assess how different the features in the training instances selected
as neighbors are. Both ELA and DELA consider that a difference in the output value
between the instance of interest for explanation and the selected neighbors, exceeding 10%
of the corresponding output range of all training points in the model, should be avoided.
This limit is used to mitigate the risk of including noisy data in the local explanations.
By verifying the modifications of the values of the features we can understand how wines
similar to the presented could be manufactured. For example, the residual sugar feature
could range between 2.20 and 2.60.

Since we have a large training set, we can also provide an overall explanation of the
model’s functioning using a graph of stacked areas2, as shown in the Figure 4.9a. Recall
that the stacked area chart is built by aggregating the local explanations of the training
instances. Thus, the importance of the features is evaluated for each training instance,
and then grouped into intervals according to the user’s preference. In this specific case,
we defined up to 9 intervals, ranging from integers 1 to 10 representing the scores assigned
to wines. The graph shows that, regardless of the quality attributed to a wine, in general
the most relevant features are alcohol, and features related to the amount of sulfur and
acidity of wines. Figure 4.9b shows the global explanation provided by ELA, which is
very similar to the one given by DELA.

2Generated using Chart.js3 tool
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Table 4.10: Information of the regression methods and DELA for the auto-mpg dataset -
test point 1.

Features Test point DELA Neighb. Var.Feat. Import Coeffic

cylinders 8 1.91 0.040 x = 8.0
displacement 429 34.65 -0.471 400.0 <= x <= 455.0
horsepower 208 0.27 -0.003 190.0 <= x <= 225.0
weight 4633 24.42 -0.382 4341.0 <= x <= 4952.0
acceleration 11 26.98 -0.535 10.0 <= x <= 12.5
model year 72 11.76 0.325 70.0 <= x <= 73.0
origin 1 0.0 0 x = 1.0

Intercept DELA -0.064

Consumption (y) 11.0
DELA (y’) 13.16
RF (y’) 12.7

Upon comparing this explanation to the one provided by ELA in Figure 4.9c, which
was obtained when the model was trained with a GP algorithm, we can observe significant
changes in the importance of features. Specifically, we found that in the GP model, the
alcohol and total sulfur dioxide features contributed more to the output. This indicates
that both ELA and DELA methods produce consistent results when the model remains
unchanged and adjust according to the model being explained, not just the initial dataset
used in building the model. This type of information can be valuable for a domain expert
in choosing between algorithms capable of creating the most appropriate model to their
problem.

Auto-mpg: This dataset concerns city-cycle fuel consumption in miles per gallon
(MPG), to be predicted in terms of 3 multivalued discrete and 5 continuous features.
The set of 7 features used to describe each instance is as follows: cylinders, displacement
(engine displacement), horsepower, weight, acceleration, model year, and origin.

The example of explanation in Table 4.10 shows that, for a car with high fuel
consumption (11 MPG), there is an absolute error of 0.46 (12.70 for RF and 13.16 for
DELA). In addition, looking at the importance metric, we can highlight the following
features: displacement (34.65%), acceleration (26.99) and weight (24.42%). Table 4.11
shows an example of local interpretation of a low fuel consumption car (43.1 MPG),
with an absolute error of 0.89 (33.23 for RF and 34.12 for DELA). We can see that
again the most important feature is weight (28.97%) followed by acceleration (28.65%)
. Comparing the last lines in Tables 4.10 and 4.11, we conclude that fuel-efficient cars
should be considerably lighter and do not have great acceleration power.

Finally, we provide an overall explanation of the model’s functioning using a graph
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Figure 4.9: Global explanation for attributing quality to a wine. The x-axis represent the
note the wine received, the y-axis the relative importance of the feature when that note
is attributed to a wine.

(a) DELA - RF Model

(b) ELA - RF Model

(c) ELA - GP Model

Source: created by the author.
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Table 4.11: Information of the regression methods and DELA for the auto-mpg dataset -
test point 2.

Features Test point DELA Neighb. Var.Feat. Import Coeffic

cylinders 4 0.0 0 x = 4.0
displacement 90 11.84 -0.202 79.0 <= x <= 90.0
horsepower 48 18.27 -0.263 48.0 <= x <= 58.0
weight 1985 28.97 -0.420 1825.0 <= x <= 1985.0
acceleration 21.5 28.65 -0.279 18.6 <= x <= 21.5
model year 78 11.97 0.823 77.0 <= x <= 78.0
origin 2 0.29 0.137 x = 2.0

Intercept DELA 0.456

Consumption (y) 43.1
DELA (y’) 34.12
RF (y’) 33.23

of stacked areas, as shown in the Figure 4.10a. This show us that in general the most
relevant features are displacement, weight, horsepower, and origin. According to [93]
the heavier the vehicle is, the more energy it needs to get moving as heavier vehicles
have greater inertia and greater rolling resistance, both contributing to increased fuel
consumption. Reducing weight is a very effective way to improve a vehicle’s efficiency. In
addition, another parameter that influences the fuel consumption rate is the engine power
[93], feature highly related to the features displacement and horsepower.

If we compare the explanations provided by DELA (Figure 4.10a) and ELA (Figure
4.10b), we can see that the importance of the origin feature differs considerably when
looking at more economical cars. In order to verify which explanation is the most correct,
we will resort to our dataset and verify the relationship between the origin of the car
and its respective consumption. As shown in the boxplot in Figure 4.11, the American
automobiles in the dataset do have a much higher fuel consumption than the others.
Thus, we have a strong indication that the modifications proposed for DELA managed to
obtain an even richer and more precise explanation than that obtained by ELA.

Cholesterol: This dataset describes the characteristics of individuals with the output
being their blood cholesterol (mg/dl) levels. The set of features used to describe each
instance is as follows: i) age in years; ii) sex; iii) cp: chest pain type (1 = typical angina;
2 = atypical angina; 3 = non-anginal pain; 4 = asymptomatic); iv) trestbps: resting blood
pressure (in mm Hg on admission to the hospital); v) fbs: fasting blood sugar > 120 mg/dl
(1 = true; 0 = false); vi) restecg: resting electrocardiograph results (0 = normal; 1 =
having ST-T; 2 = hypertrophy); vii) thalach: maximum heart rate achieved; viii) exang:
exercise induced angina (1 = yes; 0 = no); ix) oldpeak: ST depression induced by exercise
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Figure 4.10: Global explanation for attributing consumption in miles per gallon. The
x-axis represent the consumption, the y-axis the relative importance of the feature when
that output is attributed to a car.

(a) DELA

(b) ELA

Source: created by the author.

relative to rest; x) slope: the slope of the peak exercise ST segment (1 = upsloping; 2 =
flat; 3 = downsloping); xi) ca: number of major vessels (0-3) colored by flourosopy; xii)
thal: 3 = normal; 6 = fixed defect; 7 = reversable defect; and xiii) num: diagnosis of
heart disease (angiographic disease status) (Value 0 =< 50% diameter narrowing; Value
1 => 50% diameter narrowing).

The example of explanation in Table 4.12 shows that, for a person with 335 mg/dl
cholesterol, there is an absolute error of 15.34 (238.6 for RF and 253.94 for DELA). In
addition, looking at the importance metric, we can see that the most important feature
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Figure 4.11: Car consumption (miles per gallon) by origin.

Source: created by the author.

Table 4.12: Information of the regression methods and DELA for the cholesterol dataset.

Features Test point DELA Neighb. Var.Feat. Import Coeffic

age 57 1.38 0.112 54.0 <= x <= 61.0
sex 1 0 0 x = 1.0
cp 4 0 0 x = 4.0
trestbps 110 14.10 0.789 110.0 <= x <= 152.0
fbs 0 0 0 x = 0.0
restecg 0 14.20 -0.490 0.0 <= x <= 2.0
thalach 143 37.54 0.788 88.0 <= x <= 143.0
exang 1 0 0 x = 1.0
oldpeak 3 15.99 -0.516 1.2 <= x <= 3.6
slope 2 0 0 x = 2.0
ca 1 0 0 x = 1.0
thal 7 0 0 x = 7.0
num 2 16.80 0.417 1.0 <= x <= 3.0

Intercept DELA 1.23

Cholesterol level (y) 335.0
DELA (y’) 253.94
RF (y’) 238.60

to explain the output obtained for this individual was thalach (37.53%).
We also provide an overall explanation of the model’s functioning using a graph of

stacked areas, as shown in the Figure 4.12a. It show that, in general, the most relevant
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features are sex, ca, thalach, and age.
Researchers already know that there is a relationship between sex, age [58] and an

individual’s cholesterol level. It is known that from the age of 20-55, men tend to have
higher cholesterol levels, but after that age, cholesterol levels rise rapidly in women and
exceed those in men [50]. As for the heartbeat frequency, it is known that when the LDL
level of cholesterol gets too high a plaque can build up along the blood vessel walls, which
can cause the blood vessels to become hard and narrow. This hardening of the blood
vessels can restrict blood flow to the heart and or brain. When less blood is able to get
through the blood vessels, the heart must beat faster to deliver enough blood and oxygen.
This can lead to a higher pulse and higher blood pressure [91].

Finally, if we compare the explanations provided by DELA (Figure 4.12a) and
ELA (Figure 4.12b), we observe that DELA is able to maintain a more constant behavior,
without abrupt changes in terms of the importance of the features with the increase in
the cholesterol level. We believe that more drastic modifications occur in ELA due to the
need for instances to always be explained by only 5 neighbors. Therefore, when there is
a higher local density, DELA is able to stand out by creating a more robust local model.

4.3.4 A Case Study of DELA for a medical dataset

In the previous sections we analyzed the results of DELA in classical datasets from
the literature, and looked at the quality of the interpretations from a layman point of
view. In this section, we apply DELA to a medical dataset that aims to identify whether
a patient has Rheumatic Heart Disease (RHD), and for which we have specialists that
can validate the results of explanation.

RHD is a “damage to one or more heart valves that remains after an episode of
acute rheumatic fever (ARF) is resolved. It is caused by an episode or recurrent episodes
of ARF, where the heart has become inflamed. The heart valves can remain stretched
and/or scarred, and normal blood flow through damaged valves is interrupted. Blood may
flow backward through stretched valves that do not close properly, or may be blocked due
to scarred valves not opening properly. When the heart is damaged in this way, the heart
valves are unable to function adequately, and heart surgery may be required”4.

This dataset has 2,619 patients and initially targets the patient’s classification
in three possible classes: normal, borderline RHD, and definite RHD. As our tool was
developed for regression problems we turn the problem into detecting a level of severity
of the diagnosis produced: normal as level 1, borderline as level 2 and definite as level

4https://www.rhdaustralia.org.au/what-rheumatic-heart-disease
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Figure 4.12: Global explanation for attributing cholesterol. The x-axis represent the
serum cholesterol in mg/dl, the y-axis the relative importance of the feature when that
output is attributed to a person.

(a) DELA

(b) ELA

Source: created by the author.

3. For each patient, 20 features are listed, as described in Table 4.13. It’s important to
point out that, in this dataset, 15 out of 20 features are categorical, and all of them are
binary.

In this section we want to qualitatively assess the explanations obtained for differ-
ent levels of disease severity. First, we randomly selected a test patient for each severity
level and all other instances of the dataset were used for training. The results of this local
explanation are shown in Section 4.3.4.1. Next, we aggregate all feature importance re-
sults obtained individually for each of the severity levels present in the complete training
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Table 4.13: RHD: features used to describe instances.

Id Feature Type

x1 Gender Categorical
x2 Type of Household Categorical
x3 # House Residents Discrete
x4 # House Residents Younger than 15 Years Old Discrete
x5 Anterior Mitral Leaflet Thickness Discrete
x6 Mitral Regurgitation Categorical
x7 Length of Mitral Regurgitation Discrete
x8 Mitral Regurgitation > 1.5cm Categorical
x9 Mitral Regurgitation > 2cm Categorical
x10 Pan-systolic by color Doppler Categorical
x11 Pan-systolic by spectral Doppler Categorical
x12 Mitral Velocity > 3m/sec (spectral Doppler) Categorical
x13 Mitral Stenosis Categorical
x14 Aortic Regurgitation Categorical
x15 Aortic Regurgitation > 1cm Categorical
x16 Length of AR Jet Discrete
x17 Pan-diastolic by color Doppler Categorical
x18 Pan-diastolic by spectral Doppler Categorical
x19 Aortic Velocity > 3m/sec (spectral Doppler) Categorical
x20 Aortic Stenosis Categorical

dataset and plot the stacked areas graph depicting the evolution of feature importance
with the addition of gravity of the disease (Section 4.3.4.2). In addition, we compare the
explanations of the proposed method with the explanations obtained by LIME.

4.3.4.1 Local interpretation

In this section we show the results found by DELA for three patients, each with
a different level of severity of the disease. For each patient, we report the results of
the RF and DELA. Furthermore, we compare the explanations obtained by DELA with
explanations provided by two other methods: ELA and LIME [107]. We will work with
LIME without normalizing the input data due to the difficulty in going back to the original
attributes values after normalization when presenting the results. We believe that LIME
will not be harmed, since, as we previously evaluated, it is not very sensitive to the data
normalization process.

Patient 1: normal RHD As shown in Table 4.14, the predicted value found by the
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Table 4.14: Local explanation for diagnosis of RHD in patient level 1: normal.

Patient level 1
Test point analyzed = [0, 1, 14, 2, 27, 1, 7, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Value predicted by RF: 1.1

DELA ELA LIME

Value predicted by Local Explanation:
1.0 1.0 0.99
Coefficients of linear regression:
[0.04, 0.01, 0.00, 0.00, 0.00,
-0.06, 0.00, 0.00, 0.00, 0.04,
-0.01, 0.00, 0.00, 0.00, -0.01,
0.00, -0.01, 0.00, 0.00, 0.00]

[0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00]

Not applicable

Importance of features:
26.71, 1.84, 0.00, 0.00, 0.00,
37.10, 0.00, 0.00, 0.00, 32.68,
0.46, 0.00, 0.01, 0.00, 0.49,
0.00, 0.61, 0.05, 0.034, 0.01

0.00, 0.00, 39.11, 15.10, 27.78,
0.00, 18.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00

Not applicable

Intercept:
-0.235 -0.271 1.510

Figure 4.13: Coefficients returned for local explanation via LIME method.

(a) Patient 1 (b) Patient 2 (c) Patient 3

Source: created by the author.

local explanation obtained by DELA (1.0) and ELA (1.0) was closer to that found by the
RF (1.1) when compared with LIME (0.99).
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Also shown in Table 4.14, an advantage that we can highlight at this point is that
DELA and ELA provides an additional interpretability feature that is the importance
of features for regression of the test instance, which does not occur in LIME. For this
particular patient, we can see that DELA and ELA differ in terms of the importance of
the features. DELA considers the most important feature as x6 (Mitral Regurgitation)
while ELA given a lot of importance to x3 (# House Residents).

Note that with LIME, we do not have direct access to the coefficients used in the
local linear regression. Additionally, for the ELA method, the coefficients of the linear
regression were all zero. This may have happened because the sample size provided by the
neighborhood was very small, with only the 5 closest instances selected. Therefore, for
this specific patient, the linear model used to obtain the explanation did not have enough
information to find a significant relationship between the independent and dependent
variables.

Table 4.15 displays the variations in features values that identify which charac-
teristics are sufficient for a patient to be considered locally close, i.e., patients who also
have a similar severity diagnosis. The table demonstrates that the tools have different
approaches for this step. DELA evaluates neighbors with a maximum of 10% variance in
attributes, whereas LIME perturbs the test instance.

As a result, the outcomes obtained by LIME and DELA differ significantly. For
instance, LIME indicates that patients who are in close proximity to Patient 1 have a
“Length of AR Jet” (x16) feature equal to or less than 0.00. However, this feature cannot
take negative values since it is a measure of length, which implies that this interpretation
disregards the semantic assumptions of the target problem. In other words, the perturba-
tion process resulted in the creation of semantically invalid instances that were considered
in the problem. This issue does not arise in DELA.

Furthermore, in LIME local explanations can be visualized by observing the local
contribution of each feature. Figure 4.13a reports the local explanations provided by
LIME for the normal RHD patient. The blue bars represent negative contributions and
the orange bars contributions to increase the output of the specific test instance feature.
Thus, LIME states that Length of AR Jet has the highest local contribution. In this
case, when Length of AR Jet ≤ 0, its local negative contribution will be −0.34.

In general, we believe that the explanation methods DELA and LIME should not
be seen as competitors, as each of them explains the model taking into account a distinct
aspect. We argue that these methods can be used together so that the user has more
elements to understand the output obtained by the model for a particular instance.

Patient 2: borderline RHD Table 4.16 and Figure 4.13b show the results obtained
for a patient with level 2 severity. As can be seen, the result obtained by the local
approximation resulting from the process performed by DELA (1.82) is closer to the
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Table 4.15: Patient level 1: local variation in features that would allow finding patients
with similar severity levels.

DELA ELA LIME
Neighbors within a maximum range of 10% of variance Test instance perturb

x1 = 0.0
x2 = 1.0
12.0 <= x3 <= 14.0
2.0 <= x4 <= 4.0
13.0 <= x5 <= 36.0
x6 = 1.0
4.0 <= x7 <= 12.0
x8 = 0.0
x9 = 0.0
x10 = 1.0
x11 = 0.0
x12 = 0.0
x13 = 0.0
x14 = 0.0
x15 = 0.0
x16 = 0.0
x17 = 0.0
x18 = 0.0
x19 = 0.0
x20 = 0.0

x1 = 0.0
x2 = 1.0
12.0 <= x3 <= 14.0
2.0 <= x4 <= 4.0
19.0 <= x5 <= 31.0
x6 = 1.0
4.0 <= x7 <= 10.0
x8 = 0.0
x9 = 0.0
x10 = 1.0
x11 = 0.0
x12 = 0.0
x13 = 0.0
x14 = 0.0
x15 = 0.0
x16 = 0.0
x17 = 0.0
x18 = 0.0
x19 = 0.0
x20 = 0.0

x16 <= 0.00
x9 <= 0.00
0.00 <x7 <= 8.00
x13 <= 0.00
x19 <= 0.00
x18 <= 0.00
x14 <= 0.00
x12 <= 0.00
x3 >10.00
x17 <= 0.00
0.00 <x10 <= 1.00
x20 <= 0.00
20.00 <x5 <= 27.00
x15 <= 0.00
x8 <= 0.00
x11 <= 0.00
x4 <= 2.00
x1 <= 0.00
0.00 <x6 <= 1.00
x2 <= 1.00

RF (1.3) when compared to the value predicted by ELA (2.06). However, the local
approximation generated by LIME was closest to the model output (1.36).

Regarding the importance of features for the regression performed in the test sam-
ple, DELA considers “Mitral Regurgitation > 2cm”(x9) as the most relevant while ELA
accounts for “Length of Mitral Regurgitation” (x7), both correlated features. In the ex-
planation provided by LIME, we can observe that locally the two features that contribute
the most to the patient with severity level 2 are precisely “Length of Mitral Regurgitation”
(x7) and “Mitral Regurgitation > 2cm” (x9), with the former having a negative value of
-0.32 and the latter having a positive value of 0.21. According to the clinicians, these are
the two most relevant features in assessing RHD when looking at echocardiograms.

Again, in the process of interpreting the variation of features, Table 4.17 shows
that LIME creates and considers semantically invalid instances, which may lead to a
misinterpretation of the evaluated problem.

Furthermore, note that ELA could not find training neighbors within the estab-
lished limit, while the flexibility of DELA allowed it to find neighbors and report features
variations within the severity level would remain similar. We believe this difference is
mainly due to the more appropriate similarity measure to this specific dataset than the
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Table 4.16: Local explanation for diagnosis of RHD in patient level 2: borderline RHD.

Patient level 2
Test point analyzed = [1, 1, 12, 3, 13, 1, 146, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Value predicted by RF: 1.3

DELA ELA LIME

Value predicted by Local Explanation:
1.82 2.06 1.36
Coefficients of linear regression:
[-2.19e-01, -4.27e+08, 6.01e-01, 2.23e-01,
-4.84e-01, 4.35e+10, 2.88, -4.39e+10,
-1.75e+11, -3.34e-02, 2.742e+09, 0.00,
-6.86e+08, -5.495e+09, 5.49e+09, 0.00,
5.49e+09, 0, 1.37e+09, 0.00]

[0.58, -0.03, -0.03, 1.18,
-3.03, -0.09, 3.98, 0.00,
0.37, -2.03, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00]

Not applicable

Importance of features:
0.00, 0.02, 0.00, 0.00,
0.00, 5.11, 0.00, 11.68,
82.76, 0.00, 0.05, 0.00,
0.00, 0.14, 0.10, 0.00,
0.13, 0.00, 0.01, 0.00

2.75, 0.05, 0.18, 0.72,
12.09, 0.28, 71.21, 0.00,
4.51, 8.21, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00

Not applicable

Intercept:
6.17e+11 -18.57 1.28

generic use of a Euclidean measure. For this specific dataset, the distance measure selec-
tion heuristic proposed for DELA chose the Chebyshev distance. In addition, by the local
density criterion, the DELA method selected 9 nearest neighbors of the evaluated instance
for local explanation creation. Recall that in ELA the number of neighbors was fixed at 5.

Patient 3: definite RHD The local interpretation for a patient with severity level 3
is shown in Table 4.18 and Figure 4.13c. Again, the local output from DELA (2.01)
was closer to the original RF model (2.5) than the results of LIME (1.37) and ELA
(7.83). Again, the most important features found by DELA were “Mitral Regurgitation
> 2cm”(x9) while ELA considers as the most relevant “Length of Mitral Regurgitation”
(x7), both correlated features. Furthermore, the explanation provided by LIME also indi-
cates that the greatest local contributions to achieving the result came from the features
“Length of Mitral Regurgitation” (x7), with a negative value of -0.29, and “Length of
Mitral Regurgitation” (x9), with a positive value of 0.20. We consider this as a strong
indication of consistency in the explanation given.

Finally, Table 4.19 shows that LIME produced instances with semantically invalid
feature values in the test case perturbation process and ELA found no neighbors within
the allowed limit.
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Table 4.17: Patient level 2: local variation in features that allow finding patients with
similar severity levels.

DELA ELA LIME
Neighbors within a maximum range of 10% of variance Test instance perturb

0.0 <= x1 <= 1.0
x2 = 1.0
9.0 <= x3 <= 12.0
1.0 <= x4 <= 3.0
10.0 <= x5 <= 13.0
x6 = 1.0
146.0 <= x7 <= 153.0
x8 = 1.0
x9 = 1.0
0.0 <= x10 <= 1.0
x11 = 0.0
x12 = 0.0
x13 = 0.0
x14 = 0.0
x15 = 0.0
x16 = 0.0
x17 = 0.0
x18 = 0.0
x19 = 0.0
x20 = 0.0

Did not find neighbors.

x16 <= 0.00
x9 >0.00
x7 >13.00
x19 <= 0.00
x11 <= 0.00
x18 <= 0.00
x5 <= 15.00
x13 <= 0.00
x3 >10.00
x17 <= 0.00
0.00 <x10 <= 1.00
2.00 <x4 <= 3.00
x15 <= 0.00
x12 <= 0.00
x20 <= 0.00
0.00 <x6 <= 1.00
0.00 <x1 <= 1.00
x8 >0.00
x14 <= 0.00
x2 <= 1.00

4.3.4.2 Global interpretation

As mentioned earlier, DELA and ELA can also provide a higher and more global
level of interpretation using a stacked area chart. As shown in Figures 4.14a and 4.14b,
the explanations provided by both DELA and ELA indicate, from level 1 patients (normal
RHD), that mitral valve-related features play a main role in diagnosis. In addition, we
can observe that characteristics related to the socioeconomic situation of the patients also
exert considerable influence on the prediction of the diagnosis, such as the number of
residents and the type of house. By increasing the critical level, we observed that the
features related to the thickness of the mitral valve become even more relevance.

These results are consistent with those used in clinical practice. RHD diagnosis
is mainly based on the thickness of the Mitral Valve, the length of regurgitation jet and
socioeconomic information, since RHD usually affects more people in lower social classes.
These results validate the proposed explanation method in a real case.
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Table 4.18: Local explanation for diagnosis of RHD in patient level 3: definite RHD.

Patient level 3
Test point analyzed = [0, 1, 9, 3, 43, 1, 25, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Value predicted by RF: 2.5

DELA ELA LIME

Value predicted by Local Explanation:
2.01 7.83 1.37
Coefficients of linear regression:
[-8.69e+09, -2.52e+11, -5.42e-01, -3.31e-01,
-2.91e+00, 6.54e+11, -7.07e-01, 0.00,
-2.61e+12, 0.00, 0.00, 0.00,
-2.045e+10, -1.63e+11, 1.63e+11, 0.00,
1.63e+11, 0.00, 4.09e+10, 0.00]

[0.00, 0.00, -1.703, 17.539,
0.757, 0, 82.123, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00]

Not applicable

Importance of features:
0.075, 1.07, 0.0, 0.0,
0.0, 5.75, 0.0, 0.0,
92.25, 0.0, 0.0, 0.0,
0.01, 0.31, 0.23, 0.0,
0.28, 0.0, 0.01, 0.0

0.0, 0.0, 1.46, 8.09,
5.79, 0.0, 84.66, 0.0,
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0

Not applicable

Intercept:
8.07e+12 -12.75 1.34

4.4 Summary

This chapter focused on improving ELA to encompass a more dynamic internal
structure that is adaptable to the characteristics of each dataset, named DELA (Dynamic
Explanation by Local Approximation). DELA chooses the most appropriate distance
measure to the dataset at hand, dynamically defines the number of neighbors that will be
selected for the local explanation according to the data local density and calculates the
importance of the features based on the location of the test instance.

As a result, DELA is able to obtain local explanations with errors that are, overall,
statically similar to ELA, with the advantage of being less affected by datasets with high
variance in features. Furthermore, qualitatively DELA was able to identify the importance
of features that were underestimated by ELA and find a greater number of neighbors in
denser regions to provide more robust local explanations. Compared to LIME, DELA was
able to return semantically valid local patterns in its explanations, something that does
not always occur with its competitor.
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Table 4.19: Patient level 3: local variation in features that would allow finding patients
with similar severity levels.

DELA ELA LIME
Neighbors within a maximum range of 10% of variance Test instance perturb

x1 = 0.0
x2 = 1.0
9.0 <= x3 <= 10.0
x4 = 3.0
x5 = 43.0
x6 = 1.0
19.0 <= x7 <= 25.0
x8 = 1.0
x9 = 1.0
x10 = 1.0
x11 = 0.0
x12 = 0.0
x13 = 0.0
x14 = 0.0
x15 = 0.0
x16 = 0.0
x17 = 0.0
x18 = 0.0
x19 = 0.0
x20 = 0.0

Did not find neighbors.

x16 <= 0.00
x9 >0.00
x7 >13.00
x18 <= 0.00
x12 <= 0.00
x5 >27.00
x17 <= 0.00
x13 <= 0.00
x19 <= 0.00
x14 <= 0.00
x11 <= 0.00
x20 <= 0.00
0.00 <x10 <= 1.00
x15 <= 0.00
x3 <= 9.00
x1 <= 0.00
x8 >0.00
0.00 <x6 <= 1.00
2.00 <x4 <= 3.00
x2 <= 1.00
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Figure 4.14: Global explanation for attributing diagnosis of RHD. The x-axis represent the
diagnosis, the y-axis the relative importance of the feature when that output is attributed
to a patient.

(a) DELA

(b) ELA

Source: created by the author.
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Chapter 5

M-PEER: An example-based
explanation method

In this chapter we present our contribution to example-based/prototype-based explanation
methods. In this type of approach we look for or create instances that can represent the
black-box model or a specific test instance prediction. We call these explanatory instances
prototypes.

The set of selected prototypes needs to be able to both describe the data dis-
tribution considering the fitted machine learning model while also explaining individual
predictions. We propose a new methodology that divides the explanation process into
two distinct steps, and is able to provide both global and local explanations. Global
explanations refer to understanding the model’s overall behavior: What are the patterns
underlying the model’s behavior? Alternatively, local explanations are in the context of an
individual prediction: Which points in the training set most closely resemble a test point?
In our methodology, the first step refers to identifying a set of data representative pro-
totypes. Next, we locally explain each prediction by assigning it to its closest prototype,
according to a metric proposed in this work.

We assume that a prototype refers to an instance in the training set, and the set
of prototypes is representative of the whole dataset. To find the prototypes, we propose
M-PEER (Multiobjective Prototype-basEd Explanation for Regression), a method based
on Pareto multi-objective evolutionary optimization. M-PEER extracts post-hoc expla-
nations by treating the original model as a black-box [105], and hence is model-agnostic.
It requires as input the predictions a regressor fitted using a dataset, and returns a set of
prototypes that globally explains the model.

M-PEER was conceived to optimize three metrics: global prototypes fidelity, global
prototypes stability, and the Root Mean Squared Error (RMSE). The first two metrics
were inspired by neighborhood-fidelity (NF) [98] and stability (S) [83] metrics previously
proposed in the literature of interpretability for classification. While these two metrics
were originally proposed to capture the quality of local explanations, we extrapolate them
to also evaluate the model global explanation.

The global fidelity measure wants the chosen prototypes to be as close as possible
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to the output of the instances to be explained. In contrast with previous approaches,
we account for the model’s output when calculating prototypes fidelity and not only the
input data. We believe that without considering the model output the measure simply
explains the data and not the model learned by the regression algorithm. The second
measure, global stability, wants the features of the prototypes to be as similar as possible
to the features of the instances to be explained. Finally, we need to account for the error,
as we want the error generated by the prototypes to be as close as possible to the error
of the black-box model. As we do not have a clear and quantitative way to define which
of these objectives is the most relevant, the Pareto multi-objective approach is a good fit
to this problem.

We compare the results of our prototype-based method with ProtoDash [51], the
state-of-the-art method in the context of explanation via prototypes. We also present
comparisons to other machine learning methods that could be easily adapted to select
prototypes: clustering, hub-based approaches and instance selection. Results demonstrate
significant gains of M-PEER over other strategies, with an average of 12% improvement
in the proposed Global Fidelity and Stability (GFS) metric and 17% in RMSE when com-
pared to ProtoDash. In particular, the M-PEER version that optimizes three objectives
(i.e., RMSE, fidelity and stability) was always superior than the state-of-the-art in all
GFS measures, and up to 80% better in terms of RMSE. The main contributions of this
work are:

1. To the best of our knowledge, this is the first work dedicated specifically to finding
and evaluating prototypes in order to obtain explanations for models in regression
problems, taking into account characteristics such as the output of the regressor
model and not only the features of the instances.

2. We introduce a new two-level methodology to choose prototypes from training data,
capable of providing both global and local explanations to predictions.

3. We propose a multi-objective evolutionary method to find the best prototypes for
explaining the black-box model, called M-PEER.

4. We adapt and empirically show the applicability of strategies already used in other
areas of machine learning in order to select the best prototypes to explain the model
built by regressors, and show the proposed method outperforms them.
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Algorithm 4 Prototype-based methodology to explain regression models.
Require: T (train), T ′ (test), e (number of prototypes)
1: f = Regression model(T )
2: PR = Select e prototypes(T , f)
3: Show global model explanation(PR)
4: for each t′ ∈ T ′ do
5: f(t′) = ŷ
6: pr = argminpr ∥dist(t′, PRpr)∥
7: Show prototype pr as a local explanation for f(t′)
8: end for

5.1 Proposed Methodology

This section introduces the methodology proposed to provide both global and local
explanations to regression models. Given a finite set of input-output pairs representing the
training instances T = {ti = (xi, yi)}ni=1—with (xi, yi) ∈ Rd×R and xi = [xi1, xi2, . . . , xid],
for i = {1, 2, . . . , n}—we define X = [x1,x2, . . . ,xn]

T and Y = [y1, y2, . . . , yn]
T as the

matrix n×d of inputs and the n-element output vector, respectively. We then formulate a
regression problem as the problem of learning a function f̂β : xi → R such that f̂(xi; β) ≃
f(xi) = yi,∀xi ∈ X, ∀yi ∈ Y , where f(xi) stands for the true unknown function that
generates the samples output values, and f̂(xi; β) = ŷi stands for an approximation
dependent on the feature vector xi, and an unknown parameter vector β ∈ Rn.

Global explanations refer to understanding the model’s overall behavior, and are
given by a set of prototypes PR selected from T . The local explanations, in turn, are in
the context of individual predictions. Given a test point t′, the explanation is obtained
by assigning t′ to its closest prototype in PR. Recall that the methodology is agnostic in
relation to the regression model.

Algorithm 4 illustrates the proposed methodology. It starts by learning a regression
model f , and then selects e prototypes PR from the training set (line 2). These selected
prototypes are responsible for the global explanation of the model (line 3). Next, for each
test point t′, we associate it to its closest prototype in PR according to a distance function
(line 6), allowing for a local explanation (line 7). Next we present a method we propose for
instantiating the aforementioned approach – which selects the most suitable prototypes
to explain regression models (Section 5.1.1) and then assigns the selected prototypes to
test examples (Section 5.1.2)– called M-PEER.
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Algorithm 5 Evolutionary process - M-PEER
Require: N (population size), Pxover (probability of crossover), Pmut (probability of mu-

tation), G (number of generations)
1: Pop = Generate initial population
2: A = ∅
3: while current_g <= G do
4: Fit = Evaluate(Pop, A)
5: A = Selection(Pop ∪ A, N)
6: if current_g <= G then
7: Pop = inds for next generation (A, Pxover, Pmut)
8: end if
9: end while

10: A∗ = Pareto non-dominated solutions(A)
11: Bestind = argmini ∥GFS(A∗

i )∥
12: return Bestind

5.1.1 Strategy for Selecting Prototypes

This section presents the method we propose to select prototypes suitable for ex-
plaining regression model predictions. As detailed in Alg. 4, the method returns the
model’s global explanation, represented by a set of prototypes PR and, for each test
instance, a local explanation. Recall that the local models are explained by a single pro-
totype borrowed from the global model. Hence, in order to select the prototypes of the
global model we also need to account for their local quality. With that in mind, we search
for a set of prototypes that minimizes errors while also improving the metrics of global
fidelity (GF) and global stability (GS), as detailed later in this section.

To accomplish this task we model a multi-objective evolutionary algorithm to
the problem, more specifically SPEA2 (Strength-Pareto Evolutionary Algorithm) [124].
SPEA2 follows the same principles of other evolutionary algorithms. Furthermore, SPEA2
evaluates solutions using more than one criterion, and decides which solutions are the best
based on the concepts of Pareto dominance. The concept of Pareto dominance is appro-
priate for cases where we have metrics that are conflicting but equally important to solve
the problem. According to this concept, a solution s1 dominates a solution s2 if it is
better than s2 in at least one criterion and not worse in any other criteria considered
when solving the problem.

Algorithm 5 illustrates M-PEER. Each individual represents a solution to the prob-
lem, i.e., a set of prototypes encoded as a list of e positions– where e is the number of
desired prototypes and a prototype is represented by a training example. When the al-
gorithm starts, a population Pop is generated by randomly assigning unique training
instances to the e positions of the vector (line 1). As M-PEER is based on SPEA2, it also
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Figure 5.1: Example of crossing over two individuals in GA. In this case, each individual
stores 5 prototypes. Note that elements 12 and 7 are not exchanged, as there would be a
repetition of one prototype (number 7) in one of the offspring individuals.

Source: created by the author.

works with an archive A, which stores the best solutions found by the algorithm so far
(line 2). The population evolves until a stop criterion is met (line 3) – which in our case
was defined as a limit number of generations G, where evolution consists of individuals
being selected to undergo crossover and mutation operators according to their quality.

The quality of an individual is measured by a fitness function (line 4), which
depends on how good the selected prototypes are at explaining a model’s global and local
predictions, and is measured by three different objectives/measures, detailed later in this
section. The fitness of each individual i depends on the number of solutions in Pop and A

that dominate i according to the Pareto dominance criterion, and the density of the region
where a solution is – this last criteria ensures population diversity, a desirable property
in multi-objective optimization.

After solutions are evaluated, the archive A is updated to store the best individuals
in Pop and A (line 5). Initially, all non-dominated individuals are selected to be in A.
If there is still free space in A (i.e., size of A ≤ N), the best individuals among the
dominated will be added according to the fitness function until A is full. If the size of
A ≥ N , a truncation is performed by iteratively removing individuals from denser regions.

After this, individuals are probabilistically selected to undergo crossover and mu-
tation operations, generating a new population (line 7). We use the tournament selection
scheme, where l individuals are randomly selected from the population and the one with
the best fitness value is selected. Pairs of selected individuals may undergo uniform
crossover according to a probability Pxover, where each position of the selected individ-
uals are probabilistically exchanged, as exemplified in Figure 5.1). Mutation works in a
similar fashion according to a probability Pmut, but involves a single individual, where a
selected gene is replaced by a random example to represent the prototype. Both oper-
ations guarantee the generated individuals are composed of unique prototypes, and are
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applied according to user defined probabilities.
After the stopping criterion is satisfied, the non-dominated individuals are selected

to compose the solution set A∗ (line 10). The best individual, returned as the solution
to our problem (line 12), is defined as that among the non-dominated set of solutions A∗

that minimizes GFS (Eq. 5.7) when assigning prototypes, as explained next.

Fitness objectives: Defining the quality of an explanation model, which here corre-
sponds to the objectives of our optimization problem, is not a trivial task. During the
post-hoc explanation process, an alternative model is used to locally replace the more
complex black-box model. Usually this model provides an approximation to the original
model, i.e., the explanation strategy generates an error when compared to the original
model. Hence, our first objective measures this error using the Root Mean Squared Error
(RMSE), shown in Eq. 5.1.

RMSE =

√√√√ 1

|T |

|T |∑
i=1

(yi − ŷi))2 (5.1)

where |T | represents the size of the training set, ŷi and yi denote the output of the
training instances when the model is created using only the selected prototypes and when
the complete original model is used, respectively.

Furthermore, we also introduce to the fitness what we call “semantic objectives",
which are ways to measure if the explanation will facilitate human understanding and raise
the confidence in the results. Inspired by two metrics previously proposed in the literature
of explainability for classification, we adapt the stability (S) [83] and neighborhood-fidelity
(NF) [98] metrics, generating what we call global stability (GS) and global fidelity (GF).
While the original S and NF metrics were developed to capture the quality of local expla-
nations, we use an aggregated version of them to evaluate the model global explanation,
as detailed next. These two metrics will also be optimized together with the error.

The idea of local explanations is, given an instance t′ to be explained, to ap-
proximate the black-box model f across some neighborhood Nt′ using a function g.
Neighborhood-fidelity (NF) is defined in [98] as the squared difference between the values
predicted by the local approximation function g (explanation) and the values predicted by
the black-box model f . As our method is based on prototypes, we define the neighborhood
Nt′ around an instance t′ to be of size one. This means that we select the prototype PR

that best explains the instance of interest. Hence, given the instance t′ to be explained,
we define the Local Fidelity (LF) as the square of the difference between the output yi

of the black-box model f for t′ and the output yj of the prototype PR selected from the
training set to explain t′ (PR(t’)), as shown in Eq. 5.2.

LF (f(t′), PR(t′)) = dist(yi, yj) = (yi − yj)
2 (5.2)
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Based on that, we define the Global Fidelity (GF) as the median of the Local
Fidelity (LF) for all instances to be explained, as shown in Eq. 5.3. When calculating the
fitness, we explain the instances in the training set.

GF (f, PRt, t) = median∀t∈T (LF (f(t), PR(t))) (5.3)

The second measure adapted was stability (S), proposed in [83] to capture whether
the explanations are robust with respect to local perturbations of the input. This metric
is important because it is becoming a consensus that more stable explanations tend to
be more reliable [98]. The original metric considers a neighborhood size ϵ of a point t to
quantify stability based on the input features. Here we adapt this metric for regression
by using the same definition of neighborhood used for NF - as we work with prototypes,
the neighborhood has size one - and define global stability (GS) as the median of the local
stability (LS) of each example, as shown in Eq. 5.4. Note that while fidelity considers the
differences in the outputs, stability looks at the values of the input features.

GS(t, PRt) = median∀t∈T (LS(t, PRt)) (5.4)

In this case, distance(xi, xj) is defined as the Ls norm (also called Minkowski
distance) with s = 0.3, as shown in Equation 5.5.

LS(xi, xj) = distMink(xi, xj) = (
∑d

a=1
|xia − xja|0.3)1/0.3 (5.5)

where xi are the features of the instance to be explained and xj are the features of the
explaining prototype.

The value 0.3 was set after preliminary evaluation, considering that in [5] the
authors evaluated the behavior of the Ls norm and observed that smaller values are more
appropriate to high dimensional data.

5.1.2 Strategies for Assigning Prototypes to Test Points

As shown in Algorithm 1, we first select the set of prototypes (line 2) – which
are able to provide global explanations – and later use them to provide local explanations
(lines 6-7). When providing explanations, we associate the prototype closer to the instance
to be explained using a distance measure. As previously pointed out, for regression
problems it is essential to use both the input variables as well as the predicted value.

Both Local Fidelity (LF ) and Local Stability (LS) measure different aspects of the
prototypes found, and hence we propose to combine them to assign a prototype to a test
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example. Note that the global model will be found using both the error and these metrics.
As already explained, it is not clear if one of these metrics should be more important than
the other. Hence, after we found the set of representative prototypes, we use the L2 of
the normalized values of LF and LS to assign test instances of prototypes, as shown in
Eq. 5.6.

L2FS(f, PRt′ , t
′) =

√[
1

log(LF (f(PRt′), f(t′)))

]2
+

[
1

log(LS(t′, PRt′))

]2
(5.6)

LF and LS are normalized values by the min-max of the original metrics. In
addition, in order to avoid outliers, the logarithmic function was applied.

5.2 Experimental Setup

As previously mentioned, M-PEER is model-agnostic. For the purpose of this
work, we chose the Random Forest Regressor (RF) method to perform experiments, as it
is among the state-of-the-art methods for regression. We used the implementation from
the Python Scikit Learn library1. Note that although the individual models provided
by the Random Forest algorithm can be considered inherently interpretable, the level of
interpretability is considerably reduced as the number of trees used by the model increases.
We consider that with approximately 10 trees the model provided is already similar to
any black-box model, and difficult for a human to understand. Therefore, the number of
trees used was defined as 10 and all other parameters were kept as default. M-PEER was
implemented using DEAP’s SPEA2 implementation [37].

After preliminary parameter tuning, M-PEER was run with a population of 300
individuals evolving for 75 generations. The probabilities of crossover and mutation were
defined as 0.6 and 0.4, respectively, and the tournament size was set to 2. Another
important parameter of M-PEER is the number of prototypes returned. Considering the
limited storage capacity in human working memory while processing information, and
previous research showing a limit quantification of approximately 7 elements [84], we
analyze the selection of 5 and 10 prototypes per regression model built.

We evaluated the proposed strategies on 25 real-world datasets [28, 20, 8, 23],
described in Table 5.1. All variables, including the output y, were standardized to have
mean equal to zero and variance equal to one.

1Available in https://scikit-learn.org/
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Table 5.1: Dataset used in the experiments of the DELA explanation method (Chapter
5) and the HE explanation method (Chapter 6).

Id Dataset # Attributes # Train # Test

1 cholesterol 14 209 88
2 auto-mpg 8 279 119
3 sensory 12 403 173
4 strike 7 437 188
5 day_filter 12 510 221
6 qsar_fish 7 636 272
7 concrete 9 721 309
8 music 70 741 318
9 house 80 1022 438
10 wineRed 12 1279 320
11 communities 103 1395 598
12 crimes 103 1550 664
13 abalone 8 2924 1253
14 wineWhite 12 3918 980
15 cpu_act 22 5734 2458
16 bank32nh 33 5734 2458
17 puma32H 33 5734 2458
18 compactiv 21 5734 2458
19 tic 85 6876 2947
20 ailerons 41 9625 4125
21 elevators 19 11619 4980
22 california 8 14448 6192
23 house_16H 17 15949 6835
24 fried 11 28538 12230
25 mv 10 28538 12230

5.2.1 Baselines

We compared the proposed approach with 4 baselines: two adaptations of ma-
chine learning algorithms that, to the best of our knowledge, were not used before for
explainability: a cluster-based and a hub-based algorithm; a single-objective evolutionary
algorithm - with two different versions of a fitness function; and ProtoDash, a method
considered state-of-the-art in terms of providing explanability of agnostic models in re-
gression.

We use the k-medoids as a representative of clustering algorithms. Given two
instances pi = (xi, yi) and pj = (xj, yj), we used the Minkowski distance or s norm
with s = 0.3, according to Eq. 5.5. We have also tested other metrics, including the
Euclidean distance, and the best results were obtained with the aforementioned metric.
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The k-medoids implementation was the one from Scikit-Learn-Extra2, also with its default
parameters but the distance function.

We also compared our approach with a method based on the concept of Hub
points [74]. Hub points are training instances that appear in the lists of n nearest neighbors
of other instances much more frequently than others. For calculating the Hub points, we
need to define the number of closest neighbors considered. In preliminary tests we found
that, by varying the value of the number of closest neighbors between 1 and 13, in intervals
of 2, the best results were found using 11 neighbors. Hence, this is the neighborhood
size used in our baselines. We kept the Minkowski distance to calculate neighbors, as
other metrics were tested and presented no statistically significant difference from the
aforementioned.

As we are proposing a multi-objective GA, it makes sense to evaluate the impact
of the multi-objective optimization. Hence, we compare the results with those of a single-
objective GA. We used a canonical version of a GA, using single-point crossover, single
point mutation and tournament selection. Different values of fitness were tested: a linear
combination of global stability and global fidelity (see Eq.5.7), from now on referred as GA
(GFS), and the RMSE - generating GA (RMSE). When using the RMSE, the algorithms
resembles methods for instance selection, where examples are chosen based solely on
error. After preliminary parameter tuning, the GA was executed with a population of
600 individuals evolved for 150 generations. The probabilities of crossover and mutation
were defined as 0.8 and 0.2, respectively, and the tournament size was set to 2. Note
that although the GA performs more evaluations that M-PEER, the results show that
even in this disadvantageous scenario, M-PEER performs better than the single-objective
methods.

For ProtoDash we use the implementation available in [13] to find the prototype
points. We used the same parameters used by Protodash in the original paper: the
Gaussian kernel with sigma equal to 2.

5.2.2 Evaluation

Considering the non-deterministic nature of the results obtained by RF, GA (GFS),
GA (RMSE), and M-PEER (multi-objective), all results reported are medians over 30
executions. All methods proposed and evaluated in this work are freely available for
download3.

2Available in https://scikit-learn-extra.readthedocs.io/en/latest/
3Available in: https://github.com/renatomir/MPEER-TELO2022

https://github.com/renatomir/MPEER-TELO2022
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To evaluate the quality of the individual, composed of the e prototypes selected
by the evolutionary method, we propose to combine the global version of the adapted
metrics, i.e., GF and GS, as shown in Eq. 5.7.

GFS(f, PR′
t, t

′) =

√[
1

log(GF (f, PR′
t, t

′))

]2
+

[
1

log(GS(t′, PR′
t))

]2
(5.7)

Note that, in the fitness minimization process, the GF , GS, and RMSE objectives
are calculated taking into account the explanation of the training points t. However, in
this evaluation step the calculation will be carried out taking into account the test points
t′. In addition, GS and GF are normalized values of the original metrics using min-
max. Again, in order to avoid outliers that could skew the results considering only global
stability or global fidelity, the logarithmic function is applied.

Apart from running M-PEER with the three objectives previously defined, we have
also tested it with two other combinations of objectives: i) Global Stability and Global
Fidelity, as defined in Eq. 5.4 and 5.3 respectively; ii) GFS and RMSE (Eq. 5.7 and 5.1).

5.3 Experimental Results and Discussion

This section presents the results of M-PEER. We first look at the behavior of the
method in terms of search and convergence with different sets of objectives. Next, we
compare M-PEER with the other methods previously proposed to solve this task and
discuss the results in terms of error, stability and fidelity.

5.3.1 Search and Convergence

As previously mentioned, we implemented three versions of M-PEER considering
two or three objectives, namely: i) global Stability and global Fidelity (S+F); ii) GFS
and RMSE (GFS+E); and iii) global Stability, global Fidelity and RMSE (S+F+E).
Ultimately, we want to optimize the three objectives, but there might be a correlation
between these metrics. As searching with two objectives is usually simpler than searching
with three, the three combinations above were considered.
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Figure 5.2: Convergence of M-PEER in the scenario of minimizing the objectives of Global
Stability, Global Fidelity and RMSE (choice of 10 prototypes - first run - MV dataset). In
Figures b, c and d, the line in red represents the minimum value found in the population,
the dark blue line represents the average value and the shading blue represents the standard
deviation.

(a) Hypervolume (b) Global Stability

(c) Global Fidelity (d) RMSE

Source: created by the author.

In the case of multi-objective algorithms, the effectiveness of the search can be
measured using the hypervolume of the Pareto front generated [125, 123]. The classic
definition of hypervolume is based on the hypercube formed by the Pareto dominance over
a fixed point and is defined as follows. Given a set of points S ⊂ Rd and a reference point
α ∈ Rd, the hypervolume indicator of S is the measure of the region weakly dominated
by S and bounded above by α [47], as defined in Eq. 5.8. The higher its value, the better
the quality of the solution set evolved.

H(S) = ∀(q ∈ Rd|∃p ∈ S : p ≤ q and q ≤ α) (5.8)

Since all versions with different objectives had similar behaviors, we show only the
behavior for S+F+E for dataset MV considering 10 prototypes as explanations. Figure
5.2a shows the hypervolume formed by the Pareto front considering as reference point
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Figure 5.3: Final population of M-PEER in the scenario of minimizing the objectives of
Global Stability and Global Fidelity (choice of 10 prototypes - first run - MV dataset)

Source: created by the author.

[0.103, 0.008, 1.283], where the values represent, respectively, the maximum stability,
maximum fidelity and maximum RMSE among the individuals in the initial population
in this run. Although this is an ad-hoc choice, it makes sense if we consider that the
value of these metrics in the Pareto front will not become worse than their values in the
first generation. As expected, the Pareto front with the best solutions approaches the
origin [0,0,0] over the generations, making the value of the hypervolume grow consistently
with search progression. Figures 5.2b, 5.2c and 5.2d show that the values of the three
objectives being optimized are improving over time for the best solution found, identified
using Eq. 5.7. In these figures, the red line shows the minimum value of the evaluated
objective in the population, the dark blue line the mean value and the blue shading the
standard deviation, showing the dispersion of values in the current population.

Figures 5.3, 5.4 and 5.5 show the dispersion of the prototype sets belonging to
the population at the end of a specific execution of the algorithm. As we can see, in
all scenarios presented, regardless of the number of objectives of the problem, the best
solutions converge to the origin of the Cartesian plan. We also observe that the metric
proposed to select the best individual from the Pareto front (GFS) produces a good
balance between the importance of fidelity and stability while accounting for the error,
as opposed to choosing the individual with the smallest error or the best values for one
of these metrics. The result in Figure 5.5 gives us a strong indication of the correlation
between the fidelity and stability objectives and the RMSE as, although the error is not
verified during the assignment process, we see that the selected prototype set had an
intermediate value of error among the solutions found.
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Figure 5.4: Final population of M-PEER in the scenario of minimizing the objectives of
GFS and RMSE (choice of 10 prototypes - first run - MV dataset)

Source: created by the author.

Figure 5.5: Final population of M-PEER in the scenario of minimizing Stability, Fidelity
and RMSE (10 prototypes - first run - MV dataset).

Source: created by the author.

5.3.2 Comparison between strategies for selecting prototypes

This section presents the results of RMSE (Eq. 5.1) and GFS (Eq. 5.7) obtained
by the proposed strategies and the comparison methods to select prototypes. We show
the results considering 5 and 10 prototypes in Tables 5.2 and 5.3 for RMSE and in Tables
5.4 and 5.5 for GFS. Apart from the methods described in Section 5.2.1, we also added to
our experiments a naive baseline, which chooses prototypes randomly from the training
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Table 5.2: Results for RMSE when providing explanations with 5 prototypes.

RMSE
Dataset Random Kmedoids Hub-11 GA ProtoDash M-PEER M-PEER GA M-PEER

(GFS) (S+F) (GFS+E) (RMSE) (S+F+E)

1 0.6480 0.7704 0.7598 0.6401 0.9029 0.6311 0.6299 0.5301 0.6285
2 0.5747 0.6834 0.7836 0.6245 0.6939 0.6207 0.6203 0.4753 0.6194
3 0.7048 0.8496 1.1039 0.6872 1.1082 0.7004 0.6545 0.6323 0.6754
4 0.6160 0.6087 0.9055 0.6335 0.7243 0.6315 0.5757 0.4978 0.5808
5 0.75426 0.8286 0.8080 0.6602 0.8128 0.6714 0.6626 0.6511 0.6671
6 0.65982 0.7910 0.8385 0.6630 0.6787 0.6528 0.5959 0.5725 0.6037
7 0.85239 0.8676 1.3906 0.8317 1.4912 0.8148 0.8054 0.7272 0.8180
8 0.81525 0.8380 0.8179 0.7910 0.7931 0.7940 0.7958 0.7793 0.7899
9 0.80990 0.8124 1.0864 0.7849 0.9466 0.7531 0.7148 0.6926 0.7054
10 0.63630 0.8847 1.0243 0.5776 0.6100 0.5792 0.5712 0.5859 0.5738
11 0.68084 0.7434 0.6753 0.6561 1.0618 0.6423 0.6368 0.6336 0.6431
12 0.40764 0.4075 0.4097 0.4072 0.4087 0.4085 0.4029 0.7768 0.4065
13 0.66831 0.7946 0.7493 0.6870 0.8224 0.7078 0.6305 0.5834 0.6359
14 0.69425 0.7715 0.6989 0.6723 1.4315 0.6668 0.6524 0.6134 0.6640
15 0.97125 0.9482 1.0511 0.9701 0.9364 0.9858 0.9584 0.9123 0.9562
16 0.91740 0.9097 0.7861 0.9629 1.0166 0.9679 0.9504 0.7682 0.9539
17 1.00295 1.0592 1.0299 0.9914 1.2153 0.9871 0.9930 1.0039 0.9834
18 0.94263 0.8906 1.1068 0.9494 1.0005 0.9315 0.9168 0.8641 0.9178
19 0.73499 0.7399 0.9862 0.7350 0.9438 0.7350 0.7350 0.8352 0.7350
20 0.78799 0.7337 1.0664 0.8984 0.9725 0.8463 0.8893 0.6837 0.8777
21 0.90729 0.8502 0.9807 0.9237 0.7599 0.9165 0.9059 0.7398 0.9165
22 0.90526 0.9232 1.0087 0.8992 0.9015 0.9398 0.8801 0.7609 0.9196
23 0.84867 0.8522 0.9777 0.8433 1.0405 0.8356 0.8215 0.7370 0.8264
24 0.91740 0.9647 0.9878 0.8971 0.9612 0.8951 0.8666 0.8251 0.8933
25 0.92184 0.9747 0.9488 0.9106 1.2479 0.9367 0.9008 0.8331 0.9194

set. To be fair with the multi-objective methods, the random method selects, for each
scenario, the best subset of prototypes among 300× 75 randomly selected instances.

Note that, for the results of RMSE, the best values is usually obtained by GA
(RMSE). This is expected, as GA only accounts for RMSE in its objective function.
For GFS, one of the versions of M-PEER usually obtains the best results. However,
there is one exception. For the very small datasets (the ids of the datasets are ordered
according to the number of training instances), shown in the first lines of the tables,
the random approach outperforms all other methods. This happens since the number of
time instances are randomly selected 5 by 5 or 10 by 10 (22,500). In this case, randomly
selecting instances with high GFS is "easy". However, note that the error in this case is
still superior for the random method. That is exactly why we are proposing a method
that can optimize both objectives simultaneously. Hence, for datasets with few training
instances, the excessive effort of an evolutionary method for choosing prototypes is not
worth spending. Thus, in the next results shown in this section we will focus only on
datasets with at least 500 instances in the training set, considering the limitations of the
proposed method in this scenario.

In order to make these results more comparable in datasets with more than 500
instances in the training set, we show the critical diagrams [24] for the RMSE evaluation
metrics in Figures 5.6 and for GFS evaluation metrics in Figures 5.7. These diagrams were
generated after carrying out an adapted Friedman test followed by a Nemenyi post-hoc
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Table 5.3: Results for RMSE when providing explanations with 10 prototypes.

RMSE
Dataset Random Kmedoids Hub-11 GA ProtoDash M-PEER M-PEER GA M-PEER

(GFS) (S+F) (GFS+E) (RMSE) (S+F+E)

1 0.6727 0.7820 0.7066 0.6378 0.7351 0.6646 0.5735 0.5008 0.6094
2 0.4667 0.5654 0.7324 0.5079 0.4344 0.5199 0.4294 0.3515 0.4557
3 0.7128 0.8242 0.9037 0.6806 0.8568 0.7203 0.6558 0.6229 0.6629
4 0.5438 0.6329 0.9074 0.5634 0.6347 0.5463 0.5204 0.5043 0.5178
5 0.6459 0.6919 0.7495 0.6450 0.5811 0.6253 0.6002 0.4735 0.6015
6 0.5824 0.6228 0.7137 0.5410 0.5880 0.5480 0.5032 0.4806 0.5147
7 0.7250 0.7951 1.2511 0.7115 1.6273 0.7091 0.6496 0.6113 0.6779
8 0.8256 0.8119 0.7717 0.8160 0.7862 0.8110 0.7879 0.7771 0.8024
9 0.6848 0.7288 1.0989 0.6200 0.8035 0.6419 0.6075 0.5553 0.6258
10 0.6280 0.6505 1.0386 0.5602 0.6303 0.5840 0.5261 0.5083 0.5440
11 0.6491 0.6914 0.8270 0.6441 1.0240 0.6552 0.6381 0.5747 0.6339
12 0.4017 0.3920 0.4075 0.4061 0.4022 0.4041 0.3990 1.2990 0.4044
13 0.6338 0.6961 0.7276 0.7018 0.8214 0.6865 0.6068 0.5407 0.6216
14 0.6656 0.7455 0.7347 0.6445 1.0828 0.6084 0.6282 0.5497 0.5991
15 0.9338 0.8829 0.9645 0.8951 0.9287 0.9150 0.7498 0.4178 0.7513
16 0.8619 0.8173 0.8272 0.9563 0.9327 0.9674 0.9323 0.6526 0.9560
17 1.0151 1.0830 1.0635 0.9804 0.9780 0.9836 0.9684 0.9236 0.9752
18 0.8814 0.8700 1.0859 0.8965 0.8806 0.8584 0.6894 0.4049 0.7347
19 0.7350 0.8439 1.0308 0.7350 0.9617 0.7350 0.7350 0.7249 0.7350
20 0.7675 0.7030 0.8111 0.7496 0.9800 0.7271 0.7054 0.5787 0.7068
21 0.8376 0.8171 0.9660 0.9084 0.8299 0.8788 0.8530 0.6555 0.8696
22 0.7849 0.8317 1.1208 0.7857 0.8240 0.8072 0.7601 0.6268 0.7846
23 0.7699 0.7818 0.9182 0.8146 0.9398 0.7930 0.7893 0.6581 0.7921
24 0.8481 0.8921 0.8390 0.7985 0.8990 0.7717 0.7603 0.7045 0.7499
25 0.8290 0.8238 0.9163 0.7748 1.0434 0.7684 0.7418 0.6930 0.7450

Table 5.4: Results for GFS when providing explanations with 5 prototypes.

GFS
Dataset Random Kmedoids Hub-11 GA ProtoDash M-PEER M-PEER GA M-PEER

(GFS) (S+F) (GFS+E) (RMSE) (S+F+E)

1 0.7391 0.8148 0.7935 0.7761 0.8308 0.7681 0.7712 0.8514 0.7744
2 0.7768 0.8371 0.9135 0.7888 0.8920 0.7901 0.7860 0.8772 0.7862
3 0.8499 0.9538 1.0378 0.8875 0.9936 0.8870 0.8847 0.9412 0.8912
4 1.0863 1.2361 1.3269 1.0974 1.3753 1.0913 1.0885 1.3083 1.0898
5 0.8954 0.9632 0.9650 0.8845 0.9520 0.8890 0.8897 1.0479 0.8878
6 0.8136 0.8696 0.9906 0.8185 0.9424 0.8151 0.8186 0.9196 0.8124
7 1.0620 1.1171 1.5172 1.0454 1.6713 1.0590 1.0468 1.2894 1.0583
8 1.1332 1.1541 1.1598 1.1307 1.1693 1.1281 1.1288 1.2370 1.1301
9 0.7447 0.7499 0.8682 0.7283 0.8796 0.7271 0.7285 0.8494 0.7255
10 1.1026 1.1604 1.1210 1.0926 1.2280 1.0905 1.0972 1.1992 1.0918
11 1.2560 1.2974 1.2792 1.2334 1.3757 1.2332 1.2379 1.4120 1.2321
12 1.0610 1.0666 1.0630 1.0393 1.1081 1.0471 1.0393 1.2383 1.0417
13 0.7847 0.8048 0.8419 0.7734 0.9618 0.7768 0.7748 0.8915 0.7731
14 1.1231 1.1387 1.1356 1.1075 1.2572 1.1103 1.1097 1.2182 1.1077
15 0.7025 0.7161 0.7202 0.6884 0.7879 0.6861 0.6883 0.8186 0.6882
16 1.7019 1.7263 1.6549 1.6296 1.6700 1.6320 1.6298 1.8884 1.6310
17 1.8469 2.0073 1.7972 1.7648 1.9603 1.7667 1.7670 1.9804 1.7736
18 0.7153 0.7331 0.7894 0.7012 0.7889 0.7002 0.7016 0.8160 0.6997
19 0.7033 0.7163 0.8287 0.6789 0.7565 0.6786 0.6789 0.8078 0.6813
20 0.7019 0.7128 0.9283 0.6789 0.7671 0.6750 0.6763 0.7992 0.6773
21 0.7212 0.7422 0.7865 0.7157 0.7775 0.7144 0.7150 0.8428 0.7144
22 0.8455 0.8737 0.9072 0.8272 0.9654 0.8278 0.8279 0.9301 0.8260
23 0.8028 0.8005 0.8371 0.7821 0.8840 0.7808 0.7826 0.8742 0.7811
24 1.5953 1.6426 1.6214 1.5648 1.6821 1.5639 1.5667 1.7318 1.5655
25 1.0215 1.0597 1.0614 0.9918 1.1780 0.9886 0.9932 1.1189 0.9913

with a significance level of 0.05. As we are comparing multiple approaches, Bonferroni’s
correction was applied to all tests [24]. In these diagrams, the main line shows the
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Table 5.5: Results for GFS when providing explanations with 10 prototypes.

GFS
Dataset Random Kmedoids Hub-11 GA ProtoDash M-PEER M-PEER GA M-PEER

(GFS) (S+F) (GFS+E) (RMSE) (S+F+E)

1 0.6998 0.7811 0.7293 0.7235 0.7785 0.7238 0.7230 0.7860 0.7231
2 0.7153 0.7701 0.8044 0.7335 0.7782 0.7341 0.7339 0.7679 0.7332
3 0.7528 0.8579 0.8761 0.8175 0.8457 0.8150 0.8153 0.8389 0.8109
4 0.8898 1.0525 1.0260 0.9090 1.1911 0.9071 0.9148 1.0518 0.9152
5 0.8044 0.8731 0.8809 0.8092 0.8386 0.8079 0.8072 0.9058 0.8134
6 0.7594 0.8064 0.9199 0.7565 0.8605 0.7545 0.7559 0.8312 0.7528
7 0.9482 0.9943 1.1456 0.9336 1.5760 0.9372 0.9330 1.1289 0.9399
8 1.0956 1.1202 1.1191 1.0886 1.1247 1.0844 1.0892 1.1776 1.0868
9 0.7172 0.7284 0.8159 0.6991 0.8169 0.6992 0.6989 0.7884 0.7005
10 1.0537 1.1039 1.0711 1.0355 1.1534 1.0340 1.0336 1.1228 1.0356
11 1.1996 1.2115 1.2218 1.1710 1.2846 1.1689 1.1714 1.3110 1.1674
12 1.0175 1.0217 1.0101 0.9954 1.0712 0.9985 0.9968 1.1459 1.0010
13 0.7286 0.7396 0.7651 0.7168 0.8491 0.7112 0.7114 0.7867 0.7125
14 1.0700 1.1106 1.0783 1.0563 1.1255 1.0509 1.0517 1.1366 1.0502
15 0.6806 0.6937 0.7008 0.6626 0.7558 0.6606 0.6620 0.7686 0.6617
16 1.6153 1.7067 1.5541 1.5340 1.5690 1.5355 1.5341 1.7417 1.5323
17 1.7372 1.8488 1.6810 1.6556 1.8157 1.6531 1.6554 1.8306 1.6572
18 0.6924 0.7071 0.7736 0.6735 0.7281 0.6708 0.6724 0.7762 0.6711
19 0.6728 0.6902 0.7204 0.6431 0.7072 0.6427 0.6435 0.7489 0.6447
20 0.6324 0.6536 0.7016 0.5983 0.6964 0.5961 0.5946 0.7336 0.5985
21 0.6643 0.6855 0.6874 0.6428 0.7421 0.6386 0.6395 0.7749 0.6407
22 0.8010 0.8173 0.8696 0.7802 0.8821 0.7787 0.7787 0.8562 0.7798
23 0.7807 0.7764 0.7937 0.7550 0.8431 0.7524 0.7535 0.8213 0.7538
24 1.4953 1.5451 1.4945 1.4667 1.6064 1.4645 1.4656 1.5728 1.4644
25 0.9551 0.9822 0.9673 0.9302 1.0931 0.9252 0.9292 1.0072 0.9274

average ranking of the methods, i.e., how well one method did when compared to the
others. This ranking takes into account the absolute value obtained by each method
according to the evaluated metric. The best methods are shown on the left (lowest
rankings). The critical difference interval (CD in the plots) is determined by the Friedman
test according to the significance level defined. If the average difference between two
algorithms is greater than CD, then the null hypothesis that the algorithms have the
same performance is rejected. Finally, the diagram connects groups of methods that do
not present statistically significantly differences. Note that the size of the lines connecting
the methods corresponds to the size of the CD interval.

Error is the basic quality of explanation metric by which most current methods are
evaluated. Recall that the RMSE accounts for the distance of one singles regression model
trained with two different sets of instances: the complete training set and the selected
prototypes. As we can see in the critical diagram of Figure 5.6a, when selecting 5 proto-
types, all evolutionary methods managed to obtain the best results, and it is not possible
to say there is statistically significant differences between them. For 10 prototypes (Fig-
ure 5.6b), the statistically significant superior methods were those based on evolutionary
approaches whose fitness takes into account the error, i.e., GA RMSE (the minimization
objective was only the RMSE), M-PEER GFS+E, and M-PEER GFS+F+E. Regardless
of selecting 5 or 10 prototypes, the methods with lower performance in relation to the
RMSE metric were HUB-11, ProtoDash and Kmedoids.
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Figure 5.6: Critical diagrams of methods considering RMSE. From left to right, methods are
ranked according to their performance, and those connected by a bold line present no statistical
difference in their results.

(a) Selection of 5 prototypes.

(b) Selection of 10 prototypes.

Source: created by the author.

Figure 5.7: Critical diagrams of methods considering GFS. From left to right, methods are
ranked according to their performance, and those connected by a bold line present no statistical
difference in their results.

(a) Selection of 5 prototypes.

(b) Selection of 10 prototypes.

Source: created by the author.

However, it is not enough to have only a small error. The selected prototypes must
also have a “semantic meaning” in the context of the features and the output, which can
explain the model as a whole. So, in addition to the error, we also want the GFS metric
to be minimized. We can observe from the critical diagram in Figure 5.7b that, in the
selection process of 10 prototypes, the following methods were statistically superior: M-
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PEER S+F, M-PEER GFS+E, M-PEER S+F+E, and the GA minimizing only the GFS
metric. As for the selection of 5 prototypes, the random choice also managed to obtain
good results, staying at the limit of the intervals of the statistical difference. In both
scenarios, the worst methods considering the GFS metric were GA RMSE, ProtoDash
and HUB-11.

Thus, we can conclude that the methods whose results stood out for both metrics
were M-PEER GFS+E and M-PEER S+F+E. We also advise the use of evolutionary
methods for datasets with at least 500 examples. Although this number is arbitrary, our
experiments showed this as a good trade-off between the time for running the method
and the results obtained.

5.3.3 ProtoDash vs. M-PEER

This section discusses and compares the results of ProtoDash and M-PEER con-
sidering two different dimensions: the error (RMSE) and the explanations provided. We
start by looking at the RMSE.

As mentioned earlier, the work where ProtoDash is presented compares different
methods of selecting prototypes for the regression problem with a fixed number of pro-
totypes. This number corresponds to the knee point in the RMSE versus number of
prototypes curve (see Figure 5.8), where RMSE improvements become stable. The au-
thors of Protodash do not discuss how the knee point was selected. Here, we choose this
value considering RMSE only. We first vary the number of prototypes from 50 to 500,
in steps of 50. We then select the knee point according to the RMSE improvement in
subsequent iterations. The knee is selected as the point where: (i) there is a lower RMSE
improvement from iterations t to t+1 than the improvement obtained from iterations t-
1 to t; (ii) the cumulative RMSE improvement from iteration 1 (50 prototypes) to t is
greater than the possible cumulative RMSE improvement from iteration t+1 until the last
iteration (500 prototypes). Note that this second criteria verifies if at least half of the
possible RMSE improvement has already happened at the candidate knee point.

Considering the way the number of prototypes is chosen by ProtoDash, we selected
four of our datasets to carry out a similar study and compared the results obtained by our
two best M-PEER versions with ProtoDash. Figure 5.8 shows the curves as we increase
the number of prototypes chosen. The knee points chosen for these four datasets were: i)
200 for the Elevators dataset; ii) 100 for the Bank32nh dataset; iii) 200 for the House_16H
dataset; and iv) 150 for the House dataset.

We believe these values are far too large for a human to be able to analyze the
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Figure 5.8: Number of prototypes chosen, represented by the point where the RMSE
objective improvement becomes negligible.

Source: created by the author.

Figure 5.9: RMSE in the point where improvement in the RMSE objective becomes
incremental.

Source: created by the author.

prototypes obtained and extract useful information from the model built. As discussed
before, the human working memory is extremely limited and a value much greater than
7 could make the explanation unproductive.

The results obtained are shown in the graph of Figure 5.9. Note that the M-PEER
version with GFS and RMSE objectives (GFS+E), in general, obtained the best results.
Furthermore, Protodash was worse in all evaluated scenarios. When comparing these
results to the ones obtained using a much smaller number of prototypes, as shown in Ta-
bles 5.2 and 5.3, we observe they are consistent for explanation scenarios, i.e., ProtoDash
obtains, in general, inferior results than the evolutionary approaches both in terms of the
error and the proposed GFS metric, for any number of selected prototypes.

But what about the explanations generated? Do these methods agree on them?
Comparing explanations given by different methods is one of the hardest things when
proposing new methods for explainability. We have adapted two metrics proposed in the
classification context to do so, but evaluating how well they perform when compared to
what a human calls interpretable is hard.
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Table 5.6: Global explanation (size of prototype set = 5) selected by different explain-
ability methods for the auto-mpg dataset.

Input features Output MPG
Cylinders Displacement Horsepower Weight Acceleration Model year Origin y y’

ProtoDash

4 97 88 2130 14.5 71 3 27 27.2
8 304 150 3672 11.5 73 1 14 15
4 91 53 1795 17.4 76 3 33 32.4
4 90 70 1937 14.2 76 2 29 29.1
4 85 65 2110 19.2 80 3 40.8 38.89

Prototypes variance 3.2 9113.3 1470.7 582507.7 8.973 11.7 0.8 95.99 76.86

M-PEER(GFS+E)
and

M-PEER(S+F+E)

6 225 95 3264 16 75 1 19 19.37
4 98 90 2265 15.5 73 2 26 26.25
8 318 150 4096 13 71 1 14 13.60
4 140 88 2720 15.4 78 1 25.1 25.06
4 91 67 1965 15.7 82 3 32 33.50

Prototypes variance 3.2 9289.3 959.5 716385.5 1.457 18.7 0.8 47.79 56.26

In order to give an insight on how the explanations are given to users, Table 5.6
shows the set of prototypes selected to explain the test instances by ProtoDash, M-
PEER(GFS+E), and M-PEER(S+F+E) for the dataset auto-mpg, which describes the
characteristics of cars and relates them to the result of gas consumption in miles per gallon
(MPG). We chose this dataset for two reasons: the input attributes are easy to interpret
and consumption varies depending on the car’s construction engineering, something well-
known in the specialized literature but ordinary enough that it can be interpreted with a
low degree of expertise in the problem.

As we can see from Table 5.6, the M-PEER versions selected exactly the same
prototypes to explain the model when considering 5 prototypes. We can also observe
that the features with the greatest variance among the selected datasets (reported in the
row labeled “prototypes variance”) were Weight and Displacement. According to [33],
there is a well-known relationship between the engine displacement and weight features
and the consumption of a car. The weight has a linear relationship with consumption.
Displacement is inversely proportional: when we decrease the engine displacement of the
car, we are increasing its consumption. Given these known relationships, we consider
the great variability found in the values of the prototypes for the features weight and
displacement is appropriate, as they make the set of prototypes able to better cover the
space of solutions of the different values for consumption and thus better represent the
model.

Furthermore, we can also analyze the diversity of selected prototypes. If we calcu-
late the pairwise distance between the 5 prototypes selected by the algorithms (Euclidean
distance or Minkowski distance with parameter 0.3) we can see that larger values are ob-
tained by the M-PEER versions, showing they obtain a greater coverage of the problem
solution space and, consequently, greater diversity in the selected prototypes.

Finally, Table 5.7 presents the explanatory prototype assigned to a specific test
point. Again, if we calculate the distances between the evaluated point and the expla-
nations (Euclidean distance or Minkowski distance with parameter 0.3), we can observe
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Table 5.7: Local explanation provided by the methods for a specific test instance.

Input features Output MPG
Cylinders Displacement Horsepower Weight Acceleration Model year Origin y y’

Test instance 4 98 70 2125 17.3 82 1 36 34.1
ProtoDash 4 91 53 1795 17.4 76 3 33 32.4
M-PEER(S+F+E) 4 91 67 1965 15.7 82 3 32 33.5

Table 5.8: Execution time for the methods in the smallest and largest datasets.

Datasets Cholesterol Fried
Prot. selected 5 10 5 10
Method Runtime
Random 20s 28s 29min55s 41m14s
GA (GFS) 2m5s 2m30s 1h52min 2h50min
M-PEER (GFS+E) 33m 31m 2h28min 1h48min
M-PEER (S+F+E) 35m30s 26m 2h37min 1h51min

that the explanation provided by the M-PEER method are closer, i.e., they represent the
evaluated instance with greater precision.

5.3.4 A note on execution time

This section discusses the execution time of the proposed methods. All experi-
ments were run on a machine with the following configuration: Intel Xeon 2.2GHz, 16
CPUs, 125G RAM and Debian GNU/Linux 10 operating system. Prior to the evolu-
tionary process, we loaded tabular data from the datasets into memory and computed
the normalized values of local stability and local fidelity for each pair of instances of the
training set, an algorithm with quadratic complexity. This is a costly process for large
datasets, taking approximately 5hrs 49mins on the largest (fried) but 0.7 seconds on the
smallest dataset (cholesterol). The execution time for running the algorithms after this
preprocessing step, for the smallest and largest datasets, are reported in Table 5.8.

Finally, as reported in Section 5.2, the evolutionary algorithms were configured
with different values for population size and number of generations, with 600 individuals
in 150 generations for the single-objective GA and 300 individuals in 75 generations for
the three versions of M-PEER. This was done to balance the computation time spent
on each of the strategies, since the computational cost to evaluate multiple objectives is
in general more expensive than evaluating a single objective. Further, the results shown
that, with the current parameters, M-PEER results converge. As a consequence of this
design decision, the single-objective GA is capable of evaluating a much larger number
of solutions than the M-PEER versions, but still M-PEER obtains better overall results
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than the GA.

5.4 Summary

This chapter proposed a new two-level strategy for explaining regression models
and their predictions through the selection and assignment of prototypes. The explana-
tion based on prototypes is able to select the most explanatory instances of the model
and works in a similar way to the human reasoning of comparing similar cases previously
seen to understand a new phenomenon. This methodology is instantiated with M-PEER,
a multi-objective method based on SPEA2. We compared different versions of M-PEER,
considering both the interpretability and the error of the model, with ProtoDash – con-
sidered state-of-the-art in this task, and other methods of correlated areas of machine
learning We also adapted metrics proposed in the context of classification to evaluate
the quality of prototypes in the context of regression. Furthermore, our methodology –
unlike other approaches presented in the literature for explanation based on examples,
– considers both the features that describe the instances and the model output that we
want to explain. In this way, we are more faithfully explaining the model and not the
initial dataset. A great advantage of this approach is that the model does not always fit
perfectly the data but explains the model as faithfully as possible, given the user more
arguments for a possible rejection or acceptance of the model for use in a given problem.

Our experiments demonstrated that M-PEER with two or three objectives (i.e.,
GFS + E or S + F + E), together with a single GA based on RMSE, were equal or
statistically superior to all other methods analyzed in terms of RMSE. Considering the
GFS metric, all evolutionary methods – except the single-objective GA based on RMSE,
obtained no difference or statistically better results than the competitors. With this we
conclude that the M-PEER versions that take into account the explanatory characteristics
of global fidelity, global stability and the error in the fitness minimization process, are the
methods that best explain regression problems while simultaneously balancing all the cri-
teria. Furthermore, we observed that the multi-objective version M-PEER GFS,RMSE

had a slight advantage over the version with three objectives when a larger number of
prototypes is selected for RMSE metrics, possibly due to the greater simplicity imposed
on the algorithm SPEA2 when minimizing only two objectives. However, note that the
use of the evolutionary method is worthless when the dataset has a very small number
of instances (here we considered 500 as a baseline for small datasets). In this case, the
trade-off between computational cost and effectiveness is too low, making the use of the
method not recommended.
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It is important to note that the prototype-based explanation method proposed
in this chapter, while similar to the way we often justify events based on other similar
occurrences in our daily lives, does not fully explain why a similar instance resulted in
a specific output. With this in mind, in the next chapter we propose a hybrid approach
that not only justifies the model based on similar instances in the training set but also
identifies the relevance of questions related to the features that determined the output,
such as their importance and expected values in similar instances.
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Chapter 6

HuMiE: A hybrid multilevel approach
to explaining regression models

In this chapter we present a multilevel hybrid approach to explain black-box models in
regression problems. We call this approach Hybrid Multilevel Explanation (HuMiE). By
hybrid we mean that the explanation provided will have elements based on examples
- through the selection of prototypes from the training set - and these examples will
be associated with information from explanations based on features. The method gives
emphasis to the most important characteristics of each prototype and their range of
expected values.

As for the multilevel character, the proposed method provides explanations that
present characteristics coming from different levels of the model: i) global explanations,
with the most relevant prototypes; ii) local characteristics of test instances, showing how
a specific test instance fits into the context of the problem as a whole; and iii) features at
an intermediate level, portraying groups represented by prototypes capable of subdividing
the problem into semantically similar partitions. This multilevel hybrid approach has a
tree-like format.

To build the Hybrid Multilevel Explanation, HuMiE uses the two methods previ-
ously proposed, namely: DELA (Chapter 4) for the features-based explanation step, and
M-PEER (Chapter 5) for the prototype selection step.

One of the few works that has already developed a similar approach was MAME
(Model Agnostic Multilevel Explanations) [102]. As per MAME, little attention has been
given to obtaining insights at an intermediate level of model explanations. MAME is a
meta-method that builds a multilevel tree from a given method of local explanation. The
tree is built by automatically grouping local explanations, without any hybrid character
combining different types of explanation. The intermediate levels are based on this au-
tomatic grouping of the local explanations. Furthermore, the local explanation methods
evaluated in MAME were not specifically built to work with regression problems, which
can cause some damage when we start to have a continuous range of possible values for
each instance output. Finally, MAME did not make the source code available and neither
did they make available the tree generated for the only regression dataset used in their
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Figure 6.1: Example of the multilevel tree built by HuMiE. In this figure, the squares
represent instances, and the colors of the instances the feature values used to calculate
similarities.

Source: created by the author.

work (Auto-MPG), which makes any kind of comparison between the approaches difficult.
The rest of this chapter is organized as follows. Section 6.1 introduces the proposed

method. In section 6.2, we show the settings of the experiments carried out. In section
6.3, we conducted a quantitative and qualitative evaluation of the prototypes chosen by
HuMiE, and performed a qualitative analysis of the classic Auto-MPG dataset. In section
6.4, we conducted a case study using responses from two commonly used questionnaires for
assessing individuals’ mental health as our dataset. Finally, section 6.5 draws conclusions.

6.1 Proposed Method

The section introduces Hybrid Multilevel Explanation (HuMiE), an explanation
method that combines both example-based and feature-base explanations. HuMiE pro-
duces a tree where each node represents a prototype selected from the training set. After
prototypes are selected, a feature-based approach is used to provide further details on the
models decision.

The dynamics of creating this explanation tree is exemplified in Figure 6.1. In
the figure, each square represents an instance from the training set (T ), and the colors of
the squares reflect the values of the features of the instances. We calculate the similarity
between instances using these features. In this example, HuMiE first selects two proto-
types as the root of the tree (r). After that, the distance from the remaining instances to
each prototype is calculated, and each instance associated with its most similar prototype,
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generating 2 subgroups. For each of these subgroups, again two children prototypes are
chosen. This process is repeated until it reaches the height (h) of the tree defined by the
user.

Having a tree of prototypes, for each node of the tree, HuMiE shows the most
relevant features considering the prototype associated with that node, together with the
range of values assumed by the instances of the subgroup represented by that prototype.
Finally, HuMiE allows for a local explanation of a test instance by selecting the leaf-level
prototype most similar to the instance to be explained.

By providing a hybrid explanation, HuMiE fills an important gap in explanation
methods, as it can capture important features from different aspects. On the one hand, it
can resemble the human way of explaining things, by indicating similar past events, while
on the other hand, it can also explain why these past events are similar to the current
scenario being evaluated. Moreover, in its multilevel character, HuMiE allows for an
analysis capable of specializing global explanations into intermediate levels, representing
semantically similar subgroups, and even into a locally coherent explanation that fits into
the overall explanation.

The method is illustrated in Algorithm 6. It receives as input the training (T )
and test (T ′) sets, together with the height h of the explanation tree to be built and the
number r of root nodes present in the tree, where the root nodes represent the global
explanations of the model.

In line 1, we create the regression model to be explained. Note that HuMiE is
model agnostic, meaning that it has the ability to explain any regression model. To ensure
semantically valid results, HuMiE works with continuous features only. Any categorical
feature should be pre-processed. Next, we initialize some important variables for building
the multilevel tree. In line 2, the tree is initialized as an array. This array will be filled
with tuples containing three pieces of information: the selected prototype, the prototype’s
depth level in the tree, and the prototype at the previous level (parent) of the selected
prototype. In line 3, a dictionary is initialized to store, for each selected prototype, the
minimum and maximum values of each feature found in the subset of instances from
where the prototype was chosen. This information will serve in the future to show the
minimum and maximum values of each feature within the subset that the prototype will
be representing. In line 4, an array is initialized to store the prototypes already chosen
during the tree construction process. Finally, on line 5, we initialize an array to store the
set of prototypes selected at the top level. As the explainer is built on a top-down fashion
(i.e., starting from the root level), it has no higher-level prototype, and this variable is
initialized with −1. In line 6 it is defined that the number of prototypes of the root level
is the value of r received as a parameter in the algorithm.

After that, we carry out the selection of the prototypes that will belong to the tree
in the loop between lines 7 and 29. Note that the construction of this tree will start from
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Algorithm 6 Hybrid Multilevel Explanation (HuMiE)
Require: T (train), T ′ (test), h (height of explanation tree), r (number of tree root

prototypes)
1: f = Regression model(T )
2: tree = [ ]
3: rangeAtt = {}
4: selectedPR = [ ]
5: prevLevelPR = [−1]
6: numPR = r
7: for each depth ∈ range(h) do
8: nearestPR = [ ]
9: if depth > 0 then

10: numPR = 2
11: for t ∈ T do
12: nearestPR.append(selectPR(t, prevLevelPR, f))
13: end for
14: end if
15: for previousPR ∈ prevLevelPR do
16: validIndexes = (T /∈ selectedPR) ∧ (T ∈ nearestPR(previousPR))
17: if depth == 0 then
18: validIndexes = T
19: end if
20: prototypes = MPEER(validIndexes, numPR, f)
21: tree.append(prototypes, depth, previousPR)
22: rangeAtt[previousPR] = findMinMaxFeatures(validIndexes)
23: prevLevelPR = prototypes
24: selectedPR.append(prototypes)
25: if depth = h then
26: leaves = prototypes
27: end if
28: end for
29: end for
30: topFeatures = {}
31: for PR ∈ selectedPR do
32: topFeatures[PR] = DELA(PR)
33: end for
34: localExplanation = {}
35: for t ∈ T ′ do
36: localExplanation[t] = selectPR(t, leaves, f)
37: topFeatures[t] = DELA(t)
38: end for
39: drawHybridTree(tree, topFeatures, rangeAtt, LocalExplanation)

the root, which will represent the global explanation of the model. After that, for each
root level prototype selected, we expand it up to the level at limit h, defined by the user.
In line 10 it is defined that for intermediate levels of the explanation tree we will have a
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binary division of the prototypes. In the loop of lines 11 to 13, we check, for all instances
of the training set, which prototype of the previous level is the most similar to represent
it. We are redistributing the training points to identify the most suitable prototypes in a
subset. Note that if we are at the first level this array will be an empty set (line 8). To
measure the similarity between the instances we used the L2 of the normalized values of
LF and LS measure (Equation 5.6).

In the loop between lines 15 and 28 we find the prototypes that represent each of
the subsets divided by the prototypes in the previous iteration. To accomplish this, in
line 20, we check the indexes of valid training points, i.e., all training points explained
by the same prototype in the previous tree level, excluding instances already selected as
prototypes. The conditional performed on line 17 verifies whether the chosen prototypes
are from the root level, if so, all instances of the training set make up the list of valid
indexes. In line 20, the M-PEER method is called for this subset of instances and the
chosen prototypes are added to the tree in line 21. In line 22, the minimum and maximum
values of all instances used to select each of the prototypes are checked, and in line 24 the
set of selected prototypes is added to the array of previously selected prototypes. Finally,
the condition in line 25 tests whether we have reached the last level h defined by the user,
which corresponds to the leaf nodes of the tree that will be later associated with test
instances.

The selection of the most relevant attributes and the range of expected values for
each attribute of similar instances is performed in the loop between lines 31 and 33 for
selected prototype points at all levels of the tree. The same procedure of feature analysis
is performed in the loop between lines 35 and 38 for the set of test instances. This is done
by DELA. In line 36, we check which leaf node is closest to the test point to associate the
two in the final view of the tree.

Finally, on line 39, a function is called to draw the tree, showing the most relevant
features and the range of expected features for the selected prototype instance and for
the test instances.

6.2 Experimental Setup

We perform both a quantitative and a qualitative evaluation of the prototypes
chosen by HuMiE and their characteristics. In the quantitative evaluation, we compare
the prototypes chosen by HuMiE for local explanation with those chosen by other methods
of explanation based on examples: ProtoDash and M-PEER. For that, we use the 25
datasets presented in Table 5.1. To measure the quality of the prototypes, we use the
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classic RMSE (Eq. 5.1) and also the metrics of GF (Eq. 5.3), GS (Eq. 5.4) and GFS
(Eq. 5.7) proposed earlier in Chapter 5. We also performed a qualitative analysis on
the classic Auto-MPG dataset, previously used in Chapter 4, which portrays the fuel
consumption of automobiles (miles per gallon – MPG) according to their construction
characteristics. These results are reported in Section 6.3.

Finally, we performed a case study using 2 versions of 4 datasets collected by [78]
from the answers to two questionnaires commonly used to assess the mental health of indi-
viduals, namely: WHOQOL-BREF1 (World Health Organization Instrument to evaluate
Quality of Life) and BSI [25] (Brief Symptoms Inventory). WHOQOL-BREF measures
an individual’s quality of life in different aspects. The BSI questionnaire measures symp-
toms related to conditions such as anxiety and depression. The case study is detailed in
Section 6.4.

6.3 Experimental Analysis

This section presents first a quantitative experimental analysis of the explainabil-
ity method proposed. The models to be explained were built using a Random Forest
Regression algorithm, with implementation provided by sklearn2. All parameters were
used with their default values.

Taking as input the model built using each of the datasets shown in Table 5.1, we
run the explanation methods ProtoDash, M-PEER and HuMiE to compare the quality
of the selected prototypes. For the ProtoDash explanation method we selected 6 global
explanation prototypes and assigned each of the test instances to the most similar. For
the M-PEER method we selected 3 global prototypes that are used for local explanation
according to the proximity of the test instances. Finally, in the HuMiE method we select
3 global prototypes (the same as in the M-PEER method) to generate a sublevel of 6
prototypes that were then used to explain the test instances.

As previously said, we compared the results obtained in terms of the classic RMSE
error metric to verify the ability of the model to be reconstructed only with the selected
prototype instances. In addition, we use the metrics of Global Fidelity (GF), Global
Stability (GF) and GFS to measure the semantic quality of the prototypes used for local
explanation.

The results obtained are shown in Table 6.1, where the best ones are highlighted
1https://www.who.int/tools/whoqol
2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestRegressor.html

https://www.who.int/tools/whoqol
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
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Table 6.1: Result of the quality of the prototypes chosen by different methods in the local
explanation of the test instances.

ProtoDash MPEER HuMiE
Dataset GS GF GFS RMSE GS GF GFS RMSE GS GF GFS RMSE

cholesterol 0.06 433.10 0.78 0.98 0.11 463.83 0.81 0.69 0.08 354.21 0.75 0.61
auto-mpg 0.02 117.60 0.60 0.56 0.07 96.17 0.63 0.81 0.05 73.77 0.60 0.68
sensory 0.14 478.57 0.85 1.26 0.19 465.81 0.86 0.71 0.10 337.01 0.77 0.72
strike 0.02 153.61 0.59 0.61 0.03 171.31 0.61 0.53 0.02 118.43 0.57 0.59
day_filter 0.11 409.93 0.82 0.85 0.09 608.41 0.88 0.73 0.03 396.44 0.77 0.68
qsar_fish 0.04 68.37 0.56 0.75 0.10 69.00 0.60 0.71 0.05 59.99 0.56 0.60
concrete 0.10 282.32 0.74 0.77 0.11 307.73 0.76 1.06 0.06 283.02 0.72 0.79
music 0.11 1.86e+5 1.25 0.82 0.13 1.97e+5 1.29 0.88 0.09 1.95e+5 1.27 0.99
house 0.05 9.58e+4 0.74 0.78 0.07 9.64e+4 0.75 0.84 0.05 8.45e+4 0.72 0.68
wineRed 0.02 1656.46 0.43 0.73 0.06 1391.73 0.48 0.68 0.06 1230.08 0.48 0.60
communities 0.10 2.08e+6 1.43 0.94 0.13 1.91e+6 1.39 0.66 0.10 1.70e+6 1.30 0.62
crimes 0.00 1.56e+6 1.16 0.35 0.00 1.66e+6 1.20 0.35 0.00 1.54e+6 1.16 0.36
abalone 0.05 525.57 0.42 0.93 0.06 386.61 0.43 0.70 0.01 338.52 0.35 0.60
wineWhite 0.01 1831.79 0.40 0.68 0.05 1544.18 0.45 0.67 0.05 1415.63 0.45 0.66
cpu_act 0.00 4972.93 0.40 0.94 0.01 2978.10 0.40 0.98 0.00 3076.94 0.38 1.25
bank32nh 0.00 7.05e+4 0.53 0.81 0.02 7.01e+4 0.55 0.93 0.05 6.76e+4 0.58 0.96
puma32H 0.02 8.21e+4 0.57 1.01 0.21 8.37e+4 0.66 1.00 0.05 8.51e+4 0.59 1.01
compactiv 0.01 4035.01 0.41 0.91 0.01 3106.38 0.40 0.97 0.00 2945.77 0.38 1.04
tic 0.00 1.13e+5 0.50 0.72 0.00 1.01e+5 0.49 0.72 0.00 8.37e+4 0.47 0.72
ailerons 0.02 2.40e+4 0.47 0.75 0.05 2.26e+4 0.49 0.95 0.01 2.16e+4 0.46 0.86
elevators 0.01 4277.07 0.38 0.84 0.02 3706.47 0.40 0.89 0.01 3763.58 0.38 0.88
california 0.02 670.03 0.42 0.91 0.07 478.54 0.48 1.08 0.02 470.18 0.41 0.83
house_16H 0.01 3627.19 0.37 0.75 0.00 2745.08 0.36 0.98 0.00 2646.99 0.36 0.81
fried 0.28 1253.83 1.56 0.85 0.39 1357.11 1.65 0.94 0.29 1248.61 1.56 0.97
mv 0.04 525.34 1.00 0.81 0.06 590.88 1.06 1.00 0.02 504.68 0.98 0.87

in bold. In addition, we show the critical diagrams of each of the metrics in the graphs in
Figure 6.2. As stated earlier, these diagrams were generated after carrying out an adapted
Friedman test followed by a Nemenyi post-hoc with a significance level of 0.05. As we are
comparing multiple approaches, Bonferroni’s correction was applied to all tests [24]. In
these diagrams, the main line shows the average ranking of the methods, i.e., how well one
method did when compared to the others. This ranking takes into account the absolute
value obtained by each method according to the evaluated metric. The best methods are
shown on the left (lowest rankings). The critical difference interval (CD in the plots) is
determined by the Friedman test according to the significance level defined. If the average
difference between two algorithms is greater than CD, then the null hypothesis that the
algorithms have the same performance is rejected. Finally, the diagram connects groups
of methods that do not present statistically significantly differences. Note that the size of
the lines connecting the methods corresponds to the size of the CD interval.

As we can see, the creation of a prototype explanation sublevel managed to main-
tain the same qualities in terms of RMSE as its competitors, where we cannot say that
it was statistically superior. Furthermore, the HuMiE approach was statistically better
than the explanation with only one M-PEER prototype level in relation to Global Stabil-
ity and GFS. Finally, the HuMiE multilevel hybrid approach was statistically better than
all competitors in terms of the Global Fidelity of the chosen prototypes.

Next, we show a qualitative analysis for Auto-MPG, which has 398 instances de-
scribed by 8 features. To evaluate the model error, we divided the data into two subsets,
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Figure 6.2: Critical diagrams of the choice of prototypes for local explanation of test instances
according to RMSE metrics (a), Global Stability (b), Global Fidelity (c) and GFS (d). From left
to right, methods are ranked according to their performance, and those connected by a bold line
present no statistical difference in their results.

(a) RMSE (b) Global Stability

(c) Global Fidelity (d) GFS

Source: created by the author.

the first being the training set with 70% of the instances (279) and the test set with the
remaining 30% (119). Note that in this case the model error is used only to identify how
good the explanation model is related to the original regression model to be explained.
As our focus is the explanation provided and not minimizing the error, we do not perform
any further evaluation, for example, through cross-validation.

The Auto-MPG dataset portrays a classic regression problem whose objective is
to find the consumption of a car having as features constructive characteristics of the
vehicle. To evaluate the explanation provided by our HuMiE approach we build a model
using all available features in a Random Forest algorithm. The RMSE error found on the
test set was 0.36.

Figure 6.3 shows the explanation provided for the model. In the explanations
provided in this work we defined the height h of the tree as 2 and the total number of
prototypes in the global explanation of the root as 3. Two test instances, one with a
low output value and another with a high output value, were previously selected for local
explanation.

In the explanation, each node highlighted in gray represents a prototype selected
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Figure 6.3: Hybrid tree explanation for the Auto-MPG dataset.

Source: created by the author.

from the training set and the nodes, highlighted in red represent two test instances selected
for local explanation. In addition, within each of the nodes, the actual output value of the
instance (y) and the respective value predicted by the regressor model (y′) are presented
in the first line. The other lines of the tree node represent the 5 main features identified
for that instance with their respective value (the most relevant number of features to be
shown can easily be changed if the user wants to).

The bars represent the observed threshold values between all valid closest points
when finding the prototype. In the case of the first upper level (root of the tree) the limit
is imposed by the values of all instances of the training set. In the case of the test node the
limit is imposed by all the closest features that originated the prototype local explanation
leaf (leaf node of the hybrid explanation tree). The red dot represents the feature-specific
value for the instance. The green range represents the allowable variation for creating a
similar instance, determined by the DELA method. Specifically, it represents the range
of feature values found among instances that deviate no more than 10% from the output
predicted by the model. When hovering over one of the features, the green range is shown
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numerically with a highlight balloon for the user.
Note that the global explanation prototypes managed to cover the solution space

well, with the first prototype being a high fuel consumption car (14.5 MPG), the second
an intermediate consumption car (19.08 MPG) and the last one a low fuel consumption
car of fuel (28.05 MPG). In addition, among the most relevant features at this level, we
find those that domain experts traditionally portray as determining the consumption of
a car, we can highlight: weight, displacement, horsepower and acceleration.

In the second level (intermediate explanation) we observe that the prototypes really
represent subgroups of the prototypes of the global explanation. This observation can be
made both in terms of the output returned by the model and the range for each of the
features. In the output we can observe that the values obtained do not extrapolate to
values of the side prototypes of the previous level. In the range of features, we observed,
for example, that in the first prototype of the second level the displacement feature varied
between 260 and 455 while in its parent prototype these values varied between 68 and
455, portraying a specification of the group.

Finally, we can also observe that the L2FS similarity metric was adequate when
associating the leaf prototypes of the explanation tree with the test instances, since both
the values returned by the regressor model and the feature intervals represent the best
possible association in each specific scenario.

6.4 Case Study: Explanining Models related to

Mental Health

To build the models to be explained we used two regression algorithms, they are: i)
Random Forest Regression; and ii) Linear Regression. We chose Linear Regression as one
of the algorithms since the medical datasets used in this work have a linear combination
of their features as output. Therefore, for this specific problem, we expect this method to
provide the best possible results. All algorithms were run with their default parameters.

The datasets analyzed here were collected by [78] in order to assess how the coro-
navirus pandemic (SARS-CoV-2) affected people’s mental health. To this end, measure-
ments were performed using the World Health Organization Instrument to evaluate Qual-
ity of Life (WHOQOL-BREF) and Brief Symptoms Inventory (BSI). Both questionnaires
are composed of questions that are answered on a 5-point Likert scale, ranging from 0
(not at all) to 4 (extremely). As an output, these tests result in a score per individual that
is computed based on a linear combination of the answers provided. A complete break-
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down of the WHOQOL-BREF and BSI instruments, including all questions, is available
in Appendix C. These tests were performed on a total of 153,514 individuals in the year
2020.

The WHOQOL-BREF test consists of 26 questions that address different aspects
of patients’ quality of life. The questions are divided into four domains: physical health
(wphys), psychological (wpsy), social relationships and the environment (wenv). In the
physical domain, the questions evaluate pain, energy, sleep, mobility, and activities of
daily living. In the psychological domain, the questions address self-esteem, positive and
negative emotions, thinking, body image, and spirituality. In the social relationships do-
main, the questions evaluate social interaction, social support, and personal relationships.
Finally, in the environment domain, the questions address the physical aspects of the en-
vironment, access to health services, safety, housing, finances, transportation, and leisure.
We work with all domains except social relationships. Thus, we initially have three sets
of data in the context of this test.

The BSI is a test that assesses the presence of psychological symptoms in pa-
tients. The test consists of 53 questions, which cover nine different domains: somatization,
obsession-compulsion, interpersonal sensitivity, depression, anxiety, hostility, phobic anx-
iety, paranoid ideation, and psychoticism. The answers provided by patients can indicate
the presence and severity of symptoms in each of these domains, allowing for a detailed
evaluation of patients’ psychological profile. Our focus will be on the somatization dimen-
sion (persistence of symptoms unexplained by medical causes). The somatization domain
consists of 7 questions that assess symptoms such as headaches, dizziness, chest pain, and
gastrointestinal problems. In this way, we initially have one more set of data from this
test.

In addition, we used two versions of the WHOQOL-BREF and BSI datasets. In
the first version, all the features corresponding to each test were used, plus demographic
information about the individuals (gender, age in months, level of education, marital
status and ethnicity). The categorical attributes went through a preprocessing phase
were they were converted using one-hot encoding, resulting in 19 demographic features.
In addition, we remove instances with missing data. At the end, we were left with 112,726
instances.

The second version was a dataset where we removed the demographic features,
keeping only the answers given by the individuals during the questionnaire response. In
this dataset, instances with missing data were also excluded, also resulting in a total of
112,726 instances.

At the end, we have 6 datasets from the WHOQOL-BREF questionnaire and 2
sets of data from the BSI test, half of them only with the responses to the questionnaires
and half with added demographical information.

The number of instances for each of the datasets was an issue for our runs. Given
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our hardware limitation and considering that the auxiliary methods (DELA and M-PEER)
of the HuMiE hybrid construction demand a lot of memory consumption in the construc-
tion of similarity matrices, it was not possible to use the complete dataset. In this way,
we randomly select 30,000 instances for our training sets and 30,000 instances for the test
sets, for each of the datasets.

The four datasets on mental health output a score calculated from the aggregation
of questions answered by patients through a linear function. Thus, initially we will use
only the features present in the questionnaires and train a model with a linear regression
algorithm. The results in terms of RMSE error in the test set were null for all four models
evaluated, as expected.

In this way, we will analyze the explanations provided by the proposed HuMiE
method and compare them with explanations that would be provided by the popular
local explanation method LIME. For that, we previously selected two instances for local
explanation, one with a low score and the other with a high score. In the provided
explanations we will show the 5 most relevant features found by LIME to explain each of
the test instances. For the explanation provided by HuMiE we define 3 root prototypes,
2 levels of explanation and at each node of the tree the 5 most relevant features.

As previously mentioned, for the BSI questionnaire we focused our attention on the
dimension of somatization as a model output. According to questionnaire, the final score
obtained for a patient characterizes the intensity of suffering during the last seven days.
Thus, the higher the score, the greater the suffering. Also according to the questionnaire,
the features related to the somatization dimension are the questions: 2, 7, 23, 29, 30, 33,
and 37. The output obtained by the linear regression model is shown in Equation 6.1. As
we can see, only the specific features from the questionnaire obtained non-zero coefficients.

f̂(x) = 0.1682 ·BSI_2 + 0.1967 ·BSI_7 + 0.2302 ·BSI_23 + 0.1948 ·BSI_29

+ 0.1957 ·BSI_30 + 0.2088 ·BSI_33 + 0.221 ·BSI_37
(6.1)

We can see in Figure 6.4, the LIME explanation method found the following fea-
tures as most relevant for the low score output instance in the BSI questionnaire: 29,
2, 7, 33 and 30. As for the high score instance, the following features were found to be
relevant: 30, 7, 33, 37 and 23. In addition to this information LIME also shows us the
contribution of each feature to the calculation of the specific patient’s score.

Figure 6.5 shows the explanation provided by HuMiE for the BSI questionnaire.
For local explanation of the low score instance HuMiE chose the following features as
most relevant: 37, 23, 33, 30 and 7. As for the high score instance, the chosen features
were: 37, 29, 23, 30 and 7. In addition to this information HuMiE also shows locally
which values are expected for these features in similar instances.
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Figure 6.4: LIME Explanation for the BSI Dataset - Questionnaire features only.

Source: created by the author.

Note that all sets of the 5 most relevant features found by both LIME and HuMiE
are part of the features used to calculate the score for the BSI problem. We can highlight
that the HuMiE explanation method also shows the global and intermediate explanation
of the created model. In the global explanation HuMiE selected 3 prototypes. These root
prototypes were binary divided into a second level of explanation. We can observe that
the root level prototypes were not very discrepant in relation to the output obtained for
the instances. This explanation is a direct result of the learning that was performed on
the dataset, where few instances have high scores for the somatization dimension. In this
dataset, approximately 90% of the instances have an output value less than or equal to
1. In this way, what at first glance could be considered a failure is actually portraying
exactly the knowledge acquired by the model, after all it is not possible to learn something
that is not contained in the data.

Finally, we can observe that with the multilevel explanation it also allowed access
to other relevant features that are used in the calculation of the score (if the user did not
know the function that originated it, it would be of great help to better understand the
problem) and also to other features intermediaries that can be useful for a specialist to
find hidden relationships in the data, for example, question 28 (Feeling afraid to travel
on buses, subways, or trains) in patients with high scores.

As for the WHOQOL-BREF questionnaire, we will focus our attention on the
wpsy domain. The other analyzed domains (wphys and wenv) presented similar results.
In these tests, a lower score represents a worse quality of life for the patient in the analyzed
domain. According to the questionnaire, the features that determine the wpsy domain
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Figure 6.5: HuMiE Explanation for the BSI Dataset - Questionnaire features only.

Source: created by the author.

are 5, 6, 7, 11, 19 and 26. The output obtained by the linear regression model is shown in
Equation 6.2. As we can see, only the specific features from the questionnaire obtained
non-zero coefficients.

f̂(x) = 0.2113 ·WHOQoL_5 + 0.2159 ·WHOQoL_6 + 0.1965 ·WHOQoL_7

+ 0.2478 ·WHOQoL_11 + 0.2362 ·WHOQoL_19− 0.2403 ∗WHOQoL_26
(6.2)

The explanations provided by LIME are shown in Figure 6.6 and the explanations
provided by HuMiE are shown in Figure 6.7. Again all 5 features found relevant by LIME
are part of the set used to calculate the patient’s score. In the explanation provided by
HuMiE we find that all features used in the calculation are present at the root level and
intermediate levels.
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Figure 6.6: LIME Explanation for the WPSY Dataset - Questionnaire features only.

Source: created by the author.

Table 6.2: Error in regression models built with dataset including patient demographic
features.

RSME
Dataset Linear Regression Random Forest

BSI 0.00 0.12
WHOQOL-BREF wpsy 0.00 0.08
WHOQOL-BREF wphys 0.00 0.10
WHOQOL-BREF wenv 0.00 0.12

In addition, in HuMiE for the local explanation of the instance with a low score,
we also observed the presence of questions 1, 2 and 8. Questions 1 and 2 are general
questions that directly inquire about the patient’s perception of their quality of life and
satisfaction with their health. They are not specific to any particular domain. Question
8 (How safe do you feel in your daily life?), despite not being used in the calculation of
the specific domain, presents a similar context and, therefore, could also be used by the
specialist to find hidden relationships in the data.

In future analyses, we included the demographic characteristics of patients in the
datasets. In this way, we expect the problem to become more difficult. In this step, we
used two algorithms to create the models: Random Forest and Linear Regression. The
results of the errors in the test set are shown in Table 6.2. As we can see, the models
created by Linear Regression kept errors at zero, being better than the Random Forest
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Figure 6.7: HuMiE Explanation for the WPSY Dataset - Questionnaire features only.

Source: created by the author.

model in all datasets. In this way, we will continue to keep our attention on the linear
model.

Explanations for the BSI datasets are shown in Figures 6.8 and 6.9 for the LIME
and HuMiE explanation methods respectively. As we can see, the two methods of ex-
planation listed among the most important features mostly demographic characteristics
(HuMiE was able to identify some features related to the calculation of the score).

The result of the explanation could apparently be considered as an error, after all
the calculated RMSE was zero. How is it possible that the score calculation features are
not present? If we analyze the equation found by linear regression (Table 6.3), we observe
that it corresponds to the same model created during the learning process.

Therefore, the explanations provided by our method are consistent with the model.
Similar results were obtained for the other datasets used in this work.
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Figure 6.8: LIME Explanation for the BSI Dataset - including features with demographic
information about patients.

Source: created by the author.

Figure 6.9: HuMiE Explanation for the BSI Dataset - including features with demographic
information about patients.

Source: created by the author.
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Table 6.3: Equation obtained by linear regression using the BSI dataset containing de-
mographic features.

f̂(x) = −48704.881 · sex_Feminino − 48704.881 · sex_Masculino
−451.0402 · Primarioincompleto
−14390.4649 · education_Doutorado
−1426.1002 · PrimarioCompleto/Ginasioincompleto
−2510.0293 · GinasioCompleto/Colegialincompleto
−21713.4741 · education_Mestrado
−8000.589 · Colegialcompleto/Superiorincompleto
−26404.4766 · education_Superiorcompleto
−24779.7538 · marital_status_Casado(a)/V ivejunto
−13498.5522 · marital_status_Separado(a)/Divorciado(a)
−24629.751 · marital_status_Solteiro(a)
+222829.0023 · marital_status_V iuvo(a)
+55079.3672 · ethnicity_Amarela
+143103.371 · ethnicity_Branca
+4197.7862 · ethnicity_Indigena
+133172.2834 · ethnicity_Parda
+66010.2356 · ethnicity_Preta
+0.1682 · BSI_2 + 0.1967 · BSI_7 + 0.2302 · BSI_23 + 0.1948 · BSI_29
+0.1957 · BSI_30 + 0.2088 · BSI_33 + 0.221 · BSI_37

6.5 Summary

This chapter introduced HuMiE, a method capable of creating multilevel hybrid
explanations for regression problems. By hybrid we mean that the provided explanation
encompasses as many elements of an explanation based on examples, through the selection
of prototypes from the training set, as well as the presentation of explanations based on
features such as, for example, the most relevant features and the expected values of
features for the region of a given instance. By multilevel HuMiE presents in a tree
format the model’s global explanations, local explanations for specific test instances and
also intermediate explanations, portraying semantically similar subgroups. Therefore,
HuMiE uses the M-PEER approach as a submethod for choosing prototypes and the
DELA approach for features analysis.

Experiments with real-world datasets quantitatively showed that the prototypes
chosen by HuMiE were better than all competitors (M-PEER and ProtoDash) in relation
to the fidelity metric and better than M-PEER with a single level in relation to the stability
metrics and GFS. Qualitatively showed that HuMiE is able to diversify in the choice of
prototypes according to characteristics of the presented dataset, both in terms of model
output and features. In addition, HuMiE was able to find subgroups of instances that are
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similar, providing an intermediate interpretation between the local and global scales. In
this context, HuMiE was able to identify which features are most important according to
the subgroup the instance belongs to. Finally, HuMiE also proved to be robust in terms
of associating test instances with the best possibilities of tree leaf prototypes for local
explanation.
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Chapter 7

Conclusions and Future Work

This chapter draws the main conclusions about the results obtained in this thesis regarding
the open issues defined in Chapter 1. We organize our results and conclusions according
to these issues in the next sections, and then discuss directions of future work.

7.1 Issue 1: Regression vs Classification

Statement: In general, explanation methods were not designed and evaluated specifically
for the context of regression.

As noted by the bibliographic study presented in Chapter 2, most of the meth-
ods proposed prior to the development of our work ignored inherent characteristics of
the regression model to be explained in the explanation process. This phenomenon
occurred mainly in the proposals for explanation based on examples.

To solve this problem, all our proposed methods take into account both the input of
the instances described by the set of features as well as the continuous output provided as
a preview for the instances. Thus, our explanations always aim to bring the understanding
of the model and not the datasets.

Furthermore, all of our proposed approaches, regardless of feature-based (Chapters
3 and 4), example-based (Chapter 5) or hybrid (Chapter 6), have been exhaustively
evaluated under specific datasets of regression problems, reaching a total of more than 20
datasets.

In the case of explanations based on examples, we proposed the approach of simul-
taneously minimizing multiple objectives, namely: i) based on features; ii) based on the
output of the model; and iii) based on the error obtained by the explanation.
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7.2 Issue 2: Local vs Global Explanations

Statement: The local explanation is not always coherent with the global explanation
provided by the same explanation method.

We believe that the local and global explanation being coherent is fundamental for
human understanding. In this way, our proposed approaches were based on the general-
ization and specification processes.

Generalization occurred in the process of feature-based explanations (Chapters 3
and 4). In this case, we initially obtained a set of local explanations for specific instances,
and from the aggregation of these various explanations we built a coherent global expla-
nation for several subspaces delimited by the model’s output.

Specification took place in the process of example-based explanations (Chapter 5)
and in the multilevel hybrid explanation (Chapter 6). In this case, we initially select a set
of fixed size among the training instances to be the prototypes of the problem, representing
the global explanation of the model. To specifically explain an instance maintaining
process coherence, one of the local prototypes is selected, the one that maintains the
greatest similarity in terms of a weighted equation that takes into account both the
features of the problem and the output of the model.

7.3 Issue 3: Instances should be semantically valid

Statement:Semantically invalid instances for the application can be created by locally
explaining the model.

Usually, algorithms that deal with local explanation create perturbations around
samples of interest to generate fictitious samples and describe local behavior. However,
this can lead to semantically invalid instances, which extrapolate possible values for input
features or are simply not observed in the real world.

To avoid that, our approaches always use the model’s own training points as a basis
for explanations. We consider that if a model was built with such data, it must contain
enough information to explain it. Thus, in feature-based explanations, our neighbor-
hood region where linear regressions capable of explaining the model will be determined
are constituted by previously selected training set points. In the explanations based on
examples, the prototype points are also selected from the training dataset.

Although our methods do not rely on fictitious instances to construct explanations,
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they are limited in situations where we do not have access to the training set used to
generate the model being explained. Consequently, our methods may not be suitable for
models created using private or confidential data.

7.4 Issue 4: Measuring semantics

Statement:Metrics to measure the similarity of instances and to evaluate the explanatory
power of methods are little explored, and significantly impact the results of explanations.

We observe by studying the literature that, in most explanation methods, there
is no proper care about which similarity metric will be used in internal processes where
comparisons between different instances are necessary. For the most part of the studies,
a simple Euclidean distance is used.

As we know, as in any machine learning problem that involves clustering, the
similarity metric used is of paramount importance, and the inadequate use of distance
measures may harm the problem. For example, we may found problems derived from
the structure that represents the instances (real, natural numbers, classes, etc) or by the
number of features of the problem (which can fall under the curse of dimensionality) .

To solve this problem in explanation methods for regression models, we evaluated
the relevance of 8 different distance measures (Section 4.1) and found that there is no
universally superior measure as the best one varies depending on the dataset in question.
Therefore, we proposed an algorithm to select the best distance measure based on charac-
teristics found in specific datasets. Our distance measure selection algorithm starts with
the assumption that instances with similar output values should have relatively similar
predictive features. Thus, the proposed distance selection method assumes the existence
of linearity between the model’s output for each instance and the distances that separate
these instances.

To measure the quality of explanation, we also observed that in quantitative stud-
ies, many previous works used only error-based metrics (Accuracy, RMSE, etc.). There-
fore, in addition to these metrics, we also proposed in the explanation processes based
on examples the use of a metric that takes into account aspects that are semantically
more understandable for a human, which are fidelity (related to the discrepancy between
the model’s output in relation to the explanation) and stability (related to the variability
present in the set of features of an explanation in relation to the instance that is intended
to be explained).
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7.5 Future works

In this thesis, we focused on developing specific explanation methods for regression
problems. However, we faced a significant challenge in comparing different explanation
types quantitatively, such as feature-based, prototype-based, counterfactual, and visual
explanations, as each method explains the model on a different aspect. We consider
these methods to be complementary rather than competitors in understanding the model.
However, it would be interesting to compare the level of understanding that each of
these methods provides through automated means, without requiring human involvement.
This would increase the scale of what could be evaluated, reduce the time spent on data
collection, and remove individual subjectivity during the evaluation.

Another potential area for future research would be to investigate the applicability
of our proposed methods in other types of regression problems, such as time-series and
multi-output regression. Another broad area for future research is the interpretability of
ensemble models using our proposed explanation methods. Ensemble models have become
increasingly popular due to their ability to improve predictive performance, but their
interpretability remains a challenge. By applying our explanation methods to ensemble
models, we could gain insights into the contributions of individual models within the
ensemble and the interactions between them. Additionally, developing new explanation
methods that incorporate additional information, such as domain knowledge, into the
explanation process would be a promising research direction.

Regarding our feature-based explanation method (DELA), we observed that a
promising study would be to evaluate the variance of the importance of features in the local
explanation. This deviation could portray the degree of uncertainty of the explanation
and help the user determine the level of reliability they could have in a given region of
space. Thus, this mechanism could serve as a subsidy for the user to improve the model
in specific regions, such as locally increasing the number of training instances or adjusting
the model parameters.

Moreover, it would be interesting to investigate the effectiveness of combining
various types of explanations to improve overall model interpretability. For example, we
combined feature-based and prototype-based explanations in the HuMiE method. Further
exploration of these combinations could significantly advance the field of model explana-
tion and increase the practical applicability of regression models in various domains.

Another potential study could evaluate the level of persuasion of the different
approaches to check whether a user is likely to believe in a given explanation approach,
even if the results do not match the trained model. This research direction could shed
light on the human factor in model explanation, which is often overlooked.

Finally, we could use the proposed methods to verify the presence of bias in models.
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As our explanations are obtained using the training set, we would have a direct corre-
spondence if the model presents criteria related to injustice with the inputs that served
to train the model. These future directions have the potential to significantly contribute
to the field of model explanation and broaden its practical applicability.
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Appendix A

Contracting different explanation
methods

The main objective of this appendix is to show what kind of information we can extract
from explanations provided by different methods and discuss the correct interpretation of
the explanations. For that, we have selected two data sets and set of methods to evaluate.
This section describes both and explains how experiments were designed, and reports the
error rates obtained by different methods.

A.1 Datasets

As the objective is to perform an in in-depth comparison of explanations provided
by different methods, we use two datasets as case studies, the former made of synthetic
data, and the later with real-world data.

We used the Gaussian probability density function for the synthetic data set, with
the generator function shown in Eq. A.1.

f(θ, σ) =
1

σ
√
2π

e−θ2/2σ2

, (A.1)

where θ is the value of interest, and σ is the standard-deviation. This function assumes
a mean 0 and represents the probability of observing a value θ −∆ < θ < θ + ∆ for an
infinitesimal ∆.

For the real-world example, we used the Auto-MPG data set from the UCI ma-
chine learning repository [28], describing the relationship between fuel consumption of a
car (measured in miles per gallon - mpg) with seven features: cylinder (Cyl.), engine dis-
placement (Disp.), horsepower (HP ), weight (Weight), acceleration (Acc.), year of the
model (Model year), and country of origin. The country of origin is the only categorical
feature and can assume three different values. Hence, it was converted into three binary
features: Asia (Origin Asia), Europe (Origin EU), and North America (Origin NA).
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Table A.1: Selected instances for local explanation from the Gaussian data set. We picked
the instances of lowest and highest target values.

σ θ Output

Low 0.215 1.843 0.000
High 0.334 −0.026 1.189

Table A.2: Selected instances for local explanations from the Auto-MPG data set. We
picked the instances of lowest and highest target values.

Cyl. Disp. HP Weight Acc.
Model
year

Origin
MPG

Asia EU NA

Low 8 400 150 4997 14 73 1 0 0 11
High 4 91 67 1850 13.8 80 0 0 1 44.6

To illustrate local explanations, we have selected two instances from each data set
representing a low and a high value of the output feature. Tables A.1 and A.2 show the
selected instances. For the Auto-MPG data set, we choose a car with a low output value
of the target feature (representing a high fuel consumption car) and another with a high
output value (representing an economical car in terms of fuel consumption).

A.2 Methods

We chose 10 methods to have their explanations evaluated, which include both
white-box (2 methods), gray-box (one method), and post-hoc model agnostic methods
(7 methods). These methods are indicated in Table 2.1 with an (*), together with its
main characteristics. We have also added our agnostic method of explaining ELA in this
comparative study. To select these methods, we take into account the widespread use
in the xAI community, the availability of the implementation, and a detailed description
of the applied methods. Finally, we have selected methods that use different explana-
tion strategies to evaluate how different these explanations are and whether they provide
different insights into the models’ internal mechanisms1.

Recall that post-hoc methods are used to explain a black-box model. We chose
the Kernel Regression model as a representative of black-box models for regression. This
model is reported to have a competitive accuracy compared to other black-box models
and symbolic regression models [70]. The Kernel Regression algorithm learns a function

1The technical details about the installation and usage are presented in Appendix B.
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(usually non-linear) in a kernel-induced space.
Since Kernel Regression models transform the original data into the Kernel space,

we cannot easily interpret the generated model. This is when post-hoc explanation models
come in.

A.3 Setup

This work focuses on explanations and how they can be interpreted. However, the
error of the model needs to be taken into account before the explanation process starts. To
do so, we chose not to perform the cross-validation procedure but only divide dataset into
two parts: the training set and the test set. For the Gaussian dataset, we have generated
1, 000 training instances and 100 test instances. The data was generated without noise to
avoid adding artifacts to the data. For the Auto-MPG dataset, we split the dataset, and
we used 279 instances for training and 119 for test (70− 30%).

Thus, we use the training sets to build four models: a linear model and a deci-
sion tree (as representatives of intrinsically interpretable/white-box models), a symbolic
regression model (representative of a gray-box model), and a kernel regression model
(representative of a black-box model).

We have adjusted the linear model using Ordinary Least Squares for both data
sets to minimize the residual sum of squares between the linear model and the training
outputs. We have also added an intercept term to add more flexibility to the model. For
the decision tree, we created the models limiting the tree to a depth of 4 since our main
objective is interpretability.

For the Symbolic Regression (SR) method, we use the Genetic Programming with
Non-linear Least Squares (GP-NLS) algorithm available with the Operon Framework2.
This algorithm is an volutionary process to find the best equation representing the training
instances. A binary tree represents each solution/individual. We set the hyper-parameters
to generate simple and interpretable expressions, forcing the expressions to have a small
size while still having a certain degree of freedom during the optimization process. We
used only arithmetic operations and simple terminal nodes as the building blocks for the
expressions ([+,−,×, /, constant, variable]). The method was run for 1, 000 generations
with 500 individuals in the population. The optimization process minimized RMSE and
the maximum tree depth and length of 4 and 15, respectively.

For the black-box model, we used the Kernel Regression provided by the Scikit-
Learn library in KernelRidge package. For the parameters, we performed a grid search

2Available at https://github.com/heal-research/pyoperon.

https://github.com/heal-research/pyoperon
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Table A.3: RMSE obtained using the test set for both synthetic and real data sets. The
best value for each data set is highlighted in bold.

Model Gaussian Auto-MPG

Linear Model 0.145 3.676
Decision Tree 0.071 3.897
Symbolic Regression 0.053 3.209
Kernel Regression 0.012 3.304

in each data set where the kernel (′poly′,′ polynomial′,′ rbf ′,′ laplacian′,′ sigmoid′,′ cosine′)

and the values for alpha (0.05, 0.1, 0.5, 1.0, 10.0), degree (1, 2, 3, 5) and coef0 (0.0, 0.05, 0.1, 0.5, 1.0, 10.0)

are varied. For Gaussian dataset the optimal parameters were: alpha=0.05, coef0=0,
degree=1, and kernel=laplacian. For the Auto-MPG dataset, the best values found were:
alpha=0.05, coef0=10.0, degree=2, and kernel=poly.

Thus, as a reference of the prediction error of the regression models, Table A.3
reports the root mean squared error (RMSE) obtained by each model on the test set. As
we can see, intrinsically interpretable models are not always able to obtain a good result
in relation to error. As the model becomes more complex, better results are obtained.
However, to understand a complex model, we need auxiliary explanation methods.

A.4 Interpreting white-box models

Here we present explanations from a linear model and a decision tree model for
each data set.

A.5 Gaussian dataset

The linear regression algorithm returned the following model, and the 95% confi-
dence interval (CI) for each one of the coefficients is reported in Table A.4 :

fLinear(θ, σ) = −0.0606σ − 0.0001θ + 0.295. (A.2)

This model can be read as: whenever θ = σ = 0, we have a base value of 0.295,
i.e., the probability of observing θ = 0 with zero mean and variance, is 0.295. Since,
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Table A.4: Coefficient values and corresponding Confidence Intervals of the Linear Model
obtained for the Gaussian data set.

Coef 95% Confidence Interval

σ −0.0606 [−0.074,−0.048]
θ 0.0001 [−0.009, 0.009]
Intercept 0.2954 [0.272, 0.319]

Figure A.1: Decision tree created from the Gaussian data set (Depth = 4). Colors indicate
the extremity of the predicted value, with darker colors indicating higher values.

If false If true

MSE: 0.0
 4.4%
 0.01

MSE: 0.0
 0.7%
 0.05

MSE: 0.0
 0.6%
 0.02

MSE: 0.0
 0.6%
 0.16

MSE: 0.0
 1.2%
 0.08

MSE: 0.0
 13.0%
 0.14

MSE: 0.0
 3.6%
 0.2

MSE: 0.0
 2.6%
 0.15

MSE: 0.02
 4.5%
 0.32

MSE: 0.1
 8.1%
 0.65

MSE: 0.0
 8.5%
 0.28

MSE: 0.0
 16.9%
 0.17

MSE: 0.01
 2.6%
 0.1
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in practice, this is an unrealistic situation (we cannot measure this probability for zero
variance), we can fix a common value for σ to understand the intercept. For the common
setting of a normal distribution N (0, 1), we have that the probability of observing θ = 0

is 0.2344. Starting from the baseline N (0, 1), we can say that every unitary increase in σ

will decrease the probability of observing a value of θ by 0.0001. On the other hand, if
we change the value of θ by one unit, we will see a reduction of 0.06 in the probability,
which is true when we are moving away from 0. However, if we decrease the value of θ,
the linear model will increase the probability.

The CI represents the interval having 95% probability of containing the actual value
of the coefficient of the linear model (since the model is derived from the sampled data,
thus have an uncertainty associated with the samples). From the CI of each feature, θ
contains zero as part of the interval. This could be interpreted as having a high probability
that θ could be discarded from the model by assigning zero to its coefficient.

Looking at a different interpretable model, Fig. A.1 shows the tree created. By
inspecting the rules generated, we observe some trends such as, the closer to zero the
θ value is, the larger the prediction. This makes sense since our data set includes only
positive values of σ and, the closer to θ = 0, the higher the probability. On the other
hand, a higher value for the standard deviation reduces the probability for any given θ.
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Figure A.2: Gaussian data set: decision surface (Tree depth = 4). The color of the sub-
regions indicates the prediction value make for the samples within the sub-regions.
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This can be better visualized by plotting the decision surface, as in Fig. A.2. As we can
see, the highest values (yellow color) are closer to where θ and σ are the smallest. Also,
the rate of change induced by θ is faster than that for σ.

The non-linear model generated by the decision tree is more accessible to a lay
audience and presents a smaller error than the linear regression. These interpretable
methods provided, with no additional tools, the possibility of understanding the relation-
ships between the input features, allowing the user to obtain insights about the problem.
With this information, it is also possible to know how to change the inputs to produce
the desired output.

Despite being considered white-box models, they do not scale well for larger prob-
lems, as the learned structures tend to be more complex. Also, the non-linear relationships
of larger problems may not be approximated accurately, resulting in a model that fails to
adequately describe how y responds to x. Tree pruning and different types of regulariza-
tion can help mitigate this problem but are out of the scope of this work.

A.6 Auto-MPG dataset

For the Auto-MPG dataset, Table A.5 reports the coefficients and confidences
intervals. The obtained linear model is shown in Eq. A.3.
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Table A.5: Coefficient Values and corresponding Confidence Intervals of the Linear Model
obtained for the Auto-MPG data set.

Coef 95% Confidence Interval

Cyl. −0.333 [−1.062, 0.395]
Disp. 0.02 [0.002, 0.038]
HP −0.005 [−0.03, 0.019]
Weight −0.007 [−0.009,−0.006]
Acc. 0.115 [−0.9, 0.32]
Model year 0.762 [0.649, 0.876]
Origin Asia −1.259 [−7.774,−2.567]
Origin EU 0.457 [−5.877,−1.034]
Origin NA 0.802 [−0.598,−0.521]
Intercept −15.648 [−19.022,−4.449]

fLinear(x) =− 0.333 · Cyl.+ 0.02 ·Disp.− 0.005 ·HP

− 0.007 ·Weight+ 0.115 · Acc.+ 0.762 ·Model year

− 1.259 ·Origin Asia+ 0.457 ·Origin EU

+ 0.802 ·Origin NA− 15.648.

(A.3)

Observing the intervals of the coefficients, we can see that the current samples are
insufficient to determine if the variables Cyl., HP , and Acc. have a positive or negative
effect (or even any effect) on the output. This should be taken into consideration when
explaining the model.

For this data set, we do not have the ground-truth. The base case here, where the
value of each feature is equal to 0, does not bring any information once this scenario does
not happen in the real-world. Not surprisingly, this situation would render a negative fuel
consumption. We can interpret the intercept using the average values of each feature;
when evaluating this model using the average of each feature, we have a prediction of fuel
consumption of 22.91 as the baseline.

The model in Eq. A.3 also tells us that whenever we increase the cylinder (Cyl.)
by one, we are likely to observe a decrease of 0.33 in fuel consumption (output). We also
observe a reduction in fuel consumption when we increase horsepower (HP ) and weight
(Weight) and leave all other features constant. But note that we should be careful with
interpreting a linear model as it does not automatically capture the interaction. Another
conclusion is that whenever we increase the horsepower, we also increase the acceleration
(Acc.). As such, we should further investigate the impact of a joint increase in both
features to draw a definite conclusion.

Another point we should be aware of when analyzing a linear model is that when the
features are not on the same scale, it can be counter-intuitive to measure the importance
of each feature by their linear coefficients.
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Turning to the decision tree model, shown in Fig. A.3, note that here we can
see how the features interact to make a prediction. To illustrate, taking the leftmost
path from the root to the leaves leads to a prediction where we have a small value for
displacement, horsepower, model year, and weight, leading to an average consumption of
29.91. On the other hand, newer models (model year) will increase the output (decrease
fuel consumption). This trend appears in every branch and suggests further investigation
on what has changed throughout the years to reduce consumption. These results suggest
a new experiment with a different regression model built for every decade. The lowest
fuel consumption is obtained with high values for displacement, horsepower, and weight;
and a low value for the model year.

A.7 Linear model vs Tree-based model

Comparing both white-box models, the linear model returns a more straightfor-
ward interpretation where it is quite clear the expected (or a rough approximation of)
association between each feature and the target. Using this model, we can make decisions
on how to change the input to obtain the desired change in the output of the system.
Besides that, this type of model has many well-established statistical tools to give more
confidence in user decisions. In particular, we can easily calculate an interval for the
parameters and support decisions with the average and extreme cases using both ends of
the boundaries. These boundaries also show whether there is a chance that the effect of
that feature could be only caused by random chance.

One downside of this model is that it does not account for non-linearities and
interactions of the features. The regression tree model can capture such properties of the
model and still provide a clear interpretation of the decision process. But, unlike linear
models, the focus on interpretability is only on how the decision is made and does not
add any information about the association of a particular feature to the output.

If the main goal is to understand the studied system, both approaches could give
different insights. While a linear model provides a better understanding of the expected
behavior of the system, the regression tree can reveal interactions and non-linearities that
could be incorporated into the linear model.
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Figure A.3: Decision tree created from the Auto-MPG data set.
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A.8 Interpreting gray-box models

While the models discussed in the previous Section were inherently interpretable,
gray-box models, as the name suggests, are within black and white-box models. To illus-
trate the interpretation of these models, we chose the Symbolic Regression (SR) method.
Here we present the explanations obtained for each data set.

A.9 Gaussian dataset

SR has the advantage of finding non-linear expressions that can still be inspected
to obtain insights from the problem domain. For the Gaussian data set, the returned
expression was:

fSR(σ, θ) =
0.146

0.381σ + θ2
+ 0.059. (A.4)

Since this is a non-linear model, we cannot make the same interpretation of the
coefficients as we did with the linear one. Yet, we can still fix the values of some of the
features to analyze the behavior of the function.

A first baseline is to set θ = 0 and σ = 1, which returns 0.442 (the real value
should be 0.399). We could also calculate the baseline with the average value of each
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Figure A.4: Symbolic regression model (output presented in y axis as a function of θ)
described in Eq. A.4 fixing σ = 1.
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feature to see the prediction for the average case. By fixing σ = 1 we can plot the
behavior for different values of θ, as illustrated in Fig. A.4. This visualization can help
the practitioner to inspect and debug the model to analyze whether it is misbehaving at
certain points or to understand the dynamics of the function.

When we calculate the partial derivative w.r.t. θ and by fixing σ at the average
value (known as the Partial Effects at the Means [10]), we can gain a deeper understanding
of the model behavior, as seen in Fig. A.5.

We observe from the left plot that, when fixing the value of θ at the mean, varying
σ from 0 to 1 will have a negative effect on the probability of observing this θ value. This
is intuitive with the expected properties of the Gaussian function: as we increase the value
of σ we observe a flatter curve. We can also see that after some point, the smaller the rate
of flattening of the curve, the higher the variance (approximately by a logarithm factor).
The plot to the right shows the partial effect when fixing σ while varying the value of θ.
At θ = 0.0, we have a local optima point (from Fig. A.4 it is a point of maxima) and,
for every positive value of θ, whenever we increase its value, we observe a decrease in the
target value (the partial derivative values are negative).

On the other hand, if we have a negative value of θ and increase its value, we move
the target value closer to the optima. Also, observe that the intensity of increase/decrease
is maximum at approximately θ = ±0.3, and, as θ moves away from 0, the prediction gets
closer to 0, indicating a reduced effect on the target. Hence, the symbolic model gives
another perspective of the model dynamics, with better insights into how the studied
system behaves.

In Fig. A.6 we also show the Partial Dependence plots for the Gaussian data set.
A partial dependence plot is a graph in which the x-axis represents the values for one
of the features, and the y-axis represents the expected output for that particular value
when the remaining features are kept constant at a baseline value (usually the average).
We can say that these plots give the same information as the partial effect but from a
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Figure A.5: Partial Effects at the Means for the Symbolic Regression in the Gaussian
data set.
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Figure A.6: Partial Dependence Plot for the Symbolic Regression in the Gaussian data
set.
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different angle.
Note, from the left plot, that for all of the observed values of θ, the probability

decreases as σ increases (due to the flattening of the curve). Likewise, we can see the
Gaussian curve for different values of σ on the right plot.

A.10 Auto-MPG dataset

For the Auto-MPG data set, the symbolic regression model obtained was:

fSR(x) = 0.106 · (Model year)2 · (Acc.+Model year +Origin EU)

Weight
+ 2.275. (A.5)

The SR model could perform an implicit feature selection by using only a subset
of the problem features. Four of them are part of the model: Weight, Acc. (acceleration),
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Figure A.7: Symbolic regression model (output presented in y axis as a function of
Model year) described in Eq. A.5 fixing all features except Model year.
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Model year, and Origin EU (country of origin: Europe). By analyzing the Eq. A.5, we
can see an interaction between multiple features.

Again, we can see the importance of the model year having a quadratic strength. It
interacts with the linear combination of the values of acceleration (Acc.), year of the model
(Model year), and European cars (Origin EU), meaning that these features contribute
to increasing the predicted MPG. The feature weight (Weight) acts by decreasing the
value of MPG prediction.

It is plausible to assume that as the model year increases, it exerts a quadratic effect
over the combination of the acceleration of the car, having an additional impact if the
country of origin is in Europe. One can interpret this as if the feature model year captures
the improvements made by engineers over the years to increase the car’s performance. A
car with a higher weight decreases MPG, and an increment on this feature would likely
result in a less efficient vehicle.

We can apply the same treatments as before, first evaluating the model at the
average values of each feature, resulting in a baseline value of 16, 277. We can also fix
the values of all features but one and inspect how the remainder feature behaves. To
illustrate, we can fix Acc. = 15,Model year = 75, Origin EU = 1 and observe the
behavior of the weight, as illustrated in Fig. A.7. This figure shows that when keeping
everything else constant, the mpg reduces logarithmically as the car weight increases,
indicating a consumption increase.

It is essential to highlight that we should be careful before making conclusions
about these models. We must understand the limitations and use these analyses as a
stepping stone for further investigation. Regarding the model year, we should be aware
that the data was collected during a small time-frame (between 1970 and 1982). Hence, we
should be careful when extrapolating it to recent years as we have had many advancements
in engineering.

The Partial Effects at the Means for three features of the Auto-MPG data set are
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Figure A.8: Symbolic Regression global explanations using the Partial Effects for the
Auto-MPG data set.
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Figure A.9: Symbolic Regression global explanations using the Partial Dependence Plots
(average) for the Auto-MPG data set. The Individual Conditional Expectations (ICE)
are represented in lighter lines.
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illustrated in Fig. A.8. As we can see from these plots, the effect of weight is always
negative, and it decreases at a quadratic rate. The impact of the acceleration, on the
other hand, remains constant, as it has only a linear influence on the prediction. For the
model year, the effect is positive and increases at a linear rate.

In Fig. A.9 we can see the PDP as a counterpart of the Partial Effects, showing
that, for the weight feature, there is a steeper decrease in mpg when increasing the weight
from 2000 to 3000 than when increasing from 4000 to 5000, as expected from the partial
effect analysis.

As we saw, SR has the advantage over traditional regression techniques that it can
find interactions of the features that best minimize the prediction error. The structure
is modeled and adapted during the search. The final equations can be interpretable de-
pending on several factors: domain knowledge, the function form, and the final expression
size. The advantage of having a mathematical expression is that we can use the concept
of Partial Effects to obtain feature importance explanations based on the actual model
and not on simply changing the input and observing the effects on the output — making
the Partial Effects an explanation that corresponds to the decision process of the model.



A.11. Gray-box vs White-box models 174

A.11 Gray-box vs White-box models

The Symbolic Regression model extends the linear model with the possibility of
describing the non-linearities of the studied system. Also, it is capable of automatically
performing feature selection and the identification of interactions among features. As such,
the SR model can deliver the same insights described in the white-box section. However,
given that the model can be non-linear, the interpretation of the numerical parameters,
analogue to the linear model, may not be straightforward. With a linear model, the
association of a given feature to the target is constant, on a non-linear model, it can
depend on the values of the other features. In this case, it is necessary to summarize this
information with aggregation measures and extract the insights with the help of visual
aids (e.g., PDP and Partial Effect plots).

Hence, instead of having an generic explanation for every point, we have to interpret
every data point individually or in a limited region at a time. Even though the Partial
Effects at the mean and the PDP plots carry the same information, they do so from a
different point of view. While PDP shows the expected value of the target for a given
value of a feature, the Partial Effects plot shows the impact of an infinitesimal variation
of that variable, closer to the interpretation of a linear model.

We argue that both views of the model are important for the understanding and
decision-making process. While we can identify regions that contain values of interest for
the target (with the PDP plot), we can also find the critical regions that vary the model
response the most (with the Partial Effect plot).

A.12 Post-hoc explanations of black-box models

As previously explained, post-hoc methods are used to explain a black-box model.
We chose the Kernel Regression model to represent a black-box model, as it learns a
function (usually non-linear) in a kernel-induced space using the given data set as input.
Since Kernel Regression models transform the original data into the Kernel space, we
cannot easily interpret the generated model as we have done so far. For that, we need the
support of explanation methods.

We have selected 9 agnostic post-hoc explanation methods to be evaluated, includ-
ing methods following all the main approaches previously proposed in the literature. We
understand that no method of explanation can provide a complete understanding of the
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model. At the same time, we believe there is no need for competition between those who
explain more or best — we believe that the concomitant use of different methods can be
beneficial so that the user can trust, improve or have new insights into the scenario under
study.

We can say that the SHAP, LIME, SAGE, Partial Effects, and Integrated Gradients
method can return the importance of each feature to obtain the output of the regressor.
SHAP and Partial Effects produce global and local importance. For instance, LIME and
Integrated Gradients only the local importance and SAGE only the global importance.
Additionally, SHAP, LIME, and Integrated Gradients also report on the impact that can
be caused on the output by changing the observed input values. The ELA method can
show us the importance of local features and also, through a visual explanation, the
importance followed by various output intervals of the regressor. In addition, we were
able to obtain from ELA information about feature values that can be changed without
significantly changing the output.

From a visual explanation, the ICE/PDP methods can show the change in the
values in each feature caused in the model output. ProtoDash provides its explanation
by selecting the most relevant and diverse instances for the task, with information about
the weight of each one. Finally, DiCE explains which features can be minimally changed
so that our output is substantially modified elsewhere in the solution space.

This section compares the explanations provided by the different methods of ex-
planation, highlighting what we can learn from each of them and checking for possible
agreements or contradictions. For each data set, we organize our discussions according to
the scope of the explanation, i.e., global versus local.

A.13 Explanations for the Gaussian data set

A.13.1 Global explanation

Global explanation methods attempt to provide a single explanation to summarize
the global behavior of the model. Although there are only two features for the Gaus-
sian data set, we start with feature importance methods and discuss why this dataset is
challenging for them.

Having only two features, three scenarios are possible for global feature importance
explanations: both are equally important, or each one of the two features can have a more
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Figure A.10: Explaining the Kernel Regression model globally for the Gaussian data set.
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significant impact than the other. The ground-truth equation calculates the probability
of observing θ for a Gaussian distribution centered on zero with a standard deviation σ.

We notice that exists a relationship of dependence between θ and σ: the closer θ

is to the extremes of the distribution (i.e., ±3σ), the less its values impact the predicted
probability, since ≈ 99% of the data in a Gaussian distributions lies within [−3σ, 3σ].
This means that as θ gets closer to ±σ, the output should suffer less from variations in θ.
Notice that the feature values for θ are in the range [−2, 2] and for σ they are in [0.2, 3.0].
Hence, when θ assumes a value closer to the distribution center (µ = 0), σ becomes less
important. σ impact, on the other hand, decreases as its values get larger than θ. This
interaction of features makes this data set challenging to global explanation methods,
which we expect to retrieve this dynamic or at least have an acceptable approximation.

Fig. A.10 shows the global explanations obtained by SAGE (Fig. A.10a), Partial
Effects (Fig. A.10b), and ELA (Fig. A.10c). We first notice that SAGE and Partial
Effects — which support global feature importance explanations — show different fea-
ture importance ranks. SAGE considered θ to have nearly twice the importance on the
prediction than σ, while Partial Effects showed the opposite – σ is more important than
θ.

Although ELA provides a visual explanation, this explanation is based on feature
importance, and hence we compare it with the previous feature-based approaches. Ob-
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Figure A.11: Kernel Regression global explanations using the Partial Dependence Plots
for the Gaussian data set.
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serve that the interaction between terms is better represented by ELA, but it is given in
terms of the output. As the output increases (x axis), the contribution of the different
features changes — this leads to a conclusion that the model behavior is non-linear and
thus cannot be simply generalized by global feature importance methods.

Finally, Fig. A.11a shows the partial dependence plots (PDP) for each feature,
with the lighter lines representing the Individual conditional expectations (ICE), while
Fig. A.11b considers both features interaction. The PDP individual plots show that,
on average, σ has slightly decreasing importance as it grows. In contrast, θ average
behavior acts as a radial basis function: the importance depends only on the distance
to the origin. However, the ICE lines indicate that exists many samples in the data set
with high deviation from the average behavior. It is known that the average is a biased
estimator that can be influenced by outliers and data distribution. Nevertheless, PDP
plots complement the ELA plots by elucidating the feature importance segmented by their
interval, not by the predicted value. This is because ELA generalizes multiple plots into
one.

We can visualize the interactions between the two features when plotting the PDP
shown in Fig. A.11b. The feature θ still has a radial basis behavior, but as σ increases, the
spread of the radial function also increases. While PDP provides a helpful explanation,
it assumes feature independence. The PDP for a single feature is calculated by fixing
the other features in representative values, eliminating existing correlations. Also, the
maximum number of features we can plot simultaneously is two.

Turning to prototype-based methods, for ProtoDash, we generated 7 prototypes
to display in Table A.6 In addition to the features of each prototype, we also obtain their
weights. The weight quantifies how well each prototype can represent the data. The
prototype, with a weight of nearly 50%, indicates that σ = 1.62 and θ = −0.05 strongly
represent the overall data set. It corroborates with the fact that θ = 0 has the minimum
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Table A.6: Top seven prototypes selected to represent the global behavior of the Ker-
nel Regression for the Gaussian data set. The weight leverages the importance of each
prototype to summarize the whole data set.

# Prototype 1 2 3 4 5 6 7

σ 1.626 0.604 0.456 2.990 2.919 0.213 2.996
θ −0.057 1.998 −1.996 1.909 −1.761 −0.043 0.262
Output 0.245 0.002 6.159e-05 0.108 0.113 1.826 0.132

Weights (%) 0.464 0.124 0.107 0.107 0.104 0.072 0.041

Figure A.12: Target feature space highlighting the instances (in red) chosen as prototypes
by Protodash for the Gaussian data set. The black dots represents the other samples from
the data set.
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Source: created by the author.

average distance between all data points because of the function symmetry. The following
four prototypes have weights around 0.1, each representing an extreme point of the data
set, where either θ or σ is close to the extreme values of their respective domains.

Fig. A.12 shows the prediction for each observation in the training partition,
with red dots indicating the prototypes. The size of the dot means the weight of the
prototype. We can see that most prototypes have similar output values but very different
feature values.

A.13.2 Local explanation

In contrast with global explanation methods, local explanation methods provide
different explanations for every single instance (observation) of the data set. In this
section, we chose two instances to analyze the explanations provided by different methods:
one has a small and the other a large prediction value.

We start with methods based on feature importance. Since describing a single
output is a more straightforward task than summarizing a (possibly complex) prediction
model, feature importance explanations are expected to play a more significant role in
the local context than in the global. Fig. A.13 shows the local explanation provided by
SHAP for the selected examples.
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Figure A.13: Kernel Regression local explanations using the SHAP explainer for the
Gaussian data set.
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Source: created by the author.

The SHAP plots are called force plots and visually show the contribution of each
feature to that particular prediction. In the plot, the blue/red highlights represent a
decrease/increase in the output when compared to a baseline prediction, which considers
all features as having their average observed values. We can also observe the ability of
SHAP to capture the non-linearity of the data when comparing the numerical difference
of contributions to two local explanations. Through the plots, SHAP shows that, for
the high probability observation, to go from the baseline (0.26) to the predicted output
(1.23), both σ and θ have a positive contribution, with θ being slightly more significant
than σ.

For the low prediction observation, in contrast, SHAP shows σ contributed posi-
tively with a small strength, and θ contributed positively with a Shapley value of 1.842.
Hence, σ has more significant importance for the high probability prediction than for the
low probability for the compared samples.

Next, Fig. A.14 reports the local explanations given by LIME. In this case, the blue
bars represent the negative contributions, and the orange ones represent the contributions
to increase the output of the specific test instance feature. Note that the positive or
negative contribution information returned by the SHAP and LIME methods cannot be
directly compared as the reference point is not the same. Thus, LIME tells us that, since
σ ≤ 0.84, its local importance is 0.036. Similarly, since θ > 1.02, its local importance is
−0.124. This reflects the local association of these specific values. Hence, at this point,
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Figure A.14: Kernel Regression local explanations using the LIME explainer for the Gaus-
sian data set.

(a) Local explanation for the lowest target value

(b) Local explanation for the highest target value

Source: created by the author.

Table A.7: Kernel Regression local explanations using the ELA explainer for the Gaussian
data set. ELA reports the normalized feature importance by approximating the black-box
locally using an interpretable linear model.

Low output High output

y’: -0.010
Coefficients: [0.063, 0.013]
intercept: −0.049
Importance of features:
σ : 82.075
θ : 17.925
Local variation: −0.008− 0.003
0.215 ≤ σ ≤ 0.453
1.600 ≤ θ ≤ 1.953

y’: 1.213
Coefficients: [−2.376,−0.010]
intercept: 2.008
Importance of features:
σ : 99.531
θ : 0.469
Local variation: 1.186− 1.186
0.334 ≤ σ ≤ 0.346
−0.05 ≤ θ ≤ −0.02

increasing θ will have a negative effect on the output.
Similarly, Table A.7 shows the local explanations provided by ELA. For both in-

stances, ELA reports σ as the most important feature, contrary to the previous local
feature importance methods. Since this explainer is based on a local linear model, the
interpretation is similar to a linear regression within the specified neighborhood. As we
can see from this table, for the low output instance, both features have a positive effect,
so any increase in the values of the feature will reflect an increase in the output. For the
high output instance, both features have a negative effect.
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Table A.8: Kernel Regression local explanations using the DiCE counterfactual (CF)
explanations for the Gaussian data set.

σ θ f

Original input high 0.334 −0.02 1.226
CF 1 0.278 0.566 0.205
CF 2 0.231 0.564 0.181

Original input low 0.215 1.842 −0.012
CF 1 0.231 0.564 0.181
CF 2 0.278 0.566 0.205

Finally, Table A.8 shows the counterfactual explanations created by DiCE. This
explanation tries to find the smallest change in the original input that would change the
prediction. We have set the goal of finding an input example that changed the output
to 0.2. As we can see from the table, in both local instances, the main difference is to
decrease/increase θ to a value of 0.56. This reveals the symmetry of the function where,
starting from both extremes, they both should reach the same central value to get the
same output of interest.

From the diverging explanations, we can conclude that SHAP, LIME, and ELA
provide feature importance explanations that cannot be directly compared since they are
calculated differently and according to a distinct referential: SHAP explains the predic-
tion by showing the contribution each feature gives to go from the basal prediction to
the actual output; LIME fits a local linear model over synthetic data generated around
the observation, and uses its coefficients to explain the local behavior; and ELA uses k

neighbors to fit the same linear model — instead of synthetic data sampled and weighted
based on the observation neighborhood —, thus normalizing the coefficients to provide a
more intuitive value to understand, since the explanations represent proportions.

Which explanation should we use? This choice must be made taking into account
what the user wants to know about the model. Is it “how to create minimal/maximal
changes to the prediction?” In this case, LIME or ELA are better suitable; or is it “to
understand which features, in contrast to the average observation, were most influential
to the prediction?” In this case, SHAP provides a more meaningful explanation.

Neither the explanations are wrong, nor they provide contradictory results, but
they show different perspectives of the same black-box model. The discussion about
causality between explanations and the model’s behavior is out of the scope of this work
and is still an open question.
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Figure A.15: Explaining the Kernel Regression model globally for the Auto-MPG data
set.

(a) SAGE feature importance.
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(b) Partial Effects feature importance.

(c) ELA feature importance by prediction output value.

Source: created by the author.

A.14 Explanation for the Auto-MPG data set

A.14.1 Global explanation

The results of the global agnostic explanations of SAGE, Partial Effects and ELA
for the Auto-MPG data set applied to the KR model are reported in Fig.A.16. We must
remember that these plots depict an aggregated measure of the local explanations from
the sampled data available. As such, these plots can give a biased view of this importance
as they will not reflect the reality for every data point. ELA plot alleviates this problem
since it aggregates the importance per target value, as we will explain next.

Regarding the average relevance of each feature, all methods agree on the two most
important features: weight and model year. The weight directly influences the inertia of
the car, which makes it more challenging to get the car out of rest. From the explanations,
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Figure A.16: Kernel Regression global explanations using the Partial Dependence Plots
for the Auto-MPG data set.
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we conclude that a greater fuel consumption occurs due to the displacement as we have
heavier cars, thus reducing the model’s MPG output. The car model year shows that
there has been an evolution in the manufacturing of vehicles, making them more efficient
over time.

As previously noted, these plots describe an aggregated measure of importance,
but they do not show the impact of each feature depending on their value. In non-linear
models, the impact of a feature is not the same throughout the predictions, unlike in
linear models. To tackle this problem, different from the bar plots generated by most
explainers, ELA (Fig. A.15c) includes additional visual information about the aggregate
importance w.r.t. the target value. In this particular plot, the weight is a much more
critical factor for low MPG predictions. On the other hand, the high MPG predictions
have more influence from the model year.

Concerning the information provided by the PDP plots (Fig. A.16), they display
an average of the target value at each corresponding feature value, providing a more
detailed view of the impact each feature has on the prediction. From this plot, we can
see that a low cylinder has a negative impact on MPG. The features with the highest
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Table A.9: Top seven prototypes selected to represent the global behavior of the Kernel
Regression for the Auto-MPG data set.

# Prototype 1 2 3 4 5 6 7

cylinder 4 8 4 4 4 4 8
displacement 97.0 304.0 90.0 86.0 122.0 97.0 350.0
horsepower 88.0 150.0 70.0 65.0 96.0 78.0 145.0
weight 2130.0 3672.0 1937.0 2019.0 2300.0 2188.0 4055.0
acceleration 14.5 11.5 14.2 16.4 15.5 15.8 12.0
modelyear 71 73 76 80 77 80 76
Origin Asia 0 1 0 0 1 0 1
Origin EU 0 0 1 0 0 1 0
Origin NA 1 0 0 0 0 0 0
Output 27.0 14.0 29.0 37.2 25.5 34.3 13.0

Weights(%) 0.18 0.18 0.18 0.12 0.12 0.11 0.10

Figure A.17: Target feature space highlighting the instances chosen as prototypes for the
Auto-MPG data set.
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Source: created by the author.

impact are the weight and model year, corroborating the previous explanations. Unlike
the earlier plots, we can see that the impact of the weight is at its maximum at the lowest
observed values. After 3000 Kg, we can observe a negative impact on the target feature.
We can also plot the impact on a sample of different data points (ICE) instead of just
the average effect, revealing whether the behavior of the model is consistent throughout
the data instances or if there is any additional factor that should be considered. These
plots show that horsepower and displacement present the most variation in behavior for
different instances.

Again, we finish by showing the results of the prototype-based explanation gener-
ated by ProtoDash. ProtoDash selects prototypes in order, such that the next prototype
guarantees new data particularities are discovered. The first seven selected prototypes are
shown in Table A.9, which offers a significant variability in the selected instances. Fur-
thermore, we can see that ProtoDash can explore the solution space well when viewing
the graph in Fig. A.17, where it shows the outputs for the training instances in black
and the outputs of the prototype points in red, with the largest circumferences being the
most relevant prototypes. Thus, with ProtoDash, we learned about the most represen-
tative and diverse instances that contributed the most to the construction of the model,
so we can understand the output obtained by new samples by analyzing its most similar
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Figure A.18: Kernel Regression local explanations using the SHAP explainer for the Auto-
MPG data set.
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prototypes.

A.14.2 Local explanation

We will show the local explanations for the low and high values instances selected
for the Auto-MPG data set, as shown in Table A.2.

Fig. A.18 shows the SHAP local explanations for those selected instances. For the
low-value instance, we can observe a similar contribution between weight, horsepower,
model year, and displacement. They were responsible for decreasing the base value to
the predicted value. On the other hand, a high cylinder helped increase the base value
prediction. For the high-value instance, we can see that the lower weight had a higher
contribution to increasing the value away from the baseline.

The LIME local explanation (Fig. A.19) resembles the explanation of a linear model
combined with a decision tree. This local approximation creates additional information
that can be extracted from the models for that small region around the instances of
interest. For the low-value instance, we can see that weight above 3.6 tons will decrease
the MPG by 6 points within this neighborhood. Although simplified by the discretization
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Figure A.19: Kernel Regression local explanations using the LIME explainer for the Auto-
MPG data set.

(a) Local explanation for the lowest target value

(b) Local explanation for the highest target value

Source: created by the author.

and limited to the neighborhood, this information can help readily identify the next steps.
For example, when investigating the explanation for the high-value instance, we can see
that 4 cylinders have a negative effect on the prediction, we could simulate a car with the
same characteristics and a higher cylinder.

The ELA method returns as a local explanation for each instance the parameters
of the linear regression performed with the five nearest neighbors (predicted value, coeffi-
cients, and intercept), the local importance of each of the features, and the local intervals
in which each feature could be changed so that an instance with similar output was cre-
ated, results shown in Table A.10. For the low MPG instance, ELA shows us that the
most important features would be the model year (51.9%), weight (25.2%), and accelera-
tion (19.2%). As for the high-value MPG instance, the most relevant features are weight
(43.4%), model year (33.5%), and displacement (10%). As we usually have heavier cars
when we are evaluating those with lower MPG, and since we know that the acceleration
of a body is inversely proportional to its mass, this justifies that for low MPG vehicles,
the importance of weight and acceleration are closer than when we are evaluating high
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Table A.10: Kernel Regression local explanations using the ELA explainer for the Auto-
MPG data set.

Low output High output

y’ = 12.9791
Coefficients: [0, -0.1010, -0.0298, 0.0350,
-2.5567, -2.2505, 0, 0, 0 ]
intercept: 83.1600
Importance of features:
cylinders : 0.0
displacement : 3.137
horsepower : 0.515
weight : 25.239
acceleration : 19.235
model year : 51.874
origin asia: 0.0
origin europe: 0.0
origin north america: 0.0
Local variation: 11.25 - 13.438
cylinders = 8.0
400.0 <= displacement <= 455.0
150.0 <= horsepower <= 225.0
4746.0 <= weight <= 4997.0
11.0 <= acceleration <= 14.0
71.0 <= model year <= 73.0
origin asia = 1.0
origin europe = 0.0
origin north america = 0.0

y’ = 34.9871
Coefficients: [0, -0.1633, -0.2393, 0.0304,
-0.3278, 0.7370, -0.0438, 0.0654, -0.0216]
intercept: -44.8290
Importance of features:
cylinders : 0.0
displacement : 10.013
horsepower : 8.169
weight : 43.361
acceleration : 4.87
model year : 33.546
origin asia: 0.0
origin europe: 0.041
origin north america: 0.0
Local variation: 35.953 - 35.953
cylinders = 4.0
89.0 <= displacement <= 91.0
62.0 <= horsepower <= 67.0
1845.0 <= weight <= 1850.0
13.8 <= acceleration <= 15.3
model year = 80.0
origin asia = 0.0
2.0 <= origin europe <= 1.0
2.0 <= origin north america <= 1.0

MPG automobiles. Regarding the construction of similar cars in terms of MPG consump-
tion, Table A.10 shows us that vehicles with outputs close to 11.2 to 13.4 MPG can be
built with features similar to the low MPG instance evaluated, and some variations are
tolerated, such as the weight between 4746 and 4997.

Table A.11 shows the counterfactual explanations for the selected instances where
we aimed at increasing the MPG for the low-value instance and decreasing it for the high-
value instance. Regarding the low value, we can see that DICE achieved the desired target
values by reducing the displacement, horsepower, and weight and increasing acceleration
and model year. It identifies the features that should be changed together and try to
make a minimal change. For the high-value instance, it used the same features to achieve
the target, but, in one case, it also decreased the number of cylinders.
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Table A.11: Kernel Regression local explanations using the DiCE counterfactual (CF)
explanations for the Auto-MPG data set. Unmodified values are shown as an hypen.

Cyl. Disp. HP Weight Acc.
Model
year

Origin
MPG

Asia EU NA

Original 8 400 150 4997 14 73 1 0 0 14.312
CF 1 - 350 105 3725 19 81 - - - 24.578
CF 2 - 260 90 3420 22 79 - - - 21.968

Original 4 91 67 1850 13.8 80 0 0 1 34.542
CF 1 - 120 97 2489 15 74 - - - 23.542
CF 2 3 70 100 2420 12.5 - - - - 23.550

A.15 Black-box vs Gray-box and White-box models

As already mentioned, the explanation methods used to explain the black-box
model are model-agnostic, meaning they can also be applied to explain white and gray-
box models. As such, the main advantage of explaining the black-box models with these
tools is that the

Black-box models have as it’s main advantage to capture the non-linearity of the
system being modeled and, in some situations, the interaction of the features. The ex-
planation methods try to explain these features somehow. The PDP plot, for example,
can extract similar information on the behavior of the model when varying the values of
a given feature. This plot still has the disadvantage of not accounting for interactions
and correlations between features, which can be inspected from the analytical expression
provided by the gray-box models.

SAGE can quantify the global importance of the features by summarizing the
Shapley values of each data point of the training set. These values correspond to the
contribution of each feature to deviate each prediction from a baseline value (usually the
average). These values can give us a sense of how much each feature contributes to a
prediction on average. However, the practitioner should know that the average case may
not reflect a single point of interest.

For this purpose, ELA provides a more insightful plot summarizing the importance
of each feature for different values of the target. These can help the practitioner to make
more assertive decisions revolving around particular points of interest.

We should be careful, though, that both SAGE and ELA do not provide the same
straightforward information as the Partial Effect in which we have the expected variation
of the target when making a slightly change to a feature.

Straying away from the feature importance, ProtoDash searches for prototypical
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points that can act as a representative of the training data. This can be particularly
insightful as it can help the practitioner to focus on a small number of points of interest,
but has the disadvantage of not considering the model itself, only the data set.

Another form of explanation analysed in this section is the local explaination,
where the explanation information is target to a single instance. A popular approach is
the Shapley values that, for a given instance, quantify how much each feature contributed
to deviating that output from the baseline. In other words, we can see how much each
feature influenced the value of a particular output.

LIME creates a local linear model around the instance of interest, making the local
explanation similar to the linear regression. In this case, the values associated with each
feature depict the expected variation in the output after a slightly change in the feature
value.

Finally, ELA as a local explanation model returns an information similar to that
provided by LIME but in the form of a full report depicting not only the linear coefficients
but also the variation in prediction between the black-box model and the linear approxi-
mation and the interval of values for each feature used to create the approximation.

In sum, for the global explanations, a combination of the PDP and ELA can return
complementary insights about the model that can lead to further investigations. For the
local explanations, the same thing can be said about SHAP and ELA, which returns
different views of the prediction of a single instance.
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Appendix B

Installation of the evaluated
explanation methods

The Table B.1 describes how each explanatory method used in this work can be installed
into the Python environment. We picked popular open-source explanatory methods based
on different approaches to include in this survey, with online free available implementation.

Table B.1: Installation of explanation methods.

Explainer method Installation

SHAP
pip install shap
conda install -c conda-forge shap (alternative to pip)
Note: In our experiments we are using version 0.41.0

LIME pip install lime

ELA Implementation available at
https://github.com/renatomir/ELA-WCCI2020

SAGE pip install sage-importance

Partial Effects Implementation for regression available at
https://github.com/gAldeia/iirsBenchmark

ICE/PDP
Available as a part of Scikit-Learn v1.0.0 or above:
pip install sklearn==1.0.0
from sklearn.inspection import PartialDependenceDisplay

ALE pip install PyALE

ProtoDash pip install aix360

DiCE pip install dice-ml

https://github.com/renatomir/ELA-WCCI2020
https://github.com/gAldeia/iirsBenchmark
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Appendix C

Mental health assessment
questionnaires: WHOQOL-BREF and
BSI.

The WHOQOL-BREF questionnaire measures an individual’s quality of life across four
domains: physical, psychological, social relationships, and environment. Each domain is
composed of a set of questions that are scored on a scale from 1 to 5, with higher scores
indicating better quality of life.

These are the test questions:

1. How would you rate your quality of life?

2. How satisfied are you with your health?

3. To what extent do you feel that physical pain prevents you from doing what you
need to do?

4. How much do you need any medical treatment to function in your daily life?

5. How much do you enjoy life?

6. To what extent do you feel your life to be meaningful?

7. How well are you able to concentrate?

8. How safe do you feel in your daily life?

9. How healthy is your physical environment?

10. Do you have enough energy for everyday life?

11. Are you able to accept your bodily appearance?

12. Have you enough money to meet your needs?

13. How available to you is the information that you need in your day-to-day life?
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14. To what extent do you have the opportunity for leisure activities?

15. How well are you able to get around?

16. How satisfied are you with your sleep?

17. How satisfied are you with your ability to perform your daily living activities?

18. How satisfied are you with your capacity for work?

19. How satisfied are you with yourself?

20. How satisfied are you with your personal relationships?

21. How satisfied are you with your sex life?

22. How satisfied are you with the support you get from your friends?

23. How satisfied are you with the conditions of your living place?

24. How satisfied are you with your access to health services?

25. How satisfied are you with your transport?

26. How often do you have negative feelings such as blue mood, despair, anxiety, de-
pression?

Questions number 1 and 2 are about general quality of life. The physical domain
consists of seven questions, which are indexed as follows: 3, 4, 10, 15, 16, 17, and 18. The
psychological domain consists of six questions, which are indexed as follows: 5, 6, 7, 11,
19, and 26. The social relationships domain consists of three questions, which are indexed
as follows: 20, 21, and 22. Finally, the environment domain consists of eight questions,
which are indexed as follows: 8, 9, 12, 13, 14, 23, 24, and 25.

The Brief Symptom Inventory (BSI) measures psychological distress across several
dimensions, including somatization, obsessive-compulsive, interpersonal sensitivity, de-
pression, and anxiety. The BSI consists of 53 items, with higher scores indicating greater
levels of psychological distress.

These are the test questions:

1. Nervousness or shakiness inside;

2. Faintness or dizziness;

3. The idea that someone else can control your thoughts;

4. Feeling others are to blame for most of your troubles;
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5. Trouble remembering things;

6. Feeling easily annoyed or irritated;

7. Pains in the heart or chest;

8. Feeling afraid in open spaces;

9. Thoughts of ending your life;

10. Feeling that most people cannot be trusted;

11. Poor appetite;

12. Suddenly scared for no reason;

13. Temper outbursts that you could not control;

14. Feeling lonely even when you are with people;

15. Feeling blocked in getting things done;

16. Feeling lonely;

17. Feeling blue;

18. Feeling no interest in things;

19. Feeling fearful;

20. Your feelings being easily hurt;

21. Feeling that people are unfriendly or dislike you;

22. Feeling inferior to others;

23. Nausea or upset stomach;

24. Feeling that you are watched or talked about by others;

25. Trouble falling asleep;

26. Having to check and double check what you do;

27. Difficulty making decisions;

28. Feeling afraid to travel on buses, subways, or trains;

29. Trouble getting your breath;

30. Hot or cold spells;
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31. Having to avoid certain things, places, or activities because they frighten you;

32. Your mind going blank;

33. Numbness or tingling in parts of your body;

34. The idea that you should be punished for your sins;

35. Feeling hopeless about the future;

36. Trouble concentrating;

37. Feeling weak in parts of your body;

38. Feeling tense or keyed up;

39. Thoughts of death or dying;

40. Having urges to beat, injure, or harm someone;

41. Having urges to break or smash things;

42. Feeling very self-conscious with others;

43. Feeling uneasy in crowds;

44. Never feeling close to another person;

45. Spells of terror or panic;

46. Getting into frequent arguments;

47. Feeling nervous when you are left alone;

48. Others not giving you proper credit for your achievements;

49. Feeling so restless you couldn’t sit still;

50. Feelings of worthlessness;

51. Feeling that people will take advantage of you if you let them;

52. Feeling of guilt; and

53. The idea that something is wrong with your mind.

Items 11, 25, 39, and 52 do not factor into any of the dimensions, but are in-
cluded because they are clinically important. Specifically, the somatization dimension is
composed of questions with indices 2, 7, 23, 29, 30, 33, and 37.
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