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Resumo

Neste trabalho apresentamos um pipeline de segmentação semântica não supervisionada
baseado em Redes Neurais Convolucionais (CNNs), com foco em imagens de sensoriamento
remoto. Nosso pipeline aprimora os artigos que representam o atual estado-da-arte na liter-
atura, resultando em uma metodologia versátil que pode receber entradas supervisionadas,
não supervisionadas e fracamente supervisionadas. Também propomos uma metodologia
de geração automática de scribbles que é capaz de rotular semi-automaticamente grandes
conjuntos de dados com supervisão mínima. Para acompanhar esta metodologia também
propomos um classificador de scribbles e uma ferramenta de rotulagem de scribbles. E,
finalmente, propomos duas aplicações do mundo real onde testamos as capacidades de
nossa rede proposta. Os resultados em datasets de benchmarking mostram que nossa rede
proposta pode ser competitiva com o estado da arte atual para métodos baseados em
CNN, o gerador de scribble é capaz de fornecer scribbles significativos e relevantes para
grandes conjuntos de dados, e nossas aplicações mostram uma variedade de possibilidades
de uso para nossos rede.

Palavras-chave: segmentação semântica, não supervisionado, fracamente supervisionado,
sensoriamento remoto, scribbles.



Abstract

In this work, we present a Convolutional Neural Network-based unsupervised semantic
segmentation pipeline, with a focus on remote sensing imagery. Our pipeline improves upon
the current state-of-art papers in literature, resulting in a versatile methodology that can
take supervised, unsupervised, and weakly supervised inputs. We also propose an automatic
scribble generation methodology that is able to semi-automatically label large datasets
given minimal supervision. To accompany this methodology we also propose a scribble
classifier and a scribble labeling tool. And finally, we propose two real-world applications
where we test the capabilities of our proposed network. Results on benchmarking datasets
show that our proposed network can be competitive with the current state of the art for
CNN-based methods, the scribble generator is able to provide meaningful and relevant
scribbles for large datasets, and our applications show a variety of possibilities of usage for
our network.

Keywords: semantic segmentation, unsupervised, weakly supervised, remote sensing, scrib-
bles.
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Chapter 1

Introduction

Describing the contents of an image is as natural for humans as walking or
breathing. Our developed brains and eyes, in a single look, can accurately detect and
describe every aspect of an image in seconds. But for machines, this is a more complex
problem. Starting with how machines understand images- sequences of zeros and ones in a
grid- more complex and meaningful ways of looking into this data are required to make
sense of what is happening in that rectangular box filled with colors. Digitally, images are
described as a matrix of values, or pixels, where each value represents the color at that
specific point. In the case of colored images, three values are necessary.

The main research field for images and how computers process them is Computer
Vision, which consists of various techniques for processing digital images. Among such
methods, there are those focused on describing the contents of images. Some examples are
Image Classification, which consists of assigning simple labels indicating whether an image
contains or not a given semantic element, such as animals, trees, objects, etc.; Object
Detection, which solves a more complex problem of not only defining if an image contains
a particular element, but also locating it within the image; and Semantic Segmentation,
which consists of describing the contents of the entire image in a pixel level, indicating
where each of the elements is and what they are, or, in other words, describing the semantics
of the images.

In this work, a general pipeline for semantic segmentation is investigated. There
are a variety of fields in which semantic segmentation can be applied, each with its
sub-applications. To comprehend the importance of this technique, some of the main
applications are listed here. In Medical Imaging, there are several usages, such as segmenting
X-rays into different types of bones and tissues or microscope images of cells and tumors
[Wang et al., 2022]. In Remote Sensing, applications include classifying crops, extracting
buildings and roads, monitoring the environment, and others [Yuan et al., 2021]. As
reported in Feng et al. [2021], semantic segmentation is one of the most crucial components
of Autonomous Driving. In Biology and Agriculture, it can be used to differentiate species
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of plants [Milioto et al., 2018]. Its use for Face Recognition is extensively discussed in
Meenpal et al. [2019]. It can categorize different items in Sales and similar applications
[Rabinovich et al., 2007]. And along with these applications, there are many others since
this is a versatile technique with endless possibilities.

Semantic segmentation can be understood as clustering parts of an image into
distinct classes or categories according to their similarity [Thoma, 2016]. Before the advent
of the Convolutional Neural Networks (CNNs), which compose the current state-of-art
in this task, there were many different methods based on handcrafted features such as
feature clustering, graph approaches, active contour models, and watershed algorithms,
among many others [Thoma, 2016]. Most of these conventional methods follow a generative
approach to learning the semantics contained in the image. Such an approach provides
more information about the problem in question, allowing us to analyze, for example, the
degree of class overlap.

After the first work that popularized the usage of CNNs [LeCun et al., 1998],
the field of Deep Semantic Segmentation Networks (DSSNs) eventually arose [Shelhamer
et al., 2017] and quickly reached the state-of-art in this task [Minaee et al., 2022]. The
deep networks can learn the intrinsic features of the images with their filters, representing
color and texture better than any other conventional feature extractor. Because of that,
they reached new standards in every image processing task, e.g., image classification,
object detection, and semantic segmentation. When using DSSNs, the previously primarily
generative problem now becomes a discriminative approach, which consists of drawing
boundaries in the data space by predicting labels for the data. Although generative models
are usually more general and discriminative models are more application dependant, this
specification allowed the networks to reach new standards for their domain of usage,
generally surpassing and being preferred compared to the generative models [Ng and
Jordan, 2002].

Therefore, one problem with these networks is the need for labeled ground truth
data, that is, semantic masks describing the contents of thousands of images needed to
teach them to perform an accurate segmentation. Even though they can complete this task
precisely, they still require much training to learn how to segment. Supervised learning is
teaching an algorithm a given task by providing a ground truth. By recalling the definition
of semantic segmentation, to cluster parts of an image as belonging to the same class, to
define the semantics of an image, or what is the content present in it, an expert must
first know and name this content so that the algorithms may later label their segmented
masks. But the main problem is that these ground truth labels are expensive to acquire
since placing these labels is a complex and time-consuming task, sometimes even requiring
money to be spent with experts.

The need for a lot of labeled data in supervised learning led researchers to search
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for other ways of teaching networks to perform semantic segmentation. Some learning
approaches without needing a fully annotated ground truth were explored, such as using
weak labels that describe only small pieces or fragments of images, such as scribbles in
homogeneous areas and polygons or single points in some objects [Zhang et al., 2020].
This research field is called weak learning, using weak labels to teach algorithms instead of
entire ground truths [Zhang et al., 2020]. But the main problem with this approach is that
it also requires a vast amount of data to be labeled for the networks to learn correctly.
Thus, for extensive datasets with several thousands of images, even with weak labels, the
problem remains. The need for a lot of labeled data in supervised learning led researchers
to search for other ways of teaching networks to perform semantic segmentation.

This drawback led researchers to explore more options, such as unsupervised
learning: the ability to learn without labels. In this approach, the networks learn to
perform the semantic segmentation by themselves, removing the need for data annotation
[Thoma, 2016]. Another advantage of this approach, besides saving the time and labor
of the annotation process, is that the networks also avoid human labeling errors, such as
not depicting the best representation of the objects and regions. On the other hand, these
networks many times are not able to completely represent the ground truth segmentation
and usually have more error than the supervised approaches since the features learned
may not indeed mean the semantic classes of the image as initially intended, which is why
is a less used approach in general.

1.1 Main Contributions

Given the different types of learning described and motivated by the advantages
of not needing a fully annotated dataset, this work proposes a new unsupervised semantic
segmentation network that performs a clustering task, being able to learn standard features
through an entire dataset, resulting in a powerful feature extractor for the proposed
application. The clustering task is performed by grouping similar regions of images and
teaching the network to classify these groups as the same class. By using a clustering
approach, the network has the advantage of the generative models, that is, being able to
describe better and represent the data, while also using having the benefit of the powerful
training and feature extraction of the CNNs, discriminative models, taking the best of
both worlds.

Our pipeline is composed of a feature extractor and two classifiers with q classes,
where q is a large number, followed by an argmax operation to select the highest activated
class for each pixel in each classifier. We then segment the images in superpixels and
through a majority vote, attribute the most common class inside the superpixel for every
pixel. We then use this as ground-truth and backpropagate to the network, using our
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novel cross-entropy loss weighted by each image batch. By using two classifiers and the
same feature extractor, we are able to further generalize the features since their class is
randomly assigned in each classifier.

Other works in literature explore unsupervised semantic segmentation with CNNs
[Jing and Tian, 2021]. Still, unlike these works, the proposed network can also be extended
to use annotated semantic masks to guide the learning process, applying to both the
weak and fully supervised learning cases. This pipeline is defined as general. When
using supervision, the main focus is not to learn to perform the most accurate semantic
segmentation, since the semantic mask is only used to group pixels and the classes are
discovered by the network itself, but to create a more robust representation of the features,
allowing the network to expand supervised classes into more than one cluster, being able
to even take into account their overlap and avoiding annotation noise. This versatility
to alternate between supervised and unsupervised cases, along with the robust feature
representations, are among the main contributions of this work.

But since in both weak and fully supervised cases, there is a need for a lot of
annotated data, a novel methodology for labeling datasets with weak labels is also proposed,
which drastically reduces the annotation effort, even in the already low-effort weakly-
supervised case, and justifies the use of the proposed network with human supervision.
In this pipeline, the proposition is that by grouping similar regions in images, the same
premise as in the clustering task, it is possible to automatically draw scribbles in well-
defined and homogeneous areas of an entire dataset of images, label a small set of these
automatically generated scribbles, and train a classifier to label the remaining, resulting
in a semi-automatic labeling process. Accordingly, the main advantage of the proposed
unsupervised semantic segmentation methodology, which is to dispose of the effort of
labeling a dataset, can still be reached in a supervised context by reducing this effort to
the bare minimum. The process is also facilitated by our provided scribble labeling tool,
which allows the user to easily draw, edit, remove and pick a class for scribbles.

Finally, given the clustering task that this work proposes to solve, the chosen
application for the work to be developed and tested are remote sensing tasks, which usually
have well-defined regions and objects throughout the image and can be used to solve a
variety of different problems, therefore composing a challenging domain for this work. In
our experiments, along with the semantic segmentation task, we propose two usages of our
network in remote sensing applications, investigating the complexity and usability of the
learned features. Given these considerations, our main contributions can be summarized:

• An unsupervised deep semantic segmentation network that can learn complex se-
mantic patterns;

• An analysis methodology for two examples of remote sensing applications where this



Chapter 1. Introduction 16

network can be applied;

• An automatic scribble generator;

• A semi-supervised labeling pipeline that requires only a small set of images to be
labeled;

• A graphical user interface to visualize, draw, edit, remove, and annotate scribbles
manually;

• A published paper with part of our results: Ferreira et al. [2022]

The remaining of this document is organized as follows: in Chapter 2, a state-of-art
review for both deep unsupervised semantic segmentation and weak label generation are
presented and compared, along with the primary motivations for this work; Chapter 3
introduces the proposed methodologies for both the unsupervised semantic segmentation
pipeline and the semi-automatic weak labeling process. In Chapter 4, the results for the
pipelines and the applications are presented and discussed; Finally, Chapter 5 offers the
conclusion for this work.
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Chapter 2

Related Works

This chapter introduces the Unsupervised Semantic Segmentation algorithms, from
the first algorithms developed to the latest state-of-art in literature. A review of the Weak
Label Generation methodologies is also presented, ending with the main contributions of
this work to current and future literature.

2.1 Unsupervised Semantic Segmentation

Before explaining the unsupervised networks, it is first essential to understand
the history of the supervised semantic segmentation networks since their building blocks
and architectures have shaped everything used until today in semantic segmentation. This
section starts with the history of the most common supervised methods, followed by the
current state-of-art of the unsupervised methods.

2.1.1 History of supervised segmentation networks

The first work to propose a CNN was an algorithm based on the hierarchical recep-
tive field model of the visual cortex, called "Neocognitron," dated from 1980 [Fukushima,
1980]. But CNNs would not become popular until 1998, when the LeNet architecture
was proposed, applied to digit recognition [LeCun et al., 1998], which is a composition
of convolutional layers, where a filter would convolve with a standard 2D neural network
layer; non-linear layers, which apply an activation function on the resulting feature map
of another layer; and pooling layers, that reduce the dimension of 2D layers based in
local statistical information. Compressing the images in resulting features is also called an
encoder process.

Although these networks had promising results, the computational effort required
to use these networks had still not been achieved by then. But with the advent of Deep
Learning techniques and the usage of Graphic Processing Units (GPUs) to train models,
in 2012, the AlexNet network was proposed [Krizhevsky et al., 2012], which was a wider
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and deeper version of the LeNet, being able to learn and recognize more complex features
and objects.

Afterward, a diversity of famous CNNs architectures were proposed. Some examples
are: VGGNet [Simonyan Karen and Zisserman Andrew, 2015], or VGG-16, which is also
very similar to the AlexNet architecture, but it is more extensive, with 16 layers, and
uses only 3 × 3 filters to perform the convolution operations; ResNet [He et al., 2016]
which introduced the skip connections, a way to connect the first layers with the last ones
and avoid the vanishing gradient problem, where deep layers had more challenging time
to learn; GoogleLeNet [Fairclough et al., 2015] which introduced two contributtions, the
inception module: a way to concatenating different convolutional filters and reducing the
number of features and operations, and the usage of batch normalization during training,
the normalization of the features between layers along the training; MobiletNet [Howard
et al., 2017], which used depthwise convolutions, a new type of convolution that uses
much less parameters, drastically reducing the size of large networks while still achieving
the same results, and allowing deep networks to be suited for mobile applications; and
finally DenseNet [Huang et al., 2016], which is a more profound and broader network that
connects every layer to each other, using less parameters and making a better use of the
features, thus avoiding vanishing gradients.

Each of these networks had its advantages and changed the history of CNNs.
But as far as semantic segmentation is concerned, the most significant change occurred
when the Fully Convolutional Network (FCN) architecture arrived [Shelhamer et al., 2017],
one of the first DSSNs, a deep learning network specifically for semantic segmentation.
In this network, the authors use the VGGNet architecture as an encoder, and at the
end of the network, the output features are upsampled to the input image dimension by
using a bilinear interpolation, allowing the usage of a classifier that acts directly in each
pixel of the image. Along with the upsampling step, the authors used skip connections
between lower and higher layers, similar to ResNet. This allowed the network combines
both the more complex semantic information from the final layers and the less complicated
appearance features from the first layers, producing a more accurate segmentation.

Among many supervised DSSNs that arise later, some specific networks deserve
attention. The first one is U-Net [Ronneberger et al., 2015], a network that came before
FCN and used two VGGNets concatenated in an U shape. The idea is similar to FCN,
but the second network performs multiple upsamples instead of one. Another difference is
that instead of bilinear interpolation, the upsamples are performed using deconvolutions
- filters with learnable weights that can increase the dimension of the output, making
the upsampling step more robust. This type of architecture is called encoder-decoder
architecture. They also extend the concept of skip connections; instead of the traditional
connections between deeper and shallower layers, the authors concatenate the feature
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layers from the encoder network to their symmetrical, or equivalent in size, layers in
the decoder network during the upsample convolutions, avoiding losing patterns in the
deconvolution and turning the upsampling process becomes even more robust and less
prone to vanishing gradients.

Another widely used network is SegNet [Badrinarayanan et al., 2017]. This network
is similar to U-Net: both have convolutional and deconvolutional networks concatenated,
but SegNet introduces a connection between the pooling layers from the convolutional
step into the deconvolutional step, which maps the pooling indexes and uses them to
perform an upsample, in a process called unpooling. This process eliminates the need for
skip connections, thus eliminating the need to learn weights in the upsampling process
and being more robust than bilinear interpolation. The result is a smaller network with
fewer parameters, as it is wholly made of convolutional layers, achieving results equally
good or even better than FCN and U-Net.

Another type of network that greatly impacted semantic segmentation is the
Dilated Convolutional Model, with the principal works being the DeepLab models [Chen
et al., 2018]. These networks introduced the dilated convolutional layer, which is the same
as a convolution but adds a space between the kernel weights. This helps during the step of
decreasing the resolution of the images in the encoder step. The networks also introduced
the Atrous Spatial Pyramid Pooling (ASPP), which uses features from multiple resolutions
at specific feature layers, helping to capture objects and image context at various scales.
And it also introduced the usage of fully Conditional Random Fields (CRFs) to improve
the localization of object boundaries.

Along with this described network, which is the most used, other types of networks
include Multi-Scale and Pyramid Network-based models [Lin et al., 2017], Attention base
models [Chen et al., 2016], Generative and Adversarial models [Luc et al., 2016, Souly
et al., 2017], Recurrent Neural Network models [He et al., 2017], among several others.
This comprises most of the history of the supervised DSSNs, which originated the current
state-of-art models in fully and weakly supervised learning.

2.1.2 State-of-art for unsupervised segmentation networks

Regarding unsupervised learning, the models differ slightly from the supervised
ones since they are built to learn how to segment the images independently. This literature
review will focus on works that: 1 - use CNNs; 2 - uses only images with the primary Red,
Green, and Blue (RGB) colors; and 3 - were relevant to the current state-of-art for this
more specific problem.

One of the first works that greatly impacted unsupervised segmentation was
called Deep Cluster [Caron et al., 2018]. In this work, the authors took advantage of
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features in the final layer of the model. After the end of the decoder step, they apply a
Principal Component Analysis (PCA) technique to reduce the dimensionality and then
cluster the features using the K-Means algorithm, with a few additional constraints to
avoid trivial solutions. The clusters generated are used as pseudo-labels for each pixel
and backpropagated with a standard classification loss for the network. This network
was initially proposed for image classification. Still, the authors extended it for the
semantic segmentation problem by using the previously trained classifiers to classify pixels
individually. At the time, it achieved good results, also being a generic way of solving
unsupervised CNN training.

Another work that set new baselines in unsupervised semantic segmentation was
the Invariant Information Clustering (IIC) [Ji et al., 2019]. In this work, the idea is to
use pair of images: a random image from the training set and the same image but with
some perturbation (i.e., data augmentation). Their network comprises a CNN to extract
features and a fully connected layer to predict the probabilities. Then, knowing that both
images have the same clusters, that is, their probability distributions for each class should
be close, they use an equation that measures the mutual information of the distributions
and models it as a loss function. The idea is to maximize the mutual information between
given pairs to assign similar images to the same class. They apply this pipeline in different
image patches to perform semantic segmentation with minor modifications. Finally, they
also propose using a second classifier with more classes than in the actual dataset, called
distractor classes. In this second classifier, the proposition is to use an over-clustering
(more classes than ground truth) approach, explaining that the desired relevant classes
may contain errors and overlaps and that by adding this second classifier, they can still
benefit from the context in these distractors classes, so that the network will still learn to
distinguish features while paying attention to the desired segmentation, even with noisy
classes.

Another relevant work was the W-Net [Xia and Kulis, 2017]. Based on the U-Net,
this network works by coupling two U-Net architectures, taking the shape of a W and
thus originating its name. The first U-Net is an encoder that will perform the semantic
segmentation of the image, and the second U-Net tries to reconstruct the original image by
using the output of the encoder. Two losses are optimized, the mean square error between
the original and reconstructed image and a loss based on the normalized cut algorithm
[Shi and Malik, 2000], which is a graph-based clustering algorithm. To understand this
second loss, the authors initialized a generic number of classes K, and at the output of
the first U-Net, the argmax of the activations is taken to predict each of the K classes
activated the most for each pixel, thus becoming the class of the pixel; this loss is a soft
version of the Normalized Cut algorithm, which takes into account the argmax function, is
differentiable and able to backpropagate. A post-processing step is also performed, where
the segments are smoothed using Fully Connected Random Fields. Then, a hierarchical
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segmentation method groups and combines smaller segments, generating the final semantic
segmentation with a specific class for each pixel. This class is then used as ground truth
and backpropagated to the network during training.

Besides these works based on classic CNNs, recently, approaches based on visual
transformers also arose, which are different from the three initial categories, but currently
compose the state-of-art in unsupervised semantic segmentation. This first algorithm works
in two steps [Hamilton et al., 2022]. First, they perform a self-supervised feature learning
where patches from the same image and different images go through the same backbone
to train a segmentation head, and the loss function maximizes the similarity of features
from the same image while minimizing the similarity between features from different
images. In the end, similar regions of similar images will have closer feature vectors, and
this can be used to verify if two images are from a similar class. Then a lookup table is
constructed for the entire dataset with every class. The batches for training are composed
of random images, and for each image, its 7 K-Nearest Neighbors (KNN) using the lookup
table. During training, there are three losses, one that evaluates the correspondence of the
features within the image, one to evaluates the correspondence with the features of one of
the k-neighbors, and one to evaluates the correspondence with the features of a random
image from the batch. The first two provide a positive signal, while the last provides a
negative signal. In the end, the network will have learned the semantic segmentation of
the dataset.

These four works compose the base of unsupervised semantic segmentation. Many
works that arose later than the first three methodologies were created as variations and
recent works are being created as variations of the fourth. And thus, the three main
methodologies are here classified as four Unsupervised Methodologies (UM):

• UM1 - Methods based in Information Theory [Ji et al., 2019]

• UM2 - Methods based in structured clustering [Caron et al., 2018]

• UM3 - Methods based in spatial clustering post-process (after argmax) [Xia and
Kulis, 2017]

• UM4 - Methods based in visual transformers [Hamilton et al., 2022]

Recently, other methodologies arose that are worth mentioning, but despite being
different in some aspects, most of them can be categorized within these four initial works.
Some of the works include:

1. one work that segments an image into superpixels, followed by the extraction of
low-level (statistical) features that are fed to a Stacked Autoencoder (SAE), whose
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purpose is to generate high-level features, and finally, the high-level features are
clustered in a post-processing step using a graph-based superpixel clustering algorithm
[Jiao et al., 2020] - similar to UM3;

2. another work, in a process similar to the IIC algorithm [Ji et al., 2019], uses as
input two images, one which has photometric and geometric transformations as data
augmentation, and feeds these images to the same network, using a modified loss
function that tries to minimize the invariance to photometric transformations and
maximize the equivariance to geometric transformations between images [Cho et al.,
2021] - this can be categorized in UM1;

3. a work that extends the IIC algorithm [Ji et al., 2019] to perform a pixel-wise
evaluation instead of using patches by extracting local features (from the first layers
of the network) and using them in the mutual information maximization step to
make the predictions closer to these local features instead of closer to each other
[Harb and Knöbelreiter, 2021] - this is categorized in UM1.

Returning to the three unsupervised segmentation methodologies, the pipeline
proposed in our study is based on the UM3. This idea of using a high number of classes
and performing a refinement after taking the argmax value of the class activations proved
to be strong, and many works after this improved this idea. One of the critical works that
improved upon this idea proposed a more simple way of performing the same segmentation
as UM3. Using a simple and generic CNN to extract features, the author suggests that
q classes are initialized and that the argmax of these classes is taken to classify the
pixels. Then, instead of using the Normalized Cut algorithm during training, a simple
superpixel segmentation with the Slic algorithm is used to enforce that the pixels within a
superpixel belong to the same class. Then, backpropagate a simple softmax classification
loss to the network, comparing the obtained and superpixel-refined segmentations. By pre-
storing the superpixel segmentation of the images in memory, this process becomes more
straightforward and faster than the W-Net, since the network architecture and clustering
steps after argmax are more straightforward while still achieving good segmentation results
[Kanezaki, 2018].

The simplicity of this methodology allowed for more robust versions of this pipeline
to take place. One of the first proposed the Mumford-Shah Loss [Kim and Ye, 2020], a
loss based on the Mumford-Shah functional that minimizes the pixel variance inside the
segments, acting as a regularizer during training. This loss can be directly coupled with
other losses, improving existing segmentation algorithms, such as the segmentation from
Kanezaki [2018].

The authors proposed two modifications to the original work in another work [Saha
et al., 2019]. In contrast to the simple feature extractor from the original work of Kanezaki
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[2018], the authors proposed the usage of a more robust feature extractor, the VGGNet
layers, pre-trained in the ImageNet dataset, with the weights frozen, along with a few of
the features blocks from the original work, making only these feature blocks trainable.
And another modification is that instead of the superpixel refinement, they propose a
segment score-based refinement to avoid over-segmented clusters. This is performed by
checking the 8-neighbors for every pixel to determine connected segments. Then, if two
segments have a different class and the area of one is more extensive than 50% of the
size of the other, the smaller segment is merged with, the larger one. Both modifications
improve the quality of the final obtained segmentation related to the original work.

The authors from another paper proposed a similar pipeline [Barthakur and
Sarma, 2019], with a few modifications of exchanging the feature extractor to the SegNet
architecture, and instead of superpixels, they convert the image to the Lab color space and
cluster the image, then using the obtained segments as refinement class to the network.
This work is generally closer to the UM1 category, although based on a UM3 method.

In a crop monitoring application work [Bhatt et al., 2019], the authors use the
FCN architecture to extract features. After obtaining the labels through the argmax
step, they proposed using a CRF post-processing step, which increases the segmentation
accuracy by refining the boundaries. The clustering algorithm used is the Normalized-cut,
and after the CRF, the remaining steps of the algorithm are the same - reassigning the
labels and backpropagating the error. This work is closer to the W-Net than Kanezaki
[2018].

One of the works tried to incorporate the idea of multi-temporal segmentation
[Saha et al., 2020]. Besides the previous steps of the methodology, they prose the usage
of a new loss that detects object segments from individual images and establishes a
correspondence between distinct multi-temporal images. To perform that, the authors
process images t and t+ 1 at the same time, at any time t, and calculate the loss for both
images using the same segmentation, guaranteeing that both will have the same clusters
since images close in time most likely does not change much. Overall, the process is the
same as in the original work of Kanezaki [2018], but with the addition of processing two
images simultaneously.

In another work called SEEK [Ilyas et al., 2020], the authors exchanged the feature
extractor by the SE-Net [Hu et al., 2020], a squeeze and excite architecture, which performs
a feature calibration. They also traded the superpixel segmentation from the original Slic
algorithm to the Felzenswalb algorithm [Felzenszwalb and Huttenlocher, 2004], a graph-
based algorithm. Along with these changes, they also incorporated a K-means clustering
step after the argmax to remove smaller segments and reduce the over-segmentation.

One author proposed to exchange the feature extractor for an encoder-decoder
variation, where the basic blocks include residual connections, as in a ResNet [Khan and
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Yang, 2020]. In this methodology, after training the network in the same way as Kanezaki
[2018], except for the different feature extractors, the authors perform a post-processing
step, extracting different color, texture, and spatial features from each superpixel. In other
words, they merge superpixels with similar characteristics, creating more consistent areas
for the final segmentation. These features are used in a Region Adjacency Graph, which is
used in a Region Merging Algorithm.

Another author also proposed to change the feature extractor to an encoder-decoder
architecture [Zhou and Wei, 2020]. Instead of residual blocks, they used the original blocks
of Kanezaki [2018], composed of convolutional, ReLU, and batch normalization layers. They
also added a novel block at the end of the pipeline, a Deep Subclustering Network (DCS)
block, which clusters the features from the previous layers into several subclusters and then
feeds the clusterized image to a convolutional layer. This layer works as a preprocessing
step, pre-clustering the image in the feature space and improving the argmax semantic
segmentation step, which will have less influence over the final result.

Finally, one work used an autoencoder architecture to solve the same problem,
where they reconstructed the image at the end of the pipeline and applied the superpixel
refinement in the middle, after the encoder, and before the decoder Lin et al. [2020]. The
main difference in this approach is that they reconstructed a smoothed version of the
image and used it to extract the superpixels. They also use two other losses, the original
cross-entropy loss, and a proposed Superpixel Similarity Loss, in which they create a
similarity matrix between close superpixels based on the idea that closer superpixels should
have similar features, then try to minimize the sum of the similarities.

Given all the contributions above, the current state-of-art provides good semantic
segmentation results considering an unsupervised problem. Most of these techniques can
already achieve rich semantic mappings regarding the classes. Many times, considering the
actual classes to be labeled by humans, they are subject to error, which can sometimes
be reflected in the model. One of the most significant possibilities of these networks that
learn the classes and structures by themselves is the ability to find hidden and subjective
meanings in the data that a human could potentially miss. Therefore, the current problem
in literature is not the supervised results metrics but the lack of applications that use
these semantic structures in elaborate ways. There is much potential for the capabilities
of Unsupervised DSSNs that are currently not well explored, which this work intends to
study.

2.2 Weak Label Generation

As of the writing of this work, the most accurate and popular semantic seg-
mentation method is DSSNs [Minaee et al., 2022]. In this context, just as many other
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modern machine learning systems that can learn highly complex tasks, they also require a
large quantity of data to generalize the model for the most significant number of cases.
Fortunately, the modern world has a large amount of data available. The problem is
there is a high cost for labeling this data, specifically for semantic segmentation tasks,
which depend on the availability of a fully annotated dataset with segmented masks in
which every pixel in the image has its label. Making these masks can be both tedious
and time-consuming, sometimes even requiring the help of experts to provide the correct
annotations, therefore also becoming expensive. Furthermore, in remote sensing, this
problem extends to the amount of different and unpredictable content in images, which
contain varying information and a wide range of possible semantics.

Regarding data labeling in general, the three main problems were summarized by
Roh et al. [2021]. The first one is the insufficient quantity of labeled data; when machine
learning techniques are initially used in new applications or industries, there is often
insufficient training data available to apply traditional machine learning processes. The
second problem is insufficient subject-matter expertise to label data; when labeling training
data requires relevant specific knowledge, creating a usable training dataset can quickly
become prohibitively expensive. And the third problem is insufficient time to label and
prepare data: Most of the time required to implement machine learning is spent preparing
datasets. When an industry or research field deals with problems that are, by nature,
rapidly evolving, it can be impossible to collect and organize data quickly enough for
results to be beneficial in real-world applications.

The labeling problem mainly affects the classical type of learning: supervised
learning, in which given input data and the desired output, the model is trained to map
the input to the output. Aside from that, there are also several other types of learning,
some helpful to dealing with fewer labels [Sarker, 2021, Sah, 2020], such as the opposite of
supervised learning is the other classical method, unsupervised learning, in which no output
is provided, and the model learns from the data. But in most applications, supervised
methodologies perform better than unsupervised ones since the training to obtain the
desired output can be considerably accelerated by giving the correct labels.

Due to the problems above, many researchers have tried to find ways of generating
ground truth data more efficiently. Some learning types in the literature deal with this
problem differently. The first is semi-supervised learning, which lies between supervised
and unsupervised domains. In this type of learning, a mix of labeled and unlabeled data
is used, where a model is trained using labeled data, and this model is used to classify
the unlabeled data. Afterward, both are used to train the model with the whole dataset.
Another approach can be to obtain a feature representation for the unlabeled data, which
can be made by using an auto-encoder, and use it to replace or enhance the labeled data.
And another type is self-supervised learning, which uses naturally existing supervision
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signals obtained from the data structure as labels to train the model, such as rotations of
the image or horizontal/vertical flips.

The problem with these types of learning is that neither deals with the labeling
problem for a vast amount of data, except maybe the self-taught learning. However,
since the labels are placed automatically, it is still inaccurate. Finally, one more type of
learning is weakly-supervised learning [Ratner et al., 2017a, Zhou, 2018]. The main idea
is to obtain a more straightforward and cheaper way to annotate datasets through weak
labels, that is, labeling a dataset with little cost, which can guide the model training like
supervised learning. For disclosure, there are other types of learning, such as transfer,
active, zero/one/few-shot, and reinforcement learning, which will not be detailed here.

To better detail, weak supervision is a form of coarse or inaccurate supervision. It
is about leveraging higher-level or noisier input (simple form of label data) from Subject
Matter Experts (SMEs) to train the model [Ratner et al., 2017a]. The primary motivation
behind weak supervision is to mitigate the need for labeled training data. Unlike traditional,
semi-supervised and transfer learning approaches, weak supervision uses lower quality
labels more efficiently or at a higher abstraction level, being able to get cheaper labels
from non-experts, to obtain higher-level supervision over unlabeled data from SMEs, and
even to use one or more pre-trained models to provide supervision.

In a formal definition, consider a set of unlabeled data Xu = x1, . . . , xN , and one
or more weak supervision sources p̃i(y|x), i = 1M , provided by an SME, such that each
one is comprised of:

• A coverage set Ci, which is a set of points x over which it is defined

• An accuracy, which is defined as the expected probability of the label y∗ over the
coverage set

These weak supervision sources are called weak labels. For instance, consider the
case of scribbles, where an example of an image with a complete and expensive per-pixel
annotation is given, along with a cheap, weakly labeled scribble annotation. Each scribble
drawn over an image has its associated pixels, which would be its coverage set and a class
label attained to that particular scribble, which would be its expected probability.

According to Ratner et al. [2017a], weak label distributions serve as a way for
human supervision to be provided more cheaply and efficiently, either by providing:

• Higher-level, less precise supervision (e.g., heuristic rules, expected label distributions)

• Cheaper, lower-quality supervision (e.g., crowdsourcing)
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• Taking opportunistic advantage of existing resources (e.g., knowledge bases, pre-
trained models)

With that in mind, three main types of weak labels are now defined, based on
previous knowledge in literature [Ratner et al., 2017a, VERMA, 2021, Wikipedia, 2021].

The first one is Imprecise or Inexact labels. This type of label can be obtained
by an active learning approach where the subject matter expertise annotates data with
less precise labels. There are many examples of this type of label, such as physics-based
constraints [Stewart and Ermon, 2017], output constraints on the execution of logical
forms [Clarke et al., 2010, Guu et al., 2017], object detectors [Tighe and Lazebnik, 2013,
Hariharan et al., 2014, Dai et al., 2016], object bounding boxes [Zhu et al., 2014, Chang
et al., 2014, Hua et al., 2022], image-level class labels [Pathak et al., 2015, Pourian et al.,
2015, Shi et al., 2017, Shimoda and Yanai, 2016], annotated superpixels [Ma et al., 2019],
scribbles [Lin et al., 2016, Tang et al., 2018a,b, Hua et al., 2022], and even single pixels
[Wang et al., 2020b, Hua et al., 2022].

The second one is Inaccurate labels. This type of label can be obtained by semi-
supervised learning where the labels on the data sets can be of lower quality, brought by
some expensive means like crowdsourcing. Such labels are numerous but not perfectly
accurate. Some examples are: crowdsourcing labels [Ruvolo et al., 2015, Berend and
Kontorovich, 2014, Zhang et al., 2014], heuristic rules outputs [Alfonseca et al., 2012, Ru
et al., 2018, Roth and Klakow, 2013, Laine and Aila, 2017, Jin et al., 2014, 2017], noisy
measurements [Bootkrajang and Kabán, 2012, Liang et al., 2009, Mann and McCallum,
2010], weak classifiers [Ratner et al., 2016], user-provided labels, such as binary labels
indicating the presence of elements in images [Liang et al., 2009, Mann and McCallum,
2010, Ratner et al., 2017b, Mithun et al., 2019, Wang et al., 2020b] or feature expectations
Liang et al. [2009], Mann and McCallum [2010], distributions or measurements [Druck
et al., 2009].

And the third one is Existing labels. This type of label can be obtained from
existing resources like knowledge bases, alternative data for training, or the data used in
pre-trained models. A few examples are: distant supervision approaches [Mintz et al., 2009,
Alfonseca et al., 2012, Ru et al., 2018, Roth and Klakow, 2013] and data transformations
(such as data augmentation).

Although the annotation via weak supervision is less time-consuming, in most
cases, the interference of an expert who must go through all the images of the dataset
to insert the weak labels is still necessary, which is often a problem for large datasets
containing tens/hundreds of thousands of images. This has been dealt with before in
semi-supervised image classification, with the strategy of labeling a minor part of the
dataset, training a model with fewer images, and then classifying the remaining data [Zhou,
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2018, Wang et al., 2020a, Castillo-Navarro et al., 2021]. However, this cannot be used
when using weak labels for semantic segmentation because the labels are more complex
than just assigning a class for an image.

To address this problem, automatic weak label generation has been used before in
image colorization, where automatic scribbles would be generated and manually classified to
colorize images [Ding et al., 2012]. But the labels would still have to be manually allocated,
meaning going through the entire dataset and classifying each scribble individually, therefore
not solving the problem of large datasets. In a similar work, the authors propose drawing
regions for scribbles [Batra et al., 2011], but the same issue of manual labeling remains.

While many works of semantic segmentation use weak labels to address large
datasets, there is still a gap in the literature for works that improve the labeling process.
Since one is designed to help with the other, authors many times do not consider the
problem of extensive datasets. Some works tried different techniques that could be used in
this context, but none has proposed anything to specifically mitigate this problem, which
this work proposes to address.

2.3 Our Work

Given the current state of the art for unsupervised semantic segmentation and
automatic weak label generation, this work brings a few contributions. First, this work
proposes a new unsupervised segmentation pipeline whose focus is not to obtain the best
results for supervised problems but to extract and learn the most relevant image semantics
to be applied to remote sensing problems. To do this, we propose a network based on
the work of Kanezaki [2018], which fits in the UM3 category (based in spatial clustering
post-process), and is simple, allowing for different customizations, as proved by various
works derived from this specific one. We generically built our pipeline so that it can
perform semantic segmentation in an unsupervised manner and adopt complete and weak
levels of supervision, therefore being a generalist pipeline.

As for the weak labeling problem, this work presents a solution to generate
semantic segmentation masks using only a small set of a large dataset. Based on ideas from
both Ding et al. [2012] and Batra et al. [2011], by combining weak and semi-supervised
learning concepts, we propose a pipeline to automatically generate scribbles in images
based on regions with similar content. Then, the expert must annotate only a small set of
the scribbles, i.e., selecting the scribble label, which we also provide a tool to perform. A
classifier will learn from these human-labeled scribbles and automatically classify (label)
the remaining scribbles.

Finally, the main focus of this work is remote sensing applications, which by
themselves pose many problems, such as a high level of context in the images, different



Chapter 2. Related Works and Motivation 29

levels of spatial resolution depending on the satellite from where the images were acquired,
the usually large size of the images, along with other problems. And in our case, we chose
to use only the RGB bands so that the pipeline could be applied in other areas.
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Chapter 3

Methodology and Expected Results

This work proposes a general unsupervised semantic segmentation pipeline and a
semi-automatic scribble generation pipeline. In this chapter, each methodology will be
explained and discussed regarding architectural details. As for the proposed applications,
these will be detailed in the results section.

For the unsupervised semantic segmentation pipeline, our hypothesis is to prove
that, given the current literature, we can propose advancements to create a network capable
of extracting meaningful semantics from remote sensing images without any source of
supervision. Therefore, this work will discuss every step of the proposed pipeline in depth,
explaining how each step may impact and contribute to the desired results.

The scribble generator’s primary goal is to provide a valuable and low-cost way
of labeling datasets, even lower than traditional weak supervision. From a practical
perspective, this would allow quick annotations of extensive datasets, resulting in fewer
time expenses. Our hypothesis is to prove that: a. through handcrafted features extracted
from images, we can generate scribbles in homogeneous regions of such images; and b.
given a dataset of images with auto-generated scribbles, we can correlate features from
multiple images, allowing a classifier to learn these representations and classify scribbles.
With this last hypothesis proven, given a small annotated set of images with scribbles, we
could automatically classify an extensive collection of images without manual annotation.

Finally, this work intends to validate our solution in remote sensing imagery
applications, that is, aerial and satellite images, which present their specific problems,
such as a high amount of semantic information and possible image distortions. For that,
we propose a set of applications that will be better explained and discussed in Chapter 5.

3.1 Unsupervised Semantic Segmentation Pipeline

We start with the standard pipeline for every semantic segmentation methodology
to understand the unsupervised pipeline. They are composed of 3 blocks: the first for
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preprocessing the input image, which includes normalizations, resizes, and any data
augmentation; the second to extract features from the image, which is usually any CNN
feature extractor, such as the decoder step of any network, e.g., LeNet, VGGNet, ResNet,
etc.; and the third to classify the pixels, which is usually a softmax classifier. This can be
illustrated in Figure 1.

Image
Preprocessing

Feature
Extractor Pixel Classifier

Figure 1 – Common pipeline in semantic segmentation solutions, composed of 1 - an input
image preprocessing, 2 - a feature extractor, and 3 - a pixel classifier.

Source: produced by the author.

To make a fully unsupervised pipeline, similar to W-Net [Xia and Kulis, 2017], the
work of Kanezaki [2018] proposed that, at the end of the semantic segmentation pipeline,
a superpixel refinement step takes place, in which the image is segmented into superpixels,
simulating a ground truth where the pixels inside each superpixel are considered to be
in the same class. To ensure that, the authors initialize the network with a high number
of classes q, and during the inference step, each pixel will be given a random class. Still,
for each superpixel, the most frequent class inside that superpixel is chosen and spread
through every pixel. This means that after propagating through the feature extractor,
every superpixel region will be attributed to one of the random q classes. Since the number
of classes is unknown, q must be high enough to comprise all possible semantics in the
dataset. After this superpixel refinement, the network considers this the optimal output
and backpropagates the error to the rest of the network as a common supervised loss.
Usually, at the end of the training, only a few optimal classes learned by the network itself
will be active, making the whole process an unsupervised semantic segmentation. This
process is illustrated in Figure 2.

Image
Preprocessing

Feature
Extractor Pixel Classifier Superpixel

Refinement

Figure 2 – Unsupervised semantic segmentation pipeline.

Source: produced by the author.

This comprises the primary pipeline, as initially proposed. In this first work
[Kanezaki, 2018], the pipeline was supposed to be trained and used for single images
individually or maybe for similar images, such as near frames in a video. But this pipeline
can achieve much better results, and, for example, with a proper feature extractor, the
semantics of an entire dataset could be learned. To explore the pipeline, we further discuss
each block’s possible optimizations.



Chapter 3. Methodology and Expected Results 32

3.1.1 Image Preprocessing

The preprocessing step is usually very straightforward. Generally, each standard
network in literature, such as VGGNet, ResNet, and others, has its preprocessing layer.
That is, their own required image size and type of normalization. Using a proper image size
and a normalization technique is valid; the first is to prevent large memory requirements,
and the latter is to ensure that the network weights are not too high or too low, preventing
the gradient from vanishing or exploding.

These valuable techniques are generally used, but another critical preprocessing
step is the data augmentation [Shorten and Khoshgoftaar, 2019]. This technique performs
several transformations in the images during the training step, such as rotations, transla-
tions, color changes, etc. These transformations will help the network filters generalize
even further, allowing the results to become more consistent and adding more variety and
complexity to the semantics the network learns.

The problem with data augmentation concerning semantic segmentation is that
some techniques must also be applied to the semantic mask, limiting the possibilities for
usage. Furthermore, since the goal of this pipeline is also to apply weak supervision later,
this also must be considered when selecting the data augmentation techniques. The only
work derived from Kanezaki [2018] that used some data augmentation was the work of
Lin et al. [2020], which applied horizontal flips and random crops of 300× 300 pixels. In
this work, the following data augmentation operations were performed:

• Random color jitter: random variations in brightness, contrast, saturation, and hue.

• Random Gaussian blur: variations in kernel size and standard deviation.

• Random affine transformation: random variations in scale, shear, translation, and
rotation.

• Random horizontal and vertical flips

With these techniques, we tried to provide the highest amount of generalization
to the images, thus elevating the potential and complexity of the semantics learned by the
network.

3.1.2 Feature Extractor

The feature extractor is perhaps the most crucial block in this pipeline since it
must be capable of generalizing for different semantic contexts, allowing the network to
thoroughly learn the visual features of many datasets. In the original work of Kanezaki
[2018], the authors used a combination of M simple feature extraction blocks, where each
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block was composed of a 2D convolutional layer with filters of size 3×3; a ReLU activation
layer; and a Batch Normalization layer. In Kanezaki’s, the authors tested M = 1, 2, 3 and
achieved the best result with M = 2, but in a posterior extension of the work [Kim et al.,
2020], they fixed M = 3.

Other authors tried different feature extractors in posterior works that derived
from this previous one. Kim and Ye [2020] used the U-Net to perform the feature extraction.
Saha et al. [2019] used a combination of transfer learning, from which they used VGG-16
trained in ImageNet, and learnable layers, where they used 4 of the basic original feature
extraction blocks. Barthakur and Sarma [2019] used SegNet to extract features. Bhatt
et al. [2019] used an FCN. Saha et al. [2020] used only the original feature extraction
blocks, with M = 4 and M = 5. Ilyas et al. [2020] used a variation of the original feature
extraction block, called SE-Block, where basically, they exchanged the convolutional layer
of the original block to a new block with a "squeeze and exciting" scheme of layers, where
1× 1 convolutions are applied to decrease the number of features, and after a few 1× 1

layers, the output returns to the original size, similar to what is performed in MobileNet;
more information about this block can be found in [Hu et al., 2020]. Khan and Yang
[2020] propose a new variation of the U-Net, which they call FCD u-net. It benefits from
feature reuse, where the feature maps from previous layers are concatenated, increasing the
variation of the subsequent layers’ inputs. Zhou and Wei [2020] used an encoder-decoder
architecture using 6 of the original feature extraction blocks, where there are two blocks,
a max pooling layer to decrease the size, two more blocks, a deconvolutional layer, the
last two blocks, and a simple convolutional layer. And finally, Lin et al. [2020] used a
Superpixel Autoencoder, or SuperAE, an encoder-decoder architecture composed of 6 of
the original feature extraction block, three for the encoder and three for the decoder.

As seen, many different strategies have been employed to solve this problem.
Overall, several interesting feature extractor variations could potentially present excellent
results. In this work, we compare three feature extractors, from which we try to compare
which one has the highest ability to explain the semantics of a dataset. For that, we test
several of these already-used feature extractors. More details regarding our choice can be
seen in the experiments section.

3.1.3 Pixel Classifier

It seems straightforward about the pixel classifier: a softmax classifier. Kanezaki
[2018] used a simple Softmax Loss, or Cross Entropy Loss, to classify the pixels and
propagate the results, but other works proposed different approaches. In their extension
work [Kim et al., 2020], the authors used a combination of two losses, the common cross-
entropy loss, based on the assigned labels to enhance feature similarity, and a spatial
continuity loss, that consists in summing the L1-norm of horizontal and vertical differences
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of the response map. Optimizing the second loss means fewer label differences, thus
suppressing complicated patterns or textures with too many possible labels.

Other authors used a variety of other losses to optimize the classifier. Kim and Ye
[2020] used the Mumford-Shah Loss, which works by minimizing the variational energy of
the image segmentation, forcing each segment to have similar pixel values. Saha et al. [2020]
worked with multi-temporal images, so they proposed a loss used to detect object segments
from individual images and establish a correspondence between distinct multitemporal
segments, which sums the cross entropy loss for multiple images over time. Finally, Lin
et al. [2020] proposed the usage of both the Cross-Entropy Loss and another loss that
takes into account the similarity between superpixels. Their idea is that superpixels similar
in deep features must have a higher probability of belonging to the same class, so they
build a similarity matrix between the superpixels and model this optimization problem,
minimizing it during training.

Besides the original loss, each of the other losses was proposed aiming at some
improvement. In our work, we proposed to use a variation of the actual Cross Entropy
Loss that considers the class weights, giving more importance to classes that appear less
in the dataset. We also try to add a few of the previously proposed losses to check if they
help to improve semantics learned by the network. This last experiment will be better
described in the Results chapter. As for our proposed loss, we begin the explanation with
the softmax equation.

Consider the simple case of logistic regression. In this problem you have two
outputs, either 0 or 1, and you first calculate the linear product of z, given by:

z = w⃗ · x⃗+ b

where w⃗ are the weights, x⃗ is the input vector with multiple features, and b is the bias
term of the current layer.

Then you calculate the activation a = g(z), which is the sigmoid function applied
to z:

a = g(z) =
1

1 + e−z
= P (y = 1|x⃗)

This can be interpreted as the logistic regression estimate of the probability of y
being equal to 1 given the input features x⃗.

If we expand the sigmoid equation, we have:

1

1 + e−z
=

1

1 + 1
ez

=
1

ez+1
ez

=
ez

ez + 1
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Now, if the probability of y = 1 is 0.7, the likelihood of y = 0 must be 0.3. If we
consider it, the logistic regression gives us two probabilities for two classes: one or zero, or
a1 and a2.

If we interpret a1 = 1− a2, we can interpret the output as the percentage of a1
given two classes, a1 and a2:

a1
a1 + a2

=
1

1+e−z

1
1+e−z + 1− 1

1+e−z

=
ez

ez+1

1
=

ez

ez + 1

The softmax is a way of generalizing this methodology by taking the exponential
of each activation and dividing it by the different activations. In other words, you normalize
each activation by the sum of all activations. Given the output for a given class j, in a
problem with N classes

zj = w⃗j · x⃗+ bj, j = 1, . . . , N

The softmax activation would be

aj =
ezj∑N
k=1 e

zk
= P (y = j|x⃗) (3.1)

We can think of the softmax as a layer to be included in a neural network. Still,
instead of being a single neuron, each class in the softmax will be a different node, where
each node will perform a different logistic regression for a given class. The complete result
a for multiple classes is a vector of length N , which can be written as

a(x) =


P (y = 1|x;w, b)

...
P (y = N |x;w, b)

 =
1∑N

k=1 e
zk


ez1

...
ezN

 (3.2)

In softmax regression and neural networks with softmax outputs, N outputs are
generated, and one output is selected as the predicted category. In both cases, a vector
z is outputted by a linear function applied to a softmax function. The softmax function
converts z into a probability distribution. After applying softmax, each output will be
between 0 and 1, and the outputs will be added to 1, allowing them to be interpreted as
probabilities. The more significant Z inputs will correspond to larger output probabilities.

As for the actual loss, consider the cost function for the logistic regression. Given
that the resulting activation is a1, that is, P (y = 1|x⃗), and that the activation a2 = 1− a1,
that is, P (y = 0|x⃗), the logistic regression loss is given by
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loss = −y log a1 − (y − 1) log (1− a1) = −y log a1 − (1− y) log a2

which is the same as −log a1 if y = 1 and −log a2, if y = 0.

For the softmax regression, we can generalize that by saying that the loss will be

L(a, y) = loss(a1, . . . , aN , y) =



−log(a1), if y = 1

−log(a2), if y = 2
...

−log(aN), if y = N

(3.3)

where y is the target category for this example and a is the output of a softmax function.
In particular, the values in a are probabilities that sum to one.

Note in the equation above that only the line corresponding to the actual target
contributes to the loss, while the other lines are zero. To write the cost equation, we
need an "indicator function" that will be 1 when the index matches the target and zero
otherwise.

1{y == n} =

1, if y == n.

0, otherwise.

Now the cost can be defined as

J(w, b) = − 1

m

[
m∑
i=1

N∑
j=1

1
{
y(i) == j

}
log

ez
(i)
j∑N

k=1 e
z
(i)
k

]
(4)

Where m is the number of examples, N is the number of outputs. This is the average of
all the losses.

This Softmax Loss is also called Cross Entropy Loss. And finally, for the Weighted
Cross Entropy Loss, we also multiply the normalized class weights cj for each of the N

classes. The equation is given by

WCELoss = − 1

m

[
m∑
i=1

N∑
j=1

1
{
y(i) == j

}
cjnorm log

ez
(i)
j∑N

k=1 e
z
(i)
k

]
(4)

Notice that since we are solving an Unsupervised problem, we don’t have access
to the class weights beforehand, which differs from a supervised or weakly supervised
problem. To include the class weights, we propose calculating them by batch. First, we
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take every image of a batch and feedforward through the network as usual. Then we use
the superpixel refinement step to find the classes for each image. Finally, we use these
labels to calculate the class weights considering only the classes present in the current
batch. For example, consider a case where we initialize our network with q = 100 classes,
and only ten different classes appear in the given batch. The weights of the remaining
classes will be zero, while the weight of a class j between the n present classes will be

cj =
Npixels

freqj ∗N
(3.4)

where freqj indicates the frequency of the current class in the current batch, or the number
of pixels belonging to this class, and Npixels is the total number of pixels in the current
batch.

This will generate a vector with one weight for each class, and classes with more
pixels present will have lower weights. Finally, the weights are normalized so they don’t
become values too large:

cjnorm =
cj∑N
j=1 cj

(3.5)

3.1.4 Superpixel Refinement

The final step of the pipeline is the superpixel refinement step. The original author
proposed the usage of the Slic algorithm [Achanta et al., 2012] to perform a superpixel
segmentation, where the class of the pixels, chosen by the "arg max" function, inside each
superpixel, would go through a majority vote process to define the entire superpixel class,
which would later be used as the "correct result" for backpropagation. In their extension
work [Kim and Ye, 2020], they completely removed the refinement step by just comparing
the network output with the index of the highest activation (in other words, the cluster
label). They achieve the optimal semantic segmentation by only optimizing their losses,
thus not needing this refinement.

As for the other derived works, some chose different approaches. Bhatt et al.
[2019] uses a strategy similar to W-Net, by first using the Normalized Cut algorithm to
generate the superpixels. Then, after the feedforward step, they apply post-processing to
the normalized response maps of the network using Conditional Random Fields, whose
purpose is to smooth and refine the output. Finally, the superpixel refinement is performed
as usual. Khan and Yang [2020] uses the standard Slic segmentation and refinement but
afterward performs a region-merging process by extracting 44 different features from each
superpixel and constructing a Region Adjacency Graph, leading to a Region Merging
Algorithm based on the graph distance matrix. Among the features extracted from the
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superpixels are spatial, shape, texture, color, and color histogram features. This post-
processing step help to reduce the over-segmentation of the images, a common problem
when using Slic. Lin et al. [2020] also uses Slic, but their work uses an encoder-decoder
architecture, where the image is reconstructed. The authors use Slic in this reconstructed
image, justifying that this image is smoothed, therefore generating superpixels that will
pay attention to more meaningful regions.

In our work, we believe that the features used by Slic and the algorithm do
not provide an optimal base segmentation. Besides, since the network is learning to
perform the semantic segmentation from scratch, and specifically in the case of remote
sensing imagery, the training can be expensive in both time and computational power,
and using poor segmentation as ground truth can lead to a more extended training
and a worse semantic generalization. Therefore, instead of using superpixels to combine
the classes, it might be more beneficial to use a more robust methodology to obtain
the proposed regions to refine the network clusters, or classes, such as an unsupervised
semantic segmentation algorithm that does not require training and that preferably already
have a good performance in remote sensing tasks. By using an external algorithm, it is
possible to extend the unsupervised semantic segmentation pipeline [Kanezaki, 2018] by
exchanging the superpixel refinement step for a class refinement step provided by any
semantic segmentation. This can be illustrated in Figure 3.

Image
Preprocessing

Feature
Extractor Pixel Classifier Class

Refinement
External

Algorithm

Figure 3 – Modified unsupervised semantic segmentation pipeline.

Source: produced by the author.

The main advantage of this proposed methodology is that the external segmen-
tation can be provided by either an unsupervised algorithm or perhaps it could be the
ground truth itself, turning the problem into a supervised approach.

As for our choice, we use the unsupervised semantic segmentation pipeline proposed
by [Jaimes et al., 2022]. As illustrated in Figure 4, this algorithm receives an input image,
applies bilateral smoothing filtering, performs a superpixel segmentation using Slic, extracts
345 color and texture features from each superpixel, and finally performs a series of post-
processing clustering steps: define the ideal number of clusters, achieve the optimal
clustering of the superpixels based in the Calinski-Harabasz Index, and use a Hierarchical
Clustering technique to group similar clusters, then obtaining the final semantic mask.

The pipeline from Jaimes et al. [2022] groups ideas from the other works that
proposed enhanced refinements, such as creating superpixels from a smoothed image [Lin
et al., 2020] and merging regions based on features extracted from the superpixels [Lin
et al., 2020]. Therefore, we consider this pipeline robust and hypothesize that it will
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Figure 4 – Handcraft unsupervised semantic segmentation algorithm.

Source: adapted from Jaimes et al. [2022].

provide better ground truth for the refinement step than raw superpixels since it provides
preliminary information on the superpixel clusters to the network.

Finally, our pipeline can work with unsupervised and supervised inputs, but it can
also be extended to work with weakly supervised labels. By exchanging the ground truth
signals from masks that comprehend the entire image area to weak labels, the same logic,
i.e., adopting the majority class of the pixels inside a scribble or polygon as the ground
truth class, the pipeline can receive all kinds of inputs. The minor adaptations are setting
the network to recognize an unknown class that will weigh 0 during backpropagation and
not considering this class when calculating class weights.

With this last block properly analyzed, we conclude the pipeline for unsupervised
semantic segmentation. The pipeline is categorized as general because it accepts multiple
types of supervision, can consider class weights within training, can be coupled with various
losses besides the Cross-Entropy loss, and can provide an efficient semantic mapping of
the characteristics of given images, learning clusters that represent most of their content.

3.2 Weak Dataset Labeling

The idea for an automatic scribble generator is based on works that focus on
searching for similar regions in entire datasets Batra et al. [2011], Hamilton et al. [2022]
and works that can generate automatic scribbles Ding et al. [2012]. In remote sensing
images, there are usually well-defined crops and types of terrain, especially in rural areas.
Based on that hypothesis, if such regions exist, it should be possible to group them based
on the similarity of region features (descriptors). Differently from a well-defined semantic
segmentation pipeline, the idea here is not to describe the entire image, only homogeneous
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areas, in the same way that perhaps a human would unintentionally draw scribbles, given
the clarity of the region.

This section will be divided into two parts; the first is how we managed to create
an automatic scribble generator, and the next is how we extended this idea to label entire
datasets with minimal cost.

Note that we also published a paper with part of our experiments [Ferreira et al.,
2022], where more information regarding this pipeline can be found.

3.2.1 Automatic Scribble Generation

Differently from a well-defined semantic segmentation pipeline, the goal is not
to describe the entire image, only large homogeneous areas of it, the same areas that
perhaps a human would unintentionally draw scribbles given the clarity of the region.
Before explaining our proposed pipeline, we first analyze a previous work in the literature.

In an application for image colorization through scribble labeling, Ding et al. [2012]
proposed an automatic scribble generation methodology. First, the image is segmented
using a Graph-Based Image Segmentation algorithm. Then, starting at the center pixel,
they perform an 8-direction search for areas with high information density, calculated using
a Spatial Distribution Entropy technique. The process is repeated until finding a sufficient
number of points, and finally, fitting a smoothed curve to them generates a scribble.

There are a few limitations to this approach. The first focuses on grayscale images,
whereas ours focuses on RGB images. The second limitation is that every segmented
region receives a scribble, sometimes creating an overpopulation of scribbles. Since this is
a coloring application, and humans are required to label these scribbles, having too many
scribbles could be efficient in this particular case, but not for remote sensing imagery
labeling, where we propose to label several thousands of images.

Therefore, we propose a pipeline to tackle these problems and generate scribbles,
focusing on labeling remote sensing datasets. The complete pipeline can be seen in Figure
5. Overall, the main steps are similar to Ding et al. [2012] but performed differently. Each
stage will be subsequently discussed.

Starting with a remote sensing input image in step 1.1, the first goal is to segment
the image into different regions, so we can search for places to draw the scribbles. But
first, we must find the number of superpixels in which we shall segment the image, which
varies between different images. Some images with homogeneous content with a single
semantic object in the entire image, such as pictures of a dense forest or an expansive
grass field, don’t need to be segmented into many regions because, in this case, a single
scribble could describe the entire image. On the contrary, images with different areas and
lots of artifacts, such as houses, must be segmented into more superpixels so that smaller
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Figure 5 – Weak label generation pipeline. Given an input image (1.1), image filtering
(1.2) and superpixel segmentation (1.3) are performed, followed by a superpixel
feature extraction (1.4), used to model a graph (1.5), where similar neighbor
superpixels are found, and a shortest path algorithm (1.6.1) creates a path
between their centers, that can be smoothed (1.6.2) to generate scribbles
between them (1.7).

Source: Ferreira et al. [2022].

regions can also be described.

To deal with this problem, we can describe this difference in the image contents
using its pixels variance value. This way, images with a lower value will have fewer artifacts
than images with a higher value. But if the images have complex textures, such as detailed
grass, the variance would still be high, even for simple images. Therefore, we propose to
apply a bilateral filter in step 1.2 to homogenize the contents of the images, with the
benefit of preserving the edges. We then obtain the variance of the pixels for the smoothed
image, ImV ar.

Then, in step 1.3, the image is segmented into 1000∗ ImV ar superpixels using the
Slic algorithm, where 1000 is a constant scale factor to balance the usage of normalized
images, which varies between 0 and 1, making the variance a small number. Notice that
we will extract features from these superpixels later, so while the smoothed image allows a
better estimate of the image variance, it can lead to a loss of information regarding the



Chapter 3. Methodology and Expected Results 42

image content. To avoid that, we use the original image from this step forward, meaning
that the filtered image is only used to calculate the variance.

Next, in step 1.4, we extract 375 features from the superpixels as described in
Jaimes et al. [2022], being 105 color (fc) features extracted from seven different color
spaces, and 270 texture (ft) features, derived from a Leung-Malik filter bank. A graph is
mounted in step 1.5 using adjacent superpixels, with the weights, ϕij, adapted from Lin
et al. [2016]:

ϕij = exp

{
−∥fc(xi)− fc(xj)∥22

δ2c
− ∥ft(xi)− ft(xj)∥22

δ2t

}
(3.6)

where δc is set to 0.5 and δt to 2. Differently from Lin et al. [2016], here we use different
color and texture features, and the weights are calculated using the features themselves,
not their histograms.

Assuming that similar superpixels will have a closer distance in the feature space,
which varies from 0 to 1, we set adjacent superpixels to the same region if their edge weight
is higher than 0.9, that is, they have 90% of similarity according to the metric in Equation
3.6. A graph search is performed, and all groups are mounted, representing the regions of
similarity in the image, and each group will be used to generate a scribble. In images with
a higher variance and several superpixels, many groups are prone to be formed, leading to
an overpopulation of scribbles. To deal with this problem, we set the minimum number of
superpixels in a valid group that will receive a scribble to 5% of the number of superpixels
of the current image, avoiding noisy small groups. Finally, the scribbles may be drawn via
the adjacent superpixels in each group, representing the regions of similarity in the image.

To draw the scribbles in step 1.6.1, the center of each superpixel in a group is
first taken, and the total height and width are determined. If the height is higher than
the width, the highest center of the superpixels will be the first in the scribble; otherwise,
it will be the leftmost one. After defining the initial center, the shortest path among the
centers is found through a generic solver for the traveling salesman problem. The problem
is modeled so the salesman does not have to return to the original center; it must only
find the fastest way throughout the centers while going over every center once. For a large
number of points solving this problem could take a long time, but for a small number of
points, as is expected in this application, the solution can be found fast.

Approximating the shape of human-generated scribbles can be beneficial in cases
where the superpixels form a curved shape, although in most cases, only the visual is
improved. Because of that, in optional step 1.6.2, after a bicubic interpolation to increase
the number of points, a Gaussian filter is applied to smooth the scribble, with a window
size of half the number of points, achieving the final result in step 1.7, where the scribbles
are stored in external files. The process for obtaining the scribbles classes will be described
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in the next section.

One problem observed with this methodology was the difficulty of segmenting
small objects into more than one superpixel, such as buildings in a largely rural area,
causing them not to reach the minimum amount to originate a scribble. Therefore, as a
solution to this problem, we propose to use a separate detector that can be coupled with
our pipeline. We tested adding a building detector [Sirmacek and Unsalan, 2011] to the
pipeline, supposing a dataset with buildings as a class to improve their representativity,
forcing superpixels with any facilities to become scribbles. As the authors suggested
Sirmacek and Unsalan [2011], some parameters that vary for each dataset were adjusted.
To use this resource more efficiently, we assume that images with buildings will likely have
a higher pixel variance, given the different colors and shapes. By calculating the variance
of the entire dataset previously, as an offline step, we take the highest variance in the
dataset and only apply the building detection in images with at least 25% of the highest
variance, which in this case corresponds to around 15% of the dataset. This way, most
images that are not likely to have buildings can be filtered.

3.2.2 Scribble Classification

After automatically labeling scribbles, they still don’t have an associated class, so
we have several unlabeled scribbles. The straightforward solution would be to manually
allocate labels to every scribble, meaning that the only purpose of the automatic labeling
process would be to save time for drawing the scribbles. But since our goal is to provide a
way of automatically labeling most labels, our first hypothesis is to prove if it is possible
to find patterns among all images in a given dataset so that the same classes can be found
in multiple images.

For that, we analyze two different works. The first is related to Interactive Co-
Segmentation [Batra et al., 2011], to separate foreground objects from their background,
where the authors propose to solve this problem using intelligent scribble guidance.
To alleviate the scribble drawing process, the authors suggest "iCoseg," an automatic
recommendation system that intelligently indicates where the user should draw the
following scribbles in a group of images, given that the user has drawn scribbles in one
or more images. They then segment the images into superpixels and extract seven cues,
or features, for each superpixel, which then is fed to a logistic regression classifier that
will learn from the images with scribbles and classify the remaining, generating a set of
regions with the potential to receive new scribbles from the user.

The second work performs unsupervised semantic segmentation through visual
transformers [Hamilton et al., 2022]. We are interested in the first step of this methodology,
where they extract patches from several images in the dataset and perform self-supervised
feature learning. When passing these patches through the same backbone, a segmentation
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head is trained with a loss function that maximizes feature similarity of patches from the
same image while minimizing feature similarity between patches from different images. In
the end, similar regions of similar images will have closer feature vectors, and this can be
used to verify if two patches are from a similar class.

Both these works prove, with different approaches, that it is possible to extract
meaningful features among images in the same dataset, allowing the features categorization
into classes, therefore being possible to learn to represent such classes. Inspired by this
idea, we propose using a classifier to learn features from a small set of previously labeled
scribbles that will be able to label several unseen scribbles automatically. The proposed
pipeline can be seen in Figure 6.

Water
Woodland
Building

Road

Select Class

Scribble Editor

2 - Scribble Classifier

2.2) Classifier

2.3) Output2.1) Scribble Labeling

Figure 6 – Scribble classifier pipeline. Given several images with unlabeled scribbles, a
small set of images are labeled with our provided tool (2.1), which is used to
train a classifier (2.2) and finally automatically label the remaining images
(2.3).

Source: Ferreira et al. [2022].

Starting with the unlabeled, automatically generated scribbles in step 2.1, we
provide a graphical tool for labeling them, which allows drawing, editing, removing, and
changing the class (annotating) of already drawn scribbles with a few mouse clicks is
possible. Note that when automatically generating the scribbles, some may be too small
or have a bad shape, not correctly representing the feature they should label. To deal with
this issue, with our tool, the user can auto-generate the scribbles, label them, and fix the
worst ones by removing them or manually drawing better representations. The graphical
user interface can be seen in Figure 7.

After labeling a set of images with at least a few scribbles of all classes in the
dataset, we propose to use an SVM to auto-classify the remaining images in step 2.3. We
use their already extracted color and texture features as input for each superpixel, as
described in Section 3.2.1. Since one scribble comprises multiple superpixels, we take the
mean of their features, weighted by their areas. And finally, the remaining scribbles are
appropriately classified in step 2.3.
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Figure 7 – An overview of our scribble editing tool, a graphical user interface to visualize,
draw, edit, remove, and manually annotate scribbles.

Source: produced by the author.

This pipeline works for an auto-generated dataset of scribbles. However, if the
user wants to use an already manually drawn dataset, the pipeline is still applicable, with
some minor modifications from the pipeline in Figure 3.2.1. By segmenting the image into
superpixels, extracting their features, and checking which superpixels are crossed by each
scribble, it is possible to calculate the mean features and recreate the scribble dataset
from any image. This roughly corresponds to steps 1.1 to 1.4.

This concludes this section and chapter. In the next chapter, we shall discuss the
several experiments performed to test and analyze our proposed methodologies. We will
also present a few remote sensing applications in which our pipelines can be applied.
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Chapter 4

Experimental Setup

In this chapter, we define the experimental setup for our experiments, including
the variety of metrics that we used to evaluate the performance of our algorithms, how we
mapped our classes from an unsupervised methodology to a supervised result, and the
datasets that we used in our work for each experiment.

As for the machines, we used two computers to perform the experiments, one
composed of an i9-9900KF processor, 32GB DDR4 RAM, and an RTX-3060 12GB graphics
card, and the other with an i7-9750H processor, 32GB DDR4 RAM, and a GTX-1660 Ti
6GB graphics card.

4.1 Metrics

In our experiments, we evaluate different metrics for different purposes. Some
metrics are quantitative and used to assess the actual performance of our model in
a supervised manner. In contrast, other qualitative metrics evaluate if the obtained
segmentation provides meaningful information.

4.1.1 Supervised Quantitative

Starting with the supervised quantitative metrics, before defining the metrics, we
may first define some concepts. Given a set of pixels, the predicted class is the one the
classifier assigns, and the target class is the real ground truth label of the pixel. Therefore:

• a True Positive (TP) is predicted positive for a given class (ŷ = 1), and the target
label is also positive for the same class (y = 1).

• a True Negative (TN) is predicted negative for a given class (ŷ = 0), and the target
label is also negative for the same class (y = 0).
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• a False Positive (TN) is predicted positive for a given class (ŷ = 1), but the target
label is negative for the same class (y = 0).

• a False Negative (TN) is predicted negative for a given class (ŷ = 0), but the target
label is positive for the same class (y = 1).

The first and most common metric is Accuracy (Acc). This metric measures the
total number of TPs and TNs divided by the total number of pixels:

Acc =
TP + TN

TP + TN + FP + FN
(4.1)

The Precision (P) is a metric that measures the proportion of correct positive
predictions. In other words, this indicates how many classified pixels are valid.

Precision =
TP

TP + FP
(4.2)

The Recall (R), or Sensitivity, or True Positive Rate, is a metric that measures
the proportion of actual positive predictions that were correctly identified. In other words,
this indicates how many correct pixels were classified.

Recall =
TP

TP + FN
(4.3)

The Specificity (S), or Selectivity, or True Negative Rate, is a metric that measures
the proportion of actual negatives that was correctly identified. In other words, this indicates
how many incorrect pixels were classified.

Specificity =
TN

FP + TN
(4.4)

The F1-Score metric, or Dice Coefficient, is a harmonic mean of both the Precision
and the Recall. Optimizing this metric means finding the best balance between FPs and
FNs. And another way of thinking about this metric is the ratio between the area of
intersection between two segmentations, where they are equal, divided by the total number
of pixels of both images.

F1− Score =
2 ∗ Precision ∗Recall

Precision+Recall
=

2TP

2TP + FP + FN
(4.5)

The Intersection over Union (IoU) metric, or Jaccard Index, is given by the ratio
between the area of overlap between two segmentations, where they are equal, divided by
the union between the predicted segmentation and the ground truth. This is similar to the
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F1-Score, but the F1 considers the overlap area twice, once in each segmentation, whereas
the IoU considers it only once.

IoU =
TP

TP + FP + FN
(4.6)

These metrics so far are calculated individually for each class. So in a multiclass
problem, this would result in several IoU calculations, one for each class. So, given C

classes, the Mean IoU (mIoU) is the mean of the IoU for each class:

mIoU =
1

C

C∑
c=1

IoUc (4.7)

This leads directly to the next metric, which is the Weighted Mean IoU (WmIoU),
or the Mean IoU weighed by the contribution of each class. This weight can have multiple
meanings, but it usually is the number of pixels of a given class in the ground truth divided
by the total number of pixels.

WmIoU =
1

C

C∑
c=1

wc · IoUc (4.8)

4.1.2 Segmentation Quantitative

The segmentation quantitative metrics are widely used to analyze the segmentation
quality as a clustering problem. We start with the Variation of Information (VI) metric
[Meilǎ, 2005]. This is usually used to evaluate clustering in general, but that has also
been widely used to assess unsupervised semantic segmentation [Xia and Kulis, 2017,
Kim and Ye, 2020, Ilyas et al., 2020, Khan and Yang, 2020, Zhou and Wei, 2020, Lin
et al., 2020]. It measures the distance between two segmentations regarding their average
conditional entropy. In other words, it roughly measures the amount of randomness in one
segmentation, which cannot be explained by the other. The equation is given by

V I(S1, S2) = H(S1) +H(S2)− 2I(S1, S2) (4.9)

where H(S) is the entropy of a given segmentation S, and I(S1, S2) is the mutual informa-
tion between segmentations S1 and S2.

In a practical perspective, given that a segmentation X is composed of several
subsets, X = {X1, X2, . . . , Xk}, where each Xi is a set of pixels composing a given partition
of the complete segmentation. Equally, a second segmentation Y is Y = {Y1, Y2, . . . , Yl}
And suppose that |Xi| is the number of elements inside a subset. We can define the total
number of elements as
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n =
∑
i

|Xi|

Now consider the proportion of a single subset relative to the others as

pi =
|Xi|
n

and qj =
|Yj|
n

And finally, consider the number of elements in common between a subset of both
segmentations as |Xi ∩ Yj|. Its proportion related to the total is given by

rij =
|Xi ∩ Yj|

n

The variation of information is then given by

V I(X, Y ) = −
∑
i,j

rij

[
log

(
rij
pi

)
+ log

(
rij
qj

)]
(4.10)

Larger values of this metric correspond to the more significant dissimilarity between
the clusterings; therefore, lower VI values mean better segmentation results.

Another metric is the Probability Rand Index (PRI) [Pantofaru and Hebert, 2005],
also used by a number of works [Xia and Kulis, 2017, Kim and Ye, 2020, Khan and Yang,
2020, Zhou and Wei, 2020, Lin et al., 2020]. This metric counts the fraction of pairs of
pixels whose labelings are consistent between the computed segmentation and the ground
truth, averaging across multiple ground truth segmentations. In other words, it measures
the similarity between two data clusters.

The Rand Index can be understood as the number of agreements between two
segmentations divided by the number of agreements summed with the number of dis-
agreements. Given a set of n elements S = o1, . . . , on, and two partitions of S to compare,
X = X1, . . . , Xr, a partition of S into r subsets, and Y = Y1, . . . , Ys, a partition of S into
s subsets, consider:

• a is the number of pairs of elements in S that are in the same subset in X and Y

• b is the number of pairs of elements in S that are in different subsets in X and Y

• c is the number of pairs of elements in S that are in the same subset in X and
different subsets in Y

• d is the number of pairs of elements in S that are in different subsets in X and in
the same subset in Y
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The Rand Index is calculated by

R =
a+ b

a+ b+ c+ d
=

a+ b
n
2

(4.11)

where a+ b is the number of agreements between X and Y and c+ d is the number of
disagreements between X and Y .

The Probabilistic Rand Index is the Rand Index averaged by every image, and a
higher PRI value indicates a more accurate segmentation.

The Global Consistency Error (GCE) metric [Martin et al., 2001] is also used
by some works [Khan and Yang, 2020, Zhou and Wei, 2020]. It measures the extent to
which one segmentation can be viewed as a refinement of another. Segmentations related
in this manner are considered consistent since they could represent the same natural image
segmented at different scales.

Given that segmentation is a division of the pixels of an image into sets and that
the segments are sets of pixels, if one segment is a proper subset of the other, then the
pixel lies in an area of refinement, and the error should be zero. If there is no subset
relationship, then the two regions overlap inconsistently.

Given two segmentations of the same size, S1 and S2, consider the measure of the
error at each pixel pi

E(S1, S2, pi) =
|R(S1, pi) \R(S2, pi)|

|R(S1, pi)|
(4.12)

where R(Sj, pi) is the region in segmentation j that contains pixel pi, \ denotes set
difference, and | · | denotes set cardinality. This measure evaluates to 0 if all the pixels in
S1 are also contained in S2, thus achieving the tolerance to refinement discussed above.
Given the error measures at each pixel, the error between two segmentations is defined as

GCE =
1

n
min

{∑
i

E(S1, S2, pi),
∑
i

E(S2, S1, pi)

}
(4.13)

For this metric, lower values mean closer segmentations.

Another metric is the Boundary Displacement Error (BDE) [Freixenet et al.,
2002], also used to compare semantic segmentations [Xia and Kulis, 2017, Khan and Yang,
2020, Zhou and Wei, 2020]. It measures the average displacement error of boundary pixels
between two segmented images. In other words, it defines the error of one boundary pixel
as the distance between the pixel and the closest pixel in the other boundary image.

Given the boundaries of two segmentations, obtained by taking the absolute values
of their gradients and checking for values above zero, a bipartite graph matching problem



Chapter 4. Experimental Setup 51

is solved by first constructing the distance matrix between the boundary elements in each
image, associating with the nearest pixel in the other boundary. Then, the percentage
of matched edge elements is computed and taken as the boundary error. This error is
calculated for both segmentations, and its mean will be the BDE value. The lower it is,
the closer both segmentations are.

Finally, the last metric is the Segmentation Covering (SC) metric [Arbeláez et al.,
2011], also used by some works to compare segmentations [Zhou and Wei, 2020, Lin et al.,
2020]. It measures the overlap of regions from the segmentation output and the ground
truth.

The overlap between two regions R and R′ is given by

O(R,R′) =
|R ∩R|
|R ∪R|

where | · | is the area; in other words, it is the intersection over the union. The covering of
a segmentation S by another segmentation S ′ is:

SC = C(S → S ′) =
1

N
|R| · max

R′∈S′
O(R,R′) (4.14)

where N denotes the total number of pixels in the image. In other words, the area of every
segment in S is multiplied by the highest overlap with the segments in S ′. The sum for
every segment is taken and pondered by the number of pixels. The higher the SC value,
the better the quality of segmentation.

4.1.3 Metrics Summary

We comprise all metrics in Table 1 to facilitate the reading, organization, and
posterior consultation. The table is composed of the name of the metrics, a brief description
of what the metrics try to measure, and how to analyze the metric, where “ ↑ ” indicates
that the higher the metric value is, the better is the segmentation result, and similarly, for
“ ↓ ” the lower the metric value, the better is the segmentation.

4.2 Class Mapping

It is essential to notice that since our approach is unsupervised, becoming a
clustering problem, our cluster classes have no direct association with supervised classes.
To overcome this problem, we perform a two-step evaluation. First, we feedforward
every image in the test dataset through our network and store the corresponding pixel
activations of each of our K clusters with each dataset’s original classes by comparing
values individually, resulting in a histogram table for each class. For example, cluster 3 may
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Table 1 – Metrics used to evaluate semantic segmentation in this work.

Metric What it measures How to analyze
Accuracy The percentage of correctly assigned pixels in a

predicted segmentation
↑

IoU The overlap between a target and predicted
segmentation

↑

WIoU The same as IoU, but weighted by the number of pixels
in each class

↑

F1-Score The correct pixels considering the number of wrong
positives and wrong negatives

↑

VoI The distance between the two segmentations in terms
of their average conditional entropy

↓

PRI The accuracy of labels assigned to pairs of pixels in
segments of two segmentations

↑

GCE The extent to which one segmentation can be viewed
as a refinement of the other

↓

BDE The average displacement error of boundary pixels
between two segmented images

↓

SC The overlap of regions of the segmentation output, and
the regions of the ground truth

↑

have activated 100 pixels for the "vegetation" class and 1000 for the "road" class. Then,
we associate each cluster with the class they activated the most, creating an associating
dictionary for all of the K classes. Finally, we feedforward the images through the network
again while converting the classes with their activations.

Regarding this process, we make a couple of considerations. First, the whole
class mapping could be performed with one feedforward operation by storing the network
activations. Still, since we use a high value for K, keeping every activation for every image
becomes unfeasible. The second is that ideally, the feedforward step should be performed
in the training dataset and later applied to the test dataset, but since in unsupervised
semantic segmentation real applications, there are no labels, we assume that if a semantic
mapping is performed, ground truth labels will be available to be assigned. Also, regarding
this second consideration, when the train and test subsets are obtained by splitting the
data in a random and stratified way, we can assume that both will have the same, or a
very similar distribution, also justifying the mapping being performed in the test set, since
it would not have much difference than if performed in the training set.

4.3 Datasets

In this Section we detail the datasets for each experiment, along with a description
and a motivation for why we chose each specific dataset. We then show examples of images
for every dataset, along with a comprehensive table with several technical details about
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the datasets.

For all of our experiments regarding the Unsupervised Semantic Segmentation
pipeline, we use the Potsdam dataset [ISPRS, 2016]. We chose this remote sensing dataset
because it is composed of mostly an urban area, with good resolution images, so it is
easier for our network to learn and it is also in a more controlled environment, allowing us
to better test our network ability to learn without much variation from the data. This
dataset is also widely used in literature, allowing us to compare the results with other
methodologies.

As for the automatic scribble generation and weakly supervised experiments, we
use the LandCover.ai dataset [Boguszewski et al., 2021] since it is focused mainly on large
and spaced rural areas with different landscapes, along with a few smaller urban regions,
making it closer to our desired use case, where it will be easier for both humans and our
methodology to find large homogeneous areas to draw scribbles. It also proposes a good
challenge for the network due to the high variance of some forest areas and the urbar
areas, due the difficulty of labeling them.

For the applications, we propose to use two different datasets. The first one is a
rural dataset from the region of São Carlos, in Brazil, the same used in Jaimes et al. [2022].
This application evaluates the ability of our model to separate different terrain types, so
we chose this dataset because it originally contains 14 classes, where many of these classes
are composed of large homogeneous regions of a single type of terrain, therefore being
easier to identify the edges that separate different terrains.

And for the second application, we use a dataset from the city of Campinas, in
Brazil, to evaluate the model’s ability to deal with urban regions, properly separating
and segmenting different city areas. In this dataset, the image did not have the R-G-B
channels; instead, it had the IR-R-G channels, so it is also an exciting challenge to check
whether our model can work in another color space.

An example image of each dataset can be seen in Figure 8, where some of the
difficulties of each dataset can be analyzed and compared.

The specifications for each dataset used in this work are present in Table 2,
separated by the location of the dataset, the resolution of the images, the land coverage,
the geospatial image sizes, the labels present in each dataset, the type of annotation and
the geographic features present in the images.
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Potsdam LandCover.ai

São Carlos Campinas

Figure 8 – Examples of images from each dataset used in this work.

Source: produced by the author.
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Table 2 – Details for each dataset used in this work.

Dataset Potsdam LandCover.ai São Carlos Campinas
Location Potsdam -

Germany
Poland São Carlos -

Brazil
Campinas -

Brazil
Resolution
(cm/px)

5 25/50 50 30

Coverage
(km²)

∼1.4 216 ∼25.6 ∼423.57

Image Size
(px)

38 images of
6000 x 6000

2 images of
9000 x 9500
and 4200 x

4700

10386 x 9872 69529 x 67688

Labels roads,
buildings, low

vegetation,
trees, cars,

clutter

buildings,
woodlands,

water, roads,
background

river, soil, grass
and forest

asphalt, tree,
cement, roof 1,
roof 2, roof 3,

grass,
swimming pool,

soil
Annotation semantic masks semantic masks

and weak
labels

semantic masks weak labels

Geographic
Features

urban areas rural areas,
rivers, native
vegetation,
small urban

areas

rural areas,
rivers, native
vegetation

urban areas
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Chapter 5

Results

In this chapter, we present the results of every experiment performed. We start
with the unsupervised semantic segmentation, then the automatic scribble generation, and
finally, the remote sensing applications. For each section, in each experiment, we tested
different hypothesis, that will be detailed accordingly.

5.1 Unsupervised Semantic Segmentation

For this pipeline, since the main questions such as "is it possible to group regions
with similar features?", or "is it possible to perform semantic segmentation whitout
labels?" have already been thoroughly answered, our main hypothesis is: "by analyzing
every work in current literature, could we propose a novel pipeline that incorporates the
best technologies from different researches, while also proposing our own contributions?".
We centered our efforts in the work of Kanezaki [2018], exploring posterior works that
derived from it, until the current state-of-art.

Our individual experiments aim to analyze different methodologies in literature by
modifying the contents of every block in the original Kanezaki pipeline, to understand in
detail how each contributes to the network and what changes in them could lead to more
complex semantic information learned. For that purpose, in this section we train several
networks from scratch, without any form of transfer learning, so that we can evaluate
each of them individually, focused only in our desired tasks. We also show the results
of our proposed semantic segmentation pipeline, shown in Figure 2. We start with the
Feature Extractor block, the Classifier, the Superpixel Refinement, and finally the Image
Preprocessing.

5.1.1 Feature Extractor

Before testing the feature extractor, we must define which architectures were used
and other training parameters. The first one was the feature extractor from Kanezaki
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[2018], the first work we based ours on. Their feature extractor comprises three blocks; each
block includes a Convolutional layer, a ReLU activation layer, and a Batch Normalization
layer, except for the last block that does not have a ReLU layer. The constant K is the
number of classes chosen, which the authors set to K = 100. A simplified version of their
pipeline, highlighting the feature extractor, can be seen in Figure 9.

Image

3:K

Block 1

K:K

Block 2

K:K

Block 3

K:1

ArgMax

Figure 9 – Simplified pipeline from Kanezaki [2018]. Each block comprises Convolutional,
ReLU, and Batch Normalization concatenated layers.

Source: produced by the author.

The second feature extractor tested is derived from Ilyas et al. [2020]. This
feature extractor consists of a simple architecture, with an additional squeeze and excite
block, similar to what is found in a MobileNet. Figure 10 shows a simplified view of the
architecture. Each block comprises a Convolution Layer, a Batch Normalization Layer,
and a ReLU layer. As for the Squeeze and Excite block, the activation function for the
Linear 1 layer is ReLU, and for the Linear 2 layer is Sigmoid. Note that the block names
are repeated twice; the authors use the same blocks twice to extract features and sum the
contributions from each of the two forward passes through the blocks.
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Figure 10 – Simplified pipeline from Ilyas et al. [2020]. Each block comprises Convolutional,
Batch Normalization, and ReLU concatenated layers.

Source: produced by the author.

The third architecture is derived from Zhou and Wei [2020]. This architecture is
shown in Figure 11. It mainly comprises a few blocks from U-Net, precisely a combination
of the first pooling and final upsampling, becoming a simplified version of U-Net, for the
first part. Each block comprises a Convolutional layer, a Batch Normalization Layer, and
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a ReLU layer, except Block 7, which does not have a ReLU activation. The innovative
part of the pipeline is the DCS block, which will be discussed next.
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Figure 11 – Simplified pipeline from Zhou and Wei [2020]. Each block comprises Convolu-
tional, ReLU, and Batch Normalization concatenated layers.

Source: produced by the author.

The Deep Subclustering Network block performs clustering of the features before
the argmax step. The pipeline is presented in Figure 12. Consider a batch of 1 image,
given an input feature block of K × I × I features, where K is the given number of classes
and I × I is the dimension of the input image, where width and height are equal here
for simplification and consistency with the previous notation, but not required. First, the
block goes through a 1× 1 convolution, then reshapes to size Y = I2 ×K. The main idea
is to associate each pixel in the input image with a cluster among M clusters, then update
the cluster centers, reassociate, and repeat these steps several times. This is similar to the
K-means algorithm but uses a kernel-based similarity metric. Second, the Associate Rate
at step t is calculated by

H t
im =

κ(Yi,Ω
t−1
m )∑M

j=1 κ(Yi,Ω
t−1
j )

, i ⊆ 1, . . . , I2,m ⊆ 1, . . . ,M (5.1)

where Ωm is the center of the m-th cluster, and k represents a kernel function, which is
simply exp(aT b). In the neural network, this equation is represented as

Ht = softmax(Y (Ωt−1)T )

As for the cluster centers Ω, they are updated by

Ωt
k =

∑I2

i=1H
t
ikYi∑M

m=1 H
t
mk

(5.2)

These steps are repeated three times for every forward pass in the network. Finally,
after the final update, the resulting aggregated features are formulated as

Υ = H t(Ωt)T (5.3)
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Then, after a ReLU activation layer, another 1×1 convolutional layer, and another
ReLU layer, the final output is returned to be passed to the argmax layer.
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Figure 12 – Deep Clustering Subnetwork block from Zhou and Wei [2020]. Each block
comprises Convolutional, ReLU, and Batch Normalization concatenated layers.

Source: produced by the author.

After defining the feature extractors, we proceed to the experiments. We take the
following for each of the blocks:

• Preprocessing: the images are normalized between 0 and 1. Since data augmentation
is random and we wanted to make the comparisons fair while analyzing the unbiased
ability of the feature extractors to learn semantics, we disabled data augmentation
for these experiments. However, it is still a part of our pipeline.

• Feature extractor: the three feature extractor blocks described above will be tested
individually without any modifications.

• Classifier: a softmax layer with the proposed cross-entropy loss, weighted by the
class weights of each batch.

• Class refinement: the output of the unsupervised semantic segmentation from Jaimes
et al. [2022] is used to guide the training, and the networks all have the number of
clusters set to K = 100.

Due to computational resource limitations, we limit each experiment to 10 epochs
and the batch size to 10 images. The batch size is chosen due to GPU limitations. As for
the number of epochs, it was selected because we empirically observed that the networks
mainly converged with this number of epochs, probably because of the high number of
images, which will be shown next, leading to a faster generalization.

Moreover, we used the Potsdam dataset for every experiment, as explained in
Section 4.3. For the training and testing division, according to literature, most works used
the subset of the dataset provided by Ji et al. [2019], where the authors used a total of
8550 images, with 855 images for testing, with complete ground truth, and 7695 images
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for training, where 4545 also had a complete ground truth and 3150 images had no source
of supervision.

Ideally, using these training images with ground truth as a cross-validation set
and through our class mapping, we could convert the pixel refinement mask to the actual
labels and obtain the accuracy or any other supervised metrics in real-time, at every
epoch, allowing curves that could guide the training to be traced. But since our evaluation
method is too expensive, which would highly increase the training time, we chose only to
use the ground truth for the test set to obtain metrics and to use all the training images
without supervision during training, excluding the cross-validation set.

The original Potsdam dataset has six classes: roads, buildings, low vegetation,
trees, cars, and clutter. But the authors who created the division of the dataset also
proposed a variation where some classes are combined: roads and cars, vegetation and
trees, buildings and clutter. This modified dataset is called Potsdam-3, and we also test
our algorithms in this reduced version of the dataset.

5.1.1.1 Comparison

To compare the feature extractors, we decided to use an exponential decaying
learning rate from 1e−4 at the beginning of the training until the 1e−5 at the end so that
the network could perform smaller steps toward the gradient as the clustering process
reached convergence. A detailed study of the learning rate and information regarding the
choice for the number of classes and our loss function can be found in Appendix A.

The metric results for the test dataset can be seen in Table 3, where "FE" stands
for "Feature Extractor," and the remaining columns are the abbreviation of each metric,
as described in Section 4.1. The "Kanezaki" feature extractor was also abbreviated for
"Kan." For every feature extraction, there are two results, one for the complete dataset
with all six classes and another where the name of the feature extractor has a "3", meaning
that it is the variation of the dataset with only three classes, both separated by a thick
horizontal line. In this table, the IoU and wIoU metrics are the mean over all the classes,
and the segmentation quantitative metrics (VoI, PRI, GCE, BDE, and SC) are all the
mean of the metric value for every image in the test dataset. We also separate the types
of metrics with a thicker vertical line between F1 and V oI, where the left half represents
the supervised metrics, and the right half represents the segmentation metrics.

As the results show, the DIC feature extractor obtained the best supervised metrics
for both datasets, as depicted on the left side of the table. Checking the segmentation
metrics, we can see that VoI, GCE, and SC are better for SEEK, while PRI and BDE are
better for DIC.

In a more in-depth analysis of the segmentation metrics only (right half of the
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Table 3 – Metrics obtained for different feature extractors.

FE Acc↑ IoU↑ wIoU↑ F1↑ VoI↓ PRI↑ GCE↓ BDE↓ SC↑
SEEK 58.6 24.6 38.6 33.0 1.58 0.678 0.217 12.6 0.567
DIC 59.4 32.4 43.2 45.7 1.84 0.698 0.293 11.1 0.548
Kan 58.4 26.8 40.0 37.3 1.83 0.686 0.293 11.2 0.535

SEEK3 72.8 56.4 57.4 71.6 1.27 0.733 0.202 14.5 0.688
DIC3 74.1 58.4 59.4 73.2 1.27 0.740 0.203 13.8 0.679
Kan3 72.7 56.4 57.2 71.7 1.40 0.717 0.225 14.8 0.667

table), the metrics highlighted for SEEK mostly show that the segmentations achieved are
closer to the ground truth in their shape. As for DIC, the highlighted metrics indicate
that the segmentation is closer to the ground truth in content.

Given these results, we chose to use the DIC feature extractor since it obtained
the most consistent supervised and competitive segmentation metrics compared to the
others.

5.1.1.2 Second Classifier

With the previous experiment, we had already decided on our feature extractor,
but we decided to test another idea that could potentially improve our methodology.
Many different works use two classifiers during learning, either to maximize their mutual
information [Ji et al., 2019, Harb and Knöbelreiter, 2021] or as a form of data augmentation
and regularization, to learn multiple representations of an image at the same time [Cho
et al., 2021]. Either way, learning with two classifiers simultaneously can be beneficial and
create the possibility of exploiting this information as a loss function since both would
theoretically be learning to segment the same images.

With this idea in mind, we modified our feature extractors to allow two classifiers
in parallel. In practice, our solution is close to Ji et al. [2019], except that he uses a
different number of classes for each classifier while we set the same number for both.

To add the second classifier, we modify the DIC feature extractor, shown in Figure
11, by adding a replicate of Block 7, the DSC block, and the ArgMax layer, working in
parallel with the original blocks. The output of Block 6 goes to both the original blocks and
the replicate blocks simultaneously, and accordingly, two classifications can be performed
simultaneously.

We first show in Figure 13 the loss curves for both classifiers for the training,
where "C1" stands for "Classifier 1" and "C2" for "Classifier 2". We used the optimal
learning rate and loss function defined in the previous experiments.

As expected, every loss function achieves a similar loss and shape at the end of
the training, even though they start differently due to the weights initialization, showing
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Figure 13 – Losses for the multiple classifiers experiment.

Source: produced by the author.

that all classifiers are learning correctly and indicating that they are learning the same
segmentation, which can only be proved when comparing the actual segmentations. Then
we show the metrics results in Table 4, where "NC" stands for "Number of Classifiers." In
the Feature Extractor column, the "_1" indicates the first classifier, and equally, "_2" is
the second classifier.

Table 4 – Metrics for the multiple classifiers experiment.

NC FE Acc↑ IoU↑ wIoU↑ F1↑ VoI↓ PRI↑ GCE↓ BDE↓ SC↑
1C DIC_1 59.4 32.4 43.2 45.7 1.84 0.698 0.293 11.1 0.548

2C DIC_1 60.9 32.5 44.1 45.5 1.75 0.708 0.281 11.4 0.541
DIC_2 60.9 32.6 44.4 45.5 1.79 0.706 0.286 11.0 0.547

1C DIC3_1 74.1 58.4 59.4 73.2 1.27 0.740 0.203 13.8 0.679

2C DIC3_1 75.7 60.3 61.2 74.8 1.19 0.754 0.190 14.0 0.693
DIC3_2 75.7 60.3 61.2 74.8 1.23 0.748 0.196 14.6 0.693

Overall, in almost every metric, the experiment with two classifiers obtained a
better result, having increases of about 1.5% for the accuracies and similar increases for
every other supervised metric. The only metrics with a better outcome for the one classifier
experiment were the F1-score and SC for the six classes dataset and BDE for the three
classes dataset. However, the results are still close, with none surpassing differences of
0.2%.

Additionally, if we analyze the results of both classifiers of the second experiment,
they are almost equal in every metric, with slight variations. This confirms that they
are both learning the same segmentation and is coherent with what we expected. As for
how they are learning this segmentation, this could vary for each classifier. Since it is an
unsupervised problem, the cluster might differ from each classifier in practice since the
metrics only evaluate the results after the softmax activation. This can only be assessed
when checking the actual segmentations, which will be performed later.
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5.1.2 Pixel Classifier

After defining the optimal feature extractor for our network, along with several
hyperparameters, we test the addition of other losses to our proposed weighted cross-
entropy loss (Lwce) to check if it is possible to further enhance the semantic extraction
with additional constraints to the training.

The first loss we propose to use is the spatial continuity loss (L1 loss), presented
by Kim et al. [2020]. Since clustering primarily aims to group pixels, creating homogeneous
regions in the segmentation mask, the network output should benefit from being spatially
continuous, forcing the cluster labels to be similar for neighbor pixels. For that, the authors
use the L1-norm of the horizontal and vertical differences of the response map (r) or the
logits of the network classification before the softmax activation. The loss is given by

Lcon =
1

K · (H − 1) · (W − 1)

K∑
n=1

H−1∑
i=1

W−1∑
j=1

∥rn,i+1,j − rn,i,j∥1 + ∥rn,i,j+1 − rn,i,j∥1 (5.4)

where the ∥·∥ is the norm-1, or simply the absolute value of the difference, rn,i,j is position
(i, j) of the n-th response map, K is the number of clusters, or classes, H is the image
height and W is the image width.

The second loss we implemented is the Mumford-Shah loss (MS loss), proposed
by Kim and Ye [2020]. Their loss is based on the Mumford-Shah functional and tries
to minimize the energy variation within the pixels in each cluster. In practice, for each
of the K classes, a centroid is calculated using its probability map applied to the color
image. Then each pixel is subtracted from the color of its centroid, and this difference is
minimized. Along with this minimization, the authors also add a constraint to enhance
the bias field continuity, that is, the L1-norm of the horizontal and vertical differences
of the activations of the response map. This is almost the same as the spatial continuity
loss from Kim et al. [2020], except that the L1-norm is taken after the softmax activation
output instead of the response map.

Given a pixel (r), an input image (x) and the softmax output (y), the loss is
calculated by

LMScnn(Θ, x) =
K∑

n=1

N∑
r=1

|x(ri)− cn|2yn(ri) + |▽yn(ri)| (5.5)

where N is the total number of pixels, Θ represents the network parameters, |▽yn(r)|
is the L1-norm of the softmax output, and cn is the centroid calculated using the input
image and softmax activations as membership probabilities for each class
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cn =

∑N
r=1 x(ri)yn(ri)∑N

r=1 yn(ri)

The resulting loss curves for the network trained with each of these losses are
shown in Figure 14. Note that the total loss of our network is composed of either the sum
of our weighted cross-entropy loss with the spatial continuity loss.

loss1 = Lwce + Lcon

or by the sum of our loss with the Mumford-Shah loss

loss2 = Lwce + LMScnn

In the following Figures, we evaluate how adding another loss affected the shape
of the curve.
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Figure 14 – Comparison between different losses used to train the network.

Source: produced by the author.

When adding the L1 loss, the curves indicate that the network had more difficulty
learning since it converges slower. As for the MS loss, the curve seems to converge similarly,
with only the loss value being higher because both losses are being summed up. Next, we
show the metrics in Table 5, where we abbreviate the classifier (C) as being either 1 (C1)
or 2 (C2). Also, we did not specify the dataset here for lack of space, but the upper half
shows the metrics for the dataset with six classes and the bottom half for the dataset with
three classes.

We can see that with the L1 loss, the segmentations improved a bit since the Acc,
VoI, PRI, and GCE were generally better in the six classes. By enforcing homogeneous
regions, we can assume that larger classes got a better representation, but at the cost
of sacrificing smaller classes. This is similar to the dataset with three classes, except the
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Table 5 – Metrics for the different losses experiment. The first half shows the results for
the Potsdam dataset, and the second half for the Potsdam-3 dataset.

Loss C Acc↑ IoU↑ wIoU↑ F1↑ VoI↓ PRI↑ GCE↓ BDE↓ SC↑

WCE C1 60.9 32.5 44.1 45.5 1.75 0.708 0.281 11.4 0.541
C2 60.9 32.6 44.4 45.5 1.79 0.706 0.286 11.0 0.547

WCE+L1 C1 61.7 29.5 43.7 40.0 1.62 0.715 0.257 11.4 0.534
C2 61.4 29.3 43.5 39.8 1.62 0.714 0.257 11.7 0.539

WCE+MS C1 60.5 29.1 42.5 40.1 1.74 0.703 0.284 11.2 0.535
C2 60.8 29.3 42.8 40.2 1.72 0.706 0.286 11.2 0.528

WCE C1 75.7 60.3 61.2 74.8 1.19 0.754 0.190 14.0 0.693
C2 75.7 60.3 61.2 74.8 1.23 0.748 0.196 14.6 0.693

WCE+L1 C1 74.1 58.4 59.2 73.4 1.17 0.752 0.185 14.8 0.703
C2 74.1 58.2 59.0 73.2 1.17 0.754 0.185 15.1 0.704

WCE+MS C1 73.8 57.6 58.5 72.7 1.27 0.741 0.201 14.5 0.687
C2 74.2 58.1 59.1 72.9 1.23 0.748 0.194 14.0 0.683

Acc. As for the MS metrics, almost no metric improved, indicating that this loss did not
improve the model. With these results, we opt to stay with WCE loss only.

5.1.3 Class Refinement

Our final experiment with our network regards the class refinement step. All
previous studies in the literature have adopted a superpixel segmentation to enforce
the pixels within each superpixel to share a common class. We proposed using our class
refinement, with the segmentation provided by the external algorithm of Jaimes et al. [2022],
where it uses superpixels to segment the image but applies several pre and post-processes
to obtain a more consistent segmentation of the image instead of the raw superpixels.

In this experiment, we compare our network’s training using superpixels and our
proposed mask. The losses for each training are shown in Figure 15, where "GT" indicates
which type of Ground Truth labels was used to train the network.

We can see by the results that the loss is much smoother for the superpixel
experiment, achieving convergence with less noise. This can be explained because when
using an external algorithm, a previous clustering is performed, so the labels enforce classes
that can have significant differences in size. As for the second experiment, since multiple
superpixels are not enforced to be in the same class, the network can choose the class
enforcement by itself, resulting in a more negligible difference in the class sizes. This is
directly reflected in the noise in each loss function, much of which can be attributed to our
weighted cross-entropy loss. We then compare the metrics for each experiment in Table 6,
where "Seg" stands for Segmentation method, "EX" for "External algorithm," and "SP"
for "Superpixels."

Overall, only a few segmentation metrics had a better value for the External
Algorithm method, and even those were close to the Superpixels results. These results show
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Figure 15 – Losses for different types of ground truth labels.

Source: produced by the author.

Table 6 – Metrics for the class number experiment.

Seg C Acc↑ IoU↑ wIoU↑ F1↑ VoI↓ PRI↑ GCE↓ BDE↓ SC↑

EX C1 60.9 32.5 44.1 45.5 1.75 0.708 0.281 11.4 0.541
C2 60.9 32.6 44.4 45.5 1.79 0.706 0.286 11.0 0.547

SP C1 62.6 32.3 45.2 44.7 1.74 0.705 0.281 10.8 0.551
C2 62.9 33.1 45.8 45.8 1.78 0.706 0.278 10.5 0.566

EX C1 75.7 60.3 61.2 74.8 1.19 0.754 0.190 14.0 0.693
C2 75.7 60.3 61.2 74.8 1.23 0.748 0.196 14.6 0.693

SP C1 75.9 60.4 61.3 74.9 1.26 0.747 0.199 14.1 0.690
C2 76.3 61.0 61.8 75.4 1.22 0.750 0.190 14.1 0.696

that even though providing a pre-grouping of the classes could help to lead the network
training, letting the network learn these groupings by itself is even better, generating a
final semantic segmentation closer to supervised ground truths. Therefore, we abandon the
External Algorithm idea for now and stay with the broadly used superpixel segmentation.

5.1.4 Image Preprocessing

After defining the final specification of the network, the only block missing is the
Image Preprocessing. We leave the preprocessing experiment for last because we needed
the complete architecture.
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To test whether the network needs a preprocessing block or not, we perform an
additional experiment were we train 4 different networks for 100 epochs instead of 10, so
that we may see the effects of the data augmentation. In each experiment, we train with a
different configuration of data augmentations:

• 1 - No data augmentation.

• 2 - Only geometric augmentations (for images and labels).

• 3 - Only color augmentations (for images only).

• 4 - All data augmentations.

This way, we expect to be able to observe which type of data augmentation further
impacts our model. The results for this experiment can be seen in Table 7.

Table 7 – Experiments with different types of data augmentation.

Exp Acc↑ IoU↑ wIoU↑ F1↑ VoI↓ PRI↑ GCE↓ BDE↓ SC↑
1 63.5 37.0 46.3 51.6 1.75 0.710 0.278 10.4 0.562
2 62.1 36.7 45.2 51.8 1.80 0.701 0.283 11.0 0.547
3 62.7 33.7 45.5 46.7 1.75 0.703 0.280 10.9 0.559
4 60.8 29.2 43.0 40.1 1.75 0.707 0.282 11.3 0.545
1 76.5 61.4 62.2 75.8 1.23 0.747 0.193 14.1 0.702
2 76.1 60.7 61.5 75.3 1.27 0.743 0.200 14.8 0.696
3 76.3 61.2 62.0 75.6 1.23 0.748 0.194 14.1 0.695
4 75.5 59.7 60.5 74.4 1.25 0.744 0.198 15.2 0.686

As seen, the experiment without data augmentations had the best results. There-
fore, we may conclude that in this specific case of unsupervised semantic segmentation,
adding data augmentation might have introduced more noise to the model, rather than
generalizing. Given this result, we choose to exclude data augmentation from our final
architecture.

5.1.5 Final architecture

After analyzing every building block and every step, a summary of our final
network is presented:

• Preprocessing

– Image Normalization.

• Feature Extractor

– DIC feature extractor [Zhou and Wei, 2020] modified to accommodate two
classifiers instead of one.
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• Classifier

– Weighted cross-entropy loss, followed by argmax operation.

• Class Refinement

– Superpixels ground truth.

• Training

– Exponential decaying learning rate from 1e−4 to 1e−5.

Additionally, in Table 8, we compare our metrics with other reported results in
the literature to measure our architecture improvements concerning the current state of
the art. The columns are "Algorithm" for different algorithms in the literature, "Type" for
the type of algorithm, which can be either a Clustering algorithm (Clust), a CNN-based
algorithm (such as ours), and the newer Visual Transformers-based approaches (ViT). We
only compare the Accuracy (Acc) and IoU for both Potsdam (P) and Potsdam-3 (P3)
datasets since these are the results provided in these works.

Table 8 – Comparison of our methodology with other algorithms in the literature.

Algorithm Type P-Acc P-IoU P3-Acc P3-IoU
SIFT*† [Ji et al., 2019] Clust 28.5 - 38.2 -

DeepCluster*† [Ji et al., 2019] Clust 29.2 - 41.7 -
K-means† [Ji et al., 2019] Clust 35.3 - 45.7 -
Doersch*† [Ji et al., 2019] Clust 37.2 - 49.6 -

Isola*† [Ji et al., 2019] Clust 44.9 - 63.9 -
Random CNN [Ji et al., 2019] CNN 28.3 - 38.2 -

IIC [Ji et al., 2019] CNN 45.4 - 65.1 -
AC [Ouali et al., 2020] CNN 49.3 - 66.5 -

InMARS [Mirsadeghi et al., 2021] CNN 47.3 - 70.1 -
InfoSeg [Harb and Knöbelreiter, 2021] CNN 57.3 - 71.6 -

SGSeg [Eliasof et al., 2022] CNN 57.7 - 71.8 -
SAN [Zhang et al., 2022] CNN 60.5 - - -

Ours CNN 62.9 33.1 76.3 61.0
SegSort† [Ke et al., 2022] ViT 59.0 35.0 - -

HSG [Ke et al., 2022] ViT 67.4 43.8 - -
DINO† [Seong et al., 2023] ViT - - 53.0 -

STEGO [Hamilton et al., 2022] ViT - - 77.0 -
HP [Seong et al., 2023] ViT - - 82.4 -

* Clustering of features, the method is not initially designed for image segmentation.
† The cited paper is where the image segmentation experiment was performed and the

metrics extracted, but this is not the original author of the algorithm.

The comparison shows that we obtained the best result from the CNN algorithms
yet. Even though our methodology performs poorer than the ViT algorithms, which are
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the current state-of-art, our results are competitive even with them, indicating that we
were able to extract the most of the performance for every step of our network.

Additionally, in Figure 16, we showcase some segmentation results obtained by
our network, compared with the ground truth, for the Potsdam dataset with six classes.
Likewise, we show the same images in Figure 17, but for the Potsdam-3 dataset. The label
association using the original dataset colors is:

• Roads: White

• Buildings: Blue

• Low Vegetation: Cyan

• Trees: Green

• Cars: Yellow

• Clutter: Red

In the segmentations for the dataset with six classes, we can see that the network
could segment many different shapes properly. The car segmentation is confused with the
building class; in another example, the clutter class was confused with the building class.
Both problems are a direct problem of the class mapping strategy since the objects were
well segmented. Moreover, we can see that the dataset itself has many issues. Buildings
and clutter are very similar, and the trees do not have well-defined leaves, so many of
them allow you to see the ground beneath, leading to many classification errors in this
class. As for the dataset with three classes, many confusions are mitigated, except for the
car’s class, which is still unrecognizable.

5.2 Automatic Scribble Generation

In this section, we explore the possbility of automatically generate scribbles in
images. For that, we have two main hypoteshis, the first related to our unsupervised pipeline
for scribble generation: "is it possible to group the homogeneous regions of images and
automatically draw scribbles, in a way similar to a human?". And our second hypothesis
regards our semi-supervised pipeline for classifying scribbles: "is it possible to train a
classifier using features extracted from a smaller set of scribbles, and use it to further
classify a larger set of scribbles?". Each pipeline created to answer these questions will be
further tested and analyzed.

For the remaining of the section we show the results of the scribble generation
proposed methodology. We start with the results for the scribble classifier, followed by the
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Image Ground Truth First Classifier Second Classifier

Figure 16 – Examples of semantic segmentations for the Potsdam dataset.

Source: produced by the author.
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Image Ground Truth First Classifier Second Classifier

Figure 17 – Examples of semantic segmentations for the Potsdam-3 dataset.

Source: produced by the author.
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results of our network trained with the supervision of different types of scribbles. Since the
scribble generation is not a quantitative process, we show examples of the automatically
generated scribbles and the other experiments’ results.

For the dataset, as described in Section 4.3, we used the LandCover.ai dataset
[Boguszewski et al., 2021]. A subset of 780 images with a size of 512 × 512 pixels was
used for all experiments, which comprehends areas of different characteristics from Poland.
This subset was re-annotated using scribbles and later used to train the model. Those
images were selected based on their saturation, brightness, and resolution similarity since
these conditions represent the entire dataset well. Similarly, 276 images were chosen to
compose the test set. The pixel proportion in which the classes appear in the training set
is 0.56% for buildings, 61.17% for woodland, 5.07% for water, 1.89% for roads, and 31.31%

for background. This is a very unbalanced dataset, providing an additional challenge.

5.2.1 Scribble Classifier

In the pipeline proposed in Figure 6, we suggest annotating the scribbles of a
small set of images and training an SVM to automatically classify a large number of
automatically generated scribbles. We start by testing if it is possible to classify scribbles
based on their extracted features. When automatically generating the scribbles, they are
all assigned a generic class. With our provided graphical tool, drawing, editing, removing,
and changing the class of already drawn scribbles is possible. This way, the user can
auto-generate, label and fix the worst ones.

To experiment with the scribble classifier, we explored two levels of human
intervention in the annotation. The first is when an expert draws all scribbles, and the
second is when the scribbles are generated automatically. In both cases, an SVM classifier
is trained using the mean features (step 1.4) of every superpixel crossed by a scribble. The
scribbles of 10% of the dataset images are used, and the remaining 90% are classified, as
illustrated in pipelines’ steps 2.2 and 2.3. We then set four experiments to evaluate the
process of scribble classification.

• Experiment 1 - train the SVM using 10% of the images with human-made scribbles
and classify the remaining 90% with automatically generated scribbles.

• Experiment 2 - same as 1 with the building detection module.

• Experiment 3 - train the SVM using 10% of the images with automatically generated
scribbles and classify the remaining 90% also with automatically generated scribbles.

• Experiment 4 - same as 3 with the building detection module.
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Table 9 shows Precision ("Prec") and Recall ("Rec") achieved by the SVM classifier
for each class, with the ground truth, that is, the actual class of the scribbles, provided
by an expert. The abbreviations are "Exp" for "Experiment," "Back" for Background,
"Build" for Building, and "Wood" for Woodland.

Table 9 – Metrics for the scribble classifier.

Exp Metric Back Build Wood Water Road Mean

1 Prec 85.52 85.45 93.83 50.00 87.34 80.43
Rec 78.61 90.82 87.49 97.50 66.35 84.15

2 Prec 87.30 73.29 90.88 50.64 81.01 76.62
Rec 73.29 90.48 87.69 96.60 59.92 81.60

3 Prec 69.89 100.00* 96.62 68.18 65.79 80.10
Rec 92.14 100.00* 77.95 85.71 32.05 77.57

4 Prec 81.26 73.89 92.25 66.90 64.63 75.79
Rec 83.94 92.02 88.73 86.61 38.41 77.94

* There were only 3 examples in this class

Generally speaking, the results of experiments 3 and 4 were close to experiments
1 and 2, with a slight worsening in Road class recognition. However, this result shows that
the proposed method for automatic generation and classification of scribbles can mimic
human-made scribbles well.

The results show that, in general, the best precision and recall were obtained by
experiment 1, with human annotations without building detection implemented. Comparing
experiments 1 and 2 with human-annotated labels, the performance worsened, even for the
building class. Compared with the fully automatic experiments 3 and 4, results generally
improved, except for the building class. Still, in experiment 3, the building class only had
3 scribbles, which explains the 100% precision and recall and thus is not reliable. This
can be explained because both were generated using similar locations in the feature space.
In contrast, the human labels were generated with a different perception, causing the
classifier not to generalize well.

When comparing the best human experiments with the best automatic experiments,
performance is similar for the Background and Woodland. For the Building and Road, the
performance is better for the human labels because these classes involve small and narrow
objects, making it more challenging to generate their corresponding scribbles automatically.
For the same reason, the worst overall class is "road" in experiments 3 and 4. Despite
this, we believe this problem could be solved by manually fixing these scribbles, either by
removing the bad ones and redrawing them or just drawing additional ones.

For the Water class, the recall dropped, but the precision increased, meaning that
the features extracted by the automatic scribbles in the training set are closer to the ones
in the test set, whereas the features from the human scribbles do not represent well the
test set.
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At last, the building detection module seems to hinder the performance of the
scribbles classifier, as can be seen when comparing experiments 1 and 2 or 3 and 4. Some
examples of scribbles generated by our methodology can be seen in Figure 18, along with
the respective ground truth labels. The color-label association for this dataset is:

• Buildings: Orange

• Woodlands: Green

• Water: Blue

• Roads: Yellow

• Background: Red

5.2.2 Semantic Segmentation

In this experiment, we evaluate both the effect of automatic-generated scribbles in
DSSNs training and the usage of weak labels in our proposed optimal DSSN architecture.
The same Experiments 1 to 4 from the Scribble Classifier evaluation, presented in Section
5.2.1, are used here. As baselines, DSSNs were trained with the complete supervision of
the ground-truth semantic masks, with semantic masks built from a set of 100% human-
annotated scribbles, and an utterly unsupervised pipeline with masks generated from
superpixels, as proposed for our network in Section 5.1.

In practice, since our network solves a clustering task, and therefore we do not
have means of associating the clusters with the actual labels, we adapted the network to
perform with the scribbles the same as in superpixels: group every pixel inside scribbles
of the same class to be the same cluster. With this approach, we do not have an actual
supervised loss, but we can still evaluate the quality of the scribbles and use them as
supervision for our network.

The dataset for these experiments contains 780 images for training and 276 images
for testing. Due to our computational limitations, the images in this dataset have 256×256

pixels, so we used a batch size of 8 images. In a real case scenario, we would combine
both the unsupervised and weakly supervised losses. Still, since we want to compare
the generated scribbles’ ability to provide proper supervision for an algorithm, we use
the scribbles as the only source of supervision to train the network in the proposed
experiments. As for the number of epochs, since this dataset has a low number of images
and weak training with only weak labels requires a more extensive training time to achieve
convergence, we train our models for 100 epochs to provide a sufficiently high number of
epochs to obtain a good generalization.
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a) Semantic Mask b) Automatic Scribbles
c) Automatic Scribbles
+ Building Detection d) Human Scribbles

Figure 18 – Different types of scribbles comparison.

Source: produced by the author.
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The metrics for the test set are shown in Table 10, where the experiments are the
same as the previous section, "HAS" stands for Human Annotated Scribbles, "Sup" for
Supervised, and "Unsup" for Unsupervised.

Table 10 – Metrics for the class number experiment.

Exp C Acc↑ IoU↑ wIoU↑ F1↑ VoI↓ PRI↑ GCE↓ BDE↓ SC↑

1 C1 81.9 34.3 68.8 42.6 0.85 0.775 0.116 30.4 0.754
C2 82.0 34.2 69.0 42.6 0.87 0.771 0.121 30.8 0.773

2 C1 83.2 34.8 70.8 42.9 0.81 0.785 0.109 28.5 0.761
C2 83.7 35.5 71.6 43.5 0.82 0.786 0.112 30.7 0.767

3 C1 82.7 33.9 71.0 41.7 0.89 0.782 0.123 30.6 0.762
C2 83.0 35.4 70.8 43.6 0.83 0.786 0.114 30.3 0.734

4 C1 83.1 36.5 71.1 44.6 0.86 0.782 0.121 28.3 0.720
C2 83.6 36.9 72.0 44.9 0.85 0.789 0.120 28.1 0.725

HAS C1 87.2 37.6 77.7 44.6 0.74 0.832 0.105 25.1 0.788
C2 87.0 37.6 77.3 44.6 0.75 0.825 0.102 25.3 0.764

USP C1 85.8 34.9 75.2 41.7 0.76 0.816 0.112 29.4 0.764
C2 85.1 34.0 73.9 40.9 0.77 0.811 0.115 30.5 0.769

SUP C1 88.5 41.2 79.4 48.0 0.65 0.844 0.085 28.6 0.751
C2 88.9 41.7 80.0 48.5 0.63 0.850 0.084 29.6 0.748

The metrics show that, in general, the experiment with the best results is Experi-
ment 4, which automatically generated scribbles only with the building detection module.
This result indicates that the features in the places where the automatic scribble generator
drew the scribbles provided more meaningful information than the human scribbles for
the network.

In an in-depth analysis of this event, even though in the previous section, the SVM
classifier learned a better representation from the human scribbles since our network does
not directly associate the clusters with the supervised classes, even with a more significant
error regarding the ground truth, the automatic scribbles provided a more meaningful
result for the network. This might be because scribbles in the same class in an image
will be assigned to the same cluster. Still, in the following image, even if the provided
scribbles are in the same supervised class, their cluster might differ depending on the
features of their locations. Therefore, this would explain why the pre-selected areas of the
automatic scribbles provide more information and why the correct supervised classes in
the automatic scribbles offer only a limited amount of data for the network. But to prove
that this information does matter, the experiment with only human annotated scribbles
had better results than any of the experiments, as expected.

Finally, by analyzing the remaining results, we can see the best results in the
networks trained with the building detection module, proving that it is a meaningful
addition to the pipeline. As for why the Unsupervised results had better metrics than the
experiments, this can be explained because it had much more information to train the
network since the superpixels were scattered in the entire image. But interestingly, the
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IoU and F1-score of the unsupervised experiment were worse than the other experiments,
indicating that using scribbles could help the network performance.

Ideally, the information of the superpixels and scribbles should be combined:
either by using both as different sources of supervision and combining their losses or by
combining the class of the superpixels that cross a scribble, providing a hybrid form of
ground truth while keeping a single loss. We did not perform these experiments in this
work, leaving this analysis for a future contribution.

Some segmentation results can be seen in Figure 19. Here we select only the best
classifier for each experiment due to the lack of space to show both classifiers for every
image.

In these segmentations, we can see that the network did not classify any pixel
as road, and the same was perceived for buildings. This does not mean that the network
cannot segment such classes but that the class mapping cannot allocate clusters to these
supervised classes. This is perceived in the first and last images, where the road is segmented
but not assigned in its respective class.

Regarding the experiments, almost all of them could segment grass and trees, the
most common classes in the dataset. But as for water, most classifiers had difficulty. The
only one that could adequately assign a river was experiment two, which used human-made
scribbles to train the SVM and classify the auto-generated scribbles. This indicates that
either the scribble generator is not creating sufficient scribbles in water or that the SVM
is not learning this class properly. Overall, the segmentations are well-defined but lack a
proper translation to the actual classes.

5.3 Applications

In this section, we test two different hypothesis regarding the capabilities of
our proposed network, the first one being: "is our network capable of learning intrinsic
differences between different types of terrain, in a way that it can clearly identify the
border between them?". For that, we choose an specific rural dataset composed of several
terrain types. The second hypothesis is: "can our network properly segment areas with a
high variance and lots of elements?". Contrary to the first experiment, that evaluates the
behavious in homoneous regions, in this case we want to properly extract information of
highly mixed areas. For that, we choose an urban dataset with several semantic artifacts.

For the remaining of the section, we report the results for these two applications
of our network in real problems. Our network proposes to be able to extract meaningful
semantics and apply them to issues in an unsupervised manner so that no data labeling is
required. We selected these two applications because they provide challenging problems to
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Figure 19 – Network predictions for different weak labels experiments.
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test the network capacity, each using a different dataset focused on a diverse landscape.
Note that although we provide quantitative results, these applications do not have a baseline
for comparison with other methodologies; therefore, we focus mainly on qualitative results.

5.3.1 Border detection in rural areas

In this experiment, we try to detect the borders of different types of terrain in a
rural area. This could be useful in several applications, such as mapping the region and
helping in a position estimation problem. We use a rural dataset from a part of São Carlos,
in Brazil [Jaimes et al., 2022], described in Section 4.3.

For this dataset, we only had the map image containing the entire region and the
labels for the whole map. Both can be viewed in Figure 20. The labels for this dataset
were initially obtained by segmenting the map into superpixels and assigning a class to
each superpixel, so we expect the labels to have a high amount of noise. It also had 14
classes, but [Jaimes et al., 2022] proposed reducing the dataset to 4 classes; therefore, we
use this condensed version. Notice that some classes do not contain only their class-name
semantics (i.e., the river class also has stones), which is a direct effect of concatenating
the classes. The color-label association for this dataset is:

• River: White

• Soil: Green

• Grass: Yellow

• Forest: Red

To train our network, we proposed to split the dataset by cropping random
rectangles of 256× 256 pixels. But to guarantee that we would not select the same squares
for training and testing, we first divide the dataset into a 10× 10 grid and use each half of
the grid to select 1000 images. We take 20 random crops in each rectangle to obtain a fair
amount of semantics. And to have more semantics in the image, we also collect the crops
with 512× 512 pixels and resize them to 256× 256. The grid used to crop the dataset is
present in Figure 21.

We train our network using our proposed hyperparameters from Section 5.1.5,
using batches of 8 images and for 100 epochs. This time, we also enabled data augmentation
for the training since we did not meant to compare results with other methodologies. Note
that this experiment was performed before the data augmentation experiment in Section
5.1.4, therefore at the time it was still valid. In Table 11, we show the metrics for this
dataset.
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Figure 20 – Map from the São Carlos dataset and the ground truth of the four classes.

Source: produced by the author.

Figure 21 – Train and test division of the map from the São Carlos dataset.

Source: produced by the author.
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Table 11 – Metrics for the São Carlos dataset.

C Acc↑ IoU↑ wIoU↑ F1↑ VoI↓ PRI↑ GCE↓ BDE↓ SC↑
C1 81.5 61.7 69.2 75.6 0.83 0.789 0.109 35.0 0.764
C2 82.4 62.1 70.6 75.9 0.79 0.802 0.106 31.1 0.775

As we can see from the supervised metrics, the dataset seems to have learned
the segmentation quite well. To check that, in Figure 22, we plot some of the obtained
segmentations compared to the ground truth.

We can see that the ground truth itself, for most images, contained a high amount
of noise. Still, it can be beneficial since introducing this noise acts as a form of regularization
for the network. In the third image, it is interesting to see how the earth road in the ground
truth contained noise, and the semantic segmentation fixed it in the output. The same for
the image with the asphalt road, where the network drastically improved the amount of
semantics compared to the ground truth by assigning a different class for asphalt, soil,
and grass. As for the border regions, most of them were adequately segmented by the
algorithm, although it did have some problems in the forest class, where there is a high
amount of variance in color and texture.

Indeed, the model learned how to perform an accurate semantic segmentation
according to the visual results, but this still does not tell us how well it learned to map
the semantics. For that, we introduce two new plots.

For the first plot, we take the softmax output of every pixel for every channel and
concatenate these probabilities, resulting in a volume of Imagewidth × Imageheight ×K,
where K is the number of clusters. This is the same size as the output of our network.
Then, when we visualize each channel, we can see the probabilities activated for that
channel and check which type of semantics it mapped.

The second plot that we present is normalization for each channel individually.
For that, we take each of the K channels of the output and perform a simple min-max
normalization in the Imagewidth × Imageheight pixels. The result is similar to the softmax
plot, with the difference that the smaller activations that might achieve a lower probability
because of the softmax normalization will better represent their value and be appropriately
compared only with this channel. We plot some examples of both types of normalization
in Figures 23, 24, and 25, along with the original image and their semantic segmentation,
colored by the mean color of all pixels in each class. In the image names, "Act" stands for
the default softmax activation, "Norm Act" stands for the normalization by channel, the
number represents the output channel among the K channels, and the class shown is the
ground truth class associated with this activation in the mapping step. However, in this
analysis, this is not important since we are only interested in the semantics learned. Note
that since we use K = 100, it would be unfeasible to show every channel; therefore, we
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Image Ground Truth First Classifier Second Classifier

Figure 22 – Examples of semantic segmentations for the São Carlos dataset.

Source: produced by the author.
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choose only a few channels with relevant semantics.

Original Image Act 34 - grass Act 48 - grass Act 57 - grass Act 0 - soil

Semantic Segmentation Norm Act 34 - grass Norm Act 91 - grass Norm Act 57 - grass Norm Act 38 - grass

Figure 23 – Example 1 of activations for the São Carlos dataset.

Source: produced by the author.

We can see in Figure 23 that some of the softmax activations were different for
different grass textures, but they complement themselves. The same can be said for the
roads that complement each other, forming the entire street’s connection. As for the
normalized output, we can see that some activated the whole grass differently, but both
could properly segment only the grass. And the same can be said for the roads.

Original Image Act 18 - forest Act 31 - soil Act 37 - grass Act 34 - grass

Semantic Segmentation Norm Act 18 - forest Norm Act 72 - soil Norm Act 37 - grass Norm Act 34 - grass

Figure 24 – Example 2 of activations for the São Carlos dataset.

Source: produced by the author.

In Figure 24, the softmax activations provided a variety of semantic objects, such
as the asphalt road, the grass, the soil, and even trees. The normalized output suggests
a similar separation, but note that the trees also activate for grass, showing that it is
interesting to check both plots for a complete semantics analysis.
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Original Image Act 24 - grass Act 31 - soil Act 61 - forest Act 96 - forest

Semantic Segmentation Norm Act 24 - grass Norm Act 72 - soil Norm Act 91 - grass Norm Act 23 - forest

Figure 25 – Example 3 of activations for the São Carlos dataset.

Source: produced by the author.

In Figure 25, the pattern is similar to the previous images, but here we can see
more clearly how the model has difficulty with the forest, which contains a wider variety
of semantics. In this case, the softmax activations complement each other, while some of
the normalization activations were able to represent the forest almost entirely.

As the results showed, the network could segment most regions of the image
accurately, proving that the model can be used to segment the border of the images.
In the activation analysis, we can see that various semantic objects were highlighted,
even more than the supervised semantic mapping could describe. In a future step, these
more meaningful semantic objects could be grouped and associated with more meaningful
labels using robust semantic descriptors, such as natural language processing algorithms,
providing a powerful tool to analyze and segment images.

5.3.2 Division of urban areas

In this second experiment, we used an urban dataset to analyze how well the
model behaves in a city with a large amount of semantics and a high variance of both
texture and color. We used an image of the city of Campinas, in Brazil, which only had
the colors IR-R-G, as explained in Section 4.3. The whole map can be seen in Figure 26.

This dataset did not have a complete ground truth. The labels for the nine classes
were all provided as weak labels, either in polygons or single pixels. Therefore, for this
dataset, we do not perform the segmentation quality metrics, only the supervised metrics,
since the former are not very representative in this case. The metrics can be seen in Table
12.

The dataset contained 1028 cropped images with 224× 224 pixels, from which
we split into 822 images for training and 206 for testing. However, in practice, for this
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Figure 26 – Complete map of the Campinas dataset.

Source: produced by the author.
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Table 12 – Metrics for the Campinas dataset.

C Acc↑ IoU↑ wIoU↑ F1↑
C1 90.4 60.4 84.2 69.7
C2 90.4 60.7 84.0 70.8

experiment, we only used the actual classes to map the activated channels with a supervised
semantic object since we did not extract the metrics. We used the same network with
the same hyperparameters as in the previous application to train, also with batches of 8
images and for 100 epochs. Then we perform an analysis of the semantics in Figures 27,
28, and 29, similar to the previous application, using both the softmax normalization and
channel normalization. We do not perform the supervised segmentation analysis since it
would not be meaningful in this case.

Original Image Act 1 - soil Act 2 - soil Act 39 - soil Act 88 - soil

Semantic Segmentation Norm Act 1 - soil Norm Act 52 - soil Norm Act 39 - soil Norm Act 88 - soil

Figure 27 – Example 1 of activations for the Campinas dataset.

Source: produced by the author.

In Figure 27, we can see that the first normalized activation detected almost all
buildings, even though the softmax activation couldn’t. One of the activations was able to
properly segment roads, vegetation, and even a sidewalk. This proves that the network
clusters could learn and segment different types of semantics.

From Figure 28, we see that the network was able to learn how to segment both
asphalt and sidewalks. In the sidewalk image, the network also detected the pedestrian
crosswalk and the normalized output saw more details than the softmax output. The
network was also able to recognize houses and vegetation.

And in Figure 29, the network could segment different types of buildings, along
with roads and vegetation. In this case, the normalized activations also carried more
information than the softmax activations.

These previous analyses show that the network can adequately segment individual
objects in the images. But we performed a second experiment to analyze if it could segment
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Original Image Act 39 - soil Act 74 - soil Act 88 - soil Act 1 - soil

Semantic Segmentation Norm Act 39 - soil Norm Act 74 - soil Norm Act 88 - soil Norm Act 1 - soil

Figure 28 – Example 2 of activations for the Campinas dataset.

Source: produced by the author.

Original Image Act 1 - soil Act 73 - soil Act 39 - soil Act 38 - soil

Semantic Segmentation Norm Act 1 - soil Norm Act 73 - soil Norm Act 44 - soil Norm Act 38 - soil

Figure 29 – Example 3 of activations for the Campinas dataset.

Source: produced by the author.

and divide an urban area into various segments. Here we cropped a square with an area
of 1km2 in the center of the map, resulting in an image with 11111× 11111 pixels. The
idea was to segment the whole area and see what the activations would tell us. Since it
is a large image, we have a memory limitation when performing the analysis; therefore,
we conduct a downsampling of 10 times the size of this image, resulting in an image of
1111× 1111 pixels. But to make a more fair downsampling, we perform it in the feature
space. But first, we verify if a downsampling of 10 times would result in a massive loss of
information. Both the cropped image and the same image with bilinear downsampling as
shown in Figure 30.

The figure shows that there is not much loss of information since both images
are still almost identical. Then we proceed to perform the downsampling in the feature
space. First, we divide the image into segments of 100× 100 pixels and feedforward these
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Cropped Image Cropped image with downsampling of 10x

Figure 30 – Downsample comparison of a cropped area of the Campinas dataset.

Source: produced by the author.

squares through the model. We then take the mean of the features of each pixel for each
channel, resulting in a 1× 1×K output. This way, we can reduce the size of the image by
10 while still performing a relevant analysis since, in a large image, there is not much loss
of information even using a large window of 100 pixels.

We perform both the softmax and channel normalization analysis with this
resulting image. The results of a few channels can be seen in Figures 31, 32, 33, 34, and 35.

Act 4 Norm Act 4

Figure 31 – Example 1 of activations of a cropped area of the Campinas dataset.

Source: produced by the author.



Chapter 5. Results 89

Act 5 Norm Act 5

Figure 32 – Example 2 of activations of a cropped area of the Campinas dataset.

Source: produced by the author.

Act 33 Norm Act 33

Figure 33 – Example 3 of activations of a cropped area of the Campinas dataset.

Source: produced by the author.
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Act 40 Norm Act 40

Figure 34 – Example 4 of activations of a cropped area of the Campinas dataset.

Source: produced by the author.

Act 47 Norm Act 47

Figure 35 – Example 5 of activations of a cropped area of the Campinas dataset.

Source: produced by the author.
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These figures show how the model can adequately recognize different semantic
types in an urban area. Some activations can segment the asphalt roads, as in Figure 35,
another can segment most houses in the selected region, as seen in Figure 31, or even
specific types of houses, as shown in Figure 34, and the network can even differentiate grass,
in Figure 32, and trees, in Figure 33. Overall, this experiment shows that this network can
be used to segment pieces of semantic elements in an urban area in an efficient manner,
being an excellent tool for applications that require an analysis of elements in a city.
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Chapter 6

Conclusion

This work proposes an algorithm for a fully unsupervised semantic segmentation
methodology. First, we segmented the pipeline from Kanezaki [2018] into blocks. For each
block, we performed experiments with variations obtained from a state-of-art review of
every CNN-based solution in the literature. This way, we were able to improve existing
methodologies and create a final solution that recycles knowledge and contains the best
parts of the previous state-of-art solutions. Our pipeline is also generalist, meaning it can
take different input types to guide the learning process, such as unsupervised, supervised,
and weakly supervised.

In addition to the contributions presented, other aspects of the pipeline were
investigated in this work. Along with the results we reported for the feature extractor, we
tried to adapt the network with internal changes, such as increasing the kernel size of the
filters to 5× 5 or exchanging the upsampling layer with a transpose convolution. But none
of these changes improved the results, so we decided that changes to the feature extractor
should be analyzed in a future continuation of our work.

For the loss function, one of the main reasons that motivated us to use two
classifiers was to use a loss that could manage the information from both classifiers,
as in papers exploring mutual information losses. We adapted the mutual information
maximization loss from Harb and Knöbelreiter [2021] but had no success improving the
results. Therefore, we also did not report this experiment, leaving this investigation with
potential new losses as a suggestion of continuity of this work.

Finally, our main contributions are combining multiple solutions into one and
improving these methodologies to extract the best of them. The results we achieved in a
common dataset in literature are competitive with (and, in some cases, even surpassed)
previous studies that have adopted the same research line with CNN-based descriptors.
Even though it did not reach the novel visual transformers technology, the extracted
semantics’ results and complexity are still beneficial and applicable to various remote
sensing tasks.
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We also proposed an automatic scribble generator methodology. We supposed that
regions with similar content in images could be grouped into areas and that by using an
interpolation method, we could draw scribbles. We tested this methodology and achieved
good results, correctly generating scribbles in several regions with contexts.

To accompany the scribble generator, we proposed a scribble classifier methodology.
By manually assigning classes to a small set of scribbles, using a tool that we provide,
a large dataset of images with scribbles could be automatically classified. The classifier
results showed that using our proposed features, most scribbles could be assigned to their
actual classes accurately.

We tested the training of our network using only scribbles and compared the
results under several conditions, concluding that our automatically generated scribbles
are fitted to be used as a source of supervision for our model, achieving metrics similar to
fully supervised results. Our main contributions can be summarized as the novel pipeline
for scribble generation, the scribble classifier methodology, and the editing tool that allows
a variety of operations in scribbles.

We also proposed two applications. In the first one, related to the segmentation
of rural areas into different regions, our pipeline could recognize the different types of
semantics in remote sensing images, finding and segmenting a variety of terrains, therefore,
being able to find the borders between them.

And in our second application, we tested our network in an urban environment,
where we checked the network’s ability to segment several parts of the city. The network
was able to find specific semantic objects in a city properly and to segment the elements
of a larger image containing several neighborhoods and streets, such as the roads, the
vegetation, and some types of rooftops, providing meaningful insights about the city,
proving that a methodology is a powerful tool for analyzing semantics.

Overall, this work contributes to the literature with different propositions by
providing a practical unsupervised semantic segmentation methodology that can be
applied in various remote sensing applications.

For future works, in the semantic segmentation pipeline we could explore a loss
that uses the information from both classifiers, so that we can fully take advantage of
them being trained to classify the same images with similar classes. We could also perform
some ablation studies in the feature extractor, deeply exploring the contributions of every
block, and even changing meaningful parameters inside the blocks. We could also test
bigger architectures from literature, while trying to perform transfer learning from similar
remote sensing problems. And we could also try to migrate some of our ideas to a Visual
Transformer architecture, since those are the current state-of-art for this kind of problem.

As for the scribble generator pipeline, in future works we could explore other
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methodologies for creating and selecting the superpixels, that maybe solve the problem
of classes with small and narrow superpixels whitout the need for an external classifier.
We could also evaluate the benefits of approximating the superpixel centers to human
scribbles, since in practice we are using the features of the entire superpixel area. And we
could also perform some ablation studies in every step of the pipeline, to further evalueate
their fully contribution to the overall results.

And for the applications, in future works we could further explore even use cases
of our model, in any remote sensing problems that may require the analysis of the terrain
and its semantics. Some examples include deforestation and wildfire detection, terrain
delimitation, urban planning, and even specific semantic objects detections (e.g. building
and water bodies detection).
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Appendix A

Ablation Studies

In this chapter, we perform additional ablation studies in our unsupervised
semantic segmentation pipeline to further test and justify the choice of specific components
or hyperparameter values.

A.1 Learning Rate

The first experiment we performed was regarding the learning rate (lr) we would
use to train our proposed network in future experiments. This is important to check
whether our chosen feature extractors could learn properly during training in the remaining
experiments. We decided to use an exponential decaying learning rate from the beginning
of the training until the end so that the network could perform smaller steps toward the
gradient as the clustering process reached convergence. Three experiments were performed:

• 1 - lr = 1e−3 to lr = 1e−4

• 2 - lr = 1e−4 to lr = 1e−5

• 3 - lr = 1e−5 to lr = 1e−6

We start by checking the loss curves for each model training. As explained in
Section 5.1.1, we do not plot any supervised metrics curve since we are not using a
cross-validation set. Also, since this is an unsupervised problem, in practice, we would not
have any supervision to compare; therefore, we only evaluate the loss curve of the training
set in this parameter optimization experiment.

An example of the loss curves generated during training can be seen in Figure 36.
Since our batch size equals 10 and the dataset has 7550 images, each epoch will have 755
batches. And since we train for 10 epochs, the total number of batches for each training
is 7550. In this figure, as can be seen in the upper plots, the actual losses returned from
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the network contain a high amount of noise, which is caused both because the training is
unsupervised, therefore subject to noise, and also because of the weighted cross entropy
which for every batch assigns distinct weights to different classes. To alleviate this noise in
the visualization, we use a moving average filter with a window size of 100 observations,
resulting in the bottom plots, which will be the default visualization for the remainder of
this work.
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Figure 36 – Example of losses from an average training.

Source: produced by the author.

The loss curves for each experiment are aggregated in Figure 37, where the results
for experiment 1 are replicated for convenience.

From the loss curves, we can see that both Kanezaki and SEEK converged fast in
experiment 1, indicating that the learning rate might be too high. As for experiment 3, the
losses suggest that no algorithm is learning correctly. Therefore, although the algorithms
might not have entirely achieved convergence in experiment 2 due to its smoothness, this
experiment seems to have achieved the best result.

We also evaluate our networks’ metrics by dividing the experiments for each
feature extractor. The results for the test dataset can be seen in Table 13, where "Exp"
stands for the experiment number, "FE" stands for "Feature Extractor," and the remaining
columns are the abbreviation of each metric, as described in Section 4.1. The "Kanezaki"
feature extractor was also abbreviated for "Kan." For every feature extraction, there are



Appendix A. Ablation Studies 109

0 2000 4000 6000
Batches

0.02

0.04

0.06

0.08

Lo
ss

Kanezaki

0 2000 4000 6000
Batches

0.02

0.04

0.06

0.08

Lo
ss

SEEK

0 2000 4000 6000
Batches

0.04

0.05

0.06

0.07

Lo
ss

DIC

Experiment 1: lr = 1e 3 to lr = 1e 4

0 2000 4000 6000
Batches

0.06

0.07

0.08

0.09

0.10

Lo
ss

Kanezaki

0 2000 4000 6000
Batches

0.06

0.08

0.10

0.12

Lo
ss

SEEK

0 2000 4000 6000
Batches

0.045

0.050

0.055

0.060

0.065

Lo
ss

DIC

Experiment 2: lr = 1e 4 to lr = 1e 5

0 2000 4000 6000
Batches

0.04

0.05

0.06

0.07

0.08

0.09

Lo
ss

Kanezaki

0 2000 4000 6000
Batches

0.06

0.08

0.10

0.12

Lo
ss

SEEK

0 2000 4000 6000
Batches

0.04

0.05

0.06

Lo
ss

DIC

Experiment 3: lr = 1e 5 to lr = 1e 6

Figure 37 – Losses for the learning rate experiment.

Source: produced by the author.

two results, one for the complete dataset with all six classes and another where the name
of the feature extractor has a "3", meaning that it is the variation of the dataset with only
three classes. In this table, the IoU and wIoU metrics are the mean over all the classes,
and the segmentation quantitative metrics (VoI, PRI, GCE, BDE, and SC) are all the
mean of the metric value for every image in the test dataset. We also separate the types
of metrics with a thicker vertical line between F1 and V oI, where the left half represents
the supervised metrics, and the right half represents the segmentation metrics.

As the results show, experiment 2 obtained the best results overall. In experiment
3, DIC got the best Acc for the six classes experiment, but its IoU, wIoU, and F1-Score
were better in experiment 2. Checking the other metrics, we can see that VoI, PRI, and
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Table 13 – Metrics for the learning rate experiment.

Exp FE Acc↑ IoU↑ wIoU↑ F1↑ VoI↓ PRI↑ GCE↓ BDE↓ SC↑

1
SEEK 47.9 18.6 28.4 27.3 1.50 0.634 0.167 18.0 0.504
DIC 59.3 28.5 41.8 39.4 1.65 0.703 0.260 11.8 0.538
Kan 57.6 28.6 39.0 40.6 1.70 0.691 0.254 11.9 0.547

2
SEEK 58.6 24.6 38.6 33.0 1.58 0.678 0.217 12.6 0.567
DIC 59.4 32.4 43.2 45.7 1.84 0.698 0.293 11.1 0.548
Kan 58.4 26.8 40.0 37.3 1.83 0.686 0.293 11.2 0.535

3
SEEK 54.6 22.0 34.4 30.5 1.68 0.663 0.239 12.6 0.544
DIC 60.0 30.2 42.2 42.3 1.76 0.698 0.274 11.8 0.558
Kan 57.3 23.7 37.2 32.2 1.76 0.676 0.273 11.4 0.537

1
SEEK3 63.3 44.1 45.3 60.2 1.16 0.704 0.159 20.2 0.654
DIC3 72.5 55.4 56.3 70.8 1.15 0.748 0.173 15.7 0.677
Kan3 71.6 54.7 55.8 70.0 1.35 0.724 0.214 14.7 0.664

2
SEEK3 72.8 56.4 57.4 71.6 1.27 0.733 0.202 14.5 0.688
DIC3 74.1 58.4 59.4 73.2 1.27 0.740 0.203 13.8 0.679
Kan3 72.7 56.4 57.2 71.7 1.40 0.717 0.225 14.8 0.667

3
SEEK3 69.2 51.5 52.6 67.1 1.35 0.714 0.210 15.2 0.669
DIC3 73.9 58.3 59.2 73.3 1.32 0.725 0.211 15.0 0.681
Kan3 71.3 54.7 55.6 70.3 1.48 0.700 0.235 15.0 0.657

GCE are better for experiment 1 in general, while GCE and SC are better for experiment
2.

Given these results, we chose to follow the experiments with our learning rate
decaying from 1e−4 to 1e−5 since it obtained the more consistent supervised metrics
for every feature extractor, competitive segmentation metrics compared to the other
experiments, and it also presented a smooth loss function curve.

A.2 Number of classes

In our proposed architectures, we used several classes, or clusters, of K = 100

since having a large number of classes should theoretically allow the network to learn a
wider variety of semantics. But we also tested this hypothesis by training our network
with a lower number of classes, K = 10, and compared it with the results from Section
A.1 (which already is the result for K = 100). Here we used only the best learning rate
achieved in the previous experiment. The loss curves can be seen in Figure 38.

Clustering images with a lot of content variation, which is the case for remote
sensing images, is a challenging problem. The loss functions show that the network had
more difficulty learning to segment using only 10 classes since the loss values are higher
and the curves are less steep. The curves show that a higher number of classes allow the
network to distribute the semantics between more classes and learn more specific semantic
features. Next, in Table 14, we evaluate the metrics for this experiment, where "K" is the
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Figure 38 – Losses for the class number experiment.

Source: produced by the author.

number of classes.

Table 14 – Metrics for the class number experiment.

K FE Acc↑ IoU↑ wIoU↑ F1↑ VoI↓ PRI↑ GCE↓ BDE↓ SC↑

100
SEEK 58.6 24.6 38.6 33.0 1.58 0.678 0.217 12.6 0.567
DIC 59.4 32.4 43.2 45.7 1.84 0.698 0.293 11.1 0.548
Kan 58.4 26.8 40.0 37.3 1.83 0.686 0.293 11.2 0.535

10
SEEK 50.2 19.5 30.2 28.0 1.70 0.652 0.243 13.0 0.545
DIC 59.9 25.6 40.1 33.8 1.41 0.709 0.186 14.1 0.585
Kan 54.4 21.9 34.3 30.4 1.72 0.659 0.254 12.9 0.549

100
SEEK3 72.8 56.4 57.4 71.6 1.27 0.733 0.202 14.5 0.688
DIC3 74.1 58.4 59.4 73.2 1.27 0.740 0.203 13.8 0.679
Kan3 72.7 56.4 57.2 71.7 1.40 0.717 0.225 14.8 0.667

10
SEEK3 65.8 47.6 48.9 63.4 1.38 0.702 0.213 15.3 0.652
DIC3 74.5 58.1 59.1 73.0 1.12 0.765 0.173 14.9 0.703
Kan3 68.6 51.4 52.4 67.3 1.42 0.699 0.219 15.4 0.659

Overall, many segmentation quality metrics are better for the 10 classes problem.
This is indicative that even though the classes learn more specific semantics in the case
with more classes, when mapping this information to the particular classes of the dataset,
part of the information is lost, meaning that the usage of the classes without the mapping
might make more sense.
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For the supervised metrics on the left side of the table, the 10 classes experiment
obtained a better Acc. Still, the IoU, wIoU, and F1-score all were better for the 100
classes network, which is more important in a semantic segmentation problem than just
the accuracy. With these results, we choose to stay with 100 classes in our network.

A.3 Cross-Entropy

The third experiment that we performed was regarding cross-entropy loss. We
proposed using a weighted version of this loss, where the weights are recalculated at every
batch. But this causes the loss function to become very unstable between batches, as seen
in Figure 36. To explore this problem, we trained our network with our best learning rate
and many classes, varying between our loss function and the original cross-entropy, and
compared the results. The loss function plots can be seen in Figure 39, where "LF" stands
for "Loss Function."
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Figure 39 – Losses for the cross-entropy experiment.

Source: produced by the author.

As we can see, both networks trained similarly, but the original cross-entropy loss
was smoother than our proposed loss. Here the values cannot be compared since they are
in different scales. Next, in Table 15, we evaluate the metrics for each loss.
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Table 15 – Metrics for the cross-entropy experiment.

LF FE Acc↑ IoU↑ wIoU↑ F1↑ VoI↓ PRI↑ GCE↓ BDE↓ SC↑

WCE
SEEK 58.6 24.6 38.6 33.0 1.58 0.678 0.217 12.6 0.567
DIC 59.4 32.4 43.2 45.7 1.84 0.698 0.293 11.1 0.548
Kan 58.4 26.8 40.0 37.3 1.83 0.686 0.293 11.2 0.535

CE
SEEK 50.3 19.3 29.7 27.5 1.67 0.658 0.234 12.9 0.543
DIC 59.5 27.9 41.3 38.7 1.61 0.708 0.254 11.8 0.549
Kan 57.2 23.8 37.3 32.2 1.58 0.683 0.223 12.8 0.579

WCE
SEEK3 72.8 56.4 57.4 71.6 1.27 0.733 0.202 14.5 0.688
DIC3 74.1 58.4 59.4 73.2 1.27 0.740 0.203 13.8 0.679
Kan3 72.7 56.4 57.2 71.7 1.40 0.717 0.225 14.8 0.667

CE
SEEK3 65.1 45.4 46.7 60.1 1.15 0.736 0.169 14.6 0.692
DIC3 72.9 56.5 57.5 71.5 1.17 0.752 0.181 14.6 0.700
Kan3 71.5 54.4 55.3 69.9 1.29 0.731 0.202 15.2 0.683

The supervised metrics on the left side of the table show that the only case
where the CE performed better was the accuracy of the six classes dataset, by 0.1%. The
remaining metrics were all the better for the WCE loss. As for the segmentation metrics
on the right side of the table, results vary between methods. The CE method obtained a
slightly better SC value in both experiments, indicating that some regions overlap better
for this loss, but this could be the case because since there are no class weights, the larger
classes might be favored, and if these contain the largest homogeneous regions in the
dataset images, it makes sense that the metric evaluating the region overlap would have a
better value. For the remaining segmentation metrics, most obtained a better result for
the CE loss in the three classes dataset. Since the classes are better balanced in this case,
the impact of favoring smaller classes is lower, explaining why the segmentation metrics
are better. Still, the supervised metrics indicate that the WCE loss performed better.

In general, this experiment proves that using a class weighted loss approach can
favor the smaller classes, and since the training is unsupervised, balancing the weights is
an essential way of regularizing the learning and avoiding that larger classes overfit the
network by assigning every pixel to them, mainly at the beginning of the training.

With this experiment, we also settle for the DIC feature extractor. Even though,
in practice, we kept testing the other feature extractors for the remaining experiments in
the Results chapter, at this point, there is enough information, when comparing all of the
previous experiments’ metrics tables, that the DIC feature extractor has the best overall
results and can generalize better than the other classifiers, probably because of both the
more extensive network and the DCS block.
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