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Resumo
A teoria da relatividade geral surge em 1915, e seu palco matemático é uma variedade
quadridimensional Lorentziana. Nosso objetivo será explorar diferentes linguagens e formu-
lações da teoria, com diferentes parâmetros atuando como variáveis dinâmicas. Iniciaremos
com a formulação original desenvolvida por Einstein e passaremos então para a formulação
lagrangeana da teoria, desenvolvida primeiramente por Hilbert. Desenvolveremos então
duas formulações hamiltonianas da gravitação, baseadas em uma folheação (3+1) do
espaço-tempo. A primeira será feita com o uso da métrica tridimensional como variável
dinâmica. Tal formalismo é conhecido como formalismo ADM da relatividade geral e
possibilita a construção de uma Hamiltoniana para a teoria em termos de vínculos e
multiplicadores de Lagrange. Por fim, analisaremos a formulação hamiltoniana baseada na
ação de Holst, em termos das variáveis de Ashtekar. Tal formulação é um dos caminhos
possíveis para a quantização do campo gravitacional, na abordagem conhecida como
gravitação de laços.

Palavras-chave: Relatividade Geral, Gravitação, Formalismo Hamiltoniano, Variáveis de
Ashtekar, Gravitação Quântica de Laços



Abstract
The theory of general relativity emerges in 1915, and its mathematical stage is a four-
dimensional Lorentzian manifold. Our goal will be to explore di�erent languages and
formulations of the theory, with di�erent quantities playing the role of dynamical variables.
We will start with the original formulation of the theory developed by Einstein, and then
pass to the Lagrangian formulation, first developed by Hilbert. Then we will develop two
Hamiltonian formulations of gravity, based on a (3+1) foliation of spacetime. The first will
be done with the three-dimensional spatial metric as dynamical variable. Such a formalism
is known as the ADM formalism of general relativity and allows for the construction of a
Hamiltonian for the theory in terms of constraints and Lagrange multipliers. Finally, we
will analyze the Hamiltonian formalism based on the Holst action, in terms of Ashtekar
variables. This formulation provides a possible path for the canonical quantization of the
gravitational field, in the approach known as loop quantum gravity.

Keywords: General Relativity, Gravitation, Hamiltonian Formalism, Ashtekar Variables,
Loop Quantum Gravity
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Figure 1.1: The square of the sum

that will lead us to build a broader view of the big picture.
This is our goal: to explore the di�erent languages of spacetime. Therefore, in this work, we

will explore some di�erent ways to write the formalism of GR, with di�erent variables playing
the dynamical role. We will start with the first formalism developed by Einstein, then we will go
to the Lagrangian formalism, done first by Hilbert, and finally we will end up in some di�erent
Hamiltonian formulations of the theory, one in terms of the metric, which is known as the ADM
formalism, and another one in terms of some other variables — the Ashtekar variables — which
is one possible path to quantize the theory of gravity.

The present work is organized as follows. In Chapter 2 we will set the mathematical
background and conventions that will be used along the dissertation. The essence will be
di�erential geometry, tensor calculus and the establishment of some notations. In Chapter 3
we will recover the main concepts of the formulation of GR done by Einstein and the main
geometrical objects in this theory, like the metric, the Riemann curvature tensor and the
connection. We will also discuss Einstein’s equivalence principle, the base upon which GR lays.
Furthermore, we are going to do here the Lagrangian formulation of GR, via Einstein-Hilbert
action and also via the Palatini action, where we will let the connection play a dynamical
role in the theory. In Chapter 4 we will review the formalism and structure of constrained
Hamiltonian systems, and then we will apply it to the Hamiltonian formulation of GR — the
ADM formalism. We will build this formalism in detail, via the foliation of spacetime, where it
will be split in spatial slices evolving through time. This (3+1) split will allow us to tell the
history of spacetime as the time evolution of these spatial slices. With these, we will be able to
build an action for gravity in therms of a 3-metric hab in those slices — this will be the main
dynamical variable of our formalism. We will end up with a constrained Hamiltonian system,
and the symmetries of spacetime will be expressed as constraints in the Hamiltonian.

In chapter 5 we will construct the tetrad formalism, where we will trade the metric gµ‹ for
the local orthonormal frame eI

µ
as the dynamical variable. We will build all the formalism in

terms of these new variables using Cartan’s structural equations of di�erential geometry, ending
with the Holst action in forms notation, which will be used for the next formalism. Finally, in
chapter 6 we are going to mix up the two previous formalisms to build the Ashtekar formulation
of GR, which is essentially the construction of the Hamiltonian formalism using triads as the
dynamical variables in place of the metric. We will do the same (3+1) split, where the spatial
part of the tetrad eI

µ
will be ÁI

µ
— the triad, our main dynamical variable. This formalism,

developed by Ashtekar in the mid 1980s, consists in rewriting the theory of GR in terms of
some variables that made the theory resemble the theories of particle physics, which allowed the
importation of techniques from particle physics to the quantization of gravity. This approach is
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known as loop quantum gravity.
Finally, we will introduce present our conclusions and discuss future developments in chapter

7.
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Continuous function and homeomorphism

The notion of continuos functions is allowed by the use of a topology. Suppose we have
the two topological spaces X and Y , and the function f : X æ Y . This function is said to be
continuous if, for any open set U œ Y , its inverse image f≠1(U) œ X is also an open set in X,
as is shown in figure 2.1.

Figure 2.1: Continuous function from X to Y .

If the map f is a continuous and bijective between two topological spaces, whose invese is
also continuous, then f is called a homeomorphism.

2.1.3 The manifold

Our idea here is to cover a space with patches that are locally just as Rn.
We say that a collection of open sets Ua covers a topological space X if their union is all of

X.
For an open set U œ X we define a chart to be a continuous function Ï : U æ Rn with a

continuous inverse (where this inverse has its domain in Ï(U) œ Rn, just as figure 2.2 shows.)

Figure 2.2: Charts.

The idea is that, as long as we work in the chart Ï we can pretend we are in Rn, just as the
Earth looks perfectly flat if we do not go too far. Suppose, for example, we have a function
f : U æ R. We can turn it into a function from Rn æ R using f ¶ Ï≠1, as figure 2.3 shows.
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Figure 2.3: Turning functions in U in functions in Rn.

Definition

A topological n-dimensional manifold M is a topological space such that every point has a
neighbourhood U homeomorphic to an open subset in Rn.

The manifold M is di�erentiable if the transition function Ï≠1
–

¶ Ï— is smooth where it is
defined.

Some topological manifolds — the di�erentiable ones — M can be represented as a union of
finite set of coordinate charts U , and the set of coordinate charts Âu that cover M is called an
atlas on M .

The idea is that every point in a di�erentiable manifold lives in some open subset U– that
looks like Rn, and that we can tell if any function on the manifold is smooth by looking at
transition functions between charts. If there is a function f : M æ R and one uses a chart
Ï– : U– æ Rn, then we say that f is smooth if

f ¶ Ï≠1
–

: Rn æ R

is smooth.
But one could instead use a chart Ï— : U— æ Rn. In this case, consider V = U– fi U— the

overlap of the two charts, the grey area represented in figure 2.4. The representation of f in
this chart is

f ¶ Ï≠1
—

: Rn æ R.

This function should also be smooth, for the smoothness of a function does not depend on the
chart we use.

But for that to be true, we need
Ï– ¶ Ï≠1

—

to be smooth, since
f ¶ Ï≠1

—
=

1
f ¶ Ï≠1

–

2
¶

1
Ï– ¶ Ï≠1

—

2
.

From now on, when we mention any manifold, we will always be referring to a smooth
manifold, as defined above.
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Figure 2.4: A manifold M .

Di�eomorphism

An isomorphism is a structure-preserving mapping between two structures of the same type
that can be reversed by an inverse mapping. An homeomorphism, as previously defined, is an
isomorphism of topological spaces. A di�eomorphism is a homeomorphism that preserves a
di�erential structure.

Definition 2.1.1. Given two manifolds M and N , a di�erentiable map f : M æ N is called
a di�eomorphism if it is a bijection and if its inverse f≠1 : N æ M is also di�erentiable.

A map f from a manifold M to another manifold N can be built if one has the maps
g : M ‘æ R and h : N ‘æ R, as shown in figure 2.3, by the composition h≠1 ¶ g.

If there exists a di�eomorphism f between M and N we say that these two manifolds are
di�eomorphic. We will consider the spacetime as a 4-dimensional di�erentiable manifold.

2.2 Vectors

2.2.1 Introduction

One can think of a vector field in a manifold as a field of arrows, tangent to the space in each
point, as it is in Rn. If we have a direction, we can di�erentiate a function f in that direction.
The partial derivative of f in the direction of a vector v is, in Rn:

vf = v · Òf = vµˆµf,

where we are thinking of the vector v as something whose purpose is to get a function f and
spit out another function, which is the partial derivative of f in the v direction, that’s why we
wrote it as vf (something like v is an operator acting on f).

If we look at the first and last member we have vf = vµˆµf , which holds for every function
f , so one may think that we can say that a vector field v can be written as

v = vµˆµ, (2.1)
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which says that the vector field v can be expanded in the basis ˆµ.
Here, v is the vector field, while vµˆµ is something that acts on a function and give its partial

derivative. For us, a vector field on a manifold will be exactly that: entities whose main purpose
is to di�erentiate functions.

Figure 2.5: Vector Field.

Definition

A vector field v on a manifold M is a function from CŒ(M) to CŒ(M) satisfying:

• v(f + g) = v(f) + v(g)

• v(–f) = –v(f)

• v(fg) = v(f)g + fv(g)

for – œ R and f, g œ CŒ(M). Here, CŒ(M) stands for the set of all complex functions infinitely
di�erentiable in M , as usual.

So it is an object that acts linearly on functions and obeys the Leibniz rule. If we denote
by V (M) the set of all vector fields in a manifold M one can show that this is indeed a vector
space, as expected.

2.2.2 Tangent Vectors

One can visualize a vector field v in a manifold M as assigning an arrow to each point P in
the tangent space of the manifold. The tangent vector at each point P in M is the vector vp

living in the tangent plane at P, as showed in figure 2.6
We can di�erentiate the function f in the direction of the vector field v, represented by vf ,

and evaluate it in the point p œ M . We will call this vpf — the tangent vector in the point P.
So we have

vp : CŒ(M) æ R , vp(f) = v(f)(p)

where the last line means the partial derivative of f in the direction of the vector field v evaluated
at point P.

It follows immediately that
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Figure 2.6: Tangent Space.

• vp(f + g) = vp(f) + vp(g)

• vp(–f) = –vp(f)

• vp(fg) = vp(f)g + fvp(g)
and we call the tangent vector vp at point P the function CŒ æ R that satisfies these 3
properties.

We call Tp(M), the tangent space at P, the set of all tangent vectors at p œ M . The tangent
space is indeed a vector space, with the sum of tangent vectors and the multiplication by a
scalar defined in the natural way

• (vp + Êp)(f) = vp(f) + Êp(f)

• (–vp)(f) = –vp(f)

2.2.3 Lie Bracket

We define the Lie Bracket of two vectors v and w as

[v, w] = vw ≠ wv, (2.2)

which is just a short notation for

[v, w](f) = v(w(f)) ≠ w(v(f)).

So, if v and w are vector fields, the Lie bracket [v, w] is also a vector field, since its entry is
a function f œ CŒ(M) and it spits out another function in CŒ(M).

For the basis vector ˆµ and ˆ‹ the Lie bracket is evidently zero, which follows from the
commutation of partial derivatives:

ˆµˆ‹ = ˆ‹ˆµ.

Geometrically this can be thought as flowing a little bit in the ˆµ direction and then a little
bit in the ˆ‹ direction. If we invert the order we end up in the same place, at least in flat space.

For general vector fields this is not necessarily true, and the Lie bracket measures the
di�erence between these who tracks, the failure of the two vector fields to commute, as shown
in figure 2.7.

The Lie derivative Lwv of a vector v in the direction along w is defined as

Lwv = [w, v], (2.3)

which is the derivative of v along the flow [16] generated by w.
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Figure 2.7: Lie Bracket.

2.3 Di�erential Forms

2.3.1 Introduction

The initial idea is to generalize the notion of the gradient of a function to functions on
arbitrary manifolds.

For a function f on Rn we have its gradient expressed by Òf . Here, we will define an
operator d — the exterior derivative — and its action on a function f defined on an arbitrary
manifold M will be expressed as df , and it will generalize the idea of the gradient in a first
approach.

In Rn, the directional derivative of f in the direction of the vector v is just the dot product
between v and the gradient of f :

Òf · v = vf, (2.4)
where in the last step we have written the vector v in the vector basis ˆµ:

v = vµˆµ,

hence
vf = vµˆµf = vµ

ˆf

ˆxµ
= Òf · v.

So, we are after an object df that keeps track of the derivative of f in all directions in
the manifold M , just as the gradient does. In Rn, the gradient of f is a vector field, and the
directional derivative is calculated via a dot product, as shown before. But, taking dot products
involves a choice of metric, and manifolds, in general, do not come pre-equipped with it. So, we
will leave the choice of a metric to a further development. Hence it would be nice if, in a first
approach, the df which will generalize the gradient was not a vector field, so that it would not
be necessary to take a dot product in order to extract the directional derivative information.

We will call our df here a 1-form, and it will have the same properties as the gradient does,
so to speak, for each input vector v the operator df · v = vf spits out a scalar function, which is
the directional derivative of f in the direction of v.

So, our df , when fed with a vector v œ V (M) (the tangent vector space in a manifold M)
will spit out a function g œ CŒ(M), and it will do it in a linear way, such as the gradient does:

df · (v + u) = df · v + df · u ,

df · (gv) = g (df · v) , (2.5)

for g œ CŒ(Rn).
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Definition 2.3.1. A 1-form Ê on a manifold M is a map from V (M) to CŒ(M) that is linear
over CŒ(M).

So, a 1-form Ê receives a vector v from V (M) and spits out a function Ê(v) such that:

Ê(v + u) = Ê(v) + Ê(u) ,

Ê(gv) = gÊ(v) , (2.6)

where g œ CŒ(M). We represent the space of all 1-forms in a manifold M by �1(M).

The exterior derivative as the generalization of the gradient

A simple example of a 1-form is, for any smooth function on M , the 1-form defined by:

df(v) = vf, (2.7)

which is just a slick way to write the directional derivative, as observed in (2.4). We can see
that this is really a 1-form by checking linearity:

df(v + u) = (v + u)f = vf + uf = df(v) + df(u),

and
df(gv) = (gv)f = g(vf) = gdf(v).

The 1-form df is called the di�erential of f , or the exterior derivative of f .

Composition

The addition of two 1-forms Ê and µ and multiplication by a scalar (function) g is defined
via

(Ê + µ)(v) = Ê(v) + µ(v) (2.8)
and

(gÊ)(v) = gÊ(v) . (2.9)

2.3.2 The Tangent and Cotanget spaces

Let us see what the exterior derivative is in any manifold, working in local coordinates.
From equation (2.7) we can conclude that the 1-forms dxµ form, at each point P , a local basis
of 1-forms in T ú

p
(M) — the dual space of Tp(M) — because, when we feed the 1-form dxµ with

a basis vector of the tangent space ˆ‹ we get

dxµ(ˆ‹) = ˆxµ

ˆx‹
= ”µ

‹
.

So, if ˆµ is a basis of the tangent space on a manifold M and the action of the 1-forms
dx‹ on that basis gives the Kronecker delta, then dx‹ is also a basis in the cotangent space.
Therefore any 1-form Ê œ �1(M) can be expanded and written in a unique form as

Ê = Êµdxµ, (2.10)

with
Êµ = Ê(ˆµ).

To see that this is the case, we just need to verify that the action of Ê and Êµdxµ on a vector
v are the same:
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1. Ê(v) = Ê(v‹ˆ‹) = v‹Ê‹

2. Êµdxµ(v) = Êµdxµ(v‹ˆ‹) = v‹Êµ(ˆ‹dxµ) = v‹Êµ(”µ

‹
) = Ê‹v‹

which proves the statement.

One can then see the 1-forms as actually dual vectors. Just as a vector field v at M gives a
tangent vector vp at each point P of M , we can assign a cotangent vector Êp at each point P of
M . The space of all cotangent vectors at P, as mentioned before, is called T ú

p
M . The cotangent

vector Ê at P is rigorously defined to be a linear map from the tangent space TpM to R.
So, if we have a vector field v on M , we can define the cotangent vector field as

Ê(v) = Êµdxµvµˆµ = Êµvµ, (2.11)

which is indeed a map Ê(v) : TpM ‘æ R.
This really means that the 1-forms are the dual vectors of v. This is so since the dual vector

space of V is the space V ú of all linear functionals Ê : V ‘æ R. Hence, the cotangent space T ú
p
M

is the dual vector space of TpM .
It is important to note that, if we have a linear map f from one vector space V to another

W
f : V ‘æ W,

we can automatically get a map f ú, the dual of f , from W ú to V ú

f ú : W ú ‘æ V ú,

that is defined by
(f úÊ)(v) = Ê(f(v)). (2.12)

For this we call the cotangent vectors covariant: linear maps between vector spaces gives rise
to maps between their duals that go backwards. This is the convention used in [5], probably
because this objects transforms with the same Jacobian matrix of the linear transformation
itself, while tangent vectors transforms with its inverse, hence, they are called contravariant.
We will develop more on this shortly.

So, if „ is a linear map between the tangent spaces at two di�erent points P and Q in M

„ : TpM ‘æ TqN,

the dual map goes the other way
„ú : T ú

q
N ‘æ T ú

p
M.

We call „úÊ the pullback of Ê by „.
In coordinates this means that the 1-forms, when we do a coordinate transformation, will

transform with the inverse of the matrix that transform the coordinates of the vectors.
For instance, let the vector v be expressed in two di�erent coordinate systems xµ and xÕ‹

v = vµˆµ = vÕ‹ˆÕ
‹
. (2.13)

The object v is naturally the same, but its components vµ or vÕ‹ are not, since they depend
on the choice of basis ˆµ or ˆÕ

‹
where the components are written.

Since ˆÕ
‹

= ˆxµ

ˆxÕ‹ ˆµ, then, in (2.13):

vÕ‹ = ˆxÕ‹

ˆxµ
vµ, (2.14)
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and the components of the vector transforms with the inverse of the Jacobian matrix of the
change of coordinates. Objects that behave this way live in the tangent bundle TM and are
called contravariant.

However, for a 1-form Ê, its components Êµ and ÊÕ
‹

in the two coordinates systems are
related via

Ê = Êµdxµ = ÊÕ
‹
dxÕ‹ , (2.15)

and since dxÕ‹ = ˆxÕ‹

ˆxµ
dxµ we can see that the components of Ê are related by

ÊÕ
‹

= ˆxµ

ˆxÕ‹ Êµ, (2.16)

which states that they transform with the Jacobian matrix of the change of coordinates. Objects
that behave this way lives in the cotangent bundle T úM and are called covariant.

A little more on the exterior derivative

We defined df in such a way that when fed with a vector v it spits out the directional
derivative of v, if we are in Rn. But we also know that v = vµˆµ, so:

df(v) = vµˆµf,

but df = fµdxµ, then

df(v) = fµdxµ(v‹ˆ‹) = v‹fµ”µ

‹
= v‹f‹ ,

hence, comparing with the first one, we have fµ = ˆµf and then

df = ˆµfdxµ. (2.17)
Therefore, the exterior derivative of scalar function is just its gradient in Rn.

2.3.3 Wedge product and p-forms

In order to generalize the cross product in R3, which is anticommutative, we define the
wedge product · of 1-forms Ê and µ as

Ê · µ = ≠µ · Ê. (2.18)

We can actually define the di�erential forms on M , denoted by �(M), to be the algebra
generated by �1(M) with the relations in equation (2.18).

The 0-forms, �1(M), are the functions, and we define the wedge product of a a function
with a di�erential form to be the ordinary product: f · Ê = fÊ.

The elements that are a linear combination of a product of p 1-forms are called p-forms, and
the space of all p-forms in M is �p(M). Of course, the space of all di�erential forms in M is
then the direct sum of the subspaces:

�(M) =
n

p

�p(M).

The 1-forms are given by Êµdxµ, with the coe�cients Êµ being functions.
2-forms look like

1
2Êµ‹dxµ · dx‹ ,
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where the factor of 1/2 is inserted since dxµ · dx‹ = ≠dx‹ · dxµ. The (dxµ · dx‹) term is the
basis of 2-forms.

In general, a p-form looks like

1
p!Êµ‹...· dxµ · dx‹ · · · · · dx· ,

where the product of p 1-forms dxµ · dx‹ · · · · · dx· is the basis of all p-forms.

2.3.4 The exterior derivative

We can then extend the definition of the exterior derivate d to generalize the gradient, the
divergence and the curl in any dimensions. The exterior derivative is defined to be the operator
d

d : �p(M) ‘æ �p+1(M) (2.19)
satisfying

• d : �0(M) ‘æ �1(M) agrees with the previous definition

• d(Ê + µ) = dÊ + dµ and d(cÊ) = cdÊ for all Ê, µ œ �(M) and c œ R

• d(Ê · µ) = dÊ · µ + (≠1)pÊ · dµ for all Ê œ �p(M) and µ œ �(M)

• d(dÊ) = 0 for all Ê œ �(M)

For instance, if we have a 1-form Ê, its exterior derivative is

dÊ = d(Êµdxµ) = dÊµ · dxµ ≠ Êµ · d(dxµ) = d(Êµ) · dxµ,

but df = ˆ‹fdx‹ , so

dÊ = (ˆ‹Êµ)dx‹ · dxµ, (2.20)
which is a 2-form.

The third property is the Leibniz rule graded, which is necessary since the product of
di�erential forms is anticommutative, and then, passing through p 1-forms we gain a sign of ≠1
at each step.

The last property can be demonstrated, as we now show. Recovering equation (2.20):

d(dÊ) = d((ˆ‹Êµ)dx‹ · dxµ)
= (ˆ· ˆ‹Êµ)dx· · dx‹ · dxµ

= 0, (2.21)

since ˆ· ˆ‹ is symmetric in [‹, · ] but dx· ·dx‹ is antisymmetric in the same indices, which means
that d(dÊ) = ≠d(dÊ) and hence it vanishes.

The exterior derivative generalizes all vector derivatives in 3D. For instance, one can easily
show that

• Gradient: d : �0(R3) ‘æ �1(R3)

• Curl: d : �1(R3) ‘æ �2(R3)

• Divergence: d : �2(R3) ‘æ �3(R3)
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The identity d2 = 0 then contains the two identities of vector calculus

Ò ◊ (Òf) = 0,

and
Ò · (Ò ◊ v) = 0,

and has profound consequences in physics.

2.3.5 The Hodge Star operator

In the particular case of R3 there is something missing to really conclude that, for example,
the exterior derivative reduces to the curl. In coordinates, take the two 1-forms Ê = Êxdx +
Êydy + Êzdz and µ = µxdx + µydy + µzdz and their wedge product:

Ê · µ = (Êxµy ≠ Êyµx)dx · dy + (Êyµz ≠ Êzµy)dy · dz + (Êzµx ≠ Êxµz)dz · dx. (2.22)

If we define a linear map ú to turn elements of �2(M) in elements of �1(M) such that

ú : dx · dy ‘æ dz

ú : dy · dz ‘æ dx

ú : dz · dx ‘æ dy

then we could really see that equation (2.22) would reduce to the curl, as expected. Note
that defining this operator — the star or Hodge operator — in that way is incorporating the
right-hand rule, since we could just as well have defined

ú : dy · dx ‘æ dz

ú : dz · dy ‘æ dx

ú : dx · dz ‘æ dy

which would imply in adopting a left-hand rule.
More generally, we define the Hodge star operator in a n-dimensional manifold M

ú : �p(M) ‘æ �n≠p(M), (2.23)

to be the unique linear map from p-forms to (n ≠ p)-forms such that, for all Ê, µ œ �p(M),

Ê · úµ = ÈÊ, µÍvol, (2.24)

where ÈÊ, µÍ is the inner product of the forms, which is defined using the metric tensor as will
be discussed shortly, and vol is the volume form:

vol =
Ò

det(gµ‹)dx1 · dx2 · · · · dxn,

where gµ‹ is the metric.
The definition in (2.24) simply implies a choice of orientation, since the existence of a volume

form states that the manifold is orientable, and the choice of orientation — right-handed or
left-handed — is what it is needed to make the map unique, as previously discussed in the 3D
case.
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2.4 Tensors

2.4.1 Definition

Having defined vectors—the geometrical objects living in TM whose basis in local coordinates
are ˆµ—we can define a new object constructed by composing those with the p-forms—the
objects in the dual space T úM with the dual basis dxµ. Those objects are called tensors, and
we define the bundle of (r, s) tensors to be the tensor product of r copies of TM and s copies of
T úM :

TM ¢ TM ¢ · · · ¢ TM¸ ˚˙ ˝
r

¢ T úM ¢ T úM ¢ · · · ¢ T úM¸ ˚˙ ˝
s

.

An object living in this space is an (r, s) tensor. The (0, 0) tensor are scalar fields. In local
coordinates, any (r, s) tensor is just a linear combination of

ˆµ ¢ ˆ‹ ¢ · · · ¢ ˆ‡¸ ˚˙ ˝
r

¢ dx– ¢ dx— ¢ · · · ¢ dx“

¸ ˚˙ ˝
s

.

Therefore, a tensor T can be written in components in this basis as

T = T µ‹...‡

–—...“
ˆµ ¢ ˆ‹ ¢ · · · ¢ ˆ‡¸ ˚˙ ˝

r

¢ dx– ¢ dx— ¢ · · · ¢ dx“

¸ ˚˙ ˝
s

,

where T µ‹...‡

–—...“
are the components of the tensor in this basis, having r upper indices and s lower

indices. This object, when we change coordinates, will transform r times in a covariant way
and s times in a contravariant way. Hence, the components T̃ of the tensor T in a di�erent
coordinate system will be related to the components in the first coordinate system by

T̃ µ‹...‡

–—...“
= T ·›...”

◊„...Ê
�µ

·
�‹

›
. . . �‡

”¸ ˚˙ ˝
r

(�≠1)◊

–
(�≠1)„

—
. . . (�≠1)Ê

“¸ ˚˙ ˝
s

,

where � is the Jacobian matrix of the coordinate transformation and �≠1 its inverse, as expected
since vectors transform with � and 1-forms with its inverse. One can do the same thing using
any basis eµ of vector fields and its dual basis eµ of 1-forms.

One way to think about the (r, s) tensor T is as a functional that accepts r 1-forms and s
vector fields as inputs and outputs a function on M in a manner that is CŒ(M)-linear in each
input.

2.4.2 Metric tensor

A metric g is a (0, 2) tensor that is

• Symmetric: g(v, w) = g(w, v)

• Nondegenerate: if g(v, w) = 0 for all w then v = 0

The metric is the object that allows one to measure distances, angles and hence establishes
the dot product in the manifold. For instance, in Minkoski spacetime the dot product of vectors
v and w is

÷(v, w) = v · w = ≠v0w0 + v1w1 + v2w2 + v3w3 = ÷µ‹vµw‹ ,
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where ÷µ‹ is the Minkowski metric given by

÷µ‹ =

Q

ccca

≠1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

R

dddb (2.25)

and we will adopt this convetion where Minkowski spacetime has signature (3,1). The signature
(m, n) of a metric tensor is the number of positive and negative eigenvalues of the symmetric
tensor ÷µ‹ written in a basis where it is diagonal. Hence, if there are m positive eingenvalues
and n negative ones, one say that this metric has signature (m, n).

A metric g on a manifold M assigns to each point P œ M a metric gp on the tangent space
TpM . This is the object used to take inner products of tangent vectors v and w at P

g(v, w) = gµ‹vµw‹

and of 1-forms Ê and µ in the dual space T ú
p
M :

ÈÊ, µÍ = g–—Ê–µ—.

In local coordinates the components gµ‹ of the metric g are given by

gµ‹ = g(ˆµ, ˆ‹), (2.26)

and one can use the metric to calculate infinitesimal distances

ds2 = gµ‹dxµdx‹ . (2.27)

2.4.3 Covariant derivative

In curved spaces, as we change to a point of coordinates xµ to a nearby point xµ + dxµ not
only the coordinates of a vector v change but also, in general, the basis vectors also change. So,
when one take a derivative of a vector v = v‹e‹ written in the basis eµ:

Òµv = ˆµ(v‹e‹)
= (ˆµv‹)e‹ + v‹(ˆµe‹)
= (ˆµv‹)e‹ + v‹�k

µ‹
ek

= (ˆµvk + �k

µ‹
v‹)ek, (2.28)

where we defined ˆµe‹ := �k

µ‹
ek. The symbol �k

µ‹
tracks how the basis vectors eµ changes from

point to point and it is called the connection, since it allow one to connect a vector in one point
to another.

There are a lot of ways to make this connection. There is, however, a unique connection
that satisfies

• Metric compatibility: Òg = 0.

• Torsion free: for any vector fields v and w we have the Lie bracket [v, w] = Òvw ≠ Òwv =
Lvw vanishing.
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This connection is called the Levi-Civita connection, and will allow us to take derivatives of
any geometrical object in arbitrary spaces. For instance, for a 1-form Ê = Êµdxµ:

ÒflÊ = ˆflÊµ ≠ �k

flµ
Êk, (2.29)

and, for a rank (r, s) tensor T we have

ÒflT = ˆflT µ‹...‡

–—...“
+�µ

flk
T k‹...‡

–—...“
+ �‹

flk
T µk...‡

–—...“
+ · · · + �‡

flk
T µ‹...k

–—...“¸ ˚˙ ˝
r

≠ �k

fl–
T µ‹...‡

k—...“
≠ �k

fl—
T µ‹...‡

–k...“
≠ �k

fl“
T µ‹...‡

–—...k¸ ˚˙ ˝
s

.
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masses. Newton’s law of gravitation states that the gravitational force between bodies of mass
m and M is given by

F = G
mGM

r2 .

On the other hand, Newton’s second law states that the dynamics of m is governed by the
equation of motion

F = mI ẍ.

If the inertial mass mI is equivalent to the gravitational mass mG, then the dynamics of bodies
due to a gravitational field will be independent of the body itself:

F = mI ẍ = G
mGM

r2 ,

=∆ ẍ = G
M

r2 .

Hence, the acceleration of bodies due to the e�ect of gravity will be the same for all bodies
and there are trajectories in spacetime that dictate how bodies will move if they are under
the e�ect of gravity. These trajectories are a property of that region of spacetime and do not
depend on the free falling body.

Figure 3.1: Observer A sees the apple free falling, but observer B, who is also in a free fall, does
not feel the e�ect of gravity. For him, the apple is fluctuating over his hand.

This idea has huge consequences, such as the possibility of changing coordinates to cancel the
e�ect of gravity, as we will briefly show. Consider observer A, which is in a uniform gravitational
field g, studying the movement of particle C, of mass m. He then writes the equation of motion
for that particle

mẍA = mg = FA, (3.1)

where FA stands for the net force acting on particle C in the frame of reference A.
Now consider the coordinate transformation

xB = xA ≠ 1
2gt2

tB = tA = t
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which, when plugged in equation (3.1), leads us to

FA = mg = mẍA

= m
d

dt2

3
xB + 1

2gt2
4

= mẍB + mg,

and, finally, the dynamics of particle C in the non inertial reference frame B is given by the
equation of motion

mẍB = FA ≠ mg = 0 = FB. (3.2)
Hence, the two observers write the same physical law, i.e. F = mẍ, the only di�erence is that

A feels a uniform gravitational field and B does not. The observers do not agree on the forces
acting on the body, but they agree on the physical law which describes its dynamics. We have
the gravitational force being canceled by inertial forces. The B frame of reference represents
a free falling observer: he does not feel the e�ect of gravity, although, using the equivalence
principle, he can write the same physical law to describe the dynamics in his point of view.

We have seen that the equivalence of the inertial and gravitational masses leads us to the
equivalence between gravity and acceleration: one can annihilate the e�ect of gravity using
acceleration, or also create the e�ect of gravity by accelerating.

This will not be true for Earth’s gravitational field, for instance, since it is not a uniform
gravitational field. However, in a small enough region of space and for very small intervals
of time, one can approximate the field of the Earth by a uniform gravitational field. Hence,
the equivalence principle states that in a small enough region of spacetime no experiment
can tell us whether we are in a gravitational field or in an accelerated frame of reference.
Therefore, it is always possible to build a local inertial frame or reference, satisfying the laws
of special relativity. We have then established the relation between metric and gravity: the
absence of gravity corresponds to the flat spacetime metric, the Minkowski metric ÷µ‹ such
that ds2 = ÷µ‹dxµdx‹ = ≠dt2 + dx2 + dy2 + dz2. However, in the presence of a non uniform
gravitational field we need the metric gµ‹ since here it is not possible to find coordinates such
that the metric tensor reduces to the Minkowski metric, except in a infinitesimal neighborhood
of a certain point, where ds2 = gµ‹dxµdx‹ . Quoting Einstein [7]:

For infinitely small four-dimensional regions the theory of relativity in the restricted
sense is appropriate, if the coordinates are suitably chosen.

This connection between metric and gravity will lead us to Einstein’s field equation very
shortly.

3.3 The classical formulation of GR in four steps

3.3.1 Equation of motion

According to the ideas previously developed we can always find a local coordinate system ›–

such that the equation of motion of a particle free falling reduces to
d2›–

d· 2 = 0, (3.3)

i.e. the e�ect of gravity is locally canceled via this coordinate transformation. Here, · stands
for proper time, which is the time elapsed in a reference frame where the space interval between
the two events is zero, i.e., the two events have the same spatial coordinates.
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We are trying to relate the equation of motion in the local inertial coordinates ›– to the
reference frame in coordinates xµ who is feeling the e�ects of gravity. Hence, we can rewrite
equation (3.3) as

d2›–

d· 2 = d

d·

A
ˆ›–

ˆxµ

ˆxµ

ˆ·

B

= ˆ›–

ˆxµ

d2xµ

d· 2 + dxµ

d·

ˆ2›–

ˆxµˆ·

= ˆ›–

ˆxµ

d2xµ

d· 2 + dxµ

d·

dx‹

d·

ˆ2›–

ˆxµˆx‹

= ˆ›–

ˆxµ

d2xµ

d· 2
ˆxfl

ˆ›–
+ ˆxfl

ˆ›–

ˆ2›–

ˆxµˆx‹

dxµ

d·

dx‹

d·

= d2xfl

d· 2 + �fl

µ‹

dxµ

d·

dx‹

d·
, (3.4)

where we have defined the Christo�el symbol � as

�fl

µ‹
:= ˆxfl

ˆ›–

ˆ2›–

ˆxµˆx‹
, (3.5)

and, in the fourth line we multiplied both sides of the equation by ˆxfl

ˆ›–
, which does not change

the left-hand side since it is equal to zero. We have also used ˆ›–

ˆxµ

ˆxfl

ˆ›–
= ”fl

µ
.

Therefore, from (3.3) and (3.4) we get the geodesics equation

d2xfl

d· 2 + �fl

µ‹

dxµ

d·

dx‹

d·
= 0, (3.6)

which gives the curves in spacetime xfl(·) that describe the trajectories of bodies moving under
e�ect of gravity. These curves are called geodesics. They are a property of the geometry of
spacetime and do not depend of the particle in motion, as previously discussed.

Taking equation (3.5) as the definition of the Christo�el symbol — the connection — one
can show that its relation to the metric is given by

�fl

µ⁄
= 1

2gfl‹ (ˆµg‹⁄ + ˆ⁄gµ‹ ≠ ˆ‹gµ⁄) . (3.7)

3.3.2 Newtonian limit

Our new theory needs to be reduced into Newtonian theory in non relativistic limits. This
will set up some conditions that some components of the metric tensor must satisfy. The classical
limit will imply the following conditions:

• The particle will be moving in low speed comparing with the speed of light:

dx

d·
π dt

d·
. (3.8)

• The gravitational field will be stationary:

ˆ· gµ‹ = 0. (3.9)
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• The gravitational field is weak. Hence, we can introduce the tensor hµ‹ which represents a
low deviation of the spacetime metric gµ‹ from the Minkowski metric ÷µ‹ :

gµ‹ ¥ ÷µ‹ + hµ‹ . (3.10)

The first condition allows us to reduce the equation of motion (3.6) by neglecting some of
its components:

d2xfl

d· 2 = ≠�fl

00

A
dx0

d·

B2

,

and, from equation (3.7) we get

�fl

00 = 1
2gfl‹ (ˆ0g‹0 + ˆ0g⁄0 ≠ ˆ‹g00)

= ≠1
2gfl‹ˆ‹g00,

where we have used the third condition to annihilate the time derivatives. Then, we get, for the
equation of motion:

d2xfl

d· 2 = 1
2gfl‹ˆ‹g00

A
dx0

d·

B2

,

however, using the weak gravitational field condition we are led to

d2xfl

d· 2 = 1
2(≠hfl‹ + ÷fl‹)ˆ‹(h00 + ÷00)

A
dx0

d·

B2

¥ ≠1
2÷fl‹ˆ‹h00

A
dx0

d·

B2

,

and, hence, the equation of motion is

d2xfl

d· 2 ≠ 1
2÷fl‹ˆ‹h00

A
dt

d·

B2

= 0.

For fl = 0 the the second term vanishes since ÷0‹ˆ‹h00 = ≠”‹

0 ˆ‹h00 = ˆ0h00 = 0, because of

the stationary gravitational field condition. Hence, the equation states that d2x0

d· 2 = 0. Therefore

dt

d·
= constant.

Now, for fl = i = 1, 2, 3 we get

d2xi

d· 2 ≠ 1
2÷i‹ˆ‹h00

A
dt

d·

B2

= 0,

which, dividing by
A

dt

d·

B2

, which is just a constant, as we previously showed, leads us to

d2xi

dt2 = 1
2ˆih00.
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But, looking to Newton’s second law for a gravitational force written in terms of the
gravitational potential „ we have

d2xi

dt2 = ≠Ò„,

which allow us to make the identification

h00 = ≠2„ + c,

where c is a real constant. But, since at infinity the metric must become the Minkowski metric,
we have, at infinity, g00 = ÷00 + h00 = ÷00 and, therefore, the constant c must be zero, since the
potential „ already vanishes at infinity.

Then we get an equation saying that the time-time component of the metric tensor must
satisfy:

g00 = ÷00 + h00 = ≠ (1 + 2„) . (3.11)

We are looking for an equation of motion that describes gravity, here represented by the
metric gµ‹ . In the classical approach, gravity, or the gravity potential „, is given by Poisson’s
equation

Ò2„ = 4fiGfl, (3.12)

where fl is the mass density which is generating the gravitational field. In the language of
di�erential geometry and tensors, the presence of mass will be carried in the energy momentum
tensor Tµ‹ . This tensor will represent the flux of the momentum pµ through the surface where
x‹ is constant. Hence, T 00 will be the flux of energy — p0 — through time – x0 – which is
the energy density in the reference frame where the system is at rest. The T 0j element is the
density of momentum in j direction, and the T ij component will be the flux of the momentum
component in the i direction per unit of time (force) flowing through a surface oriented in the
direction of j, and so on.

Conservation laws can then be written as

ˆµT µ‹ = 0,

which will be the conservation of energy for ‹ = 0 and the conservation of momentum in the i
direction for ‹ = i.

Therefore, we are looking here for an equation of the form

Ò2g00 = ≠8fiGT00.

This is actually a special case, written in a reference frame where the particles are at low
speed. We could write the equation in a more general way as

Gµ‹ = 8fiGTµ‹ , (3.13)

where the tensor Gµ‹ must have, at most, second order derivatives of the metric tensor, since
we need to recover Poissons’s equation (3.12) in the classical limit. But then: who is this tensor
Gµ‹ that we are looking for?
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3.3.3 Riemann Curvature Tensor

One way to identify the presence of curvature in a certain surface is by the non-commutativity
of the covariant derivatives. Of course, in flat space this is zero, i.e. [ˆµ, ˆ‹ ] = 0.

However, in curved space [Òµ, Ò‹ ] is not necessarily zero, and the deviation of this relation
from zero will be due to the curvature of space — the intrinsic curvature of a surface is actually
defined as the failure of this equation to vanish. Let us then evaluate the expression [Òµ, Ò‹ ]
acting in a certain vector V :

[Òµ, Ò‹ ]Vfl = [ˆµ(Ò‹Vfl) ≠ �‡

µ‹
(Ò‡Vfl) ≠ �k

µfl
(Ò‹Vk)],

where the antisymmetrizator in the right handside is remembering us to antisymmetrize the
expression in [µ, ‹] at the end.

The second term in the right handside will vanish since �‡

·· is symmetric in its two lower
indices. Developing the equation a bit more will lead us to

[Òµ, Ò‹ ]Vfl = [ˆµ(ˆ‹Vfl ≠ �‡

‹fl
V‡) ≠ �k

µfl
(ˆ‹Vk ≠ �‡

‹k
V‡)]

= [ˆµˆ‹Vfl ≠ ˆµ(�‡

‹fl
V‡) ≠ �k

µfl
ˆ‹Vk + �k

µfl
�‡

‹k
V‡],

and here the first term in the last line vanishes since it is symmetric in [µ, ‹]. The second term
will dismember in ≠ˆµ(�‡

‹fl
V‡) = ≠V‡ˆµ�‡

‹fl
≠ �‡

‹fl
ˆµV‡ = ≠V‡ˆµ�‡

‹fl
≠ �k

‹fl
ˆµVk, which, when

plugged back in the expression above will give

[Òµ, Ò‹ ]Vfl = [≠V‡ˆµ�‡

‹fl
≠ �k

‹fl
ˆµVk ≠ �k

µfl
ˆ‹Vk + �k

µfl
�‡

‹k
V‡]

= [≠V‡ˆµ�‡

‹fl
≠

1
�k

fl‹
ˆµVk + �k

µfl
ˆ‹Vk

2
+ �k

µfl
�‡

‹k
V‡].

Now note that the term in parenthesis is symmetric in [µ, ‹], therefore it vanishes due the
antisymmetrization. Finally, the equation is reduced to

[Òµ, Ò‹ ]Vfl = [≠V‡ˆµ�‡

‹fl
+ �k

µfl
�‡

‹k
V‡]

= [≠ˆµ�‡

‹fl
+ �k

µfl
�‡

‹k
]V‡

= [ˆµ�‡

‹fl
≠ �k

µfl
�‡

‹k
]V‡

= (ˆµ�‡

‹fl
≠ ˆ‹�‡

µfl
+ �k

‹fl
�‡

µk
≠ �k

µfl
�‡

‹k
)V‡. (3.14)

The curvature is then given by

R‡

flµ‹
:= ˆµ�‡

‹fl
≠ ˆ‹�‡

µfl
+ �k

‹fl
�‡

µk
≠ �k

µfl
�‡

‹k
. (3.15)

Equation (3.15) defines the Riemann tensor, a (1,3) tensor that carries the information about
the curvature of the space. One can raise or lower indices of this tensor as with any other using
the metric:

R·flµ‹ = g·‡R‡

flµ‹
.

One can also define the Ricci tensor Rfl‹ by the contraction

Rfl‹ = g·µR·flµ‹ = g·µ(g·‡R‡

flµ‹
) = ”µ

‡
R‡

flµ‹
= Rµ

flµ‹
,

and also the curvature scalar R by the total contraction of indices

R = gµ‹Rµ‹ .
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3.3.4 Bianchi’s identity

Back to the discussion that ended the section Newtonian limit, to write the equation for
gravity in a manifestly covariant way we were looking for a tensor Gµ‹ that had, at most, second
order time derivatives of the metric tensor. One could think of the tensor Gµ‹ as being the
curvature tensor, let us say the Ricci tensor Rµ‹ , for instance. The idea is that the energy
momentum tensor, on the right-hand side of (3.13), is the object that generates curvature, which
must appear on the left-hand side of the equation.

However, from the conservation of energy and momentum, we must have

ÒµT µ‹ = 0, (3.16)

where the conservation of energy is the equation for µ = 0 and the conservation of the 3-
momentum is satisfied for µ = 1, 2, 3.

But the derivative of the Ricci tensor — and also of the Riemann tensor — is not zero,
so Rµ‹ = 8fiGTµ‹ , although it has the element which generates curvature on one side and the
curvature itself on the other, can not be the equation we are looking for. (Historically speaking,
Einstein and Grossmann dismissed it because they were unable to recover Newtonian physics in
the weak field limit[12], as discussed in section 3.2.2).

On the other hand, one can contract Bianchi’s identity

Ò⁄R–—µ‹ + Ò‹R–—⁄µ + ÒµR–—‹⁄ = 0,

to get to
Òµ

3
Rµ‹ ≠ 1

2Rgµ‹

4
= 0. (3.17)

Now, we have built a symmetric tensor

Gµ‹ = Rµ‹ ≠ 1
2Rgµ‹ , (3.18)

which is related to the curvature, has its covariant derivative vanishing and it is of second order,
since the curvature has at most second order derivatives of gµ‹ .

3.3.5 Einstein’s field equations

Equation (3.13) was built in a covariant way from the Newtonian limit as a restriction.
Our goal was to find the left-hand side that would make the physics hold. We could do some
attempts of finding some tensors Gµ‹ that satisfies certain properties, however, we have already
built the tensor Gµ‹ that we need.

In order to write an equation for gravity that will contain the equivalence principle (equation
(3.4)), reduce to Newtonian gravity in the classical limit (equation (3.12), will be manifestly
covariant and will, beyond satisfying the conservation laws (equation (3.17)), also contain the
physical idea that the presence of mass — Tµ‹ — is responsible for the curvature — Rµ‹ — of
spacetime, then our tensor Gµ‹ that does that is the Einstein tensor, given by (3.18). He have
then built the Einstein field equation

Rµ‹ ≠ 1
2Rgµ‹ = 8fiGTµ‹ . (3.19)

Since the metric is compatible with the covariant derivative Òµ, a more general equation for
gravity could be built by adding any term in the left-handside proportional do the metric, since
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this would not a�ect the conservation laws. So, a more general equation would then be

Rµ‹ ≠ 1
2Rgµ‹ + �gµ‹ = 8fiGTµ‹ . (3.20)

The parameter � is called the cosmological constant, and it was added by Einstein to
give solutions for a static cosmological model. This was done before Hubble’s work about the
expansion of universe.

One can note that the addition of this new term will make appear, in the classical limit,
beyond the gravitational Newtonian force, a repulsive force proportional to � and to the distance.
So, for small �, this repulsive term would be relevant only for great distances.

This term, although denied by Einstein and considered by him as an error, proved to be
very important later on. It is responsible for the dark energy and it is the term that explained
the accelerated expansion of the universe later detected in 1990.

However, since our work will not enter deep into cosmology, equation (3.19) will be our main
subject.

3.4 The Lagrangian Formulation of GR

It is always possible to obtain the same evolution equation via the Lagrangian formalism,
using variational calculus. Depending on what the dynamical variables in play are, one can
write di�erent Lagrangians for gravity. The idea of trying a variational approach came from
Paul Bernays, a student of David Hilbert [12].

3.4.1 The Einstein-Hilbert action

Here we consider the metric gµ‹ as our only dynamical variable. The field equations for
gravity are extracted from the Einstein-Hilbert action:

S[g] = 1
16fiG

⁄
R

Ô
≠gd4x

= 1
16fiG

⁄
gµ‹Rµ‹

Ô
≠gd4x. (3.21)

Since gµ‹ is our only variable, the dynamics of gravity comes from setting ”S

”gµ‹

= 0. From

(3.21):
”S = 1

16fiG

⁄
d4x

Ë
R(”

Ô
≠g) +

Ô
≠ggµ‹(”Rµ‹) +

Ô
≠gRµ‹(”gµ‹)

È
.

We can break this integral in three terms (here we omited some constants)

• ”S1 =
s

d4xR(”
Ô

≠g).

• ”S2 =
s

d4x
Ô

≠ggµ‹(”Rµ‹).

• ”S3 =
s

d4x
Ô

≠gRµ‹(”gµ‹).
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For the first one we use ”(det M) = det(M)M≠1
ij

”Mji, which leads us to

”(
Ô

≠g) = 1
2
Ô

≠g
ggµ‹”g‹µ

= 1
2

Ô
≠ggµ‹”gµ‹

= ≠1
2

Ô
≠ggµ‹”gµ‹ , (3.22)

where, in the last step, we used ”(gµ‹gµ‹) = gµ‹”gµ‹ + gµ‹”gµ‹ = 0. Hence, we are left with

”S1 =
⁄

d4x
;

≠R
1
2

Ô
≠ggµ‹

<
”gµ‹ . (3.23)

For the second term we will use the Palatini identity, which states that

”Rfl

µ‡‹
= Ò‡”�fl

µ‹
≠ Ò‹”�fl

µ‡
.

So, for the Ricci tensor we get

”Rµ‹ = ”Rfl

µfl‹
= Òfl”�fl

µ‹
≠ Ò‹”�fl

µfl
. (3.24)

Therefore, the corresponding contribution to the variation of the action is written as

”S2 =
⁄

d4x
Ô

≠ggµ‹(Òfl”�fl

µ‹
≠ Ò‹”�fl

µfl
)

=
⁄

d4x
Ô

≠g(Òflgµ‹”�fl

µ‹
≠ Ò‹gµ‹”�fl

µfl
)

=
⁄

d4x
Ô

≠gÒ‡(gµ‹”�‡

µ‹
≠ gµ‡”�fl

µfl
)

=
⁄

d4x
Ô

≠gÒ‡Ê‡, (3.25)

which is just a boundary term, that vanishes if ”�fl

µ‹
vanishes at infinity.

The third term is already written in terms of the variation of the metric ”gµ‹ . Hence, taking
back the constants, we are left with

”S = 1
16fiG

(”S1 + ”S2 + ”S3)

= 1
16fiG

⁄ Ô
≠gd4x

;
≠R

1
2gµ‹ + Rµ‹

<
”gµ‹ .

Then, setting ”S/”gµ‹ = 0 gives us Einstein equation in vacuum

Rµ‹ ≠ 1
2Rgµ‹ = 0.

If we consider matter, then the action would be, except for some constants, S = SE.H. + SM ,
where SE.H. stands for the Einstein-Hilbert action previously developed, and SM for the action
related to matter. Then, setting

”SÔ
≠g”gµ‹

= 0,

we are led to
1

16fiG

3
Rµ‹ ≠ 1

2Rgµ‹

4
+ 1Ô

≠g

”SM

”gµ‹
= 0, (3.26)
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which gives us the equation of motion

Rµ‹ ≠ 1
2Rgµ‹ = 8fiGTµ‹ ,

if one defines the energy momentum tensor as

Tµ‹ := ≠ 1
2
Ô

≠g

”SM

”gµ‹
. (3.27)

3.4.2 The Palatini action

In the Palatini approach we consider that the connection � can also play a dynamical role.
So we write the Palatini action

S[g, �] =
⁄

R
Ô

≠gd4x

=
⁄

gµ‹Rµ‹(�)
Ô

≠gd4x. (3.28)

The curvature is completely determined by the connection, therefore it is not a�ected by
variations of the metric. So, as we previously did, varying this action with respect to the metric
and setting ”S/”gµ‹ = 0 will lead us to

Rµ‹(�) ≠ 1
2R(�)gµ‹ = 0,

which is just the Einstein field equation.
However, for this method to be equivalent to the Einstein-Hilbert one we need the connection

to be compatible with the metric.
So, for the second equation of motion, we vary the action with respect to the connection

and set ”S/”�fl

µ‹
= 0. We will then get

”S� =
⁄

d4x
Ô

≠ggµ‹(”Rµ‹)

=
⁄

d4x
Ô

≠ggµ‹(Òfl”�fl

µ‹
≠ Ò‹”�fl

µfl
)

=
⁄

d4x
Ô

≠g(gµ‹Òfl”�fl

µ‹
≠ gµ‡Ò‡”�fl

µ‹
”‹

fl
)

= ≠
⁄

d4x
Ô

≠g(Òflgµ‹ ≠ ”‹

fl
Ò‡gµ‡)”�fl

µ‹
, (3.29)

where we used the Palatini identity (3.24) in the second line and, in the last one, we did an
integration by parts and neglected the boundary term.

Assuming that the connection is symmetric in [µ, ‹], the variation will vanish if the sym-
metrization of the integrand vanishes:

Òflgµ‹ + Òflg‹µ ≠ ”‹

fl
Ò‡gµ‡ ≠ ”µ

fl
Ò‡g‹‡ = 0

2Òflgµ‹ ≠ ”‹

fl
Ò‡gµ‡ ≠ ”µ

fl
Ò‡g‹‡ = 0, (3.30)

and, contracting with ”fl

µ
we get

Òµgµ‹ ≠ Ò‡g‹‡ ≠ Ò‡g‹‡ = 0,
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which, renaming dummy indices, leads us to Ò‡g‹‡ = 0. When plugged in (3.30) we get

Òflgµ‹ = 0, (3.31)

which states that the covariant derivative Ò with respect to the connection � gives a null
derivative of the spacetime metric, i.e., the metric is compatible with the connection.

So, the first equation of motion gives us Einstein field equation and the second equation of
motion states that our connection, previously placed as a dynamical variable, is fixed to be the
Levi Civita connection.
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The reduced Bianchi identity states that

ÒaGa

b
= 0 , (4.2)

and, developing (4.2) we have

ÒµGµ

‹
= ˆµGµ

‹
≠ �‡

µ‹
Gµ

‡
+ �µ

µk
Gk

‹
= 0.

Opening ˆµGµ

‹
as ˆ0G0

‹
+ ˆiGi

‹
for i spatial we get

ˆ0G
0
‹

= ≠ˆiG
i

‹
+ �‡

µ‹
Gµ

‡
≠ �µ

µk
Gk

‹
, (4.3)

and, since
�‡

µ⁄
= 1

2g‡‹ (ˆ⁄gµ‹ + ˆµg⁄‹ ≠ ˆ‹gµ⁄) ,

the right-hand side of (4.3) has, at least, second order time derivatives, given that the Christo�el
symbols � have at most first order time derivatives and the Einstein’s tensor contains first
derivatives of those symbols. Hence, from the left-hand side of the equation we can infer that
G0

‹
has at most first order time derivatives. Therefore, since we have other equations with

second order time derivatives, those four equations for G0
‹

are not evolution equations: they are
constraints that the initial data must satisfy. From symmetry, the Einstein’s field equations are
a set of ten partial di�erential equations, of which only six are time evolution equations. The
equations G0

µ
= 8fiGT 0

µ
relate initial values of fields instead of determining how fields evolve.

If we proceed with the computation we can see that only spatial components of the metric
gab appear with their second order time derivatives. The other components do not play the
same dynamical role as gab. The g00 and g0a equations will be the constraints — they will play
the role of the lapse function and the shift vector, as we will see later.

4.2.1 The Lagrangian formalism

For a system with n (finite) degrees of freedom its action is

S[qi(t)] =
⁄

L(qi, q̇i)dt, (4.4)

for i = 1, 2, 3, ..., n. From the least action principle, one can get the Euler Lagrange equations
by setting ”S = 0:

d

dt

A
ˆL

ˆq̇i

B

≠ ˆL

ˆqi
= 0. (4.5)

By the chain rule, one can expand the time derivative as

d

dt
= ˆ

ˆqi

dqi

dt
+ ˆ

ˆq̇i

dq̇i

dt

and, plugging this in (4.5) one gets
A

ˆ2L

ˆq̇jˆq̇i

B

q̈j +
A

ˆ2L

ˆqjˆq̇i

B

q̇j ≠ ˆL

ˆqi
= 0. (4.6)

If we define the first term as
Wij := ˆ2L

ˆq̇jˆq̇i
, (4.7)
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then, equation (4.6) is written as

Wij q̈
j +

A
ˆ2L

ˆqjˆq̇i

B

q̇j ≠ ˆL

ˆqi
= 0. (4.8)

If the matrix Wij is non-degenerate, then one can invert (4.8) to obtain an explicit equation
for q̈j:

q̈j = W ≠1
ij

A

≠ ˆ2L

ˆqjˆq̇i
q̇j + ˆL

ˆqi

B

. (4.9)

However, if Wij is singular, then det(Wij) = 0 and equation (4.8) cannot be inverted. In that
case, q̈j can not be uniquely determined by positions and velocities, and the system is said to
be constrained, which we will detail better soon.

4.2.2 The Hamiltonian formulation

In this formulation constraints can arise in a similar way as happened in the Lagrangian
formulation.

The starting point is to define the canonical momenta as

pi := ˆL

ˆq̇i
. (4.10)

Equation (4.7) can then be rewritten as

Wij = ˆpi

ˆq̇j
. (4.11)

If W is nonsingular we can obtain in (4.11) the q̇Õs in terms of qÕs and pÕs, and then (4.10)
will indeed provide n independent variables — the pÕ

i
s. However, if W is singular, there is no

unique solution of the momenta definition equation expressing the velocities in terms of the
canonical coordinates qi and conjugate momenta pj. In this case, there exists certain relations
Âs(qi, pj) connecting the momentum variables:

Âs(qi, pj) = 0. (4.12)

The qÕs and pÕs — the dynamical variables of the system — are connected by the primary
constraints, given by (4.12).

Figure 4.1: The constrained phase space

The map (qi, q̇i) ‘æ (qi, pj), when there are no constraints, is a one-to-one map. In the
presence of constraints, it maps the unrestricted space (qi, q̇i) to the surface of primary constraint
Âs(qi, pj) = 0 on the phase space, as shown in figure 4.1. We will name this constrained surface
as C from now on.
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Hamiltonian equations

Let us consider the usual Legendre transformation

H = q̇ipi(q, q̇) ≠ L(q, q̇), (4.13)

on the unconstrained manifold (qi, q̇i).
If H is a Hamiltonian of the system we need to be able to express it in terms of qi and pj,

and not only in terms of qi and q̇i. However, in the constrained case, equation (4.10) cannot be
inverted, so, we cannot express all of the q̇Õs in terms of pÕs, which may lead us to conclude that
it is not possible to write such a function as H(q, p(q, q̇)) in the phase space.

Still, the function H(qi, pj) is well defined, as we can easily see. From equation (4.13):

”H = ”q̇ipi + q̇i”pi ≠ ”L(qi, q̇i)

= ”q̇ipi + q̇i”pi ≠ ˆL

ˆqi
”qi ≠ ˆL

ˆq̇i
”q̇i

= ”q̇ipi + q̇i”pi ≠ ˆL

ˆqi
”qi ≠ pi”q̇i

= ≠ ˆL

ˆqi
”qi + q̇i”pi

= ≠ṗi”qi + q̇i”pi

= ˆH

ˆqi
”qi + ˆH

ˆpi

”pi.

In the fourth line one can easily see that the variation ”H depends only on the variations of the
momenta pi and the position qi, not on the velocities q̇i.

Equating the last two lines we get
A

ˆH

ˆqi
+ ṗi

B

”qi +
A

ˆH

ˆpi

≠ q̇i

B

”pi = 0. (4.14)

For any variation ti = (”qi, ”pi) tangent to the primary constraint surface, the equation above
shows that the vector

V :=
A

ˆH

ˆqi
+ ṗi,

ˆH

ˆpi

≠ q̇i

B

(4.15)

is normal to the surface, since tiVi = 0
A basis of normal vectors to C is

vs = grad(Âs) =
A

ˆÂs

ˆqi
,
ˆÂs

ˆpi

B

. (4.16)

Then, for some functions ⁄ on the surface of primary constraints, we have

V = ⁄svs. (4.17)

Finally, with equations (4.15), (4.16) and (4.17) one can get the equations of motion:

ṗi = ≠ˆH

ˆqi
+ ⁄s

ˆÂs

ˆqi
, (4.18)

q̇i = ˆH

ˆpi

≠ ⁄s
ˆÂs

ˆpi

. (4.19)
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Comparing the last equations with the Hamilton’s equations of motion, those can be rewritten
as

ṗi = ≠ˆ(H ≠ ⁄sÂs)
ˆqi

≠ Âs

ˆ⁄s

ˆqi
, (4.20)

q̇i = ˆ(H ≠ ⁄sÂs)
ˆpi

+ Âs

ˆ⁄s

ˆpi

, (4.21)

where we can define the total Hamiltonian of the system as

Htotal = H ≠ ⁄sÂs. (4.22)

We can rewrite the Hamilton’s equation in terms of the total Hamiltonian:

ṗi ¥ ≠ˆHtotal

ˆqi
, (4.23)

q̇i ¥ ˆHtotal

ˆpi

. (4.24)

Here, we introduce the weak equality symbol ¥, denoting an equality valid only in the constrained
surface.

The value of the total Hamiltonian does not change on the surface of primary constraints by
adding primary constraints and is independent of the ⁄s. However, the evolution of the system
depends on derivatives of the Âs, which might not be zero, and then the evolution depends
on the ⁄s. To see the role of the ⁄s on the evolution the mathematical theory of constraints,
described in terms of the Poisson structure, is very useful.

4.2.3 Poisson Brackets

In canonical coordinates (qi, pj) on the phase space, the Poisson bracket of the functions
f(q, p) and g(q, p) is given by

{f, g} :=
nÿ

i=1

A
ˆf

ˆqi

ˆg

ˆpi

≠ ˆg

ˆqi

ˆf

ˆpi

B

. (4.25)

It satisfies the following properties:

1. It is antisymmetric:
{f, g} = ≠ {g, f} .

2. It is linear in both entries:

{f1 + f2, g} = {f1, g} + {f2, g} ,

{g, f1 + f2} = {g, f1} + {g, f2} .

3. It obeys the Leibniz law:

{f1 · f2, g} = f1 {f2, g} + f2 {f1, g} .

4. It satisfies the Jacobi identity:

{f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0.
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Using the Poisson bracket we can rewrite the Hamilton’s equations of motion 4.24 as:

ṗi ¥ {pi, Htotal} (4.26)
q̇i ¥

Ó
qi, Htotal

Ô
, (4.27)

which actually is valid for any function F (q, p) on the phase space, as is easily seen:

Ḟ = dF

dt
= ˆF

ˆqi
q̇i + ˆF

ˆpi

ṗi

¥ ˆF

ˆqi

A
ˆHtotal

ˆpi

B

+ ˆF

ˆpi

A

≠ˆHtotal

ˆqi

B

= {F, Htotal} . (4.28)

The total Hamiltonian then generates the dynamical flow of the variables of the phase space in
time.

Because the primary constraints Âs are originated directly from the definition of the canonical
momenta, they need to hold during all the evolution of the system. This means that the evolution
of the system must be contained in the surface of primary constraint Âs. These are called
consistency conditions, expressed by

Â̇s ¥ {Âs, Htotal} = 0. (4.29)

These conditions can add new constraints to the evolution of the system, known as secondary
constraints. Those constraints must also satisfy the consistency conditions, which can lead to a
new generation of constraints. This process goes on until no more constraints are generated.

Opening equation (4.29) we get:

Â̇s ¥ {Âs, Htotal} =
Ó
Âs, H ≠ ⁄kÂk

Ô

= {Âs, H} ≠
Ó
Âs, ⁄kÂk

Ô

= {Âs, H} ≠ ⁄k {Âs, Âk} ≠ Âk

Ó
Âs, ⁄k

Ô

¥ {Âs, H} ≠ ⁄k {Âs, Âk}
= {Âs, H} ≠ ⁄kCsk = 0, (4.30)

where we have defined
Csk := {Âs, Âk} .

If Csk is non singular the structure of the constraint system is uniquely determined: one can
solve for the ⁄k via

⁄k = C≠1
sk

{Âs, H} .

In this case, no further constraints arise and we can fulfill the consistency condition. However, if
the matrix Csk is singular, we cannot determine all the ⁄k. In that case, equation (4.30) implies
the secondary constraints aforementioned. Those follow from the equations of motion, not from
the definition of the momenta as the primary constraints.

4.2.4 Gauge Transformations

Since the Hamiltonian generates the evolution of the system, we can define, as stated in
(4.28), the Hamiltonian vector field Xf associated to any function f as

Xf = {·, f} .
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We call a constraint Âk first class with respect to all constraints if its Hamiltonian vector
field is everywhere tangent to the constraint surface C. That is, for all constraints Âk on the
constraint surface C we must have

{Âs, Âk} = 0,

and we call it second class if that Poisson bracket is nonvanishing on the constraint surface.
First class constraints generate gauge transformations, as we now show.
Consider all constraints, and consider also an arbitrary dynamical variable F , then define

the transformation
F (q, p) ‘æ F (q, p) + {F, ‘Âk} , (4.31)

where ‘ is a control parameter arbitrarily small. Due to the consistency conditions, this
transformation does not a�ect the Hamiltonian

H(q, p) ‘æ H(q, p) + {H, ‘Âk} ¥ H.

That is, the transformation takes solutions of the equations of motion and constraints into new
solutions. This is a gauge transformation, and that is why constraints are generators of gauge
transformations. Solutions that are related by gauge transformations are then treated as the
same solution.

Any particular choice for the total Hamiltonian will result in equations of motion written
in a specific gauge. But since the theory is invariant under gauge transformations generated
by constraints, the choice of a total Hamiltonian does not matter, and all sets of equations of
motion obtained for di�erent gauges are equivalent.

4.3 Spacetime 3+1 decomposition

4.3.1 Introduction

When we are interested in studying the evolution of the spacetime, something strange
immediately appears: it evolves with respect to what parameter?

GR treats space and time on the same footing, which is not what happens in Hamiltonian
formulations. Spacetime does not evolve in time, it just is. However, we can interpret the
spacetime as the evolution of the 3D space. For that, we will need to do a (3+1) decomposition,
choosing an arbitrary parameter as time t, and considering that spacetime is the evolution of
spatial slices � fixed for each t with respect to this time parameter.

This will be necessary because when we write down the Hamiltonian formalism it gives us
the evolution of the system with respect to time, which is not absolute in GR. So, one needs
to choose an arbitrary function to play the role of time and do this decomposition in order to
write the Hamiltonian formalism for GR.

We assume the existence of a foliation of spacetime in terms of space-like 3 dimensional
surfaces S of the spacetime manifold M . Thus, we consider the Lorentzian manifold M to be
di�eomorphic to R ◊ S.

There are lots of ways to build a di�eomorphism

„ : M ‘æ R ◊ S,

which means that time is not absolute in GR. There are di�erent ways of defining a coordinate
t on the manifold to play the role of time, which we will discuss later on. For now, assume that
�t œ M is a slice of M for t = constant for some time coordinate t. This can always be done in
globally hyperbolic manifold [4].
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4.3.2 Geometry of Hypersurfaces

Consider a spatial slice �t0 in a foliated spacetime manifold R ◊ S. This can be considered
as a constraint surface such as Ât0 = t ≠ t0 = 0.

The spacetime is just the history of the space �t with respect to t. In any instant t the
spacetime is described as the immersion of �t in the manifold M , as shown in figure 4.2, where
the dashed line is the integral curve of the time vector field — which will be precisely defined
later — joining the same point in the surface along its evolution.

Figure 4.2: The 3+1 decomposition

The surface � is called a slice. The foliation is such that
1. �t1 fl �t2 = ?, if t1 ”= t2.

2. t
t �t = M .

In this way, every point of spacetime belongs to a unique slice. Any embedding that satisfies
this relations is a valid foliation, which reminds us that the foliation is not unique [4].

We can assign to each point of a slice �t a time-like vector orthogonal to the surface at
that point. That enables us to define, for a given foliation, a time-like normal vector field na,
normalized such that

g(n, n) = nana = ≠1, (4.32)
and the negative sign shows that this vector is time-like, as we wanted.

The foliation allows us to decompose all vectors in components parallel and perpendicular
to the spatial slice �t. This can be done via the projection operator [2]:

PÎ : TM ‘æ TÎM (4.33)
xa ‘æ xa + g(n, x)na = xa + nbx

bna,
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Figure 4.3: The spatial slice

and the orthogonal operator

P‹ : TM ‘æ T‹M (4.34)
xa ‘æ ≠g(n, x)na = ≠nbx

bna,

as shown in the Figure 4.4.

Figure 4.4: The projections on the slice

These projections allow us to break any geometrical object X (a vector or tensor) in its
tangential (œ TÎM) and perpendicular (œ T‹M) parts:

X = (PÎX) + (P‹X).

For the dual space T ú(M) the action of those operators is similar. The action of the projection
operator on a 1-form Ê , for instance, is:

PÎ : T úM ‘æ T ú
Î M (4.35)

Êa ‘æ Êa + g(n, Ê)na = Êa + nbÊbna.
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For a rank (r, s) tensor T , the projection operator acts as follows

PÎ(T )(v1, v2, ..., vr, Ê1, Ê2, ..., Ês) := T (PÎv
1, PÎv

2, ..., PÎv
r, PÎÊ1, PÎÊ2, ..., PÎÊs), (4.36)

where vk œ T (M) and Êk œ T úM . Therefore, the projection operator acting on a tensor is the
same as the tensor acting on the projections of its entries. The same is true for the orthogonal
operator.

4.3.3 Metric decomposition

Since we can apply the projection operator to any geometrical object, let us do this for the
metric. The part of the metric that is tangential to the slice �t is called the induced metric,
and we will denote it by h, so:

h = PÎg, (4.37)
or, in components:

PÎg(X, Y ) = g(PÎX, PÎY )
= gab(Xa + ndXdna, Y b + ndYdnb)
= gabX

aY b + gabX
andYdnb + gabY

bndXdna + gabn
cXcn

andYdnb

= gabX
aY b + Xbn

bndYd + YanandXd ≠ ncXcn
dYd

= gabX
aY b + XbnbY

dnd + Y anaXdnd ≠ ncXcn
dYd

= (gab + nanb)XaY b

:= habX
aY b. (4.38)

One can note that

1. The metric hab lives in �t:

nahab = na(gab + nanb) = nagab + nananb = nb ≠ nb = 0. (4.39)

2. Let sa be a vector tangent to �t, then

habs
a = (gab + nanb)sa = gabs

a + sananb.

But sana = 0 since they are orthogonal, hence:

habs
a = gabs

a. (4.40)

So, when applied to vectors tangent to �t, the induced metric hab gives the same geometry
as gab.

One can then use the induced metric hab to describe projections of any geometrical object.
In coordinates, for a rank (m, n) tensor, one gets:

(PÎT )a1...am
b1...bn

= ha1
c1 . . . ham

cm
hd1

b1 . . . hdn
bn

T c1...cm
d1...dn

. (4.41)

To study the dynamics of the canonical formulation, we consider the induced 3-metric hab as
a time-dependent 3-dimensional tensor field evolving on a family of manifolds �t. Then, the
time dependent field hab will be the configuration variables of canonical gravity.

However, in order to do this, we have to define a time evolution vector field ta that specifies
the directions of time derivatives, since one will need to take time derivatives of the induced
metric or any other vector fields.
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4.3.4 Time derivatives

If the spacetime is the history of the evolution of the slices �t, how can one say how a field
in �t, let us say, hab, evolves?

Figure 4.5: The time vector field

If one has just two slices in the foliation, it is impossible to say how a field defined on them
changes, unless we can uniquely associate a point on one slice to a point on the other one. The
vector field that connects a point in one slice to its correspondent point in another one is the
time evolution vector field ta, whose integral curves are shown in the right part of figure (4.5).

To ensure that this vector field agrees with the concept of time it is required that
taÒat = 1, (4.42)

which states that the change of t in the direction of the time evolution vector field ta is just the
unity.

It is assumed that the spatial coordinates xb are held fixed:
taÒaxb = 0, (4.43)

so that
taÒa := ˆ

ˆt
. (4.44)

By introducing the shift vector Na

Na := PÎt
a = habtb (4.45)

and the lapse function N , which is the amount of the vector field ta in the direction orthogonal
to �t:

Nna := ta ≠ habtb, (4.46)
and by acting with na on both sides of equation (4.46) one gets

Nnana = nata ≠ nahabtb = nata.

Since nana = ≠1, we get
N = ≠nata. (4.47)

The time evolution vector field ta can then be written in its normal and tangential parts
with respect to the surface �t:

ta = Nna + Na. (4.48)
And now, with the projection operators, the definition of a time derivative of any tensor

field is also possible:
Ṫ a1...am

b1...bn
:= PÎ

1
LtT

a1...am
b1...bn

2
=

1
ha1

c1 . . . ham
cm

hd1
b1 . . . hdn

bn

2
LtT

c1...cm
d1...dn

. (4.49)
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Figure 4.6: The components of the time vector field

4.3.5 Metric decomposition

From (4.48), the normal vector field can be written as

na = 1
N

(ta ≠ Na) , (4.50)

which allows us to write the inverse spacetime metric as

gab = hab ≠ nanb = hab ≠ 1
N2 (ta ≠ Na)(tb ≠ N b). (4.51)

We can then invert this matrix and get the line element
ds2 = gabdxadxb = ≠N2dt2 + hab(dxa + Nadt)(dxb + N bdt). (4.52)

We have then decomposed the metric in ten independent terms: the lapse function N and
the three components of the shift vector Na; and six independent terms hab . The idea is to
express any geometrical property in terms of these variables: N, Na and hab.

It will be also useful to express the determinant g of the metric gab in terms of the determinant
h of the induced metric hab, since it appears in the Einstein-Hilbert action. One can do this as
follows: from equation (4.51) we can see that g00 = ≠1/N2. Then we can use the relation

(A≠1)ij = Cij

det A
,

where (A≠1)ij is the element of the i-th row and j-th column of the inverse matrix of A, and
Cij is the correspondent cofactor matrix, i.e. the determinant of the minor matrix obtaining by
eliminating the i-th row and j-th column from the matrix A. Then we have

g00 = ≠ 1
N2

= C00
det(gab)

= det(hcd)
det(gab)

,

from which we conclude that
g = det(gab) = ≠N2 det(hcd) = ≠N2 h . (4.53)
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4.3.6 Intrinsic and Extrinsic Geometry

The induced metric hab allows us to define a unique covariant derivative metric compatible
in �t. If we represent it by Da, the metric compatibility requires — beyond the torsion free
condition — that

Dahbc = 0. (4.54)
One can show that this covariant derivative Da compatible with the induced metric hab is

just the parallel part of Òa, i.e.
Da := PÎÒa. (4.55)

This is proven as follows:

Dahbc = PÎ [Òahbc] = PÎ [Òa(gbc + nbnc)]
= PÎ [Òa(nbnc)]
= PÎ [ncÒanb + nbÒanc)]
= PÎ(nc)PÎ(Òanb) + PÎ(nb)PÎ(Òanc)
= 0 , (4.56)

where in the second line we used the compatibility of Òa with the metric gab and in the last line
the fact that PÎ(nb) = 0.

This covariant derivative Da can be seen as the projection in �t of the derivative Òa by the
induced metric hab:

DcT
a1...am
b1...bn

:= (ha1
c1 . . . ham

cm
hd1

b1 . . . hdn
bn

)hf

c
ÒfT c1...cm

d1...dn
. (4.57)

Definition 4.3.1 (Intrinsic Curvature). Given the three dimensional covariant derivative Da,
we can define the intrinsic-curvature tensor 3R d

abc
as for any other covariant derivative:

3R d

abc
Êd = DaDbÊc ≠ DbDaÊc (4.58)

for any spatial 1-form Êc, i.e., Êana = 0.

With this definition, one can obtain the Ricci tensor 3Rab and the Ricci scalar 3R by the
usual contractions.

The intrinsic geometry refers only to (�, hab). But because � is spatial, we cannot talk about
the evolution of the system using only parameters intrinsic to the manifold.

A geometrical object — the extrinsic curvature Kab — will naturally arise when we try to
make the induced metric evolve:

Lnhab = ncÒchab + hacÒbn
c + hbcÒanc

= ncÒc(gab + nanb) + Òbna + Òanb

= ncÒc(nanb) + Òbna + Òanb

= ncnaÒcnb + ncnbÒcna + Òbna + Òanb

= (gc

a
+ nanc)Òcnb + (gc

b
+ nbn

c)Òcna

= hc

a
Òcnb + hc

b
Òcna

= Kab + Kba, (4.59)

where the object Kab appears in the context of the evolution of the induced metric hab. Also,
in the third line we developed hacÒbnc = (gac + nanc)Òbnc = Òbna + nancÒbnc = Òbna, since
ncÒbnc = 0 as shown in equation (4.61).
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Definition 4.3.2 (Extrinsic Curvature). Given any normal vector na to the surface �, the
extrinsic-curvature tensor is a spatial tensor on � defined by

Kab := Danb = hc

a
hd

b
Òcnd. (4.60)

We could also omit the first projector hd

b
on the definition because

Kab := Danb = hc

a
hd

b
Òcnd

= hc

a
(gd

b
+ ndnb)Òcnd

= hc

a
gd

b
Òcnd + hc

a
nbn

dÒcnd

= hc

a
Òcnb,

since, in the third line, ndÒcnd = 0. This is easy to see, since

ndÒcnd = 1
2(ndÒcnd + ndÒcn

d) = 1
2Òc(ndnd) = 0. (4.61)

Another way of thinking about the extrinsic curvature tensor is as the normal component of
the derivative of v with respect to u, for u and v spatial:

K(u, v) = ≠g(Òuv, n). (4.62)

This notion is captured when one splits the derivative Òuv in its normal and tangential parts

Òuv = ≠g(Òuv, n)n + (Òuv + g(Òuv, n)n),

where the first term represents the normal part of it and the second one the tangential part. So,
when we parallel transport v, who lives in �, in the direction of u, which also lives in �, the
emergence of a normal component in this parallel transport measures exactly the curvature in
that region.

This way of thinking agrees with our previous definition of Kab, since, from the that definition,
we had

Kabu
avb = (Danb)uavb

= hc

a
(Òcnb)uavb

= (Òcnb)ucvb, (4.63)

and, from the notion now placed, we have

K(u, v) = ≠g(Òuv, n)
= ≠gab(Òuva)nb

= ≠(ucÒcv
a)na

= uc(Òcna)va

= (Òcnb)ucvb, (4.64)

where in the third line we used the metric to lower the index of nb and in the fourth line we
used the fact that both v and u are spatial, then Òc(vana) = 0, then naÒcva = ≠vaÒcna. In
the last line we only renamed a dummy index so it agrees with equation (4.63).

With this view, the tensor K measures how much the surface � is curved in the way it
sits in M , because it says how much a vector tangent to � will fail to be tangent if parallel
transported using the Levi-Civita connection Ò on M .
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In components, we have
K(u, v) = Kiju

ivj

in local coordinates, where
Kij = K(ˆi, ˆj).

From this point of view it is easy to see that this tensor is symmetric, since

Kij ≠ Kji = K(ˆi, ˆj) ≠ K(ˆj, ˆi)
= ≠g(Òiˆj, n) + g(Òjˆi, n)
= ≠g(Òiˆj ≠ Òjˆi, n)
= ≠g([ˆi, ˆj], n)
= ≠g(0, n)
= 0. (4.65)

The extrinsic-curvature tensor has some important properties:

1. It is symmetric:
Kab = Kba, (4.66)

as shown right above.

2. As developed in equation (4.59) and using the property above, we get that the extrinsic
curvature tensor is half of the Lie derivative of the intrinsic metric along the unit normal:

Kab = 1
2Lnhab. (4.67)

3. The extrinsic curvature tensor can be related to the intrinsic curvature hab, the shift vector
Na and the lapse function N via

Kab = 1
2N

1
ḣab ≠ DaNb ≠ DbNa

2
, (4.68)

which can be proven as follows:

Kab = 1
2Lnhab

= 1
2[ncÒchab + hacÒbn

c + hbcÒanc]

= 1
2N

[NncÒchab + hacÒb(Nnc) + hbcÒa(Nnc)]

= 1
2N

[(tc ≠ N c)Òchab + hacÒb(tc ≠ N c) + hbcÒa(tc ≠ N c)]

= 1
2N

Lt≠Nhab

= 1
2N

hd

a
hc

b
Lt≠Nhcd

= 1
2N

hd

a
hc

b
[Lthcd ≠ LNhcd]

= 1
2N

1
hd

a
hc

b
Lthcd ≠ hd

a
hc

b
LNhcd

2

= 1
2N

1
˙hab ≠ DaNb ≠ DbNa

2
,
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where, from the third to the fourth line we used equation (4.48), and in the sixth line we
just smuggled in the induced metric to get the spatial part of the calculation, since Kab

is purely spatial. In the last line we just used the definition of the time derivative of a
tensor given by (4.49) and used the fact that the shift vector is spatial, then

LNhab = PÎ[N cÒchab + hacÒbN
c + hbcÒaN c]

= PÎ[N cÒchab] + PÎ[hacÒbN
c + hbcÒaN c]

= N cPÎ[Òchab] + PÎ[(gac + nanc)ÒbN
c + (gbc + nbnc)ÒaN c]

= N cDchab + PÎ[ÒbNa + ÒaNb]
= 0 + DaNb + DbNa

= DaNb + DbNa .

4.3.7 Curvature relations

Using the definitions and properties previously mentioned we can prove the following relations
among the curvature tensors [4].

The Gauss equation

This relation comes from computing the Riemann curvature tensor R h

efg
in terms of the

intrinsic curvature 3R d

abc
and the extrinsic curvature Kab:
he

a
hf

b
hg

c
R h

efg
= 3R d

abc
+ KacK

d

b
≠ KbcK

d

a
(4.69)

The Codazzi equation

This relation comes from computing the parallel part of the Riemann curvature tensor
contracted with the unitary normal vector PÎ(Rabcdnd) which equals

PÎ(Rabcdnd) = ha

e
hb

f
hc

g
Rabcdnd = DeKfg ≠ DfKeg. (4.70)

The Ricci equation

This last equation comes from taking the lie derivative Ln along the unit normal na if the
extrinsic curvature Kab:

Rabcdncnd = ≠LnKab ≠ KacK
c

b
+ D(aab) + aaab, (4.71)

where aa is the normal acceleration aa := ncÒcna (with aana = 0).

We could also use the Ricci equation (4.71) with the relation Rabnanb = R d

acd
nanb to get

Rabn
anb = (Ka

a
)2 ≠ Kb

a
Ka

b
+ Òava, (4.72)

where the vector field va is defined as
va := ≠naÒcn

c + ncÒcn
a.

Using the Gauss-Codazzi equations with the Ricci equations one can read the Ricci scalar R:
R = 3R + KabK

ab ≠ (Ka

a
)2 ≠ 2Òava. (4.73)

Hence, up to a divergence term, we can decompose the Ricci scalar into a potential term 3R
and a kinetic term — quadratic in extrinsic curvature. Then, the extrinsic curvature, as shown
in equation (4.68), plays the role of a velocity of the spatial metric hab and is, thus, a candidate
for its momentum when we formulate the GR in terms of canonical variables, as we do next.
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4.4 The ADM formalism

The action of general relativity in metric variables is given, as already presented, by the
Einstein-Hilbert action

SE.H.[g] = 1
16fiG

⁄
d4x

Ò
≠ det gR :=

⁄
dtLgrav.

Using equations (4.53) and (4.73) one can write the Lagragian for gravity as

Lgrav = 1
16fiG

⁄
d3xN

Ô
det h

1
3R + KabK

ab ≠ (Ka

a
)2

2
, (4.74)

where the term proportional to Òava was left out once it is a boundary term which does not
a�ect the equations of motion.

From equation (4.68) we can see that the action depends on ḣab because of the Kab term,
but it is independent of time derivatives of the remaining space-time metric components, as
expected, and also of time derivatives of N and Na.

So we may already extract the primary constraints:

pN(x) = ”Lgrav

”Ṅ(x)
= 0, (4.75)

and
pa(x) = ”Lgrav

”Ṅa(x)
= 0. (4.76)

The conjugate momenta of the induced metric hab is

fiab(x) = ”Lgrav

”ḣab(x)

= ”Lgrav

”Kab

”Kab

ḣab(x)
(4.77)

= ”Lgrav

”Kab

1
2N

, (4.78)

where the last line comes from equation (4.68).

So we get

fiab(x) =
Ô

det h

16fiG

1
Kab ≠ Kc

c
hab

2
. (4.79)

Contracting this relation with hab we get

16fiGÔ
det h

fiabhab = habK
ab ≠ Kc

c
habhab

= Ka

a
≠ 3Kc

c

= ≠2Ka

a
,

and it follows that
Ka

a
= ≠ 8fiGÔ

det h
fia

a
, (4.80)



CHAPTER 4. THE HAMILTONIAN FORMULATION OF GR 59

which allows us to isolate Kab in equation 4.79:

Kab = 8fiGÔ
det h

(2fiab ≠ fic

c
hab). (4.81)

With this last relation we can express ḣab in (4.68) in terms of its conjugate momenta fiab:

ḣab = 16fiGNÔ
det h

(2fiab ≠ fic

c
hab) + 2D(aNb). (4.82)

Then we can obtain the Hamiltonian through

H(t) =
⁄

d3x
1
[fiab ˙hab] + ⁄pN + µapa

2
≠ L(t), (4.83)

where the ⁄ and µÕs are the Lagrange multipliers of the constraints.

Using equation (4.82) to write ḣab in terms of its conjugate momenta fiab we can write (4.83)
as

H =
⁄

d3x

C
16fiGNÔ

det h

3
fiabfi

ab ≠ 1
2(fia

a
)2

4
+ 2fiabDaNb ≠ N

Ô
det h

16fiG
3R + ⁄pN + µapa

D

. (4.84)

Applying the consistency conditions (4.29) to the constraints we get secondary constraints:

0 = ˙pN = {pN , Htotal} := ≠Cgrav(hab, fiab), (4.85)
0 = ṗa = {pa, Htotal} := ≠Cgrav

a
(hab, fiab). (4.86)

And if we work out the Poisson’s brackets above we get [4]

Cgrav = 16fiGNÔ
det h

3
fiabfi

ab ≠ 1
2(fia

a
)2

4
≠ N

Ô
det h

16fiG
3R ¥ 0, (4.87)

which is called the Hamiltonian constraint.
Working out the second Poisson bracket [4] we get

Cgrav

a
= ≠2Dbfi

b

a
¥ 0, (4.88)

which is called the di�eomorphism constraint.

We can now see that, putting these in (4.84), the lapse function N and the shift vector Na

play the role of Lagrange multipliers of the secondary constraints:

H =
⁄

d3x [NCgrav + NaCgrav

a
+ ⁄pN + µapa] + Hˆ�, (4.89)

where the last term refers to the Hamiltonian of the boundary term.

We have finally built a Hamiltoninan representation of the dynamics of the spacetime
geometry. The canonical variables here are the induced metric hab and its conjugate momenta
fiab. With this Hamiltonian it is now possible to study the spacetime dynamics in a canonical
way, using every tool of the Hamiltonian formalism.
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4.5 The equations of motion

Let us now obtain the evolutionary part of Einstein’s equations canonically.
The Hamilton equations give Ṅ(x) = ⁄(x) and Ṅa(x) = µa(x), which means that these

functions can change arbitrally due to reparametrizations. We have also the equations

ḣab = {hab, Hgrav} ,

which gives us back equation (4.82). Finally, we have also the equation of motion

fi̇ab =
Ó
fiab, Hgrav

Ô
,

which, when developed, gives us

fi̇ab = ≠ N
Ô

det h

16fiG

3
3Rab ≠ 1

2
3Rhab

4
+ 8fiGNÔ

det h
hab

3
ficdficd ≠ 1

2(fic

c
)2

4
+

≠ 32fiGNÔ
det h

3
fiacfib

c
≠ 1

2fiabfic

c

4
+

Ô
det h

16fiG

1
DaDbN ≠ habDcD

cN
2

+
Ô

det hDc

A
fiabN c

Ô
det h

B

≠ 2fic(aDcN
b). (4.90)
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Figure 5.2: Internal vs World indices.

5.2 Tetrad formalism

Since the tetrads represent an orthonormal basis, it is required that eI · eJ = ÷IJ , then, using
(5.1) we get

gµ‹ = g(ˆµ, ˆ‹)
= ˆµ · ˆ‹

= (eI

µ
eI) · (eJ

‹
eJ)

= eI

µ
eJ

‹
÷IJ , (5.2)

and we can also rewrite this relation in index free notation as

g = eT ÷ e.

In this way, we can see the tetrad as a similarity transformation that diagonalizes the metric
gµ‹ and scales it to the unit. The ÷ matrix is the euclidean metric if we are talking about 3D
space (then the basis e should be called a triad) or the Minkowski metric if we are talking about
spacetime — where the name tetrad makes more sense.

Taking the determinant of this equation we get

g = ≠e2, (5.3)

where g stands for the determinant of the spacetime metric gµ‹ and e for the determinant of the
matrix eI

µ
. The minus sign comes from the determinant of the Minkowski metric.

Hence, the tetrad represents the square root of the metric and has, therefore, all the
information about the geometry of the manifold. We can thus consider the tetrad as the
fundamental description and the metric as a derived concept.

The spacetime indices are contracted with the metric gµ‹ , as usual, and the internal indices
are contracted with the flat spacetime metric ÷IJ , which, consisting of 0s and ±1s is much easier
to deal with than gµ‹ — we will see that this is the whole point of the formalism.

Thinking of e(x) as a square matrix, we can define its inverse eµ

I
such that
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eµ

I
eJ

µ
= ”J

I
. (5.4)

It can be sometimes confusing in the literature what does the term tetrads specifically refers
to. Here, when we say tetrad, one can think of the local orthonormal basis vectors eI , or its
dual — the 1-form eI = eI

µ
dxµ — or also the matrix eI

µ
containing the coe�cients of the linear

transformation.

5.3 Connections via tetrads

If we have a spacetime vector field vµ and we take its derivative in a certain direction we get

(Òflv)µ = ˆflvµ + �µ

flk
vk, (5.5)

where �µ

flk
is the Levi-Civita connection.

In a similar way, when we compute the derivative of vectors in the internal space, we expect
something such as

(Dav)I = ˆavI + Ê I

a J
vJ , (5.6)

where the 1-form Ê I

a J
is the spin connection. This is of course valid for a vector. For a general

tensor we add a Ê factor for each of its indices, just as in the covariant derivative with the
Levi-Civita connection. So, for a rank (r, s) tensor we would have:

DaT µ1...µr
‹1...‹s

= ˆaT µ1...µr
‹1...‹s

+
+ Êµ1

ak
T k...µr

‹1...‹s
+ ... + Êµr

ak
T µ1...k

‹1...‹s
+

≠ Êk

a‹1T µ1...µr
k...‹s

+ ... ≠ Êk

a‹s
T µ1...µr

‹1...k
.

It can be easily seen that the spin connection is a 1-form since, on a curved manifold, when
we move from a point x to a nearby point x + dx it is expected that the local frame will rotate
(in Euclidean space) or Lorentz transform (in Minkowski flat spacetime), thus, an infinitesimal
translation has the e�ect of rotating the 1-form eI(x) infinitesimally. Hence, if we apply the
exterior derivative d to this 1-form we should get

deI = ≠ÊI

J
eJ , (5.7)

for some antisymmetric ÊIJ , since the generators of rotations or Lorentz transformations are
antisymmetric. The minus sign is just a convention. Since eI is a 1-form, deI is a 2-form and

ÊI

J
= ÊI

µJ
dxµ, (5.8)

is also a 1-form.
If we evaluate the covariant derivative of the Minkowski metric we get

Da÷IJ = ˆa÷IJ + Ê K

a I
÷KJ + ÊK

a J
÷IK

= Ê K

a I
÷KJ + ÊK

a J
÷IK

= Êa IJ + Êa JI , (5.9)

and, if the covariant derivative is required to be compatible with ÷ we get

Êa IJ = ≠Êa JI , (5.10)
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which attest the antisymmetry of the spin connection in its internal indices, as said before. This
means that the coe�cients of the connection take values in the Lie Algebra of the Lorentz group
of that signature, as developed in appendix A.

We can built the relation between the spin connection Ê on the internal space and the Levi
Civita connection � on the manifold. Remember that we can always express a vector v at point
P by a linear combination of the internal basis vectors eI or by the spacetime basis vectors on
the tangent space TpM , the ˆÕ

µ
s: v = vIeI = vµˆµ.

Also, the connection Ê on the internal space induces a connection on the tangent space TpM
for a given tetrad e. The covariant derivative D̃ on the internal space is defined via

Òv = e≠1[D̃e(v)]. (5.11)

Developing these two derivatives leads us to

Òflv = Òfl(vIeI) =Òfl(vµˆµ)
eI(ˆflvI) + vKÊJ

fl K
eJ = (ˆflvµ + vk�µ

flk
)ˆµ,

and, using ˆµ = eI

µ
eI on the right side and vK = vµeK

µ
we get

eIˆfl(vµeI

µ
) + vµeK

µ
ÊJ

fl K
eJ = (ˆflvµ + vk�µ

flk
)eI

µ
eI

eIvµ(ˆfleI

µ
) + eIeI

µ
(ˆflvµ) + eK

µ
vµÊJ

fl K
eJ = (ˆflvµ)eI

µ
eI + vk�µ

flk
eI

µ
eI

vµ(ˆfleI

µ
) + eK

µ
vµÊI

fl K
= vk�µ

flk
eI

µ

ˆfleI

µ
+ eK

µ
ÊI

fl K
= �‹

flk
eI

‹
,

from where we can express the spin connection in terms of the Levi Civita connection:

ÊI

‹ J
= eI

fl

1
ˆ‹efl

J
+ eµ

J
�fl

‹µ

2
, (5.12)

which will be useful later.

5.4 Curvature and Torsion via tetrads

If one defines the exterior covariant derivative as DÊ = d+Ê where d is the exterior derivative,
it is possible to extract the curvature in the Cartan formalism. This is how one can take covariant
derivatives of n-forms taking values in the internal space. We will use just D from now on to
denote the exterior covariant derivative with respect to the connection Ê.

Consider a 0-form „I , which has no spacetime index — only internal indices. Then [16]

DI

J
„J = d„I + ÊI

J
„J . (5.13)

If we calculate
DK

I
DI

J
„J = d(d„K + ÊK

J
„J) + ÊK

L
(d„L + ÊL

J
„J), (5.14)

the curvature will immediately emerge. The first term gives

dd„I + (dÊK

J
)„J ≠ ÊK

J
d„J ,

and the second term gives
ÊK

L
d„L + ÊK

L
ÊL

J
„J .
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Then, since d2 = 0, the sum gives, maintaining only the operators in the equation:

DK

I
DI

J
= dÊK

J
+ ÊK

L
ÊL

J
:= F K

J
, (5.15)

where F is the curvature 2-form:
F IJ = F IJ

µ‹
dxµdx‹ , (5.16)

i.e., this is the curvature of the connection 1-form ÊIJ

µ
on the internal space. Since it is an

antisymmetric tensor, its components are easily extracted from (5.15) and are given by

F IJ

µ‹
= ˆµÊIJ

‹
≠ ˆ‹ÊIJ

µ
+ [Êµ, Ê‹ ]IJ . (5.17)

If we use equation (5.12) in (5.17) we can get the relation between the curvature 2-form F IJ

and the Riemann curvature tensor Rfl

µ‹‡
= ˆµ�

‹‡
≠ ˆ‹�

µ‡
+ �fl

µ–
�–

‹‡
≠ �fl

‹–
�–

µ‡
, which is

Rfl

µ‹‡
= efl

I
eJ

‡
F I

µ‹ J
. (5.18)

This relation shows that the Riemann curvature tensor Rfl

µ‹‡
of the connection Ò is just the

spacetime image of the curvature F I

µ‹ J
of the spin connection Ê.

We can also convert all indices of F I

µ‹J
to internal indices, which will be very useful to

calculate the Ricci tensor and Ricci scalar. Thus, let us introduce the object

F I

MN J
= F I

µ‹J
eµ

M
e‹

N
. (5.19)

We can get the internal Ricci tensor by the usual contraction

FIJ = F M

MI J
, (5.20)

and the Ricci tensor can be built from this via

Rµ‹ = FIJ eI

µ
eJ

‹
. (5.21)

We can also get the Ricci scalar in the usual way:

R = FIJ ÷IJ . (5.22)

It is also easy to see that this scalar, in the internal structure, is the same as the Ricci scalar on
the manifold:

R = FIJ ÷IJ

= Rµ‹eµ

I
e‹

J
÷IJ

= Rµ‹gµ‹

= R,

where, in the second line, we used equation (5.22) with inverses of eI

µ
applied.

We also may define the torsion in the local Minkowski space. First, the torsion T in the
tangent bundle is given by

T (v, u) = Òvu ≠ Òuv ≠ [v, u], (5.23)

which is, in coordinates:
T fl

µ‹
= Òµˆ‹ ≠ Ò‹ˆµ = �fl

[µ‹].
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However, from equation (5.12) we can write this as

T fl

µ‹
= efl

I
(ˆµeI

‹
≠ ˆ‹eI

µ
+ ÊI

µJ
eJ

‹
≠ ÊI

‹J
eJ

µ
)

= efl

I
(DeI)µ‹ ,

or, in spacetime index free notation

T I = e≠1(DeI),

which states that the torsion in the tangent bundle is the pullback of DeI by the inverse of the
tetrad. So, the torsion in the Minkowski bundle is just

T I = DeI = deI + ÊI

J
· eJ . (5.24)

5.5 Cartan’s view of Riemannian geometry

Equations (5.7) and (5.15) are called first and second Cartan’s structural equations, re-
spectively. In Cartan’s formalism, Riemannian geometry can be summarized by these two
equations:

deI + ÊI

K
· eK = 0,

F K

J
= dÊK

J
+ ÊK

L
· ÊL

J
. (5.25)

The protocol goes as follows: given a metric, one chooses a basis of tetrads eI satisfying equation
(5.2). Then one can use the first of Cartan’s equations to figure out the spin connection Ê, and,
finally, with the second of Cartan’s equations, one has the curvature 2-form F . This is the
easiest way of computing the Riemann curvature tensor, which can be done with the relations
between F IJ and Rfl

µ‹‡
developed in the previous section.

5.5.1 The 2-sphere

It is instructive to develop an example to see how the formalism works, which we will do for
the 2-sphere. The same can be done for the Schwarzschild metric or any other [9].

For the 2-sphere, writing the line element in spherical coordinates, we have

ds2 = gµ‹dxµdx‹ = R2d◊2 + R2 sen2◊ d„2.

From gµ‹ = ÷IJeI

µ
eJ

‹
we can immediately choose, for the tetrads:

e1
◊

= R

e2
„

= R sen◊,

with all the other components vanishing. For the 1-forms, we have eI = eI

µ
dxµ, so we get

e1 = Rd◊,

e2 = R sen◊d„.

Now, from the first of Cartan’s structural equations we get

de1 + Ê1
J

· eJ = 0
Ê1

1e1 + Ê1
2e2 = 0

Ê1
1Rd◊ = ≠Ê1

2R sen◊d„, (5.26)
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and, since Ê1
1 = 0, it follows that Ê1

2 is a 1-form proportional to d„.
Again, using the first of Cartan’s structural equations:

de2 + Ê2
J

· eJ = 0
d(R sen◊d„) + Ê2

1e1 + Ê2
2e2 = 0

R cos ◊(d◊ · d„) + Ê2
1Rd◊ + Ê2

2R sen◊d„ = 0,

(5.27)

and again, since Êk

k
= 0 (it is anti symmetric) we get

Ê2
1 = cos ◊d„

Ê1
2 = ≠ cos ◊d„,

with all the other components vanishing.
Now, from the second Cartan’s structural equation:

F I

J
= dÊI

J
+ ÊI

K
· ÊK

J
,

we get directly the vanishing components R1
1 = R2

2 = 0 and the non-vanishing components:

F 1
2 = dÊ1

2 + Ê1
K

· ÊK

2
= sen◊(d◊ · d„) + Ê1

1 · Ê1
2 + Ê1

2 · Ê2
2

= sen◊(d◊ · d„),

and, similarly, we get F 2
1 = ≠ sen◊(d◊ · d„).

With these components in hand we can use equation (5.16) to write

F I

J
= F I

µ‹ J
dxµdx‹ ,

so, from the non-vanishing components we get

F 1
2 = sen(◊)d◊ · d„ = F 1

µ‹ 2dxµdx‹

= F 1
◊„ 2d◊ · d„,

from where we get
F 1

◊„ 2 = sen◊,

and, in a similar way,
F 2

◊„ 1 = ≠ sen◊.

Now, from (5.18), we can write the components of the Riemann curvature tensor,

Rfl

µ‹‡
= efl

I
eJ

‡
F I

µ‹ J

= efl

1e2
‡

F 1
µ‹ 2 + efl

2e1
‡

F 2
µ‹ 1.

The only non-vanishing component, up to the symmetries of the Riemann tensor, is:

R◊

◊„„
= e◊

1e
2
„

F 1
◊„ 2 + e◊

2e
1
„

F 2
◊„ 1

= e◊

1e
2
„

F 1
◊„ 2

= R≠1R sen(◊)F 1
◊„ 2

= sen2◊.
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Also, from (5.19) and (5.20) we can write the component F11 of the Ricci tensor in internal
indices:

F11 = F N

µ◊ 1eµ

N
e◊

1

= F 2
µ◊ 1e

µ

2R≠1

= F 2
„◊ 1e

„

2R≠1

= sen(◊)(R sen◊)≠1R≠1

= 1/R2.

The F22 component can be extracted in the same way:

F22 = F N

µ„ 2e
µ

N
e„

2

= F 1
µ„ 2e

µ

1(R sen◊)≠1

= F 1
◊„ 2e

◊

1(R sen◊)≠1

= ( sen◊)(R)≠1(R sen◊)≠1

= 1/R2,

with the other components being F12 = F21 = 0.
We can also use (5.21) to write the Ricci tensor in spacetime:

R◊◊ = FIJeI

◊
eJ

◊

= F11e
1
◊
e1

◊
+ F22e

2
◊
e2

◊

= F11(e1
◊
)2

= R≠2R2

= 1,

and, for the other non-vanishing component:

R„„ = FIJeI

„
eJ

„

= F11e
1
„
e1

„
+ F22e

2
„
e2

„

= F22(e2
„
)2

= R≠2(R sen◊)2

= sen2◊.

For the Ricci scalar, using (5.22), we have, finally

R = FIJ÷IJ = F11÷
11 + F22÷

22 = F11 + F22 = 2
R2 .

5.6 The Palatini action

The Palatini action for GR is just the Einstein-Hilbert action written as a function of the
frame field e and the connection Ê:

S[e, Ê] = 1
16fiG

⁄
d4x

Ò
≠ det g R[Ê]. (5.28)
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From equation (5.3) we can write det g in terms of the tetrads. And, from equation (5.18)
we can get the Ricci tensor by the usual contraction:

Rµ‡ = R‹

µ‹‡
= F I

µ‹ J
e‹

I
eJ

‡
, (5.29)

hence, the curvature scalar can be written as

R = Rµ‡gµ‡

= F I

µ‹ J
e‹

I
eJ

‡
gµ‡

= F I

µ‹ J
e‹

I
eJ

‡
÷MNeµ

M
e‡

N

= F I

µ‹ J
÷MJe‹

I
eµ

M

= F IM

µ‹
e‹

I
eµ

M

= F IJ

µ‹
e‹

I
eµ

J
, (5.30)

where, in the third line we used the contraction eJ

‡
e‡

N
= ”J

N
and in the last line we just renamed

a dummy index. Now we have R[Ê]. So, the Palatini action is

S[e, Ê] = 1
16fiG

⁄
d4x e eµ

I
e‹

J
F IJ

µ‹
, (5.31)

where e =
Ô

≠ det g.
We now just apply the variational principle to the action (5.31) to get the equations of

motion. First, we vary the action with respect to the tetrad, i.e., we compute ”S assuming
”Ê = 0. This leads us to

”S = 1
16fiG

⁄
d4x

Ë
e (”eµ

I
)e‹

J
F IJ

µ‹
+ e eµ

I
(”e‹

J
)F IJ

µ‹
+ (”e)eµ

I
e‹

J
F IJ

µ‹

È

= 1
8fiG

⁄
d4x e

5
e‹

J
F IJ

µ‹
(”eµ

I
) ≠ 1

2eK

‡
eµ

I
e‹

J
F IJ

µ‹
(”e‡

K
)
6

, (5.32)

where the last term is calculated via ”(det A) = det A Tr(A≠1
ji

”Aij):

”e = e e‡

K
”eK

‡
= ≠e eK

‡
”e‡

K
, (5.33)

where in the last equality we used ”(eK

‡
e‡

K
) = 0.

Hence, if we set ”S = 0 we get

F KJ

‡‹
e‹

J
≠ 1

2eK

‡
eµ

I
e‹

J
F IJ

µ‹
= 0.

If we act with e·K = ÷KJeJ

·
on both sides we get:

F KJ

‡‹
e‹

J
e·K ≠ 1

2(eK

‡
eJ

·
÷KJ)eµ

I
e‹

J
F IJ

µ‹
= 0,

where, from (5.2), the term in parenthesis is just g·‡, the last part of the second term, from
equation (5.30), is just the Ricci scalar R, and the first term, from equation (5.18), is just the
Ricci tensor R·‡. We then derived Einstein’s field equations in vacuum

R·‡ ≠ 1
2Rg·‡ = 0.
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We need also to vary (5.31) with respect to Ê, assuming ”e = 0:

”S = 1
16fiG

⁄
d4x e eµ

I
e‹

J
(”F IJ

µ‹
), (5.34)

from (5.17) we get

”F IJ

µ‹
= ˆµ(”ÊIJ

‹
) ≠ ˆ‹(”ÊIJ

µ
) + (”ÊI

µK
)ÊKJ

‹
+ ÊI

µK
(”ÊKJ

‹
) ≠ (”ÊI

‹K
)ÊKJ

µ
≠ (”ÊKJ

µ
)ÊI

K

= 2
1
ˆ[µ”ÊIJ

‹] + ”ÊI

[µK
ÊKJ

‹] + ÊI

[µ|K|”ÊKJ

‹]
2

= 2
1
ˆ[µ”ÊIJ

‹] + ÊI

[µ|K|”ÊKJ

‹] ≠ ÊJ

[µ|K|”ÊIK

‹]
2

= 2
1
ˆ[µ”ÊIJ

‹] + 2Ê[I
[µ|K|”Ê|K|J ]

‹]

2
,

where we used A[µ‹] = 1
2! (Aµ‹ ≠ A‹µ). Hence, in equation (5.34) we have

”S = 1
8fiG

⁄
d4x e eµ

I
e‹

J
(ˆ[µ”ÊIJ

‹] + 2Ê[I
[µ|K|”Ê|K|J ]

‹] ). (5.35)

The first term can be rewritten as

e eµ

I
e‹

J
ˆ[µ”ÊIJ

‹] = ≠e eµ

[Ie‹

J ]ˆ‹”Êµ

IJ
,

then, integrating by parts we have (neglecting boundary terms)
⁄

d4x e eµ

I
e‹

J
ˆ[µ”ÊIJ

‹] =
⁄

d4x ˆ‹(e eµ

[Ie‹

J ])”Êµ

IJ
. (5.36)

The second term can be also rewritten as follow

2 e eµ

I
e‹

J
Ê[I

[µ|K|”Ê|K|J ]
‹] = 2 e eµ

[Ie‹

J ]Ê
I

[µK
”Ê|K|J

‹] = 2 e eµ

[Ie‹

J ]Ê
I

µK
(”ÊKJ

‹
),

where, in the last step, we just left out the antisymmetrization [µ, ‹] since the expression is
already antisymmetric.

So, we have, for the second term of the action, renaming some dummy indices

≠
⁄

d4x(2 e e‹

[Keµ

J ]Ê
K

‹I
)”ÊIJ

µ
, (5.37)

so, in (5.35) we have:

”S = 1
16fiG

⁄
d4x

1
ˆ‹(e eµ

[Ie‹

J ]) ≠ 2 e e‹

[Keµ

J ]Ê
K

‹I

2
”ÊIJ

µ
, (5.38)

then, if we set ”S/”ÊIJ

µ
= 0 we get

ˆ‹(e eµ

[Ie‹

J ]) ≠ 2 e e‹

[Keµ

J ]Ê
K

‹I
= 0.

However, if we took the covariant derivative of the e eµ

[Ie‹

J ] term we would get

D‹

1
e eµ

[Ie‹

J ]
2

= ˆ‹

1
e eµ

[Ie‹

J ]
2

≠ ÊK

‹I
e eµ

[Ke‹

J ] ≠ ÊK

‹J
e eµ

[Ie‹

K],

which is exactly the expression above, whose value is zero:

D‹

1
e eµ

[Ie‹

J ]
2

= 0. (5.39)
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Since
e eµ

[Ie‹

J ] = 1
4‘IJKL‘µ‹–—eK

–
eL

—
,

we have, in (5.39):

D‹

1
e eµ

[Ie‹

J ]
2

= 1
4‘IJKL‘µ‹–—

Ë
(D‹eK

–
)eL

—
+ (D‹eL

—
)eK

–

È

= 1
2‘IJKL‘µ‹–—(D‹eK

–
)eL

—
,

where, in the first line the two terms in the parenthesis are equivalent since the expression is
antisymmetric in [K, L] and [–, —], contributing with two factors of minus one to the last term,
making it identical do the first one. We are left with

‘µ‹–—(D‹eK

–
)eL

—
= 0,

where the symbol ‘IJKL was removed since it’s action on antisymmetric rank 2 tensors is
invertible. If we act with efl

L
on both sides we are left with

D[‹eK

–] = 0. (5.40)

This implies that the torsion is zero, and, since we have a metric compatibility — equation
(5.10) — we know that we are talking about the Levi Civita connection.

This implies that the tetrad is constant with respect to the covariant derivative defined via
the connection Ê. So, just as it happened in the Palatini approach for the variables gµ‹ and �,
the variation of the action with respect to the connection told us that the metric was compatible
with the covariant derivative defined by that connection. Here, the tetrad, playing the role of
the metric, is compatible with the connection Ê.

5.6.1 The covariant notation

We can write the same formalism using the notation of forms, in a coordinate independent
way, which will be useful later.

We can write the Palatini action in this notation as

S[e, Ê] = 1
16fiG

⁄ 1
2‘IJKLeI · eJ · F KL. (5.41)

If we open the integrated term in coordinates we will have

1
2‘IJKLeI · eJ · F KL = 1

2‘IJKL(eI

µ
dxµ) · (eJ

‹
dx‹) ·

31
2F KL

–—
dx– · dx—

4

= 1
4‘IJKLeI

µ
eJ

‹
F KL

–—

1
dxµ · dx‹ · dx– · dx—

2

= 1
4‘IJKL‘µ‹–—eI

µ
eJ

‹
F KL

–—
d4x

= e e[–
K

e—]
L

F KL

–—
d4x

= eRd4x,

where, in the fourth line we used one of the relations from appendix B, and in the last line we
just removed the antisymmetrization in [–, —] since the expression is already antisymmetric.
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To get the equations of motion we first vary the action with respect to the connection Ê,
which gives us (removing the constants):

”S =
⁄

‘IJKLeI · eJ · (”F KL)

=
⁄

‘IJKLeI · eJ · D(”ÊKL)

=
⁄

D
1
‘IJKLeI · eJ · ”ÊKL

2
≠

⁄
D

1
‘IJKLeI · eJ

2
· ”ÊKL

= ≠2
⁄

‘IJKL

1
DeI

2
· eJ · ”ÊKL,

where the boundary term was neglected from the third to the fourth line and we used the
Palatini identity (see appendix C) in the second line.

So, if we set ”S/”Ê = 0 we will get DeI = 0, which states that the connection Ê is torsion
free, as we already knew.

If we now vary the action with respect to the tetrads we will have

”S =
⁄

‘IJKL(”eJ) · eI · F KL,

and, setting ”S/”eJ = 0 will lead us to

‘IJKLeI · F KL = 0.

and, when we open this equation in coordinates we get

‘IJKL(eI

‡
F KL

µ‹
)dx‡ · dxµ · dx‹ = 0. (5.42)

One should note that the only free index in the above equation is L, which then gives us
four equations — one for each value of L = 0, 1, 2, 3 — stating that a certain 3-form vanishes.
And, since in a n-dimensional space a p-form has

1
n

p

2
independent components, our 3-forms will

have
1

4
3

2
= 4 independent components. Equation (5.42) is then grouping 16 di�erent equations,

which may lead one to infer that this is probably Einstein’s field equations — which indeed is,
as we will now show.

Acting with dxfl in (5.42) gives us

‘IJKL(eI

‡
F KL

µ‹
)dx‡ · dxµ · dx‹ · dxfl = 0.

Since ‘‡µ‹fld4x = dx‡ · dxµ · dx‹ · dxfl, and contracting ‘IJKLeI

‡
= e e–

J
e—

K
e“

L
‘‡–—“ , this leads us

to
e–

J
e—

K
e“

L
F KL

µ‹
‘‡µ‹fl‘‡–—“ = 0.

Since J is a free index, one can act with eJ

◊
to get e—

K
e“

L
F KL

µ‹
‘‡µ‹fl‘‡–—“ = 0. However, e—

K
e“

L
F KL

µ‹
=

R—“

µ‹
and

‘‡µ‹fl‘‡–—“ = ≠2
1
”[µ

–
”‹]

—
”fl

“
+ ”[fl

–
”µ]

—
”‹

“
+ ”[‹

–
”µ]

—
”fl

“

2
,

which gives us
R—“

µ‹

1
”[µ

–
”‹]

—
”fl

“
+ ”[fl

–
”µ]

—
”‹

“
+ ”[‹

–
”µ]

—
”fl

“

2
= 0.

Therefore,
Rfl

–
≠ 1

2R”fl

–
= 0,

where Rfl

–
:= Rµfl

µ–
and R := Rµ

µ
. Acting with gflµ we then obtain Einstein’s field equations in

vacuum, as expected:
Rµ‹ ≠ 1

2Rgµ‹ = 0.
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5.7 The Holst action

One could think about the dual of the terms in the Palatini action, such as the dual of the
curvature 2-form:

(ıF )IJ

ab
= 1

2‘IJ

KL
F KL

ab
.

Varying the action with this term in the same way we did before leads us to the same compatibility
condition, i.e., we are still dealing with the connection that preserves the tetrads.

This allows us to generalize the Palatini action to

S[e, Ê] = 1
16fiG

⁄
d4x e eµ

I
e‹

J
P IJ

KL
F KL

µ‹
. (5.43)

where the new term is defined as

P IJ

KL
:= ”[I

K
”J ]

L
≠ 1

2“
‘IJ

KL
. (5.44)

Again, if we vary this action with respect to the connection, we are led to

‘abcd‘IJKLP KL

MN
Da(eM

c
eN

d
) = 0,

which still remains being the compatibility condition.
Varying the action with respect to the tetrads, as we did in (5.32), will lead to the Einstein’s

field equation with an extra term ‘IabcRabIL, which vanishes by the symmetries of the Riemann
tensor.

Therefore, for any value of “, we get the same equations of motion from this new action.
The action in (5.43) is called the Holst action, and “ is the Barbero-Immirzi parameter.

This action is a step towards constructing the Ashtekar’s formulation of general relativity.

5.7.1 Forms notation

It is also possible to write this action in the notation of forms, which would lead us to

S = 1
32fiG

⁄ CA

ı + 1
“

B

eI · eJ

D

· F IJ . (5.45)

Varying this action with respect to the connection gives us

”S = 1
32fiG

⁄ CA

ı + 1
“

B

eI · eJ

D

· ”F IJ

= 1
32fiG

⁄ CA

ı + 1
“

B

eI · eJ

D

· D(”ÊIJ)

= ≠ 1
16fiG

⁄ CA

ı + 1
“

B

(DeI) · eJ

D

· ”ÊIJ ,

where we used ”F IJ = D(”ÊIJ) in the second line and we integrated by parts and neglected the
boundary term in the next line.

From equation (5.24) it can be seen that forcing this variation to vanish leads us to the
torsion free condition:

T I = DeI = 0.
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This can also be taken as the definition of Ê: our connection is the one that can be entirely
determined by the tetrads, given this condition. So, the only independent variable in our theory
is eI . Defining the connection in this way would obviously make it satisfy the equation of
motion — i.e. there is no variation with respect to Ê since it is not an independent variable.
This formulation is called first order, while the formulation where both e and Ê is independent
is called first order.

Finally, varying the action with respect to the tetrad gives us

”S = 1
16fiG

⁄
(”eI) · eJ ·

CA

ı + 1
“

B

F IJ

D

.

Hence, setting ”S/”e = 0 leads us to

eJ ·
A

ı + 1
“

B

F IJ = 0. (5.46)

The second term vanishes since, from the first Bianchi identity (see appendix C) we have
that eJ · F IJ = D2eJ = 0, since the connection is torsion free. So, the “ term vanishes on-shell,
i.e., when the torsion is zero.

Hence, we are left only with the first term:

eJ ·
1
ıF IJ

2
= 0, (5.47)

which is just Einstein’s field equations in forms notation, which can be shown in a similar way
as we did in the Palatini section, using coordinate notation.
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Figure 6.1: The triad

However, in the triad formalism, there is an additional condition to the usual spacetime
split done in the ADM formalism, which is the split in the internal directions of the tetrad in
Minkowski time and space components.

There are two ways of doing this gauge fixing. The first one is to require that ea

0 = nIea

I
= na

be the unit normal to the foliation, this is known as the time gauge. Here we assumed nI = ”I

0
to be a timelike internal vector field. Internal Lorentz transformations that preserve nI are
reduced to spatial rotations around the fixed direction nI .

Another way of doing it, which will show to be more practical in the calculations we are
going to develop, is to open the tetrads in its spatial and time components and set the time
gauge directly from it.

First, let us consider the 1-forms eI . For the Minkowski time component:

e0 = e0
µ
dxµ = e0

0dx0 + e0
a
dxa.

Here we set the spatial part to be zero:

e0
a

= 0, (6.3)

leaving just the time component for this tetrad:

e0 = e0
µ
dxµ

= e0
0dx0 + e0

a
dxa

= e0
0dx0

= Ndt, (6.4)

where we defined the lapse function e0
0 := N . This fixes the Minkowski time in the internal

space: the direction orthogonal to the spatial slice.
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Now, for the spatial Minkowski components one can write

ei = ei

µ
dxµ

= ei

0dx0 + ei

a
dxa

= N idx0 + ei

a
dxa, (6.5)

where we defined the shift vector N i := ei

0.
With these, the (3+1) split of the tetrad is done: one has the lapse function N , the shift

vector N i and the spatial triads ei

a
:

eI

µ
=

A
N N i

0 ei

a

B

. (6.6)

In the formalism that we are going to develop, the 3-metric of the ADM formalism is
substituted by the new dynamical variable, the triads, and those contain the same geometrical
information: hab = ”ijÁi

a
Áj

b
. The ADM formalism variables will then be replaced by

(hab, fiab) ‘æ (Ái

a
, Ai

b
),

where Ai

b
is an SU(2) connection, the canonical conjugate variable to the triad, which will

appear shortly in our development.

6.3 The space-time split

6.3.1 The Holst Action

We will now expand the Holst action in equation (5.45) in order to do the 3+1 split in the
triads variable.

First, let us note that

eI · eJ · F KL = (eI

µ
dxµ) · (eJ

‹
dx‹) · (F KL

fl‡
dxfldx‡)

= eI

µ
eJ

‹
F KL

fl‡
(dxµ · dx‹ · dxfl · dx‡)

= ≠‘̃µ‹fl‡eI

µ
eJ

‹
F KL

fl‡

1
dx0 · dx1 · dx2 · dx3

2

= ≠‘̃µ‹fl‡eI

µ
eJ

‹
F KL

fl‡
dt · d3x, (6.7)

where, in the third line we used the fact the the term dxµ · dx‹ · dxfl · dx‡ is completely
anti-symmetric in µ‹fl‡, then, it can be written in terms of the Levi Civita symbol. The minus
sign comes from the fact that we will use ‘̃µ‹fl‡ to represent the Levi-Civita symbol and ‘̃µ‹fl‡ is
defined as being the Levi-Civita symbol multiplied by sign(g) = ≠1. We can then plug this into
the action in (5.45):

S = 1
4

⁄ A

ı + 1
“

B

eI · eJ · F IJ

= 1
4

⁄ I
1
2‘IJKLeI · eJ · F KL + 1

“
÷IK÷JLeI · eJ · F KL

J

= ≠1
4

⁄
dt

⁄
d3x ‘̃µ‹fl‡

I
1
2‘IJKLeI

µ
eJ

‹
F KL

fl‡
+ 1

“
÷IK÷JLeI

µ
eJ

‹
F KL

fl‡

J

. (6.8)
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6.3.2 The 3+1 split

Now, given the relations in (6.6), we can decompose the terms in the action (6.8) doing the
(3+1) split in the spacetime indices. First, note that

‘IJKL‘̃µ‹fl‡eI

µ
eJ

‹
F KL

fl‡
= ‘IJKL

1
‘̃0abceI

0eJ

a
F KL

bc
+ ‘̃a0bceI

a
eJ

0 F KL

bc
+ ‘̃ab0ceI

a
eJ

b
F KL

0c
+ ‘̃abc0eI

a
eJ

b
F KL

c0
2

= ‘IJKL

1
‘̃0abceI

0eJ

a
F KL

bc
+ ‘̃a0bceI

a
eJ

0 F KL

bc
+ ‘̃ab0ceI

a
eJ

b
F KL

0c
+ (≠‘̃ab0c)eI

a
eJ

b
(≠F KL

0c
)
2

= ‘IJKL

1
2‘̃0abceI

0eJ

a
F KL

bc
+ 2‘̃ab0ceI

a
eJ

b
F KL

0c

2

= ‘IJKL‘̃abc
1
2eI

0eJ

a
F KL

bc
+ 2eI

a
eJ

b
F KL

0c

2
, (6.9)

where we defined in the last line ‘̃abc := ‘̃0abc, and the factor of 2 in the first term came from:

‘̃a0bc‘IJKLeI

a
eJ

0 F KL

bc
= ≠‘̃0abc‘IJKLeI

a
eJ

0 F KL

bc

= ‘̃0abc‘JIKLeI

a
eJ

0 F KL

bc

= ≠‘̃0abc‘JIKLeJ

a
eI

0F KL

bc

= ‘̃0abc‘IJKLeJ

a
eI

0F KL

bc
,

hence, the second term in the second line of (6.9) is equal to the first. This was for the first
term in (6.8), but the calculation is analogous for the second term with the ÷ parameters.

Therefore, plugging (6.9) in (6.8) we are led to

S = ≠1
4

⁄
dt

⁄
d3x ‘̃µ‹fl‡

I
1
2‘IJKLeI

µ
eJ

‹
F KL

fl‡
+ 1

“
÷IK÷JLeI

µ
eJ

‹
F KL

fl‡

J

= ≠1
4

⁄
dt

⁄
d3x ‘̃abc

I

21
2‘IJKLeI

0eJ

a
F KL

bc
+ 21

2‘IJKLeI

a
eJ

b
F KL

0c
+ 21

“
÷IK÷JLeI

0eJ

a
F KL

bc
+ 21

“
÷IK÷JLeI

a
eJ

b
F KL

0c

J

= ≠1
2

⁄
dt

⁄
d3x ‘̃abc

I
1
2‘IJKLeI

0eJ

a
F KL

bc
+ 1

2‘IJKLeI

a
eJ

b
F KL

0c
+ 1

“
÷IK÷JLeI

0eJ

a
F KL

bc
+ 1

“
÷IK÷JLeI

a
eJ

b
F KL

0c

J

.

(6.10)

We now do the same (3+1) split in the internal indices. For the first term inside the brackets
in (6.10) we get

1
2‘IJKLeI

0eJ

a
F KL

bc
= 1

2‘0ijke0
0e

i

a
F jk

bc
+ 1

2‘i0jkei

0e
0
a
F jk

bc
+ 1

2‘ij0kei

0e
j

a
F 0k

bc
+ 1

2‘ijk0e
i

0e
j

a
F k0

bc

= 1
2‘0ijke0

0e
i

a
F jk

bc
+ 1

2‘0ijkei

0e
j

a
F 0k

bc
≠ 1

2‘0ijkei

0e
j

a
F k0

bc

= 1
2‘0ijke0

0e
i

a
F jk

bc
+ 1

2‘0ijkei

0e
j

a
F 0k

bc
+ 1

2‘0ijkei

0e
j

a
F 0k

bc

= 1
2‘0ijke0

0e
i

a
F jk

bc
+ ‘0ijkei

0e
j

a
F 0k

bc

= 1
2‘ijkNei

a
F jk

bc
+ ‘ijkNdei

d
ej

a
F 0k

bc
, (6.11)

where the second term in the first line vanishes because of the time gauge (e0
a

= 0) and in
the last term we recovered the definitions of the lapse function N = e0

0 and the shift vector
ei

0 = N i = Ndei

d
, and we also defined ‘0ijk := ‘ijk.
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Now, for the second term in parenthesis in equation (6.10) we have

1
2‘IJKLeI

a
eJ

b
F KL

0c
= 1

2‘0ijke0
a
ei

b
F jk

0c + 1
2‘i0jkei

a
e0

b
F jk

0c + 1
2‘ij0kei

a
ej

b
F 0k

0c
+ 1

2‘ijk0e
i

a
ej

b
F k0

0c

= 1
2‘ij0kei

a
ej

b
F 0k

0c
+ 1

2‘ijk0e
i

a
ej

b
F k0

0c

= 1
2‘0ijkei

a
ej

b
F 0k

0c
≠ 1

2‘0ijkei

a
ej

b

1
≠F 0k

0c

2

= ‘ijkei

a
ej

b
F 0k

0c
, (6.12)

where the first two terms in the first line vanishes due to the time gauge (e0
a

= 0) and in the
last term we also used ‘0ijk := ‘ijk.

For the last two terms in (6.10) we will open the indices in space and time using the metric
relations above:

÷IK÷JL =

Y
_____]

_____[

÷00÷00 = 1
÷00÷ij = ≠”ij

÷ij÷00 = ≠”ij

÷ik÷jl = ”ik”jl

(6.13)

Then, for the third term in (6.10) we get

1
“

÷IK÷JLeI

0eJ

a
F KL

bc
= 1

“

Ë
÷00÷00e

0
0e

0
a
F 00

bc
+ ÷00÷jle

0
0e

j

a
F 0l

bc
+ ÷00÷ikei

0e
0
a
F k0

bc
+ ÷ik÷jle

i

0e
j

a
F kl

bc

È

= 1
“

Ë
e0

0e
0
a
F 00

bc
≠ ”jle

0
0e

j

a
F 0l

bc
≠ ”ikei

0e
0
a
F k0

bc
+ ”ik”jle

i

0e
j

a
F kl

bc

È

= 1
“

Ë
≠”jle

0
0e

j

a
F 0l

bc
≠ ”ikei

0e
0
a
F k0

bc
+ ”ik”jle

i

0e
j

a
F kl

bc

È

= 1
“

Ë
”ik”jlN

dei

d
ej

a
F kl

bc
≠ ”jlNej

a
F 0l

bc

È
, (6.14)

where the first term in the second line vanishes since the curvature 2-form is anti-symmetric
(F µµ = 0), in the third line the second term also vanishes due to the time gauge, and in the last
line we plugged in the definitions of N and N i = ei

0 = Ndei

d
.

Finally, for the fourth term in parenthesis in equation (6.10) we get

1
“

÷IK÷JLeI

a
eJ

b
F KL

0c
= 1

“

Ë
÷00÷00e

0
a
e0

b
F 00

0c
+ ÷00÷jle

0
a
ej

b
F 0l

0c
+ ÷ik÷00e

i

a
e0

b
F k0

0c
+ ÷ik÷jle

i

a
ej

b
F kl

0c

È

= 1
“

Ë
e0

a
e0

b
F 00

0c
≠ ”jle

0
a
ej

b
F 0l

0c
≠ ”ikei

a
e0

b
F k0

0c
+ ”ik”jle

i

a
ej

b
F kl

0c

È

= 1
“

Ë
≠”jle

0
a
ej

b
F 0l

0c
≠ ”ikei

a
e0

b
F k0

0c
+ ”ik”jle

i

a
ej

b
F kl

0c

È

= 1
“

”ik”jle
i

a
ej

b
F kl

0c
, (6.15)

where the first two terms in the third line vanishes due to the time gauge.
Now, plugging (6.11), (6.12), (6.14) and (6.15) in the action (6.10) leads us to

S = ≠1
2

⁄
dt

⁄
d3x ‘̃abc

I
1
2‘IJKLeI

0eJ

a
F KL

bc
+ 1

2‘IJKLeI

a
eJ

b
F KL

0c
+ 1

“
÷IK÷JLeI

0eJ

a
F KL

bc
+ 1

“
÷IK÷JLeI

a
eJ

b
F KL

0c

J

= ≠ 1
2“

⁄
dt

⁄
d3x ‘̃abc {} , (6.16)
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where the term in parenthesis is

{} =
31

2“‘ijkNei

a
F jk

bc
+ “‘ijkNdei

d
ej

a
F 0k

bc

4
+

1
“‘ijkei

a
ej

b
F 0k

0c

2

+
1
”ik”jlN

dei

d
ej

a
F kl

bc
≠ ”jlNej

a
F 0l

bc

2
+

1
”ik”jle

i

a
ej

b
F kl

0c

2
, (6.17)

which, by grouping terms proportional to N and Nd, can be written as

{} =
1
”ik”jle

i

a
ej

b
F kl

0c
+ “‘ijkei

a
ej

b
F 0k

0c

2
+

+ Nd
1
”ik”jle

i

d
ej

a
F kl

bc
+ “‘ijkei

d
ej

a
F 0k

bc

2
+

≠ N
3

”jle
j

a
F 0l

bc
≠ 1

2“‘ijkei

a
F jk

bc

4
. (6.18)

Now, with (6.18) in (6.16) we can break the integral in three terms:

S = 1
“

⁄
dt

⁄
d3x(L1 + L2 + L3), (6.19)

where we have
L1 = ≠1

2 ‘̃abcei

a
ej

b

1
”ik”jlF

kl

0c
+ “‘ijkF 0k

0c

2
, (6.20)

L2 = ≠1
2Nd‘̃abcei

d
ej

a

1
”ik”jlF

kl

bc
+ “‘ijkF 0k

bc

2
, (6.21)

L3 = 1
2Nei

a
‘̃abc

3
”ikF 0k

bc
≠ 1

2“‘ijkF jk

bc

4
. (6.22)

We will treat those terms separately since each of them will be responsible for a di�erent
constraint in our Hamiltonian formalism, as we will be soon developing.

6.4 The Ashtekar-Barbero Variables

Having defined the triads let us now do some minor modifications in those to define the
Ashtekar-Barbero variables, which are the variables in terms of which we will write the action
and the Hamiltonian.

6.4.1 Densitized Triad

The densitized triad Ẽa

i
is defined as

Ẽa

i
:= det (e) ea

i
, (6.23)

where det (e) stands for the determinant of ei

a
.

There are some useful identities relating the densitized triad that will be useful along the
development. We will prove some of them here.

First, let us manipulate the determinant identity for a 3-dimensional matrix e:

‘ijkei

a
ej

b
ek

c
= det (e) ‘̃abc.

One can multiply it by ea

l
and use ei

a
ea

l
= ”i

l
to get to

‘ljkej

b
ek

c
= det (e)ea

l
‘̃abc = Ẽa

l
‘̃abc.
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Contracting now with ‘̃bcd and using ‘̃abc‘̃bcd = 2”d

a
we are left with

‘̃bcd‘ljkej

b
ek

c
= 2Ẽd

l
,

and, renaming some dummy indices, we get

Ẽa

i
= 1

2 ‘̃abc‘ijkej

b
ek

c
. (6.24)

One can also show that
ei

a
=

‘ijk ‘̃abcẼb

j
Ẽc

k

2 det(e) . (6.25)

For that, let us compute ei

a
ea

l
:

ei

a
ea

l
=

‘ijk ‘̃abcẼb

j
Ẽc

k

2 det(e) ea

l

= det(e)
2 ‘ijk ‘̃abce

b

j
ec

k
ea

l

= det(e)
2 ‘ijk‘ljk det(e≠1)

= det(e)
2 2”i

l
det(e)≠1

= ”i

l
,

where in the second line we just used (6.23). In the third line we used the equation for the 3-
dimensional determinant (see Appendix B) and in the fourth line we used det(A≠1) = (det A)≠1.

Some other useful identities that follow from those definitions are
‘̃abcej

a
= eb

p
ec

q
‘jpq det e, (6.26)

and
‘̃abcei

a
=

‘ijkẼb

j
Ẽc

kÔ
det Ẽ

, (6.27)

which follows from (6.25). Those identities will be useful along further development.

6.4.2 Ashtekar-Barbero Connection

One can use the spatial components of the (3+1) split on the spin connection Ê ij

µ
to define

a new connection on the spatial slice.
We start by defining the extrinsic curvature Ki

a
via

Ki

a
:= Ê i0

a
= ≠Ê 0i

a
.

Secondly, let us remember that the spin connection is anti-symmetric in its internal indices:
Ê ij

µ
= ≠Ê ji

µ
. Hence, it is a 2-form on the internal space. Taking its Hodge dual we obtain the

dual spin connection �i

a
:

�i

a
:= ≠1

2‘i

jk
Ê jk

a
,

or, inverting the equation:
Ê jk

a
= ≠‘ jk

i
�i

a
.

With those elements in hand we can define the Ashtekar-Barbero connection Ai

a
:

Ai

a
:= �i

a
+ “Ki

a
, (6.28)

where “ is the Barbero-Irimizi parameter. This object is a 1-form in space, not spacetime, since
we have done the (3+1) split in defining those quantities.
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6.5 The Curvature Terms

We will now do the (3+1) split in the curvature terms that appear in equations (6.20), (6.21)
and (6.22). Let us remind the definition of the curvature 2-form

F IJ = 1
2F IJ

µ‹
dxµdx‹ ,

whose components are given by
1
2F IJ

µ‹
= ˆ[µÊ IJ

‹] + ÷KLÊ IK

[µ Ê LJ

‹] .

Doing the (3+1) split in the spacetime indices:
1
2F IJ

0c
= ˆ[0Ê

IJ

c] + ÷KLÊ IK

[0 Ê LJ

c] , (6.29)
1
2F IJ

bc
= ˆ[bÊ

IJ

c] + ÷KLÊ IK

[b Ê LJ

c] . (6.30)

With those, we can decompose it in the internal space, using Ê00 = 0, ÷00 = ≠1 and
÷ij = ”ij. Looking into equations (6.20), (6.21) and (6.22) we see that we have four di�erent
terms involving the curvature. Let us write down in the (3+1) internal split each of those terms.
For the first term we get

1
2F 0k

0c
= ˆ[0Ê

0k

c] + ÷mlÊ
0m

[0 Ê kl

c]

= ≠ˆ[0K
k

c] ≠ ”mlK
m

[0 Ê kl

c]

= ≠ˆ[0K
k

c] + ”ml‘
lk

qK
m

[0 � q

c]

= ≠ˆ[0K
k

c] ≠ ‘k
pqK

P

[0 � Q

c] , (6.31)

where we used Êi0
a

= Ki

a
in the second line and in the third we used Êij

a
= ≠‘ij

k
�k

a
.

The second curvature term which appears in the integral is
1
2F kl

0c
= ˆ[0Ê

kl

c] + ÷00Ê
k0

[0 Ê 0l

c] + ÷mnÊ km

[0 Ê nl

c]

= ˆ[0Ê
kl

c] + K k

[0 K l

c] + ”mnÊ km

[0 Ê nl

c]

= ≠‘kl
pˆ[0� p

c] + K k

[0 K l

c] + ”mn‘km
s‘

nl
r� s

[0� r

c]

= ≠‘kl
pˆ[0� p

c] + K k

[0 K l

c] ≠ � k

[0� l

c]. (6.32)
For the third curvature term we have

1
2F k

bc
= ˆ[bÊ

0k

c] + ÷mlÊ
0m

[b Ê lk

c]

= ≠ˆ[bK
k

c] ≠ ”mlK
m

[b Ê lk

c]

= ≠ˆ[bK
k

c] + ”ml‘
lk

qK
m

[b � q

c]

= ≠ˆ[bK
k

c] ≠ ‘k
pqK

p

[b � q

c], (6.33)
and, finally, the last curvature term appearing in the integral is

1
2F kl

bc
= ˆ[bÊ

kl

c] + ÷00Ê
k0

[b Ê 0l

c] + ÷mnÊ km

[b Ê nl

c]

= ≠‘kl
pˆ[b� p

c] + K k

[b K l

c] + ”mnÊ km

[b Ê ln

c]

= ≠‘lk
pˆ[b� p

c] + K k

[b K l

c] + ”mn‘km
p‘ln

q� p

[b�
q

c]

= ≠‘kl
pˆ[b� p

c] + K k

[b K l

c] ≠ � k

[b � l

c]. (6.34)
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6.6 The Ashtekar action and the equations of motion

Now, inserting equations (6.31), (6.32), (6.33) and (6.34) in (6.20), (6.21) and (6.22) we get,
finally, the partial terms of the action completely decomposed in the (3+1) split — in internal
and spacetime indices. As said before, each of these three terms, when developed, will lead us
to constraints in the system, as we will now show.

6.6.1 L1: The first term and the Gauss constraint

From equation (6.20) we have

L1 = ≠ 1
2 ‘̃abcei

a
ej

b

1
”ik”jlF

kl

0c
+ “‘ijkF 0k

0c

2
=

= ‘̃abcei

a
ej

b
”ik”jl

1
‘kl

pˆ[0� p

c] ≠ K k

[0 K l

c] + � k

[0� l

c]
2

+

+ ‘̃abcei

a
ej

b
“‘ijk

1
ˆ[0K

k

c] + ‘k
pqK

p

[0� q

c]

2
.

Opening the anti-symmetrizers and using Ẽi

a
= 1

2 ‘̃abc‘ijkei

a
ej

b
we get

L1 = 1
2‘ijmẼc

m
”ik”jl

Ë
‘kl

p (ˆ0� p

c
≠ ˆc� p

0 ) ≠ K k

0 K l

c
+ K k

c
K l

0 + � k

0 � l

c
≠ � k

c
� l

0
È

+

+ Ẽc

k
“

Ë
ˆ0K

k

c
≠ ˆcK

k

0 + ‘k
pq (K p

0 � q

c
≠ K p

c
� q

0 )
È

,

and using ”ik”jl‘ijm‘kl
p = 2”m

p
we are left with

L1 = Ẽc

p
ˆ0�p

c
≠ Ẽc

p
ˆc�p

0 + 1
2Ẽc

m
‘m

kl

1
� k

0 � l

c
≠ � k

c
� l

0 ≠ K k

0 K l

c
+ K k

c
K l

0
2

+

+ “Ẽc

k

Ë
ˆ0K

k

c
≠ ˆcK

k

0 + ‘k
pq (K p

0 � q

c
≠ K p

c
� q

0 )
È

.

Now remember from equation (6.19) that the L1 term is being integrated in space and time.
Hence, integrating by parts we get, neglecting boundary terms:

≠
⁄

Ẽc

p
ˆc�p

0 =
⁄

�p

0ˆcẼ
c

p

≠
⁄

“Ẽc

k
ˆcK

k

0 =
⁄

“K k

0 ˆcẼ
c

k
.

Then, we have

L1 = Ẽc

p
ˆ0�p

c
+ �p

0ˆcẼ
c

p
+ Ẽc

m
‘m

kl

1
� k

0 � l

c
≠ K k

0 K l

c

2
+

+ “Ẽc

k
ˆ0K

k

c
+ “K k

0 ˆcẼ
c

k
+ “Ẽc

k
‘k

pq (K p

0 � q

c
≠ K p

c
� q

0 ) ,

where in the parentheses of the first line we used the fact that ‘m
kl is anti-symmetric in [k, l]
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and that Akl = 1
2 (Akl ≠ Alk). Grouping now some terms and relabeling some indices we get

L1 =
1
Ẽc

k
ˆ0�k

c
+ “Ẽc

k
ˆ0K

k

c

2
+

1
�k

0ˆcẼ
c

k
+ “K k

0 ˆcẼ
c

k

2
+ Ẽc

k
‘k

ij
�i

0
1
�j

c
+ “Kj

c

2
≠ Ẽc

k
‘k

ij
Ki

0
1
Kj

c
≠ “�j

c

2
=

= Ẽc

k
ˆ0

1
�k

c
+ “K k

c

2
+ ˆcẼ

c

k

1
�k

0 + “Kk

0
2

+ Ẽc

k
‘k

ij
�i

0
1
�j

c
+ “Kj

c

2
≠ Ẽc

k
‘k

ij
Ki

0
1
Kj

c
≠ “�j

c

2
=

= Ẽc

k
ˆ0

1
�k

c
+ “K k

c

2
+ �i

0
Ó
ˆcẼ

c

i
+ Ẽc

k
‘k

ij

1
�j

c
+ “Kj

c

2Ô
+ “Ki

0

I

ˆcẼ
c

i
≠ Ẽc

k
‘k

ij

A
1
“

Kj

c
≠ �j

c

BJ

=

= Ẽc

k
ˆ0

1
�k

c
+ “K k

c

2
+ �i

0
Ó
ˆcẼ

c

i
+ Ẽc

k
‘k

ij

1
�j

c
+ “Kj

c

2Ô
≠ 1

“
Ki

0
Ó
≠“2ˆcẼ

c

i
+ Ẽc

k
‘k

ij

1
“Kj

c
≠ “2�j

c

2Ô
=

= Ẽc

k
ˆ0

1
�k

c
+ “K k

c

2
+ �i

0
Ó
ˆcẼ

c

i
+ Ẽc

k
‘k

ij

1
�j

c
+ “Kj

c

2Ô
≠ 1

“
Ki

0
Ó
≠“2ˆcẼ

c

i
+ Ẽc

k
‘k

ij
“Kj

c
≠ Ẽc

k
‘k

ij
“2�j

c

Ô
=

= Ẽc

k
ˆ0

1
�k

c
+ “K k

c

2
+ �i

0
Ó
ˆcẼ

c

i
+ Ẽc

k
‘k

ij

1
�j

c
+ “Kj

c

2Ô
≠ 1

“
Ki

0
Ó
ˆcẼ

c

i
+ Ẽc

k
‘k

ij

1
�j

c
+ “Kj

c

2Ô
+

≠ 1
“

Ki

0
Ó
≠“2ˆcẼ

c

i
≠ Ẽc

k
‘k

ij
�j

c
≠ Ẽc

k
‘k

ij
“2�j

c
≠ ˆcẼ

c

i

Ô
=

= Ẽc

k
ˆ0

1
�k

c
+ “K k

c

2
+

A

�i

0 ≠ 1
“

Ki

0

B Ó
ˆcẼ

c

i
+ Ẽc

k
‘k

ij

1
�j

c
+ “Kj

c

2Ô
+

+ Ki

0

I

ˆcẼ
c

i

A

“ + 1
“

B

+ Ẽc

k
‘k

ij
�j

c

A

“ + 1
“

BJ

=

= Ẽc

k
ˆ0

1
�k

c
+ “K k

c

2
+

A

�i

0 ≠ 1
“

Ki

0

B Ó
ˆcẼ

c

i
+ Ẽc

k
‘k

ij

1
�j

c
+ “Kj

c

2Ô
+ Ki

0

A

“ + 1
“

B Ó
ˆcẼ

c

i
+ Ẽc

k
‘k

ij
�j

c

Ô
,

where, from the fifth to the sixth line we added and subtracted the term ˆcẼc

i
+ Ẽc

k
‘k

ij
�j

c
inside

the last parentheses of the equation.
Now, using

Ak

c
= �k

c
+ “Kk

c
, (6.35)

and introducing the quantities

–i :=
A

1
“

+ “

B

Ki

0, (6.36)

⁄i := �i

0 ≠ 1
“

Ki

0, (6.37)

Gi := ˆcẼ
c

i
+ Ẽc

k
‘k

ij
Aj

c
, (6.38)

we are left with
L1 = Ẽc

k
ˆ0A

k

c
+ ⁄iGi + –i(ˆcẼ

c

i
+ Ẽc

k
‘k

ij
�j

c
). (6.39)

The last term in parentheses is just d�E, which vanishes. This happens because the
connection � is torsionless, i.e. T = d�e = 0, where e is the frame field in form notation. One
could also write the densitized triad in forms notation via

Ei
ab = ‘i

jkej

a
ek

b
= 1

2[e, e]iab,

hence, it is easy to see that

d�E = 1
2d�[e, e] = [d�e, e] = [T, e] = 0
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indeed vanishes.
Hence, the first term is just

L1 = Ẽc

k
ˆ0A

k

c
+ ⁄iGi, (6.40)

where Gi is called the Gauss Constraint, which generates SU(2) gauge transformations as we
will discuss later.

6.6.2 L2: The second term and the Di�eomorphism constraint

From equations (6.33) and (6.34) in (6.21) we get

L2 = ≠ 1
2Nd‘̃abcei

d
ej

a

1
”ik”jlF

kl

bc
+ “‘ijkF 0k

bc

2
=

= Nd‘̃abcei

d
ej

a
”ik”jl

1
‘kl

p
ˆ[b� p

c] ≠ K k

[b K l

c] + � k

[b � l

c]
2

+

+ Nd‘̃abcei

d
ej

a
“‘ijk

1
ˆ[bK

k

c] + ‘k

pq
K p

[b � q

c]

2
.

Note that ”ik”jl‘kl
p = ‘ijp, and, relabelling some dummy indices we can write

L2 = Nd‘̃abcei

d
ej

a
‘ijkˆ[b� k

c] + Nd‘̃abcei

d
ej

a
”ik”jl

1
� k

[b � l

c] ≠ K k

[b K l

c]
2

+

+ Nd‘̃abcei

d
ej

a

1
“‘ijkˆ[bK

k

c] + “‘ijk‘k

pq
K p

[b � q

c]

2
,

and, grouping some similar terms we are led to

L2 = Nd‘̃abcei

d
ej

a
‘ijk

1
ˆ[b� k

c] + “ˆ[bK
k

c]
2

+ Nd‘̃abcei

d
ej

a
”ik”jl

1
� k

[b � l

c] ≠ K k

[b K l

c]
2

+
+ Nd‘̃abcei

d
ej

a
“‘ijk‘k

pq
K p

[b � q

c].

From the definition of the Ashtekar-Barbero connection one can easily write the first term
in parentheses as ˆ[b� k

c] + “ˆ[bK k

c] = ˆ[bA k

c] . Also, in the last line we can write:

‘ijk‘k

pq
= ÷mk‘ijk‘pqm = ÷mk(”ip”jq”km ≠ ”iq”jp”mk) = ”ip”jq ≠ ”iq”jp.

Then we are left with

L2 = Nd‘̃abcei

d
ej

a
‘ijkˆ[bA

k

c] + Nd‘̃abcei

d
ej

a
”ik”jl

1
� k

[b � l

c] ≠ K k

[b K l

c]
2

+
+ Nd‘̃abcei

d
ej

a
“(”ip”jq ≠ ”iq”jp)K p

[b � q

c] =

= Nd‘̃abcei

d
ej

a
‘ijkˆ[bA

k

c] + Nd‘̃abcei

d
ej

a
”ik”jl

1
� k

[b � l

c] ≠ K k

[b K l

c]
2

+

+ Nd‘̃abcei

d
ej

a
“(K i

[b�
j

c] ≠ K j

[b � i

c]),

and, since the entire expression is being multiplied by ‘̃abc, which is already anti-symmetric in
[bc], we can drop out the anti-symmetrizers:

L2 = Nd‘̃abcei

d
ej

a

Ó
‘ijkˆbA

k

c
+ ”ik”jl

1
� k

b
� l

c
≠ K k

b
K l

c

2
+ “(K i

b
� j

c
≠ K j

b
� i

c
)
Ô

=

= Nd‘̃abcei

d
ej

a

Ó
‘ijkˆbA

k

c
+

1
� i

b
� j

c
≠ K j

b
K i

c

2
+ “(K i

b
� j

c
≠ K j

b
� i

c
)
Ô

. (6.41)

However, the curvature 2-form of the Ashtekar-Barbero connection Ak

c
is defined, in index

notation, as
1
2F k

bc
:= ˆ[bA

k

c] + 1
2‘k

lm
Al

b
Am

c
. (6.42)
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Hence, expanding Ak

c
= �k

c
+ “Kk

c
and contracting both sides of (6.42) with ‘̃abc‘ijk we get

1
2

˜‘abc‘ijkF k

bc
= ‘̃abc

5
‘ijkˆ[bA

k

c] + 1
2‘ijk‘k

lm
(�l

b
+ “K l

b
)(�m

c
+ “Km

c
)
6

= ‘̃abc

5
‘ijkˆ[bA

k

c] + 1
2(”il”jm ≠ ”im”jl)(�l

b
+ “K l

b
)(�m

c
+ “Km

c
)
6

= ‘̃abc

5
‘ijkˆ[bA

k

c] + 1
2(”il”jm ≠ ”im”jl)(�l

b
�m

c
+ �l

b
“Km

c
+ “K l

b
�m

c
+ “2K l

b
Km

c
)
6

= ‘̃abc
Ë
‘ijkˆ[bA

k

c] + ”il”jm

Ó
�l

b
�m

c
+ “

1
�l

b
Km

c
+ K l

b
�m

c

2
+ “2K l

b
Km

c
)
ÔÈ

,

where in the last line we used again the notation for anti-symmetric objects Aµ‹ = 1
2(Aµ‹ ≠A‹µ).

Therefore, subtracting ‘̃abc”il”jm(1 + “2)K l

b
Km

c
from both sides we can write

‘̃abc

;1
2‘ijkF k

bc
≠ ”il”jm(1 + “2)K l

b
Km

c

<
= ‘̃abc

Ë
‘ijkˆ[bA

k

c] + ”il”jm

Ó1
�l

b
�m

c
≠ K l

b
Km

c

2
+ “

1
�l

b
Km

c
+ K l

b
�m

c

2ÔÈ
.

Hence, in equation (6.41) we have

L2 = Nd‘̃abcei

d
ej

a

;1
2‘ijkF k

bc
≠ ”il”jm(1 + “2)K l

b
Km

c

<
,

and since ‘̃abcej

a
= eb

p
ec

q
‘jpq det e (equation (6.26)) we have

L2 = Ndei

d
eb

p
ec

q
|e|‘jpq

;1
2‘ijkF k

bc
≠ ”il”jm(1 + “2)K l

b
Km

c

<

= Ndei

d
eb

p
ec

q
|e|

;1
2(”p

k
”q

i
≠ ”p

i
”q

k
)F k

bc
≠ ”il‘

pq

m
(1 + “2)K l

b
Km

c

<

= Nd|e|
;1

2ei

d
(eb

p
ec

i
F p

bc
≠ eb

i
ec

q
F q

bc
) ≠ ”ile

i

d
eb

p
ec

q
‘pq

m
(1 + “2)K l

b
Km

c

<

= Nd|e|
;1

2
Ë
eb

p
(ei

d
ec

i
)F p

bc
≠ (ei

d
eb

i
)ec

q
F q

bc
)
È

≠ ”ile
i

d
eb

p
ec

q
‘pq

m
(1 + “2)K l

b
Km

c

<

= Nd|e|
;1

2
Ë
eb

p
F p

bd
≠ ec

q
F q

dc
)
È

≠ ”ile
i

d
eb

p
ec

q
‘pq

m
(1 + “2)K l

b
Km

c

<

= Nd|e|
Ó
eb

p
F p

bd
≠ ”ile

i

d
eb

p
ec

q
‘pq

m
(1 + “2)K l

b
Km

c

Ô
, (6.43)

where we used ei

d
ec

i
= ”c

d
in the fifth line and Aµ‹ = (Aµ‹ ≠ A‹µ)/2 in the last one.

We can also express this in terms of the densitized triad Ẽa

i
= |e|ea

i
:

L2 = Na|e|
Ó
eb

p
F p

ba
≠ ”ile

i

a
eb

p
ec

q
‘pq

m
(1 + “2)K l

b
Km

c

Ô

= ≠Na|e|
Ó
eb

p
F p

ab
+ ”ile

i

a
eb

p
ec

q
‘pq

m
(1 + “2)K l

b
Km

c

Ô

= ≠Na
Ó
Ẽb

p
F p

ab
+ ”ile

i

a
eb

p
(1 + “2)K l

b
‘pq

m
Km

c
Ẽc

q

Ô
. (6.44)

Note that, from (6.38) we can write:

Gi = ˆcẼ
c

i
+ Ẽc

k
‘k

ij
(�j

c
+ “Kj

c
)

= ˆcẼ
c

i
+ Ẽc

k
‘k

ij
�j

c
+ Ẽc

k
‘k

ij
“Kj

c

= Ẽc

k
‘k

ij
“Kj

c
,

since ˆcẼc

i
+ Ẽc

k
‘k

ij
�j

c
= d�E = 0.
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Therefore we can write that ‘pq

m
Km

c
Ẽc

q
= ≠1

“
Gp. Hence, in (6.44) we get

L2 = ≠Na

I

Ẽb

p
F p

ab
≠ ”ile

i

a
eb

p

A
1
“

+ “

B

K l

b
Gp

J

.

The part with the Gauss constraint Gp is redundant, its content is already covered by L1.
We are then left with

L2 = ≠NaẼb

p
F p

ab
, (6.45)

or, defining the momentum constraint as

Va := Ẽb

p
F p

ab
, (6.46)

we can write it as
L2 = ≠NaVa. (6.47)

This is called the vector constraint, which is related to spatial di�eomorphisms, as we will
show and discuss later.

6.6.3 L3: The third term and the Hamiltonian constraint

Finally we get, for the third term, from equations (6.33) and (6.34) in (6.22):

L3 = 1
2Nei

a
‘̃abc

3
”ikF 0k

bc
≠ 1

2“‘ijkF jk

bc

4

= Nei

a
‘̃abc”ik

1
≠ˆ[bK

k

c] ≠ ‘k
pqK

p

[b � q

c]

2
+

≠ 1
2Nei

a
‘̃abc“‘ijk

1
≠‘jk

pˆ[b� p

c] + K j

[b K k

c] ≠ � j

[b�
k

c]
2

.

Using equation (6.27) we are left with

L3 = ≠N‘imnẼb

m
Ẽc

nÔ
det Ẽ

”ij

1
ˆbK

j

c
+ ‘j

pq
K p

b
� q

c

2
+

+ 1
2

N‘imnẼb

m
Ẽc

nÔ
det Ẽ

“
Ë
‘ijk‘jk

pˆb� p

c
+ ‘ijk

1
� j

b
� k

c
≠ K j

b
K k

c

2È
,

where we dropped the anti-symmetrizers since the expression is already anti-symmetric in [b, c].
Also, since ‘ijk‘jk

p
= 2”ip, and renaming some dummy indices, we get

L3 = ≠N‘imnẼb

m
Ẽc

nÔ
det Ẽ

1
”ijˆbK

j

c
+ ‘ijkK j

b
� k

c

2
+

+ N‘imnẼb

m
Ẽc

nÔ
det Ẽ

“
5
”ijˆb� j

c
+ 1

2‘ijk

1
� j

b
� k

c
≠ K j

b
K k

c

26
,

and, regrouping some terms:

L3 = N‘imnẼb

m
Ẽc

nÔ
det Ẽ

C

”ij“ˆb

A

� j

c
≠ 1

“
K j

c

BD

+

≠ N‘imnẼb

m
Ẽc

nÔ
det Ẽ

‘ijk

5
K j

b
� k

c
+ 1

2“
1
K j

b
K k

c
≠ � j

b
� k

c

26
.
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Now, plugging Kj

c
= 1

“
(Aj

c
≠ �j

c
) into the equation we are led to

L3 = N‘imnẼb

m
Ẽc

nÔ
det Ẽ

C

”ij“ˆb

A

� j

c
≠ 1

“2 (Aj

c
≠ �j

c
)
BD

+

≠ N‘imnẼb

m
Ẽc

nÔ
det Ẽ

‘ijk

C
1
“

(Aj

b
≠ �j

b
)� k

c
+ 1

2“

I
1
“2 (Aj

b
≠ �j

b
)(Ak

c
≠ �k

c
) ≠ � j

b
� k

c

JD

,

and, developing the equation:

L3 = N‘imnẼb

m
Ẽc

nÔ
det Ẽ

C

ˆb

A

“� i

c
≠ 1

“
(Ai

c
≠ �i

c
)
B

≠ ‘ijk

1
“

(Aj

b
≠ �j

b
)� k

c

D

+

≠ N‘imnẼb

m
Ẽc

nÔ
det Ẽ

‘ijk

C
1
2

I
1
“

(Aj

b
Ak

c
≠ Aj

b
�k

c
+ �j

b
�k

c
≠ �j

b
Ak

c
) ≠ “� j

b
� k

c

JD

=

= N‘imnẼb

m
Ẽc

n

“
Ô

det Ẽ

Ë
“2ˆb� i

c
≠ ˆbA

i

c
+ ˆb�i

c
≠ ‘ijk(Aj

b
≠ �j

b
)� k

c

È
+

≠ N‘imnẼb

m
Ẽc

n

“
Ô

det Ẽ
‘ijk

1
2

Ë
(Aj

b
Ak

c
≠ Aj

b
�k

c
+ �j

b
�k

c
≠ �j

b
Ak

c
) ≠ “2� j

b
� k

c

È
.

Note that the term proportional to ‘ijk is

≠Aj

b
� k

c
+ � k

c
�j

b
≠ 1

2Aj

b
Ak

c
+ 1

2Aj

b
�k

c
≠ 1

2�j

b
�k

c
+ 1

2�j

b
Ak

c
+ 1

2“2� j

b
� k

c
,

which can be simplified as

≠1
2Aj

b
� k

c
+ 1

2� k

c
�j

b
≠ 1

2Aj

b
Ak

c
+ 1

2�j

b
Ak

c
+ 1

2“2� j

b
� k

c
,

or, finally
1
2� k

c
�j

b
≠ 1

2Aj

b
Ak

c
+ 1

2“2� j

b
� k

c
= 1

2(1 + “2)� k

c
�j

b
≠ 1

2Aj

b
Ak

c
.

Hence, we can write the Lagrangian as

L3 = ≠N‘imnẼb

m
Ẽc

n

“
Ô

det Ẽ

Ë
ˆbA

i

c
≠ (1 + “2)(ˆb�i

c
)
È

+

≠ N‘imnẼb

m
Ẽc

n

“
Ô

det Ẽ
‘ijk

51
2Aj

b
Ak

c
≠ 1

2(1 + “2)� k

c
�j

b

6
,

then,

L3 = ≠N‘imnẼb

m
Ẽc

n

“
Ô

det Ẽ

53
ˆbA

i

c
+ 1

2‘ijkAj

b
Ak

c

4
≠ (1 + “2)

3
ˆb�i

c
+ 1

2‘ijk� k

c
�j

b

46

or, using ‘imn = ”ip‘ mn

p
:

L3 = ≠N‘ mn

i
Ẽb

m
Ẽc

n

“
Ô

det Ẽ

53
ˆbA

i

c
+ 1

2‘i

jk
Aj

b
Ak

c

4
≠ (1 + “2)

3
ˆb�i

c
+ 1

2‘i

jk
� k

c
�j

b

46
,
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However, the expressions in parentheses are the equations in components for the curvature
2-forms of the connections Ai

j
and �i

j
, respectively:

1
2F i

bc
:= ˆbA

i

c
+ 1

2‘i

jk
Aj

b
Ak

c
, (6.48)

1
2Ri

bc
:= ˆb�i

c
+ 1

2‘i

jk
� k

c
�j

b
.

Hence, the expression can be written as

L3 = ≠N‘ mn

i
Ẽb

m
Ẽc

n

2“
Ô

det Ẽ

Ë
F i

bc
≠ (1 + “2)Ri

bc

È
. (6.49)

If one defines the scalar constraint C as

C := ≠‘ mn

i
Ẽb

m
Ẽc

n

2“
Ô

det Ẽ

Ë
F i

bc
≠ (1 + “2)Ri

bc

È
, (6.50)

then
L3 = NC, (6.51)

where C is the scalar constraint — or Hamiltonian constraint — and N is just a Lagrangian
multiplier.

6.7 The Hamiltonian as a Linear Combination of Con-

straints

Back to equation (6.19) we can now write the action as

S = 1
“

⁄
dt

⁄
d3x

1
Ẽa

i
ˆtA

i

a
+ ⁄iGi + NaVa + NC

2
, (6.52)

which is the Ashtekar action for classical gravity. From the first term we can see that the
Ashtekar-Barbero connection Ai

b
and the densitized triad Ẽb

i
are conjugate variables. Here,

⁄i, Na and N are Lagrange multipliers. The following terms — already previously defined —
deserve to be highlighted again for the sake of clarity:

• Gauss constraint: Gi := ˆcẼc

i
+ Ẽc

k
‘k

ij
Aj

c

• Vector constraint: Va := Ẽb

i
F i

ab

• Hamiltonian constraint: C := ≠‘ mn

i
Ẽb

m
Ẽc

n

2“
Ô

det Ẽ
[F i

bc
≠ (1 + “2)Ri

bc
]

We can then get the Hamiltonian

H[Ai

a
; Ẽa

i
] =

⁄
d3x

1
⁄iGi + NaVa + NC

2
, (6.53)

with the first class constraints, which generates the expected gauge freedom: the triad rotations
and spacetime di�eomorphisms, which is discussed in the next section.

If one writes the Hamilton equations that result from this Hamiltonian, one will indeed
reproduce Einstein field equations, as expected.
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6.8 Geometrical interpretation of the Constraints

We will now conclude our discussion by developing the geometrical interpretation of the
constraints in the Hamiltonian on Ashtekar’s formulation of General Relativity.

6.8.1 Electromagnetism

Let us first develop the geometrical interpretation of the constraints for a more familiar
theory, classical electromagnetism. The Lagrangian for electromagnetism is

L = 1
4

⁄
d3xFµ‹F µ‹ , (6.54)

where Fµ‹ = ˆµA‹ ≠ ˆ‹Aµ is the electromagnetic tensor and Aµ is the vector potential. It is easy
to see that the zeroth component of the vector potential will not appear with a time derivative,
since Fµ‹ vanishes for µ = ‹. Hence, only spatial derivatives of A0 appear in the Lagrangian,
which means that it does not play a dynamical role. It is, actually, a Lagrange multiplier, as we
will show later.

Hence, being Ab our dynamical variable, its conjugate momentum is given by

fib = ”L

”Ȧb

, (6.55)

which, when one takes the functional derivative of (6.54), gives Ẽb — the electric field. The
canonical variables are then Ab(x) and Ẽb(x), where a stands for spatial coordinates, as usual:
a = 1, 2 or 3 (remember that A0 is not a dynamical variable).

When taking the functional derivative we get a density, as expected, since the Lagrangian is
a volume integral, hence, its integrand must be a scalar density. When one takes a functional
derivative, the integral disappears and the result must be a density. The Poisson bracket of
Ẽb(x) and Ab(x) (which is not a density) is again a density, as expected

Ó
Ab(x), Ẽb(x)

Ô
= ”a

b
”3(x ≠ y).

By the usual Legendre transformation one can build the Hamiltonian

H :=
⁄

d3x
1
Ẽb(x)Ȧb(x) ≠ L̃

2

which, when written in terms of the canonical pairs, gives

H =
⁄

d3x
31

2
Ë
Ea(x)Eb(x) + Ba(x)Bb(x)

È
”ab ≠ A0ˆaEa

4
(6.56)

where Ba = 1
2‘abcFbc is the magnetic field, which is a function of Aa.

Working out the equation of motion for fi0 we get [8]

fi̇0 =
Ó
fi0, H

Ô

= ˆaEa, (6.57)

which should vanish, since fi– = ”L

”Ȧ–

= F –0 is zero for – = 0. Hence, its time evolution should
also vanish. Therefore we get ˆaEa = 0, which is Gauss’s law without the presence of charges.
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This is a constraint, since it implies that we cannot have any Ea for a electric field, but only
configurations for which the divergence is zero. We can now see how constraints are generators
of symmetries. Here, it is good to introduce the idea of a smeared constraint

G(⁄) :=
⁄

d3x⁄ˆaEa,

where the parameter ⁄ is an arbitrary smooth and di�erentiable function of x. Requiring that
the smeared constraint G(⁄) vanishes for all ⁄ is equivalent to requiring that the constraint
itself vanishes at all points of the manifold. This is important to do since we are dealing with
densities and distributions and not with functions itself. Since distributions behave better under
an integral, it will be in most cases easier to deal with the smeared constraint than with the
constraint itself.

Taking the Poisson bracket of the smeared constraint and the Hamiltonian, one finds out
that it vanishes Ó

G(⁄), H
Ô

= 0,

as expected, which means that the Hamiltonian does not change under the transformation
generated by the constraint; hence, the theory and the physics is unmodified, and this is indeed
a symmetry, as expected.

Taking the Poisson bracket of the smeared constraint with the conjugate variables we get
Ó
G(⁄), Ea

Ô
= 0,

which means that the electric field is unchanged under the transformation generated by the
constraint. And, finally, one can compute that

Ó
G(⁄), Aa

Ô
= ˆa⁄,

which means that the vector potential may change by the gradient of a function ⁄(x). We
already knew that the vector potential is defined up to the gradient of a function, which is a
gauge freedom of the theory. Therefore, we see that the constraints give rise to symmetries,
which are revealed in the gauge freedom of the system. In this context, Gauss law is called the
generator of gauge transformations, since it comes up as a constraint and it gives rise to the
gauge freedom that we have in choosing the potential vector Aµ. Moreover, A0 is the Lagrange
multiplier of the constraint ˆaEa, as we mentioned previously.

By computing the time evolution of the canonical variables Aa and Ea one can recover the
rest of Maxwell equations

Ȧa =
Ó
Aa, H

Ô
= Ea + ˆaA0

Ėa =
Ó
Ea, H

Ô
= ‘abcˆbBc

where it is easy to note that the evolution depends on the choice of the Lagrange multiplier A0,
which makes the vector potential defined only up to the gradient of a function ⁄(x), which is
the gauge symmetry of Maxwell’s theory.

6.8.2 Gravity

We may now apply the same reasoning to the Hamiltonian in (6.53) in terms of the conjugate
canonical pair Ẽa

i
and Ai

a
.
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We can introduce a combination of the vector and Gauss constraints, which we call the
di�eomorphism constraint:

Ca = Va ≠ Ai

a
Gi. (6.58)

Writing the smeared di�eomorphism constraint V as

C(N̨) =
⁄

d3xNaCa

and computing the Poisson bracket of this smeared constraint with a function of the canonical
coordinates f(Ẽ, A), one gets Ó

C(N̨), f(Ẽ, A)
Ô

≥ L
N̨

f, (6.59)

which states that the orbit generated by the constraint in phase space is just the Lie derivative
along Na, up to a constant factor that depends on the choice of renormalization. Therefore, this
is called the di�eomorphism constraint, since it generates infinitesimal spatial di�eomorphism
transformations.

One can also smear the Gauss constraint Gi and get

G(⁄) =
⁄

d3x⁄iGi,

which generates the infinitesimal gauge transformation
Ó
G(⁄), A

Ô
≥ dA⁄ (6.60)

and also Ó
G(⁄), E

Ô
≥ [⁄, E] (6.61)

which are the SU(2) gauge transformations.
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GR, so the decomposition of the metric gab in its spatial part hab will be necessary for one to
define a time parameter in order to talk about the evolution of the system, which is necessary if
one wants to build a Hamiltonian representation of the system.

This allowed us to develop a Hamiltonian formalism for GR — the ADM formalism —
where we could write a Hamiltonian as a sum of constraints multiplied by Lagrange multipliers.
This provided a Hamiltonian representation of the dynamics of the spacetime geometry. The
canonical variables here are the induced metric hab and its conjugate momenta fiab. With this
Hamiltonian it becomes possible to study the spacetime dynamics in a canonical way, using
every tool of the Hamiltonian formalism.

We then developed the tetrads formalism. Here, we replaced the metric gµ‹ as the main
dynamical variable for the tetrads eI

µ
and eJ

‹
. Since Riemannian manifolds are locally flat,

one can always choose an orthonormal basis of vectors {e0, e1, e2, e3} for each point P on the
manifold M , and that is the starting point of this new formalism. The tetrads contain the
same geometrical information from the manifold as the metric gµ‹ , since they are related via
gµ‹ = eI

‹
eJ

‹
÷IJ . Hence, by taking the determinant, we get g = ≠e2 and the tetrad is just the

square root of the metric and it has, therefore, all the information about the geometry of the
manifold. We can thus consider the tetrad as the fundamental description and the metric as a
derived concept.

We then built the two Cartan’s structural equations. The first one was deI + ÊI
KeK = 0,

which allowed us to find the spin connection Ê if we had the tetrads e. The second one was
F K

J = dÊK
J + ÊK

LÊL
J , which allowed us to find the curvature 2-form F K

J
. So, given a metric,

one chooses a basis of tetrads eI , founds the spin connection and then the curvature 2-form with
both of Cartan’s structural equations.

Since we had the relation between F IJ and the Riemann curvature tensor Rfl

µ‹‡
, we were then

able to translate the Palatini action in terms of the tetrads and the curvature 2-form F. This
action led us to the same conclusions that we arrived before, only now in a di�erent language —
the Einstein field equations and the metric compatibility equation in the notation of di�erential
forms. Finally, we did a slight modification in this action, by introducing a parameter “, the
Barbero-Immirzi parameter. This did not change the equations of motion, but we were led to a
more general action — the Holst action.

Finally, we developed the Hamiltonian formalism using the Holst action, which led us to the
formulation of GR in terms of some new variables — the Ashtekar-Barbero connection Ai

a
and

the densitized triad Ẽb

j
. In a way, we mixed what was developed in the last two chapters, since

the main idea here consisted in developing a Hamiltonian formalism after we did the (3+1)-split
of the geometry. However we have used the Holst action instead of the Einstein-Hilbert one,
hence, our variables were in terms of the triads — the spatial part of the tetrads — and not
the 3-metric hab. Although the development was extensive, the steps followed in this part led
us to the construction of a constrained Hamiltonian for GR, which allowed us to extract some
symmetries of the system, the constraints giving rise to gauge transformations.

This puts us one step behind the quantization of gravity. In the Hamiltonian formalism,
one can promote the Poisson brackets to commutators and the conjugate variables to operators,
and, at least in theory, quantize gravity. The path followed for the canonical quantization of
gravity in this approach with the Ashtekar formulation of gravity is known as loop quantum
gravity, which can be studied in a future work.
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we have that

”F IJ

µ‹
= ˆ[µ”ÊIJ

‹] + ÊI

[µK
”ÊKJ

‹] ≠ ÊJ

[µK
”ÊIK

‹]

= D(”ÊIJ)µ‹

or, suppressing the spacetime indices

”F IJ = D(”ÊIJ)
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This quantity is the same in any coordinate system, which is why it is not a tensor. However
we can relate the tensor density Ã to the proper tensor A via

Ã =
1
|g|1/2

2
Ê

A

where Ê is the weight of the tensor density and g stands for the determinant of the metric.
One can show that

‘̃µ‹‡fl = |g|1/2‘µ‹‡fl

and thus the Levi Civita symbol is a tensor of weight +1.
For the indices (IJKL), we have not used the tilde since those indices are of the internal

flat space, and, hence, ‘IJKL is actually a tensor and not a density.
It is also possible to define the 3-dimensional symbol as ‘̃abc := ‘̃0abc, which could also be

done for 2D or 1D. The same could be done for the (IJKL) indices in the internal space.


