
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Rodrigo André Ferreira Moreira

Design Pattern Detection Tools:
Review-based Comparison and Survey Studies

Belo Horizonte
2023

Rodrigo André Ferreira Moreira

Design Pattern Detection Tools:
Review-based Comparison and Survey Studies

Final Version

Thesis presented to the Graduate Program in Computer Sci-
ence of the Federal University of Minas Gerais in partial ful-
fillment of the requirements for the degree of Master in Com-
puter Science.

Advisor: Eduardo Magno Lages Figueiredo
Co-Advisor: Eduardo Moreira Fernandes

Belo Horizonte
2023

© 2023, Rodrigo André Ferreira Moreira.

 Todos os direitos reservados

 Moreira, Rodrigo André Ferreira

M838d Design pattern detection tools: [recurso eletrônico]: review-
 based comparison and survey studies / Rodrigo André Ferreira
 Moreira— 2023.
 1 recurso online (85f. il, color.)

 Orientador: Eduardo Magno Lages Figueiredo.
 Coorientador: Eduardo Moreira Fernandes.
 Dissertação (mestrado) - Universidade Federal de Minas
 Gerais, Departamento de Ciência da Computação, Instituto de
 Ciências Exatas.
 Referências: f. 77-85.

 1. Computação – Teses. 2. Software - Desenvolvimento –
 Teses. 3. Software – Ferramentas de manutenção - Teses. 4.
 Administração de projetos - Revisão de literatura – Teses. I.
 Figueiredo, Eduardo Magno Lages II. Fernandes, Eduardo
 Moreira. III Universidade Federal de Minas Gerais, Instituto de
 Ciências Exatas, Departamento de Computação. IV. Título.

CDU 519.6*32(043)

Ficha Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende
Costa CRB 6/1510 Universidade Federal de Minas Gerais - ICEx

Resumo

Contexto: Padrões de projeto são soluções para problemas recorrentes de design de soft-
ware. Ferramentas de Detecção de Padrões de Projeto (DPP) existentes suportam padrões
de projeto e linguagens de programação específicas. Diversas ferramentas foram propostas
para automatizar o processo de DPP em sistemas. No entanto, escolher a ferramenta mais
adequada pode ser difícil. Objetivo: Conduzimos um estudo sistemático para entender
quais são as ferramentas existentes e suas características, como é o desempenho de DPP
dessas ferramentas, por que as ferramentas foram propostas para contextos específicos e
como potenciais usuários as percebem. Método: Conduzimos uma revisão sistemática da
literatura sobre as ferramentas de DPP desenvolvidas nos últimos 20 anos e suas caracterís-
ticas. Em seguida, comparamos o desempenho de quatro ferramentas na detecção de seis
padrões em relação a precisão, cobertura, F-measure e concordância. Por último, conduzi-
mos duas enquetes: a primeira com objetivo de capturar os motivos para a escolha dos dos
desenvolvedores por contextos específicos a serem atendidos pelas ferramentas; a segunda
visando descrever o quão úteis são essas ferramentas na visão de potenciais usuários. Re-
sultados : Identificamos 42 ferramentas de DPP e listamos suas características, tais como
os padrões de projeto detectáveis e as linguagens de programação suportadas. Os resul-
tados do estudo comparativo sugerem que algumas ferramentas são mais adequadas para
detectar certos padrões com precisão e cobertura satisfatórios. Também observamos uma
baixa concordância entre os resultados de detecção obtidos por ferramentas distintas. Em
relação às enquetes, percebemos que os desenvolvedores de ferramentas geralmente escol-
hem apoiar a detecção de padrões específicos devido às estruturas internas, enquanto que
linguagens de programação são geralmente escolhidas pela sua popularidade na indústria
de software. Exemplos de benefícios esperados do uso de ferramentas de DPP incluem a
compreensão de sistemas de software e o apoio à realização de tarefas como limpeza de
código-fonte. No entanto, ferramentas que são difíceis de utilizar tendem a ser descartadas
por potenciais usuários.

Palavras-chave: Padrões de projeto. Ferramenta automática de desenvolvimento. Re-
visão sistemática da literatura. Estudo comparativo quantitativo. Enquete. Análise
qualitativa.

Abstract

Context : Design patterns are solutions for recurring problems of software design. Existing
Design Pattern Detection (DPD) tools target specific design patterns and programming
languages. Several tools have been proposed for automating the DPD process. However,
choosing the most suited tool may be troublesome. Objective: We conducted a systematic
study to find out which are the existing tools and their respective features, how they
perform when detecting design patterns, why these tools were developed to address their
specific contexts, and how potential users perceive them. Method : We first conducted
a systematic literature review about DPD tools developed in the last 20 years and their
main features. We then compared the performance of four tools in detecting six design
patterns based on precision, recall, F-measure, and agreement. Lastly, we carried out
two survey studies: the first aimed at capturing reasons why DPD tool designers target
specific contexts, and the second survey for capturing the usefulness of DPD tools from
the perspective of potential users. Results : We found 42 DPD tools and listed their
features, such as availability, detectable design patterns, and supported programming
languages. The comparison results suggest that some tools are more suitable for detecting
specific design patterns with satisfactory precision and recall. We also observed a low
agreement among the detection results obtained by different tools. Regarding the surveys,
we perceived that tool designers often support the detection of specific design patterns
due to their internal structure, while programming languages are often chosen by their
popularity in the software industry. Expected benefits of using DPD tools include program
comprehension and support to the conduction of quality improvement tasks, such as source
code cleaning. However, tools that are difficult to use tend to be discarded by potential
users.

Keywords: Design patterns. Automated development tool. Systematic literature review.
Quantitative comparative study. Survey study. Qualitative analysis.

List of Figures

3.1 Number of DPD tools published by year . 29
3.2 Number of tools by GUI type . 34
3.3 Number of tools by problem modeling approach 34

5.1 Most used programming language . 54
5.2 Years of experience as a programmer . 54
5.3 Current main role . 54
5.4 Familiarity with design patterns . 55
5.5 Data analysis procedures for closed survey questions 56
5.6 Taxonomy of reasons to target specific design patterns 57
5.7 Taxonomy of reasons to support the detection of more design patterns 59
5.8 Taxonomy of reasons to target specific programming languages 59
5.9 Taxonomy of reasons to support the detection in more languages 61
5.10 Taxonomy of contexts in which tools have been used 61
5.11 Contexts in which developers would consider using a DPD tool 63
5.12 Expected benefits of using a DPD tool . 64
5.13 Taxonomy of barriers to the use of DPD tools 66
5.14 Taxonomy of reasons why detecting specific patterns is worthwhile 67

List of Tables

3.1 Web search engines used to search for primary studies 27
3.2 Overview of the tools available for download 30
3.3 Overview of the tools unavailable for download 31
3.4 Number of tools that detect each design pattern 33
3.5 Detection approaches of the tools . 35

4.1 Number of patterns detected by tool . 43
4.2 Patterns and their respective roles . 43
4.3 Accuracy measures by tool . 46

5.1 Structure of the survey with tool designers . 51
5.2 Structure of the survey with potential tool users 52
5.3 Demographic information of each participant 55
5.4 Details of reasons to target specific design patterns 58
5.5 Details of reasons to target specific programming languages 60
5.6 Details of contexts in which tools have been used 62
5.7 Details of the expected benefits of using a DPD tool 65
5.8 Details of barriers to the use of DPD tools . 66
5.9 Details of reasons why detecting specific patterns is worthwhile 68

Contents

1 Introduction 10
1.1 Problem Statement . 10
1.2 Research Method . 12
1.3 Results and Contributions . 14
1.4 Publications . 15
1.5 Dissertation Outline . 16

2 Background and Related Work 17
2.1 Design Patterns . 17
2.2 Design Pattern Detection Tools . 20
2.3 Accuracy Metrics and Agreement . 20
2.4 Existing Literature Reviews on DPD Tools 22
2.5 Closely Related Survey Studies . 23
2.6 Chapter Summary . 24

3 Literature Review on DPD Tools 25
3.1 Study Protocol . 25

3.1.1 Goal and Research Questions . 26
3.1.2 Search for Primary Studies . 27
3.1.3 Filtering of Primary Studies . 27
3.1.4 Data Extraction from Primary Studies 28

3.2 Results and Discussions . 29
3.2.1 Publication Landscape (RQ1) . 29
3.2.2 Existing DPD Tools (RQ2.1) . 30
3.2.3 Main Features of DPD Tools (RQ2.2) 32
3.2.4 Detection Approaches behind the DPD Tools (RQ2.3) 35

3.3 Threats to Validity . 37
3.4 Chapter Summary . 37

4 Comparative Study of DPD Tools 39
4.1 Study Protocol . 40

4.1.1 Goal and Research Questions . 40
4.1.2 Selection of Tools . 40
4.1.3 Selection of Design Patterns and Software Systems 41

4.1.4 Validation of Design Pattern Instances 42
4.1.5 Computation of Accuracy Metrics 44

4.2 Tool Comparison Results . 45
4.3 Threats to Validity . 47
4.4 Chapter Summary . 48

5 Survey Study on DPD Tools 49
5.1 Study Design . 49

5.1.1 Goal and Research Questions . 50
5.1.2 Survey Structure . 51
5.1.3 Participant Characterization . 52
5.1.4 Data Analysis Procedures . 55

5.2 Results of the Survey with Tool Designers 57
5.2.1 Reasons to Detect Specific Design Patterns 57
5.2.2 Reasons to Support Specific Programming Languages 59
5.2.3 Reported Contexts of Tool Usage 61

5.3 Results of the Survey with Tool Users . 62
5.3.1 Potential Tool Use Contexts . 62
5.3.2 Expected Benefits of Using a DPD Tool 63
5.3.3 Barriers to the Use of DPD Tools 64
5.3.4 Design Patterns Worth Detecting 67

5.4 Study Implications . 68
5.5 Threats to Validity . 70
5.6 Chapter Summary . 71

6 Conclusion 73
6.1 Work Overview . 73
6.2 Main Contributions . 75
6.3 Study Implications . 76
6.4 Future Work . 77

Bibliography 78

10

Chapter 1

Introduction

Software design is the process of translating requirements into a detailed design repre-
sentation of a software system [85]. This process includes making decisions on how to
organize the source code [85]. Since making these decisions is not a trivial task, design
patterns have been proposed for driving them [37]. Design pattern is a reusable solution
for a recurring problem of software design [37]. Examples of design patterns are Com-
posite, Singleton, and Visitor. The Composite design pattern allows treating a group
of objects and individual objects in the same manner, by composing objects into a tree
structure [37]. Singleton controls the instantiation of an object, ensuring that there is only
one instance and providing a global point of access to it [37]. Visitor helps to dynamically
introduce new operations to an object without changing its structure [37].

Analyzing software and performing changes may require a deep understanding of
which and how design patterns occur in the source code [79]. Unfortunately, the identifi-
cation of design patterns implementations may be troublesome due to using combination
of patterns or their poor identification [79]. The literature also suggests that detecting de-
sign patterns is challenging due to the size and complexity of real-world systems [25, 78].
Thus, software engineers need automated assistance for making DPD easier, faster, and
more accurate. In this context, design pattern detection (DPD) may facilitate the software
analysis [45] by providing the automated detection of design pattern instances, thereby
assisting design decision making [4, 86].

1.1 Problem Statement

Several studies have proposed tools for automating DPD [19, 26, 34, 64, 78]. Each
tool presents different features, such as different detecting strategies (the approach imple-
mented by the tool to perform the DPD), different detectable design patterns, different
supported languages, etc. For instance, the PINOT tool [64] performs a static analysis on
the source code and uses Abstract Syntax Trees (AST) as the problem modeling strategy.

1.1. Problem Statement 11

PINOT is a command line based tool that detects Singleton, Facade, Chain of Respon-
sibility, and 14 other design patterns from systems written in Java. DPVK tool [78] also
performs static analysis on the source code to detect the design patterns, but it uses facts
as the problem modeling strategy. It is also a command line based tool and detects 18
different design patterns. Unlike the PINOT tool, it does not detect Singleton, Facade,
and Chain of Responsibility.

As the DPD tools provide different functionalities, it is important to know them
beforehand in order to choose the tool best suited for a specific context. For example,
researchers that are developing a new DPD tool might be interested in comparing their
tool with existing ones in order to evaluate their tool’s precision. Thus, they would be
interested in knowing which existing tools detect the same design patterns or support the
same programming language as their tool. Furthermore, practitioners who are looking for
a DPD tool to assist them with system comprehension will need to find a suitable tool
for the system they are working on. They need a tool that supports the programming
language of their system, for instance, and they may prefer a tool that provides a Graphical
User Interface (GUI).

There have been past attempts to summarize these tools [60, 84]. Unfortunately,
they contain some gaps in their scope. They are more focused on the technical details of
the implementation of each approach instead of the tool itself and its attributes (type of
GUI, supported programming languages, etc). These attributes may be pivotal in order
to choose a DPD tool to be used in a specific context.

Research Problem 1: Lack of catalog of available tools containing their attributes.

There have been studies comparing the output of DPD tools in terms of precision
and recall [18, 57], but none regarding the agreement of their output. Generally, these
comparative studies are presented as a form of benchmarking the proposed tool against
tools available in the literature. However, these studies contain some design problems,
such as an arbitrary selection of tools for comparison, lack of manually validated instances,
etc. Furthermore, most studies rely on the reported results of the selected tools instead
of installing, executing and validating the results.

This lack of reproduction and validation of reported results can be considered
a threat to the validity of these studies. Similarly to the tool’s attributes, the tool’s
performance is also an important factor when choosing a DPD tool. Once one selects
which tools support ones technical needs, one would most likely pick the best-performing
tool when attempting to detect a specific subset of design patterns. Not only is this
information important for practitioners, but researchers may also find it helpful in order
to evaluate which kind of approaches provide better results when detecting certain design
patterns and possibly produce new detection approaches.

1.2. Research Method 12

Research Problem 1: Lack of systematic comparison of the tools in terms of preci-
sion, recall and agreement.

The DPD tools available in the literature [48, 74, 10] generally target very specific
design patterns (such as Observer, Singleton and Visitor) and programming languages
(Java). Unfortunately, we do not know why DPD tool designers have targeted specific
design patterns and programming languages. We believe that this information can shed
light on the types of technical support that tool designers need for targeting other patterns
and languages of relevance in the industry.

Research Problem 3: Lack of evidence about the design rationale behind the pro-
posal of the tools.

Furthermore, to the best of our knowledge, there are no studies that provide ev-
idence of the expected usefulness of DPD tools from the perspective of potential tool
users. Although there are many DPD tools available in the literature which claim to
successfully detect design pattern instances from source code, are they actually useful
and aligned with the software industry’s needs? Due to the lack of empirical evidence
from qualitative studies, it is not possible to confirm it. It could be that the DPD tools
fall short of meeting users’ expectations. Or maybe the perceived barriers to using DPD
tools outweigh the perceived benefits. We believe that acquiring such understanding is
essential to propose novel DPD tools (or refine existing tools) that are able to meet the
current needs of potential users.

Research Problem 4: Lack of evidence regarding the expected usefulness from the
point of view of practitioners.

1.2 Research Method

We proposed and executed three studies that complement each other in order to
address the problems described in the previous section.

Study 1: This study fills the literature gaps discussed in Research Problem 1
through a literature review and a comparison of DPD tools. Our goal is to assist prac-
titioners and researchers in choosing tools that meet their needs. We followed strict

1.2. Research Method 13

guidelines for systematic literature reviews [46]. We relied on Web search engines that
provide a vast amount of studies published in Software Engineering [29] such as ACM
Digital Library1, and Springer2. We then analyzed the data to understand both the na-
ture and scope of the existing tools. Regarding the steps followed, we first listed the
results obtained from the Web search engines. Then, we filtered them according to a set
of inclusion and exclusion criteria by reading the metadata. After that, we conducted
a full read of the papers and extracted information about the tools. For instance, we
identified the design patterns and programming languages supported by the tools. Lastly,
we expanded our results by conducting a backward snowballing on the selected studies.

Study 2: This study provides the information to address the Research Problem 2
by comparing the performance of four state-of-the-art tools – FINDER [18], GEML [10],
MARPLE-DPD [86], and PTIDEJ [48] – in detecting six design patterns: Chain of Re-
sponsibility, Composite, Decorator, Prototype, Singleton, and Visitor. We computed
performance in terms of precision, recall, F-measure, and agreement [38] measures. We
used a virtual environment to install and execute all four tools. We then extracted the
instances of each design pattern detected by the tools and conducted a manual validation
in pairs in order to classify them as true or false positives. After that, we computed the
precision, recall, F-measure, and agreement metrics. It is important to highlight that we
made use of the R package irrCAC 3 to obtain the agreement metrics.

Study 3: This study addresses the aforementioned knowledge gaps discussed in
Research Problem 3 and Research Problem 4 by conducting two online surveys aimed at
capturing the perceptions of tool designers and tool users regarding DPD tools, relying
on strict guidelines [56]. For the first survey, we emailed all authors of the 42 DPD tools
found in Study 1. We asked authors questions regarding the reasons for targeting specific
design patterns and programming languages with their tools. Designers of nine out of the
42 DPD tools responded to our survey.

For the second survey, we recruited 21 junior or senior developers who are potential
users of DPD tools. We ask them about the expected usefulness of DPD tools. We relied
on Grounded Truth procedures [69] to manually extract topics from the open questions
answered by the survey participants. Additionally, we followed strict guidelines [17] to
generate taxonomies from the topics aimed at summarizing the empirical knowledge on
reasons to target specific contexts in the DPD tool design as well as the expected usefulness
of these tools.

1https://dl.acm.org
2https://www.springer.com
3https://cran.r-project.org/web/packages/irrCAC/vignettes/overview.html

1.3. Results and Contributions 14

1.3 Results and Contributions

We created a catalog of the DPD tools published in the last 20 years presenting
their main features such as availability for download, scope of design pattern detection,
supported programming languages, etc. This catalog will help both researchers and prac-
titioners when choosing the DPD tool that best suits their context. Our SLR revealed
42 DPD tools published in the last 20 years. However, only 10 of them were available
for download during our investigation. Altogether, the tools claim to detect all 23 design
patterns compiled by the Gang of Four’s book [37]. The frequency of published tools
remained stable over the years, thereby suggesting this research topic has not yet reached
saturation. From the 42 DPD tools found, 68% are stand-alone. In addition, 69% of
the tools are compatible with Java systems. However, only 19% of the tools have some
companion documentation. 69% are designed to perform DPD on Java systems, support
the detection of complex design patterns such as Composite (67%) and Observer (64%),
and provide users with some sort of GUI other than command line (50%).

Our results from the comparative study suggest that each tool could be applied
to detecting a particular subset of design patterns. FINDER showed sufficient accuracy
for Composite, Decorator, Singleton, and Visitor. Still, future work is required to further
support practitioners interested in automating DPD in practice. For the six design pat-
terns evaluated, the four DPD tools tend to disagree on the instances detected, meaning
that their output is not redundant. In other words, they detect distinct design pattern
instances. Documentation on how to install, execute, and use the tools is often scarce,
which may compromise the adoption of tools in practical settings.

Among our results from the third study, we found five different reasons for target-
ing specific design patterns in the proposal of DPD tools. Most tool designers reported
that internal aspects of a design pattern (e.g., the way it is structured in the source code)
favored its detection. Additionally, popularity and abstraction level are key reasons to
decide for detecting design patterns in specific programming languages. Tool designers
showed interest in proposing tools for a wider scope of design patterns and programming
languages. Tool designers have knowledge on their DPD tools being used for program
analysis tasks, especially program comprehension. This finding meets the expected bene-
fits of using DPD tools reported by the potential tool users. According to the tool users,
other benefits include software quality improvement (e.g., via code organization and clean-
ing) and more. Potential tool users claim that tool limitations (e.g., low accuracy and
lack of documentation), as well as the inherent difficulty to use the tool, are key barriers
to the DPD tool adoption.

1.4. Publications 15

Our main contributions from this work include:

1. an extensive catalog of 42 DPD tools published in the last two decades, each char-
acterized by the supported design problems, programming languages, etc.;

2. a quantitative comparison of four state-of-the-art tools based on widely used mea-
sures, i.e. precision, recall, F-measure, and agreement;

3. a list with manually validated instances of six design patterns detected from two
Java software systems often investigated in studies on DPD tools [26, 21, 57], i.e.
JHotDraw and JRefactory; and

4. replication packages for studies 1 and 2 4, and study 3 5;

5. empirical evidence about the design rationale behind the proposal of the tools;

6. empirical evidence regarding the expected usefulness from the point of view of prac-
titioners;

1.4 Publications

This section lists the scientific publications and submissions resulting from both
this work and other topics.

• Rodrigo Moreira, Wesley K. G. Assunção, Jabier Martinez and Eduardo Figueiredo.
Open-source software product line extraction processes: the ArgoUML-SPL and
Phaser cases. In Empirical Software Engineering (EMSE), 2022.

• Rodrigo Moreira, Eduardo Fernandes and Eduardo Figueiredo. Review-based Com-
parison of Design Pattern Detection Tools. In Proceedings of Conference on Pattern
Language of Programs (PLoP), 2022.

• Rodrigo Moreira, Eduardo Fernandes and Eduardo Figueiredo. Why are design
pattern detection tools created and how do users perceive them. Submitted to
Software Quality Journal (SQJ).

4https://doi.org/10.5281/zenodo.5553470
5https://doi.org/10.5281/zenodo.7465098

https://doi.org/10.5281/zenodo.5553470
https://doi.org/10.5281/zenodo.7465098

1.5. Dissertation Outline 16

1.5 Dissertation Outline

The remainder of this work is structured as follows.
Chapter 2 introduces important concepts that are used throughout this work, such

as design patterns, design pattern detection tools, and accuracy metrics. We also discuss
some related work regarding relevant the topics.

Chapter 3 introduces the protocol adopted for performing our systematic literature
review, describing the steps followed, the digital databases and search string used, and
so forth. It also presents the respective findings obtained from our investigation of the
literature regarding the DPD tools found and their respective threats to validity.

Chapter 4 describes the protocol of our tool comparison study, for instance, the
systems and design patterns evaluated, and the Design Pattern Detection tools used. The
metrics obtained from our study are reported along with a discussion of the results and
respective threats to validity.

Chapter 5 presents the design of our survey study: their structures, participants,
and how we analyzed the quantitative and qualitative data. We present the taxonomies
obtained from the responses obtained followed by a discussion and respective threats to
validity.

Chapter 6 concludes this work by summarizing the contributions and results, and
also suggesting future work.

17

Chapter 2

Background and Related Work

Knowing the design patterns instances in a system is useful for developers implementing
new features or performing maintenance tasks on a system they are not very familiar
with. As this is not a trivial task to be executed manually and becomes increasingly more
complex for larger systems, automated assistance is required. Design pattern detection
tools were created to address this issue.

In this chapter, we present some important concepts to understand the studies that
will be presented in this work. The chapter is structured as follows: Section 2.1 presents
the definition of software design patterns, and also describes the six design patterns that
will be used in the comparative study; Section 2.2 introduces design pattern detection
tools, the most common types of analysis and modeling strategies; Section 2.3 presents
the metrics that will be used to compare the performance of the analyzed tools; Section 2.4
presents related works about DPD tools, while Section 2.5 presents related works about
survey studies involving software development tools and tool users; and lastly, Section 2.6
summarizes this chapter and introduces the next one.

2.1 Design Patterns

Design patterns are reusable solutions for common and recurring problems of soft-
ware design [37]. A design pattern is generally composed of a description of a problem
that occurs frequently, followed by a general solution to the problem described and the
respective outcomes [37]. Design patterns enable the reuse of knowledge from other devel-
opers of previously implemented solutions for certain problems. The best-known design
patterns are the 26 described in the book “Design Patterns: Elements of Reusable Object-
Oriented Software”, whose authors are commonly known as the “Gang of Four” [37]. In
their book, each design pattern is presented following a defined template containing var-
ious information:

1. the name of the pattern,

2.1. Design Patterns 18

2. the design problem the pattern solves,

3. an abstract description of its components, their relationships and responsibilities,

4. the results and trade-offs from using the design pattern.

The 26 patterns are also classified into three groups according to their purpose:
Creational, Structural, and Behavioral patterns.

The creational patterns [37] are the ones that deal with object creation mecha-
nisms, reducing the complexity of creating objects and in a controlled manner. There are
five creational design patterns: Abstract Factory, Builder, Factory Method, Prototype,
and Singleton. For these patterns, there are two recurring themes: encapsulating knowl-
edge about which concrete class the system uses, and hiding how the classes are created
and composed. Among these five patterns, we explain in greater detail the Prototype and
Singleton patterns as they will be discussed in the comparative study (Chapter 4).

The Prototype pattern [37] substitutes the direct instantiation of objects for a
copying process of a prototypical instance. It is used when a system should be indepen-
dent of how its products are created, composed and represented. The prototype defines
two roles: the Prototype role and the Concrete Prototype role. The class that plays the
Prototype role declares an interface for cloning itself, while the classes that play the Con-
crete Prototype role implement the cloning operation. The Prototype pattern effectively
hides the concrete product classes from the client. However, implementing the clone op-
eration may not be trivial in some cases, for example, if the class contains other objects
that do not support copying or have circular references.

The Singleton pattern [37] is used to ensure that a specific class has only one
instance while providing a global point of access to it. It is a simple design pattern
and it contains only the Singleton role. The class that plays the Singleton role hides its
constructor and provides a public operation that returns the sole instance of the class. By
hiding the constructor, it ensures that the class can never be instantiated from outside
the class. Moreover, the public operation enables a global access point to a single instance
of the class. A liability of using this design pattern is that it forces the instantiation of
the Singleton class even if it is not used.

The structural patterns [37] are the ones that deal with the composition of ob-
jects in order to create larger structures to realize new functionality. There are seven
structural design patterns: Adapter, Bridge, Composite, Decorator, Face, Flyweight, and
Proxy. Similarly to the creational design patterns, we explain in greater detail two pat-
terns that will be used later on: Composite and Decorator.

The Composite pattern [37] allows the clients to treat both individual objects and
compositions of these individual objects uniformly by composing said objects into tree
structures. This design pattern defines three roles: the Component, the Leaf, and the
Composite. The Component defines the interface of the objects that will be handled.

2.1. Design Patterns 19

This interface is then implemented by the Leaf, which gives concrete implementations to
the Component methods. Lastly, the Composite defines the complex objects which are
composed of components that have children. It stores child components and implements
child-related operations.

The Decorator pattern [37] defines the dynamic attachment of additional respon-
sibilities to an object. Instead of implementing a subclass that contains the additional
functionality at compile time, the Decorator pattern provides it dynamically at run-time.
This design pattern is composed of four roles: Component, Concrete Component, Deco-
rator, and Concrete Decorator. The Component defines the interface of the objects that
will receive new responsibilities dynamically. The Concrete Component is the concrete
implementation of the previous interface. The Decorator defines an interface of the object
that will be decorated (the Component) and maintains a reference to a Component object.
Lastly, the Concrete Decorator overrides the Component’s method, providing additional
functionality.

The behavioral patterns [37] focus on the communication between objects, pro-
viding flexibility for complex control flows. There are 11 behavioral design patterns:
Chain of Responsibility, Command, Interpreter, Iterator, Mediator, Memento, Observer,
State, Strategy, Template Method, and Visitor. Once again, for this study, we will provide
details for the Chain of Responsibility and Visitor patterns.

The Chain of Responsibility pattern [37] allows a request to be passed down a
chain of objects until one of them is able to handle the request. It allows for a flexible and
decoupled way of handling requests, enabling complex flows for handling a request. This
design pattern is composed of two roles: Handler and Concrete Handler. The Handler
defines the interface for handling the requests, while the Concrete Handler implements
the interface and handles the request. The Concrete Handler also contains information
about the next Concrete Handler in case it is unable to process the request.

The Visitor pattern [37] allows the implementation of new operations for objects
without changing the classes without modifying the objects themselves. It is composed
of four roles: Visitor, Concrete Visitor, Element, and Concrete Element. The Visitor
declares the “visit” operation for each Concrete Element class, which allows the visitor
to access the element. The Concrete Visitor implements each “visit” operation. The
Element defines an “accept visitor” operation that takes a visitor as an argument, while
the Concrete Element implements the interface.

2.2. Design Pattern Detection Tools 20

2.2 Design Pattern Detection Tools

Design pattern detection (DPD) tool is a software that analyzes the source code
to extract instances of design patterns implemented. These tools implement algorithms
to automate the detection of design patterns. This detection process is a task that be-
comes increasingly complex to be done manually due to the size of the code base that is
being evaluated. Helping software developers understand a system in order to perform
maintenance or evolution tasks is among the main benefits of using DPD tools [27].

The DPD tools implement algorithms that leverage different types of analysis and
modeling strategies. Regarding the types of analysis, the three main types are static,
dynamic, and hybrid [9]. The static analysis consists of the analysis of the static code,
extracting information from classes, methods, and the architecture in general. Meanwhile,
a dynamic analysis evaluates the execution flow of the system, such as method calls. These
two analysis types are not mutually exclusive and one can complement the other, which
is precisely what the hybrid analysis consists of: a combination of static and dynamic
analysis.

Moreover, the DPD tools generally employ a modeling strategy to transform the
code base information for the employed type of analysis. For example, tools that imple-
ment static analysis extract static information from the system, such as classes, methods,
relationships between classes, variables, operations, etc [9]. Then, they may transform
this information into graphs, abstract syntax trees, or custom templates. Eventually,
they perform some isomorphism algorithm to match these structures with the predefined
structures that represent the design patterns. Meanwhile, for tools that implement dy-
namic analysis, the algorithms usually evaluate the execution flow in terms of method
calls, object instantiation, accessed or modified fields, etc [9].

2.3 Accuracy Metrics and Agreement

Accuracy metrics are statistical measures used to evaluate the performance of a
predictive model [70]. These metrics are used to assess how well the model is able to make
correct predictions on a given set of data. In the context of DPD tools, they are used
to evaluate the instances obtained when executing the detection algorithm. The most
common accuracy metrics are Precision, Recall, F-Measure.

2.3. Accuracy Metrics and Agreement 21

Precision [70] measures the proportion of true positives (correctly predicted positive
outcomes) out of all positive predictions made by the model. Regarding the output of
DPD tools, it is the ratio between the number of true positive design patterns detected and
the number of instances detected. The precision metric measures how often the instances
detected by the DPD tool are correct.

Precision =
TruePositives

TotalInstances

Recall [70] measures the proportion of true positives (correctly predicted positive
outcomes) out of all actual positive outcomes in the dataset. In the DPD tools context, it
is the ratio between the number of true positive design patterns detected and the number
of existing design patterns in the system. The recall metric measure how complete, in
terms of existing design patterns in the system, is the output of the tool.

Recall =
TruePositives

TotalTruePositives

F-Measure [70] is a weighted average of precision and recall. It provides a single
score that balances both precision and recall to give an overall measure of a model’s
performance. It can also be obtained by calculating the harmonic mean of the precision
and recall.

F -Measure =
2× Precision×Recall

Precision+Recall

Lastly, the agreement metric is a statistical measure that is used to evaluate the
level of agreement between two or more raters or judges who are assessing a set of data [38].
It is an important tool for assessing the reliability and validity of data collected by multiple
raters or judges. In the context of DPD tools, it measures the agreement between multiple
tools when detecting design patterns instances from the same system.

There are several types of agreement metrics that can be used, depending on the
nature of the data and the type of analysis being conducted. Some commonly used agree-
ment metrics include Cohen’s Kappa [38], Fleiss’ Kappa [38] and Intraclass Correlation
Coefficient (ICC) [38]. In this work, we employed Gwet’s AC1 agreement coefficient [38]
which is a statistical measure used to evaluate the level of agreement between two or more
raters or judges who are evaluating a categorical dataset. It was proposed by Gwet [38]
as an improvement over Cohen’s Kappa, which can only be used for two raters.

The AC1 statistic ranges from -1 to 1, where 1 indicates perfect agreement, 0
indicates agreement due to chance, and negative values indicate disagreement. A value
of 0.6 or above is generally considered to indicate substantial agreement, while values
between 0.4 and 0.6 indicate moderate agreement, and values below 0.4 indicate poor
agreement [38].

2.4. Existing Literature Reviews on DPD Tools 22

2.4 Existing Literature Reviews on DPD Tools

Since the Gang-of-Four (GoF) book [37] has highly influenced software engineering
research and practice, many papers have been published in the literature investigating
design patterns and their detection methods [19, 26, 34, 64, 78]. This section, therefore,
focuses on the most related secondary and comparative studies that investigate design
patterns.

Some secondary studies [60, 84] have investigated and summarized the existing lit-
erature on design patterns. For instance, Riaz et al. [60] conducted a systematic mapping
study to characterize existing empirical studies involving software patterns and human
participants. Their analysis was based on 30 primary empirical studies, being 24 original
studies and 6 replications. They then classified the primary studies in terms of measures
used for evaluation and considered threats to validity. Unlike this study, we do not restrict
our analysis to empirical studies involving human participants. In fact, our work focuses
on automated approaches to detect design patterns.

Yarahmadi and Hasheminejad [84] present a broad systematic literature review
on design patterns, including their detection methods. Their secondary study reviews
research papers published between 2008 and 2019 and aims to answer 13 research ques-
tions. One of these questions is related to what approaches exist to support DPD and
which approaches are the most frequently used. Unlike Yarahmadi and Hasheminejad’s
work [84], we focus on DPD tools. Moreover, we also present a comparative study of three
detection tools with respect to their precision, recall, and agreement.

Regarding comparative studies, Dong et al. [27] present a comparative study of
pattern mining techniques and tools about their pattern aspects checked, intermediate
representations, exact or approximate matches, visualization, automated or human inter-
active support. They also discuss the instances obtained and why different techniques
and tools detect different instances of the same pattern for the same system. However,
they did not conduct an experiment to install and run the tools in order to compare
their output and calculate precision and recall metrics. Instead, they relied on the results
reported by the authors.

Another comparative study was conducted by Rasool et al. [59]. In this study, the
authors selected a subset of 6 DPD tools with a major focus on evaluating their precision
and recall. Although their subset of tools is larger than ours, there is only one DPD tool in
common (PTIDEJ). They also present the overall precision and recall of each tool instead
of individual values for each design pattern. In addition, we calculate the F-measure and
agreement of the tools for each individual design pattern.

2.5. Closely Related Survey Studies 23

2.5 Closely Related Survey Studies

To the best of our knowledge, this dissertation reports the first survey-based study
designed for capturing the perceptions of tool designers and tool users on DPD tools.
Thus, we could not cross our study data with data reported by past work. Still, we found
a few survey- or interview-based studies [36, 44, 47, 80] on the expected usefulness of
software development tools other than DPD tools.

The first study [36] reports on the findings of a survey with software developers
on software documentation tools. These tools support a variety of documentation tasks,
such as document generation and validation. A total of 32 participants were recruited
from an academic course, similar to what we did for the survey with potential DPD tool
users. The replacement of manual with automated documentation, as well as the ease
to use a documentation tool, were pointed out as perceived benefits of using tools. Both
process automation and ease to use are aligned with responses to our second survey with
DPD tool users.

The second study [44] reports on interviews conducted with software developers
about automated code inspection tools. These tools were designed for facilitating the
detection of software defects or bugs. A total of 20 participants were recruited from
industry contacts. The authors opted for semi-structured interviews, which implies pre-
defining questions in the form of a flexible survey (questions can be skipped, customized,
and rearranged) [41]. The authors found that developers often perceive inspection tools as
useful; however, low accuracy and difficulty to use are clear barriers to the tool’s adoption.
This finding is a perfect match with the findings of our second survey.

The third study [47] is a multi-case study on the perceptions of students on software
modeling tools. These modeling tools are mostly in the context of the Unified Modeling
Language (UML) [72] and object-oriented programming. A total of 369 undergraduate
students were recruited for the survey, which is similar to what we did in our work but
at a larger scale. The authors concluded that, beyond the inherent complexity of using a
tool, the type of software modeling supported affects the perceived usefulness of a tool.
This finding is similar to what we found regarding the potential usefulness of DPD tools,
which depends on the need for automating the detection of a specific design pattern.

The fourth study [80] is a survey with developers about security tools. Analysis
tools that find and fix vulnerabilities belong to the scope of security tools targeted by the
study. Authors conducted two survey iterations. The first iteration had 119 participants,
who were recruited by convenience as they were industry contacts of the authors. The
second iteration had 61 valid responses given by developers recruited from expert mailing
lists. Such large samples were recruited via drawing or distribution of gift cards, a practice
we cannot replicate as we are researchers with very scarce resources. Study results suggest

2.6. Chapter Summary 24

that users tend to discard security tools perceived as complex to use, which is aligned with
the findings of our survey with DPD tool users. Thus, we reinforce our recommendation
for well-documented tools as a means to increase tool adoption.

2.6 Chapter Summary

In this chapter, we presented some background information important for under-
standing the remaining of this work. We discussed design patterns and described the six
patterns that will be used in our comparative study (Chapter 4 in terms of use, bene-
fits, and roles. We also presented what are design pattern detection tools, their benefits
and purpose, along with common types of analysis and modeling strategies used for im-
plementing the detection approaches. The precision, recall, F-measure, and agreement
metrics were also introduced, as they are also important results obtained from our com-
parative study. Lastly, we discussed some related work regarding both DPD tools and
survey studies involving software development tools and tool users.

In the next chapter, we present our systematic literature review which is our first
building block for conducting the remaining of our proposed studies. We describe our
review goal, protocol and discuss our findings regarding the DPD tools developed in the
last 20 years.

25

Chapter 3

Literature Review on DPD Tools

There are several design pattern detection (DPD) tools available in the literature [19,
26, 34, 64, 78]. Moreover, each tool presents different features such as different detecting
strategies, different detectable design patterns, different supported languages, etc. As the
DPD tools provide distinct functionalities, it is important to know them beforehand in
order to choose the tool best suited for a specific situation. However, previous studies
that intended to summarize these tools [60, 84] contained some gaps in their scope. For
instance, they do not provide information about the DPD tools’ main features and scopes.
In order to solve this problem, we conducted a Systematic Literature Review (SLR). This
SLR enables us to create a catalog of DPD tools that can be used by both researchers
and practitioners interested in using or extending them. Once we obtained the final list of
studies, we conducted a full read of the papers and extracted the information of interest
(i.e. the tools’ features).

In this chapter, we present our SLR, structured as follows: Section 3.1 introduces
the SLR study protocol, presenting our goal, research questions and study design. Sec-
tion 3.2 presents the results of the study, answering the research questions, presenting our
result artifacts and discussions. Section 3.3 discusses the different threats to the validity
of this study. Lastly, Section 3.4 summarizes this chapter and introduces the next one.

3.1 Study Protocol

This section presents the design decisions and rationale for conducting this SLR.

3.1. Study Protocol 26

3.1.1 Goal and Research Questions

We defined our study goal based on the Goal-Question-Metric template [11] as
follows: This work aims to analyze the state of the art in DPD tools; for the purpose of
summarizing the contributions made by previous studies; with respect to multiple aspects
of the primary studies that either proposed or compared the tools, as well as the main
features of the existing tools; from the point of view of researchers and practitioners
interested in DPD; in the context of primary studies published over the past two decades.

We introduce below our research questions (RQs).
RQ1: What is the publication landscape of DPD tools over the past two decades? –

The Gang of Four’s book [37] was first published in 1995 as an extensive catalog of design
patterns. This catalog relied on decades of industry experience to assist researchers and
practitioners concerned with poor software design. Several studies aimed to automate
DPD as a means to facilitate software comprehension and design decision making [4, 21,
64, 74, 86]. Through RQ1, we assess how the publication of DPD tools has evolved over
time, thereby revealing how active and mature is the existing research on this topic.

RQ2: What DPD tools were published in the last two decades and what are their
main features? – Our major study goal is to assist practitioners and researchers while
looking for useful tools, as well as to evaluate how the existing tools perform. We split
RQ2 into three questions to help us achieve that goal.

RQ2.1: What are the existing DPD tools? – Our study covers two decades of
publications, so that: 1) many existing DPD tools may be unavailable; 2) these tools
may depend on either obsolete or unavailable dependencies; and 3) the tools may be
incompatible with the existing Integrated Development Environments (IDEs). Thus, we
have to list these tools and identify those that are available for download and use before
we perform the tool comparison.

RQ2.2: What are the main features of the existing DPD Tools? – We also have
to identify the main features by tool, e.g., the scope of detectable design patterns and
programming languages supported. By investigating this question, we expect to derive
an extensive catalog of DPD tools that could be useful for whoever is looking for tools
suitable to their needs.

RQ2.3: What detection approaches have been used by the existing DPD tools? –
Program analysis approaches can rely on static analysis, dynamic analysis or hybrid anal-
isis [22]. Static analysis targets source code and its structure; dynamic analysis targets
software execution; and hybrid analysis combines the two other approaches. Analysis can
rely on different problem modeling approaches [33], such as Abstract Syntax Tree (AST)
and tokens. By investigating the variety of approaches being used, we expect to reveal
opportunities to further explore certain approaches, for instance.

3.1. Study Protocol 27

3.1.2 Search for Primary Studies

Table 3.1 lists the four Web search engines we selected to support our search for
primary studies. All these engines provide a vast amount of studies published in Software
Engineering [29]. These engines have been used for conducting SLRs in various Software
Engineering topics [16, 28, 67, 71]. They have also been used in SLRs related to DPD,
e.g., software pattern application [60] and anti-pattern detection tools [33].

Table 3.1: Web search engines used to search for primary studies

Engine Available at Number of Studies
ACM Digital Library https://dl.acm.org 44
IEEE Xplore https://ieeexplore.ieee.org 18
ScienceDirect https://www.sciencedirect.com 41
Springer https://www.springer.com 76

We defined the following search string to be run in each engine: (“design pattern
detection”) AND (tool OR “software solution”) AND (automated OR automatic). This
search string is a result of multiple pilot searches and followed by manual inspection of
the output obtained.

The third column of Table 3.1 shows the number of primary studies returned by
each engine. While running the search string on each engine, we set the interval from
January 2000 to December 2021 as the range of publication year. The total number of
primary studies, regardless of the existence of duplicates, equals 179. We automatically
exported the metadata of all these studies to a Comma-Separated Values (CSV) file. For
this purpose, we relied on either the native export feature provided by IEEE Xplore and
Springer or the Data Miner1 extension for the Google Chrome browser.

3.1.3 Filtering of Primary Studies

We relied on strict guidelines [46] for filtering the primary studies. First, we re-
moved all duplicates found in the initial set of 179 primary studies. Second, we applied
the following inclusion criteria: 1) the study is written in English, complete, and available
online for download; 2) the study is either a conference/journal/symposium/workshop
paper; and 3) the study either proposes or compares DPD tools. With respect to the
third criteria, some papers presented results of scripts or algorithms without an explicit

1https://dataminer.io

https://dl.acm.org
https://ieeexplore.ieee.org
https://www.sciencedirect.com
https://www.springer.com
https://dataminer.io

3.1. Study Protocol 28

mention of a tool implementation. Since the aim of this study is to evaluate ready-for-
use tools, we discarded these studies and those that do not match either of the inclusion
criteria. As a result, 25 valid primary studies remained for analysis.

We expanded our set of primary studies by performing backward snowballing [81]
on the 25 valid primary studies. First, we took notes of any DPD tools mentioned in the
body of these studies and, then, collected the studies used as reference for these tools.
Second, we applied the inclusion criteria mentioned above on the newly retrieved studies.
We identified 17 additional studies, thereby resulting in a final set of 42 valid primary
studies for analysis. It is important to highlight that this process was done in pairs. It is
important to highlight that in the case of multiple publications for the same tool, due to
a new or enhanced version of the same tool, we discarded the previous version and listed
only the most recent one. For example, the MARPLE-DPD tool [86] is a more recent
version of the MARPLE tool [35], however, they are different from the nMARPLE [6]
which supports DPD on a different programming language.

3.1.4 Data Extraction from Primary Studies

Two researchers collaborated in the full-text read of all 42 selected primary studies,
with the purpose of extracting and tabulating data. First, we extracted and tabulated the
following metadata from each study: paper title, list of authors, release year, publication
venue, and type of venue (conference, journal, etc.). Second, we extracted and tabulated
the name of all DPD tools either mentioned in or proposed by each study. Third, we
extracted and tabulated the following technical data of each DPD tool: tool name, tool
type (plug-in or stand-alone), programming languages used to implement the tool, pro-
gramming languages supported in DPD, availability to use for free, scope of the detectable
design patterns, download availability, documentation availability, Graphical User Inter-
face (GUI), detection techniques, and the way used to evaluate the DPD tools. Whenever
technical data were not explicit in a study, we searched for data in the tool’s website
or the study’s repository if applicable. Regarding the tool availability for download, we
restricted our search to the content of the paper and the available links.

3.2. Results and Discussions 29

3.2 Results and Discussions

This section presents the findings of the SLR and their discussion, and the responses
to our research questions.

3.2.1 Publication Landscape (RQ1)

Figure 3.1 presents the number of DPD tools published in the literature by year
since 2000. The publication year refers to the year in which the primary study that
presents each DPD tool was published. We found out that new tools have been introduced
every year with the exception of 2004 and 2013. This result suggest that introducing novel
DPD tools is still an interest of researchers worldwide.

Figure 3.1: Number of DPD tools published by year

Source: Elaborated by the author.

Regarding the publication venues, we found that most studies appeared in confer-
ences (56%), followed by journals (32%), symposiums (7%), and workshops (5%). Several
studies were published in prestigious venues. Examples of conferences include Interna-
tional Conference on Software Engineering (ICSE), International Conference on Auto-
mated Software Engineering (ASE), and International Conference on Software Analysis,
Evolution and Reengineering (SANER). Examples of journals include IEEE Transactions
on Software Engineering (TSE), ACM Transactions on Software Engineering and Method-
ology (TOSEM), and Journal of Systems and Software (JSS).

3.2. Results and Discussions 30

Summary of RQ1: Introducing DPD tools remains an interest of Software Engi-
neering researchers. The average of two valid primary studies published by year in
the last two decades suggests that DPD has open challenges to be addressed. DPD
research seems to be maturing since only 32% of the studies appeared in prestigious
journals.

3.2.2 Existing DPD Tools (RQ2.1)

Tables 3.2 and 3.3 collectively summarize the 42 DPD tools revealed by our litera-
ture review. Table 3.2 presents the tools available for download while Table 3.3 presents
the ones unavailable. The first column lists the names of the tools and the respective
reference, i.e., the primary study in which the tool was introduced. The second col-
umn informs whether the tool is either stand-alone or plug-in. Most tools (71%) are
stand-alone, which suggests they are quite flexible to use since they do not depend on a
particular Integrated Development Environment (IDE) to run. It is important to point
out that some tools, such as DPRE [20], are not clearly defined as plug-in or stand-alone
tools in their respective papers. Since these tools were not available for download during
the study execution, we assumed that they were stand-alone tools.

Table 3.2: Overview of the tools available for download

Name Type Language Scope of Detectable Docs GUIDevel. Suppor. Design Patterns
DesPaD [51] Stand -alone Java Java Abstract Factory, Adapter,

Bridge, +20
No No

DPJF [14] Plug-in Java Java CoR, Composite, Decorator,
+2

Yes Yes

FINDER [18] Stand -alone Java Java Abstract Factory, Adapter,
Bridge, +17

Yes No

GEML [10] Stand -alone Java Java Abstract Factory, Adapter,
Builder, +12

Yes Yes

MARPLE-DPD [86] Plug-in Java Java Adapter, Composite, Decora-
tor, +19

Yes Yes

PatRoid [61] Stand -alone Python Java* Abstract Factory, Adapter,
Bridge, +20

Yes No

PINOT [64] Stand -alone C++ Java Abstract Factory, Adapter,
Bridge, +14

No No

PTIDEJ [48] Stand -alone Java Java Adapter, Builder, CoR, +14 Yes Yes
Reclipse [77] Plug-in Java Java CoR, Command, Composite,

+2
Yes Yes

SSA/DPD [74] Stand -alone Java Java Adapter, Command, Compos-
ite, +9

No Yes

*Android apps written in Java.

The third and fourth columns report what programming languages were used for
developing each tool and in which languages the tool can perform DPD. Java is a very

3.2. Results and Discussions 31

Table 3.3: Overview of the tools unavailable for download

Name Type Language Scope of Detectable Docs GUIDevel. Suppor. Design Patterns
Alnusair et al. [3] Stand-alone N/A Java Composite, Observer, Sin-

gleton and 2 other
No N/A

Antoniol et al. [5] Stand-alone Java C++ Adapter, Bridge, Compos-
ite and 2 other

No Yes

APRT [62] Stand-alone Java Java Singleton, Strategy No N/A
CrocoPat [13] Stand-alone N/A Java Composite No N/A
D³ (D-cubed) [68] Stand-alone Java Java Abstract Factory, Builder,

Factory Method, Singleton
No No

DEPAIC++ [31] Stand-alone Java C++ Abstract Factory, Compos-
ite, Iterator

No Yes

DP-Miner [26] Stand-alone N/A Java Adapter, Composite, Dec-
orator, State

No Yes

DPDT [65] Stand-alone C++ Java Bridge, Composite, Fly-
weight and 4 other

No N/A

DPF [12] Plug-in Java Java Adapter, Command, Com-
posite and 8 other

No Yes

DPRE [20] Stand-alone Java Java Adapter, Bridge, Com-
mand and 8 other

No Yes

DPVK [78] Stand-alone N/A Eiffel Abstract Factory, Adapter,
Bridge and 15 other

No No

ePad [21] Plug-in N/A Java Abstract Factory, Builder,
Command and 9 other

No Yes

Hedgehog [15] Stand-alone N/A Java Bridge, Factory Method No N/A
Heuzeroth et al. [39] Stand-alone Java Java Chain of Responsibility,

Mediator, Observer, Visi-
tor

No N/A

Heuzeroth et al. [40] Stand-alone N/A Java Composite, Decorator, Ob-
server

No N/A

JADEPT [7] Stand-alone Java Java Chain of Responsibility,
Observer, Visitor

No Yes

Maisa [52] Stand-alone Java UML Abstract Factory No N/A
nMarple [6] Plug-in N/A .NET Abstract, Builder, Chain

of Responsibility and 13
other

No Yes

PatternFinder [24] Stand-alone N/A .NET Abstract Factory, Adapter,
Bridge and 20 other

No Yes

Philippow et al. [55] N/A N/A C++ Abstract Factory, Adapter,
Bridge and 20 other

No N/A

PRAssistor [42] Stand-alone Java Java Composite, Singleton, Vis-
itor

No No

Rasool & Mader [57] Stand-alone C# C++, Java Abstract Factory, Adapter,
Bridge and 20 other

No Yes

Rasool & Mader [58] Plug-in .NET, C# C#, C++, Java Abstract Factory, Adapter,
Bridge and 20 other

No Yes

Sartipo & Hu [63] Plug-in Java Java Adapter, Bridge, Decora-
tor and 4 other

No Yes

SparT-ETA [83] Stand-alone Java Java Abstract Factory, Adapter,
Bridge and 19 other

No N/A

SPQR [66] Stand-alone N/A Language
Independent Decorator No N/A

Thongrak et al. [73] Stand-alone N/A UML Strategy No Yes
Van Doorn et al. [75] Stand-alone Java UML Abstract Factory, Adapter,

Bridge and 13 other
Yes No

Vokác [76] Stand-alone N/A C++ Decorator, Factory
Method, Observer and
2 other

No N/A

VPML [30] Plug-in Java UML Abstract Factory, Adapter,
Bridge and 8 other

No Yes

Web of Patterns [23] Plug-in Java Java Abstract Factory, Adapter,
Bridge and 7 other

No Yes

Zhang & Li [87] N/A N/A C++ N/A No N/A

3.2. Results and Discussions 32

popular language2, so that our results are expected: most tools are written in Java (55%)
and able to detect design patterns in Java (69%). Surprisingly, however, we could not
find DPD tools for other popular programming languages, such as JavaScript and Python.
The fifth column presents the scope of detectable design patterns. Section 3.2.3 discusses
details on the data of this column. The sixth column reports on documentation avail-
ability for each tools. Only eight tools (19%) have some type of documentation (website,
README, etc.) available online. As discussed in our tool comparison (Section 4.1.2), doc-
umentation may be a key to adopting a tool. Thus, we strongly encourage researchers to
provide a minimum documentation to their tools. The seventh column informs whether
the DPD tools provide any sort of Graphical User Interface (GUI). This feature is im-
portant for practitioners looking for easy-to-use interfaces, since GUIs aim at facilitating
user interactions [43]. We detail the data summarized by this column in Section 3.2.3.

Summary of RQ2.1: From the 42 DPD tools found, 71% are stand-alone. In addi-
tion, 69% of the tools are compatible with Java systems. However, only 19% of the
tools have some companion documentation. These numbers suggest a certain niche of
applicability of the tools.

3.2.3 Main Features of DPD Tools (RQ2.2)

Supported Programming Languages: The TIOBE Index for October 2021
reports on Python, C, Java, C++, and C# as the five most popular languages worldwide.
We found a considerable number of DPD tools compatible with at least Java (29; 69%),
C++ (7; 17%), and C# (1; 2%). We also found tools compatible with UML (4; 10%),
.Net platform (2; 5%), Eiffel (1; 2%), and Language Independent (1; 2%). This result
suggests that practitioners could benefit from using existing tools. Curiously, four tools
perform DPD on UML models [30, 52, 73, 75] rather than on source code. One tool is
advertised as language independent [66]. This means that the tool runs on an abstract
syntax tree, which can be derived from programs in different programming languages,
such as C and Java.

Scope of Detectable Design Patterns: Table 3.4 shows the number of tools
that detect each of the 23 design patterns cataloged by the Gang of Four (GoF) [37].
The table is divided into three sets of three columns according to the pattern category:
behavioral patterns, structural patterns, and creational patterns. Percentages are computed

2TIOBE Index for October 2021: https://www.tiobe.com/tiobe-index/

3.2. Results and Discussions 33

with respect to all 42 DPD tools and each tool may detect multiple design patterns. All
23 design patterns mentioned above are detectable by at least one tool. Nine out of
23 design patterns (35%) are detectable by at least 50% of the tools. We observed a
balanced distribution of these nine design patterns across categories: four design patterns
are Behavioral Patterns (i.e., Observer, State, Strategy, and Visitor); two are Creational
(i.e., Factory Method and Singleton); and three are Structural (i.e., Adapter, Composite,
and Decorator). We conclude that researchers focused on supporting the detection of not
only easily detectable design patterns (e.g., Singleton because it involved very specific
code elements), but also more complex ones, such as Composite and Visitor.

Table 3.4: Number of tools that detect each design pattern
Behavioral Patterns Structural Patterns Creational Patterns

Pattern Total Percentage Pattern Total Percentage Pattern Total Percentage
Observer 27 64% Composite 28 67% Singleton 22 52%
Strategy 24 57% Decorator 25 60% Factory M. 22 52%

State 21 50% Adapter 21 50% Abstract F. 19 45%
Visitor 21 50% Proxy 20 48% Prototype 14 33%

Template M. 20 48% Bridge 19 45% Builder 13 31%
Command 18 43% Flyweight 12 29%

CoR 16 38% Facade 8 19%
Iterator 14 33%
Mediator 13 31%
Memento 12 29%

Interpreter 11 26%

Free-to-Use Availability: This information may be particularly important for
small-sized teams with scarce resources available for developing software systems. We
chose to report this information instead of the tool’s license, since this information is
usually not explicitly reported in papers. Out of the 42 DPD tools, we found that: 12
tools (29%) are explicitly reported by the authors as free to use; 1 tool (2%) is pay to
use; and for the remaining 29 tools (69%) we could not find explicit reports on whether
they are free or pay to use.

Download Availability: We assessed the download availability of DPD tools by
searching for download links within the studies. We used these links for downloading the
tools whenever they were available. Otherwise, we Google searched for the tool name. We
found that ten out of the 42 DPD tools (24%) were downloadable during our study. This
result is reasonable if we consider our wide range of publication year, i.e., two decades of
research. Table 3.3 lists the tools that are were available for download during our search.

GUI Availability: Figure 3.2 presents the number of DPD tools by their Graph-
ical User Interface (GUI). As we know, DPD may be challenging in practice. Thus, the
more a tool facilitates its use – e.g., through GUI – the better. Our results suggest that
authors of the existing tools acknowledge the importance of GUI. Indeed, 10 tools (24%)
provide their own native GUI; 9 tools (21%) are plug-ins for the Eclipse IDE3 and, there-
fore, use the Eclipse GUI; 8 tools (19%) rely on command line; and 2 tools (5%) are

3https://www.eclipse.org/ide/

3.2. Results and Discussions 34

embedded to software modeling tools and, thus, use the GUI provided by these modeling
tools. We were unable to find out if there is a GUI provided by 13 out of the 42 tools
(31%), due to poor documentation or their unavailability online.

Figure 3.2: Number of tools by GUI type

Source: Elaborated by the author.

Figure 3.3: Number of tools by problem modeling approach

Source: Elaborated by the author.

Summary of RQ2.2: From a total of 41 tools, 68% are designed to perform DPD
on Java systems, support the detection of complex design patterns such as Composite
(66%) and Observer (66%), and provide users with some sort of GUI other than
command line (51%). On the other hand, only a few tools (29%) are free to use and
downloadable (24%).

3.2. Results and Discussions 35

3.2.4 Detection Approaches behind the DPD Tools (RQ2.3)

Table 3.5: Detection approaches of the tools
Name Analysis Type Modeling Type
DesPaD [51] Static analysis AST
DPJF [14] Static analysis Fact
FINDER [18] Static analysis Fact
GEML [10] Static analysis Fact
MARPLE-DPD [86] Static analysis AST
PatRoid [61] Static analysis Fact
PINOT [64] Static analysis AST
PTIDEJ [48] Static analysis Fact
Reclipse [77] Hybrid analysis AST and Execution Flow
SSA/DPD [74] Static analysis Graph
Alnusair et al. [3] Static analysis Fact
Antoniol et al. [5] Static analysis Fact
APRT [62] Static analysis AST
CrocoPat [13] Static analysis Fact
D³ (D-cubed) [68] Static analysis AST
DEPAIC++ [31] Static analysis Fact
DP-Miner [26] Static analysis Template and Graph
DPDT [65] Static analysis Graph and Fact
DPF [12] Static analysis AST
DPRE [20] Hybrid analysis Fact and Execution Flow
DPVK [78] Static analysis Fact
ePad [21] Hybrid analysis Fact and Execution Flow
Hedgehog [15] Static analysis Fact and Semantic Data
Heuzeroth et al. [39] Hybrid analysis AST and Execution Flow
Heuzeroth et al. [40] Hybrid analysis AST and Execution Flow
JADEPT [7] Dynamic analysis Execution Flow
Maisa [52] Static analysis Fact
nMarple [6] Static analysis Graph
PatternFinder [24] Hybrid analysis Graph
Philippow et al. [55] Static analysis Fact
PRAssistor [42] Hybrid analysis Fact and Execution Flow
Rasool & Mader [57] Static analysis Fact
Rasool & Mader [58] Static analysis Fact
Sartipo & Hu [63] Hybrid analysis Fact and Execution Flow
SparT-ETA [83] Hybrid analysis Graph
SPQR [66] Static analysis AST
Thongrak et al. [73] Static analysis Fact
Van Doorn et al. [75] Static analysis Fact
Vokác [76] Static analysis Fact
VPML [30] Static analysis Fact
Web of Patterns [23] Static analysis Fact
Zhang & Li [87] Static analysis Fact

Program Analysis Approaches: Table 3.5 presents the information about both
the type of program analysis and problem modeling approaches implemented by each tool.
We found that 32 tools (76%) rely on static analysis for performing DPD. This result is
quite expected for the following reasons. Many design patterns – especially creational
and structural patterns – are characterized by patterns affecting the source code and its
structure. Furthermore, static analysis uses both code and its structure as information
sources. In other words, it makes sense that researchers often rely on static analysis to
perform DPD. In fact, only one tool [7](2%) relies on dynamic analysis, which depends
on tracking and understanding the execution of a software system (Section 3.1.1). This
result is particularly curious because certain design patterns, especially behavioral ones,

3.2. Results and Discussions 36

depend on those information sources to be characterized. Further exploring dynamic
analysis could improve the accuracy of DPD tools for some patterns. Finally, nine tools
(22%) rely on hybrid analysis: five tools were published in the first ten years analyzed,
i.e., from 2000 to 2009; the other four tools appeared after 2010. We hypothesize that,
over the decades, researchers realized that combining static and dynamic analyses could
leverage the DPD accuracy. We also hypothesize that the inherent difficulty of performing
dynamic analysis discussed by recent studies [21, 22] may be preventing researchers to
advance in proposing tools based on either dynamic or hybrid analysis.

Problem Modeling Approaches: Figure 3.3 presents the number of DPD tools
according to the approach used for modeling the problem of detecting design patterns. We
discussed that the majority of existing DPD tools (76%) rely exclusively on static analysis
to detect instances of design patterns. Thus, it is reasonable to expect that most of the
modeling approaches being used depend on analyzing the source code and its structure.
In fact, most tools (49%) rely exclusively on data collected from the internal program
structure, e.g., from classes, methods, and their relationships [18, 57, 75]. This is followed
by 15% of the tools relying only on Abstract Syntax Tree (AST), whose nodes represent
variables, operations, and other program elements [39, 62, 64]. In addition, 10% of the
tools rely only on graphs in general, whose nodes represent methods, classes, etc., and
graph isomorphism is typically explored by the tools [24]. Another tool combines graph
with template. Similar to graphs, templates are used for representing code elements in
an alternative way (not necessarily as a graph) with the purpose of comparing a program
with predefined templates for a given design pattern [26].

We also found tools relying on modeling approaches that are more suitable to either
dynamic analysis or hybrid analysis. One of these approaches is execution flow through
which the program execution is observed in terms of method calls, object instantiation,
accessed or modified fields, and so forth [7, 42]. The other approach is called semantic data,
which computes information both statically and dynamically. For instance, static semantic
constraints refer to how the classes interrelate, while dynamic semantic constraints refer
to how particular methods operate [15]. Finally, only ten tools (17%) combine modeling
approaches for supporting DPD, mostly to support hybrid analysis since only three of
these ten combine two types of static modeling approaches.

Summary of RQ2.3: Regarding the program analysis approaches, most of the tools
(76%) rely on static analysis to support DPD. Additionally, 76% of the tools rely on
a single modeling approach, mostly depending on information of source code and its
structure.

3.3. Threats to Validity 37

3.3 Threats to Validity

This section discusses the mains threats to the validity of our SLR study.
Construct and Internal Validity: We carefully planned our literature review

protocol through multiple meetings and incremental refinements of the study artifacts.
Thus, we expected to mitigate threats regarding the study execution. We carefully built
our search string based of multiple synonyms to key terms. We expected to collect as
many relevant primary studies as possible. Moreover, we performed snowballing to avoid
overlooking important studies. We relied on existing guidelines [46] to define our inclusion
and exclusion criteria of primary studies, thereby filtering out irrelevant studies. Finally,
two researchers collaborated in both reading the primary studies for performing the data
collection. They carefully discussed any divergences until reaching a consensus on the data
we found for each study, as well as to discard out-of-scope studies. Thus, we expected to
mitigate human biases.

Conclusion and External Validity: We performed descriptive analysis in order
to interpret the literature review data, similarly to other similar work [16, 33, 28, 71].
Thus, we expected to summarize our study results in an effective way for communication
purposes. Finally, we opted for four Web search engines to support the collection of
primary studies. We relied on well-known engines used in our previous work [33], some of
them specific to the Computing domain such as ACM Digital Library. Thus, we expected
to support the amplitude of our study results.

3.4 Chapter Summary

In this chapter we presented the design and results of our systematic literature
review about design pattern detection tools published in the last 20 years. From the 42
DPD tools found, 68% are stand-alone and only 19% of the tools have some companion
documentation. In addition, 69% of the tools are designed to perform DPD on Java
systems, support the detection of complex design patterns such as Composite (67%) and
Observer (64%), and provide users with some sort of GUI other than command line (50%).
On the other hand, only a few tools (29%) are explicitly free to use and downloadable
(24%). Regarding the program analysis approaches, most of the tools (76%) rely on
static analysis to support DPD. Additionally, 76% of the tools rely on a single modeling
approach, mostly depending on information of source code and its structure.

3.4. Chapter Summary 38

In the next chapter, we use our catalog of tools and other information from our SLR
to conduct a comparative study about the performance of DPD tools in terms of precision,
recall and agreement. The information about the DPD tools’ performance complements
the information regarding the technical aspects, such as design patterns support and
programming language supported. The tool comparison allows not only practitioners to
find the best performing tools according to their needs, but also researchers to evaluate
which kind of approaches yield better results when detecting specific design patterns and
also to come up with new detection approaches.

39

Chapter 4

Comparative Study of DPD Tools

Design pattern detection (DPD) tools rely on different approaches in order to extract the
instances from evaluated systems. Each type of approach may provide different outputs
for the same system, yielding a varying number detected instances with different levels
of precision. Thus, it is important to know how reliable the DPD tools are. However,
studies available in the literature [60, 84] do not present a comparison of the instances
detected from installing and executing different tools and the resulting accuracy metrics.
These studies simply reuse the reported performance results from the original studies.
This can be considered a threat to the validity to these studies, since it can be a form of
propagation of possible invalid results from the original studies. Furthermore, they also
do not present information about the agreement between the tools regarding the detection
of design pattern instances. Understanding the level of agreement between different tools
may allow the proposal of novel approaches that combine previous ones for example.
Information about the accuracy and agreement of the tools complements the technical
details of the tools, such as supported programming languages and design patterns.

In this chapter, we tackle this issue by conducting a comparative study of the
design pattern instances detected by different DPD tools in terms of precision, recall and
agreement. From the list of DPD tools obtained in the previous chapter, we used four
tools that were available for download and that we were able to properly use. We used the
tools to detect six design patterns from two different systems. We manually classified the
output instances as true or false positives and computed precision, recall and agreement
metrics.

The chapter is structured as follows: Section 4.1 introduces the comparative study
protocol, presenting the goal, research questions and study design. Section 4.2 presents
the results of the study, answering the research questions, presenting the results artifacts
and discussions. Section 4.3 discusses the different threats to the validity of this study.
Lastly, Section 4.4 summarizes this chapter and introduces the next one.

4.1. Study Protocol 40

4.1 Study Protocol

This section presents the design decisions and rationale for conducting this com-
parative study.

4.1.1 Goal and Research Questions

We define the goal of this study as follows. This study aims to analyze the accuracy
and applicability of existing DPD tools; for the purpose of comparing their strengths and
weaknesses; with respect to precision, recall, F-measure, agreement, and certain tool fea-
tures that regular users may find essential in practice; from the point of view of researchers
and practitioners interested in design patterns; in the context of published papers in the
past 20 years and tools available for download. We introduce below our research questions
(RQs).

RQ3: How accurate are the existing DPD tools? – To investigate the accuracy of
tools, we computed three metrics regarding the detection of different design patterns in
two software systems (see Section 4.1.3). The precision metric captures how often the tool
identifies design patterns correctly. Recall helps understand whether the tool manages to
detect all known correct instances of design patterns or only a subset of instances. Finally,
F-measure corresponds to the harmonic mean of precision and recall.

RQ4: To what extent do the existing tools agree regarding the detection of design
pattern instances? – Section 3.2.4 discusses that each DPD tool relies on different detec-
tion approaches. As a result, different tools may be able to detect different instances of
design patterns in the same system. Through RQ4, we investigate the agreement degree
among existing tools. We aim to understand whether the tools provide us with redundant
or complementary detection results.

4.1.2 Selection of Tools

Although our literature review revealed 42 DPD tools (Section 3.2), 32 of them
are not available for download. Regarding the remaining ten tools, we attempted, to our
best effort, to install and use them with the help of the documentation available at their

4.1. Study Protocol 41

respective websites and the tool’s configuration files (e.g., README). We excluded the tool
PatRoid [61] since it was designed to identify design patterns only in Android applications.
This limitation would not allow us to compare its results with the other tools.

Out of the nine remaining DPD tools, we managed to successfully install and use
only four tools: FINDER [18], GEML [10], MARPLE-DPD [86], and PTIDEJ [48]. As this
was an already small enough subset of tools, we used the four tools for the comparative
study. We discarded DesPaD [51] due to configuration issue (stuck on the second step,
probably due to an issue with Subdue); DPJF [14] due to use error when attempting to
generate the factbase; PINOT [64] due to installation error when attempting to compile
with the make command; Reclipse [77] due to installation issue (dependencies could not
be installed, i.e., Palladio and SoMoX); and SSA [74] because we were unable to use it
in one of our chosen systems (JRefactory). We highlight that, in these cases, we lacked
sufficient documentation to assist us in setting up and using the tools.

4.1.3 Selection of Design Patterns and Software Systems

While reading the papers from our systematic literature review, we listed the sys-
tems that were used to evaluate the proposed tools and systems with manually validated
design pattern instances. We initially chose JUnit 3.7 and JHotDraw 5.1, as both systems
are written in Java and have some validated instances of design patterns. However, due to
Java version requirements, we were not able to use JUnit with all four DPD tools. Thus,
we decided to use JRefactory 2.6.24 instead. These systems have been used in previous
studies on DPD [14, 20, 74].

To choose which patterns to evaluate in this study, we defined three criteria: the
design pattern must have less than 100 instances collectively for both systems; at least
two tools must return design pattern instances for either of the systems; no more than two
design patterns per design pattern category (behavioral, creational and structural). Due
to this, we first executed the tools to measure the number of instances they detect of each
design pattern and then applied our inclusion criteria. The first and third criteria were
destined to make manual validation feasible. The manual validation of design pattern
instances is not a trivial task, since it requires not only an understanding of the business
logic of the system, but also knowledge about the design patterns themselves, such as the
components, their roles and general structure. Although this subset of design patterns
may not represent all capabilities of the tools detection prowess, each category comes with
a different difficulty level for the detection process which may be an indicator of the tool’s
capability of coping with these difficulties.

4.1. Study Protocol 42

The second criterion was created to make the calculation of the agreement coeffi-
cient feasible, since we need at least two raters to compute this metric. Creational design
patterns help make a system more flexible by making the process of instantiating classes
abstract [37]. The chosen creational patterns were Prototype and Singleton. Behavioral
design patterns distribute behavior between classes by describing the communication be-
tween them [37], the behavioral patterns chosen were Chain of Responsibility and Visitor.
Structural design patterns add flexibility to the system by composing objects into new
ones with new functionality [37], the structural patterns selected were Composite and
Decorator.

4.1.4 Validation of Design Pattern Instances

Detection of Design Pattern Instances: We executed each selected tool on
the chosen systems to obtain the list of pattern instances detected by the tool. To do so,
we create a virtual machine based on the Linux Mint 20 operating system with 8 GB of
RAM, eight processors, and 3.59 GHz of clock speed. Table 4.1 presents the number of
instances detected of each design pattern by each tool. Cells with a dash (“-”) indicate
that the tool could not detect the design pattern. For instance, GEML does not support
Chain of Responsibility and Prototype detection, and due to an execution error it could
not detect the Decorator pattern for JRefactory. The design patterns names in bold are
the ones that were chosen for the comparative study. It is important to highlight that
PTIDEJ output indicates the confidence level of each returned instance. We opted to
discard the instances with a confidence value below 100% since we did not want to collect
instances that the tool might classify as false positives.

Validation of Design Pattern Instances: Most design pattern instances consist
of a combination of classes. For instance, a Composite design pattern instance contains
one class playing the Component role, one or more classes playing the Composite role,
and one or more classes playing the Leaf role. Roles can be of two types: anchor role,
i.e., the Component role, and non-anchor role, i.e., the Leaf and Composite roles. Classes
that play anchor roles differentiate one design pattern instance from another. Among the
results obtained for a specific design pattern from a single DPD tool, there is no pair of
instances with the same class playing the anchor role. On the other hand, there may be
multiple instances with a class in common playing a non-anchor role.

Table 4.2 presents the roles of each design pattern evaluated in this study. For
illustration, let us consider the Composite design pattern. One of the true instances of the
Composite pattern for the JHotDraw system is composed of: the class CH.ifa.draw.frame-

4.1. Study Protocol 43

Table 4.1: Number of patterns detected by tool

Type JHotDraw JRefactory
FINDER GEML MARPLE PTIDEJ FINDER GEML MARPLE PTIDEJ

Bridge 21 - - - 0 - - -
Builder 0 - 98 0 0 - 355 0
CoR 3 - 0 11 1 - 0 30

Command 25 - 25 0 0 - 39 0
Composite 4 3 5 0 2 2 2 0
Decorator 2 2 14 0 0 - 12 0

Facade - - 499 23 - - 138 24
Factory Method 15 4 62 0 6 1 158 0

Flyweight 26 - - 0 15 - - 0
Mediator 0 - 0 0 0 - 0 0
Memento 2 - 0 0 24 - 0 0
Observer 13 12 61 0 8 1 90 0

Prototype 0 - 5 1 3 - 4 0
Proxy 0 0 0 51 0 13 0 104

Singleton 0 2 1 6 2 8 10 55
State 2 - 187 18 15 - 420 27

Strategy 7 - 95 - 24 - 197 -
Template Method 74 2 0 31 48 22 0 49

Visitor 0 6 9 1 4 4 19 1

work.Figure playing the Component role (anchor), the class CH.ifa.draw.standard.Com-
positeFigure playing the Composite role (non-anchor) and the class CH.ifa.draw.figu-
res.EllipseFigure playing the Leaf role (non-anchor). Evaluating the results of the
Finder tool, only one instance listed the CH.ifa.draw.framework.Figure class as the
Composite, while two instances listed the CH.ifa.draw.figures.EllipseFigure class
as the Leaf.

Table 4.2: Patterns and their respective roles

Pattern Anchor Roles Non-anchor Roles
Chain of Responsibility Handler Concrete Handler
Composite Component Composite, Leaf
Decorator Decorator, Component Concrete Component, Concrete Decorator
Prototype Prototype Concrete Prototype
Singleton Singleton N/A
Visitor Element, Visitor Concrete Element, Concrete Visitor

We validated the instances as true or false positives by manually inspecting all
detected instances. For each design pattern, two researchers discussed its definition and
mechanisms in order to build a common ground on the pattern, its composing elements
and roles. Thus, we were capable to understand what to look for while inspecting the
instances – especially in terms of characteristics that turn an instance into a false positive
instance. After that, those two researchers inspected each instance of that particular
design pattern individually. Each instance was discussed in pairs so we could reach a
consensus on the instance classification. Both researchers are familiar with the concept
of design patterns and Java development. This validation process was conducted for all
234 instances detected by the four tools under comparison.

Computation of Equivalent Instances: When different tools detect a certain
pattern, they may detect the same class for the anchor role but different classes for non-

4.1. Study Protocol 44

anchor roles. This poses a challenge for obtaining the true positive instances and the
agreement between the tools. For example, when comparing two instances from different
tools but with the same class playing the anchor role, it is very likely that they will not
have the exact same classes playing the non-anchor roles. Thus, we defined two pattern
instances as equivalent if they have the same class (or pair of classes for the Decorator
and Visitor patterns) for the anchor roles and at least one common class for each of the
non-anchor roles. With this definition, we aggregated the new true positive instances to
our oracle database for each system.

Obtaining the Ground Truth: Although documentation is extremely important
and helpful, it is often neglected [1]. In a similar manner, documentation of the design
patterns implemented by a system is also not a common practice. Thus, obtaining the
ground truth for a system is a very demanding task. To alleviate this issue, we created a
proxy for the ground truth from the collective results of the P-MARt1, which is a repository
with previously identified and validated design pattern instances, and the instances that
were manually validated in this study. A ground truth is required to quantify the recall
metric for each tool. Our ground truth proxy is available in our replication package in
the “Patterns Found” folder.

4.1.5 Computation of Accuracy Metrics

Regarding the accuracy of the tools, we chose three metrics to measure it: precision,
recall and F-measure. The precision evaluates the correctness of the results returned by
the tool [8]. It is calculated from the ratio between the number of true positive instances
detected and the total number of instances returned. The recall measures the ability to
detect all known correct design pattern instances in a given system [8]. It is obtained
by the ratio of true positive instances detected and the total number of true positive
instances in a system. In our case, we rely on both the P-Mart repository and our manual
validation as a proxy of the ground truth. Lastly, we calculated the F-measure, which is
the harmonic mean of the precision and recall. This metric weights precision and recall
equally, giving an overall score for each tool’s accuracy. We calculated all metrics for each
pattern in each of the systems for each tool.

The agreement metric evaluated the redundancy of the results from the four dif-
ferent tools. A high agreement indicates that the tools detect the same instances, both
true positives and false positives, whereas a low agreement means that the different pat-
tern detection approaches obtain different instances. In order to calculate this metric,

1http://www.ptidej.net/tools/designpatterns/index_html#2

http://www.ptidej.net/tools/designpatterns/index_html#2

4.2. Tool Comparison Results 45

we listed all unique instances collectively detected by the tools and created an agreement
table for each design pattern. After that, we used these tables as input for the calculation
of Gwet’s AC1 coefficient [38], Overall Agreement and Confidence Interval over 95% using
Gwet’s R package, i.e., irrCAC2.

4.2 Tool Comparison Results

Precision, Recall, and F-measure (RQ3): Table 4.3 presents the Precision,
Recall and F-measure of the tools for JHotDraw and JRefactory. Precision and recall
cells with “N/A” mean the tool could not detect the pattern. F-measure cells with “N/A”
mean there is neither a value of precision nor recall to calculate their harmonic mean. We
used bold font in values greater than or equal to 50% to facilitate the discussions below.
According to the results, FINDER managed to find instances of Composite, Decorator,
Singleton, and Visitor. For these four design patterns, the tool presented precision and
recall ≥ 50% for at least one of the two systems under analysis i.e., JHotDraw and
JRefactory – except in the case of Singleton. Overall, our results suggest that FINDER is
applicable for detecting these design patterns. GEML successfully detected only Singleton
instances but, compared to the other tools, it displayed the highest precision and recall for
both systems. Although it did not detect a single instance of the other design patterns,
practitioners may use it to detect Singleton.

Additionally, MARPLE-DPD was able of detecting instances of all design patterns
but Chain of Responsibility on either system. Moreover, it was the only tool that man-
aged to successfully detect instances of Prototype. However, the tool presented precision
and recall ≥ 50% simultaneously only in the cases of Singleton (for both systems) and
Composite (for JHotDraw). Therefore, we encourage developers to use MARPLE-DPD
for detecting instances of Singleton and Composite with acceptable accuracy. Lastly,
PTIDEJ managed to detect only Visitor and Singleton patterns, and failed to detect the
others. Moreover, the tool detected instances with precision and recall ≥ 50% exclu-
sively for Visitor, which may encourage developers in using PTIDEJ for this purpose.
We attempted to compare the metrics obtained in this study with the results presented
in the studies that presented each of these four tools. However, the studies either did
not present any performance metrics [48] or presented the overall metrics for a collection
of systems [86, 10] or different systems [18], thus, preventing us from conducting this
comparison.

2https://cran.r-project.org/web/packages/irrCAC/index.html

https://cran.r-project.org/web/packages/irrCAC/index.html

4.2. Tool Comparison Results 46

Table 4.3: Accuracy measures by tool
System Metric Tool CoR Comp. Deco. Prot. Sing. Visi.

JHotDraw

Precision

FINDER 0% 75% 50% 0% 0% 0%
GEML N/A 0% 0% N/A 100% 0%
MARPLE 0% 60% 14% 20% 100% 0%
PTIDEJ 0% 0% 0% 0% 0% 0%

Recall

FINDER 0% 75% 50% 0% 0% 0%
GEML N/A 0% 0% N/A 100% 0%
MARPLE 0% 75% 100% 50% 50% 0%
PTIDEJ 0% 0% 0% 0% 0% 0%

F-measure

FINDER 0% 75% 50% 0% N/A N/A
GEML N/A N/A N/A N/A 100% N/A
MARPLE N/A 67% 25% 29% 67% N/A
PTIDEJ N/A N/A N/A 0% N/A N/A

JRefactory

Precision

FINDER 0% 100% 0% 0% 100% 50%
GEML N/A 0% N/A N/A 88% 0%
MARPLE 0% 0% 0% 0% 50% 11%
PTIDEJ 0% 0% 0% 0% 13% 100%

Recall

FINDER 0% 100% 0% 0% 20% 100%
GEML N/A 0% N/A N/A 70% 0%
MARPLE 0% 0% 0% 0% 50% 100%
PTIDEJ 0% 0% 0% 0% 70% 50%

F-measure

FINDER N/A 100% N/A N/A 33% 67%
GEML N/A N/A N/A N/A 78% N/A
MARPLE N/A N/A N/A N/A 50% 19%
PTIDEJ N/A N/A N/A N/A 22% 67%

Agreement 33% 48% 49% 33% 49% 49%
AC1 coefficient -0.20 0.12 0.18 -0.22 0.11 0.14

Confidence Interval (≥ 95%) [-0.200, [0.016, [0.138, [-0.316, [0.038, [0.075,
-0.200] 0.235] 0.221] -0.160] 0.175] 0.198]

Summary of RQ3: The comparison results suggest that each tool could be applied for
detecting a particular subset of design patterns. FINDER showed sufficient accuracy
for Composite, Decorator, Singleton and Visitor. Still, future work is required to
further support practitioners interested in automating DPD in practice.

Agreement of the Tools (RQ4): The last three rows from Table 4.3 present the
overall agreement of the tools, the Gwet’s AC1 agreement coefficient and the confidence
interval. The overall agreement relates the number of times the tools agree with the
total number of instances rated. This metric does not account for the random chance
of agreement between raters unlike the AC1 [38], yet it displays a moderate agreement
between the tools. The overall agreement for all six design patterns ranges from 33%
to 49%. However, this metric does not take into account the fact that the tools may
agree by chance. The AC1 coefficient is ≤ 0.18 for all the design patterns, indicating
a poor agreement between the tools. This means that the output from the tools is not
redundant, and different tools return different instances. Although one could argue that
combining the results of the four tools would be recommended due to the increase of
distinct instances detected, the results for precision, recall and F-measure indicate that
most of the results are false positives.

4.3. Threats to Validity 47

Summary of RQ4: For the six design patterns evaluated, the four DPD tools tend
to disagree on the instances detected, meaning that their output is not redundant. In
other words, they detect distinct design pattern instances.

4.3 Threats to Validity

Construct and Internal Validity: We carefully installed and configured the
tools available online for the comparative study (Section 4.1). We selected both design
patterns and systems before executing the tool comparison, thereby mitigating biases
that could favor the accuracy results of a particular tool. We have no conflicts of interest
with the authors of the DPD tools under analysis. Still, we mitigate possible threats by
counting on a second researcher to inspect their execution and help with problem solving.
In addition, we attempted to conduct a pilot study with two volunteers for manually
validating a number of DPD instances. Unfortunately, this task was very complex and
time consuming, even for experienced developers. We ended up discarding the pilot study
results and relying on the manual validation performed by two researchers. By doing this
as a pair, we expected to mitigate biases in the validation process.

Conclusion and External Validity: We computed precision, recall, and agree-
ment similar to a previous work [33]. We opted for the Gwet’s AC1 agreement coefficient
due to its applicability to multiple raters and the fact that raters may agree by chance.
Thus, we expected to avoid the misuse of statistics. We relied on our manually-validated
instances of design patterns, plus the instances validated by previous studies, to com-
pute recall. Thus, we expected to obtain as many true positive instances as possible by
analyzed systems. Finally, we applied the inclusion criteria to filter out DPD tools for
comparison. One could argue that we compared only four out of the 42 existing tools
and, therefore, our results may not represent the state-of-the-accuracy. Still, we highlight
that our criteria were meant to assure that all tools are usable and fairly comparable.
Similar reasoning applies to the analysis of six out of the 23 GoF design patterns [37].
We selected pattern of different categories, i.e., Behavioral, Creational, and Structural, to
support some variety in our findings. Lastly, similarly to the previous threats, although
we analyzed only two systems both are functional systems that contain implementations
of design patterns and are commonly used for benchmarking DPD tools in the literature.

4.4. Chapter Summary 48

4.4 Chapter Summary

In this chapter, we presented the design and results of our comparative study
of four different design pattern detection tools. We computed the precision, recall and
agreement of each tool when detecting six different design patterns from two systems.
The comparison results suggest that each tool could be applied to detecting a particular
subset of design patterns. FINDER showed sufficient accuracy for Composite, Decorator,
Singleton and Visitor. Still, future work is required to further support practitioners
interested in automating DPD in practice. For the six design patterns evaluated, the four
DPD tools tend to disagree on the instances detected, meaning that their output is not
redundant. In other words, they detect distinct design pattern instances.

In the next chapter, we present two survey studies: the first to obtain evidence
about the design rationale behind the proposal of the tools, and the second to obtain
evidence regarding the expected usefulness from the point of view of practitioners. We
expect that the results of the first survey allow us to understand the technical difficulties
that tool designers may face when developing DPD tools, while the results of the second
survey would enable tool designers to propose new tools (or refine existing ones) that
match the needs of potential users.

49

Chapter 5

Survey Study on DPD Tools

There are several design pattern detection (DPD) tools available in the literature (3).
However, their scope of detection and supported programming languages are not very
diverse. For example, out of 42 tools published in the last 20 years, 28 tools (67%)
are able to detect Composite while only 8 can detect Facade. Regarding the supported
programming languages, 29 tools are able to extract instances from Java systems, but
no tool can detect design patterns in JavaScript or Python systems. Furthermore, it is
not clear why the DPD tool designers opted for these specific scopes. In fact, there is
no evidence on the expected usefulness of DPD tools from the perspective of potential
tool users. Eventually, we cannot conclude that the available DPD tools match the users’
expectations.

In this chapter, we present two survey studies to answer the issues presented: one
aimed at capturing the design rationale of tool designers and the other to understand
the perception of tool users regarding DPD tools. For the first survey, we elaborated a
five question survey and emailed them to the tool developers, eventually obtaining nine
responses. Meanwhile, for the second survey we developed an eight question survey using
Google Forms and shared it with potential tool users, which yielded a total of 21 responses.

The chapter is structured as follows. Section 5.1 introduces the study protocol,
presenting the goal, research questions and design of both surveys. Section 5.2 presents
the results of the study, answering the research questions, presenting the results artifacts
and discussions. Section 5.5 discusses the different threats to the validity of this study.
Section 5.4 discusses the implications of our findings. Lastly, Section 5.6 summarizes this
chapter and introduces the next one.

5.1 Study Design

This section provides details regarding our study design as follows. Section 5.1.1
introduces the study goal and research questions (RQs). Section 5.1.2 presents the struc-

5.1. Study Design 50

ture of our surveys: the survey with tool designers and the survey with potential tool
users. Section 5.1.3 describes our study participants for each survey. Lastly, Section 5.1.4
describes our data analysis procedures.

5.1.1 Goal and Research Questions

We relied on the Goal-Question-Metric template [11] to define our study goal as
follows: analyze the perceptions of tool designers and potential tool users about DPD
tools; for the purpose of understanding the extent in which existing DPD tools meet
the needs of tool users, as well as assisting tool designers in proposing novel tools; with
respect to i) what reasons have led tool designers to target specific design patterns and
programming languages and ii) the expected usefulness of DPD tools from the perspective
of potential tool users; from the point of view of tool designers who have contributed to
academic publications and junior or senior developers who are potential tool users; in the
context of 42 tools summarized in our systematic literature review (Chapter 3).

We defined the two RQs below to drive our research.
RQ1: What is the design rationale behind the proposal of the existing DPD tools?

– Our literature review presented in Chapter 3 catalogs 42 DPD tools published over the
last two decades. We found a certain bias in the design patterns these tools detect: at
least 64% of the tools detect Composite or Observer, while only a few tools detect other
relevant patterns such as Mediator (31%) and Facade (19%). We also found biased the
choice for target languages: 69% of the tools target Java, while no tools target trending
languages such as e.g., JavaScript and Python. The lack of documentation regarding
the reasons why tool designers have targeted specific patterns and languages motivates
our RQ. We believe that RQ1 can shed light on the types of technical support that tool
designers need for targeting other patterns and languages of relevance in industry.

RQ2: How useful potential tool users expect DPD tools to be? – A few previous
studies [36, 44, 47, 80] rely on surveys or interviews to investigate the expected useful-
ness of different software development tools. These studies highlight the importance of
understanding an eventual mismatch between the tool designers’ effort and the practical
needs of developers. To the best of our knowledge, there is no survey-based empirical
study aimed at understanding the expected usefulness of DPD tools. We advocate that
acquiring such understanding is essential to propose novel DPD tools (or refine existing
tools) able to meet the current needs of potential users. With RQ2, we capture contexts
in which junior or senior developers expect DPD tools to be useful, as well as benefits
and barriers to the use of these tools.

5.1. Study Design 51

5.1.2 Survey Structure

Survey is aimed at collecting information from people as a means to characterize
their opinion, knowledge, or behavior [82]. Surveys help researchers derive conclusions
from a sample of participants that does not necessarily reflect an entire population. Thus,
survey replication is highly recommended. We opted for a survey-based study due to
our positive recent experiences [49, 50]. We relied on strict guidelines for conducting
online surveys [56] to propose two complementary surveys: one targeting tool designers
and one targeting potential tool users. We opted for short surveys to prevent candidate
participants from ignoring our survey. We describe below the structure of each survey.

Survey with tool designers: Table 5.1 presents the five open questions of the
survey with tool designers (D1 to D5). We opted not to ask demographic information
directly to the tool designers as this information was publicly available on their websites.
We customized the survey according to the specific information of each tool (see text
between brackets). D1 captures the reasons why the tool designers decided to detect
specific design patterns. D2 captures the designers’ intent to detect other design patterns
they believe to be relevant. D3 and D4 are similar to D1 and D2 but target programming
languages rather than design patterns. D5 captures the designers’ knowledge of the usage
of their tools.

Table 5.1: Structure of the survey with tool designers

ID Question
D1 Your tool detects [list of design patterns]. Why did you choose them?
D2 Would you implement detection tools for other design patterns? If so, which

design patterns would you support? Why?
D3 Your tool detects design patterns in systems implemented in [list of programming

languages]. Why did you choose them?
D4 Would you implement detection tools for other languages? If so, what languages

would you support? Why?
D5 In which contexts of software development has your tool been used (e.g. adding

a new feature to the system, enhancing an existing feature or code, removing an
obsolete feature, fixing a bug, etc.)?

Survey with tool users: Table 5.2 lists the eight questions of our survey with tool
users: U1 to U5 are closed questions, while U6 to U8 are open questions. U1 to U4 capture
demographic information aimed at helping us understand the possible generalization of
our findings. These questions cover the programming language most used by the user
(U1), years of experience as a programmer (U2), current main role as a programmer (U3),
and familiarity with design patterns (U4). U5 to U8 capture the expected usefulness of
DPD tools: contexts in which tool users would consider using DPD tools (U5), expected

5.1. Study Design 52

benefits of using a DPD tool (U6), reasons for not using a DPD tool (U7), and design
patterns that are worth detecting via tool (U8).

Table 5.2: Structure of the survey with potential tool users

ID Question Possible answers
U1 Which programming language do you

use mostly on a daily basis?
JavaScript; Python; Java; C#; PHP;
other

U2 How many years of experience do you
have as a programmer?

Up to 3 years; 3 - 5 years; 5 - 10 years;
more than 10 years

U3 What is your current main role? Back-end developer; front-end devel-
oper; full stack developer; tester; other

U4 How familiar are you with design pat-
terns?

Not familiar; somewhat familiar; fairly
familiar; very familiar

U5 In which contexts of software develop-
ment would you consider using a design
pattern detection tool?

Adding a new feature to the system; en-
hancing an existing feature or code; re-
moving an obsolete feature; fixing a bug;
other

U6 What benefits do you expect from using
a design pattern detection tool?

N/A (open question)

U7 What would prevent you from using a
design pattern detection tool?

N/A (open question)

U8 What design patterns do you believe are
worth detecting through a tool? Why?

N/A (open question)

5.1.3 Participant Characterization

As discussed in Section 5.1.2, this chapter introduces an empirical study based on
two online surveys, each targeting a specific group of participants. We describe below our
participant recruitment procedures and characterize each group.

Group A: Tool designers – Our literature review summarizes 42 DPD tools. We
used the papers that introduced each tool to extract contact information of the respective
tool designers. We extracted name and email address of all authors credited in each paper.
The 42 tools were published over a span of 20 years, so that certain email addresses were
likely to be invalid. We prevented this issue by searching for the latest papers published by
each author on Google Scholar1. We then extracted the email addresses provided in these
papers; we also extracted the email addresses informed in the author’s website whenever
its link was provided by the author’s profile on Scholar.

1https://scholar.google.com

https://scholar.google.com

5.1. Study Design 53

We emailed our survey to all authors (i.e., tool designers). We tried all email
addresses extracted per author and, if all addresses were invalid and our emails returned,
we simply discarded the author from Group A. We extracted 95 email addresses from a
total of 108 tool designers. We waited two months for responses to the survey, so that
tool designers (especially designers of older tools) had enough time to gather information
about the design decisions of their previous work. Tool designers of nine out of the 42
tools responded to our survey, one designer by tool, thereby covering 21.4% of the tools.

Demographic information for Group A: Out of the nine survey participants,
one is a PhD working in the industry, one is a PhD student, one is a PhD working in the
industry and also a professor at a university, and six are PhD professors at a university.
Regarding their positions in the coauthors’ list of their respective papers, four of them
are first authors, four are second authors and one is third author. Thus, the survey
participants are qualified to provide information about the decisions behind the proposal
of the DPD tools.

Group B: Tool users – We had no reference list of software developers who are
potential users of DPD tools, and the universe of possible survey participants in very broad
in this case. Aimed at achieving a diverse group of participants in terms of background,
we opted for recruiting tool users based on opportunistic broadcasting. We sent the survey
link to three groups of software developers on WhatsApp2, which is an instant messaging
platform largely used in Brazil. We encouraged all developers to forward our survey
link to other developers and similar WhatsApp groups. Because we could not track all
developers reached by our survey link, it is impossible to compute response rate. Still, we
obtained responses from four senior developers.

We also forwarded our survey link to undergraduate students enrolled in the Soft-
ware Engineering course at the Federal University of Minas Gerais (UFMG), i.e., where
the author was enrolled as a Master’s student. We gave each student a month to respond
the survey, enough time for an opinion-based survey. A total of 17 junior developers
responded to our survey.

Demographic information for Group B: Figures 5.1, 5.2, 5.3 and 5.4 summa-
rizes demographic information of the potential tool users collected from survey questions
U1 to U4 (Table 5.2). Table 5.3 presents the demographic information of each participant.
We discuss below our general observations on this matter.

Figure 5.1 shows that the programming languages more often used by the potential
tool users on a daily basis are C# (29% of the users), JavaScript (29%), and Java (19%).
With the exception of Swift, all programming languages reported by the tool users are
top-seven most popular languages according to the TIOBE Index for December 20223.
Figure 5.2 suggests that 38% of the tool users are senior developers with more than three

2https://www.whatsapp.com/
3https://www.tiobe.com/tiobe-index/

https://www.whatsapp.com/
https://www.tiobe.com/tiobe-index/

5.1. Study Design 54

Figure 5.1: Most used programming language

Source: Elaborated by the author.

Figure 5.2: Years of experience as a programmer

Source: Elaborated by the author.

Figure 5.3: Current main role

Source: Elaborated by the author.

years of experience as a programmer, while most users (62%) are junior developers with
up to three years of experience. Figure 5.3 shows that 76% of the tool users currently
work as either back-end developers or full stack developers. Coincidentally, Figure 5.4
suggests that 76% of the tool users are at least minimally familiar with design patterns;
48% are either fairly or very familiar.

5.1. Study Design 55

Figure 5.4: Familiarity with design patterns

Source: Elaborated by the author.

Table 5.3: Demographic information of each participant

ID Programming Experience Main Role FamiliarityLanguage
SD1 Java More than 10 years Full stack Developer 3
SD2 C# Up to 3 years Backend Developer 3
SD3 C# Up to 3 years Backend Developer 3
SD4 C# Up to 3 years Backend Developer 2
JD1 Java 5 - 10 years Software Engineer 4
JD2 Java Up to 3 years Full stack Developer 2
JD3 Java Up to 3 years Full stack Developer 4
JD4 JavaScript Up to 3 years Frontend Developer 2
JD5 Python Up to 3 years Backend Developer 1
JD6 Python Up to 3 years Backend Developer 2
JD7 JavaScript Up to 3 years Frontend Developer 1
JD8 JavaScript 3 - 5 years Full stack Developer 2
JD9 JavaScript 5 - 10 years Backend Developer 3
JD10 C 5 - 10 years Backend Developer 1
JD11 JavaScript Up to 3 years Full stack Developer 2
JD12 Swift Up to 3 years Mobile Developer 4
JD13 C# 3 - 5 years Backend Developer 3
JD14 Python Up to 3 years Data Scientist 1
JD15 C# Up to 3 years Backend Developer 1
JD16 C# 3 - 5 years Backend Developer 3
JD17 JavaScript 3 - 5 years Full stack Developer 3

5.1.4 Data Analysis Procedures

Figure 5.5 depicts our data analysis procedures. We defined a total of seven steps,
which range from quantitative to qualitative analysis of the survey data. We relied on
strict guidelines for conducting empirical research in software engineering [17, 56, 69, 82]

5.1. Study Design 56

to support the definition of our procedures.

Figure 5.5: Data analysis procedures for closed survey questions

Source: Elaborated by the author.

Only a few of our survey questions (U1 to U5) are closed questions, whose data
are typically more straightforward to analyze. One researcher computed frequency of
survey answers (e.g., programming languages reported on survey question U1) for the
descriptive analysis in Step 1.1. The same researcher plotted the bar charts summarized
in Figures 5.1, 5.2, 5.3 and 5.4 in Step 1.2. Three researchers contributed to performing
double checking in Step 1.3.

The remaining survey questions are open questions and we opted for manual anal-
ysis to achieve accuracy in the data analysis. One researcher performed Step 2.1 to
extract textual topics (i.e., codes) from each open question response via open coding [69].
Another researcher double checked the codes and suggested fixes in Step 2.2, thereby
mitigating subjective biases. Both researchers discussed to reach consensus in case of dis-
agreement. The two researchers created together in Step 2.3 all taxonomies based on the
codes extracted for each survey question. We followed an iterative process as suggested by
past work [17]. Three researchers helped validate the taxonomies created for each survey
question in Step 2.4.

We provide additional comments regarding open coding (Step 2.1) and taxonomy
creation (Step 2.3) as follows. Not all survey responses provided a valid code during
the open coding; some survey responses provided more than one valid code. Thus, the
number of codes grouped by taxonomy is not necessarily equal to the number of survey
participants. We decided to shorten the taxonomies presented in this chapter for the sake
of simplicity. Our study replication package 4 includes the full taxonomies.

4https://doi.org/10.5281/zenodo.7465098

https://doi.org/10.5281/zenodo.7465098

5.2. Results of the Survey with Tool Designers 57

5.2 Results of the Survey with Tool Designers

This section reports the results of the survey with tool designers as follows. Sec-
tion 5.2.1 presents the reasons why tool designers targeted specific design patterns. Sec-
tion 5.2.2 discusses the reasons why tool designers targeted specific programming lan-
guages. Section 5.2.3 presents the contexts in which tool designers know that their tools
have been used.

5.2.1 Reasons to Detect Specific Design Patterns

Survey question D1: Figure 5.6 summarizes the reasons reported by tool de-
signers to target specific design patterns. We found five concrete reasons (blue rectangles
with continuous borders), which we grouped into two general reasons (white rectangles
with dashed borders): External aspects of design patterns and Internal aspects
of design patterns. We annotated each reason with its frequency; such frequency cor-
responds to the number of participants (out of the nine tool designers) who mentioned a
reason.

Figure 5.6: Taxonomy of reasons to target specific design patterns

Source: Elaborated by the author.

Table 5.4 describes the reason founds and illustrates each reason with quotes from
the survey responses. Four responses refer to External aspects of design patterns,
whose reasons include: Oracle of design pattern instances available (R1) and Pop-
ularity of design pattern (R2), which is the the most frequent one. The multiple
mentions to R2 suggest that tool designers have tried to align their work with current in-
dustry trends. On the other hand, eight responses refer to Internal aspects of design
patterns, whose reasons include: Category of design pattern (R3), Complexity
of design pattern (R4), and Structure of design pattern (R5), which is the most

5.2. Results of the Survey with Tool Designers 58

frequent one. We infer from the high frequency of mentions to R5 that tool designers pri-
oritize the detection of design patterns whose internal structure is easier to characterize.

Table 5.4: Details of reasons to target specific design patterns

ID Description Sample quote
R1 Reference list of (typically validated)

instances of design pattern instances
detected on a software system

“we selected patterns that were docu-
mented in the selected subject systems”
– Tool designer TD6

R2 Frequency in which a design pattern is
discussed (by either researchers or prac-
titioners) or implemented in industry

“GoF patterns are well known and
widely used in software design” – Tool
designer TD4

R3 Category assigned to a design pattern
(e.g., based on its purpose of internal
structure)

“Because [the design patterns] are
representative of the main cate-
gories/families of design patterns” –
Tool designer TD1

R4 Inherent difficulty in understanding the
concept or implementation of a design
pattern

“[The design patterns] are of varying
complexities” – Tool designer TD1

R5 Internal composition of a design pat-
tern implemented in the source code of
a system

“because [these design patterns] are very
similar with regard to the structural
properties (classes, relations between
them)” – Tool designer TD5

Survey question D2: We asked tool designers whether they would implement
tools for detecting design patterns beyond the current scope of their DPD tools. Out of
the nine tool designers surveyed, four responded “Yes”, two responded “No”, and three did
not respond the question. Examples of design patterns mentioned by the tool designers
who responded affirmatively include Flyweight, Interpreter, and Iterator. We discuss
below the reasons reported by tool designers to target these specific design patterns in an
hypothetical future.

Figure 5.7 summarizes the reasons reported by the tool designers on that matter.
We found only two different reasons (blue rectangles with continuous borders). We labeled
the first reason as Completeness of the tool (R1) by inferring that tool designers aim
at completing the detection scope of the tool given a literature reference. R1 can be
illustrated by the tool designer TD9 who reported that their “original goal was to support
all 23 [design patterns of the GoF’s book]”. Such interest may be due to the prestige
that the mentioned book [37] has in the context of object-oriented programming. We
labeled the second reason as Practitioner’s demands (R2) as suggested by the interest
of designer TD5 in implementing tools for detecting “any pattern that is relevant to a
developer”.

5.2. Results of the Survey with Tool Designers 59

Figure 5.7: Taxonomy of reasons to support the detection of more design patterns

Source: Elaborated by the author.

5.2.2 Reasons to Support Specific Programming Languages

Survey question D3: Figure 5.8 depicts the reasons reported by tool designers
to target specific programming languages. We found five concrete reasons (blue rectangles
with continuous borders), which we grouped into two general reasons (white rectangles
with dashed borders): Aspects of the language and Other aspects. We annotated
each reason with its frequency, i.e., the number of participants (out of the nine tool
designers) who mentioned a reason.

Figure 5.8: Taxonomy of reasons to target specific programming languages

Source: Elaborated by the author.

Table 5.5 describes the reasons found and illustrates each reason with quotes from
the survey responses. Eight participants refer to Aspects of the language, whose
two reasons are: Abstraction level provided by the language (R1) and Language
popularity (R2). The high frequency of mentions to R2 suggests a certain effort from the
tool designers’ side to align their work with industry trends. Still, R1 plays an important
role in deciding for performing DPD on a specific language. On the other hand, four
participants refer to Other aspects, which include the following reasons: Availability
of resources (R3), Professional expertise (R4), and Research gap (R5). These
reasons suggest that convenience plays an essential role in the decision of tool designers.

5.2. Results of the Survey with Tool Designers 60

Table 5.5: Details of reasons to target specific programming languages

ID Description Sample quote
R1 Abstraction level provided by a pro-

gramming language to support the im-
plementation of software features

“[This language] provided the right level
of abstraction” – Tool designer TD1

R2 Frequency in which a programming lan-
guage is adopted by either researchers
or software developers

“[Language X] was the most popular
object-oriented programming language
at that time” – Tool designer TD2

R3 Availability of technologies compatible
with or designed for manipulating a
programming language

“because we had created [auxiliary tool
name], the tool we used as backend for
[our DPD tool]” – Tool designer TD5

R4 Practical experience with the use of a
programming language

“Because of my experience with [Lan-
guage X] use and [Language X] compil-
ers” – Tool designer TD5

R5 Research field yet to be addressed by
scientific research

“we were the first model to address this
research gap” – Tool designer TD4

Survey question D4: We asked tool designers whether they would implement
tools for detecting design patterns on systems implemented in programming languages
other than the languages already supported by their DPD tools. Out of the nine tool
designers surveyed, seven responded “Yes”, one responded “No”, and one did not respond
the question. Examples of programming languages mentioned by the tool designers who
responded affirmatively are C, C++, C#, and Python. These four examples are among
the five most popular languages (see TIOBE Index for December 2022).

Figure 5.9 summarizes the reasons reported by tool designers to target the afore-
mentioned specific languages in an hypothetical future. We found three concrete reasons
in total (blue rectangles with continuous borders). We labeled the first reason as Com-
piler related concerns (R1), which refers to the compilation environment available for
a specific language. This reason is illustrated by the mention to “any [...] language that
has an open source, reliable, well documented and understandable compiler” made by tool
designer TD5. We labeled the second reason as Language popularity (R2), which can
be illustrated by the mention of “any widely used language” also made by tool designer
TD5. The third reason was labeled as Practitioner’s demands (R3), which is illus-
trated by a mention of “whatever language [that] is being used by practitioners” from the
response of tool designer TD1. R2 and R3 reinforce our previous assumption of designers
being aware of industry trends.

5.2. Results of the Survey with Tool Designers 61

Figure 5.9: Taxonomy of reasons to support the detection in more languages

Source: Elaborated by the author.

5.2.3 Reported Contexts of Tool Usage

Survey question D5: Figure 5.10 summarizes the contexts reported by tool
designers in which their tools have been used. We found five concrete contexts (blue
rectangles with continuous borders). Four out of the five contexts were grouped into
two general contexts (white rectangles with dashed borders): Program analysis and
Source code changes. We annotated each context with its frequency; such frequency
is the number of participants (out of the nine tool designers) who reported a context. We
discuss below each context with sample quotes extracted from the survey responses.

Figure 5.10: Taxonomy of contexts in which tools have been used

Source: Elaborated by the author.

Table 5.6 describes and illustrates each context reported by tool designers. Five
responses refer to Program analysis, whose contexts were labeled as: Integration into
a code analysis infrastructure (C1) and Program comprehension (C2), the latter
being the most frequent context. Two responses refer to Source code changes, and
contexts include: Feature enhancement (C3) and Software reengineering (C4). C3

5.3. Results of the Survey with Tool Users 62

and C4 suggest that DPD tools have been used to assist developers in making design
decisions on their systems. Finally, two responses refer to Proof of concept (C5).

Table 5.6: Details of contexts in which tools have been used

ID Description Sample quote
C1 Integration of the DPD tool into

a larger code analysis infrastruc-
ture

“[A company] wanted to implement a search
engine [...] and the search engine would fetch
design pattern instances already implemented
in the company’s codebase [based on the re-
ports of our DPD tool]” – Tool designer TD6

C2 Process of understanding the in-
ternal code structure and execu-
tion of a software system

“[Our tool] is used to provide concrete in-
formation for developers and technical man-
agers about the usage of design patterns in
the implemented code” – Tool designer TD4

C3 Structural or functional improve-
ment of existing software features

“[Our tool has been used for] enhancing an
existing feature or code” – Tool designer TD3

C4 Reconstruction of an entire soft-
ware system aimed at improved
quality

“The tool has been used to re-engineer sys-
tems and applications” – Tool designer TD2

C5 Prototype designed to demon-
strate the feasibility of a concept

“We wanted to demonstrate the capability [of
our DPD tool to detect design patterns]” –
Tool designer TD1

5.3 Results of the Survey with Tool Users

This section reports the results of our survey with tool users. Section 5.3.1 presents
the contexts in which tool users would use a DPD tool. Section 5.3.2 discusses expected
benefits of using a tool. Section 5.3.3 discusses barriers that would prevent tool users
from using a tool. Lastly, Section 5.3.4 discusses why tool users believe that detecting
certain design pattern is worthwhile.

5.3.1 Potential Tool Use Contexts

Survey question U5: Figure 5.11 summarizes the responses of tool users regard-
ing contexts in which they would consider using a DPD tool. U5 is a closed question
and each tool user could report more than one context. Tool users were also allowed to

5.3. Results of the Survey with Tool Users 63

mention additional contexts in the “Other” field, but none of our survey participants did
that. Our 21 survey participants provided us with 44 responses in total. We discuss below
our main observations.

Figure 5.11: Contexts in which developers would consider using a DPD tool

Source: Elaborated by the author.

Regarding responses of the 17 junior developers, more than 70% of the partici-
pants reported that DPD tools may be useful while either adding new software features
(13 responses) or enhancing existing features (12 responses). Additionally, 53% of the
participants mentioned that DPD tools could help remove obsolete features, which is
aligned to the daily software development practices. Curiously, 35% of the participants
mentioned bug fixing as a context in which using a DPD could be useful. These results
are expected if we consider the common wisdom that well-structured code can facilitate
feature addition or enhancement [32, 53] and reduce bug-proneness [54]. Senior developers
also mentioned feature enhancement and bug fixing in their responses, which is in line
with the opinion of junior developers.

5.3.2 Expected Benefits of Using a DPD Tool

Survey question U6: Figure 5.12 summarizes the benefits expected by the tool
users from using a DPD tool. We found a total of ten concrete benefits (blue rectangles
with continuous borders), which are grouped into three general benefits (white rectangles
with dashed borders): Code structure, Program functioning, and Software devel-
opment. We annotated the benefits with two different frequencies: triangles represent
the frequency of senior developers who reported a specific benefit, while diamonds repre-
sent the frequency of junior developers who reported that benefit. We discuss below our
major findings followed by quotes from the survey responses.

5.3. Results of the Survey with Tool Users 64

Figure 5.12: Expected benefits of using a DPD tool

Source: Elaborated by the author.

Table 5.7 describes and exemplifies with quotes each expected benefit. Quotes
marked with an asterisk (*) refer to quotes that have been translated from Portuguese
to English. Six junior developers and one senior developer mentioned Code structure,
which is related to improving the internal source code structure. The concrete benefits
in this category are: Source code quality improvement (B1) and Software reuse
(B2). Additionally, three junior developers mentioned Program functioning, a category
of benefits associated with program functioning improvements. The concrete benefits in-
clude: Bug-related issues (B3) and Program efficiency improvement (B4). Finally,
eight junior developers and 3 senior developers mentioned benefits related to Software
development: Easier software maintenance (B5), Efficient software develop-
ment (B6), Facilitate troubleshooting (B7), Program comprehension (B8), Soft-
ware process optimization (B9), and Support to reasoning about DP adoption
(B10).

5.3.3 Barriers to the Use of DPD Tools

Survey question U7: Figure 5.13 summarizes the barriers mentioned by poten-
tial tool users as possible barriers to the adoption of DPD tools. We found a total of ten
concrete barriers (blue rectangles with continuous borders), which we grouped into three
general barriers: Development limitations, Tool limitations, and Tool usage limi-
tations. We annotated the barriers with two different frequencies: triangles represent the
frequency of senior developers who reported a specific barrier, while diamonds represent
the frequency of junior developers who reported that barrier. We discuss below our main
findings.

Table 5.8 provides descriptions and sample quotes for each barrier. Three junior

5.3. Results of the Survey with Tool Users 65

Table 5.7: Details of the expected benefits of using a DPD tool

ID Description Sample quote
B1 Internal quality improvement,

e.g., via source code cleaning
“[DPD tools may help] making the code base
cleaner for new features” – Junior developer
JD11

B2 Knowledge or source code reuse “[Using a DPD tool may help the] develop-
ment of similar applications”* – Senior de-
veloper SD4

B3 Dealing with software bugs, e.g.,
via prevention or fixing

“[Using a DPD tool may help] prevent bugs”
– Junior developer JD13

B4 Improved efficiency in terms of
program execution time

“[Using a DPD tool may lead to] increased
code velocity” – Junior developer JD15

B5 Facilitation of software mainte-
nance tasks

“A benefit would be an] easy-to-maintain
source code that other people can use”* – Ju-
nior developer JD3

B6 Improved efficiency in terms of
time spent to develop software

“[Using a DPD tool] saves time for the devel-
oper” – Junior developer JD4

B7 Facilitation of the monitoring and
fixing of failures, faults or defects

“[Using a DPD tool allows for] better and
more precise troubleshooting” – Junior devel-
oper JD6

B8 Process of understanding the in-
ternal structure and execution of
a system

“[Using a DPD tool] saves time for code un-
derstanding” – Junior developer JD1

B9 Adjust and improvement of the
software development processes

“[Using a DPD tool may assist] process opti-
mization”* – Senior developer SD2

B10 Process of reasoning about bene-
fits, drawbacks, and challenges in
adopting design patterns

“[Using a DPD tool may help to] identify [...]
which design pattern to use or if the current
one used is the most appropriate” – Junior
developer JD4

developers mentioned a general barrier we labeled as Development limitations, which
refers to barriers faced over the life cycle of a software system. The respective concrete
barriers are: Disposable software development (B1), Short development cycle
(B2), and Team disagreement to use the tool (B3). Six junior developers and 2
senior developers mentioned Tool limitations as a general barrier associated with either
technical or functional limitations of the DPD tool. The respective concrete barriers in-
clude: Cost-related issues (B4), Lack of tool documentation (B5), Low detection
accuracy (B6), and No benefit to program comprehension (B7). The occurrences
of B5 and B6 are red flags because, as our SLR and comparative study suggests (Chap-
ters 3 and 4), i) existing DPD tools are poorly documented and ii) their accuracy is often
low.

Finally, five junior developers and four senior developers mentioned Tool usage
limitations as a general barrier. This barrier refers to limitations that emerge while
using a DPD tool, and it includes: Difficulty to use the tool (B8), Inappropriate

5.3. Results of the Survey with Tool Users 66

Figure 5.13: Taxonomy of barriers to the use of DPD tools

Source: Elaborated by the author.

Table 5.8: Details of barriers to the use of DPD tools

ID Description Sample quote
B1 Development of disposable soft-

ware, e.g., proof of concept or
prototype

“[I would not use a DPD tool in] a [software]
project that [...] is disposable, e.g., a Mini-
mum Viable Product (MVP)”* – Junior de-
veloper JD3

B2 Tight time to deliver software
products

“[I would not use a DPD tool in] a [software]
project that must be quickly completed [...],
e.g., a Minimum Viable Product (MVP)”* –
Junior developer JD3

B3 Conflicting perceptions on the
usefulness of a tool

“[Using a DPD would depend on the] agree-
ment of the people involved in the [software]
project”* – Junior developer JD12

B4 Costs derived from the tool adop-
tion

“[I would not use DPD] tools that are heavy
[to run]”* – Senior developer SD2

B5 Poorly documented tool “[I would not use a DPD tool due to] lack of
documentation”* – Junior developer JD14

B6 Low precision and recall in the
detection of design pattern in-
stances

“[I would not use DPD tools in case I was]
not sure if the tools are good (i.e., high pre-
cision) for design pattern detection” – Junior
developer JD1

B7 Little or no perceived support to
understanding the internal struc-
ture or execution of a software
system

“If this tool prevents me from learning some-
how, then I would not use it” – Junior devel-
oper JD11

B8 Inherent difficulty of adopting a
tool

“[I would not use a DPD tool due to its] learn-
ing curve” – Junior developer JD16

B9 Development scenario in which
using the tool is inadequate or un-
necessary

“not being the proper scenario [would prevent
me from using a DPD tool]” – Junior devel-
oper JD13

B10 Working environment does not
accommodate the use of a DPD
tool

“incompatibility [of using a tool] with [the]
working environment [would prevent me from
using a DPD tool” – Senior developer SD3

5.3. Results of the Survey with Tool Users 67

tool use scenario (B9), and Incompatibility with working environment (B10).
The high concentration of mentions to B8 must be stressed because, in Chapter 4.1.2, we
report our own difficulty with configuring and running existing DPD tools. Such difficulty
should be definitely addressed by tool designers to promote the adoption of their tools.

5.3.4 Design Patterns Worth Detecting

Survey question U8: We asked potential tool users to list design patterns they
considering to be worth detecting via a DPD tool. Out of the nine survey participants,
only five participants reported one or more specific design patterns. Contrary to our
expectation, all design patterns pointed by the tool users are summarized in the GoF’s
book [37]: Observer was mentioned by three tool users; Composite, Decorator, Singleton,
Strategy, and Visitor were mentioned by two tool users each. This result surprised us
because we expected at least one mention of specific design patterns proposed for trend-
ing/more modern programming languages, e.g., JavaScript and Swift – which are among
the most used by our survey participants (Figure 5.1).

Figure 5.14 summarizes the reasons that potential tool users mentioned in their
responses for automating the detection (via DPD tool) of specific design patterns. We
found a total of six concrete reasons, which we depict with blue rectangles with contin-
uous borders. The white rectangle with dashed borders represents a general reason. We
annotated the reasons with two different frequencies: triangles represent the frequency of
senior developers who reported a specific reason, while diamonds represent the frequency
of junior developers who reported that reason. We discuss below our major findings.

Figure 5.14: Taxonomy of reasons why detecting specific patterns is worthwhile

Source: Elaborated by the author.

5.4. Study Implications 68

Table 5.9 describes and exemplifies with quotes each reported reason. Four concrete
reasons address different concerns and, therefore, were not grouped into general reasons:
Applicability to specific use scenarios (R1), Difficulty of manual detection (R2),
Frequent use (R3), and Potential threats to program execution (R4). Only one
survey participant reported each of these reasons. Additionally, Software maintenance
is the only general reason and it was mentioned by one junior developers and one senior
developer. This general reason covers two concrete reasons: Benefit to code cleaning
(R5) and Benefit to program comprehension (R6).

Table 5.9: Details of reasons why detecting specific patterns is worthwhile

ID Description Sample quote
R1 Implementing a design pattern

fits a specific development con-
text

“if it’s meaningful in the situation and the
context that I am [working on], then it’s
worth [detecting a design pattern through a
tool]” – Junior developer JD11

R2 Manually detecting a design pat-
tern is challenging if not unfeasi-
ble

“[These design patterns] are useful but may
be hard to [manually] identify” – Senior de-
veloper SD3

R3 A design pattern is frequently im-
plemented in a given system

“because I use [these design patterns] more
often”* – Junior developer JD3

R4 Implementing a design pattern
may harm the program execution

“[This design pattern] may cause problems in
larger programs due to the use of threads”* –
Junior developer JD12

R5 Implementing a design pattern fa-
vors code cleaning

“[These design patterns] contribute to a
cleaner code”* – Junior developer JD3

R6 Implementing a design pattern
helps understand the code struc-
ture and software execution

“[This design pattern] would facilitate the
comprehension of other developers’ code”* –
Senior developer SD2

5.4 Study Implications

Implication 1: Technical support is required to expand the coverage of existing
DPD tools – Our first survey revealed that tool designers strive to propose DPD tools that
can be perceived as useful in industry settings. Mentions to covering multiple categories
of design patterns (Figure 5.6), as well as the focus on popular programming languages
(Figure 5.8), support this claim. Still, survey responses also suggest an opportunistic
choice for design patterns to detect based on technical limitations. Examples of limi-
tations are the inherent complexity of detecting certain patterns and the availability of
technologies to manipulate source code implemented in a given language. It could be that

5.4. Study Implications 69

such lack of technical support is preventing tool designers from covering more patterns
and languages with their tools. Thus, we encourage that researchers and practitioners
join forces to address these technical limitations in future work.

Implication 2: Detection accuracy must be a priority while proposing DPD tools,
not the variety of detectable design patterns – Many responses to our first survey (Fig-
ure 5.6) explicitly mention the GoF’s book [37] as a reference to design patterns implemen-
tation. Thus, it was expected that tool designers would justify their interest in completing
their tools to detect as many GoF patterns as possible (Figure 5.7). However, responses
to the second survey stress that DPD is worthwhile, e.g., when a specific design pattern
is frequently implemented in their systems and difficult to manually detect (Figure 5.14).
Moreover, potential tool users mentioned that low detection accuracy may prevent them
from using a tool (Figure 5.13). This result is quite interesting because, as the compar-
ative study presented in Chapter 4 revealed, the accuracy of existing DPD tools is often
low or insufficient. We advocate that detection accuracy should be a priority, not the
variety of detectable design patterns, in the proposal of novel tools.

Implication 3: There may be a demand for DPD tools compatible with popular
programming languages to be addressed – Our first survey revealed that tool designers have
interest in supporting DPD on systems implemented in very popular programming lan-
guages such as C# and Python (Section 5.2.2). Curiously, the literature review presented
in Chapter 3 catalogs only three tools compatible with at least one of these languages,
e.g., Philippow et al. [55] for C++ systems. More critically, none of these tools were pub-
licly available for download during the execution of Chapter 4’s comparative study. Our
results in this chapter suggest that there may be an unmet demand for tools targeting
popular languages. We advocate for the proposal of novel tools aimed at addressing such
demand in industry.

Implication 4: The proposal of DPD tools should consider that DPD is only
part of a broader software development life cycle – Our first survey revealed that tool
designers are aware of their tools being used in program comprehension and integrated
with code analysis infrastructures (Figure 5.10). This finding meets the users’ perceptions
of tools as facilitators of program comprehension (Figure 5.12). However, our second
survey reveals other expected benefits of using a tool, e.g., facilitate bug fixes and the
addition or enhancement of software features (Table 5.7). This finding suggests that DPD
tools can be used with more complex intents in mind when compared to the pure program
comprehension. We encourage tool designers to propose their tools with this observation
in mind, so that DPD tools could be integrated with other tools, e.g., for bug fixing or
feature enhancement. This could improve the expected usefulness of DPD tools from the
viewpoint of tool users.

Implication 5: Documentation of DPD tools should be significantly improved for
the sake of tool usefulness – Our second survey revealed that the difficulty to use the

5.5. Threats to Validity 70

tool and its incompatibility with the working environment may prevent tool users from
adopting a DPD tool (Figure 5.13). This observation is critical if we consider that we as
experts had difficulty to configure and run some of the tools empirically assessed in Chap-
ter 4. Additionally, potential tool users mentioned that the lack of tool documentation
plays an important role in discarding a DPD tool. We also reported in our recent work
that existing DPD tools are poorly documented, which makes the experience of using a
DPD tool even more negative. Thus, we encourage tool designers to be more attentive to
the documentation of their DPD tools.

5.5 Threats to Validity

We discuss below threats to the validity of our study. For this purpose, we rely on
strict guidelines for experimentation in software engineering [82].

Construct validity is associated with the study planning and, especially, the
preparation of artifacts necessary to conduct the study. We carefully defined our study
goal and RQs (Section 5.1.1) based on multiple iterations of meetings with three re-
searchers. We then expected to avoid defining a weak goal, one that could not lead to
insightful findings on the design and usefulness of DPD tools. Additionally, we relied on
strict literature guidelines for conducting online surveys in software engineering [56]. We
did our best to propose short and simple questions, thereby avoiding misunderstanding
in responding the surveys. We polished our survey structure (Section 5.1.2) in multiple
discussion sessions with three researchers. None of the survey questions has changed once
we forwarded the surveys to participants.

Internal validity is related to the execution of our experimental procedures. To
recruit as many participants as possible to our first survey (Section 5.2), we used the full
list of authors of the 42 DPD tools found in our literature review from Chapter 3. Thus,
we expected to avoid selection biases regarding the participation of DPD tool designers
with specific viewpoints. We waited two months for responses so that tool designers could
comfortably answer all survey questions. Regarding our second survey (Section 5.3), we
opted to recruit tool users via broadcasting on WhatsApp groups, which are popular in
Brazil, and one Software Engineering class. We waited one month for responses, which
was long enough at least for the junior developers who are potential tool users.

Conclusion validity is associated with the data analysis procedures. As discussed
in Section 5.1.4, we relied on strict guidelines to analyze our open survey questions [17, 69].
Combined with our previous experience in analyzing quantitative and qualitative data [49,
50], the literature support was essential to guide the survey data analysis. Two researchers

5.6. Chapter Summary 71

had multiple meeting sessions to discuss disagreement and reach consensus. Thus, we
expected to reduce human biases in both code extraction and taxonomy creation. For the
closed questions, we simply computed descriptive statistics [82]. Another threat is related
to poor translation of some of the answers done by the researchers (from Portuguese to
English), and also possible incorrect use of the English language by the participants since
they are not native English speakers. We carefully translated and double-checked all of
the answers and translations where applicable while also taking the context of the answer
into consideration where applicable.

External validity is related to the potential generalization of our study findings.
Regarding our first survey, the tool designers of only nine out of the 42 DPD tools (21.4%)
responded to the survey (Section 5.1.3). Such response rate is reasonable if we consider
that: 26 tools were published more than ten years ago; several email addresses were invalid;
and some tool designers may have left academia, thereby losing interest in responding
surveys on their past academic work. Still, we acknowledge that such rate may prevent
us from generalizing our findings to all DPD tool designers.

Regarding the second survey, we managed to recruit 17 junior developers, but only
a few senior developers responded to our request via WhatsApp. It is worth mentioning
that, prior to recruiting survey participants via WhatsApp, we tried to email active con-
tributors of GitHub5 software projects. We emailed a total of 200 contributors and waited
2 months for survey responses. Despite our effort, none of the GitHub contributors par-
ticipated, which frustrated our goal of hearing them to assist the proposal of useful DPD
tools. We expect that other researchers can replicate our survey with a larger number of
participants for a richer, more comprehensive empirical knowledge.

5.6 Chapter Summary

In this chapter, we presented an empirical study aimed at capturing the perceptions
of tool designers and potential tool users on DPD tools. We carefully conducted two
online surveys based on strict literature guidelines [56]. Our first survey (Section 5.2)
targeted the designers of 42 DPD tools. It revealed different aspects of the rationale behind
the proposal of DPD tools to detect specific design patterns in specific programming
languages. Our second survey (Section 5.3) targeted both junior and senior developers
who are potential tool users. We computed descriptive statistics and relied on strict
guidelines [17, 69] for performing open coding and the generation of taxonomies.

5https://github.com/

https://github.com/

5.6. Chapter Summary 72

The survey results are complementary: both tool designers and tool users perceived
DPD tools as useful to program comprehension and assistance to software changes. De-
spite the best effort of tool designers, the existing DPD tools have some critical limitations,
e.g., lack of documentation and low detection accuracy, that tool users see as barriers to
the tool adoption (Section 5.3.3).

In the next chapter, we conclude this work by presenting the final considerations,
main contributions, study implications and future work.

73

Chapter 6

Conclusion

Design patterns are reusable solutions to common and recurring problems of software
design [37]. Understanding which and how design patterns occur in a system may assist
developers during maintenance and evolution activities [45]. However, detecting design
patterns is an important but challenging task in software development due to several
reasons, such as high complexity and the size of real-world systems. Thus, several tools [19,
26, 34, 64, 78] have been developed throughout the years to automate the design pattern
detection process. This dissertation presented three complementary studies aimed to
understand which are these design pattern detection tools (DPD), how they perform when
detecting design patterns, why these tools were developed for their specific contexts, and
how potential users perceive them.

In this chapter, we summarize our studies results in Section 6.1. We then present
our main contributions in Section 6.2. Section 6.3 presents the multiple implications of
each study presented. Lastly, Section 6.4 discusses future work.

6.1 Work Overview

The first study presented in this work (Chapter 3 was the systematic literature re-
view (SLR). Its purpose was to provide both researchers and practitioners a catalog of the
DPD tools published in the last 20 years presenting their main features, such as availabil-
ity for download, scope of design pattern detection, supported programming languages,
etc. This catalog might help developers when choosing the DPD tool that best suits their
context. Our SLR revealed 42 DPD tools published in the last 20 years. However, only 10
of them were available for download during our investigation. Altogether, the tools claim
to detect all 23 design patterns compiled by the Gang of Four’s book [37]. The frequency
of published tools remained stable over the years, thereby suggesting this research topic
has not yet reached saturation.

6.1. Work Overview 74

From the 42 DPD tools found, 68% are stand-alone. In addition, 69% of the tools
are compatible with Java systems. However, only 19% of the tools have some companion
documentation. Our results also showed that 69% are designed to perform DPD on Java
systems, support the detection of complex design patterns, such as Composite (67%) and
Observer (64%), and provide users with some sort of GUI other than command line (50%).
On the other hand, only a few tools (29%) are explicitly free to use and downloadable
(24%). Regarding the program analysis approaches, most of the tools (76%) rely on
static analysis to support DPD. Additionally, 76% of the tools rely on a single modeling
approach, mostly depending on the information of source code and its structure.

The second study was the comparison of four DPD tools in terms of precision,
recall, and agreement (Chapter 4. This information complemented the technical data
provided by our SLR when choosing a DPD tool, as the performance of the tool is also a
very important metric. Our results suggested that each tool could be applied to detecting
a particular subset of design patterns. FINDER showed sufficient accuracy for Compos-
ite, Decorator, Singleton, and Visitor. Still, future work is required to further support
practitioners interested in automating DPD in practice. For the six design patterns eval-
uated, the four DPD tools tend to disagree on the instances detected, meaning that their
output is not redundant. In other words, they detect distinct design pattern instances.
Documentation on how to install, execute, and use the tools is often scarce, which may
compromise the adoption of tools in practical settings.

Lastly, our third study presented two survey studies aimed at understanding the
design rationale behind the proposal of the tools and the expected usefulness of DPD
tools from the point of view of practitioners. We believe that the empirical results may
enable future tool designers to propose tools that are more aligned with the needs of the
practitioners and also instigate solutions for the technical difficulties that the designers
may encounter when developing their approaches.

Among our results, we found five different reasons for targeting specific design
patterns in the proposal of DPD tools. Most tool designers reported that internal aspects
of a design pattern (e.g., the way it is structured in the source code) favored its detection.
Additionally, popularity and abstraction level are key reasons to decide for detecting
design patterns in specific programming languages. Tool designers showed interest in
proposing tools for a wider scope of design patterns and programming languages. However,
this would depend on the availability of enabling technologies (e.g., friendly compilers)
besides the practitioner’s demands. This finding could inspire engineers in filling gaps
in terms of these technologies. Tool designers have knowledge on their DPD tools being
used for program analysis tasks, especially program comprehension. This finding meets
the expected benefits of using DPD tools reported by the potential tool users.

According to the tool users, other benefits include software quality improvement
(e.g., via code organization and cleaning) and more. Potential tool users claim that tool

6.2. Main Contributions 75

limitations (e.g., low accuracy and lack of documentation), as well as the inherent difficulty
to use the tool, are key barriers to the DPD tool adoption. This finding is aligned to the
barriers to adopting other types of automated tools discussed in previous work [2, 44].

6.2 Main Contributions

Our main contributions from this work include:

1. an extensive catalog of 42 DPD tools published in the last two decades, each char-
acterized by the supported design problems, programming languages, etc.;

2. a quantitative comparison of four state-of-the-art tools based on widely used mea-
sures, i.e. precision, recall, F-measure, and agreement;

3. a list with manually validated instances of six design patterns detected from two
Java software systems often investigated in studies on DPD tools [26, 21, 57], i.e.
JHotDraw and JRefactory; and

4. replication packages for studies 1 and 2 1, and study 3 2;

5. empirical evidence about the design rationale behind the proposal of the tools;

6. empirical evidence regarding the expected usefulness from the point of view of prac-
titioners;

Contribution 1 is our solution for Research Problem 1. By providing a catalog with
the DPD tools published in the last two decades with their respective attributes, both
researchers and practitioners can make use of it in order to find a tool that suits their
needs or to address gaps in the literature.

Contribution 2 addresses the Research Problem 2. It provides information related
to the performance of the tools in terms of precision, recall, F-measure and agreement
which can also be used by practitioners in order to choose one of the available tools.
Meanwhile, researchers may use this information as evidence that more precise approaches
are needed.

Contributions 3 and 4 can be used for extending this study in the future. By
providing the manually validated instances of design patterns, researchers can make use
of this data set for benchmarking their tools for example. Furthermore, the first replication

1https://doi.org/10.5281/zenodo.5553470
2https://doi.org/10.5281/zenodo.7465098

https://doi.org/10.5281/zenodo.5553470
https://doi.org/10.5281/zenodo.7465098

6.3. Study Implications 76

package, other than allowing replicability itself, also enables the extension of our study
for tools that will be developed and also for other design patterns or systems.

Contribution 5 provides the lacking information introduced in Research Problem 3,
which is the output of the first survey of Study 3. Similarly, contribution 6 provides the
lacking information introduced in Research Problem 3, which was obtained from the second
survey of Study 3. Moreover, the second replication package described in contribution 4
enables the extension of our study by aggregating new responses from both tool designers
and potential tool users.

6.3 Study Implications

The results presented in this work have multiple implications for both practitioners
and researchers interested in DPD. Dozens of DPD tools have been proposed in the last
two decades and, still, the existing tools provide very limited support and considerably
unreliable output. On the one hand, practitioners must be aware of possible limitations
of the existing tools while picking tools that match their needs. On the other hand, we
strongly encourage researchers and tool builders to propose novel tools or improve the
existing ones.

Furthermore, with the survey study we noticed that technical support is required to
expand the coverage of existing DPD tools. Although tool designers strive to propose DPD
tools that can be perceived as useful in industry settings, survey responses also suggest
an opportunistic choice for design patterns to detect based on technical limitations. It
could be that such lack of technical support is preventing tool designers from covering
more patterns and languages with their tools.

Lastly, Documentation of DPD tools should be significantly improved for the sake
of tool usefulness. Potential tool users mentioned that the lack of tool documentation
plays an important role in discarding a DPD tool. We also reported in Study 1 that
existing DPD tools are poorly documented, which makes the experience of using a DPD
tool even more negative. Thus, we encourage tool designers to be more attentive to the
documentation of their DPD tools.

6.4. Future Work 77

6.4 Future Work

As future work, we propose to extend our comparison study protocol to more design
patterns giving a more complete landscape of their detection prowess. By obtaining the
performance metrics for other design patterns, we would be able to provide more precise
recommendations on which DPD tool performs better when detecting each design pattern.
We would also like to propose extending our comparison protocol to more tools. Since we
successfully managed to contact other tool designers during our survey study, we believe
it is also possible to obtain tools that were unavailable at the time of our study. We
also want to extend the results of our survey with potential tool users by evaluating the
correlation between each demographic attribute extracted and the taxonomies obtained.

Moreover, another topic to be explored as future work would be to conduct an
experiment to evaluate the perception of users when utilizing DPD tools. Our second
survey investigated the possible advantages and drawbacks of using DPD tools according
to the participants. However, the information we obtained was more abstract and higher
level. We believe that displaying a concrete tool during a practical session may provide
more meaningful insights into what functionality the tool should provide. Furthermore, we
would conduct interviews instead of surveys in order to obtain more concrete responses.

78

Bibliography

[1] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele
Bavota, Michele Lanza, and David C Shepherd. Software documentation: The practi-
tioners’ perspective. In Proceedings of the 42nd International Conference on Software
Engineering (ICSE), pages 590–601, 2020.

[2] Khalid Alkharabsheh, Yania Crespo, Esperanza Manso, and José Taboada. Software
design smell detection: A systematic mapping study. Software Quality Journal (SQJ),
27(3):1069–1148, 2019.

[3] Awny Alnusair and Tian Zhao. Towards a model-driven approach for reverse engi-
neering design patterns. In Proceedings of the 2nd Workshop on Transforming and
Weaving Ontologies in Model Driven Engineering (TWOMDE), co-located with the
12nd International Conference on Model Driven Engineering Languages and Systems
(MoDELS), pages 1–15, 2009.

[4] Apostolos Ampatzoglou, Georgia Frantzeskou, and Ioannis Stamelos. A methodology
to assess the impact of design patterns on software quality. Information and Software
Technology (IST), 54(4):331–346, 2012.

[5] Giuliano Antoniol, Gerardo Casazza, Massimiliano Di Penta, and Roberto Fiutem.
Object-oriented design patterns recovery. Journal of Systems and Software (JSS),
59(2):181–196, 2001.

[6] Francesca Arcelli, Davide Franzosi, and Claudia Raibulet. .NET reverse engineering
with MARPLE. In Proceedings of the 5th International Conference on Software
Engineering Advances (ICSEA), pages 227–231, 2010.

[7] Francesca Arcelli, Fabrizio Perin, Claudia Raibulet, and Stefano Ravani. JADEPT:
Dynamic analysis for behavioral design pattern detection. In Proceedings of the 4th
International Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE), pages 95–106, 2009.

[8] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
Pearson, 1st edition, 1999.

[9] Thoms Ball. The concept of dynamic analysis. ACM SIGSOFT Software Engineering
Notes, 24(6):216–234, 1999.

Bibliography 79

[10] Rafael Barbudo, Aurora Ramírez, Francisco Servant, and José Raúl Romero. GEML:
A grammar-based evolutionary machine learning approach for design-pattern detec-
tion. Journal of Systems and Software (JSS), 175:110919, 2021.

[11] Victor Basili and Dieter Rombach. The TAME project: Towards improvement-
oriented software environments. IEEE Transactions on Software Engineering (TSE),
14(6):758–773, 1988.

[12] Mario Luca Bernardi, Marta Cimitile, and Giuseppe Di Lucca. Design pattern detec-
tion using a DSL-driven graph matching approach. Journal of Software: Evolution
and Process (S:E&P), 26(12):1233–1266, 2014.

[13] Dirk Beyer, Andreas Noack, and Claus Lewerentz. Simple and efficient relational
querying of software structures. In Proceedings of the 10th Working Conference on
Reverse Engineering (WCRE), pages 216–225, 2003.

[14] Alexander Binun and Günter Kniesel. DPJF: Design pattern detection with high
accuracy. In Proceedings of the 16th European Conference on Software Maintenance
and Reengineering (CSMR), pages 245–254, 2012.

[15] Alex Blewitt, Alan Bundy, and Ian Stark. Automatic verification of Java design
patterns. In Proceedings of the 16th International Conference on Automated Software
Engineering (ASE), pages 324–327, 2001.

[16] Daniel Cruz, Eduardo Figueiredo, and Jabier Martinez. A literature review and
comparison of three feature location techniques using argouml-spl. In 13th VaMos,
pages 1–10, 2019.

[17] Daniela Cruzes and Tore Dyba. Recommended steps for thematic synthesis in soft-
ware engineering. In Proceedings of the 5th International Symposium on Empirical
Software Engineering and Measurement (ESEM), pages 275–284, 2011.

[18] Haneen Dabain, Ayesha Manzer, and Vassilios Tzerpos. Design pattern detection
using FINDER. In Proceedings of the 30th Symposium on Applied Computing (SAC),
pages 1586–1593, 2015.

[19] Andrea De Lucia, Vincenzo Deufemia, Carmine Gravino, and Michele Risi. An
Eclipse plug-in for the detection of design pattern instances through static and dy-
namic analysis. In Proceedings of the 26th International Conference on Software
Maintenance (ICSM), pages 1–6, 2010.

[20] Andrea De Lucia, Vincenzo Deufemia, Carmine Gravino, and Michele Risi. Improving
behavioral design pattern detection through model checking. In Proceedings of the

Bibliography 80

14th European Conference on Software Maintenance and Reengineering (CSMR),
pages 176–185, 2010.

[21] Andrea De Lucia, Vincenzo Deufemia, Carmine Gravino, and Michele Risi. Detecting
the behavior of design patterns through model checking and dynamic analysis. ACM
Transactions on Software Engineering and Methodology (TOSEM), 26(4):1–41, 2018.

[22] David Devecsery, Peter Chen, Jason Flinn, and Satish Narayanasamy. Optimistic
hybrid analysis: Accelerating dynamic analysis through predicated static analysis.
In Proceedings of the 23rd International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 348–362, 2018.

[23] Jens Dietrich and Chris Elgar. Towards a web of patterns. Journal of Web Semantics
(JoWS), 5(2):108–116, 2007.

[24] Michal Dobiš and L’ubomír Majtás. Mining design patterns from existing projects
using static and run-time analysis. In Proceedings of the 3rd Central and East Eu-
ropean Conference on Software Engineering Techniques (CEE-SET), pages 62–75,
2008.

[25] Jing Dong, Dushyant Lad, and Yajing Zhao. DP-Miner: Design pattern discovery
using matrix. In Proceedings of the 14th International Conference and Workshops on
the Engineering of Computer-Based Systems (ECBS), pages 371–380, 2007.

[26] Jing Dong, Yongtao Sun, and Yajing Zhao. Design pattern detection by template
matching. In Proceedings of the 23rd Symposium on Applied Computing (SAC), pages
765–769, 2008.

[27] Jing Dong, Yajing Zhao, and Tu Peng. A review of design pattern mining tech-
niques. International Journal of Software Engineering and Knowledge Engineering
(IJSEKE), 19(6):823–855, 2009.

[28] Adriano Lages dos Santos, Maurício RA Souza, Marcela Dayrell, and Eduardo
Figueiredo. A systematic mapping study on game elements and serious games for
learning programming. In 10th CSEDU, pages 328–356, 2018.

[29] Tore Dyba, Torgeir Dingsoyr, and Geir Hanssen. Applying systematic reviews to
diverse study types: An experience report. In Proceedings of the 1st International
Symposium on Empirical Software Engineering and Measurement (ESEM), pages
225–234, 2007.

[30] Maged Elaasar, Lionel Briand, and Yvan Labiche. VPML: An approach to detect
design patterns of MOF-based modeling languages. Software and Systems Modeling
(SoSyM), 14(2):735–764, 2015.

Bibliography 81

[31] Félix Agustín Espinoza, Gustavo Esquer, and Joel Cansino. Automatic design pat-
terns identification of C++ programs. In Proceedings of the 1st Eurasian Confer-
ence on Information and Communication Technology (EurAsia ICT), pages 816–823,
2002.

[32] Eduardo Fernandes. On the relation between refactoring and critical internal at-
tributes when evolving software features. PhD thesis, Informatics Department, Pon-
tifical Catholic University of Rio de Janeiro, 2021. DOI: https://doi.org/10.

17771/PUCRio.acad.53129.

[33] Eduardo Fernandes, Johnatan Oliveira, Gustavo Vale, Thanis Paiva, and Eduardo
Figueiredo. A review-based comparative study of bad smell detection tools. In
Proceedings of the 20th International Conference on Evaluation and Assessment in
Software Engineering (EASE), pages 18:1–18:12, 2016.

[34] Francesca Fontana, Andrea Caracciolo, and Marco Zanoni. DPB: A benchmark for
design pattern detection tools. In Proceedings of the 16th European Conference on
Software Maintenance and Reengineering (ICSMR), pages 235–244, 2012.

[35] Francesca Arcelli Fontana and Marco Zanoni. A tool for design pattern detection and
software architecture reconstruction. Information sciences, 181(7):1306–1324, 2011.

[36] Andrew Forward and Timothy Lethbridge. The relevance of software documentation,
tools and technologies: A survey. In Proceedings of the 2nd Symposium on Document
Engineering (DocEng), pages 26–33, 2002.

[37] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley Professional, 1st
edition, 1995.

[38] Kilem Gwet. Handbook of inter-rater reliability: The definitive guide to measuring
the extent of agreement among raters. Advanced Analytics, 4th edition, 2014.

[39] Dirk Heuzeroth, Thomas Holl, Gustav Hogstrom, and Welf Lowe. Automatic design
pattern detection. In Proceedings of the 11th International Workshop on Program
Comprehension (IWPC), pages 94–103, 2003.

[40] Dirk Heuzeroth, Stefan Mandel, and Welf Lowe. Generating design pattern detectors
from pattern specifications. In Proceedings of the 18th International Conference on
Automated Software Engineering (ASE), pages 245–248, 2003.

[41] Siw Hove and Bente Anda. Experiences from conducting semi-structured interviews
in empirical software engineering research. In Proceedings of the 11th International
Software Metrics Symposium (METRICS), pages 1–10, 2005.

https://doi.org/10.17771/PUCRio.acad.53129
https://doi.org/10.17771/PUCRio.acad.53129

Bibliography 82

[42] Heyuan Huang, Shensheng Zhang, Jian Cao, and Yonghong Duan. A practical pat-
tern recovery approach based on both structural and behavioral analysis. Journal of
Systems and Software (JSS), 75(1-2):69–87, 2005.

[43] Bernard Jansen. The graphical user interface. ACM SIGCHI Bulletin, 30(2):22–26,
1998.

[44] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why
don’t software developers use static analysis tools to find bugs? In Proceedings of
the 35th International Conference on Software Engineering (ICSE), pages 672–681,
2013.

[45] Jongwook Kim, Don Batory, Danny Dig, and Maider Azanza. Improving refactor-
ing speed by 10x. In Proceedings of the 38th International Conference on Software
Engineering (ICSE), pages 1145–1156, 2016.

[46] Barbara Kitchenham and Stuart Charters. Guidelines for performing systematic liter-
ature reviews in software engineering. Technical report, Version 2.3. EBSE Technical
Report. EBSE-2007-01, 2007.

[47] Grischa Liebel, Omar Badreddin, and Rogardt Heldal. Model driven software en-
gineering in education: A multi-case study on perception of tools and UML. In
Proceedings of the 30th Conference on Software Engineering Education and Training
(CSEE&T), pages 124–133, 2017.

[48] Naouel Moha and Yann-Gaël Guéhéneuc. Ptidej and DECOR: Identification of design
patterns and design defects. In Companion Proceedings of the 22nd Conference on
Object-Oriented Programming Systems and Applications (OOPSLA), pages 868–869,
2007.

[49] Romulo Nascimento, Eduardo Figueiredo, and Andre Hora. JavaScript API depre-
cation landscape: A survey and mining study. IEEE Software, 39(3):96–105, 2021.

[50] Edson Oliveira, Eduardo Fernandes, Igor Steinmacher, Marco Cristo, Tayana Conte,
and Alessandro Garcia. Code and commit metrics of developer productivity: A study
on team leaders perceptions. Empirical Software Engineering (EMSE), 25(4):2519–
2549, 2020.

[51] Murat Oruc, Fuat Akal, and Hayri Sever. Detecting design patterns in object-oriented
design models by using a graph mining approach. In Proceedings of the 4th Interna-
tional Conference in Software Engineering Research and Innovation (CONISOFT),
pages 115–121, 2016.

Bibliography 83

[52] Jukka Paakki, Anssi Karhinen, Juha Gustafsson, Lilli Nenonen, and A Inkeri
Verkamo. Software metrics by architectural pattern mining. In Proceedings of the
International Conference on Software: Theory and Practice (ICS), co-located with
the 16th IFIP World Computer Congress (WCC), pages 325–332, 2000.

[53] Matheus Paixao, Jens Krinke, DongGyun Han, Chaiyong Ragkhitwetsagul, and Mark
Harman. The impact of code review on architectural changes. IEEE Transactions
on Software Engineering (TSE), 47(5):1041–1059, 2019.

[54] Fabio Palomba, Marco Zanoni, Francesca Fontana, Andrea De Lucia, and Rocco
Oliveto. Smells like teen spirit: Improving bug prediction performance using the
intensity of code smells. In Proceedings of the 32nd International Conference on
Software Maintenance and Evolution (ICSME), pages 244–255, 2016.

[55] Ilka Philippow, Detlef Streitferdt, Matthias Riebisch, and Sebastian Naumann. An
approach for reverse engineering of design patterns. Software and Systems Modeling
(SoSyM), 4(1):55–70, 2005.

[56] Teade Punter, Marcus Ciolkowski, Bernd Freimut, and Isabel John. Conducting
on-line surveys in software engineering. In Proceedings of the 2nd International Sym-
posium on Empirical Software Engineering (ISESE), pages 80–88, 2003.

[57] Ghulam Rasool and Patrick Mäder. Flexible design pattern detection based on feature
types. In Proceedings of the 26th International Conference on Automated Software
Engineering (ASE), pages 243–252, 2011.

[58] Ghulam Rasool and Patrick Mäder. A customizable approach to design patterns
recognition based on feature types. Arabian Journal for Science and Engineering
(AJSE), 39(12):8851–8873, 2014.

[59] Ghulam Rasool, Patrick Maeder, and Ilka Philippow. Evaluation of design pattern
recovery tools. Procedia Computer Science, 3:813–819, 2011.

[60] Maria Riaz, Travis Breaux, and Laurie Williams. How have we evaluated software
pattern application? A systematic mapping study of research design practices. In-
formation and Software Technology (IST), 65:14–38, 2015.

[61] Diaeddin Rimawi and Samer Zein. A model based approach for android design
patterns detection. In Proceedings of the 3rd International Symposium on Multidis-
ciplinary Studies and Innovative Technologies (ISMSIT), pages 1–10, 2019.

[62] Ashley Robinson and Christopher Bates. APRT: Another Pattern Recognition Tool.
Journal on Computing (JoC), 5(2):46–52, 2017.

Bibliography 84

[63] Kamran Sartipi and Lei Hu. Behavior-driven design pattern recovery. In Proceed-
ings of the 12th International Conference on Software Engineering and Applications
(SEA), pages 179–185, 2008.

[64] Nija Shi and Ronald Olsson. Reverse engineering of design patterns from Java source
code. In Proceedings of the 21st International Conference on Automated Software
Engineering (ASE), pages 123–134, 2006.

[65] Jyoti Singh, Sripriya Roy Chowdhuri, Gosala Bethany, and Manjari Gupta. Detecting
design patterns: a hybrid approach based on graph matching and static analysis. Inf.
Technol. Manag., pages 1–12, 2021.

[66] Jason Smith and David Stotts. SPQR: Flexible automated design pattern extraction
from source code. In Proceedings of the 18th International Conference on Automated
Software Engineering (ASE), pages 215–224, 2003.

[67] Maurício RA Souza, Lucas Veado, Renata Teles Moreira, Eduardo Figueiredo, and
Heitor Costa. A systematic mapping study on game-related methods for software
engineering education. Inf. Softw. Technol., 95:201–218, 2018.

[68] Krzysztof Stencel and Patrycja Wegrzynowicz. Detection of diverse design pattern
variants. In Proceedings of the 15th Asia-Pacific Software Engineering Conference
(APSEC), pages 25–32, 2008.

[69] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. Grounded theory in software
engineering research: A critical review and guidelines. In Proceedings of the 38th
International Conference on Software Engineering (ICSE), pages 120–131, 2016.

[70] Abdel Aziz Taha and Allan Hanbury. Metrics for evaluating 3d medical image seg-
mentation: analysis, selection, and tool. BMC medical imaging, 15(1):1–28, 2015.

[71] Cleiton Silva Tavares, Amanda Santana, Eduardo Figueiredo, and Mariza A. S.
Bigonha. Revisiting the bad smell and refactoring relationship: A systematic lit-
erature review. In CIbSE, pages 434–447, 2020.

[72] Dave Thomas. UML – Unified or Universal Modeling Language? Journal of Object
Technology (JOT), 2(1):7–12, 2003.

[73] Malisa Thongrak and Wiwat Vatanawood. Detection of design pattern in class dia-
gram using ontology. In Proceedings of the 18th International Computer Science and
Engineering Conference (ICSEC), pages 97–102, 2014.

[74] Nikolaos Tsantalis, Alexander Chatzigeorgiou, George Stephanides, and Spyros
Halkidis. Design pattern detection using similarity scoring. IEEE Transactions on
Software Engineering (TSE), 32(11):896–909, 2006.

Bibliography 85

[75] Ed van Doorn, Sylvia Stuurman, and Marko van Eekelen. Static detection of design
patterns in class diagrams. In Proceedings of the 8th Computer Science Education
Research Conference (CSERC), pages 79–88, 2019.

[76] Marek Vokác. An efficient tool for recovering design patterns from C++ code. Journal
of Object Technology (JOT), 5(1):139–157, 2006.

[77] Markus Von Detten, Matthias Meyer, and Dietrich Travkin. Reverse engineering
with the Reclipse tool suite. In Companion Proceedings of the 32nd International
Conference on Software Engineering (ICSE), pages 299–300, 2010.

[78] Wei Wang and Vassilios Tzerpos. Design pattern detection in Eiffel systems. In
Proceedings of the 12th Working Conference on Reverse Engineering (WCRE), pages
1–10, 2005.

[79] Peter Wendorff. Assessment of design patterns during software reengineering: Lessons
learned from a large commercial project. In Proceedings Fifth European Conference
on Software Maintenance and Reengineering, pages 77–84. IEEE, 2001.

[80] Jim Witschey, Olga Zielinska, Allaire Welk, Emerson Murphy-Hill, Chris Mayhorn,
and Thomas Zimmermann. Quantifying developers’ adoption of security tools. In
Proceedings of the 10th Joint Meeting on Foundations of Software Engineering (FSE),
pages 260–271, 2015.

[81] Claes Wohlin. Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering (EASE), pages 1–10, 2014.

[82] Claes Wohlin, Per Runeson, Martin Höst, Magnus Ohlsson, Björn Regnell, and An-
ders Wesslén. Experimentation in Software Engineering. Springer Science & Business
Media, USA, 1st edition, 2012.

[83] Renhao Xiong, David Lo, and Bixin Li. Distinguishing similar design pattern in-
stances through temporal behavior analysis. In Proceedings of the 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages 296–
307, 2020.

[84] Hadis Yarahmadi and Seyed Hasheminejad. Design pattern detection approaches: A
systematic review of the literature. Artificial Intelligence Review (AIR), 53(8):5789–
5846, 2020.

[85] Stephen Yau and Jeffery Tsai. A survey of software design techniques. IEEE Trans-
actions on Software Engineering (TSE), SE-12(6):713–721, 1986.

Bibliography 86

[86] Marco Zanoni, Francesca Fontana, and Fabio Stella. On applying machine learning
techniques for design pattern detection. Journal of Systems and Software (JSS),
103:102–117, 2015.

[87] Zhixiang Zhang and Qinghua Li. Automated detection of design patterns. In Proceed-
ings of the 2nd International Workshop on Grid and Cooperative Computing (GCC),
pages 694–697, 2003.

	Introduction
	Problem Statement
	Research Method
	Results and Contributions
	Publications
	Dissertation Outline

	Background and Related Work
	Design Patterns
	Design Pattern Detection Tools
	Accuracy Metrics and Agreement
	Existing Literature Reviews on DPD Tools
	Closely Related Survey Studies
	Chapter Summary

	Literature Review on DPD Tools
	Study Protocol
	Goal and Research Questions
	Search for Primary Studies
	Filtering of Primary Studies
	Data Extraction from Primary Studies

	Results and Discussions
	Publication Landscape (RQ1)
	Existing DPD Tools (RQ2.1)
	Main Features of DPD Tools (RQ2.2)
	Detection Approaches behind the DPD Tools (RQ2.3)

	Threats to Validity
	Chapter Summary

	Comparative Study of DPD Tools
	Study Protocol
	Goal and Research Questions
	Selection of Tools
	Selection of Design Patterns and Software Systems
	Validation of Design Pattern Instances
	Computation of Accuracy Metrics

	Tool Comparison Results
	Threats to Validity
	Chapter Summary

	Survey Study on DPD Tools
	Study Design
	Goal and Research Questions
	Survey Structure
	Participant Characterization
	Data Analysis Procedures

	Results of the Survey with Tool Designers
	Reasons to Detect Specific Design Patterns
	Reasons to Support Specific Programming Languages
	Reported Contexts of Tool Usage

	Results of the Survey with Tool Users
	Potential Tool Use Contexts
	Expected Benefits of Using a DPD Tool
	Barriers to the Use of DPD Tools
	Design Patterns Worth Detecting

	Study Implications
	Threats to Validity
	Chapter Summary

	Conclusion
	Work Overview
	Main Contributions
	Study Implications
	Future Work

	Bibliography

