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ARTICLE INFO ABSTRACT

Keywords: In the last years, there has been an important and growing concern about food authentication due to the in-
Meat adulteration creasing number of occurrences of new types of food frauds. Recently, some frauds have been reported de-
Food fraud

scribing the injection of non-meat ingredients, such as salts and polysaccharide compounds, into bovine meat in
natura, aiming at increasing its water holding capacity (WHC) and obtaining economic fraudulent gains. Thus,
this paper developed a simple and rapid analytical method based on a multivariate supervised classification
model (partial least squares discriminant analysis, PLS-DA) and Raman spectroscopy for tackling this problem.
Sixteen vacuum-packed pieces of the same cut, eye of the round (semitendinosus), of approximately 4 kg were
obtained from different origins. According to an experimental design, each piece was divided into 11 parts,
providing control and adulterated samples. Single, binary and ternary mixtures of adulterated samples were
prepared by injecting NaCl, sodium tripolyphosphate and carrageenan in the meat pieces. A total of 165 samples
were produced (54 controls and 111 adulterated) and their purges, the exudated liquid extracted from the meat
after thawing, were obtained. Raman spectra of these purges were recorded between 1800 and 700 cm ™. The
whole data set was split into 112 samples for the training set and 53 for the test set. The best PLS-DA model was
built with 4 latent variables and successfully discriminated adulterated samples at relatively small rates of false
negative and false positive results, which varied from 8.0 to 11.7%. As an additional validation step, confidence
intervals were calculated by bootstrap algorithm.

Supervised classification
Vibrational spectroscopy
Forensic analysis
Chemometrics

1. Introduction apparent value of the product. In this definition, EMA includes the

addition or substitution of substances in order to mask product un-

In recent years, the concerns about food authenticity have been
growing. The determination whether a product is, in fact, what it is
declared to be is important to ensure consumer confidence and to detect
possible changes in original food properties. Food fraud can be char-
acterized by the use of a mechanism to mask or omit inappropriate
sanitary conditions of products, giving them attributes that aim to in-
crease the profits of their commercialization [1]. The U.S. Food and
Drug Administration (FDA) defines economically-motivated adultera-
tion (EMA) as the fraudulent action of intentional addition or sub-
stitution of a substance in a product in order to obtain economic gain
due to the reduction of production costs or to the increase of the

desirable properties, the substitution of a substance for a cheaper one or
the omission of any component added to the product without declara-
tion on its label [2].

Specifically for meat fraud, four major types can be categorized:
meat origin, meat substitution, meat processing treatment and non-
meat ingredient addition [3]. Other authors have categorized food
frauds in general in only three types, replacement, addition and re-
moval [4]. The most common type of food fraud reported in the lit-
erature, described in 95% of the publications, is the substitution of
tissues, breeds or species by other tissues, breeds or species. Only less
than 5% of the reported publications have referred to the addition of
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ingredients and only less than 1% to the removal (data from 1980 to
2010) [5]. One of the most famous incidents of meat fraud, a case of
meat substitution, was the horsemeat scandal occurred in Europe in
2013 [6,7]. Methods based on DNA analysis, such as polymerase chain
reaction (PCR) [8], are among the most important ones for detecting
meat substitution frauds. However, these methods are very laborious,
demanding time and qualification of involved professionals. Thus,
several simpler alternative analytical methods have been developed for
this aim based on molecular spectroscopy, in the majority of cases as-
sociated with chemometric tools. Frauds involving a variety of meat
species have been detected using mass spectrometry [9-11], Raman
[12,13], nuclear magnetic resonance (NMR) [14], near infrared (NIR)
[15,16], visible [17], and mid infrared (MIR) [18,19] spectroscopies;
NIR hyperspectral imaging [20], multispectral imaging [21] and data
fusion of UV-visible, NIR and MIR spectra [22].

On the other hand, the least common type of meat fraud reported in
the literature has been the addition of non-meat ingredients [3]. The
addition of vegetable proteins is a common practice in fraud of meat
products. Articles describing the detection of soybean frauds in ham-
burgers using multiplex-PCR [23], the development of a screening
method for the simultaneous detection of soy, pea and lupine in meat
products applying high performance liquid chromatography-tandem
mass spectrometry (HPLC-MS/MS) [24], and the use of vibrational
spectroscopy combined with chemometrics to detect and quantify the
adulteration of minced meat with textured soy protein [19] have been
reported in the literature.

Another type of meat fraud consists of adding water aiming the
economic growth of the sellers. The quality control regulations describe
the allowed limit of addition of exogenous water to meat. However, the
addition of water is prohibited for meats in natura. Exogenous water in
meat can be determined by a standard method based on the water/
protein ratio [25]. With the addition of water, this ratio becomes too
high and can evidence the meat fraud. However, the addition of other
sources of protein and salts increases water binding, and consequently,
the water holding capacity (WHC) [26]. This practice leaves the water/
protein ratio close to the natural ratio and hides the fraud. Thus, in
order to provide a proof of fraudulent practices, it is necessary to detect
the presence of external proteins or salts in the meat [3].

The increase of WHC can naturally occur by the addition of exo-
genous substances in different ways (heating, injection, milling),
leading to the increase in the pressure at the meat surface. When its
WHC increases, meat becomes tenderer due to the relaxation of muscle
fibers. The effect of the addition of salts, such as NaCl, KCl and MgSO,,
in the WHC of bovine meat is dependent on their concentrations and
has been studied by NIR/MIR spectroscopies combined with principal
component analysis (PCA) [27,28]. These articles have used vibrational
spectroscopy to elucidate proteins conformational changes due to the
addition of salts. Other additives can be used to increase meat WHC,
such as a xanthan gum, a high molecular weight polysaccharide gum,
and carrageenan, a polysaccharide extracted from edible seaweeds
[29].

In Brazil, official methods [30] have employed classical techniques
for meat quality control, determining physico-chemical and micro-
biological parameters based on the so called target analysis. However,
individual parameters are inappropriate to characterize frauds due to
the wide variation in chemical composition of bovine meat, as a func-
tion of sex, cut, breed, feed intake, slaughter age, among others [3]. On
the other hand, the utilization of the non-target analysis of food (food
fingerprinting) presents the advantage of evaluating complex food
matrices in terms of multiple characteristics (geographical origin, spe-
cies variety, possible adulterations, etc.) using the same analytical
method [31]. This strategy invariably combines spectroscopic techni-
ques with chemometrics.

Despite the large number of recent publications focusing on devel-
oping analytical methods for detecting food frauds, few of them have
been devoted to real food fraud incidents [4]. In a previous paper, we
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have analyzed 55 samples of bovine meat in natura (43 adulterated and
12 controls) originated from criminal networks dismantled by the Bra-
zilian Police [32]. Seized adulterated samples had been injected with
aqueous solutions of salts, such as sodium chloride, phosphate, tripoly-
phosphate (STPP) and acid pyrophosphate, carrageenan, maltodextrin
and collagen. Meat samples were directly analyzed and a partial least
squares discriminant analysis (PLS-DA) model was built with data fusion
of five physico-chemical parameters (protein, sodium, chloride, phos-
phate and ash) and attenuated total reflectance Fourier transform in-
frared (ATR-FTIR) spectra. Low level data fusion PLS-DA model was able
to discriminate samples with efficiency rates between 85% and 93%.
Nevertheless, a discriminant model built with only FTIR spectra failed to
provide good predictions, with efficiency rates around 50%.

Considering the limitations observed in our previous paper for de-
veloping FTIR models to detect adulterations directly in the pieces of
meat [32], the present work choose to analyze purges, the exudated
liquid obtained from the meat after thawing. Instead of FTIR, other
vibrational technique, Raman spectroscopy, was used for this work due
to its advantage of not suffering interference of water. Raman scattering
spectroscopy has been very used for determining structural information
in different types of samples, presenting great potential for investiga-
tions of forensic cases. This technique has also been considered a rapid
tool to study food composition, particularly to detect species in meat
products [33].

Thus, the aim of this article was to develop a rapid and reliable
screening method using Raman spectroscopy and PLS-DA in order to
detect frauds by the addition of NaCl, STPP and carrageenan in bovine
meats, through the analysis of their purges. The importance of this
paper as compared to the previous ones is related to the detection of
meat frauds by the addition of salts and carrageenan, which has been a
problem very rarely mentioned in the scientific literature. In relation to
the only paper that have previous addressed this problem [32], the
present work employed Raman spectroscopy, which provides analytical
signals free of water interference, and originally analyzed purges, since
the direct determination in the meat pieces by FTIR has been demon-
strated to be unfeasible. For an in-depth study, samples of eye of the
round were adultered under very controlled conditions of injected vo-
lume, weight gain and adulterant concentrations (5% and 10%, in-
cluding binary and ternary mixtures). The developed model was vali-
dated with an independent test set and also the estimation of
appropriate figures of merit (FOM). Finally, confidence intervals were
determinated for each sample prediction from the PLS-DA model using
a bootstrap resampling methodology [34].

2. Materials and methods
2.1. Reagents and samples

All reagents used were of analytical grade. Water was purified by
deionization using a Milli-Q system with a resistivity of 18.5MQcm
(Millipore, Bedford, MA, USA). NaCl was purchased from Quimica
Moderna (Barueri, SP, Brazil), sodium tripolyphosphate from Synth
(Diadema, SP, Brazil) and kappa carrageenan from GastronomyLab
(Brasilia, DF, Brazil). Adulterants were injected with disposable luer lock
tip syringes of 60 mL (SR Prodcutos para la Salud, Paraguay) using fuchsia
needles of 40 mm X 1.20 mm (BD PrecisionGlide, Curitiba, PR, Brazil).

Sixteen vacuum-packed pieces of eye of the round (semitendinosus)
of approximately 4.0 kg were purchased in the local commerce, from
suppliers we can trust. Each piece was divided into eleven fractions of
about 2.5cm wide. These pieces of meat were subdivided into two
groups, G1 and G2, with eight pieces/samples each. Since the anatomy
of the bovine eye of the round presents greater concentrations of con-
nective tissues at the extremities as compared to the central region of
the cut, four unadulterated fractions were selected as control samples:
two fractions at the extremities and two intermediate fractions. The
other seven fractions were adulterated by injections of 5% w/v aqueous
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Fig. 1. Scheme of the experimental design used for obtaining control and adulterated samples from the partition of each piece of meat.

solutions of the following adulterants: sodium chloride (NaCl), sodium
tripolyphosphate (STPP), carrageenan (Carrag), NaCLSTPP (1:1),
NaCl:Carrag (1:1), STPP:Carrag (1:1), NaCl:STPP:Carrag (1:1:1). The
eye of the round pieces of groups G1 and G2 were adulterated until
gaining 10% and 5% of mass, respectively. After injecting the adul-
terant solutions, samples were centrifuged at 10,000 rpm for 10 min
and stored under refrigeration in a vertical freezer (Consul, Brazil) at
—12°C for approximately 7 days. For obtaining the purges, samples
were subjected to controlled thawing in refrigerator at 4-10 °C for 48 h.
Purges were then collected and stored in Eppendorf tubes for further
analysis. Fig. 1 displays a scheme showing the experimental design used
for obtaining samples from the partition of each piece of meat. A total
of 165 meat samples were obtained, 54 controls and 111 adulterated.

2.2. Raman spectra acquisition and data processing

Raman spectra were recorded using an FT-Raman Vertex 70 spec-
trometer (Bruker, Massachusetts, USA), equipped with a Raman module
— RAM II (Bruker). Purges were centrifuged in an Eppendorf centrifuge
for 10 min at 10,000 rpm. Centrifuged purge fractions were stored in
Duran tubes duly identified and sealed with Parafilm plastic. Duran
tubes were placed in the spectrometer sample holder containing a back
mirror in order to increase the amount of scattered radiation. Raman
spectra were obtained from 3600 to 710 cm ™! with 4cm ™! of resolu-
tion, 512 scans accumulation and 1 W laser power (1064 nm). Mean
spectra (triplicates) of each sample were used for building the models.
Chemometric models were built using MATLAB software, version 8.4
(The MathWorks, Natick, USA), and PLS Toolbox, version 7.0
(Eigenvector Technologies, Manson, USA).

2.3. Chemometric analysis

PLS-DA is the most popular discriminant classification method in
the chemometric literature [35]. It is derived from PLS regression,
correlating independent spectral variables, contained in the X matrix,
with a dependent dummy variable vector, in the y vector. In this work,
dummy reference variables in the y vector were arbitrarily defined as 1
for adulterated samples and 0 for authentic meat samples. Since PLS-DA
provides predicted y values that are not exactly 1.0 or 0.0, a Bayesian
threshold was estimated [36,37].

584

In the development of a robust supervised classification model, a
systematic criterion needs to be applied aiming at selecting re-
presentative samples for the training set and to ensure their homo-
geneous distribution in the multivariate space. The whole data set was
split into training and test sets, corresponding to two thirds and one
third of the samples, respectively. The Kennard and Stone (KS) algo-
rithm [38] was applied for the selection of training samples separately
in each class, control/authentic and adulterated. In this way, the ori-
ginal spectral data matrix was split in 112 (75 adulterated and 37
control) samples for the training set and 53 (35 adulterated and 18
control) samples for the test set. In the sequence, data were pre-
processed. Unit vector normalization was applied for the correction of
baseline deviations in the Raman spectra, followed by mean centering.
The number of latent variables (LV) was selected by cross-validation
using venetian blinds with 10 splits, based on the smallest cross vali-
dation classification error (CVCE).

The analytical validation of the constructed PLS-DA model was
performed by estimating appropriate FOM, such as sensitivity (SEN),
specificity (or selectivity) (SPE), false positive rate (FPR), false negative
rate (FNR) and reliability or efficiency rate (EFR) [36,37]. SEN in-
dicates the ability of the model to detect true positive (TP) samples as
positive, while SPE demonstrates its ability to detect true negative (TN)
samples as negative. EFR is calculated as the difference between the
total of results (100%) and the sum of FPR and FNR. Equations defining
all of these FOM used to assess the quality of supervised classification
methods are shown in Table 1.

Other important aspect related to the validation of the PLS-DA
model is the uncertainty estimation of the predicted values. This
estimation can be performed by resampling, employing the residual
bootstrap method [35]. In spite of the importance of this aspect for
the validation of qualitative models, the number of papers that have
applied it for PLS-DA results is small [39-42]. Confidence intervals
for y predicted variables are calculated resampling new data sets
obtained from the original data by random perturbations. Unknown
distributions of the parameters are obtained by mimicking the
random resampling mechanism. The concept of pseudo-degrees of
freedom [43], which considers the difference between mean square
errors of calibration and cross validation, was employed in the cal-
culations. The confidence interval estimates for each sample were
obtained with 1000 replications.
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Table 1
Qualitative figures of merit for PLS-DA model.
FOM Equation Training set Test set
FPR FP 8.1% 11.7%
TN + FP
FNR FN 8.0% 8.5%
TP + FN
SEN TP 92.0% 91.5%
TP + FN
SPE N 91.9% 88.3%
TN + FP
EFR TN + TP 83.9% 79.8%

TN + FP + TP + FN

FN = number of false negatives; FN = number of false positives; TN = number
of true negatives; TP = number of true positives.

3. Results and discussion
3.1. Raman spectra and the effect of meat adulterants

Raman spectroscopy allows to study modifications in the secondary
protein structures, such as a-helix and B-sheets, as well as to provide
information about the amino acid residues. The Raman spectrum of a
sample of purge of bovine meat in natura (Fig. 2a) presents bands at
various wavenumber regions related to different functional groups of
amino acids, lipids and proteins. Some spectral bands can be assigned to
the CONH group, such as the two NH stretching peaks in the region
between 3500 and 2900 cm ™}, which were associated with amide A
and amide B vibrations, respectively. The region between 1800 and
700 cm ™! provides information about the structure of proteins, such as
a-helix and [-sheets structures. The main modes are amide I
(1640-1690 cm™ ') and amide III (1230-1300 cm ™). Amide I shows
stretching vibrations of C=O, while amide III is characterized by
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coupled C—N stretching and N—H bending vibrations of peptide groups.
Other important Raman signals can be observed in this region, parti-
cularly assigned to the aromatic moieties of amino acid residues, such
as tryptophan at 880, 1345 and 1557 cm ™ !, phenylalanine at 1003 and
1045cm ™}, and tyrosine around 850 cm ™! [44,45].

The addition of salts to meat, such as NaCl and STPP, or poly-
saccharide gums, such as carrageenan, changes the conformation of
proteins causing specific a-helix, B-sheet and (3-turn vibrations that can
be detected by Raman spectroscopy [45,46]. The effect of the addition
of NaCl in the chicken batters has been studied by some authors [47].
The most important spectral bands related to changes in the secondary
structure of proteins have been described as an intense band char-
acteristic of the amide I vibration mode (centered near 1660 cm ™) and
other signals in the amide III region (1225-1350 cm ™ Y). The amide I
band involves C=O stretching, C—N stretching, Ca-C-N bending and
N—H in-plane bending from peptide groups. In the amide III region, the
main bands involve C—N stretching and N—H in-plane bending vibra-
tions of the peptide bonds. The characterization of changes in the
protein tertiary structures has been related to the stretching vibrations
of tryptophan residues ring (760 cm ') and double Raman bands as-
signed to the para-substituted benzene ring of tyrosine residues, which
are centered at 830 and 850 cm ™! [45,47]. The addition of STPP to
meat produces the same significant bands as sodium chloride, including
additionally the characteristic band of P=0 stretching at 1102cm ™!
[48].

Another meat adulterant evaluated in this research was carra-
geenan, a linear sulfated polysaccharide extracted from red seaweeds.
The identification of carrageenan structures has been performed by
FTIR and FT-Raman spectroscopies [49]. The most important Raman
bands characterizing commercial kappa-carrageenan (used in our work)
has been reported at 1075-1085 cm ™ ?, assigned to C—O bond of 3,6-
anydrogalactose, at 1240-1260 cm ™!, related to S=O bond of sulfate

Qoo o T T T T
oo
0ot}
o

3 oooaf 3 wnf

2 F

; o

S 0006 §

_E = noosf-

= s

£ ool s niee

©

3

e
0002+
amo
olis A 2 L A A 3
3500 3000 2500 2000 1500 1000
Raman Shift (cm™)

C s - ; ; :
[ amm -
oom e

— -—

3 El

= ="

g.um =

$w s o

g g e

5 Do s

£
- B

S Do o s
0004 nsos
[y ame

oL L sl 1 | L

L 1 L 1
.0

E
Raman Shift (an*)

Raman Shift (cm™)

Fig. 2. Raman spectra of purges of (a) a sample of unadulterated bovine meat in natura, (b) a sample adulterated with NaCl 10%, (c) a sample adulterated with STPP

10%, and (d) a sample adulterated with carrageenan 10%.
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esters, and at about 845 cm ™', which can be assigned to D-galactose-4-
sulfate. The combination of carrageenan and soy protein isolate has
increased the gel strength and water retention of salt-soluble meat
proteins. In this study, Raman spectroscopy was used for detecting the
B-sheet structure as the base for protein aggregation and gelling [50].
Fig. 2b-d show Raman spectra of purges of samples adulterated at the
level of 10% with NaCl, STPP and carrageenan, respectively. Visually, it
is very difficult to note spectral differences between the adulterated and
non-adulterated samples, with the exception of the band centered
around 3200 cm ™, which is more intense for the adulterated samples.

Since the addition of salts causes changes in the structures of
meat proteins, Raman spectroscopy shows strong potential for pro-
viding noninvasive information for the detection of frauds in bovine
meat in natura by non-meat ingredient additions (NaCl, phosphates,
and carrageenan). Preliminary studies with ATR-FTIR [32] and
Raman (not shown) spectra have indicated the unfeasibility of ob-
taining accurate discriminant models by analyzing directly the meat
pieces with vibrational techniques, especially when the model in-
cluded different meat cuts causing a matrix effect. Therefore, the
alternative of building a chemometric model with the spectra of the
purges was adopted, since purge analysis is commonly performed for
meat quality control.

Raman spectra from all of the 165 samples used in this study are
shown in Fig. 3. Spectral regions corresponding to the stretching of the
CH bonds (3589-2736 cm ™ 1), and the bending vibrations of the CH,
bonds and amides I and III (1868 to 712 cm ™ 1), have been identified as
the most important ones for quality assessment of meats [45]. By ob-
serving Fig. 3, these same spectral regions can also be considered of
higher potential for the construction of the classification model.

3.2. PLS-DA model

As it has been already mentioned (Section 2.3), the whole data set
was divided into 112 samples for the training set and 53 samples for the
test set. Previous outlier detection was carried out. Samples presenting
spectral Q residuals or leverage values above the thresholds estimated
at 95% confidence levels were detected as outliers and removed from
the model. A total of eight samples, seven in the training set (3 control
and 4 adulterated samples) and one in the test set (control) were re-
moved from the model, corresponding to 4.8% of the original samples.
Thus, the best PLS-DA model was built with 157 samples and using 4
LV, which accounted for 95.21% of the variance in the X-block and
60.50% in the Y-block. For this model, Y predicted values are shown in
Fig. 4. The Bayesian threshold was estimated at 0.5923.

As can be seen in Fig. 4, three control samples were predicted as
adulterated (false positives) and six adulterated samples were predicted
as control (false negatives) in the training set. These results correspond
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to FPR of 8.1% and FNR of 8.0%. In the test set, two false positives
(11.7%) and three false negatives (8.5%) were observed. As a con-
sequence, SEN, the rate of true positives, was equal to 92.0% and 91.5%
for training and test sets, respectively. Reciprocally, SPE, the rate of
true negatives, was equal to 91.9% and 83.9% for training and test sets,
respectively. Finally, EFR, a global FOM that encompasses both the FN
and FP rates, was estimated as 86.6% and 79.8% for training and test
sets, respectively. Since EFR includes the effects of both types of error, it
is a FOM more appropriate for comparison with other classification
methods published in the literature. All of these FOM are shown in
Table 1, jointly with the respective equations used to estimate them.

Classification models built in this paper aimed at preliminary for-
ensic discrimination. Thus, the developed screening method should
primarily minimize false negatives, because false positive results can be
circumvented by complementary analysis for confirmation with con-
ventional reference methods, before a judicial decision be finally made
[51]. Taking this into account, a FNR below 10% for the test set (8.5%)
was considered acceptable for our goals.

For the spectral interpretation of the developed PLS-DA model, it
is interesting to observe the VIP scores, which are contained in an
important informative vector that is shown in Fig. 5. Variables with
VIP scores higher than a threshold of 1.0 are considered to contribute
significantly to the model. The three Raman peaks that most con-
tributed for discrimination are marked in Fig. 5(a-c). The highest VIP
scores are associated with a spectral band centered at 3200 cm ™ ?,
assigned to the NH stretching of amides (Fig. 5 - a) [13], which could
be related to changes in the conformation of proteins as a function of
the addition of salts to meat. The second most intense peak of VIP
scores, at 845 cm ! (Fig. 5 - ¢), can be associated with the effect of
carrageenan and the presence of D-galactose-4-sulfate residues
[49,50], as previously mentioned (Section 3.1). The third most in-
tense peak of VIP scores, centered around 2930 cm ™! (Fig. 5 - b), is
assigned to a CH stretching and could be related to the meat quality
[45]. By observing VIP scores, it can be realized that many variables/
peaks presented values higher than 1.0, thus contributing sig-
nificantly for detecting meat adulteration.

3.3. Attempts to build one-class models

Some authors have criticized the predominance of discriminant
models, such as PLS-DA, applied to food authentication problems, ad-
vocating the preferential use of one-class modeling [52]. These authors
have argued that in the detection of food adulteration, the acquisition
of a sample set representative of all of the possible types of frauds is
unfeasible, making the modeled adulterated class non-representative.
Nevertheless, every multivariate model is a local model, and other
authors defended the alternative of combining PLS-DA with outlier
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Fig. 3. Raman spectra of the 165 analyzed samples.
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the model.

detection [53]. In this way, future samples very different from the
original ones (new types of frauds) will be detected as outliers and not
assigned to any of the original classes. In this sense, class modeling
problems can be defined in terms which closely resemble outlier de-
tection: for each class as a function of method-specific criteria, it is
verified whether a sample is fitted well by the respective class model
(accepted) or not (reject) [54].

Data driven soft independent modeling of class analogy (DD-SIMCA)
[55] and one-class PLS (OCPLS) [56] models were built for our data.
The best models were obtained with 5 principal components for DD-
SIMCA and 7 LV for OCPLS. These models presented similar results,
with high SEN (around 94%), but poor SPE (below 40%). Therefore,
they were considered unsatisfactory. Similar poor results were obtained
by other authors in building one-class models to detect infested rice
grains, what was justified due to the high heterogeneity of the samples
[54]. In our case, original meat samples were obtained from different
origins without control of the ante-mortem factors that can influence
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meat composition, such as breed, sex, age, feed intake and handling.
Thus, it was not possible with these data to obtain one-class models
with the same good performance as was provided by PLS-DA.

3.4. Bootstrap uncertainty estimates

In order to complete the analytical validation of the method, un-
certainties were estimated for specific sample predictions by employing
bootstrap resampling with 1000 replications. Error bars for each pre-
dicted value are shown in Fig. 4. Six samples in the training set pre-
sented confidence limits exceeding the threshold. Two of these samples
had been wrongly predicted by the model (one false positive and one
false negative), whereas the other four samples were true positives. For
the test set, no sample presented a confidence interval that exceeded the
threshold. Thus, inconclusive result rates could be estimated for the
model as 3.8% for the training set and 0% for the test set.
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4. Conclusions

This paper was based on a police report that happened a few years
ago in Brazil, when some slaughterhouses were fined and processed for
frauds in bovine meat in natura by the addition of non-meat ingredients,
such as NaCl, sodium tripolyphosphate and carrageenan. The goal of
this fraud was to increase the meat water holding capacity for obtaining
economic fraudulent gains. Preliminary studies have indicated limita-
tions for detecting this type of fraud directly in the solid meat by using
vibrational techniques alone. A good discriminant model was only ob-
tained with data fusion models merging vibrational spectra and phy-
sico-chemical variables [32]. Thus, the alternative of analyzing the
purges of meat was adopted. A rapid, simple and low cost method was
developed and validated based on a multivariate discriminant PLS-DA
model built from Raman spectra of purge samples. A robust model was
constructed incorporating variability from meat pieces of the same cut
(eye of the round) obtained from different origins and adulterated by
the injection of the investigated adulterants according to an experi-
mental design. The developed method detected samples injected with
single, binary and ternary mixtures of adulterants, providing false ne-
gative and false positive rates varying from 8 to 12%. As an additional
validation step, uncertainty confidence intervals were determinated for
each sample prediction provided by PLS-DA using bootstrap resam-
pling. This type of screening method has shown a great potential to be
applied in real situations to detect meat frauds and adulterations.
Regulatory agencies and criminal/forensic investigators can use this
methodology for obtaining fast results and improving their analytical
capacity.
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