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Resumo

A conjectura de reconstrução de vértice afirma que todo grafo simples, finito
e não direcionado com três ou mais vértices é determinado, via isomorfismo, pela
coleção de subgrafos vértice deletados não rotulados. A conjectura de reconstrução
de aresta afirma que todo grafo simples, finito e não direcionado com quatro ou
mais arestas é determinado, via isomorfismo, por sua coleção de subgrafos aresta
deletados não rotulados. Nós consideramos problemas análogos de reconstruir
um grafo arbitrário G, via isomorfismo, de seu poset abstrato de subgrafo aresta, o
poset abstrato de subgrafo induzido e o reticulado abstrato de ligação. Mostramos
que, se um grafo não tem vértices isolados, então o reticulado abstrato de ligação e
o poset abstrato de subgrafo induzido podem ser construídos a partir do poset ab-
strato de subgrafo aresta, exceto para as famílias de grafos que caracterizamos. Nós
também estudamos outras estruturas relacionadas obtidas por considerar difer-
entes tipos de homomorfismos (ou seja, homomorfismos em geral, monomorfis-
mos, epimorfismos, etc.) e questões sobre construções relacionando estas estruturas
(por exemplo, quais estruturas podem ser construídas de quais outras estruturas).
Estas questões são motivadas pela seguinte conjectura de Thatte. Seja G o conjunto
de todos os grafos não rotulados. Seja f : G → G uma bijeção tal que para todo
G, H ∈ G , o número de homomorfismos de G para H é igual ao número de homo-
morfismos de f (G) para f (H). Então, f é o mapa de identidade. Esta conjectura é
mais fraca do que a conjectura de reconstrução de aresta.

Em seguida, construímos uma subálgebra da álgebra UGQSym estudada
por Borie. Os elementos desta álgebra são séries de potência formal que podem ser
avaliadas em grafos, e conta o número de ocorrências de blocos. Nesta formulação,
nós obtemos uma prova algébrica de um resultado de Whitney.

Dado o baralho de um grafo G, todos subgrafos vértice próprios de G podem
ser contados usando um resultado básico em reconstrução de grafos, conhecido
como lemma de Kelly. Consideramos o problema de refinar o lema para contar
subgrafos enraizados de modo que o vértice raiz coincida com o vértice deletado.
Mostramos que tal contagem não é possível em geral, a menos que a conjectura
de reconstrução de vértice é verdadeira, mas um multiconjunto de subgrafos en-
raizados de altura fixa k pode ser construído de um baralho de G desde que G

tem raio maior que k. Nós provamos um resultado análogo para o problema de
reconstrução de aresta.

Palavras-chave: reconstrução de grafo, posets de grafo, ho-

momorfismos de grafo, álgebras de Hopf, lema de Kelly.



Abstract

The vertex reconstruction conjecture asserts that every finite simple undi-
rected graph on three or more vertices is determined, up to isomorphism, by its
collection of unlabelled vertex-deleted subgraphs. The edge reconstruction conjec-
ture asserts that every finite simple undirected graph with four or more edges is
determined, up to isomorphism, by its collection of unlabelled edge-deleted sub-
graphs. We consider analogous problems of reconstructing an arbitrary graph G

up to isomorphism from its abstract edge-subgraph poset, its abstract induced sub-
graph poset and its abstract bond lattice. We show that if a graph has no isolated
vertices, then its abstract bond lattice and the abstract induced subgraph poset can
be constructed from the abstract edge-subgraph poset except for the families of
graphs that we characterise. We also study other relational structures obtained
by considering different types of homomorphisms (e.g., general homomorphisms,
monomorphisms, epimorphisms, etc.) and questions about constructions relating
these structures, (for example, which structures can be constructed from which
other structures). These questions are motivated by the following conjecture of
Thatte. Let G be the set of all unlabelled graphs. Let f : G → G be a bijection such
that for all G, H ∈ G , the number of homomorphisms from G to H is equal to the
number of homomorphisms from f (G) to f (H). Then, f is the identity map. The
conjecture is weaker than the edge reconstruction conjecture.

Next we construct a subalgebra of the algebra UGQSym studied by Borie.
The elements of this algebra are formal power series which can be evaluated on
graphs, and count occurrences of blocks. In this formulation, we obtain an algebraic
proof of a result of Whitney.

Given the vertex-deck of a graph G, all vertex-proper subgraphs of G can
be counted using a basic result on graph reconstruction, known as Kelly’s lemma.
We consider the problem of refining the lemma to count rooted subgraphs such
that the root vertex coincides the deleted vertex. We show that such counting is not
possible in general unless the vertex reconstruction conjecture is true, but a multiset
of rooted subgraphs of a fixed height k can be constructed from the vertex-deck of
G provided G has radius more than k. We prove analogous result for the edge
reconstruction problem.

Keywords: graph reconstruction, graph posets, graph ho-

momorphisms, Hopf algebras, Kelly’s lemma.



Nomenclature

∆ maximum degree in G

δ(G) minimum degree in G

OrbitG(x) set of vertices of G that are similar to x

Φ null graph

e(G) number of edges of G

k(G) number of components of G

u ≈ v similar vertices

v(G) number of vertices of G

Aut(G) set of all automorphisms of G

cv(F , G) number of ways to cover vertices of G by F

c(F , G) number of ways to cover G by F

Ω abstract connected partition lattice

epi(G, H) number of epimorphims from G to H

Q abstract edge subgraph poset

hom(G, H) number of homomorphisms from G to H

I identity map

ind(G, H) number of monomorphisms f from G to H such that
the image of f is an induced subgraph of H

P abstract induced subgraph poset

K field



G set of unlabelled simple graphs

GB set of isomorphism classes of blocks with two or more
vertices

mon(G, H) number of monomorphisms from G to H

G set of unlabelled graphs without isolated vertices

Σ(G, H) number of monomorphims f from G to H such that for
each connected component B of G we have H[ f (V(B))]

is isomorphic to B.

surhom(G, H) number of surjective homomorphisms from G to H

{H+e} set of graphs that can be obtained by adding a new
edge to a copy of H

Cn cycle on n vertices

De(G) edge-deck of G

Dv(G) deck of G

dv(G) degree of v in G.

G graph

G − X obtained by deleting vertices in X

G[E] edge-subgraph

G[X] subgraph induced by vertex set X

G ⊎ H disjoint union of G and H

Gc complement of a graph G

Gx graph with a root vertex x

Gv
k subgraph of G rooted at v, induced by vertices at dis-

tance at most k from v

Ge
k subgraph of G rooted at e induced by edges at distance

at most k from e.

K2 + K1,3 disjoint union of K2 and K1,3

K4 \ e graph K4 minus an edge



Kn complete graph on n vertices

Kn,m complete bipartite graph with n and m vertices in two
partitions

p(F, Gv) number of induced subgraphs of G that contain vertex
v and are isomorphic to F

p(Fx, Gv) number of induced rooted subgraphs of Gv that are
isomorphic to Fx such that the root of the subgraph
coincides with v

p(H, G) number of induced subgraphs of G isomorphic to H

Pn path on n vertices

q(H, G) number of edge-subgraphs of G isomorphic to H

r(G) radius of G

s(F, Gv) number of subgraphs of G that contain vertex v and are
isomorphic to F

s(Fx, G) number of rooted subgraphs of G that are isomorphic
to Fx

s(Fx, Gv) number of rooted subgraphs of Gv that are isomorphic
to Fx such that the root of the subgraph coincides with
v

s(H, G) number of subgraphs of G isomorphic to H
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Chapter 1

Introduction

One of the beautiful conjectures in graph theory, which has been open for
more than 70 years, is about vertex reconstruction of graphs [1]. It was proposed
by Ulam and Kelly [15], and reformulated by Harary [10] in the more intuitive lan-
guage of reconstruction. This conjecture asserts that every finite simple undirected
graph on three or more vertices is determined, up to isomorphism, by its collection
of vertex-deleted subgraphs (called the deck).

Harary [10] proposed an analogous conjecture, known as the edge recon-
struction conjecture. It asserts that every finite simple undirected graph with four
or more edges is determined, up to isomorphism, by its collection of edge-deleted
subgraphs (called the edge-deck).

A graph G is reconstructible, if it is determined, up to isomorphism, by its
deck. There are three principal types of results on the reconstruction conjecture:
results that show that all graphs in a certain class are reconstructible; results that
show that certain invariants of a graph can be calculated from the deck; and reduc-
tions of one conjecture to another. We survey some of these results below.

A class X of graphs is reconstructible if every member of X is reconstructible.
The reconstruction conjecture has been proven true for several classes of graphs,
such as trees, disconnected graphs and regular graphs [16], but the general case
remains unsolved.

A graph invariant is reconstructible if it can be calculated from the deck (i.e.
if it takes the same value on all reconstructions of the graph). Some reconstructible
graph invariants are: number of subgraphs of a graph G isomorphic to a graph F

when F has fewer vertices than G (Kelly’s lemma, see [16]), number of coverings of
a graph G by a graph family F (Kocay’s lemma, see [17]), the number of discon-
nected spanning subgraphs of G having a specified number of components in each
isomorphism class [34], the number of connected separable spanning subgraphs of
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G having a specified number of blocks in each isomorphism class [34], the number
of nonseparable spanning subgraphs with a given number of edges [34], character-
istic polynomial and Tutte polynomial [34].

Whitney [38] showed that any invariant of graphs that counts subgraphs
formed by a given collection of blocks can be expressed as a unique polynomial,
with rational coefficients, in terms of the indeterminates which count blocks in a
graph, and furthermore, these latter invariants are algebraically independent over
the rationals. This result is known as Whitney’s subgraph expansion theorem,
which we refer to as Whitney’s theorem.

One approach to the reconstruction conjecture is to reduce the conjecture to
another. The edge reconstruction conjecture is weaker than the vertex reconstruc-
tion conjecture. This may be proved in two ways. We can construct the vertex deck
of a graph from its edge deck [12]. Or we may prove the result via line graphs: a
graph with at least 4 edges is edge reconstructible if its line graph is vertex recon-
structible [11]. Another reduction was proved by Yang Yongzhi [39]. He proved
that if all 2-connected graphs are vertex reconstructible then the vertex reconstruc-
tion conjecture is true.

An effective approach to the edge reconstruction conjecture was given by
Lovász [19] who proved that a graph on n vertices with more that (n

2)/2 edges
is edge reconstructible. Lovász’s bound was improved to n log n by Müller [24].
The methods of Lovász and Müller were further refined by Nash-Williams [25]
who characterised the hypothetical counter examples to the edge reconstruction
conjecture.

Many variations of the original conjecture of Ulam and Kelly have been stud-
ied. For example, vertex reconstruction problems have been studied for directed
graphs, hypergraphs, infinite graphs, necklaces, and so on, see [2]. There are non-
reconstructible tournament families [29] and hypergraphs [18]. We consider prob-
lems of reconstructing an arbitrary graph G up to isomorphism from its abstract

edge-subgraph poset, its abstract induced subgraph poset and its abstract bond lattice.
These problems were proposed and studied by Thatte in [31±33].

Let G be a graph. The abstract edge-subgraph poset Q(G) of G is the iso-
morphism class of its partially ordered set of distinct unlabelled edge-subgraphs,
that is, the subgraphs themselves are not required. The abstract induced subgraph
poset P(G) of G is the isomorphism class of its partially ordered set of distinct
unlabelled non-empty induced subgraphs. The abstract bond lattice Ω(G) of G is
the isomorphism class of the lattice of distinct unlabelled connected partitions of
G. These posets are suitably weighted by subgraph counting numbers.
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We say that a graph G is Q-reconstructible (P-reconstructible, or Ω- recon-
structible, respectively) if it is determined, up to isomorphism, by its abstract edge-
subgraph poset Q(G) (by its abstract induced subgraph poset P(G), or by its ab-
stract bond lattice Ω(G), respectively).

Thatte [31±33] proved that the edge reconstruction conjecture is equivalent
to the Q-reconstruction problem, except for a family of graphs (which was fully
characterised in [32]); the P-reconstruction problem is equivalent to the Ω- recon-
struction problem, with a few exceptions, and the vertex reconstruction conjecture
is equivalent to the P-reconstruction problem, except for empty graphs. Moreover,
it was proved in [33] that many invariants of graphs (e.g., the chromatic polyno-
mial, the symmetric Tutte polynomial, the number of spanning trees, the number
of Hamiltonian cycles, and so on) are P-reconstructible.

Hopf algebras were introduced by Heinz Hopf in 1941. They have now
been used in diverse fields, including physics, probability theory, combinatorics,
etc. In the 1970s, Rota [14] found many combinatorial examples of Hopf algebras.
He observed that the multiplication of combinatorial objects arises naturally as a
disjoint union of two objects, and the comultiplication arises as linear combinations
of decompositions of an object into pairs of objects.

The Milnor-Moore Theorem [6] says that if B is a linear basis in the space of
primitives over a field of characteristic zero of a connected, commutative, cocom-
mutative Hopf algebra, then such a Hopf algebra is the polynomial algebra in the
elements of B (that is, isomorphic to the polynomial algebra in |B| variables). Thus,
we can translate some combinatorial questions to questions concerning polynomial
algebras.

Schmitt [27] studied invariants of combinatorial objects by considering cer-
tain associated Hopf algebras. He proved that any invariant which counts subob-
jects of a particular type is given by a unique polynomial in invariants which count
connected subobjects. Besides, he applied the above result for graphs, obtaining
Whitney’s theorem. For Hopf algebras of graphs, Iovanov and Jun [13] found a ba-
sis for the space of primitives, and proved that it satisfies a certain minimality prop-
erty and a universal property, and applied it to known results on reconstruction of
graphs. Borie [5] defined a Hopf algebra whose elements are formal power series
which, when evaluated on graphs, count occurrences of subgraphs. He proved how
this algebra is connected to invariants of graphs, and gave a sufficient criterion for
two graphs to be isomorphic, and applied his result to the reconstruction problem
of graphs.

The text of this thesis is divided into five chapters.
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In Chapter 2, we develop the necessary background for the subsequent chap-
ters. We define some concepts from graph theory, partially ordered sets, Hopf al-
gebras, and the graph reconstruction theory. We state Ulam and Kelly’s conjecture
and some important lemmas on graph reconstruction. We also state some relevant
results on Hopf algebras.

In Chapter 3, we define three subgraph posets: the abstract edge-subgraph
poset, the abstract induced subgraph poset and the abstract bond lattice. We state
some results about these posets given by Thatte [31±33]. We then prove the follow-
ing new result [8].

Theorem. Let G be a graph with no isolated vertices. Then

1. Ω(G) can be constructed from Q(G) if and only if G does not belong to M ;

2. P(G) can be constructed from Q(G) if and only if G does not belong to N ;

where M and N are certain families of graphs that we characterise completely.

The construction of P(G) from Q(G) generalises a well known result in re-
construction theory that states that the vertex deck of a graph with at least 4 edges
and without isolated vertices can be constructed from its edge deck [12].

Let G be the set consisting of one representative element from each isomor-
phism class of simple graphs. Thatte [32] proposed the following conjecture.

Conjecture (Thatte). Let f : G → G be a bijection such that for all G, H ∈ G , the number

of homomorphisms from G to H is equal to the number of homomorphisms from f (G) to

f (H), then f is the identity map.

He proved that this conjecture is weaker than the edge reconstruction con-
jecture. Let Gc be the complement of graph G, that is, a graph with the same vertex
set but whose edge set consists of the edges not present in G. In Chapter 4, we
propose a number of analogous conjectures.

Conjecture. 1. Let σ : G → G be a bijection such that for all G, H ∈ G , the number of

monomorphisms from G to H is equal to the number of monomorphisms from σ(G)

to σ(H), then σ is the identity map.

2. Let σ : G → G be a bijection such that for all G, H ∈ G , the number of monomor-

phisms from G to H such that the image is an induced subgraph is equal to the number

of monomorphisms from σ(G) to σ(H) whose image is an induced subgraph, then σ

is the identity map or σ(G) = Gc for all G ∈ G .
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3. Let G and H be two graphs. We define Σ(H, G) as the number of monomorphims

f from H to G such that for each connected component B of H, the subgraph of G

induced by f (V(B)) is isomorphic to B. Let σ : G → G be a bijection such that

Σ(H, G) = Σ(σ(H), σ(G)) for all G, H ∈ G , then σ is the identity map.

We prove relations among the above conjectures. We show that Conjecture 1
is weaker than Conjecture 2, and Thatte’s Conjecture is weaker than Conjecture 1.
Besides, we show a relation between Conjecture 2 and Conjecture 3.

In Chapter 5, we state Whitney’s Theorem and present some results from [5].
We define a subalgebra of UGQSym and obtain a new proof of Whitney’s Theorem.
This chapter was motivated by another proof of Whitney’s Theorem by Schmitt [27]
and the Hopf algebra defined by Borie [5].

In Chapter 6, we consider the problem of refining Kelly’s vertex and edge
reconstruction lemmas for counting rooted subgraphs such that the root vertex
coincides the deleted vertex, and for counting edge-rooted subgraphs such that the
root edge coincides the deleted edge. We show that such counting is not possible
in general unless the reconstruction conjecture is true, but a multiset of rooted
subgraphs of a fixed height k can be counted if G has radius more than k. Let Gv

k

be the subgraph of G rooted at v induced by the vertices at distance at most k from
v. Let Ge

k denote the subgraph of G rooted at edge e (i.e., with a distinguished edge
e) induced by edges at distance at most k from e. More specifically, we prove the
following propositions.

Proposition. If G is a connected graph with radius more than k, then the multiset Sk(G) :=
{Gv

k , v ∈ V(G)} is reconstructible.

Proposition. If G is a connected graph with radius more that k ≥ 1, then the multiset

Tk(G) := {Ge
k, e ∈ E(G)} is edge-reconstructible.
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Chapter 2

Preliminary concepts

In Section 2.1 we introduce basic graph theoretic terminology and notation.
In Section 2.2 we give a background of graph reconstruction. We introduce the
well known conjectures in this area, in particular, the conjectures of Ulam-Kelly
and Harary, and summarise important known results. In Section 2.3 we define
basic terminology and notation for posets. In Section 2.4, we give the necessary
background of Hopf algebras. The material in this chapter is based on the books
by Bondy and Murty [4], Stanley [28] and Grinberg and Reiner [9] and a survey by
Bondy and Hemminger [3].

2.1 Graphs

In this section, notations and definitions are taken from Thatte’s article [32]
and Bondy and Murty’s book [4].

A graph G = (V(G), E(G)) is an ordered pair, where V(G) is the set of
vertices and E(G) is the set of edges, together with an incidence function that asso-
ciates with each edge of G an unordered pair of (not necessarily distinct) vertices
of G. Here the term graph means a finite graph (i.e., both its set of vertices and set
of edges are finite).

A subgraph H of a graph G is another graph formed from a subset of the
vertices and edges of G such that the incidence function of H is the restriction of
the incidence function of G to E(H).

An induced subgraph of a graph G is another graph formed from a subset of
the vertices of G and all of the edges of G connecting pairs of vertices in that subset.
For X ⊆ V(G), we denote the subgraph induced by X by G[X], the subgraph
induced by V(G) \ X by G − X, or G − u when X = {u}. An edge-subgraph of G is
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a graph formed from a subset of the edges of G together with any vertices that are
their endpoints. For E ⊆ E(G), we denote the subgraph induced by E by G[E]. A
spanning subgraph of a graph G is a subgraph of G with the same vertex set as G.
We denote the spanning subgraph of G with edge set E(G) \ E by G − E, or G − e

if E = {e}.

Two graphs G and H are isomorphic if there are bijections f : V(G) → V(H)

and g : E(G) → E(H) such that the incidence function of G associates e ∈ E(G)

with vertices u and v of G if and only if the incidence function of H associates
g(e) ∈ E(H) with vertices f (u) and f (v) of H. We identify each isomorphism class
of graphs (also called an unlabelled graph) with a unique representative of the class.
If G is a graph, then G is the unique representative of the isomorphism class of G.
A graph is simple if it has no loops or parallel edges. Let G be the set consisting
of one representative element from each isomorphism class of simple graphs. We
assume that all newly declared graphs are from G . On the other hand, if a graph
H is derived from a graph G (e.g., H = G − e), then H may not be in G . If H ∈ G

is isomorphic to a subgraph of G, we say that G contains H as a subgraph or G

contains H, or H is contained in G.

We denote the number of subgraphs (induced subgraphs, edge-subgraphs)
of G that are isomorphic to H by s(H, G) (p(H, G), q(H, G), respectively). Let v be
a vertex of G. We denote by s(H, Gv) (p(H, Gv)) the number of subgraphs (induced
subgraphs) of G that are isomorphic to H and that contain the vertex v.

Example 2.1.1. Let G be the graph represented by Figure 2.2. We have s( , G) = 9,
p( , G) = 6 and q( , G) = 9, and s( , Gb) = 3 and p( , Gb) = 2.

An empty graph is a graph with empty edge set. A null graph Φ is a graph
with no vertices.

Let G be a graph. We denote the number of vertices of G by v(G), the number
of edges of G by e(G), and the number of components of G by k(G).

The degree of a vertex v in a graph G is the number of edges of G incident
with v. We denote the maximum degree in G by ∆(G), and the minimum degree
in G by δ(G).

The path graph on n vertices is denoted by Pn and the cycle graph on n

vertices is denoted by Cn. We denote the complete graph on n vertices by Kn, a
complete bipartite graph with n and m vertices in the two partitions by Kn,m, and
the graph K4 minus an edge by K4 \ e.

We refer to the graphs in Figure 2.1 in some proofs.

For terminology and notation about graphs not defined here, we refer to
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Sm,m ≥ 3

}m− 3

Tm,m ≥ 3

}m− 2

B1 B2 B3 B4

Figure 2.1: Some graphs referred to in proofs.

a

be

cd

Figure 2.2: Graph G

Bondy and Murty [4].

2.2 Graph reconstruction problems

Let G and H be two graphs. We say that G and H are vertex-hypomorphic if
there is a bijection f : V(G) → V(H) such that for all v ∈ V(G), G − v and H − f (v)

are isomorphic. The vertex deck or simply deck of G is the multiset Dv(G) := {G− u |

u ∈ V(G)} of unlabelled induced subgraphs of G. We say that G and H are edge-

hypomorphic if there is a bijection f : E(G) → E(H) such that for all e ∈ E(G), G − e

and H − f (e) are isomorphic. The edge-deck of G is the multiset De(G) := {G − e |

e ∈ E(G)} of unlabelled spanning subgraphs of G.

Figure 2.3 shows the deck of G represented by Figure 2.2.

Two graphs G and H are vertex-hypomorphic if and only if they have the
same vertex deck. A vertex reconstruction of a graph G is a graph H with the same
deck as G. A graph G is vertex reconstructible if it is determined, up to isomorphism,
by Dv(G), equivalently, if every graph that is vertex-hypomorphic to G is also
isomorphic to G.

Analogously, two graphs G and H are edge-hypomorphic if and only if they
have the same edge-deck. A graph G is edge reconstructible if it is determined, up to
isomorphism, by De(G), equivalently, if every graph that is edge-hypomorphic to
G is also isomorphic to G.

In the 1940s, Ulam [35] and Kelly [15] proposed the following conjecture,
which is known as the vertex reconstruction conjecture.

Conjecture 2.2.1. (Ulam and Kelly [15]) Every simple graph on at least three vertices is
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Figure 2.3: The deck of G represented by Figure 2.2.

vertex reconstructible.

The graphs 2K1 and K2 have the same deck but they are not isomorphic. An
analogous conjecture, known as the edge reconstruction conjecture, was proposed
by Harary [10].

Conjecture 2.2.2. (Harary [10]) Every simple graph on at least four edges is edge recon-

structible.

We denote by K3 + K1 the disjoint union of K3 and K1. Analogously, we
denote by K1,2 +K1 the disjoint union of K1,2 and K1. The pairs of graphs (K1,3, K3 +

K1) and (2K2, K1,2 + K1) have the same edge-deck but they are not isomorphic.

We can approach the reconstruction conjecture in two ways: reconstructing
classes of graphs and reconstructing graph invariants. A class of graphs is recon-
structible if every member of the class is vertex reconstructible. A graph invariant
is reconstructible if the invariant takes the same value on all vertex reconstructions
of a graph.

The classes of graphs such as regular graphs, disconnected graphs and tree
are vertex reconstructible [2].

Next we state two fundamental lemmas, namely Kelly’s Lemma and Kocay’s
Lemma, that are useful in many reconstruction proofs.

Lemma 2.2.3. (Kelly’s Lemma [16]) Let F and G be two graphs such that v(F) < v(G).

Then, s(F, G) is vertex reconstructible. Moreover, for each subgraph G − v in the deck of

G, the quantity s(F, Gv) is vertex reconstructible.

For a tuple F := (F1, . . . , Fk) of graphs, define the number of ways to cover
H by F as

c(F , H) :=
∣

∣{(H1, . . . , Hk) | ∀i Hi ⊆ H, Hi
∼= Fi, and ∪k

i=1 Hi = H}
∣

∣.

Example 2.2.4. If F = (K2, K3), and H = K3, then c(F , H) = 3. Here, we have one
way to cover H by K3 and three ways to put K2 into K3.

Lemma 2.2.5. (Kocay’s Lemma [17]) Let G be a graph. Let F := (F1, . . . , Fk) ∈ G k. We

have
k

∏
i=1

s(Fi, G) = ∑
H

c(F , H) s(H, G), (2.1)

where the sum is over all distinct (mutually non-isomorphic) graphs H.
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We also have an induced subgraph version of Kocay’s lemma.

Definition 2.2.6. Let G be a graph and F := (F1, . . . , Fk) ∈ G k. A vertex cover of G

by F is a tuple (H1, . . . , Hk) of induced subgraphs of G such that Hi
∼= Fi for all i,

and ∪iV(Hi) = V(G). We denote by cv(F , G) the number of vertex covers of G by
F .

See Thatte [33] for a proof of the following lemma.

Lemma 2.2.7. (Kocay’s Lemma for induced subgraphs) Let F := (F1, . . . , Fk) ∈ G k. We

have

cv(F , G) =
k

∏
i=1

p(Fi, G)− ∑
v(H)<v(G)

cv(F , H)p(H, G). (2.2)

Furthermore, if v(Gi) < v(G) for all i, then cv(F , G) is vertex reconstructible.

The following result, originally due to Hemminger [12], shows that the edge
reconstruction conjecture is weaker than the vertex reconstruction conjecture.

Proposition 2.2.8. 1. The number of isolated vertices is edge reconstructible.

2. If G is a graph without isolated vertices, then the deck of G can be constructed from

its edge-deck.

2.3 Partially ordered sets

For terminology and notation about partially ordered sets, we refer to Stan-
ley [28]. Here we state the terms that we frequently use in this thesis.

A partially ordered set or poset (S,≤) is a set S with a partial order relation
≤, which is a reflexive, antisymmetric and transitive relation.

Let (S,≤) be a partially ordered set. If x, y ∈ S, x ≤ y, x ̸= y and there is no
z ∈ S \ {x, y} such that x ≤ z ≤ y, then we say y covers x. We say that ρ : S → N is
a rank function if for all x, y ∈ S, y covers x implies ρ(y) = ρ(x) + 1.

A weighted poset is a poset (S,≤) with a compatible weight function ω : S ×

S → Z, where compatible means ω(x, y) = 0 unless x ≤ y. We say that weighted
posets (S,≤, ω) and (S′,≤′, ω′) are isomorphic if there is a bijection f : S → S′

such that for all x, y ∈ S, we have x ≤ y if and only if f (x) ≤′ f (y) and ω(x, y) =

ω′( f (x), f (y)).

Example 2.3.1. Let n ∈ N. Let Bn be the set of all subsets of {1, · · · , n}. We can
consider Bn as a poset by defining S ≤ T in Bn if S ⊆ T as sets. The zeta function

ζ : Bn × Bn → Z is defined by ζ(S, T) = 1, if S ≤ T and ζ(S, T) = 0, otherwise.
Thus, (Bn,≤, ζ) is a weighted poset.
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2.4 Hopf algebras

In Chapter 5, we use the definitions and results presented in this section.

A Hopf algebra is a vector space with maps: product, coproduct, antipode,
unit and counit. These maps have to satisfy certain compatibility conditions which
can be defined in terms of commutative diagrams. The product and the unit con-
stitute an algebra. The coproduct and the counit constitute a coalgebra. Next, we
formally define these terms.

Let K be a field. Denote by ⊗ the tensor product over K.

Definition 2.4.1 (Algebra). An algebra is a triple (A, m, µ) consisting of a vector
space A over K and K-linear maps m : A ⊗ A → A and µ : K → A that satisfy the
following conditions.

1. The following diagram commutes:

A ⊗ A ⊗ A A ⊗ A

A ⊗ A A

I⊗m

m⊗I m

m

where the map I is the identity map.

2. The following diagram commutes:

A ⊗ K A ⊗ A

A K ⊗ A

I⊗µ

s2 µ⊗I
m

s1

The map s1 : K⊗ A → A is defined by r⊗ a → ra and the map s2 : A⊗K → A

is defined by a ⊗ r → ar.

The map m is the product map and the map µ is the unit map.

Example 2.4.2. (Graphs) Let K be a field of characteristic zero. We define the
following algebra on K[G ]. The product map m : K[G ]⊗ K[G ] → K[G ] is given by

m(G ⊗ H) = G ⊎ H

for all G, H ∈ G , that is, the product is given by disjoint union of graphs, and the
unit map µ : K → K[G ] is given by

µ(1) = Φ.

The maps are extended linearly. This algebra is a monoid algebra.
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Definition 2.4.3 (commutative algebra). The algebra (A, m, µ) is commutative if
mτ = m, where τ denotes the twist map defined as τ(a ⊗ b) = b ⊗ a for a, b ∈ A.

Example 2.4.2 is a commutative algebra.

The objects called coalgebras that we are going to define now are (in some
sense) the dual to algebras.

Definition 2.4.4 (coalgebra). A coalgebra is a triple (C, ∆, ϵ) consisting of a vector
space C over K and K-linear maps ∆ : C → C ⊗ C and ϵ : C → K that satisfy the
following conditions.

1. The following diagram commutes:

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆

∆ I⊗∆

∆⊗I

2. The following diagram commutes:

C K ⊗ C

C ⊗ K C ⊗ C

1⊗−

−⊗1
∆

ϵ⊗I

I⊗ϵ

Here the maps − ⊗ 1 and 1 ⊗ − are defined by c → c ⊗ 1 and c → 1 ⊗ c,
respectively.

The maps ∆ and ϵ are called coproduct and counit maps, respectively.

Example 2.4.5. (A coalgebra of graphs) The coproduct map ∆ : K[G ] → K[G ] ⊗

K[G ] is given by
∆(G) = ∑

X⊆V(G)

G[X]⊗ G[X]

for all G ∈ G , where X = V(G)− X, and the counit map µ : K[G ] → K is given by

ϵ(G) =

{

1, if G = Φ;
0, otherwise.

.

The maps are extended linearly.

Definition 2.4.6 (cocommutative coalgebra). The coalgebra (C, ∆, ϵ) is cocommuta-
tive if

τ(∆) = ∆.
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Example 2.4.5 is a cocommutative coalgebra.

Let C be a coalgebra and let C∗ be its linear dual. If (C, ∆, ϵ) is a coalge-
bra, then (C∗, m, µ) is an algebra, where the maps m and µ are reduced from the
transpose of ∆ and ϵ, respectively. This result can be found in Underwood [36].

Definition 2.4.7 (bialgebra). A bialgebra is a K-vector space B together with maps
m, µ, ∆, ϵ that satisfy the following conditions:

1. (B, m, µ) is an algebra and (B, ∆, ϵ) is a coalgebra,

2. ∆ and ϵ are homomorphisms of algebras.

Example 2.4.8. (A bialgebra of graphs) The algebra and the coalgebra K[G ] given
in Examples 2.4.2 and 2.4.5 form a bialgebra.

Definition 2.4.9 (primitive element). Let B be a coalgebra. An element b ∈ B is a
primitive element of B if ∆(b) = 1 ⊗ b + b ⊗ 1.

Definition 2.4.10 (Hopf algebra). A Hopf algebra H is a bialgebra (H, m, µ, ∆, ϵ)

over a field K together with a K-linear map S : H → H that satisfies the coinverse
property

m(I⊗S)∆(h) = µ(ϵ(h)) = m(S ⊗ I)∆(h)

for all h ∈ H. The map S is called the coinverse (or antipode) map.

Next, we can see some properties of the coinverse map. See Grinberg [9] for
a proof of the following proposition.

Proposition 2.4.11. Let H be a Hopf algebra with coinverse S. Then the following proper-

ties hold.

1. S(ab) = S(b)S(a) for all a, b ∈ H,

2. S(1) = 1.

3. If H is commutative, then S2 = I.

4. If x is a primitive element, then S(x) = −x.

Definition 2.4.12 (graded module). A graded K-module V is one with a K-module
direct sum decomposition V =

⊕

n≥0 Vn. Elements x in Vn are called homogeneous
of degree n.

One endows tensor products V ⊗W of graded K-modules V, W with graded
module structure in which (V ⊗ W)n :=

⊕

i+j=n Vi ⊗ Wj.



26

Definition 2.4.13 (graded map). A K-linear map ψ : V → W between two graded
K-modules is called graded if ψ(Vn) ⊂ Wn for all n. We say that an algebra (coal-
gebra, bialgebra) is graded if it is a graded K-module and all of the relevant struc-
ture maps (µ, ϵ, m, ∆) are graded. We say that a graded module V is connected if
V0

∼= K.

We can see that in connected graded bialgebras, antipodes come for free.

Proposition 2.4.14. A connected graded bialgebra H has a unique antipode S, which is a

graded map S : H → H, endowing it with a Hopf structure.

See Grinberg [9] for a proof.
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Chapter 3

Subgraph posets and the

reconstruction conjectures

We define three subgraph posets of a graph G, namely, the abstract induced
subgraph poset P(G), the abstract edge-subgraph poset Q(G), and the abstract
bond lattice Ω(G). We survey a number of results from [31±33].

Our main theorem states that P(G) can be constructed from Q(G), except
when G belongs to a certain family N of graphs, and that Ω(G) can be con-
structed from Q(G), except when G belongs to a certain family M of graphs [8].
We characterise the families N and M .

The main difficulty in the construction of P(G) from Q(G) is the following.
The graphs K3, K1,3 and 3K2 have the same abstract edge-subgraph poset (see Fig-
ure 3.2). In fact we have an infinite family of pairs of nonisomorphic graphs with
the same edge-subgraph poset. For these graphs, we cannot determine their num-
ber of vertices from their abstract edge-subgraph poset. On the other hand, given
P(G), we trivially know the number of vertices of G. Hence a straightforward in-
duction on the number of edges does not help in the construction of P(G) from
Q(G). Our proof proceeds by showing that if a graph G does not belong to the
family N , then either G itself is Q-reconstructible, or the number of vertices and
the number of components of G can be determined from Q(G).

3.1 The abstract edge-subgraph poset and the edge re-

construction

Recall that G denotes the set of unlabelled simple graphs.
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Definition 3.1.1. (Thatte [32]) Let G and H be two graphs. Let Q := (G ,≤e, q) be a
weighted poset, where H ≤e G if H is isomorphic to an edge-subgraph of G, and
q : G × G → Z is defined by: q(G, H) equals the number of edge-subgraphs of G

isomorphic to H, for all G, H ∈ G . Let G be a graph and let Q(G) := {G1, . . . , Gm},
where G1 = K2, G2, . . . , Gm = G are the distinct non-empty edge-subgraphs of G.
The concrete edge-subgraph poset of G is the restriction of Q to Q(G); it is denoted
simply by Q(G). The abstract edge-subgraph poset of G is the isomorphism class of
Q(G), and is written as Q(G) := ({g1, . . . , gm},≤e, q). Thus g1 and gm are the min-
imal and the maximal elements in Q(G), respectively. We define a rank function ρ

on Q(G) such that ρ(g1) = 1 and ρ(gi) = e(Gi) for all i.

Let (S,≤) be a poset. The Hasse diagram of S is the graph whose vertices are
the elements of S, whose edges are the cover relations, and such that if x, y ∈ S,
x < y then y drawn above x. We use the Hasse diagram to illustrate the edge-
subgraph poset.

Example 3.1.2. The edge-subgraph poset of K4 \ e (concrete and abstract) is shown
in Figure 3.1. On the left side (a) is the concrete edge-subgraph poset and on the
right side (b) is the abstract edge-subgraph poset. The Hasse diagram is only for
illustration; it does not display the weights on all related pairs of graphs in Q(G).
For example, q(g3, g8) = 5. The weights not shown in the Hasse diagram may be
calculated using Kelly’s lemma.

4 1

1
2

1
4

3 2
1

3

2
2

(a)

g9

g8 g7

g5 g4g6

g2g3

g1

4 1

1
2

1
4

3 2
1

3

2
2

(b)

Figure 3.1: The concrete edge-subgraph poset of K4 \ e and the abstract edge-
subgraph poset of K4 \ e.

A graph G is Q-reconstructible if it is determined up to isomorphism by its
abstract edge-subgraph poset. An invariant of G is said to be Q-reconstructible if it
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is determined by Q(G). A class of graphs is Q-reconstructible if each element of the
class is Q-reconstructible. For all graph G, we have Q(G) = Q(G + K1). Therefore,
we understand Q-reconstructibility to mean Q-reconstructibility modulo isolated
vertices.

Example 3.1.3. Figure 3.2 shows the abstract edge-subgraph poset of K3. Graphs
K3, K1,3 and 3K2 are not Q-reconstructible, since they have the same abstract edge-
subgraph poset. The graph K4 \ e is Q-reconstructible, i.e., if H is a graph with 5
edges, then we have H ∼= K4 \ e if and only if Q(H) = Q(K4 \ e).

g3

g2

g1

3

2

Figure 3.2: The abstract edge-subgraph poset of K3.

We define the following families of graphs. Recall the definitions of graphs
from Section 2.1.

Let

F0 := {3K2, K3, K1,3},

F1 := {P4, K1,2 + K2, P4 + K2, T4},

F2 := {C4, 2K1,2, C4 + K2, B1, P6, B2, B3, B4},

F3 := {K1,m | m > 1 and m ̸= 3}
⋃

{mK2 | m > 1 and m ̸= 3},

F4 := {pK3 + qK1,3 + F | p ̸= q and F ∈ NX } \ {K3, K1,3}, where

X := {Pn | n ≥ 2}
⋃

{Cn | n ≥ 4}
⋃

{S4, K4 \ e, K4},

and NX is the set of all unlabelled finite graphs (including the null graph) with
components from X . We write N := ∪4

i=0Fi.

The following result, showing a relationship between the edge reconstruction
problem and the Q-reconstruction problem, was established in Thatte [32].

Theorem 3.1.4 (Theorem 2.1 [32]). The graphs in N are not Q-reconstructible, and the

edge reconstructible conjecture is true if and only if all graphs, except the graphs in N , are

Q-reconstructible.
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Graphs in each of the following sets have the same abstract edge-subgraph
poset: {K3, K1,3, 3K2},{P4, K1,2 +K2}, {P4 +K2, T4}, {C4, 2K1,2},{C4 +K2, B1}, {P6, B2},
{B3, B4}, {K1,m, mK2}, for all m > 1, and {pK3 + qK1,3 + F, qK3 + pK1,3 + F}, where
p ̸= q and F ∈ NX .

Although the Q-reconstruction problem and the edge reconstruction prob-
lem are equivalent (except for graphs in the family N ) when considered for all
graphs, it is often difficult to show that a given graph G or a specific class of
graphs is Q-reconstructible even when we know that it is edge reconstructible. On
the other hand, if a class of edge reconstructible graphs is closed under edge dele-
tion, it is Q-reconstructible. For example, consider the class of acyclic graphs. It is
known that acyclic graphs with four or more edges are edge reconstructible and the
class of acyclic graphs is closed under edge-deletion. Thus, we have the following
corollary.

Corollary 3.1.5 (Corollary 2.11 [32]). Acyclic graphs (trees and forests) that are not in

N are Q-reconstructible.

Let H be a graph. We define {H+e} as the set of graphs that can be obtained
from H by adding a new edge having 0, 1, or 2 end-vertices in H. For example,
{(3K2)

+e} = {4K2, P4 + K2, 2K2 + K1,2}.

Let G be a graph. A weight preserving isomorphism ℓ : Q(G) → Q(H) is
called a legitimate labelling of Q(G), and H is called a Q-reconstruction of G. (Note
that Q(H) is a concrete poset.) Let x ∈ Q(G). We say that x is reconstructible or
uniquely labelled if there is a graph F such that for all legitimate labelling maps ℓ

from Q(G), we have ℓ(x) = F. Similarly, a graph F is a distinguished subgraph of
G (or simply F is distinguished) if there is an element x such that for all legitimate
labelling maps ℓ from Q(G), we have ℓ(x) = F.

We have already seen that for m > 1, the graphs K1,m and mK2 have the same
abstract edge-subgraph poset. We require the following lemmas from [32] in the
proofs in this chapter.

Lemma 3.1.6 (Lemma 2.7 [32]). For all m ≥ 4, if G is a graph in the class {K+e
1,m \

{K1,m+1}}, then G is Q-reconstructible, and the label K1,3 and the label K3 (if K3 is a

subgraph of G) are uniquely assigned to elements of Q(G).

Lemma 3.1.7 (Lemma 2.8 [32]). For all m ≥ 4, if G is a graph in the class {(mK2)
+e \

{(m + 1)K2}}, then G is Q-reconstructible, and the label 3K2 is uniquely assigned to

elements of Q(G).

Lemma 3.1.8 (Proposition 2.9 [32]). Graphs with at most 7 edges, except the ones in N ,

are Q-reconstructible.
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3.2 The abstract induced subgraph poset and the ab-

stract bond lattice

Definition 3.2.1. (Thatte [33]) Let P := (G ,≤v, p) be a weighted poset, where
H ≤v G if H is isomorphic to an induced subgraph of G, and p : G × G → Z

is defined by: p(H, G) equals the number of induced subgraphs of G isomorphic
to H, for all G, H ∈ G . Let G be a graph and let P(G) := {G1, . . . , Gm}, where
G1 = K1, G2, . . . , Gm = G are the distinct non-empty induced subgraphs of G. The
concrete induced subgraph poset of G is the restrict of P to P(G); it is denoted simply
by P(G). The abstract induced subgraph poset of G is the isomorphism class of P(G),
and is written as P(G) := ({g1, . . . , gm},≤v, p). Thus g1 and gm are the minimal
and the maximal elements in P(G), respectively. We assume that g2 covers g1 (thus
G2

∼= K2 and e(Gi) = p(g2, gi)). We define a rank function ν on P(G) such that
ν(g1) = 1 and ν(gi) = v(Gi) for all i.

Example 3.2.2. The induced subgraph poset of K4 \ e (concrete and abstract) is
shown in Figure 3.3. On the left side (a) is the concrete induced subgraph poset
and on the right side (b) is the abstract induced subgraph poset. The Hasse diagram
is only for illustration; it does not display the weights on all related pairs of graphs
in P(G). As in the case of Q(G), the weights not shown in the Hasse diagram can
be calculated using Kelly’s lemma.

2 2

3 2

2

(a)

g5

g4 g3

g2

g1

2 2

3 2

2

(b)

Figure 3.3: The concrete induced subgraph poset of K4 \ e and the abstract induced
subgraph poset of K4 \ e.

A graph G is P-reconstructible if it is determined up to isomorphism by
its abstract induced subgraph poset P(G). An invariant of G is said to be P-
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reconstructible if it is determined by P(G). A class of graphs is P-reconstructible if
each element of class is P-reconstructible.

Thatte [31] proved the following theorem.

Theorem 3.2.3 (Proposition 2.7 [31]). The vertex reconstruction conjecture is true if and

only if every non-empty graph is P-reconstructible.

Let G be a graph. We say that a partition π := {X1, . . . , Xn} of V(G) is a con-

nected partition of V(G), if the induced subgraphs G[X1], . . . , G[Xn] are connected;
we write π ⊢c V(G). We denote by G[π] the subgraph G[X1] ⊎ G[X2] ⊎ . . . ⊎ G[Xn]

of G given by disjoint union.

Definition 3.2.4. (Thatte [33]) For Hi, Hj ∈ G , if there exists U ⊆ V(Hj) and π ⊢c U

such that Hj[π] ∼= Hi, we write Hi ≤π Hj. Let Ω := (G ,≤π, ω) be a weighted
poset, where ω : G × G → Z is defined as ω(H, G) := |{(π, U) | U ⊆ V(G), π ⊢c

U and G[π] ∼= H}|. Let G be a graph and let Ω(G) := {H1, . . . , Hm}, where H1 =

v(G)K1, H2, . . . , Hm = G are the distinct graphs induced by connected partitions
of V(G). The folded bond lattice of G is the restriction of Ω to Ω(G); it is denoted
simply by Ω(G). The abstract bond lattice of G is the isomorphism class of Ω(G),
written as Ω(G) := ({h1, . . . , hm},≤π, ω). Thus h1 and hm are the minimal and the
maximal elements in Ω(G), respectively. We define a rank function γ on Ω(G) such
that γ(h1) = 0. The number of components in Hi is given by k(Hi) = v(G)− γ(hi).

Example 3.2.5. The bond lattice of K4 \ e (folded and abstract) is shown in Figure
3.4. On the left side (a) is the folded bond lattice and on the right side (b) is the
abstract bond lattice. The Hasse diagram is only for illustration; it does not display
the weights on all related pairs of graphs in Ω(G).
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Figure 3.4: The folded bond lattice of K4 \ e and the abstract bond lattice of K4 \ e.

Definition 3.2.6. (Thatte [33]) A graph G is Ω-reconstructible if it is determined up
to isomorphism, modulo the number of isolated vertices, by its abstract bond lattice
Ω(G). An invariant of G is said to be Ω-reconstructible if it is determined by Ω(G).
A class of graphs is Ω-reconstructible if each element of class is Ω-reconstructible.

Theorem 3.2.7 shows that the P-reconstruction and Ω-reconstruction prob-
lems are equivalent, with a few simple exceptions.

Theorem 3.2.7 (Theorems 3.3 and 3.7 in [33]).

1. The abstract bond lattice of G can be constructed from its abstract induced subgraph

poset.

2. If a graph G has no isolated vertices and is not one of the graphs in {K1,n, nK2 | n >

1} ∪ {P4, K1,2 + K2, T4, P4 + K2}, then its abstract induced subgraphs poset can be

constructed from its abstract bond lattice.

For n > 1, the graphs K1,n and nK2 have the same abstract bond lattice. Also,
the pair of graphs P4 and K1,2 + K2, T4 and P4 + K2 have the same abstract bond
lattice.
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3.3 The connected induced subgraphs of a graph and

the vertex reconstruction conjecture

We prove in Proposition 3.3.3 that reconstruction from the deck is equivalent
to reconstruction from the collection of all connected induced subgraphs. This
result is implicit in Lemma 2.4 in [33]. Before proving it, we prove the following
lemmas.

Lemma 3.3.1. Let G be a graph. Then,

p(H, G) = ω(H, G)− ∑
F

ω(H, F)p(F, G), (3.1)

where summation is over all graphs F not isomorphic to H such that H is a spanning

subgraph of F.

Proof. For each U ⊆ V(G) and a connected partition π of U such that G[π] ∼= H,
we have an induced subgraph F of G on vertex set U such that F[π] ∼= H. Hence
by summing over induced subgraphs F of G such that H is a spanning subgraph
of F, we obtain

ω(H, G) = ∑
F

ω(H, F)p(F, G), (3.2)

Now we rearrange Equation 3.2 to obtain Equation 3.1.

The following lemma is obtained by applying Kocay’s Lemma for induced
subgraphs (see Equation 2.2).

Lemma 3.3.2 (Lemma 2.7 [33]). Let H ∼= ∑
n
i=1 kiHi. Then,

ω(H, G) =
∏

n
i=1(p(Hi, G))ki − ∑F<G cv(H, F)p(F, G)

∏
n
i=1 ki!

, (3.3)

where the summation is over all graph F with v(F) < v(G).

Let Dc(G) be the multiset of connected graphs in Dv(G). It is known that in
general Dc(G) is not sufficient to reconstruct G.

Proposition 3.3.3. Let G be a graph. Let D∗
c (G) be the multiset of all connected proper

induced subgraphs of G. The graph G is vertex reconstructible if and only if it is recon-

structible from D∗
c (G).

Proof. By Kelly’s lemma, we can construct D∗
c (G) from Dv(G). Hence if G is recon-

structible from D∗
c (G), then it is also reconstructible from Dv(G).
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Now, suppose that G is vertex reconstructible. Given D∗
c (G), we will con-

struct Dv(G) as follows. First, note that the number of vertices is known by mul-
tiplicity of K1 in D∗

c (G). We have |Dv(G)| = v(G) and all graphs in Dv(G) have
v(G)− 1 vertices. Thus, the graphs with number of vertices equal to v(G)− 1 in
D∗

c (G) belong to Dv(G). Now, we need to construct disconnected graphs in Dv(G)

that have v(G)− 1 vertices. Let {G1, . . . , Gm} be the set of unlabelled distinct dis-
connected graphs with components in D∗

c (G), with v(G)− 1 vertices each. Assume
that for all 1 ≤ i < j ≤ m, we have e(Gi) > e(Gj). For each 1 ≤ i ≤ m, we can use
inductively Equations (3.1) and (3.3) to calculate p(Gi, G), since on the right-hand
side in Equation 3.3, we have only connected induced subgraphs in the first coordi-
nate in p(., .) and if the graph H is a component of Gi then p(H, G) is known from
D∗

c (G). Thus, we can decide if Gi ∈ Dv(G), and we can calculate its multiplicity in
Dv(G). Therefore, G is reconstructible from D∗

c (G).

Lemma 3.3.4 expresses the number of induced subgraphs of a graph in terms
of induced subgraphs of its components.

Lemma 3.3.4 (Lemma 2.3 [33]). Let S := (S1, . . . , Sm) and T := (T1, . . . , Tn) be tuples

of connected graphs. Then

p(GS , GT ) = ∑
(B1,...,Bn)

n

∏
k=1

p(GBk
, Tk), (3.4)

where the summation is over all ordered partitions (B1, . . . , Bn) of the multiset {S1, . . . , Sm}

in n parts (where some parts are possibly empty), GS is the graph with components

S1, . . . , Sm and GBk
is the graph with components Bk.

Lemma 3.3.5. Let G, H be graphs. Then,

p(H, G) = P(p(Fi, Fj)) (3.5)

where P is a polynomial evaluated at p(Fi, Fj), where (Fi, Fj) are pairs from the collection

of connected induced subgraphs of G.

Proof. Equation 3.5 is obtained as follows: first, we apply Equation 3.4, and for each
term, we apply recursively Equation 3.1, substituting ω(., .).

Example 3.3.6. By Equation 3.4,

p(K2 + K1, S4 + K2) = p(K2 + K1, S4) + p(K2, S4)p(K1, K2) + p(K1, S4)p(K2, K2).

We apply Equation 3.1,

p(K2 + K1, S4) = 8 − 2p(K1,2, S4)− 3p(K3, S4).



36

So, we obtain

p(K2 + K1, S4 + K2) = 8 − 2p(K1,2, S4)− 3p(K3, S4) + p(K2, S4)p(K1, K2)+

p(K1, S4)p(K2, K2).

3.4 The abstract induced subgraph poset and the ab-

stract edge-subgraph poset

In this section, we prove the following result which is the main theorem of
this chapter.

Theorem 3.4.1. Let G be a graph with no isolated vertices. Then

1. Ω(G) can be constructed from Q(G) if and only if G does not belong to M :=
F0 ∪F2 ∪F4.

2. P(G) can be constructed from Q(G) if and only if G does not belong to N :=
4
⋃

i=0

Fi.

Throughout this section we assume that G is a graph without isolated ver-
tices, and that we are given Q(G). The main idea in proving Theorem 3.4.1 is the
following Lemma 3.4.2. When it is applicable, it allows us to recognise which ele-
ments of Q(G) must be in Ω(G) (since any element in Ω(G) is in Q(G), except for
isolated vertices) and to calculate the weight function in the definition of Ω(G).

Lemma 3.4.2. Let gi, gk ∈ Q(G). Then ω(gi, gk) may be expressed as a polynomial

in q(gr, gs), where gi ≤e gr <e gs ≤e gk and, for all gr, we have v(gi) = v(gr) and

k(gi) = k(gr), and for all gs ̸= gk, we have v(gi) = v(gs) and k(gi) = k(gs).

Proof. If (v(gi), k(gi)) = (v(gk), k(gk)), then

ω(gi, gk) =







1 if gi = gk,

0 otherwise.

Also, if gi ̸≤e gk, then ω(gi, gk) = 0. Hence in the following calculation we assume
that (v(gi), k(gi)) ̸= (v(gk), k(gk)) and gi <e gk. We have

q(gi, gk) = ∑
gj|v(gj)=v(gi),

k(gj)=k(gi)

q(gi, gj)ω(gj, gk). (3.6)
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We rewrite Equation (3.6) as

ω(gi, gk) = q(gi, gk)− ∑
gj|gi<egj

v(gj)=v(gi),
k(gj)=k(gi)

q(gi, gj)ω(gj, gk), (3.7)

and repeatedly expand the factors ω(gj, gk) in each term on the right hand side,
with the condition that ω(gj, gk) = q(gj, gk) if there is no gr such that gj <e gr <e gk

and v(gr) = v(gj) and k(gr) = k(gj). Thus we obtain the required polynomial.

Lemma 3.4.2 can be used to calculate ω(gi, gk) only if we know the number
of vertices and the number of components of all elements that appear in the com-
putation. Hence most of the following lemmas are meant to either Q-reconstruct
G or to show that the number of vertices and the number of components of all
elements that appear in the computation of ω(gi, gk) can be reconstructed.

Next we prove several propositions and lemmas that eventually imply the
main theorem. We will first prove part (1) of the theorem, and then use Theo-
rem 3.2.7 to prove the part (2).

The following proposition shows the ªonly ifº parts of the main theorem.

Proposition 3.4.3.

1. If G belongs to M , then Ω(G) cannot be constructed from Q(G).

2. If G belongs to N , then P(G) cannot be constructed from Q(G).

Proof. 1. The graphs 3K2, K1,3, K3 have Q(3K2) = Q(K1,3) = Q(K3), and the
graphs 3K2, K1,3 have Ω(3K2) = Ω(K1,3), but Ω(K3) is different.

If G ∈ F4, then suppose that G = rK3 + sK1,3 + F and H = sK3 + rK1,3 + F,
where r ̸= s. Now Ω(G) ̸= Ω(H): this follows from the fact that the rank of
the maximal element in Ω(.) is v(.)− k(.), hence the two posets have different
heights.

Graphs in F2 form pairs so that graphs in each pair have the same abstract
edge-subgraph poset but different abstract bond lattice.

2. If G, H ∈ N such that Q(G) ∼= Q(H) and G ̸∼= H, then there are only
two cases in which v(G) = v(H), which are {G, H} = {C4 + K2, B1} and
{G, H} = {B2, B3}. In these cases, we verify that P(G) ̸∼= P(H). In all other
cases, v(G) ̸= v(H), hence G and H cannot have the same abstract induced
subgraph poset. Hence if G ∈ N , then P(G) cannot be constructed from
Q(G).
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Proposition 3.4.4. If G ∈ F1 ∪F3, then Ω(G) can be constructed from Q(G).

Proof. Graphs in each pair {K1,m, mK2}, m ̸= 3 have the same abstract edge-subgraph
poset and the same abstract bond lattice. We prove that no other graph has the same
abstract edge-subgraph poset as one of these graphs by induction on the number of
edges of G ∈ {K1,m, mK2}. If e(G) = 2 or e(G) = 4 then the result holds. Suppose
that the result holds for all G ∈ {K1,m, mK2} such that m ≥ 4. If e(G) = m + 1, then
by induction hypothesis, there is an element x ∈ Q(G) such that x represents K1,m

or mK2. By Lemmas 3.1.6 and 3.1.7, we have G ∈ {K1,m+1, (m + 1)K2}.

Graphs in each pair {P4, K1,2 + K2}, {P4 + K2, T4} have the same abstract
edge-subgraph poset and the same abstract bond lattice. By Lemma 3.1.8, no other
graph has the same abstract edge-subgraph poset as one of these graphs.

Lemma 3.4.5. If G ̸∈ N , then v(G) and k(G) are Q-reconstructible.

Proof. We prove the result by induction on the number of edges of G. All graphs on
at most seven edges that are not in N are Q-reconstructible (Lemma 3.1.8). Hence
we take e(G) = 7 as the base case, for which the result is true. Suppose now that
the result is true for all G ̸∈ N such that 7 ≤ e(G) ≤ m. Let G ̸∈ N be a graph on
m + 1 edges.

By Lemma 3.1.5, if G is an acyclic graph, then G is Q-reconstructible, thus
k(G), v(G) are known. So assume that G contains a cycle. Hence each edge e in G

that is on a cycle is such that k(G − e) = k(G), and v(G − e) = v(G), and G − e has
no isolated vertices (since we have assumed that G has no isolated vertices).

Now consider an arbitrary element x of rank m in Q(G). Suppose that x :=
G − e (minus the resulting isolated vertices). We claim that x cannot be in F0 ∪

F1 ∪ F2 since m ≥ 7, and all graphs in F0 ∪ F1 ∪ F2 have at most six edges. By
Lemmas 3.1.6 and 3.1.7, we also assume that x cannot be in F3 since in that case G

would be Q-reconstructible . If x ̸∈ N , then we know v(x) and k(x) by induction
hypothesis; and we annotate x with this information. If it is known from Q(G) that
G has an edge e such that e is on a cycle and G − e is not in F4, then v(G) is the
maximum v(H) among all graphs of rank m in Q(G) that are not in N . Next we
show that such an edge must exist.

Consider a graph H ∈ F4. Suppose that G = H + uv, where u and v are
non-adjacent vertices in the same component of H (so that uv is on a cycle in
H + uv). Each component of H is in X ∪ {K1,3, K3}. We verify that in all possible
ways of adding an edge uv between two vertices of the same component of H, we
either obtain a graph in N or obtain a graph G which contains an edge e on a
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cycle such that G − e is not in N . Since G ̸∈ N , it is the latter case. Thus v(G) is
reconstructible.

Now, k(G) is equal to the minimum number of components among graphs
not in N that correspond to elements of rank m and that have the same number of
vertices as G.

Lemma 3.4.6 (Lemma 2.5 [32]). The graph K1,2 + 2K2 is Q-reconstructible, and all ele-

ments of Q(K1,2 + 2K2) are uniquely labelled.

Lemma 3.4.7. If G ̸∈ N and contains both K1,2 + 2K2 and T4 as subgraphs, then v(x)

and k(x) are reconstructible for all x in Q(G).

Proof. Let x be an element of Q(G). If x ̸∈ N , then v(x) and k(x) are known by
Lemma 3.4.5. Hence assume that x ∈ N .

We claim that all elements of Q(G) of rank 3 are uniquely labelled. Indeed,
all elements of Q(K1,2 + 2K2) are uniquely labelled (by Lemma 3.4.6), Q(T4) ∼=

Q(P4 + K2), and there is no other graph H such that Q(H) ∼= Q(T4), hence we dis-
tinguish T4. Now K1,3 is distinguished since T4 contains K1,3, but does not contain
K3 or 3K2. Furthermore, 3K2 is distinguished. Thus K3 is distinguished also. Other
subgraphs with 3 edges are distinguished since they are edge reconstructible, and
graphs with 2 edges are distinguished. Thus, the graphs in F0, P4 + K2 and T4 are
distinguished.

Graphs P4 and K1,2 + K2 are distinguished; since K1,2 + 2K2 contains K1,2 +

K2, but does not contain P4.

Pairs of graphs in F2 are distinguished; since P4 and K1,3 are distinguished.

Graphs K1,m and mK2 are distinguished; since K1,m contains K1,3 as a sub-
graph, while mK2 does not.

Graphs rK3 + sK1,3 + F and sK3 + rK1,3 + F, where r ̸= s, are distinguished
since K1,3 and K3 are distinguished.

Lemma 3.4.8. If G ̸∈ N , e(G) ≥ 5, and ∆(G) ≥ 4, then v(x) and k(x) are recon-

structible for all x in Q(G).

Proof. Let x ∈ Q(G). If x ̸∈ N , then v(x) and k(x) are known by Lemma 3.4.5.
Hence assume that x ∈ N . By Lemma 3.1.6, K1,3 is distinguished. This allows
distinguishing subgraphs isomorphic to P4 + K2, T4, B1, C4 + K2, B2, P6, B3, B4 and
all subgraphs in F3 ∪F4. Hence for such elements, v(x) and k(x) are known. The
only elements in N that are not yet distinguished are P4, K1,2 + K2, C4, 2K1,2.
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We have ∆(G) ≥ 4 and G itself is not K1,∆(G), hence G contains one of the
graphs in {K+e

1,4} \ {K1,5} (i.e., one of K1,4 + K2, S5, T5) as a subgraph. We use such
a subgraph to distinguish P4 and K1,2 + K2.

If G contains K1,4 + K2, then K1,4 + K2 is distinguished (by Lemma 3.1.6).
Now K1,2 + K2 and P4 are distinguished since K1,4 + K2 does not contain P4 but
contains K1,2 + K2.

If G contains S5, then it also contains S4, and S4 is Q-reconstructible. Hence
S4 is distinguished. Now K1,2 + K2 and P4 are distinguished since S4 does not
contain K1,2 + K2 but contains 2 subgraphs isomorphic to P4.

If G does not contain S4 but contains T5, then G contains T4, which is distin-
guished (as noted above). Now P4 and K1,2 +K2 are distinguished since T4 contains
one subgraph isomorphic to K1,2 + K2 and two subgraphs isomorphic to P4.

Once P4 is distinguished, we also distinguish C4 and 2K1,2 since only C4

contains P4 as a subgraph.

Now v(x) and k(x) are known for all x in Q(G).

Lemma 3.4.9. If G /∈ N , ∆(G) ≤ 3, and G contains K1,2 + 2K2 but does not contain T4,

then G is Q-reconstructible.

Proof. Let I be the class of graphs satisfying the conditions in the statement of the
lemma.

First we show that we can recognise if G is in I . Graphs not in N with
at most 7 edges are Q-reconstructible (Lemma 3.1.8), so we assume that e(G) > 7.
Since G is not K1,m for any m, we can assume that ∆(G) < e(G). By Lemma 3.1.6, we
can recognise if ∆(G) ≥ 4. Since K1,2 + 2K2 is Q-reconstructible, we can recognise
if G contains K1,2 + 2K2 as a subgraph. We can recognise if G contains T4 as a
subgraph as follows: if G contains T4, then G has a 7-edge-subgraph F that contains
T4, and thus cannot be in N . Hence F is Q-reconstructible (by Lemma 3.1.8). Thus
we know that G contains T4 as a subgraph. Hence we now assume that G and all
its Q-reconstructions are in I .

Next we make some observations about the structure of any graph G in class
I . Graphs S4, K4 \ e, K4 are in I , and since G does not contain T4, these graphs
can only occur as subgraphs of 4-vertex components. Also, we can verify that
any subgraph isomorphic to K3 or K1,3 is either a component of G or a subgraph
of a component isomorphic to S4, K4 \ e or K4. All other components of G are
paths or cycles. Hence G is of the form rK3 + sK1,3 + F, where components of F

are in X . But G is not in N , hence r = s. Since q(K1,3, H) = q(K3, H) for all
H ∈ {S4, K4 \ e, K4}, we have k(K3, G) = k(K1,3, G) and q(K3, G) = q(K1,3, G) for all
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graphs in I .

Graphs S4, K4 \ e, K4 are all Q-reconstructible, hence q(S4, G), q(K4 \ e, G)

and q(K4, G) are known. Therefore, k(S4, G), k(K4 \ e, G), k(K4, G), k(K3, G) and
k(K1,3, G) are all reconstructible by the following sequence of calculations:

k(K4, G) = q(K4, G)

k(K4 \ e, G) = q(K4 \ e, G)− q(K4 \ e, K4)k(K4, G)

k(S4, G) = q(S4, G)− q(S4, K4 \ e)k(K4 \ e, G)− q(S4, K4)k(K4, G),

k(K3, G) = k(K1,3, G) = q(K3, G)− k(S4, G)− 2k(K4 \ e, G)− 4k(K4, G).

The graph K1,2 + 2K2 is contained in G, and by Lemma 3.4.6, the graphs
K2, P3, 2K2, K1,2 + K2, 3K2, and K1,2 + 2K2 are distinguished. Now P4 is distin-
guished because it is edge reconstructible and all edge-deleted subgraphs of P4 are
distinguished. The argument extends to C4, P5, C5, P6 and C6 - they are all distin-
guished. (Of these graphs, C5, C6 and P5 are Q-reconstructible.) Thus we know
q(Pi, G), 2 ≤ i ≤ 6 and q(Ci, G), 4 ≤ i ≤ 6.

Graphs with at most 7 edges that are not in N are Q-reconstructible, hence
we prove the lemma by induction on e(G), with e(g) = 7 as the base case. Suppose
that the result is true for all G ∈ I such that 7 ≤ e(G) ≤ m. Let G be a graph with
e(G) = m + 1, and suppose that we are given Q(G).

Paths and cycles with i edges, for 7 ≤ i ≤ m are distinguished by induction
hypothesis. Hence if G itself is a cycle or path, then its edge-deck is known, and
by edge reconstructibility of cycles and paths, G is Q-reconstructible. Hence we
assume that G is not a path or cycle.

Cycles of length 5 or more can only be components (since G does not contain
T4). Now, we calculate k(Pi, G), 2 ≤ i ≤ m and k(Ci, G), 4 ≤ i ≤ m by solving the
following equations (in that order):

k(C4, G) = q(C4, G)− q(C4, K4 \ e)k(K4 \ e, G)− q(C4, K4)k(K4, G),

k(Ci, G) = q(Ci, G) for 5 ≤ i ≤ m,

k(Pi, G) = q(Pi, G)− ∑
H

q(Pi, H)k(H, G) for i = m, m − 1, . . . , 2,

where the summation in the last equation is over H ∈ {K1,3, K3, S4, K4 \ e, K4, Pr, r >

i, Cs, s ≥ 4}.

Now all components of G are known along with their multiplicities, com-
pleting the induction step and the proof.

Lemma 3.4.10. If G /∈ N , ∆(G) ≤ 3, and G contains T4 but does not contain K1,2 + 2K2,

then G is Q-reconstructible.
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Proof. Graphs with at most 7 edges that are not in N are Q-reconstructible, hence
we assume that e(G) > 7.

If a graph contains T4, and has 2 or more non-trivial components, then it also
contains K1,2 + 2K2. Therefore we assume that G is connected. The conditions on G

also imply that v(G) ∈ {5, 6}. If v(G) = 5, ∆(G) ≤ 3, then e(G) ≤ 7 and the result
is true. Therefore, we can assume that v(G) = 6. Now ∆(G) ≤ 3 and e(G) > 7
imply that have e(G) ∈ {8, 9}.

For any graph H, if 4 ≤ e(H) ≤ 9, then v(H) ≤ 10 or H is disconnected.
In either case, H is vertex reconstructible, and hence edge reconstructible (see [12,
16, 21]). If e(G) = 8, the degree sequence of G is 3, 3, 3, 3, 2, 2 or 3, 3, 3, 3, 3, 1. Now
a 7-edge-subgraph of G cannot have a component isomorphic to K3 or K1,3 (since
the degree sequence of K3 and K1,3 is 2, 2, 2 and 3, 1, 1, 1, respectively), hence G

does not have a 7-edge-subgraph in N . Hence all edge-deleted subgraphs of G are
Q-reconstructible, and since G is edge reconstructible, it is also Q-reconstructible.

If e(G) = 9, then the degree sequence of G is 3, 3, 3, 3, 3, 3, by a similar ar-
gument as in the case e(G) = 8, we note that no edge deleted subgraph of G is in
N , hence using the case e(G) = 8, we can construct the edge deck of G, and then
reconstruct G since G is edge reconstructible.

Proof of Theorem 3.4.1 (the ’if’ part). Let G be a graph such that G /∈ M .

If G /∈ N and e(G) ≤ 7, then G is Q-reconstructible by Lemma 3.1.8. Hence
Ω(G) can be constructed from Q(G). If G /∈ N , and contains K1,2 + 2K2 or T4,
and ∆(G) ≤ 3, then G is Q-reconstructible by Lemmas 3.4.9 and 3.4.10. Hence
Ω(G) can be constructed from Q(G). If G contains neither T4 nor K1,2 + 2K2 as a
subgraph, then e(G) ≤ 7. If G ∈ F3 ∪ {P4, K1,2 + K2, P4 + K2, T4}, then Ω(G) can be
constructed from Q(G) by Propositions 3.4.4. In all other cases, by Lemmas 3.4.7
and 3.4.8, we can reconstruct v(x) and k(x) for all x ∈ Q(G).

Now we apply Lemmas 3.4.2 to gi and gk, with gk as the maximal element,
to recognise if gi must be Ω(G). Then we again apply Lemma 3.4.2 for all gi, gk

that are marked as elements of Ω(G).

Let G be a graph such that G /∈ N . Given Q(G), we construct Ω(G). Now,
by Theorem 3.2.7, we construct P(G) from Ω(G).

The following corollary generalises the result that edge reconstruction con-
jecture is weaker than the vertex reconstruction conjecture.

Corollary 3.4.11. If a graph G not in N is P-reconstructible, then it is Q-reconstructible.

Remark 3.4.12. Consider the infinite posets Q and Ω. We can construct Ω from Q,
since the elements G ∈ M can be distinguished.
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3.5 Conclusions and outlook

We have the following result of Lovász on edge reconstruction.

Theorem 3.5.1. (Lovász [19]) Graphs on n vertices having more than (n
2)/2 edges are edge

reconstructible.

We tried to prove the following generalisation of Lovász’s result.

Conjecture 3.5.2. Let G be a graph (without isolated vertices) with n vertices and m edges

such that m > 7. If m > 1
2(

n
2), then G is Q-reconstructible.

Remark 3.5.3. 1. By Lemma 3.1.8, we consider m > 7.

2. We cannot apply Theorem 3.1.4, since we cannot use the induction on number
of edges.

A proof of Theorem 3.5.1 uses Nash-William’s Lemma (Lemma 2.26 in [4]).
We cannot use the same technique to prove Conjecture 3.5.2, since each element
in Q is abstract. We studied other proofs of Theorem 3.5.1 in Thatte [30] and
Mnukhin [22].

In the language of Hopf algebras, Schmitt [27] proved that any invariant
which counts subobjects of a particular type is given by a unique polynomial in
invariants which count connected subobjects. Besides, he applied the above result
for graphs, obtaining Whitney’s subgraph expansion theorem. For a Hopf algebra
of graphs, Iovanov and Jun [13] found a basis of the space of primitives and applied
it to known results on reconstruction of graphs. We investigated (in collaboration
with Monique Müller Lopes Rocha (UFSJ)) whether constructions such as P(G) to
Ω(G) and Ω(G) to P(G) may be described in the language of Hopf algebras. It
appears that the enumerative methods used in these constructions are similar to
the counting in Whitney’s subgraph expansion theorem.
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Chapter 4

Other relational structures on graphs

and associated reconstruction

problems

The contents of this chapter are motivated by the following conjecture pro-
posed in [32]: If f is a permutation of the set G of all graphs such that f preserves
the number of homomorphisms from G to H, for all graphs G and H in G , then f

is the identity permutation. In other words, the relational structure on G arising
from graph homomorphisms has no non-trivial automorphisms, or is rigid. It was
proved in [32] that this conjecture is weaker than the edge reconstruction conjec-
ture. We consider a variety of relational structures on G arising from general graph
homomorphisms, monomorphisms, epimorphisms, and so on. We then formulate
a class of reconstruction conjectures for these relational structures. All these con-
jectures say that the structure under consideration is rigid. We prove relationships
among the various conjectures.

4.1 Some definitions and conjectures

Let G, H ∈ G . We say a map f : V(H) → V(G) is a homomorphism from
H to G if for each {x, y} ∈ E(H) we have { f (x), f (y)} ∈ E(G). A one-to-one
homomorphism is called a monomorphism. An edge-surjective homomorphism is
called an epimorphism. A vertex-surjective homomorphism is called a surjective

homomorphism.

We denote the number of homomorphisms from H to G by hom(H, G); the
number of monomorphisms from H to G by mon(H, G); the number of monomor-
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phisms f from H to G such that the image of f is an induced subgraph of G by
ind(H, G); the number of epimorphisms from H to G by epi(H, G); and the number
of surjective homomorphisms from H to G by surhom(H, G).

Let G and H be graphs. We define Σ(H, G) to be the number of monomor-
phisms f from H to G such that for each component B of H, the subgraph of G

induced by f (V(B)) is isomorphic to B.

Example 4.1.1. Consider the bipartite graph K1,2 and the cycle graph C4. We have
hom(K1,2, C4) = 16, mon(K1,2, C4) = 8 and Σ(K1,2, C4) = 8.

Now, consider K3. We have hom(K1,2, K3) = 12, mon(K1,2, K3) = 6 and
surhom(K1,2, K3) = 6, however epi(K1,2, K3) = 0 and Σ(K1,2, K3) = 0.

Definition 4.1.2. We define H , M , I and L as weighted directed complete infinite
graphs, where the vertex set is G , and the weights are, respectively, hom(H, G),
mon(H, G), ind(H, G) and Σ(H, G) for all G, H in G .

Observe that we can ignore the arcs with zero weights and consider M ,
I and L as posets. Note that we do not obtain a poset from homomorphisms
since it is not antisymmetric. For example, if G ∼= K1,2 to H ∼= K2, then there are
homomorphisms from G to H as well as from H to G. We propose the following
class of conjectures.

Conjecture 4.1.3. 1. (HOM) Let σ : G → G be a bijection such that hom(H, G) =

hom(σ(H), σ(G)) for all G, H ∈ G , then σ is the identity map. That is, H has no

non-trivial automorphisms.

2. (MON) Let σ : G → G be a bijection such that mon(H, G) = mon(σ(H), σ(G))

for all G, H ∈ G , then σ is the identity map. That is, M has no non-trivial automor-

phisms.

3. (IND) Let σ : G → G be a bijection such that ind(H, G) = ind(σ(H), σ(G)) for all

G, H ∈ G , then σ is the identity map or σ(G) = Gc for all G ∈ G . That is, I has

only two automorphisms.

4. (LRC) Let σ : G → G be a bijection such that Σ(H, G) = Σ(σ(H), σ(G)) for all

G, H ∈ G , then σ is the identity map. That is, L has no non-trivial automorphisms.

In the next section, we will prove relations among the above conjectures.
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4.2 Some results on Conjectures 4.1.3

In this section we show that Conjecture 4.1.3(3) is weaker than the vertex re-
construction conjecture (Proposition 4.2.1) and that the Conjecture 4.1.3(2) is weaker
than edge reconstruction conjecture (Proposition 4.2.2).

Proposition 4.2.1. (VRC ⇒ IND) Let σ be an automorphism of I . If the vertex recon-

struction conjecture is true, then σ is the identity map or σ(G) = Gc for all G ∈ G .

Proof. We claim that σ(K1) = K1. Indeed, if σ(K1) = G and σ(H) = K1, then

ind(K1, H) = ind(σ(K1), σ(H)) = ind(G, K1).

But ind(K1, H) is the number of vertices of H and ind(G, K1) = 0 unless G = K1.

Note that the number of vertices is preserved by the automorphism σ, thus
σ(K2) = K2 or σ(K2) = 2K1. First, we will prove that if σ(K2) = K2, then σ(H) = H

for all H. Suppose that σ(H) = H for all H such that 2 ≤ v(H) ≤ k. Let H be a
graph with k + 1 vertices. We have, by the induction hypothesis,

ind(G, H) = ind(G, σ(H))

for all G such that v(G) ≤ k. In the other words, H and σ(H) have the same
vertex-deck. The vertex reconstruction conjecture implies that σ(H) = H.

Now we will show that if σ(K2) = 2K1, then σ(H) = Hc for all H. Suppose
that σ(H) = Hc for all H such that 2 ≤ v(H) ≤ k. Let H be a graph with k + 1
vertices. We have, by induction hypothesis,

ind(G, H) = ind(Gc, σ(H))

for all G such that v(G) ≤ k. Since ind(G, H) = ind(Gc, Hc) for all G, H ∈ G , Hc

and σ(H) have the same vertex-deck. The vertex reconstruction conjecture implies
that σ(H) = Hc, completing the result.

Proposition 4.2.2. (ERC ⇒ MON) Let σ be an automorphism of M . If the edge recon-

struction conjecture is true, then σ is the identity map.

Proof. We can see σ(H) = H for all H such that e(H) ≤ 3.

Suppose that σ(H) = H for all H such that 3 ≤ e(H) ≤ k. Let H be a graph
with k + 1 edges. We have, by induction hypothesis,

mon(G, H) = mon(G, σ(H))

for all G such that e(G) ≤ k. In the other words, H and σ(H) have the same edge-
deck. Now, the edge reconstruction conjecture implies that σ(H) = H and we have
the result.
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We show in Theorem 4.2.5 that Conjecture 4.1.3 (2) is weaker than Conjecture
4.1.3 (3), and Conjecture 4.1.3 (1) is weaker than Conjecture 4.1.3 (2). First, we need
the following lemma.

Lemma 4.2.3. Let G and H be graphs. Then, the following identities hold

hom(H, G) = surhom(H, G) + ∑
F|v(F)<v(G)

surhom(H, F)p(F, G) (4.1)

hom(H, G) = mon(H, G) + ∑
F|v(F)<v(H)

surhom(H, F)p(F, G) (4.2)

mon(H, G) = ind(H, G) + ∑
H′|e(H′)>e(H),

v(H′)=v(H)

mon(H, H′)p(H′, G) (4.3)

hom(H, G) = epi(H, G) + ∑
F|e(F)<e(G)

epi(H, F)s(F, G) (4.4)

p(H, G) =
ind(H, G)

aut(H)
(4.5)

s(H, G) =
mon(H, G)

aut(H)
. (4.6)

Proof. For Equation (4.1) each homomorphism f from H to G, the image of f is a
surjective homomorphism from H to f (H). The summation is over all the induced
subgraphs of G, since a surjective homomorphism is a vertex-surjective homomor-
phism. Thus, Equation (4.1) holds. We use a similar argument to prove Equation
(4.4), but now the summation is over all the subgraphs of G, since an epimorphism
is an edge-surjective homomorphism.

Equation (4.2) is true, since for each homomorphism f from H to G, if f is
not a monomorphism, then it is a surjective homomorphism from H to F, where F

is an induced proper subgraph of G.

Equations (4.5) and (4.6) are true by definition. We have,

mon(H, G) = aut(H)s(H, G)

= aut(H)









p(H, G) + ∑
H′|e(H′)>e(H),

v(H′)=v(H)

s(H, H′)p(H′, G)









= ind(H, G) + ∑
H′|e(H′)>e(H),

v(H′)=v(H)

mon(H, H′)p(H′, G),

hence Equation (4.3) is true.

Lemma 4.2.4. [Thatte [32]] Let σ be an automorphism of H . Then for all G, we have

v(G) = v(σ(G)) and e(G) = e(σ(G)). Moreover, σ(G) = G for all G such that e(G) ≤

3.
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Theorem 4.2.5. (IND ⇒ MON ⇒ HOM) Let σ be an automorphism of H . Then, for

all graphs G, H ∈ G , mon(G, H), ind(G, H), and surhom(H, G) are preserved by σ.

Furthermore, if σ is an automorphism of M , then σ is also an automorphism of I .

Proof. We will prove the result by induction on v(G). For v(G) = 1, σ(K1) = K1,
and we have

mon(K1, H) = hom(K1, H) = hom(σ(K1), σ(H)) = mon(σ(K1), σ(H))

surhom(H, K1) = hom(H, K1) = hom(σ(H), σ(K1)) = surhom(σ(H), σ(K1))

ind(K1, H) = mon(K1, H) = mon(σ(K1), σ(H)) = ind(σ(K1), σ(H))

for each graph H.

Suppose that for all graphs H and for all graphs G with v(G) < n, we
have surhom(H, G) = surhom(σ(H), σ(G)), mon(G, H) = mon(σ(G), σ(H)), and
ind(G, H) = ind(σ(G), σ(H)). First we prove that for all graphs H and for all
graphs G with v(G) = n, we have surhom(H, G) = surhom(σ(H), σ(G)).

We have

surhom(H, G) = hom(H, G)− ∑
F|v(F)<v(G)

surhom(H, F)p(F, G)

= hom(σ(H), σ(G))− ∑
F|v(F)<v(G)

surhom(σ(H), σ(F))p(σ(F), σ(G)),

= hom(σ(H), σ(G))− ∑
F|v(F)<v(σ(G))

surhom(σ(H), F)p(F, σ(G))

= surhom(σ(H), σ(G))

The first line is given by Lemma 4.2.3. In the second line, we use the fact that
σ preserves the number of homomorphism, and we use the induction hypothesis,
since

p(F, G) =
ind(F, G)

aut(F)
=

ind(F, G)

mon(F, F)
.

In the third line, we use Lemma 4.2.4.

Next we prove that mon(G, H) = mon(σ(G), σ(H)), for all graphs G with
v(G) = n.
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We have, by the similar reasoning,

mon(G, H) = hom(G, H)− ∑
F|v(F)<v(G)

surhom(G, F)p(F, H)

= hom(σ(G), σ(H))− ∑
F|v(F)<v(G)

surhom(σ(G), σ(F))p(σ(F), σ(H))

= hom(σ(G), σ(H))− ∑
F|v(F)<v(σ(G))

surhom(σ(G), F)p(F, σ(H))

= mon(σ(G), σ(H)).

Now, we prove that ind(G, H) = ind(σ(G), σ(H)) for all graphs G with
v(G) = n. By Lemma 4.2.3,

ind(G, H) = mon(G, H)− ∑
G′|e(G′)>e(G),

v(G′)=v(G)

mon(G, G′)p(G′, H)

Since we have shown that mon(G, H) = mon(σ(G), σ(H)) for all graphs H and for
all graphs G with v(G) = n, we obtain ind(G, H) = ind(σ(G), σ(H)) by applying
the above equation recursively in decreasing order on the number of edges of G.

Thus, we conclude that for all graphs G, H, surhom(H, G), mon(G, H) and
ind(G, H) are preserved by σ.

Proposition 4.2.6. Let σ be an automorphism of H . Then, for all graphs G, H ∈ G , the

quantity epi(H, G) is preserved by σ.

Proof. Let σ be an automorphism of H . Let G, H ∈ G . We prove by induction on
e(G) that epi(H, G) = epi(σ(H), σ(G)). For e(G) = 0, we use Lemma 4.2.4 and
the result is true. Now, suppose that for all graphs H and for all graphs G with
e(G) < n, we have epi(H, G) = epi(σ(H), σ(G)). Let G be a graph with e(G) = n.
We have

epi(H, G) = hom(H, G)− ∑
F|e(F)<e(G)

epi(H, F)s(F, G)

= hom(σ(H), σ(G))− ∑
F|e(F)<e(G)

epi(σ(H), σ(F))s(σ(F), σ(G))

= hom(σ(H), σ(G))− ∑
F|e(F)<e(σ(G))

epi(σ(H), F)s(F, σ(G))

= epi(σ(H), σ(G)),
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where

s(H, G) =
mon(H, G)

aut(H)
=

mon(H, G)

mon(H, H)
.

The first line is given by Lemma 4.2.3. In the second line, we use the fact that
σ preserves the number of homomorphism, the induction hypothesis, and that σ

preserves the number of monomorphisms, by Theorem 4.2.5. In the third line, we
use Lemma 4.2.4.

Hence, epi(H, G) = epi(σ(H), σ(G)) for all graphs G and H.

We prove the following lemmas.

Lemma 4.2.7. Let σ be an automorphism of I such that σ(K2) = K2. If G is a connected

graph, then σ(G) is also a connected graph.

Proof. We prove the result by induction on number of vertices of G. We have
σ(G) = G for all graph G such that v(G) ≤ 3.

Suppose that the result is true for all G such that 3 ≤ v(G) ≤ k. Let G be a
connected graph such that v(G) = k + 1. We use the fact that a graph on two or
more vertices is connected if and only if at least two of its vertex-deleted subgraphs
are connected. Consider two not necessarily distinct connected graphs G1 and G2

such that the number of vertices of Gi is equal to k and ind(Gi, G) ̸= 0, for i = 1, 2.
We have,

ind(Gi, G) = ind(σ(Gi), σ(G)),

and since by hypothesis σ(G1) and σ(G2) are connected graphs, σ(G) is a connected
graph.

Lemma 4.2.8. Let σ be an automorphism of I such that σ(K2) = K2. Then, for any

graph G =
k

∑
i=1

miGi, where for all i = 1, · · · , k, Gi is a connected graph and mi is a

positive integer, we have

σ(G) =
k

∑
i=1

miσ(Gi).

Proof. Assume that v(G1) ≤ v(G2) ≤ · · · ≤ v(Gk). We will prove, for all i =

1, · · · , k, that σ(G) has exactly mi components isomorphic to σ(Gi), and since
v(G) = v(σ(G)), the graph σ(G) does not have any other components.

We prove the result for k − j by induction on j. For j = 0, we have

mk = p(Gk, G) = p(σ(Gk), σ(G)).

If there exists a connected graph H such that v(H) > v(Gk), and p(H, σ(G)) ̸=

0, then p(σ−1(H), G) ̸= 0. This is not possible since Gk is the largest component
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of G, therefore σ(Gk) is the largest component of σ(G), and σ(G) has exactly mk

components isomorphic to σ(Gk).

We suppose that, for 0 ≤ j < l, σ(G) has exactly mk−j components isomor-
phic to σ(Gk−j), and we prove the result for j = l. We have

mk−l = p(Gk−l, G)−
l−1

∑
r=0

p(Gk−l, Gk−r)mk−r

= p(σ(Gk−l), σ(G))−
l−1

∑
r=0

p(σ(Gk−l), σ(Gk−r))mk−r.

The last line is equal to the number of components of σ(G) isomorphic to σ(Gk−l),
since, by induction hypothesis, mk−r is the number of components of σ(G) isomor-
phic to σ(Gk−r).

In Theorem 4.2.9, we show a relation between the Conjecture 4.1.3 (3) and
the Conjecture 4.1.3 (4).

Theorem 4.2.9. If σ is an automorphism of L , then σ is an automorphism of I . Fur-

thermore, if σ is an autormorphism of I and σ(K2) = K2, then σ is an automorphism of

L .

Proof. Let σ : G → G be a bijection such that Σ(G, H) = Σ(σ(G), σ(H)) for all
G, H ∈ G (see Definition 4.1.2). We have v(G) = v(σ(G)) and e(G) = e(σ(G)).
Thus, σ(Kn) = Kn for all n ≥ 1.

We have

ind(G, H) = Σ(G, H)− ∑
G′|e(G′)>e(G),

v(G′)=v(G)

Σ(G, G′)p(G′, H) (4.7)

for all graphs G and H.

Let H be a graph and G be a graph with n vertices. If e(G) = (n
2), then

G = Kn and ind(G, H) = Σ(G, H) = Σ(σ(G), σ(H)) = ind(σ(G), σ(H)). Suppose
that ind(G, H) = ind(σ(G), σ(H)) for all graphs G with e(G) > (n

2) − k where
k ≥ 1. We use Equation (4.7) to prove that ind(G, H) = ind(σ(G), σ(H)) for all
graphs G with e(G) = (n

2)− k so that the result follows by induction.
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ind(G, H) = Σ(G, H)− ∑
G′|e(G′)>e(G),

v(G′)=v(G)

Σ(G, G′)p(G′, H)

= Σ(σ(G), σ(H))− ∑
G′|e(G′)>e(G),

v(G′)=v(G)

Σ(σ(G), σ(G′))p(σ(G′), σ(H))

= Σ(σ(G), σ(H))− ∑
G′|e(G′)>e(σ(G)),

v(G′)=v(σ(G))

Σ(σ(G), G′)p(G′, σ(H))

= ind(σ(G), σ(H)),

where in the third line, we use the fact that the number of vertices and edges are
preserved by σ.

On the other hand, suppose now that σ : G → G is a bijection such that
ind(G, H) = ind(σ(G), σ(H)) for all G, H ∈ G , and σ(K2) = K2. So, σ preserves the
number of vertices and edges, and σ(G) = G for all graph G such that v(G) ≤ 3.

We have, for any graphs G and H,

Σ(G, H) = aut(G)ω(G, H)

= ind(G, G)ω(G, H)

But ω(G, H) can be written as a polynomial in the variables p(Fi, Fj)’s, where
the graphs Fi’s and Fj’s are connected graphs (see Equation (3.3)). Thus, using the
fact that σ only depends on connected graphs, by Lemma 4.2.7 and Lemma 4.2.8,
we have

Σ(G, H) = ind(σ(G), σ(G))P(p(σ(Fi), σ(Fj)))

= Σ(σ(G), σ(H)),

where P(. . .) denotes a polynomial that can be explicitly obtained.

4.3 Conclusions and outlook

In this section, we formulate some open problems.

Consider the weighted posets Q = (G ,≤e, q) and P = (G ,≤v, p). We state
the following conjecture.

Conjecture 4.3.1. 1. (QRC) Q has no non-trivial automorphisms.
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2. (PRC) P has only two automorphisms - the identity automorphism and the automor-

phism defined by the map G 7→ Gc for all G.

Verify that ERC implies QRC and VRC implies PRC. Verify that PRC and
IND are equivalent, and QRC and MON are equivalent. Then we can only talk
about IND and MON so that we can formulate everything in terms of morphisms.

We know that ERC implies MON. Are they equivalent? Also, we know that
VRC implies IND. Are they equivalent?

Every tree T can be constructed from P(T) and also from Q(T), with possibly
a few exceptions. But similar exceptions should not occur in H , M , I , etc). Anal-
ogous problem may be formulated as follows for the automorphisms of the various
relational structures defined in this chapter. Prove that certain subsets of H ,M ,
I , P , Q, L are fixed by every automorphism (i.e., they are uniquely marked).
In particular, prove that trees and unicyclic graphs are uniquely marked in all the
above relational structures.

Prove that various invariants can be uniquely constructed for some points in
these structures. This should be possible since we have similar results for P(G).
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Chapter 5

Hopf algebras of graph invariants and

Whitney’s Theorem

Whitney [38] showed that any graph invariant which counts subgraphs formed
by a given collection of blocks can be expressed as a unique polynomial, with ratio-
nal coefficients, in the invariants which count blocks in a graph, and furthermore,
these latter invariants are algebraically independent over the rationals.

We construct a subalgebra of the algebra UGQSym given by Borie [5], and
show that the subalgebra is generated by elements that are formal power series
which can be evaluated on graphs and count occurrences of blocks. This result is
an algebraic proof of Whitney’s Theorem.

In this Chapter, we state Whitney’s Theorem, define the algebra UGQSym
and a specific subalgebra of UGQSym.

5.1 Whitney’s theorem

Definition 5.1.1. (Mohar and Thomassen [23]) Let G be a graph. Define a relation
∼ on E(G) as follows: for all e ∈ E(G), e ∼ e; for all distinct e1, e2 ∈ E(G), e1 ∼ e2

if there is a cycle in G that contains the edges e1 and e2. The relation ∼ is an
equivalence relation. A block of G is either a subgraph consisting of an isolated
vertex in G or a subgraph consisting of the edges in an equivalence class of ∼ and
their incidence vertices.

Example 5.1.2. The blocks of a nontrivial tree are the copies of K2 induced by its
edges.

A connected graph G is called 2-connected, if it contains at least three vertices
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and for every vertex v ∈ V(G), the induced subgraph G − v is connected. We note
the following basic facts about blocks.

Proposition 5.1.3. (Mohar and Thomassen [23]) Let G be a graph.

1. If G is the null graph, then it has no blocks.

2. If G is a single-vertex graph, then it has exactly one block.

3. G is a union of its blocks.

4. If a block of G contains at least two edges with distinct sets of incident vertices, then

it is a 2-connected subgraph of G.

A graph B is a block graph or just a block if the only block in the graph is the
graph itself. Let GB := {B1, B2, B3, . . .} be the set of isomorphism classes of blocks
with two or more vertices. We associate each Bi ∈ GB with an indeterminate xi,
and assume that the indeterminates commute, and let X := {x1, x2, . . .}. The block
structure of a graph G is the multiset of isomorphism classes of the blocks of G.

Theorem 5.1.4 (Whitney [38]). Let S := {Bn1 , Bn2 , . . . , Bnk
} be a finite nonempty mul-

tiset of elements in GB. Let HS := {G1, G2, . . . , Gm} be the set of all unlabelled graphs

with block structure S. We say that the graphs in HS are graphs of type S. Then there is

a polynomial PS ∈ Q[X] such that, for all graphs G, the number of subgraphs of G in HS

is the evaluation of PS at xj = s(Bj, G), where s(Bj, G) counts the number of blocks of G

isomorphic to Bj.

An enumerative combinatorial proof of Theorem 5.1.4 using Kocay’s lemma
was given by Thatte [31] and an algebraic proof using the language of Hopf alge-
bras was given by Schmitt [27].

Example 5.1.5. Let S = {K2, K2, K3}. For all graphs G, the number of subgraphs of
type S in G is obtained by evaluating the polynomial

6x2 −
7
2

x1x2 − 2x3 +
1
2

x2
1x2

at x1 = s(K2, G), x2 = s(K3, G) and x3 = s(K4 \ e, G).

Remark 5.1.6. For the indeterminate xj in PS, we have that Bj is a nonempty finite
union of blocks in S (i.e., if we order S and consider S as a tuple, then c(S, Bj) is
nonzero). In Example 5.1.5, observe that c({K3, K2, K2}, K4 \ e) ̸= 0 and we have the
term x3 = s(K4 \ e, G).

Corollary 5.1.7 is an application of Whitney’s Theorem to the graph recon-
struction theory.
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Corollary 5.1.7. Let G be a graph on at least three vertices. Let S be a finite multiset of

elements in GB such that each block in S has fewer than v(G) vertices. Then the number of

spanning subgraphs of G with block structure S is determined by vertex deck of G.

Since there may be many mutually non-isomorphic graphs with a given
block structure, Whitney’s theorem is not sufficient to conclude that if H has block
structure S and each block in S has fewer than v(G) vertices then s(H, G) is deter-
mined by the vertex deck of G.

5.2 The Hopf algebra UGQSym

In this section we present some results given by Borie [5]. We define and
investigate the Hopf structure of the algebra UGQSym. First, we realise functions
counting occurrences of subgraphs, as power series in an infinite number of vari-
ables.

Let G be a subset of G such that if G ∈ G , then G has no isolated vertices.
The null graph is in G and the single vertex graph is not in G .

Definition 5.2.1. Let G ∈ G . Let g be a labelling of the vertices of G using positive
integers. We define the following monomial:

m(g) := ∏
0<i<j

i and j are adjacent

xij.

and an invariant power series MG as:

MG := ∑
g: labelling of G

m(g).

We set MΦ := 1.

Example 5.2.2. 1. MK2 = ∑
0<i<j

xij = x12 + x13 + x23 + . . .

2. MK1,2 = ∑
0<i<j<k

xijxik + xijxjk + xikxjk

We define the map MG : G → N as follows. For each H ∈ G with n vertices,
let a bijection h : V(H) → {1, . . . , n} be a labelling of the vertices of H. For each
variable xij in MG, we evaluate xij = 1, if i and j are adjacent in H and xij = 0,
otherwise. The main motivation justifying the definition of MG is given by the
following result.
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Theorem 5.2.3. (Borie [5]) MG(H) counts the number of subgraphs of H that are isomor-

phic to G.

Proof. Each term of MG(H) that is equal to 1 counts a distinct subgraph of H

isomorphic to G. This number of subgraphs isomorphic to G is independent of the
choice of the labelling of the graph H since the functions MG are invariant under
the relabelling action.

Example 5.2.4. Let H be the cycle graph with 5 vertices. We consider the labelling
of H shown in Figure 5.1.

1

2

34

5

Figure 5.1: A labelling of H

We have

M2K2 = ∑
0<i<j<k<l

xijxkl + xikxjl + xilxjk = x12x34 + x13x24 + x14x23

+x12x35 + x13x25 + x15x23 + x23x45 + x24x35 + x25x34

+x12x45 + x14x25 + x15x24 + x13x45 + x14x35 + x15x34 + . . .

Thus,

M2K2(H) = 1 · 1 + 0 · 0 + 0 · 1 + 1 · 0 + 0 · 0 + 1 · 1 + 1 · 1 + 0 · 0 + 0 · 1+

1 · 1 + 0 · 0 + 1 · 0 + 0 · 1 + 0 · 0 + 1 · 1 + . . . = 5.

Observe that all the remaining terms in the series evaluate to 0.

Now, we define the algebra UGQSym and investigate its Hopf structure. Let
K be a field of characteristic zero. Let A be the subspace of KJxij | i < jK

/

(x2
ij − xij)

generated by MG’s, that is,

A := {
k

∑
i=1

λiMGi
| k ∈ N, λi ∈ K, Gi ∈ G }.

The subspace A is called the Unlabelled Graph Quasi Symmetric functions (UGQSym).
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Theorem 5.2.5 (Borie [5]). 1. A is a subalgebra of KJxij | i < jK
/

(x2
ij − xij).

2. The set {MG | G ∈ G } forms a linear basis of the algebra A .

3. The set {MG | G ∈ G and G is a connected graph} generates the algebra A .

Let G1, G2 ∈ G . The product is given by

MG1 ·MG2 = ∑
G∈G

cG
G1,G2

MG, (5.1)

where cG
G1,G2

counts the number of ways to cover G by G1 and G2 and the unit map
u given by u(1) = MΦ. Equation 5.1 is equivalent to Kocay’s equation 2.1 which
also gives the coefficients cG

G1,G2
.

We do not want to create multi-edges when calculating the product of two
terms. For this reason, we define A as a subspace of KJxij | i < jK

/

(x2
ij − xij).

Example 5.2.6. 1. MK2 ·MK2 = MK2 + 2MK1,2 + 2M2K2

2. MK2 ·MK1,2 = MK2+K1,2 + 2MP3 + 2MK1,2 + 3MK3 + 3K1,3

We define the coproduct as follows:

Definition 5.2.7. Let G ∈ G . The coproduct of A is given by

∆(MG) := ∑
G1⊎G2=G

MG1 ⊗MG2 ,

where the summation runs over ordered pairs (G1, G2) of graphs in G such that G

is the disjoint union of G1 and G2. That is, the primitive elements are connected
graphs.

The counit of A is defined by

ϵ(MG) :=

{

1, if G = Φ;
0, otherwise.

The coproduct and counit of A are extended linearly to all elements.

Example 5.2.8. 1. ∆(MK3) = MK3 ⊗ 1 + 1 ⊗MK3

2. ∆(M2K2) = M2K2 ⊗ 1 +MK2 ⊗MK2 + 1 ⊗M2K2

Theorem 5.2.9. (Borie [5]) (A , ·, ∆, u, ϵ) is a Hopf algebra.
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Proof. By Theorem 5.2.5, A is a subalgebra of KJxij | i < jK
/

(x2
ij − xij), thus we

can see that A is a commutative algebra. Besides, A is a cocommutative coalgebra
with maps ∆ and ϵ.

The product and coproduct are compatible by induction on the number of
connected components of the operands. Thus, A is a bialgebra.

Finally, since A is a connected graded bialgebra by the number of vertices,
and we conclude that A is a Hopf algebra (see Proposition 2.4.14).

If S is the antipode of A , we have S(MG) = −MG, for all connected graphs
G ∈ G , since the primitive elements of the Hopf algebra A are the connected
graphs.

5.3 A subalgebra of UGQSym

We now define another algebra such that it is a subalgebra of UGQSym.

Definition 5.3.1. Let

T := {HS | S is a finite multiset of blocks in GB},

where HS is the class of unlabelled graphs with a given block structure S.

Example 5.3.2. 1. {B} ∈ T , where B ∈ GB

2. {S4, K3 + K2} ∈ T

Let B be the subspace of A generated by the set

{ ∑
G∈HS

MG | HS ∈ T } ∪ {MΦ}.

Proposition 5.3.3. B is a subalgebra of A .

Proof. Let HS1 , HS2 ∈ T . We have

( ∑
G∈HS1

MG) · ( ∑
H∈HS2

MH) = ∑
S

cS( ∑
F∈HS

MF), (5.2)

where the outer summation on the right-hand side is over all multisets S of blocks,
and cS counts the number of ways to cover a graph F ∈ HS by graphs G ∈ HS1

and H ∈ HS2 . Note that cS does not depend on the choice of F, G and H, but only
on their block structure.
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Example 5.3.4. Let S1 = {K3, K2} and S2 = {K3}.

(M +M ) · (M ) = 2



 ∑
G∈H{K3,K3,K2}

MG



+ ∑
G∈H{K3,K2}

MG + 6



 ∑
G∈H{K3,K3}

MG





+2



 ∑
G∈H{K4\e,K2}

MG



+ 4
(

MK4\e

)

+ 12 (MK4) .

Proposition 5.3.5. The set { ∑
G∈HS

MG | HS ∈ T } ∪ {MΦ} forms a linear basis of the

algebra B.

Proof. By definition, the set generates B. Since for all H, there is a unique HS ∈ T

such that MH is a term of the sum ∑
G∈HS

MG and by Theorem 5.2.5, the elements

of the set {MG | G ∈ G } are linearly independent, and the set { ∑
G∈HS

MG | HS ∈

T } ∪ {MΦ} is also linearly independent.

Theorem 5.3.6 is Whitney’s Theorem in terms of our language.

Theorem 5.3.6. The algebra B is generated by Γ := {MB | B ∈ GB} ∪ {MΦ}.

Proof. We will prove that for any HS ∈ T , the sum ∑
G∈HS

MG can be written as a

polynomial in the elements of Γ as indeterminates, with rational coefficients.

Let B1 and B2 be blocks. By Equation 5.2,

MB1 ·MB2 = c( ∑
G∈H{B1,B2}

MG) + ∑
B∈GB

cB
B1,B2

MB, (5.3)

where c is a constant. (Note that c = 1 if B1 and B2 are non-isomorphic, and c = 2
if they are isomorphic). Thus,

∑
G∈H{B1,B2}

MG =
1
c
(MB1 ·MB2 − ∑

B∈GB

cB
B1,B2

MB). (5.4)

Therefore, by induction on the cardinality of S, we have the result.

Remark 5.3.7. Let H be a graph. For each multiset of blocks S, the sum ∑
G∈HS

MG(H)

counts the number of subgraphs X of H with block structure S. Thus, Theorem
5.3.6 is equivalent to Whitney’s Theorem.

Proposition 5.3.8. The subalgebra B is a Hopf subalgebra of A .
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Proof. Since the algebra B is generated by MB’s and the blocks are primitive ele-
ments, we can see that ∆(B) ⊆ B ⊗ B and thus B is a subcoalgebra . Now, we
restrict the antipode S to B and we use Theorem 5.3.6. Since the blocks are primi-
tive elements, S(MB) = −MB, for all B ∈ GB and S(MB1 ·MB2) = S(MB2) · S(MB1)

(a property of the antipode), we can conclude that S maps B into B.

Example 5.3.9. Let B1 and B2 be blocks.

S( ∑
G∈H{B1,B2}

MG) = S(
1
c
(MB1 ·MB2 − ∑

B is a block
cB

B1,B2
MB))

=
1
c
(S(MB2) · S(MB1)− ∑

B is a block
cB

B1,B2
S(MB))

=
1
c
(MB2 ·MB1 + ∑

B is a block
cB

B1,B2
MB).

5.4 Conclusions and outlook

Theorem 5.3.6 is not a new result but it is an interesting algebraic proof of
Whitney’s theorem. Our proof is much simpler that a Hopf algebra proof of the
same result given by Schmitt [27]. Further, we observe that Equation 5.4 and the
Equation 7 in Schmitt’s paper are very similar to Equation 2.1.
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Chapter 6

Refining Kelly’s reconstruction lemma

for counting rooted subgraphs

Kelly’s lemma (Lemma 6.1.1) is a basic result on graph reconstruction. It
states that given the deck of a graph G on n vertices, and a graph F on fewer
than n vertices, we can count the number of subgraphs of G that are isomorphic
to F. Moreover, for a given card G − v in the deck, we can count the number
of subgraphs of G that are isomorphic to F and that contain v. We consider the
problem of refining the lemma to count rooted subgraphs such that the root vertex
coincides the deleted vertex. We show that such counting is not possible in general,
but a multiset of rooted subgraphs of a fixed height k can be counted if G has radius
more than k.

6.1 Vertex reconstruction and counting rooted subgraph

We recall Kelly’s Lemma. For graphs F and G, and a vertex v, we denote
by s(F, Gv) the number of subgraphs of G that contain v and are isomorphic to F.
Analogously, we denote by p(F, Gv) the number of induced subgraphs of G that
contain v and are isomorphic to F.

Lemma 6.1.1. (Kelly’s Lemma) If a graph F is such that v(F) < v(G), then

i) s(F, G) and p(F, G) are reconstructible;

ii) s(F, Gv) and p(F, Gv) are reconstructible.

Observe that part (ii) of Kelly’s lemma is not sufficient to determine the
contributions to s(F, Gv) from different configurations in which copies of F may
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appear at v. For example, if F is the 4-vertex path P4, then we do not immediately
know how many subgraphs isomorphic to P4 have their end-vertex at v and how
many have their internal vertex at v. We make this observation precise.

First we define isomorphism of rooted graphs. Let Fx
1 and F

y
2 be graphs

F1 and F2, considered to be rooted at x and y, respectively. We say that they are
isomorphic if there are isomorphisms f : V(F1) → V(F2) and g : E(F1) → E(F2) such
that the incidence function of F1 associates e ∈ E(F1) with vertices u and v of F1 if
and only if the incidence function of F2 associates g(e) ∈ E(F2) with vertices f (u)

and f (v) of F2 and f (x) = y . For a graph F rooted at x, we denote by s(Fx, Gv) the
number of rooted subgraphs of Gv that are isomorphic to Fx such that the root x

of the subgraph coincides with v, and by p(Fx, Gv) the number of induced rooted
subgraphs of Gv that are isomorphic to Fx such that the root x of the subgraph
coincides with v.

We say that two vertices u and v in a graph F are similar, written as u ≈ v, if
there exists g ∈ Aut(F) such that v = gu. Note that ≈ is an equivalence relation on
V(F).

Lemma 6.1.2. Suppose that Vi, · · · , Vs are the equivalence classes of V(F) under the re-

lation of similarity. That is, they are the orbits of the action of Aut(F) on V(F). Let

U ⊆ V(F) consist of one representative vertex from each Vi. Then we have

s(F, Gv) = ∑
u∈U

s(Fu, Gv) (6.1)

and

p(F, Gv) = ∑
u∈U

p(Fu, Gv). (6.2)

Ideally, given the deck of a graph G, we would like to count the individual
terms in the above summation, which would significantly refine Kelly’s lemma.
We show that this is not possible in general. An example is provided by graphs
with pseudo-similar vertices. Two vertices u and v in a graph G are pseudo-similar

if the vertex-deleted subgraphs G − v and G − u are isomorphic but u and v are not
similar.

Example 6.1.3. Figure 6.1 shows a graph G with pseudo-similar vertices u and v;
this example is from [7].

Now let F be the graph . Observe that the vertex set of F partitions in
three orbits, namely, the vertex x of degree 1, the two vertices of degree 2 (which
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are similar, so let one of them be y), and the vertex z of degree 3. Now we have

s(Fx, Gv) = 0 and s(Fx, Gu) = 1

s(Fy, Gv) = 1 and s(Fy, Gu) = 0

s(Fz, Gv) = 1 and s(Fz, Gu) = 1

These observations are consistent with our calculations in Section 6.3 that
show that s(Fx, Gw) + s(Fy, Gw) is reconstructible for each w ∈ V(G). Similarly, if
F = P4 and x is a vertex of degree 1 in F, then s(Fx, Gv) = 3 and s(Fx, Gu) = 3, but
p(Fx, Gv) = 2 and p(Fx, Gu) = 1.

u

v

Figure 6.1: An example from [7] of a graph G with pseudo-similar vertices u and v.

The limitation described here is similar to the degree-pair and degree-pair
sequence reconstruction for digraphs. We know that in general the degree-pair
of a deleted vertex cannot be reconstructed, but the degree-pair sequence of the
graph can be reconstructed. See Manvel [20] and Stockmeyer [29]. So we ask if the
multiset {Gv

k , v ∈ V(G)} could be reconstructed, where Gv
k is the subgraph of G

rooted at v induced by the vertices at distance at most k from v. Here, we partially
answer this question. We will prove a similar result for edge reconstruction in
Section 6.2.

Lemma 6.1.4. Let x ∈ V(G). Define OrbitG(x) the set of vertices of G that are similar to

x. We denote by s(Fx, G) the number of rooted subgraphs of G that are isomorphic to Fx.

We have

s(Fx, G) = |OrbitF(x)| s(F, G).

The distance between two vertices is the number of edges in a shortest path
between the two vertices. The minimum among all the maximum distances be-
tween a vertex and all other vertices is called the radius of the graph G and we
denote by r(G).

Let G be a connected graph. Let v ∈ V(G). Let Gv
k denote the subgraph

of G rooted at v, induced by vertices at distance at most k from v. Let Sk(G)

denote the multiset {Gv
k , v ∈ V(G)}. It is known that if v(G) > 2, then the degree
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sequence of G is reconstructible; also for each card G − v in the deck, the degree of
v and the neighbourhood degree sequence of v are reconstructible. But we do not
know if S1(G) is reconstructible, and for a given card G − v, we cannot in general
reconstruct Gv

1 , Gv
2 as shown by the examples of graphs containing pseudo-similar

vertices. The following proposition partially answers the question of constructing
Sk(G).

Proposition 6.1.5. If G is a connected graph with radius more that k, then Sk(G) is

reconstructible.

Proof. If the radius r(G) of G is more than k then for all v ∈ V(G), the graph Gv
k has

fewer than v(G) vertices. Hence we claim that Sk(G) is a subset of
⋃

v∈V(G) Sk(G −

v) (taken as a multiset union), and the latter is reconstructible. Let S be the set of
distinct rooted graphs in

⋃

v∈V(G) Sk(G − v). In the following, we determine which
members of S are in Sk(G) along with their multiplicities.

Let Au ∈ S. Let n(Au) be the number of vertices v ∈ V(G) such that Gv
k
∼=

Au. We want to prove that n(Au) is reconstructible.

We have
s(Au, G) = ∑

Bw∈S

s(Au, Bw)n(Bw). (6.3)

Since s(Au, G) = |OrbitA(u)| s(A, G) and v(A) < v(G), we can reconstruct
s(Au, G). If Au is a maximal element in S (i.e., s(Au, Bw) = 0 for all Bw ̸∼= Au), then
s(Au, G) = n(Au). Now we order graphs in S as Au1

1 , Au2
2 , . . . so that |E(Ai)| ≥

|E(Aj)| for i < j. We can then solve Equation 6.3 recursively for each A
ui
i in the

order i = 1, 2, . . .. Thus, we can reconstruct Sk(G).

We do not know if radius or diameter are in general reconstructible parame-
ters. But the result can be applied to bounded degree graphs, graphs containing a
vertex of degree 1, and possibly some other classes of graphs for which estimates
for the radius can be made from the deck.

Example 6.1.6. Let G be the graph in Figure 6.1. The rooted graphs Gu
2 and Gv

2 are
not isomorphic. We reconstruct the multiset S2(G) by the Equation 6.3 counting
n(Gw

2 ) where w ∈ V(G) (see Section 6.3).

Now, let F be the graph with a root vertex y of degree 2. We have seen that
the parameter s(Fy, Gv) is not reconstructible. But, since S2(G) is reconstructible,
the multiset {s(Fy, Gv) | v ∈ V(G)} is reconstructible.
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6.2 Edge reconstruction and counting edge-rooted sub-

graphs

In this section we show a result of Proposition 6.1.5 for edge reconstruction.

Lemma 6.2.1. (Kelly’s Lemma- edge version) If a graph F is such that e(F) < e(G), then

s(F, G) and p(F, G) are edge-reconstructible.

Let G be a graph. Let e1 and e2 be two edges in G. We define the distance

between e1 and e2 to be the number of edges on a minimal path that contains e1 and
e2. If e1 and e2 are in different components, then we define the distance between
them to be infinity.

Let e ∈ E(G). Let Ge
k denote the subgraph of G rooted at e (i.e., with a

distinguished edge e) induced by edges at distance at most k from e. Let Tk(G)

denote the multiset {Ge
k, e ∈ E(G)}.

Edges a and b of a graph G are similar if there exists an automorphism of G

that maps the ends vertices of a to the ends vertices of b, and are pseudo-similar if
G − a ∼= G − b, but a is not similar to b in G.

Example 6.2.2. Let G be the graph in Figure 6.2. The edges a and b are pseudo-
similar. Let Ga

4 and Gb
4 be two elements in T4(G), we have Ga

4 ̸∼= Gb
4.

b

a

Figure 6.2: An example of a pair of pseudo-similar edges a and b in a graph from
Poirier [26].

Proposition 6.2.3. If G is a connected graph with radius more that k ≥ 1, then Tk(G) is

edge-reconstructible.

Proof. Let e ∈ E(G), and let v be an end vertex of e. The distance between v and
any other vertex in Ge

k is at most k. Thus, if the radius of G is more than k then
every element in Tk(G) has fewer than v(G) vertices. Since G is connected, we have
e(Ge

k) < e(G). Hence, Tk(G) is a subset of
⋃

e∈E(G) Tk(G − e). Let T be the set of



67

distinct elements in
⋃

e∈E(G) Tk(G − e). Now, we will determine which members of
T are in Tk(G) along with their multiplicities.

Let Ae ∈ T . Let s(Ae, G) denote the number of edge-rooted subgraphs
of G that are isomorphic to Ae. We have s(Ae, G) = |OrbitA(e)| s(A, G), where
OrbitA(e) is the set of edges of A that are similar to e. Let m(Ae) be the number of
edges f ∈ E(G) such that G

f
k
∼= Ae. We have

s(Ae, G) = ∑
B f ∈T

s(Ae, B f )m(B f ). (6.4)

The term on the left-hand side of Equation (6.4) is edge reconstructible. If
Ae is a maximal element in T, then s(Ae, G) = m(Ae). We order graphs in T

as Ae1
1 , Ae2

2 , . . . so that e(Ai) ≥ e(Aj) for i < j. We can then solve Equation 6.4
recursively for each A

ei
i in the order i = 1, 2, . . ..

Remark 6.2.4. Given e ∈ E(G), we have r(G − e) ≥ r(G). We say that G is radius-

minimal if for every edge e of G we have r(G − e) > r(G). A connected graph
G is radius-minimal if and only if G is a tree (see Walikar [37]). Thus, r(G) =

min
e∈E(G)

r(G − e) when G is not a tree. Hence, r(G) is edge reconstructible.

6.3 Calculations for rooted graphs with a small num-

ber of vertices

The following calculations for small graphs illustrate the difficulties in count-
ing the number of (induced) rooted subgraphs.

Let Fx be a graph with a root vertex x. Let Gv be a graph with a root vertex
v. If Fx ∈ { , , , } (where the root vertex is marked by a bold dot), then
the parameters p(Fx, Gv) and s(Fx, Gv) are reconstructible (since the underlying
unrooted graph F is vertex transitive). We obtain the following equations for rooted
graphs with a small number of vertices. We denote dv(G) by the degree of v in G.

p( , Gv) = p( , Gv) = dv(G) (6.5)

p( , Gv) + p( , Gv) = s( , Gv) =

(

dv(G)

2

)

(6.6)

s( , Gv) =

(

dv(G)

3

)

= p( , Gv) + p( , Gv) + p( , Gv) + p( , Gv) (6.7)
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s( , Gv) = p( , Gv)(dv(G)− 2) = p( , Gv) + 2 p( , Gv) + 3 p( , Gv) (6.8)

s( , Gv) = p( , Gv) + p( , Gv) + p( , Gv) + p( , Gv) (6.9)

s( , Gv) = p( , Gv) + p( , Gv) + p( , Gv) + p( , Gv) + 2 p( , Gv) (6.10)

+3 p( , Gv)

s( , Gv) = s( , Gv)(dv(G)− 1)− 2 p( , Gv) (6.11)

= p( , Gv) + 2 p( , Gv) + p( , Gv) + 2 p( , Gv)

+ 4 p( , Gv) + 6 p( , Gv) + 2 p( , Gv)

s( , Gv) = p( , Gv) + 2 p( , Gv) + 2 p( , Gv) (6.12)

+ p( , Gv) + 2 p( , Gv) + 4 p( , Gv) + 6 p( , Gv)

By Equation (6.6), p( , Gv) and s( , Gv) are reconstructible, hence by Equa-
tion (6.1), p( , Gv) and s( , Gv) are reconstructible. Thus, for all Fx with v(F) ≤ 3
and Gv with v(G) ≥ 4, we can calculate p(Fx, Gv) and s(Fx, Gv) from the deck of
G.

For rooted graphs with four vertices, we have already shown an example
where the parameters p( , Gv) and p( , Gv) are not reconstructible. By Equa-
tion (6.8), we can calculate s( , Gv), thus s( , Gv) + s( , Gv) is reconstructible.
But we do not know how to calculate p( , Gv). Also, by Equations (6.12) and (6.1),
s( , Gv) and s( , Gv) are reconstructible. But, we have already shown that p( , Gv)

is not reconstructible.

The next example illustrates Proposition 6.1.5.

Example 6.3.1. Consider the following graph G:

We calculate S2(G) using Proposition 6.1.5. We have S = {Au1
1 , Au2

2 , . . . , Au14
14 },

where the elements are represented by the following rooted graphs, respectively,

, , , , , , , , , , , , , .
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Now, we use recursively Equation 6.3.

n(Au1
1 ) = s(Au1

1 , G) = 1

n(Au2
2 ) = s(Au2

2 , G)− s(Au2
2 , Au1

1 )n(Au1
1 ) = 2 − 1 · 1 = 1

n(Au3
3 ) = s(Au3

3 , G)− s(Au3
3 , Au1

1 )n(Au1
1 )− s(Au3

3 , Au2
2 )n(Au2

2 ) = 5 − 3 · 1 − 2 · 1 = 0.
...

n(Au14
14 ) = s(Au14

14 , G)−
13

∑
i=1

s(Au14
14 , A

ui
i )n(A

ui
i ) = 0.

Hence, S2(G) =
{

, , , , , , , }.

6.4 Conclusions and outlook

We formulate a few open problems related to a further refinement of Kelly’s
lemma and the local structure of graphs.

Let f : V(G) → V(H) be a hypomorphism from G to H.

1. Define an equivalence relation ∼ on V(G) by u ∼ v if G − u ∼= G − v. Let
Vi, i = 1, 2, . . . be the equivalence classes of ∼. Suppose that G has radius
more than k. Show that for each equivalence class Vi, the set {Gv

k | v ∈ Vi}

is vertex-reconstructible. Equivalently, show that if G and H are of radius
more than k, then there exists a hypomorphism g : V(G) → V(H) such that
Gv

k
∼= H

g(v)
k .

Similar problem may be formulated for edge reconstruction by defining an
equivalence relation on the set of edges.

Analogously, in the case of directed graphs, either show that the degree pair
sequence restricted to each equivalence class of vertices is reconstructible, or
find examples of non-reconstructible graphs (e.g., in the families of tourna-
ments constructed by Stockmeyer and others) that show that it is not possible.

2. Let C be the class of graphs with no pseudo-similar vertices. Let G and H

be hypomorphic graphs in C , of radius more than k, with a hypomorphism
f : V(G) → V(H). Show that Gv

k
∼= H

f (v)
k . We are not aware if existence of

pseudo-similar vertices can be recognised from the deck.

3. Let G and H be hypomorphic graphs. Prove that there exists a hypomorphism
g : V(G) → V(H) such that vertices u and v in G are similar if and only if
vertices g(u) and g(v) in H are similar.
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4. Let Fk be the family of distinct rooted k-vertex induced subgraphs of G. The
family Fk is clearly reconstructible from the deck when k < n. Define the Fk-
degree of a vertex v to be the multiset of induced k-vertex subgraphs rooted
at v.

(a) Similar to Proposition 6.1.5: Is the Fk-degree sequence of G reconstructible
for some k < n?

(b) Similar to Problem 1: Is the Fk-degree sequence of G restricted to each
Vi reconstructible?

5. Manvel has shown that the degree pair sequence of any digraph with five
or more points is reconstructible. Can Manvel’s reconstruction of degree-
pair sequence be extended to multisets of rooted (not necessarily induced)
subgraphs of height k for some k, independent of the radius? Manvel’s con-
struction works for tournaments, hence amounts to reconstructing certain
spanning subgraphs. Which other spanning subgraphs can be reconstructed?
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