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Resumo

Segmentação Semântica é uma tarefa clássica de visão computacional que tem múltiplas
aplicações em diversas áreas, desde de segmentação de órgãos para estudos clínicos por
imagem, contagem de objetos em linha de produção, até a estimativa de tamanho de áreas
de desmatamento. Entretanto, o tipo de rotulação de dados necessária para os métodos
atuais resolverem o problema é laboriosa de se produzir, uma vez que é necessário deter-
minar os rótulos de todos os pixels da imagem. Isso costuma aumentar o custo (humano
e/ou monetário) de construção de novos conjuntos de dados. Duas formas possíveis de
se reduzir esse custo são: 1) diminuindo o número de imagens anotadas; 2) usando um
formato de anotação mais simples/esparsa. Porém, os métodos comuns e mais atuais, de
deep learning, para segmentação semântica não funcionam bem usando uma, ou duas,
dessas soluções. Neste trabalho propomos dois métodos de meta learning para segmen-
tação semântica em cenários few-shot com rotulação esparsa. Essas abordagens foram
baseadas em dois métodos existentes para classificação: Model-Agnostic Meta-Learning
(MAML) e Prototypical Networks. As nossas abordagens foram testadas em diversos
cenários da área médica e sensoriamento remoto, que normalmente tem uma limitação de
aquisição de dados, e obtiveram resultados competitivos em diferentes tarefas.

Palavras-chave: Computação, Visão Computacional, Aprendizado de Máquina, Apren-
dizado Profundo, Meta-Aprendizado.



Abstract

Semantic Segmentation is a classic task in Computer Vision that has multiple applications
in many areas, from organ segmentation for clinical image studies, or counting objects
in production lines, to estimating deforestation areas sizes. However, the type of data
labeling required for actual methods to solve this problem is laborious to produce, since
one has to determine the label for all pixels of an image. This usually increases the cost
(human and/or monetary) to produce new datasets. Two possible ways to reduce this
cost are: 1) reducing the number of labeled samples; 2) using simpler/sparse types of an-
notation. Despite that, current and usual deep learning based methods for segmentation
tend to perform poorly when using one, or two, of these solutions. In this work, we pro-
pose two meta learning methods to the few-shot semantic segmentation task with sparse
annotations. These two approaches are based on two existing methods for classification:
Model-Agnostic Meta-Learning (MAML) and Prototypical Networks. Our methods were
tested in different scenarios in the medical and remote sensing areas, which usually have
limited data access, and obtained competitive results in different tasks.

Keywords: Computing, Computer Vision, Machine Learning, Deep Learning, Meta
Learning.
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Chapter 1

Introduction

The semantic segmentation problem consists of defining regions in an image that belongs
to the same object class, thus producing fine boundaries to objects in that image. That
is, given an image, assign to every pixel a label that represents the object which the pixel
belongs to (see Figure 1.1, for an example). The semantic segmentation task have been
studied for a long time and has appeared in works as early as 1978 [Ohta et al., 1978].

cat

box

background

Figure 1.1: Example of semantic segmentation. The image of the cat in the left is seg-
mented, creating 3 semantic groups: cat, box, and background.

This task appears in different scenarios. In medicine, there are several objectives
that use semantic segmentation, and some of them include: study of anatomical structures
[Sharma et al., 2008; Tesař et al., 2008]; identify regions of interest, i.e., tumors, lesions,
etc. [Moon et al., 2002; Prasad et al., 2008]; measure tissue volume to analyze a tumor
growth [Pham et al., 1997]; and other applications. Another scenario that have many
segmentation applications is remote sensing. Common problems that use semantic seg-
mentation include: land use cover [Lobo, 1997; Huang et al., 2002; Lizarazo and Barros,
2010; Montoya-Zegarra et al., 2015; Kampffmeyer et al., 2016; Kaiser et al., 2017]; environ-
mental disasters [Kataoka et al., 2016; Lopez-Fuentes et al., 2017]; and others [Nogueira
et al., 2015; Audebert et al., 2017; Cheng et al., 2017]. Some works have tackled semantic
segmentation in the video domain, for example [Shelhamer et al., 2016; Caelles et al.,
2017]. Other works, such as [Paszke et al., 2016; Treml et al., 2016], focus on reducing
the inference time required to segment the images. These optimizations can lead up to
apply this models in embarked systems, such as autonomous driving cars.
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Over the years, different works investigated the problem of semantic segmentation,
and in the last few years the state-of-the-art have been dominated by Deep Learning (DL)
methods. The most prominent of these methods is the Convolutional Neural Networks
(CNNs) firstly proposed by LeCun et al. [1990], and their subsequent modifications pro-
posed by different authors. In [Krizhevsky et al., 2012], the authors propose a CNN with
some minor modifications. The use of Graphical Processing Units (GPUs) allowed the
training of a large complex model (for the time), which achieved one of the best results in
ILSVRC-20101 contest reaching a milestone in image classification. This result affected
the Computer Vision area as a whole, and in conjunction with the crescent advances
in hardware, rapidly made deep learning models the state-of-the-art in the subsequently
years.

Although deep learning models proving to be the most apt to many computer
vision problems, these models bring their own issues, especially during training. Machine
Learning (ML) models require data to be optimized, and, in general, with more data,
smaller errors are obtained when testing the models. However, deep learning models,
which are usually larger than standard ML, can suffer from small amounts of data in
training. There are two common problems that appear in such scenarios: underfitting
and overfitting [Goodfellow et al., 2016, Chapter 5]. The underfitting occurs when the
small amount of data are not sufficient to provide a low error rate in training, for example,
because the model could not learn key structures of the input data. Meanwhile, overfitting
happens when the model performs poorly on the test set, while having great performance
in the training set. Given the large capacity [Goodfellow et al., 2016, Chapter 5] of deep
learning models, they can practically memorize the small sample of training, and then
not generalize to the test samples.

The data used to train ML models can be raw observations like images, audio
records, text, etc., or they can include labels to the data points. These labels are specific
for the task, for example, in classification one needs the classes in each data point. When
the model is trained solely with labeled data it is called Supervised Learning, in other hand,
when no labels are provided it is named Unsupervised Learning ; The Semi-supervised
scenario is when one uses both labeled and unlabeled data for training. For semantic
segmentation, the labels consist of an annotation with the real class for all the pixels
in that image (we call this annotation, full or dense annotation). This type of label is
laborious to produce and usually expensive. Specific scenarios, like medicine or remote
sensing, usually require specialists to annotate the data. Thus sparse annotations becomes
an interesting solution. These types of annotation consist in only presenting a label to
a small set of pixels of the image. Different types of pixel sets can be used, i.e., points,
regions, line segments, and others (see Figure 1.2). This type of annotation reduces the
time required to produce the labels for an image, but can be challenging to train a model

1http://www.image-net.org/challenges/LSVRC/2010/

http://www.image-net.org/challenges/LSVRC/2010/
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with, since limits the amount of information available to the model. Works like [Lin
et al., 2016; Vernaza and Chandraker, 2017; Wang et al., 2018a] have used sparse labels
for semantic segmentation with relative success. The use of incomplete information in
the labels (i.e. using sparse annotations) during the training is commonly referred to as
Weakly Supervised Learning.

cat

box

background

Cat

Box
Background

Unknown

Figure 1.2: Examples of different types of sparse annotations. In the upper row, the image
and original dense annotation. On the bottom, from left to right, there are an example
of points, scribbles, and contour annotations.

Another strategy to reduce the cost of labeling datasets is to reduce the total
number of images that composed the dataset, i.e. the number of labeled images. These
scenarios with small number of image samples (less than 50, usually) are commonly know
as Few-Shot, and recently have gained interest of the community. Few-Shot Learning
have a large amount of works focused on the classification problem [Qiao et al., 2018;
Vinyals et al., 2016; Snell et al., 2017; Simon et al., 2020; Finn et al., 2017; Raghu et al.,
2019; Finn et al., 2018], although some works for semantic segmentation have been done
in recent years [Shaban et al., 2017; Dong and Xing, 2018a; Hu et al., 2019; Zhang et al.,
2020; Wang et al., 2019; Rakelly et al., 2018]. One methodology that has been successfully
applied to few-shot problems in recent years is meta-learning. Normally understood as
learning to learn, meta-learning is an umbrella term to a collection of methods that im-
proves an learning algorithm through multiple learning episodes. In the survey Hospedales
et al. [2020], the authors proposed a formalization of meta-learning and different forms
to categorize methods that use this approach. We can summarize meta-learning methods
in, an algorithm that learns a set of parameters ω called meta-knowledge, trained in a
distribution of tasks (a dataset and a loss function), such that ω generalizes well for the
tasks in said distribution. What comprises the meta-knowledge is defined by each method,
and the authors of the survey use these assumptions to group meta learning methods. In
this work, we will use adaptations of two methods of different categories, these methods
being, Model-Agnostic Meta-Learning [Finn et al., 2017] and Prototypical Networks [Snell
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et al., 2017], to the problem of semantic segmentation.
In this dissertation we want to investigate the feasibility of the use of sparse anno-

tation to the few-shot semantic segmentation problem, in scenarios where data availability
is limited, such as medical imaging and remote sensing. To tackle this problem, we will
use adapted meta-learning methods that already been proved to be suitable to few-shot
classification. We will show that our approaches can obtain results comparable to full an-
notations, using a variety of sparse annotations, for different tasks in medical and remote
sensing scenarios.

1.1 Objectives, Research Questions, and

Contributions

This work aims to study and find viable solutions to the problem of few-shot
semantic segmentation with sparse annotations. Few-shot is already a problem that has
a great limitation in data for the models, introducing sparse annotations will further
increase this limitation and can hinder the process of training deep learn models. In order
to direct our investigations we propose three questions to guide us, that are:

1. What is the impact of introducing sparse annotations in few-shot scenarios? Can
the methods obtain results comparable to training with dense annotations?

2. What is the efficiency of different types of sparse annotation? How much data the
user have to provide to obtain a useful model?

3. How different methods converge training in a few-shot task? The MAML algorithm
is expected to produce a model able to fast adapt. This will occur in our test cases?

We designed our experiments to answer these questions and the results were promis-
ing. As the main contributions of this work, we present them as follow:

• The proposal of two meta-learning approaches for the problem of few-shot semantic
segmentation with sparse labels, the WeaSeL and Prototype methods.

• An extensive evaluation of our proposals in a large set of tasks from Medical and
Remote Sensing scenarios, using different task configurations.

• An analysis of five styles of sparse annotations, named: Points, Grid, Contours,
Skeletons, and Regions.
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1.2 Outline

The remainder of this work is organized as follows. In Chapter 2, we present some
background concepts required for the understanding of this work, with a brief explanation
of CNNs, semantic segmentation, and the two original methods for few-shot classification
used as bases for our approaches. In Chapter 3, we present some of the related works
in the literature, reviewing proposed methods for sparse labeled semantic segmentation,
few-shot classification, and few-shot semantic segmentation. In Chapter 4, we present
a definition for the few-shot semantic segmentation with sparse annotation and our two
proposed approaches. The experimental setup is presented in Chapter 5, which includes
a summary of the datasets used, the metrics, protocols, and baselines of our experiments.
In Chapter 6, we show the results of our experiments and a brief discussion of them.
Finally, in Chapter 7, we present our final remarks and future works.
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Chapter 2

Background Concepts

In this chapter, we present and describe techniques and concepts relevant to the proposed
work. First, in Section 2.1, we introduce some concepts of Convolutional Neural Networks
and their usage in Semantic Segmentation with Fully Convolutional Networks. In Sec-
tion 2.2, we present the MAML algorithm, while in Section 2.3 we present the Prototypical
Networks method for the classification problem.

2.1 Semantic Segmentation and Convolutional Neural

Newtworks

Early approaches for the problem of semantic segmentation could be, generally,
divided in three steps. These steps can be organized in the pipeline below:

1. Pre-processing and Feature Extraction → 2. Classifier method → 3. Post-
processing

In the first step, usually, some form of pre-processing is used to extract patches
from the image. This pre-processing can be as simple as extracting patches from a grid,
or more complex using some segmentation method such as Mean-Shift (MS) [Comaniciu
and Meer, 2002] or the graph-cut based method of Felzenszwalb and Huttenlocher [2004].
Then, features are computed from the patches or raw pixels. These features were usually
handcrafted or based in raw information such as values of pixel color. They could also
be computed using other methods such as SIFT [Lowe et al., 1999], Fischer Kernels
(FK) [Jaakkola and Haussler, 1999], or Bag of Visual Words (BOVW) [Csurka et al.,
2004]. Using the extracted features, in the second step, classifier models are trained, and
then assign class labels to the patches/pixels. Finally, a post-process is applied to rectify
the labels assigned through some form of patch consistency, neighbor disparity, or other
method.
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Most of the works proposed over the years for semantic segmentation would be
differentiated by which method used in each step of this pipeline, with some even blending
some of the steps. Csurka and Perronnin [2008] and Plath et al. [2009] are examples of
approaches that followed these steps.

One of the main drawbacks of this classical pipeline is that it was handcrafted for
each problem. The method to extract features has to be selected, or specific ones have
to be created. Also, the choice of the classifier is important and its efficiency can be
affected by the features used. Moreover, even if effective for one problem, the features
and classifiers often had to be changed for a new/different scenario.

2.1.1 Convolutional Neural Networks

The Convolutional Neural Network proposed by LeCun et al. [1990] is a Neural
Network (NN) model that joins the firsts two steps of the pipeline above, that is the Feature
Extraction and Classifier method, in a single entity. This neural network uses convolutional
layers in its architecture, hence its name. It regained attention in the Computer Vision
community after the work of Krizhevsky et al. [2012]. This work includes adjustments to
the architecture, a larger number of layers and changing their configurations, the use of
the ReLU activation function (equation 2.3), but most important was the use of GPUs to
train their CNN model that was used to solve the large classification problem presented
in the ImageNet LSVRC-2010 contest1.

A convolutional layer is composed of a set of convolutional filters (also called
kernels). A filter is a parametrized matrix, or tensor, that is used in a convolutional
operation over a volume (i.e. an image or the output of another layer). The convolutional
operation is a mathematical operation over two functions f and g and is defined by:

(f ∗ g)(x) :=
∫ ∞

−∞
f(t)g(x− t)dt (2.1)

However, in CNNs we use a discrete version of the operation. In fact, the accurate
operation used is the discrete Cross-Correlation, but because the similarity of these oper-
ations and the use of, mostly, real valued variables, the community conventionally named
it convolution. Thus, for clarity, we will define the a convolution operation in a CNN.

1ImageNet 2010: http://www.image-net.org/challenges/LSVRC/2010/

http://www.image-net.org/challenges/LSVRC/2010/
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Given an input f ∈ RN×N and a filter g ∈ RM×M , we define the CNN convolution of
(f ∗ g) applied at the point (i, j) as follow:

(f ∗ g)[(i, j)] =
M∑
r=0

M∑
c=0

f [i− r, j − c]g[r, c] (2.2)

If the input f ∈ RN×N×D, how the convolution operation is applied over the additional
dimension (often referred to as feature dimension) will depend on the CNN architecture.
Some architectures implement the use of one filter that is applied to each feature plane
(fN×N×d, for some fixed d) and then sum over the filters to produce a single output. Others
apply a single 3D filter to the input volume. Different variations of grouping filters can
also be used. Figure 2.1 illustrate the convolutional operation of a CNN with 2D filter
and input. The result of the application of a filter in a specific point can be interpreted
as a single neuron in that layer, that have access only to the data in the window, that is
defined by the filter size, around the application point. This area is usually named the
receptive field of the neuron. A convolutional filter will be applied in all valid locations of
the input producing a matrix output were each position is the result of the convolution of
the filter on a respective position in the input. Depending on the kernel size, the output
will have smaller dimension than the input. One can pad the input with zeros, or other
values, in order to make the output have the same dimensions as the original input. The
output is commonly called feature map (See figure 2.2). The stack of multiple feature
maps is the volume output of a convolutional layer.

4 1 5 -2 3 4 0
2 -1 0 1 7 2 3
5 4 2 0 -1 -4 6
8 1 0 3 4 2 4
0 0 4 3 1 -2 0
1 4 -6 4 -1 4 1
-5 2 4 1 -3 0 2
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=       5

=

} }

Input (2d real matrix)
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}
0*0

Figure 2.1: Illustration of a Convolutional operation in a 2D matrix.



2.1. Semantic Segmentation and Convolutional Neural Newtworks 24

Feature Map

}Convolutional
Filter

Figure 2.2: Illustration of a feature map. The filter is applied at all valid locations of the
input producing the feature map.

As normal Neural Networks layers, convolutional layers are followed by an acti-
vation function. These activation functions are non-linear functions included between
layers, to prevent the model of being one large linear transformation. One of the most
used activation function is the Rectified Linear Unit (ReLU), which is defined by:

ReLU(x) = max(0, x) (2.3)

The activation function is applied to all values of the convolutional output.
In conjunction with convolutional layers, the CNNs use pooling layers in their

architecture. Pooling layers are similar to convolution in the sense that they apply an
operation over a window location in an input volume. Instead of a linear product with
a filter, as in the convolution, the pooling filter applies an aggregation function over a
location. This aggregating operation can be a maximum, minimum, average, etc., over all
values in the window. The pooling is used to reduce the spatial dimensions of the input,
since it condenses information of neighbor vectors into a single one using some operation.
This improves the computational cost of processing the model, and more importantly, it
increases the receptive field of follow up layers. This increase in the receptive field size is
illustrated in Figure 2.3

During training, the filters in the convolutional layers start to learn patterns from
the images. The pooling layers create a hierarchical structure in the network, with filters in
starting layers learning simple patterns, such as colors, edges, etc. and filters in subsequent
layers learning more complex patterns by aggregating the information of previous layers.
A visualization of simple CNN network is presented in Figure 2.4.
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Figure 2.3: The increased receptive field of a filter after a pooling operation.
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Figure 2.4: Illustration of a simple CNN architecture.

2.1.2 Fully Convolutional Networks and UNet

In the CNN models for classification after a sequence of convolutional and pooling
layers a linearization of the feature volume is performed and the resulting vector is pro-
cessed with fully-connected layers, that is, the usual Neural Networks layers (Figure 2.4).
This way, the model output a simple vector, that we can interpret as the probabilities of
each class.

With the objective of obtaining a more structured output as in the semantic seg-
mentation problem, Long et al. [2015] proposes the Fully Convolutional Network (FCN).
The FCN discards the fully-connected layers of the CNN and substitutes with convolu-
tional layers. The fully-connected layers have a fixed size and discard spatial relation
over the features when the volumes are linearized, prior to them. This spatial relation
is important to the semantic segmentation task in which neighbor pixels are expected to
be from the same class. Also, the fixed number of neurons in the fully-connected layers
forces the input to have a specific size. Since the CNN architectures utilizes convolutions
and pooling, which reduces the height and width of the volume as they are processed by
the model, the FCN model needs to upscale the output. This is done by using transposed
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Figure 2.5: Illustration of the original UNet architecture. (Source: Ronneberger et al.
[2015])

convolutions that are inserted at the end of the model. Different from a fixed method,
such as bilinear interpolation, the transposed convolution can be learned by the model,
and this proved to result in better predictions than using those fixed methods. This large
upscale usually produce a coarser segmentation due to abrupt increase in dimensions. To
minimize this problem, the authors realized a small upscale, then aggregate information
of a pooling layer with same dimensions of the resized volume, and afterwards upscale to
the final dimensions of the output.

The UNet [Ronneberger et al., 2015] is a fully convolutional architecture for seman-
tic segmentation that uses an encoder-decoder structure (Figure 2.5). That is, the input
is processed by the encoder creating a volume with a high feature dimension and usually
small spatial dimensions, and then this volume is further decoded, gradually expanding its
spatial dimension and reducing its feature dimensions, to finally produce the segmenta-
tion output. In detail, the UNet is a symmetrical architecture with the same numbers of
encoder and decoder blocks, with a singular middle block, and a final convolutional layer
with kernel size 1 × 1 that perform pixel classification. An encoder block is composed
of two convolutional layers, with ReLU activation, followed by a 2× 2 max-pooling layer
that reduces the spatial dimension by half. The decoder blocks are analogous, they have
a transposed convolution, that amplifies the spatial dimensions by two, followed by two
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convolutional layers with ReLU activation. One key aspect of this architecture is the use
of a type of skip-connection (gray arrows in Figure 2.5). Each decoder has a symmetrical
paired encoder and its input is a concatenation of the last decoder block output with the
paired encoder output. The authors proposed this architecture initially for segmenting
biomedical imaging, and had won two challenges with this type of images in 20152 with
this network.

2.2 Model-Agnostic Meta-Learning (MAML)

The Model-Agnostic Meta-Learning (MAML) [Finn et al., 2017] is an algorithm
to train models for fast adaptation. Its agnostic name, is derived from the fact that the
algorithm is designed to work with any model or problem (classification, regression, etc.),
as long as it uses a gradient based training. The principle is to expose the model to
different tasks, such that it can be easily and fastly adapted to a new task. Figure 2.6
illustrates this concept.

Meta learning

New task adaptation/learning

Figure 2.6: MAML Diagram. The parameter θ is optimized by training on multiple tasks
Ti, by following their losses Li, and thus the optimized θ∗ can be fastly adapted to a new
task TK .

The algorithm is generic so it can be applied in multiple scenarios and problems.
For simplicity, we will formally define the algorithm for common supervised problems, like
classification or segmentation. A task T = {L,Dsup,Dqry} is defined by a loss function
L, and two sets of data points Dsup and Dqry. These sets are comprised of pairs in the
format (x,y), where x is a data sample, and y is its label. We assume a distribution
over tasks p(T ) that our model f is desired to be able to adapt to. The algorithm can be
summarized by having two nested loops: an outer and inner loop. In the inner loop the

2https://lmb.informatik.uni-freiburg.de/people/ronneber/isbi2015/

https://lmb.informatik.uni-freiburg.de/people/ronneber/isbi2015/
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model is trained to adapt to a task Ti sampled from p(T ), while in the outer loop, the
cumulative error of the tasks is used to train the model.

Formally, we define a model fθ with trainable parameters θ. In the inner loop, the
parameters used by the model become θi, which is initialized with the values of θ. Then,
θi is updated by one or more steps of gradient descent with training samples from Dsup

Ti
set using,

θi = θ − α∇θLTi(fθ) (2.4)

where the step size α can be a fixed parameter, or meta-optimized as well.
In the outer loop, the model’s parameters θ are trained across all tasks Ti drawn

from p(T ), by evaluating the performance of the model fθi on that task by validating on
data from the Dqry

Ti set. Thus the objective in the outer loop can be defined as,

min
θ

∑
Ti∼p(T )

LTi
(fθi) =

∑
Ti∼p(T )

LTi
(fθ−α∇θLTi (fθ)

) (2.5)

and the parameter θ is optimized with gradient descent following

θ ← θ − β∇θ

∑
Ti∼p(T )

LTi(fθi) (2.6)

Note that, by Equations 2.6 and 2.4, when updating the value of θ we compute second-
order derivatives of the L function, which can be computationally costly.

Algorithm 1 summarizes this supervised training version of MAML.

Algorithm 1 Model-Agnostic Meta Learning: Supervised version
Require: p(T ): distributions over tasks
Require: α, β: step size hyperparameters

randomly initialize θ
while not done do

Sample batch of tasks Ti ∼ p(T )
for all Ti do

Sample batch of datapoints Si = {x(j),y(j)} from Dsup
Ti

Compute ∇θLTi(fθ) using Si and LTi
Update adapted parameters using gradient descent: θi = θ − α∇θLTi(fθ)
Sample batch of datapoints Qi = {x(j),y(j)} from Dqry

Ti
end for
Update θ ← θ − β∇θ

∑
Ti∼p(T ) LTi(fθi) using each Qi and LTi

end while

Once the general parameter θ is obtained from the meta-training, it can be used as
the initial weight of the model for a new task. With this new task, any procedure can be
performed to adapt this parameter to the new problem. Most commonly, a simple fine-
tuning is performed using the dataset of said task. Given the presumed generality from
the θ parameter, this fine-tuning is expected to have an easily and rapidly convergence.
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2.3 Prototypical Networks

Prototypical Networks [Snell et al., 2017], sometimes referred as ProtoNets, is a
model proposed for Few-Shot classification. The core idea of this method is to construct
a class prototype for each class, and compare this entity to the samples features. The
inferred class of a sample is the same class of the entity most similar to its features.
Figure 2.7 illustrate the model.

Formally, given a support set S = {(x1, y1), (x2, y2), . . . , (xN , yN)}, xi ∈ RD, yi ∈
{1, 2, . . . , K} with N labeled samples, the prototype ck of class k is defined as:

ck =
1

|Sk|
∑

(xi,yi)∈Sk

fΦ(xi) (2.7)

where Sk = {(xi, yi) ∈ S | yi = k} is the subset of examples with class k, and fΦ : RD −→
RM , is an embedding function with parameters Φ (for example, a CNN model). By
Equation 2.7, we define the class prototype as the mean vector of the embedded samples
of that class.

For inference of the class y of a query point q ∈ RD, the Prototypical Networks
create an distribution pΦ over classes using a softmax function, defined as follow:

pΦ(y = k|q) = exp(−d(fΦ(q), ck))∑
i exp(−d(fΦ(q), ci))

(2.8)

where d : RM ×RM −→ R+, is a distance function.
The squared Euclidean Distance d(u,v) = ||u − v||2 and the Cosine similarity

d(u,v) = u · v/(||u||||v||) are commonly used distance functions.
The loss function for training is the negative log-probability J(Φ):

J(Φ) = − log pΦ(y = k|q) (2.9)
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Support Set

Embbeding Space

Query Image x

Figure 2.7: Illustration of the Prototypical Networks. The embedding function fΦ embed
the support set, which is used to compute the class prototypes ck. The embedded query
image is compared to the class prototypes to predict its class.
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Chapter 3

Literature Review

This chapter will present some works that have approaches similar to the ones in this
dissertation, or that were proposed to problems related to the one we are investigating.
In section 3.1 we present some works for the problem of Weakly Supervised Semantic Seg-
mentation that uses sparse labels. Afterwards, in section 3.2, we discuss approaches to the
problem of Few-shot classification, focused primarily on meta learning methods. Finally,
in section 3.3, we present some works to the problem of Few-shot Semantic Segmentation.

3.1 Weakly Supervised/Sparse Label Semantic

Segmentation

The problem of semantic segmentation with sparse labels is a challenging one.
Approaches to this problem can be mostly divided in two main groups. One group that
tries to use the sparse labels provided without any form of augmenting it and the second
group that tries to reconstruct a dense annotation from the sparse labels.

The works of [Lin et al., 2016; Wang et al., 2018a; Vernaza and Chandraker, 2017]
are part of the second group. Lin et al. [2016] is one of the first works to use sparse
labels for semantic segmentation. They use a label propagation scheme in conjunction
with an FCN for segmentation. This propagation uses the scribble annotation provided
and the prediction of the FCN network. They train their model by alternating which
part is trained at each iteration. When they fix the propagation model, they train the
FCN network, then they fix the parameters of the FCN and train the label propagation
scheme using the new predictions of the network. Wang et al. [2018a] uses a principle
similar to Lin et al. [2016], but applied to biomedical images. The difference is that the
model is trained on full annotations, and then they fine tune for specific images. In this
fine tune, the model iteratively refines their segmentation for an image, possibly using
scribbles provided by the user interactively. Their training is alternated, as in Lin et al.
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[2016], where they fix the network and update the labels, and fix the labels to update the
network. Vernaza and Chandraker [2017] also approach the case of semantic segmentation
with sparse labeling using a label propagation scheme. The authors propose a two branch
pipeline, one of an ordinary segmentation network and the other a label propagation using
random-walk. During training, the propagation branch infer a dense label for an image
from the sparse annotation provided, while the other branch is a simple segmentation
network that tries to segment the image. The inferred labels are then used in a cross-
entropy loss to train both branches.

The survey of Tajbakhsh et al. [2020] reviews a collection of deep learning solutions
to medical image segmentation problems. This survey includes a section for segmentation
with noisy/sparse labels. The methods for sparse labels can be summarized in a selective
loss with or without mask completion. A selective loss is a type of loss function that have
different weights to unlabeled pixels/voxels, and with this can ignore such pixels when the
total cost is computed. All the methods reviewed in the survey use such loss functions,
but works like [Zhang et al., 2019; Bai et al., 2018; Cai et al., 2018; Can et al., 2018;
Matuszewski and Sintorn, 2018] use some technique to augment the sparse annotations
to resemble complete masks. Alternatively, in other works they do not try to reconstruct
a complete mask. For example, the works of [Çiçek et al., 2016; Bokhorst et al., 2018]
uses a weighted loss, [Silvestri and Antiga, 2018] implies the use of padding in the sparse
labels, and [Zhu et al., 2019] uses a quality model to ensure a good segmentation based
of the sparse annotation.

3.2 Few-shot Classification and Meta-learning

Data can be a scarce and/or expensive resource in some scenarios. In conjunction
with a search for more data efficient methods, this motivates the interest of the scientific
community in few-shot problems. As one of the simpler problems in computer vision,
image classification have been the focus of many methods in literature.

One simple approach to this few-shot problem is to use fine-tuning. That is, we
train a model in a large dataset and save the weights. Then, we follow by training the
model with these pre-trained (saved) weights on the few labeled samples provided. Some
works use domain adaptation, which it can be seen as an extension of this methodology.
They use a large dataset called source domain and the few-shot dataset that is called target
domain. The goal of domain adaption is to reduce the shift between the domains. Dong
and Xing [2018b] uses a model that is trained for one-shot classification using adversarial
domain adaptation.
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Another simple approach is to use data augmentation to increase the number of the
labeled samples artificially. In the literature we refer to the small set of labeled samples
with information of a target class as the support set, while the set of images that we
want to segment is called query set. Antoniou et al. [2017] uses Generative Adversarial
Networks (GANs) [Goodfellow et al., 2014] to data augment the support set of the few
shot tasks and then train classifier models in this new set. Wang et al. [2018b] includes a
generative model in their framework for few-shot classification. The support set is fed to
the generative model that create new samples, which are added to the support set, and
then used to train the classifier. If the classifier is differentiable in relation to the loss
function, then the whole framework can be trained end-to-end, including the generative
model.

Given the limited size of the labeled examples, methods usually tries to extract
the maximum of information of this set. In extreme cases, where there are no labeled
data (zero-shot), methods resort to external sources, as in the work of Socher et al. [2013].
They propose a method for zero-shot image classification where they use a list of words
that correspond to possible image classes. They have two embedding methods, one for
the words and other for the images, that transfer these data to the same semantic space.
In this semantic space they can infer the class of the images based on the log-likelihood
of a possible class word.

Qiao et al. [2018] proposes a different approach to the few-shot classification task,
where they try to predict the weights of a classifier from the activations of a network.
They train a small model that receives activations of a CNN network – the linearized
vector of the output of convolutional layers, or the output of penultimate fully-connected
layer –, and output the parameters of the classifier layers of the CNN. This model is
trained on classes that have a large sample size. For the few-shot classes, they use the
few labeled samples to produce the parameters of the classifier layer and thus infer the
class of new samples.

Another increasingly used approach to few-shot classification is meta learning
methods. The survey of Hospedales et al. [2020] proposes a refined taxonomy to group
meta learning methods. However, a simplistic way to group the methods, as seen in [Lee
and Choi, 2018; Yao et al., 2020], suffices in this case. The methods that will be pre-
sented can be divided in two groups, the metric learning and optimization approaches.
The former group focus on models that learns embedding functions and compute dis-
tances in these embedding spaces. The later focus in new methods to direct optimize
models in this data regime, and provide good initialization for fine-tuning. The following
works can be seen as metric learning approaches: [Vinyals et al., 2016; Snell et al., 2017;
Simon et al., 2020]. On the other hand, the works [Finn et al., 2017, 2018; Raghu et al.,
2019; Nichol et al., 2018] are examples of Optimization/Gradient based approaches. As
already explained in Chapter 2, the methods MAML [Finn et al., 2017] (Section 2.2) and
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Prototypical Networks [Snell et al., 2017] (Section 2.3) will be omitted in this chapter.
The metric learning approaches can vary their definitions of embedding space, as

well as their transformation functions. Vinyals et al. [2016] proposes the Matching Net-
works, an attention-based model to guide its predictions. They use embedding functions
f and g (e.g. CNNs) to encode query and support images, respectively. The probability
of a query image class is a weighted mean of the class probabilities of the support set.
The weight is calculated by using an LSTM model [Hochreiter and Schmidhuber, 1997]
that receives the encoded query and support set. In the work [Simon et al., 2020] the
authors presents the Deep Subspace Networks (DSNs), a model that learns to create a
d-dimensional subspace for each class from samples of the support set . They use a CNN
to embed all the images from the support set. These embedded images are d-dimensional
vectors that are grouped by the class of their images. Each group is assumed to contain
a basis for a subspace, that will become the class subspace. After constructing these
subspaces, to infer the class of an image, they encode the image with the CNN in a
d-dimensional vector, and compute the distance between the embedded image and its
projection in each subspace. This distance is used to compute the class probabilities.

Optimization based meta-learning approaches produce good initial weights to be
tuned to the few-shot tasks. By being one the first methods, the MAML algorithm [Finn
et al., 2017] proposed a solid baseline to modifications. Nichol et al. [2018] proposes the
Reptile algorithm. It only uses first-order gradient information. Different from MAML,
there is a single loop in the meta-training and the global parameter θ is optimized in a
different manner. A task is sampled and the task specific parameter θi is obtained by
gradient updates using the task loss and examples. Then θ is simply updated by using
θ ← θ + ϵ(θi − θ), where ϵ is the step size. Finn et al. [2018] presents a probabilistic
version of MAML. The θ parameters are not the weights of a network, but instead they
define a distribution over such weights. During training, in the inner loop they sample
weights to be updated using information from the test set of the task. The outer loop
loss, in addition to the usual loss, also includes a term of Kullback-Leibler Divergence
between the distribution updated with information from the train set, and a distribution
with information from the test set. The work of Raghu et al. [2019] is a modification of
the MAML algorithm. The novelty proposed by the authors is that in the inner loop
of MAML, instead of updating all the θi parameters, they only update the parameters
related to the network head, that is, the components of the network that are correspondent
to a classifier, in this case. With these change, the network converge to parameters that
are reusable to multiple tasks, and reduce the computational cost of training.
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3.3 Few-Shot Semantic Segmentation

Similar to the few-shot classification problem, to exploit information from the
support set have an important role in the semantic segmentation case. Multiple works
try to insert this information directly into the model’s processing flow.

Many works use a two branch structure, where one branch is responsible to extract
information from the support samples and this info is fused into the other branch that
processes the query images. Shaban et al. [2017] implements a simple network to produce
weights based on the support set, that are used as parameters of a logistic regression
prediction. A pair of image/label from the support set is used to guide the segmentation
of a query image. The support pair is fed to a CNN to produce weights w, b. The features
extracted from the query image using an FCN model generate the segmentation by being
processed by a convolution layer that uses the weights w, b. Dong and Xing [2018a] uses a
two branch model, where one network produces prototypes of each class, as the ProtoNets.
The first branch uses the support set and query image to produce prototypes, which are
used for image classification in this branch. The second branch encodes the query image
and fuses it with the prototypes of the other branch. From this fusion probabilities
maps are created, and then are further used to generate the final predictions. In Hu et al.
[2019], the authors introduce an attention-based model. Their two branch model is highly
interconnected. Each branch extracts features from different sources: one from the query
images and the other from masked support images. It uses attention modules at multiple
layers of the model, which receive both the query and support features. At last, a recurrent
network is used to access information of all samples in the support set and produce the
final prediction. Zhang et al. [2020] is another two branch model. One branch, called
guidance is used to extract feature vectors from both query and support images. From
the support features, they use the support label to construct class representative vectors
using a masked average pooling. These vectors are further used to compute a similarity
map - using cosine distance - from the query features. Finally, the similarity map is fused
with the query features from the second branch, that produces the final predictions.

There are other approaches that use a single network to face the few-shot semantic
segmentation problem. Wang et al. [2019] proposes a direct adaptation of the Prototypical
Network [Snell et al., 2017]. They use a CNN to produce feature vectors of the images in
the support set and compute the prototypes for each class using masked average pooling.
They use the cosine distance as their distance function. One novelty introduced by the
authors is the inclusion, during training, of an alignment loss, where the prototypes are
computed from the query image, and the support set is the segmentation target. Rakelly
et al. [2018] proposed the Guided Networks (or, Guided Nets), the first algorithm for
few-shot sparse segmentation. Although, it fuses information from the support set in
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Table 3.1: Presented Literature Works

Work Semantic Segmentation Few-Shot Sparse Annotations

Lin et al. [2016] ✓ ✓
Vernaza and Chandraker [2017] ✓ ✓
Zhang et al. [2019] ✓ ✓
Bai et al. [2018] ✓ ✓
Cai et al. [2018] ✓ ✓
Can et al. [2018] ✓ ✓
Matuszewski and Sintorn [2018] ✓ ✓
Çiçek et al. [2016] ✓ ✓
Bokhorst et al. [2018] ✓ ✓
Silvestri and Antiga [2018] ✓ ✓
Zhu et al. [2019] ✓ ✓
Dong and Xing [2018b] ✓
Antoniou et al. [2017] ✓
Wang et al. [2018b] ✓
Socher et al. [2013] ✓
Qiao et al. [2018] ✓
Vinyals et al. [2016] ✓
Snell et al. [2017] ✓
Simon et al. [2020] ✓
Finn et al. [2017] ? ✓ ?
Finn et al. [2018] ? ✓ ?
Raghu et al. [2019] ? ✓ ?
Nichol et al. [2018] ? ✓ ?
Dong and Xing [2018a] ✓ ✓
Hu et al. [2019] ✓ ✓
Zhang et al. [2020] ✓ ✓
Wang et al. [2019] ✓ ✓
Rakelly et al. [2018] ✓ ✓ ✓

WeaSeL Method (Ours) ✓ ✓ ✓
Prototype Method (Ours) ✓ ✓ ✓

query features, this model uses a single feature extraction network. The Guided Nets use
a pre-trained CNN backbone to extract features of both the support set and the query
image. The support features are averaged through a masked pooling using the sparse
annotations provided for the images, and further globally averaged across all the support
images available. The single averaged support feature is then tiled to produce a spatial
compatible tensor with the dimensions of the query features. The tiled support feature
is fused with the query features with a simple point-wise multiplication operation. The
fused features are further processed by a small convolutional segmentation head that gives
the final predictions.

Table 3.1 summarizes the works presented in this Chapter and how our proposed
methods fit in the literature. In this table, works marked with a question mark symbol
(?) were not defined originally and/or tested in this scenarios but can be potentially used.
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Chapter 4

Methodology

In this chapter we define the problem of few-shot semantic segmentation with sparse
labels, and present two approaches to solve this problem. The problem definition is in
Section 4.1, our first proposed method, based in gradient descent, is in Section 4.2, and
the second approach is presented in Section 4.3. These approaches are derived from the
MAML and Prototypical Networks, which were presented in Chapter 2.

4.1 Problem Definition

First, let us define a segmentation task S. A segmentation task is a tuple S =

{Dsup,Dqry, T} , where D is a dataset with partitions Dsup, called support set, and Dqry,
named query set, such that Dsup ∩ Dqry = ∅. A dataset D is a set of pairs (x,y), where
x ∈ RH×W×B is an image with dimensions H×W and B bands/channels, and y ∈ NH×W

is the semantic label of the pixels in the image. T is the task target class considered as
foreground for the segmentation. Note that with this definition, we only consider binary
tasks, where we have one target class T and the remainder are considered background.
Since multiclass problems, with C classes, can be easily converted in C binary problems,
we only investigate the binary cases. For simplicity of notation, we sometimes define a
segmentation task as a pair S = {D, T}, with implicit support/query partitions of D.

A few-shot semantic segmentation task F is a specific type of segmentation task.
It is also a tuple F = {Dsup,Dqry, T}, but the samples of Dsup have their labels sparsely
annotated, and the labels in Dqry are absent or unknown. Moreover, the number of
samples k = |Dsup| is a small number (e.g. less than 20), thus we also call a few-shot task,
a k-shot task.

Now our problem of few-shot semantic segmentation with sparse labels can be
defined as follow. Given a set of segmentation tasks {S1,S2, . . . ,Sn}, and a few-shot task
F , we want to segment the images from the Dqry

F using information from tasks Si, and
information from the Dsup

F . It holds that no pair of image/semantic label of F is present
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in any task Si in either qry or sup partition. This implies that, there is no semantic
information of the target objects of the F task, other than the sparse annotations of Dsup

F

samples.

4.2 Gradient-based Semantic Segmentation from

Sparse Labels

We adapt the supervised MAML algorithm, presented in Section 2.2, to our prob-
lem of few-shot semantic segmentation with sparse labels. We call this approach Weakly-
supervised Segmentation Learning (WeaSeL), and an illustration can be seen in Fig-
ure 4.1.

We will use a different definition for a task T . Now, a meta-task T , is a segmenta-
tion task, as defined in Section 4.1, with a loss function commonly used in segmentation
problems: the Cross-Entropy loss, which can be defined for a single pixel j as,

LCrossEntropy(j) = −
C∑
i

yji log fθ(x)
j
i (4.1)

where C is the number of classes, yji is the true probability of a class i for the pixel j, and
fθ(x)

j
i is the predicted probability by the model fθ for the class i to the j pixel. Since we

compute this cost to a single pixel, to apply to a whole image the loss in Equation 4.1 is
averaged over all pixels, that is for an image x, the Cross Entropy is defined as,

LCrossEntropy(x) = −
1

N

∑
j∈x

C∑
i

yji log fθ(x)
j
i (4.2)

where N is the total number of pixels in x.
Since our few-shot problem uses sparse labels, we simulate this types of annotations

in the meta-tasks. That is, for all Ti ∼ p(T ), the labels of samples in Dsup are randomly
converted to a sparse version of themselves (see Section 5.2 for details) . This is applied
so the model can be trained in conditions similar to the one in which it will be fine-tuned.
With this, we expect that it will learn to predict dense labels from sparse annotations,
and more easily adapt to the few-shot task.

We use the Algorithm 1 for the meta-training, but with the distribution p(T ) over
our new segmentation meta-tasks. With this, in the inner loop the loss is computed using
the simulated sparse annotations of the support set of a task, and the outer loss using the
dense labels of the query set of a task Ti.
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Positive/Foreground
Negative/Background

Unknown

(a) Visualization of the meta-training process. The parameters θi are optimized using sparse
labels from support sets. The optimal θ∗i would be obtained if dense labels were presented in
meta-training, as the ones in the query set used to compute the task outer loss. We expect that
the model learns to intrinsically minimize this difference between parameters (∆T in the figure),
and thus fastly adapt to the few-shot task.

Positive/Foreground
Negative/Background

Unknown

?
(b) Illustration of the fine tuning step. The meta-optimized θ is supervised trained with the
sparse annotated samples of the few-shot support set. The labels of the query are unknown, i.e.,
not seen by the model.

Figure 4.1: Illustration of the WeaSeL method with toy examples.

Given that the labels are sparse in the inner loop of meta-training, we modify the
Cross-Entropy loss to work in this scenarios as follow,

LSelectiveCE = − 1

N

∑
j

C∑
i

wjyji log fθ(x)
j
i (4.3)

where j is a pixel, N is the total number of valid/labeled pixels, and wj is an indicator,
where wj = 0, if j has an unknown label and wj = 1, otherwise. That is, we ignore pixels
with unknown labels by using this weighted loss, and average the loss for all valid pixels.

After the meta-training we have to adapt the model to the few-shot task. In order
to accomplish this, we perform a simple fine-tuning with the samples from support set
of the few-shot task F . That is, we use the few labeled pairs (x,y) ∈ Dsup

F to train the
model for a number of epochs in a supervised manner using the LSelectiveCE loss.



4.3. Prototypical Seeds for Sparse Segmentation 40

4.3 Prototypical Seeds for Sparse Segmentation

The proposed method for semantic segmentation based on the Prototypical Net-
works is a straightforward adaptation of the original method described in Section 2.3. It
uses the same premise of constructing a prototype vector to each class, with the distinction
that prototypes are computed using the labeled pixels instead of whole image instances.

Given a support set S = {(x1, y1), (x2, y2), . . . , (xN , yN)}, where xi ∈ RH×W×B is
an image with height H, width W and B channels, and yi ∈ RH×W is a label image with
the semantic class of each pixel in xi. Since yi can be sparse, the possible values of an
pixel j in yi are in the set {0, 1, 2, . . . , K}, where K is the total of classes and 0 represents
the unknown class.

Similar to equation 2.7, in this adaptation we define the vector ck, of a class k as

ck =
1

Nk

∑
(xi,yi)∈S

∑
j

[fΦ(xi)⊙ 1k(yi)]
j (4.4)

where fΦ is our embedding function parametrized with Φ (a CNN), ⊙ is point-wise mul-
tiplication, and 1k(yi) ∈ {0, 1}H×W is a mask matrix where each value is defined as

1j
k(yi) =

1, if yji = k

0, otherwise

And Nk =
∑

yi

∑
j 1j

k(yi) is the total number of pixels of the class k, across all the support
set S. In contrast with classical Prototypical Networks, which map an entire image to a
single vector in embedding space, our embedding function fΦ maps each pixel of an image
to a corresponding vector in embedding space. We then compute our prototype vector ck
as the mean vector of the features of all pixels of a class existent in the support set. (See
Figure 4.2).

The inference is the same of the original Prototypical Networks, but applied to a
pixel in the image. Formally, the probability yj of a pixel j in a query image q ∈ RH×W×B

belonging to a class k is computed as follow:

pΦ(y
j = k|q) = exp(−d(fΦ(q)j, ck))∑

i exp(−d(fΦ(q)j, ci))
(4.5)

where d is the squared euclidean distance: d(u,v) = ||u− v||2.
Similar to the WeaSeL method case, given the presence of unknown labeled pixels

in training we modify our loss function to ignore such pixels. This way we define our new
loss function J(Φ) as follows,

J(Φ) = − 1

|Q|
∑

(x,y)∈Q

∑
j∈x

K∑
k=1

log pΦ(y
j = k|xj) (4.6)
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Figure 4.2: Illustration of a Masked Average Pooling. Our process differ after masking
the features. A common Masked Average Pooling, will average these features to each
sample, and then average these averages (right). Ours will create the global sample average
(bottom) by considering all pixels.

where Q is the set images used to compute the loss, j is a pixel coordinate and k represents
a class. Note that k starts from 1, thus not considering the unknown class k = 0. We use
pΦ as defined in Equation 4.5.

Given equations 4.4 and 4.5, the model fΦ is trained using an episodic training
strategy. This strategy resemble the training algorithm of WeaSeL, and is presented in
Algorithm 2. It uses the same distribution over tasks p(T ) as the first method, and uses
the generated sparse annotations of the meta-tasks in training. At each iteration a batch
of tasks is sampled, and for each task Ti a support set Si is constructed and used for
training.
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Algorithm 2 Prototypical Networks: Few-shot segmentation training
Require: p(T ): distributions over tasks

randomly initialize Φ
while not done do

Sample batch of tasks Ti ∼ p(T )
for all Ti do

Sample a support set Si = {(x1, y1), (x2, y2), . . . , (xN , yN)} from Dsup
Ti

Convert yj ∈ Si to sparse annotations
Compute ck using Si, for all k using equation 4.4
Sample query batch Qi = {(x1,y1), (x2,y2), . . . , (xb,yb)} from Dqry

Ti
Compute the loss J(Φ) as defined in equation 4.6, using Qi.
Update Φ using gradient descent and ∇J

end for
end while
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Chapter 5

Experimental Setup

In this chapter, we present the configurations used for our experiments. In Section 5.1 we
succinctly present the datasets used. In Section 5.2 the evaluated sparse labels annotation
styles are listed. Next, in Section 5.3, we introduce the CNN architecture used, and in
Section 5.4 the baselines, protocol, and metrics are presented.

All the code for the experiments were written in the Python3 language. For the
models, we use the Pytorch1 framework and the Torchmeta2 module. In relation to the
machine, all the experiments were performed on Ubuntu SO, 64-bit Intel i9 7920X machine
with 64GB of RAM memory and a GeForce RTX 2080 TI/Titan XP GPU (only one of
the GPUs were used during an experiment).

5.1 Datasets

We choose to test our methods in areas with real applications. As mentioned,
medical imaging and remote sensing have several applications to semantic segmentation.
Moreover, these two areas have some similarities that differ from them from others. First,
the images used in their tasks are very distinct from daily images taken with a cellphone
camera, for example. This already hinders the knowledge transfer from other generic
domains or the use of pre-trained models on large datasets, such as ImageNet. Another
common aspect of medical imaging and remote sensing areas is the limitation of availabil-
ity of these types of images by different factors. Medical images require several agreements
due to patient privacy, as well as the necessity of a specialist to provide precise annota-
tions. Remote sensing images have a high monetary cost to acquire since satellites and/or
drones are commonly used to collect them. In addition, they usually require a specialist
to label the collected data.

These aspects led us to choose these two areas for the experiments. Also, this
1https://pytorch.org
2https://github.com/tristandeleu/pytorch-meta

https://pytorch.org
https://github.com/tristandeleu/pytorch-meta
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choice provided a large variety of tasks to validate our methods.

5.1.1 Medical Datasets

We use a total of eight medical datasets in our experiments. From these datasets,
four are Chest X-Rays datasets (CXR), two are Mammographic X-Rays (MXR), and two
are Dental X-Rays (DXR), and will be briefly presented below.

1.A. JSRT Database [Shiraishi et al., 2000]

The JSRT Database [Shiraishi et al., 2000] is a collection of 247 chest radiographs
initially proposed for lung nodules identification. Labeled masks for lung, clavicle,
and heart structures were obtained from van Ginneken et al. [2006]. A task is
created for each anatomical structure.

All the images have a resolution of 2048× 2048 and 12 bit pixel resolution, and are
gray scale.

Examples are show in Figure 5.1(a).

1.B. Montgomery Dataset [Jaeger et al., 2014]

The Montgomery Dataset [Jaeger et al., 2014] is a set of chests X-rays collected from
patients in Montgomery County, Maryland, USA. There are 138 frontal X-rays, from
which 58 are from cases of Tuberculosis - the initial use case of the dataset was to
classify the presence of this disease. Alongside with information of the patient, for
each X-ray, there are binary masks for segmentation of each lung.

All the X-rays are 12 bit gray scale images, and either have size 4020 × 4892 or
4892× 4020. Examples are shown in Figure 5.1(b).

1.C. Shenzhen Dataset [Jaeger et al., 2014]

The Shenzhen Dataset [Jaeger et al., 2014] were publicized along with the Monto-
gomery dataset. This set is comprised of chests X-rays collected from patients in
Shenzhen, China. There are a total of 662 frontal X-rays, from which 336 are from
cases of Tuberculosis. There is also binary masks for segmentation of lungs.

The size of the X-rays vary, but average a 3000×3000 resolution, and are gray scale.
Examples are shown in Figure 5.1(c).

1.D. NIH-labeled [Tang et al., 2019]
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This is a subset of the original NIH-labeled dataset [Wang et al., 2017]. The original
dataset is comprised of 108, 948 frontalview X-ray images of 32, 717 unique patients,
and labeled with NLP for 14 different diseases.

The subset used in this experiments will be named simply NIH-labeled or XLSor-
NIH. This dataset proposed in Tang et al. [2019] is comprised of 100 chest X-rays
from the original NIH with manually annotated lung masks for these X-rays.

All images have a spatial resolution of 512× 512 and are gray scale. Examples can
be seen in Figure 5.1(d).

1.E. OpenIST Chest X-Rays

The OpenIST Chest X-Rays dataset3 is a set of X-rays collected from the following
original domain: http://www.chestx-ray.com/index.php/education/normal-cxr-module-train-your-eye#
!1. These images were used to train medical students in recognizing a normal X-ray.
There are in total 225 chest X-ray images, with binary masks for the lungs.

The images are gray scale with 8-bit resolution and their sizes are not fixed. Exam-
ples in Figure 5.1(e).

1.F. LIDC-IDRI-DRR dataset [Oliveira et al., 2020]

Is a dataset derived from LIDC [Armato III et al., 2011]. This dataset is composed
of flattened 2D Digitaly Reconstructed Radiographs (DRR) computed from chest
CT-scans, with automatically generated ribs annotations [Oliveira et al., 2020].

All the 835 images in the dataset are gray scale, and have size 512× 512. Examples
of the scans and labels are show in Figure 5.1(f).

1.G. MIAS database [Suckling et al., 1994]

The Mammographic Image Analysis Society (MIAS) is a research group in the
UK with interest in mammograms. Their dataset is composed of 322 digitized
mammograms, grayscaled and with a resolution of 1024×1024. The original dataset
only provides labels of location and size of nodules in the images, but we had access
to label masks that segment the pectoral muscles and the breast in each image.

Example of samples are shown in Figure 5.2(a).

1.H. INbreast database [Moreira et al., 2012]

The INbreast database is a collection of 410 images collected from woman in the
Breast Center located in the Centro Hospitalar de S. Joao [CHSJ], Porto, Portugal.
From these 410 images, only 200 are from Mediolateral Oblique (MLO) view (a side
view of the breasts), and have labeled pectoral muscles for them. We also obtained
labels for the breasts.

3https://github.com/pi-null-mezon/OpenIST

http://www.chestx-ray.com/index.php/education/normal-cxr-module-train-your-eye#!1
http://www.chestx-ray.com/index.php/education/normal-cxr-module-train-your-eye#!1
https://github.com/pi-null-mezon/OpenIST
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(a) JSRT (b) Montgomery (c) Shenzhen

(d) NIH-labeled (e) OpenIST (f) LIDC-IDRI-DRR

Lungs Heart ClaviclesLegend: Ribs

Figure 5.1: Examples from the Chest X-Ray Datasets.

All images are gray level with 14 bit resolution and their sizes are either 3328×4084

or 2560× 3328, depending on the patient. Examples can be seen in Figure 5.2(b).

(a) MIAS

Breasts Pectoral MuscleLegend:

(b) Inbreast

Figure 5.2: Examples from the Mammography Datasets.

1.I. Panoramic Dental X-rays [Abdi et al., 2015]

The Panoramic Dental X-rays dataset is a set of panoramic dental X-rays of 116
patients, taken at Noor Medical Imaging Center, Qom, Iran. The images were
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mannually segment by three specialists from which label masks for the mandibles
were generated.

All the images are gray scale and have a size of approximately 2900 × 1250 pixels.
Examples of sample images and labels are presented in Figure 5.3(a).

1.J. UFBA-UESC Dental Images Dataset [Silva et al., 2018]

The UFBA-UESC Dental Images Dataset (or, simply, UFBA Dataset) is composed
of a series of panoramic X-ray dental images. There is a total of 1500 images with
annotated teeth labels, with a variety of cases of dental problems and/or formations
defects.

All the images are gray scale with dimensions of 2440× 1292 pixels. Examples are
shown in Figure 5.3(b).

(a) Panoramic Dental (b) UFBA-UESC Dental Images 

Legend: Mandibles Teeth

Figure 5.3: Examples from the Dental X-Rays Datasets.

5.1.2 Remote Sensing Datasets

The Remote Sensing datasets can be divided in two groups: Rural (or Agriculture)
and Urban datasets. There are two rural datasets, and two urban datasets, that will be
divided in three tasks groups. The datasets are listed below:

2.A. Brazilian Coffee

Is a dataset comprised of 4 large satellite images from 4 municipalities of the state
of Minas Gerais, Brazil - one satellite image for each county. The four municipalities
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are: Arceburgo, Guaranésia, Guaxupé and Montesanto. In the satellite images only
three bands were considered, namely the Red, Green, and Near Infrared bands.
Along these images, a binary ground truth label image is provided, with positive
value representing a coffee crop and negative value representing the background.

For evaluation purpose, each of the images where cropped in non-overlapping patches
of size 256×256, and only crops with a percentage of 25% or more of pixels of coffee
where maintained for training and validation of the models. Given that each county
has distinct geographical features, which lead to coffee plantation distinctions, we
consider each municipality a different task.

Examples of patches of this dataset and their respective ground truths can be seen
in Figure 5.4(a)-(d).

2.B. Orange Orchards

This dataset is comprised of satellite images from an Orange Orchard located at
the municipality of Ubirajara, São Paulo, Brazil. In the satellite images four bands
are presented, Red, Green, Blue, and Near InfraRed, but only three of the bands
were used: all but the Blue band. In addition to the images, annotation masks
of the orange plantations were provided, making two classes, namely, Oranges and
Background.

Each of the satellite images where cropped in non-overlapping patches of size 384×
384, and only crops with a percentage of 10% or more of pixels of plantation where
maintained for training and validation of the models. With the large crop size we
used a small percentage of the pixels to have a similar minimum number of positive
pixels to the coffee tasks. Since this dataset is focused in a single region and have
only one interest class, we use it as a single task in our experiments.

Examples of patches of this dataset and their respective ground truths can be seen
in Figure 5.4(e).

2.C. ISPRS Potsdam4 and Vaihingen5

The ISPRS Potsdam and Vaihingen datasets were proposed for a semantic segmen-
tation competition in the remote sensing scenario. Each one consists of a collection
patches of varying size from a true orthophoto mosaic (38 and 33 patches, for Pots-
dam and Vaihingen, respectively). It is a series of satellite photo of the cities of
Potsdam and Vaihingen, in Germany. Only a part of the patches have an annotated
ground truth - 24 and 16 for Potsdam and Vaihingen, respectively -, as the remainder
stays secret for the organizers, so they can evaluate the competitors entries.

4https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-potsdam/
5http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html

https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-potsdam/
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html
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(a) Arceburgo (b) Guaranésia (c) Guaxupé

(d) Montesanto (e) Orange Orchads

CoffeeLegend: Orange Tree

Figure 5.4: Examples from the Brazilian Coffee and Orange Orchards Dataset.

There are different types of patches in the dataset. For Potsdam, there are 3 true or-
thophotos with different channels information: IRRG images (InfraRed-Red-Green
channels), RGB (Red-Green-Blue channels), and RGBIR (Red-Green-Blue-Infrared
channels). For Vaihingen, there is only one type of true orthophoto that is a NIRG
(Near infrared-Red-Green channels) image. For both cities, there is also a Digital
Surface Model (DSM). Only one type of orthophoto were used for each city, for
Vaihingen the one available and for Potsdam the RGB image.

The images in these datasets are also large. The patches of Potsdam all have the
same dimension of 6000×6000, while the patches in Vaihingen vary with the smaller
dimension being no less than 1200 pixels. For evaluation, all patches were simply
cropped from the selected true orthophoto in smaller non-overlapping patches of
size 448× 448, with no further processing.

Since the datasets contains 6 classes (Impervious surfaces, Building, Low vegetation,
Tree, Car, and Clutter/background), we binarize the patches to create different
tasks. For a task, we select a class to be positive, while all the remaining are
considered negative/background. If a patch has less than a percentage of pixels of
positive class, they are discarded for training/validation of the task with that target
class. For the the class Car which is comprised of small objects that occupy a small
area in the image, any percentage of positive pixels were sufficient to not discard
the patch. Meanwhile, for the remainder classes, only patches with more than 25%
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of positive pixels were not discarded.

Example of patches and their original ground truth labels are presented in Figure 5.5

(a) Vaihingen (b) Potsdam

Legend: Impervious surfaces (Road)
Building Low vegetation (Grass) Tree

Car Clutter/background

Figure 5.5: Examples from the ISPRS Datasets.
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2.D. INRIA dataset [Maggiori et al., 2017]

The INRIA dataset [Maggiori et al., 2017] is an urban aerial image dataset of cities
in different parts of the world. This dataset was used in a competition and only a
subset of the cities are labeled, while others are held out for the internal evaluation.
There are 5 labeled cities/regions, which are: Austin (TX, USA), Chicago (IL,
USA), Kitsap County (WA, USA), Western-Tyrol (Austria), and Vienna (Italy).
For each city, there are 36 RGB tiles of size 5000 × 5000 with a respective binary
labeled mask with positive values representing the building class and negative the
non-building class.

Similar to the other remote sensing datasets, for evaluation, each tile were cropped
in non-overlapping patches of size 500×500, and patches with less than a percentage
of positive pixels — 25% of the image for Kitsap County patches and 40% for the
other cities — were discarded. We consider each of the five cities as a different task
in our experiments.

Example of patches of the different regions are presented in Figure 5.6

(a) Austin (b) Chicago (c) Kitsap County

(e) Vienna

BuildingLegend: Non-Building

(d) Western-Tyrol

Figure 5.6: Examples from the INRIA Dataset.
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5.2 Types of sparse annotation

In the experiments we evaluate five types of sparse annotation, namely: points,
grid, contours, skeletons, and regions. As mentioned, we simulate these annotations from
the original dense labels of an image. Visual examples of these annotations are show in
Figure 5.7.

We can describe each type of annotation and explain how the sparse annotations
are generated as follow:

I. Points Annotation: This type of labeling simulate an annotator alternately pick-
ing pixels from the foreground and background classes.

To generate this type of annotation, we use a parameter n and randomly choose n

foreground and n from background pixels, while the remainder is set as unknown.

II. Grid Annotation: In this labeling process, the annotator receives a pre-selected
collection of pixels of the image. All these pixels are initially assumed to be from
the background class. Then the annotator select the pixels which it considers to be
from the foreground. The pre-selected pixels are disposed in a grid pattern.

This type of labeling is generated by using a parameter s. Then a random pixel
p0 is selected within the following rectangular region: {upper left corner: (0, 0) and
bottom right corner: (s, s) }. Afterwards, a grid is created from this p0 position with
s spacing horizontally and vertically. Pixels outside the grid are set as unknown.

III. Contours Annotation: This labeling style is the process where the annotator
denotes the inner and outer boundaries of foreground objects. It is most useful for

Foreground/Positive Labels Background/Negative LabelsLegend: Unknown Labels
Superpixel Boundaries

Image Dense Points Grid Contours Skelentons Regions

Figure 5.7: Illustration of the types of sparse annotations used. Annotations are illustra-
tive and uspcaled for better visualization.
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cases where a single connected foreground object is present. If more than one object
is present, the outer boundaries can create needlessly complex annotations.

We generate these annotations by using morphological operations on the original
binary dense labels. We use an erosion operation followed by a marching squares
algorithm6 to find the inner contours. To the outer contours, we use a dilation
operation on the original label mask, and the same marching squares algorithm.
Additionally, we use a parameter d that determines the density of the sparse an-
notation. After the contours are obtained, we maintain only the segments of the
contours that respect the d threshold. A final dilation on the contours is applied to
add thickness to the annotations.

IV. Skeleton Annotation: This style of labeling resembles an annotator drawing a
scribble roughly at the center of the foreground objects that more or less approxi-
mates the object form. The same process is applied to the background.

This annotations are generated using the skeletonize algorithm7 in the binary dense
label masks. This returns the skeletons of the foreground objects. The same process
is applied to the negative dense label masks to obtain the skeleton of the background
class. An additional dilation is applied to add thickness to the skeletons. We use a
parameter d to control the density of the annotation. We generate random binary
blobs (using this8 function) that occupy a d percentage of the image space and use
them to mask the computed skeletons.

V. Regions Annotations: This type of annotation represents the process of an an-
notator appointing classes to pure superpixels. We define a pure superpixel as a
connected set of pixels of the same class. The annotator is provided with the super-
pixels of the image and appoints the class of a subset of pure superpixels.

To generate these annotations, first we compute the superpixels of the images using
the SLIC algorithm [Achanta et al., 2012] with empirically chosen parameters for
each dataset. From the computed pure superpixels set, we randomly selected a d

percentage of the superpixels from foreground and a d percentage of superpixels
from the background class.

6https://scikit-image.org/docs/stable/api/skimage.measure.html#skimage.measure.
find_contours

7https://scikit-image.org/docs/stable/api/skimage.morphology.html#skimage.
morphology.skeletonize

8https://scikit-image.org/docs/stable/api/skimage.data.html#skimage.data.binary_
blobs

https://scikit-image.org/docs/stable/api/skimage.measure.html#skimage.measure.find_contours
https://scikit-image.org/docs/stable/api/skimage.measure.html#skimage.measure.find_contours
https://scikit-image.org/docs/stable/api/skimage.morphology.html#skimage.morphology.skeletonize
https://scikit-image.org/docs/stable/api/skimage.morphology.html#skimage.morphology.skeletonize
https://scikit-image.org/docs/stable/api/skimage.data.html#skimage.data.binary_blobs
https://scikit-image.org/docs/stable/api/skimage.data.html#skimage.data.binary_blobs
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5.3 miniUNet architecture

The network model used in in all experiments – Baselines, WeaSeL , and Prototyp-
ical – is a simplified version of the UNet architecture [Ronneberger et al., 2015]. We will
call it miniUNet since is a smaller version of the original network. Hardware limitations
implied in the choice of smaller network architectures. Since the choice of the network is
not imposed for our method, we opt to use this modification of the UNet architecture,
which is a staple model in the literature used in several applications. Also, it usually easily
converges without a hefty hyperparameter tuning, allowing an easy and fast experiment
setup.

The miniUNet network is comprised of three encoder blocks, a center block, three
decoder blocks and an 1×1 convolution layer that functions as a pixel-classification layer.
The network blocks configuration can be seen in Table 5.1 – in the table, C is the number
of input channels an image have (e.g. C = 3 for RGB images), the Input/Output Features
is the number of feature dimensions that the input/output volume have (e.g. the Encoder
Block 1 receives an image of size h × w × C and outputs a volume of size h

2
× w

2
× 32).

Similar to the UNet architecture, skip connections are present in this model. This means
that each decoder block receives as input the concatenation of the last block output and
the corresponding encoder output. For example, the Decoder Block 1 receives as input
the concatenation of the output volume of Decoder Block 2 and the output volume of
Encoder Block 1.

Table 5.1: Descriptions of the miniUNet Blocks

Block Name Encoder Blocks (1, 2, 3) Center Block

Layers

Conv 3× 3
Bath Norm.

ReLU
Conv 3× 3
Bath Norm.

ReLU
MaxPool 2× 2

Dropout
Conv 3× 3

Bath Normalization
ReLU

Conv 3× 3
Bath Normalization

ReLU
Transposed Conv 2× 2

Input Feat./ Output Feat. C/32, 32/64, 64/128 128/128

Block Name Decoder Blocks (3, 2) Decoder Block (1)

Layers

Dropout
Conv 3× 3

Bath Normalization
ReLU

Conv 3× 3
Bath Normalization

ReLU
Transposed Conv 2× 2

Dropout
Conv 3× 3

Bath Normalization
ReLU

Conv 3× 3
Bath Normalization

ReLU

Input Feat./ Output Feat. 256/64, 128/32 32/32
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Figure 5.8: Illustration of the miniUNet architecture. The upper numbers represents the
feature dimension of the volumes, while on the side is the spatial dimensions.

Unlike the original architecture, we pad the images with zeros prior to the convo-
lutions so the spatial dimensions after the operation is the same as the input. This way,
only the poolings and transposed convolutions affect the spatial dimensions of the volume
during a forward pass in the network. A visualization of this architecture is provided in
Figure 5.8.

When used in Prototypical method, since we want to generate d-dimensional fea-
ture vectors, the last layer of the network is ignored, and the output is gathered from
the last decoder block. That is, the embedding function fΦ for the images is the mini-
UNet model excluding the last layer (the 1 × 1 Convolutional layer). Consequently, the
embedding space of our prototypes have 32 dimensions.
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5.4 Evaluation Protocol

5.4.1 Baselines

We use two baselines for comparison with our approaches: 1) From Scratch and
2) Fine-Tuning. Given our few-shot semantic segmentation problem parameters in the
form of the set of segmentation task {S1,S2, . . . ,Sn}, and a few-shot task F , we define
our baselines as follow:

• From Scratch: Given our miniUNet network, we perform a simple supervised
training with the Few-shot task support set (Dsup

F ). We use the same Cross-Entropy
loss ignoring unlabeled pixels as our cost function (Equation 4.3). The Adam op-
timizer [Kingma and Ba, 2017] was used, with the same parameter used in the
training of our methods.

• Fine-tuning: We use the miniUNet architecture. We selected one task Si from
our tasks set, and perform a supervised training with the Dsup

Si
. Once finished the

training on Si, we perform the fine-tune (a supervised training) using the Dsup
F set.

Again, the same Cross-Entropy loss function (Equation 4.3) is used with the same
parametrized Adam optimizer used for our methods.

5.4.2 Protocol and Metrics

In order to assess the performance of our methods in a certain setting, we employ
a Leave-One-Task-Out methodology. That is, all but the pair (dataset, class) chosen as
the Few-shot task (F) are used in the Meta-Dataset – the set of segmentation tasks S –,
reserving F for the tuning/testing phase. This strategy serves to simultaneously hide the
target task from the meta-training, while also allowing the experiments to evaluate the
proposed algorithm and baselines in a myriad of scenarios. Moreover we will divide our
tasks in four groups to perform the experiments. These groups are:

• Medical Tasks: All the medical datasets (Section 5.1.1) and their classes are used
for these tasks, totaling 14 tasks.
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• Agriculture Tasks: Only the rural datasets (Section 5.1.2[2A-2B]) are used for
these tasks. There are 5 tasks in total (4 from the Brazilian Coffee and 1 from the
Orange Orchards dataset).

• ISPRS Tasks: The ISPRS datasets (Section 5.1.2[2C]) were used. For the tasks,
as explained, binary versions with each class as target were used (excluding the
Clutter class), thus totaling 10 tasks.

• INRIA Tasks: The INRIA dataset (Section 5.1.2[2D]) was used for these tasks,
totaling 5 tasks, one for each city in the dataset.

For each method we used different number of epochs, empirically chosen, in each of
their training phases. In Table 5.2 we show these numbers. They differ mostly due to train-
ing time. The Remote Sensing datasets are, in general, larger than the Medical datasets,
and this made the training process (that include validation) more time-consuming.

Table 5.2: Number of epochs for training the methods in different experiments. #Epochs
Tuning is the number of epochs trained with the Few-Shot Task samples.

Method Medical Experiments Remote Sensing Experiments

#Epochs Pre/Meta-Training #Epochs Tuning #Epochs Pre/Meta-Training #Epochs Tuning
WeaSeL 2000 80 200 40
Prototypical 2000 - 200 -
Fine-Tuning 200 80 100 80
From Scratch - 80 - 100

In respect to other hyperparameters, for all experiments, we use the Adam opti-
mizer [Kingma and Ba, 2017] with learning rate 0.001, weight decay 0.0005, and momen-
tum 0.9. Our batch size was set to 5. The number of tasks sampled for the inner loop
of WeaSeL and Prototypical was set to 6 in Medical and 4 in Remote Sensing experi-
ments. This was done, in general, due to memory constraints and, in the Remote Sensing
experiments, the total number of tasks in each set of experiments.

We use a 5-fold cross validation protocol in the experiments. Each dataset had a
training and validation partition for each fold, with 80% of the images used for training
and 20% for validation. Once fix the experiment fold, the support sets for the tasks are
obtained from the training partition of the dataset, while the query sets are the entire
validation partition.

All images and labels are resized to 256 × 256 for remote sensing images, and
128 × 128 for medical images, prior to being fed to the models. This was due to our
infrastructure limitations and done in order to standardize the input size and minimize the
computational cost of the methods, especially the memory footprint of WeaSeL method,
since it computes second derivatives on high-dimensional outputs.

The metric within a fold is computed for all images in the query set according to
the dense labels, and is averaged in relation to the images in that fold. The final values
reported in Chapter 6 are computed by averaging the performance across all folds.
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As for the metric used, we selected the Jaccard score, also known as Intersection
over Union (IoU), of the validation images. It is a common metric for semantic segmen-
tation and can measure the similarity between the ground truth and the segmentation of
the model. The IoU can measure the similarity between any two sets. Thus, given two
sets of points A and B, the Jaccard score J(A,B) is computed as follow:

J(A,B) =
|A ∩B|
|A ∪B|

(5.1)
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Chapter 6

Results and Discussion

In this chapter we present the results of our experiments and a brief discussion about
them. We grouped the experiments by research questions that motivate it. First, in
Section 6.1, we compare the results of the methods and baselines using multiple sparse
annotations and their versions using dense labels. In Section 6.2 we compare different
sparse annotations in relation to the number of inputs that an user gives and the score
obtained. Finally, in Section 6.3 we compare the number of epochs of fine tuning the
few-shot task and the score of our methods.

6.1 Few-shot Semantic Segmentation: Sparse vs

Dense labels

In this section we present the results of our methods in multiple few-shot tasks in
the Medical and Remote Sensing scenarios. We vary the number of shots, and for each
type of sparse annotation we vary their parameters as well.

With these experiments we answer our first research question about the impact of
using sparse annotations in scenarios few-shot. Also, since we use multiple types of sparse
annotations in the experiments, we can visualize how the different styles perform with
the evaluated methods.

We will only present some of the results in this section, omitting some redundant
results similar to some task included in this section. As a rule for this section, we present
the results grouped in graphs by sparse annotation type and number of shots (i.e., the
number of labeled images in Dsup

F ). Dashed lines in the graphs are the scores of the meth-
ods trained with dense annotations. Additional results can be seen in the Appendix A.



6.1. Few-shot Semantic Segmentation: Sparse vs Dense labels 60

6.1.1 Medical Tasks

6.1.1.1 Chest X-Ray Datasets

For the evaluated CXR Datasets Tasks (5.1.1 [1.A - 1.E]) we observed a tendency
in the results. First, one that holds for, practically, all methods and scenarios, is that with
more data better scores are obtained. That is, with large support sets (higher k-shots)
and more sparse labeled pixels the models predicted more precise segmentation.

A second observed result is that the WeaSeL method appears to be the best ap-
proach to tasks with a significant discrepancy to other tasks in their category. We observed
this in the JSRT Lungs (Figure 6.1) and the JSRT Heart (Figure 6.2). The JSRT dataset
is visually the most different of the CXR datasets (as seen in Figure 5.1) moreover, the
Heart class is only present in this dataset, so this task does not have a direct parallel in
other datasets. This discrepancy in both the semantic space and domain from other tasks
can explain the inferior results of the Heart task in relation to the JSRT Lungs task.
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Figure 6.1: Jaccard Score of experiments with JSRT Lungs Task.

For the remainder tasks, we observe that either the Prototypical method or some
Fine-tuning baseline is the best performer. Since some datasets are similar visually, fine-
tuning for a task from a model trained in a similar dataset is a known viable solution
that works well in these cases. These results are visible for the OpenIST, Montgomery,
and NIH-Labeled Lungs tasks (Figures 6.3, 6.4, and 6.5, respectively). Fine-tuning from
similar tasks (OpenIST, Shenzhen, or Montgomery) yields the best jaccard scores in most
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Figure 6.2: Jaccard Score of experiments with JSRT Heart Task.

cases. Also, we observe that the Prototypical is consistently comparable to these fine-
tuned baselines.
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Figure 6.3: Jaccard Score of experiments with OpenIST Lungs Task.

We observe that the methods, as expected, tend to approach their score obtained
when trained with dense labels as the sparsity of the annotation decreases. But, even in
yet extremely sparse scenarios, such as 20-points annotation that represent less then 1% of
the total pixels in the image, the gap between the methods trained on sparse annotations
and their dense label versions is small, as can be seen in most of the experiments. The
WeaSeL method often achieve the same results with dense annotations when using sparse
annotations for tuning. However, the only method that practically is indifferent to the
type or sparsity of the annotations is the Prototypical method. Since the method takes the
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Figure 6.4: Jaccard Score of experiments with Montgomery Lungs Task.
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Figure 6.5: Jaccard Score of experiments with NIH-Labeled Lungs Task.

average of the features of labeled pixels to produce the class prototypes, if the embedding
function is learned properly, the increase or decrease of labeled pixels will have little effect
in the average vector. Increasing this number will only make the mean tend to the average
vector of the dense case. Thus, as will be seen in the other experiments, the Prototypical
method will mostly have a constant score across different tasks settings.

These results seems to show that, given proper training time, the WeaSeL can
exploit the information of different tasks and provide a good starting point for fine-
tuning. Additionally, the Prototypical method, albeit being designed to learn an unbiased
ensemble function, benefit from similar tasks in the training distribution and seem to
assimilate information of these tasks, thus performing better in similar cases. We have
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this assumption for the Prototypical method, because, excluding the JSRT Lungs task, 5
out 12 training tasks are a similar CXR Lung task. If uniformly distributed, approximately
40% of the time one of these tasks will be selected for a meta-training epoch.

6.1.1.2 Mammography X-Ray Datasets

In the MXR Datasets Tasks (5.1.1 [1.G - 1.H]), we see similar tendencies as in the
CXR Datasets. Again, fine-tuning from similar tasks appears as a solid solution, with
WeaSeL method, in most cases, obtaining comparable results.

In the MIAS Breast task (Figure 6.6), fine-tuning from the INbreast Breast task is
the best approach. In the more challenging INbreast Pectoral Muscle task (Figure 6.7),
the pre-training using the INbreast Breast task Dataset, provided the best starting weights
for fine tuning. Since the objects (Pectoral Muscle) in this target class are small (relative
to breast, or lungs, for example), being used to the visual of the data seems to be more
relevant to the model than the knowledge of the object in other dataset.

The Prototypical method seems consistent in the MIAS Breast task (Figure 6.6),
with few variances across different task settings. In the INbreast Pectoral Muscle task
(Figure 6.7), given the difference of most methods to their dense labeled trained versions,
we assume that the combination of the few-shot samples and, subsequently, generated
sparse annotations were not informative enough, specially in the Contour Type annotation
scenario.
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Figure 6.6: Jaccard Score of experiments with MIAS Breast Task.
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Figure 6.7: Jaccard Score of experiments with INbreast Pectoral Muscle Task.

6.1.1.3 Dental X-Ray Datasets

Once more, for the DXR Datasets Tasks (5.1.1 [1.I - 1.J]), we observed the same
trend for the evaluated approaches.

This time, without a similar task to fine-tune from, the WeaSeL show to be the
best performer, achieving the highest scores in most of the cases, with both dense and
sparse annotations. This is observed in the Panoramic Mandible task (Figure 6.8) and
the UFBA-UESC Teeth task (Figure 6.9). Being the most distinct tasks, even the From
Scratch baseline, provides satisfying results, and in some cases is the best model.
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Figure 6.8: Jaccard Score of experiments with Panoramic Mandible Task.
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Figure 6.9: Jaccard Score of experiments with UFBA-UESC Teeth Task.

Excluding the target class, only 1 out of 12 tasks is from a DXR dataset. Being the
most uncommon type of dataset in our experiments, they have less presence in the meta-
training process. This corroborate with our hypotheses that the Prototypical method
benefits from similar tasks in training, which explain the relative poor performance of this
method in these type of tasks. One can notice a special poor performance for the Regions
Type annotation for the UFBA-UESC Teeth task (Figure 6.9). Our approach to generate
these types of annotation appears too strict by only considering pure regions (regions
within a single class). The resulted superpixels from the SLIC algorithm, most likely
included pixels from both classes given characteristics of the target class. Consequently
no pure regions for the Teeth class are generated and selected, which makes the creation
of prototypes for this class impossible and explain the approximately zero score.

6.1.2 Agricultural Tasks

In general, all Remote Sensing experiments show to be much more difficult than
the Medical cases. The higher dimensional input (with three channels) and the higher
intraclass variability of most classes, seems to have a great impact in the efficiency of the
methods. Overall, no method achieved a Jaccard score above 0.8 in any of the evaluated
tasks, not even using dense labels.

For the agricultural tasks, we observe that the WeaSeL method consistently out-
perform the Fine-Tuning and From Scratch baselines, specially in the configurations with
the lower amount of data (1-shot tasks). Although being related tasks, the Coffee tasks
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have an intrinsically domain shift between the different counties in the dataset. The ge-
ography of the cities differ, and the methods of plantation can be different. This explains
why fine-tuning is not always the best solution. In Figures 6.10 and 6.11 we see the results
for the Montesanto and Arceburgo Coffee task, from the Brazilian Coffee Dataset, while
in Figure 6.12 we present the results for the Orange Orchard task.
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Figure 6.10: Jaccard Score of experiments with Montesanto Coffee Task.

The Prototypical method had consistent results in most tasks. For the Coffee
tasks, it generally obtained a Jaccard score around 0.6. For the Orange task, it revolved
around 0.4 Jaccard. In a tendency similar to the Medical experiments, the Prototypical
method seems to benefit from related/similar tasks. The Orange task was unique in this
set of tasks. When choosing Orange Orchard as the target task, only the Coffee tasks
were available to be used in training. The absence of similar tasks appears to affect the
Prototypical method results.

6.1.3 INRIA Tasks

The INRIA Tasks presents a challenge that although the target class is the same
in all tasks, each city have unique characteristics that differentiate them from each other.
Also, the intrinsically variability in the target class Building increases the difficulty for
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Figure 6.11: Jaccard Score of experiments with Arceburgo Coffee Task.
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Figure 6.12: Jaccard Score of experiments with Orange Orchard Task.

these tasks. This difficulty is observed when even the baselines, From Scratch and Fine-
Tuning, had comparable lower performance than in the Agricultural tasks.

As before, the Prototypical method remained consistent across different tasks and
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settings. Given the domain-shifts between tasks, surprisingly, it was the best method
in practically all tasks, sometimes with large difference to the second-best method. In
Figures 6.13, 6.14, and 6.15, we see the results for the Austin, Kitsap County, and Vienna
Building tasks, respectively.
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Figure 6.13: Jaccard Score of experiments with Austin Building Task.

In most cases being the second-best, the WeaSeL method outperform the From
Scratch baseline, and at least one of the fine-tuning baselines in most tasks. Again, with
the difference within cities, the WeaSeL method showed to be better as a starting point
to fine-tune for a few-shot task than pre-training the model in a highly different dataset.

Different from the Medical Experiments, as mentioned in the section 5.4.2, we used
200 epoch for the meta-training of the WeaSeL and Prototypical methods. We argue that
these methods did not fully converge with this number of training epochs, but we choose
this number of epochs in order to evaluate a large number of tasks in a limited time.
Moreover, there was no hyperparameter optimization. We tested the a configuration of
hyperparameters (mentioned in Section 5.4.2) with a single medical experiment, which
seemed to converge, and used these same hyperparameters for all tasks. In addition to
save time, this choice would permit to see the generalability of our methods performing
in different scenarios with the same configuration. That said, as seen in the Medical
Experiments (section 6.1.1), we expect that with proper hyperparameters and number of
epochs, our methods achieve better results than currently have shown, specially for the
ISPRS tasks (Section 6.1.4) that will be show next.
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Figure 6.14: Jaccard Score of experiments with Kitsap County Building Task.
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Figure 6.15: Jaccard Score of experiments with Vienna Building Task.



6.2. Sparse labels comparison 70

6.1.4 ISPRS Tasks

The ISPRS tasks have their own challenges and had the most surprising results.
First, the two cities, Potsdam and Vaihingen, used different spectral bands. For Potsdam
we used RGB images, and for Vaihingen we used NIRG images. This difference increases
the natural domain-shift between different locations. Besides that, the tasks only have
one other task with the same target class, which is in a different city. This shift implies
that a same class will have different features in each of the cities.

In Figure 6.16 we show the results for the Vaihingen Road task, while in Figure 6.17
we present the results for the Vaihingen Tree task. Meanwhile, in Figures 6.19 and 6.18
we show the results for the Potsdam Road task and Potsdam Building task, respectively.
Note that for the tasks Vaihingen Tree and Potsdam Building, only the From Scratch
baseline are presented.

Given the difference between tasks, we expected that WeaSeL would be the best
approach for the tasks. However, this was not the case for most of the tasks tested. Un-
expectedly, the From Scratch baseline, specially with dense annotations, obtained higher
Jaccard scores than the other methods, with a few exceptions were it performs worse
than or equivalent to the WeaSeL . This is most noticeable for the tasks Vaihingen Tree
(Figure 6.17) and Potsdam Building (Figure 6.18). For the two tasks with Fine-tuning
baselines, these baselines were in most cases the best performing, even when the source
task was from the other city. Interestingly, for the Potsdam Roads task (Figure 6.19), all
methods had similar results around the 0.4 Jaccard score independent of sparsity of shot
number, with some clear exceptions.

Again, the Prototypical remained consistent for different tasks configurations.
The Jaccard score achieved in the tasks were around 0.4 in most of them. Once more, the
absence of similar tasks, and the intravariability of some of the classes in the experiments,
probably affected the results of the method.

6.2 Sparse labels comparison

In this section we show the results for our sparse annotations types comparisons.
We choose some tasks, with multiple configurations, to compare the number of user inputs
and the scores of our approaches. With these experiments we want to answer the second
research question, for at least some of the sparse annotations evaluated in this work. We
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Figure 6.16: Jaccard Score of experiments with Vaihingen Roads Task.
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Figure 6.17: Jaccard Score of experiments with Vaihingen Tree Task.

only compared three types of sparse annotations in these experiments: Points, Grid, and
Regions.

We defined the number of user inputs for a type of annotation as, the number of
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Figure 6.18: Jaccard Score of experiments with Potsdam Buildings Task.
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Figure 6.19: Jaccard Score of experiments with Potsdam Roads Task.

interactions an annotator would have to perform in order to sparsely annotate the image
using said type. For a single image we defined the number of inputs for a n-point Points
annotation simply as 2n, since the user will select n positive and n negative pixels. For
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the Grid annotation, we define the number of inputs as the total positive labeled pixels
in the grid, since all the pixels are assumed to be negative and the user pick the positive
ones. And for the Regions annotation, the number of inputs is defined as the total regions
selected, independent of being positive or negative. Once computed the number of inputs
for a single image, we sum the values for all images in the support set of the k-shot task.
Finally, we average the number of inputs of the k-shot across the five folds.

In Figures 6.20, 6.21, 6.22, and 6.23, we present the results for the JSRT Lungs,
Montesanto Coffee, Austin Buildings, and Vaihingen Buildings, respectively.
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Figure 6.20: Number of user Inputs versus Jaccard Score in the JSRT Lungs Task.
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Figure 6.21: Number of user Inputs versus Jaccard Score in the Montesanto Coffee Task.
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Figure 6.22: Number of user Inputs versus Jaccard Score in the Austin Buildings Task.
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Figure 6.23: Number of user Inputs versus Jaccard Score in the Vaihingen Buildings Task.

We observe that, as seen in the Section 6.1, the WeaSeL method overall performs
better with more data information, that increases with the number of user inputs. We
also, clearly see how the Prototypical method is almost indifferent to the sparsity and
quantity of annotations by having a low deviation score in the presented tasks.

For the JSRT Lungs task (Figure 6.20), and Medical tasks, in general, we see that
the Grid annotation usually achieve the higher score for the same number of user inputs
as the other types of annotation. On the other hand, the Region annotation is commonly
the best type of annotation for the Remote Sensing tasks, having higher scores with the
same number of inputs. The Points annotation is, at most times, the worse performer.
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This was expected, since that with the same number of inputs this type of annotation
will have less labeled pixels in total than the other types.

By comparing these results and the ones of the previous section (Section 6.1) we
can draw some conclusions. The Grid annotation is a solid annotation type that can lead
to good results, and usually is one of the best types for the Medical cases. However, this
is the most user consuming type, requiring the larger number of user inputs. The Re-
gions annotation is also a solid option for annotation. When the superpixel segmentation
produce clean regions easier to be labeled, this type can make the process of annotation
simpler and quicker and produce precise models, specially for Remote Sensing tasks. The
Points annotation is the easier to implement and require less from the user. Is does not
produce the most optimal models, but can lead to comparable results requiring far less
inputs. Also this annotation, guarantee a balanced number of pixels samples for each
class in training, which can make optimization of the models easier. The other two types
of annotations, Contours and Skeletons, appears as valid options as well. The way we
designed the process of generating this annotations made it difficult to translate to a
countable user input, which is the motive this types are not compared in this section.
However, the results presented in Section 6.1, show that both, Contours and Skeletons
annotations, are suitable styles, specially Contours in the Medical tasks and Skeletons in
Remote Sensing tasks.

6.3 WeaSeL Fast Adaptation

In this section we present the results for the adaptation time required by the
WeaSeL and a Fine-tuning baseline in some selected tasks.

For this experiments we want to evaluate the number of epochs that the models
required to converge in the few-shot task tuning phase. For this we executed a small
experiment. We trained the models using the WeaSeL method and using a source dataset.
The models were trained for 200 epochs and at epoch 100 and 200 we used the trained
weights, at that epoch, as starting points to fine-tune to a few-shot task. Then we observe
the Jaccard score for each fine-tune epoch until the epoch 50, where we stopped tuning.

In Figures 6.24 and 6.25 we present the results of the OpenIST Lungs and INbreast
Breast tasks, respectively. Figures 6.26, 6.27 and 6.28 contains the results of Montesanto
Coffee, Arceburgo Coffee, and Orange Orchard tasks, in that order. In the graphs we
marked with a vertical line the epoch 40. This epoch is were the few-shot tuning of the
Remote Sensing tasks was stopped, in the experiments of Section 6.1, and is half the num-
ber of epochs used for the few-shot tuning in the Medical tasks in that experiments. Also,
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the numbers over the small graphs represent the number of shots and sparse parameter of
the annotation type used, for example, in the top-right graph in Figure 6.25 is the 1-shot
INbreast Breast task with 20-point annotation.

As already discussed in Section 6.1, the number of epochs of pre-training seems to
be insufficient to converge the WeaSeL approach. This condition can make our analyzes
of these results less conclusive. Regardless, is clear observing the graphs, the instability
of the scores in most cases. This indicate that the models did not fully converge to the
few-shot task in the epoch span chosen. Also, we observe that the curves of the WeaSeL
method and the Fine-tuning baselines have a similar behavior in most cases. These two
observations lead us to believe that the fast adaptation of the MAML method did not
occur in our experiments. This result can be from the lack of convergence in pre-training
due to small number of epochs, or this expected feature of the method simply is not
possible with our tested cases.
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Figure 6.24: Jaccard Score by few-shot fine-tuning Epoch in the OpenIST Lungs task
using Contours annotation.



6.3. WeaSeL Fast Adaptation 77

Epoch

Ja
cc

a
rd

 S
co

re

After 100 Epochs of Pre-train

Epoch

Ja
cc

a
rd

 S
co

re

After 200 Epochs of Pre-train

WeaSeL
Prototype

Fine-tuning from Mias Breast
Epoch 40

0.0

0.2

0.4

0.6

0.8

1.0
1, 1 1, 5 1, 10 1, 20

0.0

0.2

0.4

0.6

0.8

1.0
5, 1 5, 5 5, 10 5, 20

0.0

0.2

0.4

0.6

0.8

1.0
10, 1 10, 5 10, 10 10, 20

1 25 50
0.0

0.2

0.4

0.6

0.8

1.0
20, 1

1 25 50

20, 5

1 25 50

20, 10

1 25 50

20, 20

0.0

0.2

0.4

0.6

0.8

1.0
1, 1 1, 5 1, 10 1, 20

0.0

0.2

0.4

0.6

0.8

1.0
5, 1 5, 5 5, 10 5, 20

0.0

0.2

0.4

0.6

0.8

1.0
10, 1 10, 5 10, 10 10, 20

1 25 50
0.0

0.2

0.4

0.6

0.8

1.0
20, 1

1 25 50

20, 5

1 25 50

20, 10

1 25 50

20, 20

Figure 6.25: Jaccard Score by few-shot fine-tuning Epoch in the INbreast Breast task
using Points annotation.
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Figure 6.26: Jaccard Score by few-shot fine-tuning Epoch in the Montesanto Coffee task
using Skeletons annotation.
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Figure 6.27: Jaccard Score by few-shot fine-tuning Epoch in the Arceburgo Coffee task
using Regions annotation.
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Figure 6.28: Jaccard Score by few-shot fine-tuning Epoch in the Orange Orchard task
using Points annotation.
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Chapter 7

Conclusion and Future Works

In this work we proposed two approaches to the problem of Few-Shot Semantic Segmenta-
tion with Sparse Annotations. This is a challenging problem that is still gaining attraction
from the scientific community. Our approaches were based on two meta-learning methods
originally proposed for Few-Shot Classification problems: the MAML algorithm [Finn
et al., 2017] and the Prototypical Networks [Snell et al., 2017].

We evaluated our two methods in a large number of varied experiments to verify
their generality. We choose to focus the experiments in two areas that can benefit from
the labeling process of few-shot sparse labeled semantic segmentation problems. The two
areas, Medical Imaging and Remote Sensing, can have limited data access, thus solving
problems with small datasets with few annotations can lead to reveal a new myriad of
problems that can be automated in these areas. The experiments were planned in order
to clarify three questions: (i) What is the impact of introducing sparse annotations in
few-shot scenarios? Can the methods obtain results comparable to using complete dense
annotations? (ii) What is the efficiency of different types of annotation? How much data
the user have to provide to obtain a useful model? (iii) How different methods converge
when training in a few-shot task?

Our first proposed approach, the WeaSeL method, obtained promising results.
First, it could achieve scores using sparse annotations equivalent to using dense annota-
tions in many of the tested cases. In special, the WeaSeL method appears to be the most
suitable approach to cases were the few-shot task have a significant difference to available
training tasks. Moreover, in the experiments, when the evaluated few-shot task did not
have a similar or related tasks, in general, the WeaSeL method achieved the higher scores
surpassing the Fine-Tuning and From Scratch baselines. Since its difficult to compute the
domain shift of datasets in real case scenarios, the WeaSeL method appears as the most
appropriate solution for real novel tasks. However, it has some clear problems. First,
this method seems to require a large number of epochs to converge. Second, since it
depends on tuning in the few-shot task, the model performance will be directed related
to the amount of data available, i.e. the number of shots (support size) and the spar-
sity of annotations. Finally, the WeaSeL method has a high computational cost due to
the computation of second-order derivatives in the outer loop, which increases the time
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required for training the models. As seen in the third part of experiments (Section 6.3),
this method did not seem to provided the fast adaptation expected from MAML in our
tests, but this could be a consequence of the experiments settings.

Our second proposed approach, the Prototypical method, appears as a more stable
solution. The results of this method for few-shot tasks appears to be correlated to the
availability of similar tasks in training, as some of our experiments showed. This can
reduce the applicability of the method in real cases, as it is not as versatile as the WeaSeL
method. One key aspect of the Prototypical method, that can be seen in all experiments
(specially in Section 6.2) is that it showed indifference to the amount of data available
in the few-shot task. Once trained, the Prototypical method constantly obtained results
that almost do not change with the sparsity of the annotation or the number of images
labeled. The results, in most cases, are equivalent to using dense annotations. If you want
to use a minimal number of user inputs in the dataset creation, the Prototypical method
is a viable solution that will provide results close to the dense annotations. Nevertheless,
it also has its shortcomings. As already mention, the method seemed to be affected by
the absence of similar tasks in the training. Additionally, since it performs an average
of feature vectors, if a class have a high pixel variability, it can lead to generating a
non-informative class prototype that is worthless for comparison. Finally, as it is now
proposed, the model do not use pixel spatial relation in consideration for class inference,
which is an important factor in semantic segmentation.

The five evaluated types of annotation — points, grid, contours, skeletons, and
regions — have their own pros and cons. The grid annotation is one of the more reliable
types and produce some of the best results, but is the most user demanding type. The
region annotation, seems like an efficient option, but it usefulness is dependent on a
competent superpixel segmentation. The points annotations is the less user demanding,
but it also yields the greater gaps for dense annotation scores. The contours and skeletons
annotations appears as valid options, for Medical and Remote Sensing tasks, respectively,
but will require further investigation to confirm their efficiency.

In summary, we evaluated our proposed approaches in multiple tasks, and both
proved capable of obtaining equivalent results with sparse and dense annotations. As some
of the baselines could sometimes achieve these similar results, perhaps few-shot sparse
annotations solutions can benefit, but not necessarily require, that methods consider the
sparse aspect of the problem.

For future works, first we want to revise some of the experiments executed. We
want to test different hyperparameters for Remote Sensing tasks and use a larger num-
ber of epochs of meta-training. Second we want to tackle some of the problems of our
methods. For the WeaSeL method, we want to use first order approximations of the
derivatives in the outer loop and evaluate how this affect the performance of the model.
For the Prototypical method, we want to include some form to the model use the spatial
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relation of the pixels when predicting the labels. The study of the contours and regions
type of annotation, better forms to count user inputs with these types, and designing
experiments that permit the analysis of efficiency of these annotations, is also planned.
Moreover, as next steps we include the adaption of other Few-Shot classification methods
to the semantic segmentation problem with sparse annotations, as well as proposing novel
methods for this problem.
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Appendix A

Additional results for the Section 6.1

In this Appendix, we present extra results for the Section 6.1, that were omitted for
brevity.

A.1 Extra Medical Tasks

This section include the results of four omitted tasks of the Medical Experiments.
These tasks are: JSRT Clavicles (Figure A.1), Shenzhen Lungs (Figure A.2), MIAS Pec-
toral Muscle (Figure A.3), and INbreast Breast (Figure A.4).
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Figure A.1: Jaccard Score of experiments with JSRT Clavicles Task.
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Figure A.2: Jaccard Score of experiments with Shenzhen Lungs Task.
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Figure A.3: Jaccard Score of experiments with MIAS Pectoral Muscle Task.

A.2 Extra Remote Sensing Tasks

This section include the results of eight omitted tasks of the Remote Sensing Ex-
periments. Two tasks from the Brazilian Coffee dataset: Guaxupé Coffee (Figure A.5),
and Guaranésia Coffee (Figure A.6). Two tasks from the INRIA dataset: Chicago Build-
ing (Figure A.7), and Western Tyrol Building (Figure A.8). And four tasks from the
ISPRS datasets: Vaihingen Building (Figure A.9), Vaihingen Grass (Figure A.10), Pots-
dam Grass (Figure A.11), and Potsdam Tree (Figure A.12).
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Figure A.4: Jaccard Score of experiments with INbreast Breast Task.
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Figure A.5: Jaccard Score of experiments with Brazilian Coffee: Guaxupé Coffee Task.
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Figure A.6: Jaccard Score of experiments with Brazilian Coffee: Guaranésia Coffee Task.
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Figure A.7: Jaccard Score of experiments with INRIA: Chicago Building Task.
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Figure A.8: Jaccard Score of experiments with INRIA: Western Tyrol Building Task.
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Figure A.9: Jaccard Score of experiments with ISPRS: Vaihingen Building Task.
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Figure A.10: Jaccard Score of experiments with ISPRS: Vaihingen Grass Task.
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Figure A.11: Jaccard Score of experiments with ISPRS: Potsdam Grass Task.
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Figure A.12: Jaccard Score of experiments with ISPRS: Potsdam Tree Task.
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