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Abstract: We present a graphene-based biosensor selective to recombinant cyanovirin-N (rCV-N),
an antiviral protein that has proven to be an eective microbicide to inhibit HIV replication.
We modified the graphene monolayer devices with 1-pyrenebutanoic acid succinimidyl ester, which
interacts with both graphene and the primary and secondary amines of antibodies. By monitoring
the change in the electrical resistance of the device, we were able to detect rCV-N in solutions in the
range of 0.01 to 10 ng/mL, and found that the detection limit was 0.45 pg/mL, which is much smaller
than that obtained with currently available techniques. This is important for applications of this
microbicide against HIV, since it may be produced at a large scale from soya bean seeds processed
using the available industrial processing technologies. The sensor showed high sensitivity, selectivity,
and reproducibility.

Keywords: graphene biosensor; electrochemical sensor; genetically modified soybean; recombinant
cyanovirin-N

1. Introduction

The human immunodeficiency virus (HIV) is an infection that attacks the human immune
system, and currently is considered by the World Health Organization (WHO) a global epidemic.
Data from the WHO indicate that by 2018, there were 37.9 million people worldwide living with HIV,
of which 1.7 million were infected only in that year—a 4.5% increase in the number of infected people.
To reduce this number, it is important to develop new methods of inhibiting HIV transmission and to
improve current methods of prevention. It was shown that cyanovirin-N (CV-N) [1], Grithsin [2]
and Scytovirin [3] are lectins capable of inactivating dierent strains of HIV, simian immunodeficiency
virus and other pathogenic viruses. Analytical studies showed that thesemolecules are good candidates
as additives to topical microbicide gels to prevent the transmission of HIV in macaques [4,5].

Recently, it was demonstrated [6] that recombinant cyanovirin-N (rCV-N), a protein with
remarkable stability [7], produced in soya bean seeds has a potent nanomolar anti-HIV activity
against HIV-1, which is comparable to the activity range of native CV-N. In addition, soybeans
expressing rCV-N can be processed using the available industrial processing technology to produce
high-quality feedstock ready to enter the purification process. Thus, a biosensor for this protein will be
of great help in an industrial soybean processing for the development of HIV-inhibiting drugs.
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Biosensors are widely used for the early stage detection of diseases in humans and plants, and to
contribute to the understanding of metabolic processes in these individuals and in microorganisms [8].
Dierent materials associated with specific mechanisms have been used to develop biosensors [9].
However, there is still an intensive demand to find materials with high selectivity for the development
of biosensors with a broader range of applications. Currently, Northern and Western blotting are used
for the detection of rCV-N [6]. Blotting is a technique used in molecular biology for the identification of
proteins and nucleic acids [10]. All blotting techniques involve a few steps, starting with electrophoresis
to separate samples by size. This single step takes a few hours to complete, so it is desirable to have a
faster method to detect rCV-N. As far as we know, there is no electrochemical biosensor available for
this protein.

Since its discovery in 2004, graphenehas emerged as a good candidate as a biosensor transducer [11].
Graphene is a strictly two-dimensional material formed only by carbon atoms arranged in a hexagonal
structure [12]. Because of this strictly two-dimensional structure, graphene has a large surface to volume
ratio, which enhances the interaction with molecules on its surface and facilitates surface modification
to make it selective to dierent target molecules, a process called functionalization. Many works show
that the sensitivity and the detection limit of graphene-based biosensors are equal to or better than those
obtained with silicon-nanowires biosensors [13]. With adequate functionalization of graphene, it was
possible to produce devices for DNA [14–16], detection of cancermolecules [17], Zika virus [18], bacteria
and theirmetabolic activities [19], immunoglobulin aptamers [20], exosomes [21] andEscherichia coli [22].

In this work, we report the development of a graphene-based FET biosensor to detect rCV-N in
solution. The graphene biosensor showed a high selectivity and sensitivity to rCV-N in solutions with
concentrations as low as 10 pg/mL.

2. Materials and Methods

2.1. Device Fabrication

We obtained the graphene flakes from natural graphite by the standard micromechanical cleavage
technique using an adhesive tape. A graphene device, shown in Figure 1, consists of a graphene
monolayer that was transferred onto a heavily doped silicon substrate coated with 300 nm layer of silicon
dioxide. We fabricated the ion-sensitive field-effect transistor (ISFET) using conventionalmicrofabrication
techniques [23]. Two electrical contacts to the graphene monolayer were formed by thermal evaporation
of chromium and gold followed by lift-off. The third electrode on the substrate, near the graphene flake,
is used to apply a gate voltage when the device is covered by an electrolyte.

Figure 1. Optical image of a graphene ion-sensitive field-eect transistor (ISFET) showing two electrical
contacts (golden areas) to the graphene flake (dashed region) and the gate electrode (top).
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4. Conclusions

We developed a biosensor based on a graphene ISFET with a high selectivity and sensitivity
to rCV-N, a protein that is a very promising microbicide against HIV. We have shown that the
antibody-rCV-N conjugation changes the electrical resistance of the graphene ISFET with a limit
of detection of 0.45 pg/mL (40.9 fM) and a detection range of 0.01 to 10 ng/mL. Due to the relative
simplicity of the fabrication process and the high selectivity and sensitivity of the graphene ISFET for
rCV-N, this sensor may be used to quantify this protein during the industrial processing of soya bean
seeds, which may potentially be used as an anti-HIV resource.
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