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Resumo

A teoria da relatividade geral surge em 1915, e seu palco matematico é uma variedade
quadridimensional Lorentziana. Nosso objetivo sera explorar diferentes linguagens e formu-
lagoes da teoria, com diferentes parametros atuando como variaveis dinamicas. Iniciaremos
com a formulagao original desenvolvida por Einstein e passaremos entao para a formulagao
lagrangeana da teoria, desenvolvida primeiramente por Hilbert. Desenvolveremos entao
duas formulagdes hamiltonianas da gravitacdo, baseadas em uma folheacao (3+1) do
espago-tempo. A primeira serd feita com o uso da métrica tridimensional como variavel
dindmica. Tal formalismo é conhecido como formalismo ADM da relatividade geral e
possibilita a constru¢ao de uma Hamiltoniana para a teoria em termos de vinculos e
multiplicadores de Lagrange. Por fim, analisaremos a formulagao hamiltoniana baseada na
acao de Holst, em termos das variaveis de Ashtekar. Tal formulacdo é um dos caminhos
possiveis para a quantizacdo do campo gravitacional, na abordagem conhecida como

gravitacao de lacos.

Palavras-chave: Relatividade Geral, Gravitacao, Formalismo Hamiltoniano, Varidveis de

Ashtekar, Gravitacao Quantica de Lagos



Abstract

The theory of general relativity emerges in 1915, and its mathematical stage is a four-
dimensional Lorentzian manifold. Our goal will be to explore different languages and
formulations of the theory, with different quantities playing the role of dynamical variables.
We will start with the original formulation of the theory developed by Einstein, and then
pass to the Lagrangian formulation, first developed by Hilbert. Then we will develop two
Hamiltonian formulations of gravity, based on a (3+1) foliation of spacetime. The first will
be done with the three-dimensional spatial metric as dynamical variable. Such a formalism
is known as the ADM formalism of general relativity and allows for the construction of a
Hamiltonian for the theory in terms of constraints and Lagrange multipliers. Finally, we
will analyze the Hamiltonian formalism based on the Holst action, in terms of Ashtekar
variables. This formulation provides a possible path for the canonical quantization of the

gravitational field, in the approach known as loop quantum gravity.

Keywords: General Relativity, Gravitation, Hamiltonian Formalism, Ashtekar Variables,

Loop Quantum Gravity



Contents

1 Introduction

2 Manifolds, Topology and Differential Geometry

2.1

2.2

2.3

2.4

3 The
3.1
3.2
3.3

3.4

4 The
4.1
4.2

Manifolds . . . . . . .
2.1.1 Introduction . . . . . . . . . ... ...
2.1.2 Topology . . . . . . . ..

2.1.3 The manifold . . . . ... ... ... ... ... ... .
Vectors . . . . . .
2.2.1 Introduction . . . . . . . . . ...
2.2.2 Tangent Vectors . . . . . . . ... ...
2.2.3 LieBracket . .. .. ... ...
Differential Forms . . . . . . . . . . . . . ... ...
2.3.1 Introduction . . . . . . . . . ...
2.3.2  The Tangent and Cotanget spaces . . . . . . . . ... ...
2.3.3 Wedge product and p-forms . . . ... ... ... ... ..
2.3.4 The exterior derivative . . . . . . . . . . .. .. ... ...
2.3.5 The Hodge Star operator . . . . . . .. ... ... ....

Tensors . . . . . . e
2.4.1 Definition . . . . . . ...

2.4.2 Metric tensor . . . . .. ...
2.4.3 Covariant derivative . . . . . . . ... .. ... ... ...

traditional formulation of GR

Introduction . . . . . .. . ...

Equivalence Principle . . . . . . . . .. ... oL
The classical formulation of GR in four steps . . . . . . .. . . ..
3.3.1 Equation of motion . . . . . .. .. ... ... .. ... ..
3.3.2 Newtonian limit . . . . . .. .. .. .. ... ... .....
3.3.3 Riemann Curvature Tensor. . . . . .. . ... ... ....
3.3.4 Bianchi’s identity . . . . . . ... ... L.
3.3.5 Einstein’s field equations . . . . . . .. ... ...
The Lagrangian Formulation of GR . . . . .. .. ... ... ...
3.4.1 The Einstein-Hilbert action . . . . .. .. ... ... ...
3.4.2 The Palatini action . . . . . .. .. ... ... ... ....

Hamiltonian Formulation of GR

Introduction . . . . . ... ...
Constrained Systems . . . . . . . . .. .. .. .. ... ... ...
4.2.1 The Lagrangian formalism . . . . . ... ... .. ... ..



CONTENTS

5

6

7

4.2.2 The Hamiltonian formulation . . . . . . .. ... ... ... ... ....
4.2.3 Poisson Brackets . . . . .. ...
4.2.4  Gauge Transformations . . . . . . . .. ... ..o oL
4.3 Spacetime 3+1 decomposition . . . . . . ... Lo
4.3.1 Introduction . . . . . . . ...
4.3.2 Geometry of Hypersurfaces. . . . . . . . . . .. .. ... ... ...
4.3.3 Metric decomposition . . . . . . ...
4.3.4 Time derivatives . . . . . . . . .
4.3.5 Metric decomposition . . . . . . ...
4.3.6 Intrinsic and Extrinsic Geometry . . . . .. ... ... 0oL
4.3.7 Curvature relations . . . . . . . . . ...
4.4 The ADM formalism . . . . . . . . . . ...
4.5 The equations of motion . . . . . .. .. ...

Tetrads Formalism and Palatini Action

5.1 Introduction . . . . . . . . . .
5.2 Tetrad formalism . . . . . . . . ...
5.3 Connections via tetrads . . . . . . . . . . .
5.4 Curvature and Torsion via tetrads . . . . . . . . .. ... ... ... ... ...
5.5 Cartan’s view of Riemannian geometry . . . . . . . ... ... ... ...

5.5.1 The 2-sphere . . . . . . . ..
5.6 The Palatini action . . . . . . . . . ..

5.6.1 The covariant notation . . . . . . . . . ... ... ..
5.7 The Holst action . . . . . . . . . . . .

5.7.1 Forms notation . . . . . . . . . . ...

Ashtekar Formulation of GR

6.1 Introduction . . . . . . . . . . e
6.2 Triads and Time Gauge . . . . . . . . . . . .
6.3 The space-time split . . . . . . . .. ...
6.3.1 The Holst Action . . . . . . . . . . . . . ...
6.3.2 The3+1split . . . . . . . .
6.4 The Ashtekar-Barbero Variables . . . . . . . . . . . . ... ... ... .. ....
6.4.1 Densitized Triad . . . . . . . . ..
6.4.2 Ashtekar-Barbero Connection . . . . . . . . . . .. .. ... .. .. ...
6.5 The Curvature Terms . . . . . . . . . . . . . .
6.6 The Ashtekar action and the equations of motion . . . . . . ... ... .. ...
6.6.1 Li: The first term and the Gauss constraint . . . . . . . . . ... ....
6.6.2 Lo: The second term and the Diffeomorphism constraint . . . . . . . ..
6.6.3 Lj3: The third term and the Hamiltonian constraint . . . . . . . . .. ..
6.7 The Hamiltonian as a Linear Combination of Constraints . . . . . . ... .. ..
6.8 Geometrical interpretation of the Constraints . . . . . . . . . .. .. ... ...
6.8.1 Electromagnetism . . . . . . . ... L oL
6.8.2 Gravity . . . . ..
Conclusion



CONTENTS

Appendices

A Spin Connection and Lie Algebra 97
B Useful formulas for tetrads relating the Levi Civita symbol 98
C Bianchi and Palatini identities 99

D Tensor vs Tensor Densities 101



12

Chapter 1

Introduction

Good physics is done a priori.
Theory precedes the fact. The
experience is useless because,
before any experience, we
already had the knowledge that
we seek.

A. Koyré

Einstein’s General theory of Relativity allowed us to explore the history of the universe in
ways never done before. Just as Galileo did in the seventeenth century, Einstein had developed
a new concept of space and time in his head, based on the equivalence principle and a lot of
creativity. Subsequent experiments, such as the 1919 measurement of light deflection in Sobral
and Principe, or the recent 2015 detection of black hole collision by the Laser Interferometer
Gravitational-Wave Observatory (LIGO) showed the power, precision and revolutionary aspects
of this new theory.

General Relativity (GR) considers a 4-dimensional manifold — the spacetime — as the
center object of study. The geometrical properties of this manifold is given by the metric g,,,
and the evolution of the metric is how we study the history of spacetime in this paradigm.

One of the first results of the theory was the correct measurement of the precession of
Mercury’s perihelion, a fact known since Newton’s theory of gravitation, but, since then,
inexplicable using the same theory. Also, the measurement of the bending of light in gravitational
fields in 1919 was a huge step towards the establishment of the theory and so were the
measurements of the gravitational redshift done in 1925 by the american astronomer Walter
Sidney Adams and by Popper in 1954 [12].

This is the first physical theory to use some very abstract concepts of mathematics, such as
topology and differential geometry. The theory, built by Einstein using geometrical concepts and
the Newtonian limit, or built by Hilbert using the Lagragian formalism, can be formulated in
many different ways, using different objects playing dynamical roles. And the different languages
that can be used to formulate the theory will allow us to explore different symmetries or concepts
of spacetime.

So, for instance, we could see the high school relation (a + b)? = a* + 2ab + b* in a pure
algebraic way, which may allow us to extract some information about algebra. On the other
hand, one can choose to see this relation geometrically, as shown in figure 1.1, which will
certainly enable him to see other aspects of the relation — the geometrical ones.

The best scenario would be to have the two points of view, or, if it is possible, all of them
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b b?

Figure 1.1: The square of the sum

that will lead us to build a broader view of the big picture.

This is our goal: to explore the different languages of spacetime. Therefore, in this work, we
will explore some different ways to write the formalism of GR, with different variables playing
the dynamical role. We will start with the first formalism developed by Einstein, then we will go
to the Lagrangian formalism, done first by Hilbert, and finally we will end up in some different
Hamiltonian formulations of the theory, one in terms of the metric, which is known as the ADM
formalism, and another one in terms of some other variables — the Ashtekar variables — which
is one possible path to quantize the theory of gravity.

The present work is organized as follows. In Chapter 2 we will set the mathematical
background and conventions that will be used along the dissertation. The essence will be
differential geometry, tensor calculus and the establishment of some notations. In Chapter 3
we will recover the main concepts of the formulation of GR done by Einstein and the main
geometrical objects in this theory, like the metric, the Riemann curvature tensor and the
connection. We will also discuss Einstein’s equivalence principle, the base upon which GR lays.
Furthermore, we are going to do here the Lagrangian formulation of GR, via Einstein-Hilbert
action and also via the Palatini action, where we will let the connection play a dynamical
role in the theory. In Chapter 4 we will review the formalism and structure of constrained
Hamiltonian systems, and then we will apply it to the Hamiltonian formulation of GR — the
ADM formalism. We will build this formalism in detail, via the foliation of spacetime, where it
will be split in spatial slices evolving through time. This (3+1) split will allow us to tell the
history of spacetime as the time evolution of these spatial slices. With these, we will be able to
build an action for gravity in therms of a 3-metric hy, in those slices — this will be the main
dynamical variable of our formalism. We will end up with a constrained Hamiltonian system,
and the symmetries of spacetime will be expressed as constraints in the Hamiltonian.

In chapter 5 we will construct the tetrad formalism, where we will trade the metric g, for
the local orthonormal frame eﬁ as the dynamical variable. We will build all the formalism in
terms of these new variables using Cartan’s structural equations of differential geometry, ending
with the Holst action in forms notation, which will be used for the next formalism. Finally, in
chapter 6 we are going to mix up the two previous formalisms to build the Ashtekar formulation
of GR, which is essentially the construction of the Hamiltonian formalism using triads as the
dynamical variables in place of the metric. We will do the same (341) split, where the spatial
part of the tetrad elﬂ will be Ei — the triad, our main dynamical variable. This formalism,
developed by Ashtekar in the mid 1980s, consists in rewriting the theory of GR in terms of
some variables that made the theory resemble the theories of particle physics, which allowed the
importation of techniques from particle physics to the quantization of gravity. This approach is
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known as loop quantum gravity.
Finally, we will introduce present our conclusions and discuss future developments in chapter
7.
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Chapter 2

Manifolds, Topology and Differential
Geometry

Let no one ignorant of geometry
enter.

Plato’s Academy

2.1 Manifolds

2.1.1 Introduction

The arena of differential geometry is a differentiable (or smooth) manifold. The kind of
manifolds we are going to deal here will be spaces that locally look as R™, but not globally. Just
as the Earth can be locally flat in a first approach where, locally, it looks just like Fuclidean
space.

One important thing is the fact that the differential geometry formalism will allow us to
define objects in manifolds in a coordinate-independent manner, which is something that we
seek, since the general laws of nature are to be expressed by equations that hold good for all
systems of coordinates, i.e., in a generally covariant way. That is what general relativity is
about: the generalization of the Galileo’s principle of relativity for all coordinate systems, not
only the inertial ones.

2.1.2 Topology
Definition of topological space

A topological space is a set X, together with its subsets (called the open sets), which satisfy:
o The empty set and X itself are open.

e If UV € X are open, soisU NV.

o If the sets U, are open, so is the union U U,.

The collection of open sets is called the topology of X.
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Continuous function and homeomorphism

The notion of continuos functions is allowed by the use of a topology. Suppose we have
the two topological spaces X and Y, and the function f : X — Y. This function is said to be
continuous if, for any open set U € Y, its inverse image f~!(U) € X is also an open set in X,
as is shown in figure 2.1.

K Y
$
s

Figure 2.1: Continuous function from X to Y.

If the map f is a continuous and bijective between two topological spaces, whose invese is
also continuous, then f is called a homeomorphism.

2.1.3 The manifold

Our idea here is to cover a space with patches that are locally just as R™.

We say that a collection of open sets U, covers a topological space X if their union is all of
X.

For an open set U € X we define a chart to be a continuous function ¢ : U — R" with a
continuous inverse (where this inverse has its domain in ¢(U) € R", just as figure 2.2 shows.)

{ ) R
17
X

Figure 2.2: Charts.

The idea is that, as long as we work in the chart ¢ we can pretend we are in R", just as the
Earth looks perfectly flat if we do not go too far. Suppose, for example, we have a function
f:U — R. We can turn it into a function from R" — R using f o ¢!, as figure 2.3 shows.
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< ?
Figure 2.3: Turning functions in U in functions in R™.

Definition

A topological n-dimensional manifold M is a topological space such that every point has a
neighbourhood U homeomorphic to an open subset in R".

The manifold M is differentiable if the transition function ¢_! o 4 is smooth where it is
defined.

Some topological manifolds — the differentiable ones — M can be represented as a union of
finite set of coordinate charts U, and the set of coordinate charts 1, that cover M is called an
atlas on M.

The idea is that every point in a differentiable manifold lives in some open subset U, that
looks like R™, and that we can tell if any function on the manifold is smooth by looking at
transition functions between charts. If there is a function f : M — R and one uses a chart
Yo : Uy — R™ then we say that f is smooth if

foo ' :R" =R

is smooth.

But one could instead use a chart ¢g : Ug — R"™. In this case, consider V = U, U Ug the
overlap of the two charts, the grey area represented in figure 2.4. The representation of f in
this chart is

fo go/gl :R" = R.

This function should also be smooth, for the smoothness of a function does not depend on the
chart we use.
But for that to be true, we need

Pa O Q5"
to be smooth, since
fowg'=(fowa")o(paows').
From now on, when we mention any manifold, we will always be referring to a smooth
manifold, as defined above.
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dE=N

A (D 1 ©

? ﬁ\)

Figure 2.4: A manifold M.

Diffeomorphism

An isomorphism is a structure-preserving mapping between two structures of the same type
that can be reversed by an inverse mapping. An homeomorphism, as previously defined, is an
isomorphism of topological spaces. A diffeomorphism is a homeomorphism that preserves a
differential structure.

Definition 2.1.1. Given two manifolds M and N, a differentiable map f: M — N is called
a diffeomorphism if it is a bijection and if its inverse f~': N — M is also differentiable.

A map f from a manifold M to another manifold N can be built if one has the maps
g: M~ Rand h: N+ R, as shown in figure 2.3, by the composition A=t o g.

If there exists a diffeomorphism f between M and N we say that these two manifolds are
diffeomorphic. We will consider the spacetime as a 4-dimensional differentiable manifold.

2.2 Vectors

2.2.1 Introduction

One can think of a vector field in a manifold as a field of arrows, tangent to the space in each
point, as it is in R”. If we have a direction, we can differentiate a function f in that direction.
The partial derivative of f in the direction of a vector v is, in R™:

vf=v-Vf=v"9,f,

where we are thinking of the vector v as something whose purpose is to get a function f and
spit out another function, which is the partial derivative of f in the v direction, that’s why we
wrote it as vf (something like v is an operator acting on f).

If we look at the first and last member we have vf = v*9,, f, which holds for every function
f, so one may think that we can say that a vector field v can be written as

v =0"0,, (2.1)
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which says that the vector field v can be expanded in the basis J,,.

Here, v is the vector field, while v#0,, is something that acts on a function and give its partial
derivative. For us, a vector field on a manifold will be exactly that: entities whose main purpose
is to differentiate functions.

Figure 2.5: Vector Field.

Definition

A vector field v on a manifold M is a function from C*°(M) to C*(M) satisfying:

e u(f+g)=0v(f)+v(g)
o v(af) = av(f)
« v(fg)=v(f)g+ fulg)

fora € Rand f,g € C*°(M). Here, C*°(M) stands for the set of all complex functions infinitely
differentiable in M, as usual.

So it is an object that acts linearly on functions and obeys the Leibniz rule. If we denote
by V(M) the set of all vector fields in a manifold M one can show that this is indeed a vector
space, as expected.

2.2.2 Tangent Vectors

One can visualize a vector field v in a manifold M as assigning an arrow to each point P in
the tangent space of the manifold. The tangent vector at each point P in M is the vector v,
living in the tangent plane at P, as showed in figure 2.6

We can differentiate the function f in the direction of the vector field v, represented by v f,
and evaluate it in the point p € M. We will call this v, f — the tangent vector in the point P.

So we have

v CF(M) =R, v,(f) =v(f)(p)
where the last line means the partial derivative of f in the direction of the vector field v evaluated

at point P.
It follows immediately that
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Figure 2.6: Tangent Space.

* Up(f +9) = Up(f) + Up(g)
o vp(af) = avy(f)
« v(f9) =vp(f)g + fup(9)

and we call the tangent vector v, at point P the function C°° — R that satisfies these 3
properties.

We call T),(M), the tangent space at P, the set of all tangent vectors at p € M. The tangent
space is indeed a vector space, with the sum of tangent vectors and the multiplication by a
scalar defined in the natural way

o (vp+wp)(f) = vp(f) +wp(f)
o (avy)(f) = auvy(f)

2.2.3 Lie Bracket

We define the Lie Bracket of two vectors v and w as
[v, w] = vw — wo, (2.2)
which is just a short notation for

[0, w](f) = v(w(f)) — wlv(f))-

So, if v and w are vector fields, the Lie bracket [v,w] is also a vector field, since its entry is
a function f € C°°(M) and it spits out another function in C*°(M).

For the basis vector d, and 0, the Lie bracket is evidently zero, which follows from the
commutation of partial derivatives:

0,0, = 0,0,,.

Geometrically this can be thought as flowing a little bit in the 0, direction and then a little
bit in the 0, direction. If we invert the order we end up in the same place, at least in flat space.

For general vector fields this is not necessarily true, and the Lie bracket measures the
difference between these who tracks, the failure of the two vector fields to commute, as shown
in figure 2.7.

The Lie derivative £,,v of a vector v in the direction along w is defined as

L, = [w,v], (2.3)
which is the derivative of v along the flow [16] generated by w.
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Figure 2.7: Lie Bracket.

2.3 Differential Forms

2.3.1 Introduction

The initial idea is to generalize the notion of the gradient of a function to functions on
arbitrary manifolds.

For a function f on R™ we have its gradient expressed by Vf. Here, we will define an
operator d — the exterior derivative — and its action on a function f defined on an arbitrary
manifold M will be expressed as df, and it will generalize the idea of the gradient in a first
approach.

In R”™, the directional derivative of f in the direction of the vector v is just the dot product
between v and the gradient of f:

Vf-v=uf, (2.4)
where in the last step we have written the vector v in the vector basis 0,
v =",
hence of
vf =040, f :v“@ =V/[f- v

So, we are after an object df that keeps track of the derivative of f in all directions in
the manifold M, just as the gradient does. In R", the gradient of f is a vector field, and the
directional derivative is calculated via a dot product, as shown before. But, taking dot products
involves a choice of metric, and manifolds, in general, do not come pre-equipped with it. So, we
will leave the choice of a metric to a further development. Hence it would be nice if, in a first
approach, the df which will generalize the gradient was not a vector field, so that it would not
be necessary to take a dot product in order to extract the directional derivative information.

We will call our df here a 1-form, and it will have the same properties as the gradient does,
so to speak, for each input vector v the operator df - v = v f spits out a scalar function, which is
the directional derivative of f in the direction of v.

So, our df, when fed with a vector v € V(M) (the tangent vector space in a manifold M)
will spit out a function g € C*°(M), and it will do it in a linear way, such as the gradient does:

df -(v+u)=df -v+df -u,
df - (gv) = g (df -v) , (2.5)
for g € C*(R").
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Definition 2.3.1. A 1-form w on a manifold M is a map from V(M) to C°(M) that is linear
over C*°(M).

So, a 1-form w receives a vector v from V(M) and spits out a function w(v) such that:

wv+u) =w) +w(u),
w(gv) = gw(v), (2.6)
where g € C*°(M). We represent the space of all 1-forms in a manifold M by Q!(M).

The exterior derivative as the generalization of the gradient

A simple example of a 1-form is, for any smooth function on M, the 1-form defined by:

df (v) = vf, (2.7)

which is just a slick way to write the directional derivative, as observed in (2.4). We can see
that this is really a 1-form by checking linearity:

df(v+u) = (v+u)f =vf +uf = df(v) + df (u),

and
df (gv) = (gv)f = g(vf) = gdf (v).
The 1-form df is called the differential of f, or the exterior derivative of f.

Composition

The addition of two 1-forms w and g and multiplication by a scalar (function) ¢ is defined
via
(w =+ ) (v) = w(v) + p(v) (2.8)
and

(gw)(v) = gw(v). (2.9)

2.3.2 The Tangent and Cotanget spaces

Let us see what the exterior derivative is in any manifold, working in local coordinates.
From equation (2.7) we can conclude that the 1-forms dz* form, at each point P, a local basis
of 1-forms in 7 (M) — the dual space of T,(M) — because, when we feed the 1-form dz* with
a basis vector of the tangent space 0, we get

_ Oxt
- Oz
So, if d, is a basis of the tangent space on a manifold M and the action of the 1-forms

dx” on that basis gives the Kronecker delta, then dz” is also a basis in the cotangent space.
Therefore any 1-form w € Q'(M) can be expanded and written in a unique form as

dz"(9,)

= 5",

w = w,da”, (2.10)
with
wy = w(0y).

To see that this is the case, we just need to verify that the action of w and w,dx* on a vector
v are the same:
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1. wv) =w@d,) =1v"w,
2. wydat(v) = wydat (v70,) = vVw, (0, dat) = v'w,(04) = w,v”
which proves the statement.

One can then see the 1-forms as actually dual vectors. Just as a vector field v at M gives a
tangent vector v, at each point P of M, we can assign a cotangent vector w, at each point P of
M. The space of all cotangent vectors at P, as mentioned before, is called T7 M. The cotangent
vector w at P is rigorously defined to be a linear map from the tangent space 7,M to R.

So, if we have a vector field v on M, we can define the cotangent vector field as

w(v) = w,dztv"0, = w,vt, (2.11)

which is indeed a map w(v) : T,M — R.

This really means that the 1-forms are the dual vectors of v. This is so since the dual vector
space of V' is the space V* of all linear functionals w : V' +— R. Hence, the cotangent space T M
is the dual vector space of T),M.

It is important to note that, if we have a linear map f from one vector space V' to another
W

f: V=W,
we can automatically get a map f*, the dual of f, from W* to V*
oWt v
that is defined by
(fw)(v) = w(f(v)). (2.12)

For this we call the cotangent vectors covariant: linear maps between vector spaces gives rise
to maps between their duals that go backwards. This is the convention used in [5], probably
because this objects transforms with the same Jacobian matrix of the linear transformation
itself, while tangent vectors transforms with its inverse, hence, they are called contravariant.
We will develop more on this shortly.

So, if ¢ is a linear map between the tangent spaces at two different points P and Q in M

¢ : T,M s T,N,

the dual map goes the other way
" TyN — ToM.
We call ¢*w the pullback of w by ¢.
In coordinates this means that the 1-forms, when we do a coordinate transformation, will
transform with the inverse of the matrix that transform the coordinates of the vectors.
For instance, let the vector v be expressed in two different coordinate systems z* and z'”

v =09, =v"0,. (2.13)

The object v is naturally the same, but its components v or v" are not, since they depend

on the choice of basis d,, or 9, where the components are written.
Ox*

Since 0/, = ——0,, then, in (2.13):

o axnj

a v
V= aiu "3 (2.14)
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and the components of the vector transforms with the inverse of the Jacobian matrix of the
change of coordinates. Objects that behave this way live in the tangent bundle T'M and are
called contravariant.
However, for a 1-form w, its components w, and wj, in the two coordinates systems are
related via
w = w,dr" = w,dz'", (2.15)

v

oz

and since dz’’ = dx* we can see that the components of w are related by

,  Oxt
v g

which states that they transform with the Jacobian matrix of the change of coordinates. Objects
that behave this way lives in the cotangent bundle T* M and are called covariant.

w (2.16)

A little more on the exterior derivative

We defined df in such a way that when fed with a vector v it spits out the directional
derivative of v, if we are in R". But we also know that v = v*9,, so:

df (v) = V"0, f,
but df = f,dz", then

df (v) = fuda"(v"0,) = v" fudy = v fy,

hence, comparing with the first one, we have f, = 0, f and then

df = 0, fda". (2.17)

Therefore, the exterior derivative of scalar function is just its gradient in R".

2.3.3 Wedge product and p-forms

In order to generalize the cross product in R3, which is anticommutative, we define the
wedge product A of 1-forms w and u as

WA pt=—pAw. (2.18)

We can actually define the differential forms on M, denoted by Q(M), to be the algebra
generated by Q'(M) with the relations in equation (2.18).

The 0-forms, Q'(M), are the functions, and we define the wedge product of a a function
with a differential form to be the ordinary product: fAw = fw.

The elements that are a linear combination of a product of p 1-forms are called p-forms, and
the space of all p-forms in M is QP(M). Of course, the space of all differential forms in M is
then the direct sum of the subspaces:

QM) = P (M).

The 1-forms are given by w,dxz#, with the coefficients w, being functions.
2-forms look like

1
iwwdx“ A dzx”,
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where the factor of 1/2 is inserted since dz* A dx¥ = —dz¥ A dx#. The (dz* A dz¥) term is the
basis of 2-forms.
In general, a p-form looks like

1
— Wy Az Ndx” N\ NdaT,
p!

where the product of p 1-forms dz* A dx” A --- A dx” is the basis of all p-forms.

2.3.4 The exterior derivative

We can then extend the definition of the exterior derivate d to generalize the gradient, the
divergence and the curl in any dimensions. The exterior derivative is defined to be the operator
d

d: QP(M) — QPTH(M) (2.19)

satisfying
o d:Q%M)— QM) agrees with the previous definition
o d(w+p) =dw+duand d(cw) = cdw for all w, € Q(M) and ¢ € R
o dlwAp)=dwAp+ (—1)Pw Adu for all w € QP(M) and p € Q(M)
e d(dw) =0 for all w € QM)

For instance, if we have a 1-form w, its exterior derivative is
dw = d(w,dz") = dw, N dxt — w, A d(dz") = d(w,) A dzt,
but df = 9, fdx", so

dw = (Oyw,,)dx” A dzt, (2.20)

which is a 2-form.

The third property is the Leibniz rule graded, which is necessary since the product of
differential forms is anticommutative, and then, passing through p 1-forms we gain a sign of —1
at each step.

The last property can be demonstrated, as we now show. Recovering equation (2.20):

d(dw) = d((Oyw,)dx” N dzt)
= (0;0,w,)dx™ N dx” N dat
=0, (2.21)
since 0,0, is symmetric in [v, 7] but dz™ Adx” is antisymmetric in the same indices, which means
that d(dw) = —d(dw) and hence it vanishes.

The exterior derivative generalizes all vector derivatives in 3D. For instance, one can easily
show that

o Gradient: d: Q°(R?) — Q'(R?)
o Curl: d: QY(R?) — Q*(R?)
o Divergence: d : Q*(R3) — Q3(R3)
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The identity d*> = 0 then contains the two identities of vector calculus
V x (Vf)=0,

and
V- (Vxwv)=0,

and has profound consequences in physics.

2.3.5 The Hodge Star operator

In the particular case of R? there is something missing to really conclude that, for example,
the exterior derivative reduces to the curl. In coordinates, take the two 1-forms w = w,dx +
wydy + w,dz and p = pydx + p,dy + p1.dz and their wedge product:

WA p= (Wpty — wyptz)dx A dy + (wypty — wapty)dy A dz + (wopty — wapty)dz A de. (2.22)
If we define a linear map * to turn elements of Q?(M) in elements of Q!(M) such that
xdx Ndy — dz

x:dy Ndz — dx
x:dz ANdr — dy

then we could really see that equation (2.22) would reduce to the curl, as expected. Note
that defining this operator — the star or Hodge operator — in that way is incorporating the
right-hand rule, since we could just as well have defined

x o dy Ndr — dz

x:dz Ndy — dx
x:dx Ndz— dy

which would imply in adopting a left-hand rule.
More generally, we define the Hodge star operator in a n-dimensional manifold M

x: QP(M) — Q" P(M), (2.23)
to be the unique linear map from p-forms to (n — p)-forms such that, for all w, u € QP (M),
w A #p = (w, pyvol, (2.24)

where (w, p1) is the inner product of the forms, which is defined using the metric tensor as will
be discussed shortly, and vol is the volume form:

vol = \/det(g,,)dz" A dx® - A da™,
where g, is the metric.

The definition in (2.24) simply implies a choice of orientation, since the existence of a volume
form states that the manifold is orientable, and the choice of orientation — right-handed or
left-handed — is what it is needed to make the map unique, as previously discussed in the 3D
case.
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2.4 Tensors

2.4.1 Definition

Having defined vectors—the geometrical objects living in 7'M whose basis in local coordinates
are d,—we can define a new object constructed by composing those with the p-forms—the
objects in the dual space T*M with the dual basis dx*. Those objects are called tensors, and
we define the bundle of (r, s) tensors to be the tensor product of r copies of TM and s copies of
T*M:

TMRITM Q- QTMIT*MOIT*MQQ---QT*M .

T S

An object living in this space is an (r, s) tensor. The (0, 0) tensor are scalar fields. In local
coordinates, any (r, s) tensor is just a linear combination of

0,20,®  ®0,2dr*@dr’ @ @dr7.

S

T

Therefore, a tensor I" can be written in components in this basis as

T:ng:.'.gau@au@”'®5U®dxo‘®d;p5®...®dxv’

r S

where T}, are the components of the tensor in this basis, having r upper indices and s lower
indices. This object, when we change coordinates, will transform » times in a covariant way
and s times in a contravariant way. Hence, the components T of the tensor 7" in a different
coordinate system will be related to the components in the first coordinate system by

L1 = Ty LAY A (AT (A% (AT

af..y « v

r S

where A is the Jacobian matrix of the coordinate transformation and A~! its inverse, as expected
since vectors transform with A and 1-forms with its inverse. One can do the same thing using
any basis e, of vector fields and its dual basis e# of 1-forms.

One way to think about the (7, s) tensor T is as a functional that accepts r 1-forms and s
vector fields as inputs and outputs a function on M in a manner that is C*°(M)-linear in each
input.

2.4.2 Metric tensor
A metric g is a (0,2) tensor that is
o Symmetric: g(v,w) = g(w,v)
« Nondegenerate: if g(v,w) = 0 for all w then v =0

The metric is the object that allows one to measure distances, angles and hence establishes
the dot product in the manifold. For instance, in Minkoski spacetime the dot product of vectors
v and w is

nv,w) =v-w=—0"0" +v'w" +v*w? + v*w® = n,0"0",



CHAPTER 2. MANIFOLDS, TOPOLOGY AND DIFFERENTIAL GEOMETRY 28

where 7, is the Minkowski metric given by

-1 0 0 0
0 1 00

Ny = 0 010 (2.25)
0 0 01

and we will adopt this convetion where Minkowski spacetime has signature (3,1). The signature
(m,n) of a metric tensor is the number of positive and negative eigenvalues of the symmetric
tensor 7),,, written in a basis where it is diagonal. Hence, if there are m positive eingenvalues
and n negative ones, one say that this metric has signature (m,n).

A metric g on a manifold M assigns to each point P € M a metric g, on the tangent space
T,M. This is the object used to take inner products of tangent vectors v and w at P

g(v, w) = nguwv

and of 1-forms w and p in the dual space Ty M:

(w, 1) = g*Pwapip.

In local coordinates the components g, of the metric g are given by

g,ull = g(au7 all)) (226)

and one can use the metric to calculate infinitesimal distances

ds® = g, datdx”. (2.27)

2.4.3 Covariant derivative

In curved spaces, as we change to a point of coordinates x* to a nearby point z* + dz* not
only the coordinates of a vector v change but also, in general, the basis vectors also change. So,
when one take a derivative of a vector v = v”e, written in the basis e,:

Vo =0,("e,)
= (0,0")e, +v"(0,e,)
= (0,0")e, + U”Fﬁyek

= (90" + T, 0")ey, (2.28)

where we defined d,e, = Fijek. The symbol Ffw tracks how the basis vectors e, changes from
point to point and it is called the connection, since it allow one to connect a vector in one point
to another.

There are a lot of ways to make this connection. There is, however, a unique connection
that satisfies

o Metric compatibility: Vg = 0.

« Torsion free: for any vector fields v and w we have the Lie bracket [v, w] = V,w — Vv =
L,w vanishing.
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This connection is called the Levi-Civita connection, and will allow us to take derivatives of
any geometrical object in arbitrary spaces. For instance, for a 1-form w = w,dz*:

Vow = Gpwy — I w, (2.29)
and, for a rank (r,s) tensor 7' we have

VPT = aPng:_FFZkTaEg + F;k’T(gﬁg +oo-t ngTo/jE'y - ]‘_\paT’lgﬁl’..."y7 - FpBT(gIlﬂ/'LyT - Fp’yTo/jE...lj :

r S
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Chapter 3

The traditional formulation of GR

I was sitting in a chair in the
patent office in Bern when all of
a sudden a thought occurred to
me: "If a person falls freely he
will not feel his own weight." 1
was stunned. This simple
thought made a deep impression
on me. It impelled me toward a
theory of gravitation.

A. Einstein

3.1 Introduction

The first disruptive article on relativity was the 1905 Einstein paper On the FElectrodynamics
of Moving Bodies. The paper introduced the now called special theory of relativity, a theory
about space, time and the notion of simultaneity. It is essentially about the nature of light and
the kinematic effects that it brings upon. The most famous of its effects are length contraction,
time dilation and the relativity of simultaneity. This was all done in Einstein’s free time after
his work as an electrotechnology technical expert at the patent office, in Bern.

The subsequent generalization of the theory to the now called general theory of relativity
was done just in 1915, and it happened in three major steps [12]:

o The formulation of the equivalence hypothesis, or the equivalence principle, in 1907.

» The incorporation of the metric tensor g,, as the main mathematical concept for a generally
relativistic theory of gravitation in 1912.

o The construction of the generally covariant field equations of gravitation, in 1915.

3.2 Equivalence Principle

The general theory of relativity establishes a relation between gravity and geometry based
on the equivalence principle, which is based upon the equality of the inertial and gravitational
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masses. Newton’s law of gravitation states that the gravitational force between bodies of mass
m and M is given by
mgM
r2
On the other hand, Newton’s second law states that the dynamics of m is governed by the
equation of motion

F=G

F = m]x

If the inertial mass m; is equivalent to the gravitational mass m¢, then the dynamics of bodies
due to a gravitational field will be independent of the body itself:

M
F:m[i’:GmGQ 5
r
M
= i=G-.
r

Hence, the acceleration of bodies due to the effect of gravity will be the same for all bodies
and there are trajectories in spacetime that dictate how bodies will move if they are under
the effect of gravity. These trajectories are a property of that region of spacetime and do not
depend on the free falling body.

Q ni

) "

® °

%

s 2 Timeg

Figure 3.1: Observer A sees the apple free falling, but observer B, who is also in a free fall, does
not feel the effect of gravity. For him, the apple is fluctuating over his hand.

This idea has huge consequences, such as the possibility of changing coordinates to cancel the
effect of gravity, as we will briefly show. Consider observer A, which is in a uniform gravitational
field g, studying the movement of particle C', of mass m. He then writes the equation of motion
for that particle

mis =mg = Fjy, (3.1)

where F4 stands for the net force acting on particle C' in the frame of reference A.
Now consider the coordinate transformation

T = TA — igt2

ip=ta=1
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which, when plugged in equation (3.1), leads us to

Fa=mg=mi,
d 1
:m@ (x3+2gt>
= mip+mg,

and, finally, the dynamics of particle C' in the non inertial reference frame B is given by the
equation of motion
miB:FA—mg:():FB. (32)

Hence, the two observers write the same physical law, i.e. F' = m, the only difference is that
A feels a uniform gravitational field and B does not. The observers do not agree on the forces
acting on the body, but they agree on the physical law which describes its dynamics. We have
the gravitational force being canceled by inertial forces. The B frame of reference represents
a free falling observer: he does not feel the effect of gravity, although, using the equivalence
principle, he can write the same physical law to describe the dynamics in his point of view.

We have seen that the equivalence of the inertial and gravitational masses leads us to the
equivalence between gravity and acceleration: one can annihilate the effect of gravity using
acceleration, or also create the effect of gravity by accelerating.

This will not be true for Earth’s gravitational field, for instance, since it is not a uniform
gravitational field. However, in a small enough region of space and for very small intervals
of time, one can approximate the field of the Earth by a uniform gravitational field. Hence,
the equivalence principle states that in a small enough region of spacetime no experiment
can tell us whether we are in a gravitational field or in an accelerated frame of reference.
Therefore, it is always possible to build a local inertial frame or reference, satisfying the laws
of special relativity. We have then established the relation between metric and gravity: the
absence of gravity corresponds to the flat spacetime metric, the Minkowski metric 7, such
that ds* = n,,de*dx” = —dt* + da? + dy* + dz*. However, in the presence of a non uniform
gravitational field we need the metric g, since here it is not possible to find coordinates such
that the metric tensor reduces to the Minkowski metric, except in a infinitesimal neighborhood
of a certain point, where ds? = g, dz*dz”. Quoting Einstein [7]:

For infinitely small four-dimensional regions the theory of relativity in the restricted
sense is appropriate, if the coordinates are suitably chosen.

This connection between metric and gravity will lead us to Einstein’s field equation very
shortly.

3.3 The classical formulation of GR in four steps

3.3.1 Equation of motion

According to the ideas previously developed we can always find a local coordinate system &*
such that the equation of motion of a particle free falling reduces to
d2 fa
e 0, (3.3)
i.e. the effect of gravity is locally canceled via this coordinate transformation. Here, 7 stands

for proper time, which is the time elapsed in a reference frame where the space interval between
the two events is zero, i.e., the two events have the same spatial coordinates.
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We are trying to relate the equation of motion in the local inertial coordinates £* to the
reference frame in coordinates x* who is feeling the effects of gravity. Hence, we can rewrite
equation (3.3) as

dr2 ~ dr \ Oz or
_0E dPxt dat 0°E”
- Oxt dr? dr OxrOT
0 dPxt dat dat 9PE”
Ozt dr? + dr dr OxrOoxv
0 dPxt Oz Oz OPEY dat da¥
© Oxk dr? Ofe T OEx Qxndxv dr dr
_ d?z” LT di“ dz”
dr? Wodr dr’

2 d (agwaw)

(3.4)

where we have defined the Christoffel symbol I' as

, . Oz’ 0%¢”

== 3.5

me Qg Qrrdxr’ (3.5)
: . o , , OxP .

and, in the fourth line we multiplied both sides of the equation by 9ea’ which does not change

. . . 0&* OxP
the left-hand side since it is equal to zero. We have also used ——— = §”

Oxr Of>
Therefore, from (3.3) and (3.4) we get the geodesics equation

AP dz* dx¥

I =0 (3.6)

dr? mWwodr dr ’

which gives the curves in spacetime x”(7) that describe the trajectories of bodies moving under
effect of gravity. These curves are called geodesics. They are a property of the geometry of
spacetime and do not depend of the particle in motion, as previously discussed.

Taking equation (3.5) as the definition of the Christoffel symbol — the connection — one
can show that its relation to the metric is given by

1
PZA = §gpy (augux + O\Guw — &jgm) . (3.7)

3.3.2 Newtonian limit

Our new theory needs to be reduced into Newtonian theory in non relativistic limits. This
will set up some conditions that some components of the metric tensor must satisfy. The classical
limit will imply the following conditions:

o The particle will be moving in low speed comparing with the speed of light:

dx dt

— —. 3.8
dr < dr (3.8)

o The gravitational field will be stationary:

Or g = 0. (3.9)
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o The gravitational field is weak. Hence, we can introduce the tensor h,, which represents a
low deviation of the spacetime metric g,, from the Minkowski metric 7,,:

G R My + Ny (3.10)

The first condition allows us to reduce the equation of motion (3.6) by neglecting some of
its components:
d2l‘p — _FP @ i
dr? 0\ ar )

and, from equation (3.7) we get

1
I = 59’"/ (Ooguo + Fogro — ugoo)
1
= —igp”&,goo,

where we have used the third condition to annihilate the time derivatives. Then, we get, for the

equation of motion:
d*zr 1 dz®\?
= 90,900 ( ) )

dr? 2 dr

however, using the weak gravitational field condition we are led to

dr? 2 dr

1 dz0\?
~ ——n0,hg | —
277 0y 00<d7'> )

R dz0\ 2
= —(=h"" 4+1")0,(hoo + M0o) ()

and, hence, the equation of motion is

Pz’ 1 dt\?
a - iﬂpl/&/hoo () =0.

dr? dr
For p = 0 the the second term vanishes since 7%9,ho = —050,hoo = Oohoo = 0, because of
2.0
the stationary gravitational field condition. Hence, the equation states that i 0. Therefore
T

— = constant.

dr
Now, for p =i =1,2,3 we get

Pt 1. dt\?
— Z"8,heo | — | =0,
drz 2" 9vhoo <d7‘> 0

2
which, dividing by (d) , which is just a constant, as we previously showed, leads us to
T
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But, looking to Newton’s second law for a gravitational force written in terms of the
gravitational potential ¢ we have

Azt
= -V
dt2 QS?
which allow us to make the identification
hoo = —2¢ + ¢,

where c is a real constant. But, since at infinity the metric must become the Minkowski metric,
we have, at infinity, goo = 1o + hoo = noo and, therefore, the constant ¢ must be zero, since the
potential ¢ already vanishes at infinity.

Then we get an equation saying that the time-time component of the metric tensor must
satisfy:

goo = Moo + hoo = — (1 +2¢). (3.11)

We are looking for an equation of motion that describes gravity, here represented by the
metric g,,. In the classical approach, gravity, or the gravity potential ¢, is given by Poisson’s
equation

V26 = 4nGp, (3.12)

where p is the mass density which is generating the gravitational field. In the language of
differential geometry and tensors, the presence of mass will be carried in the energy momentum
tensor T),,. This tensor will represent the flux of the momentum p* through the surface where
x¥ is constant. Hence, T% will be the flux of energy — p° — through time — 2° — which is
the energy density in the reference frame where the system is at rest. The T% element is the
density of momentum in j direction, and the 7% component will be the flux of the momentum
component in the i direction per unit of time (force) flowing through a surface oriented in the
direction of 7, and so on.
Conservation laws can then be written as

0, T =0,

which will be the conservation of energy for ¥ = 0 and the conservation of momentum in the ¢
direction for v = i.
Therefore, we are looking here for an equation of the form

V2400 = —87GTh.

This is actually a special case, written in a reference frame where the particles are at low
speed. We could write the equation in a more general way as

G = 81GT,,, (3.13)

where the tensor G, must have, at most, second order derivatives of the metric tensor, since
we need to recover Poissons’s equation (3.12) in the classical limit. But then: who is this tensor
G, that we are looking for?
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3.3.3 Riemann Curvature Tensor

One way to identify the presence of curvature in a certain surface is by the non-commutativity
of the covariant derivatives. Of course, in flat space this is zero, i.e. [0,,0,] = 0.

However, in curved space [V, V,] is not necessarily zero, and the deviation of this relation
from zero will be due to the curvature of space — the intrinsic curvature of a surface is actually
defined as the failure of this equation to vanish. Let us then evaluate the expression [V, V,]
acting in a certain vector V:

[VW VZ,}V,, = [QL(V,,VP) - qu<vovp) - Fﬁp(vlka)L

where the antisymmetrizator in the right handside is remembering us to antisymmetrize the
expression in [u, V] at the end.

The second term in the right handside will vanish since I'? is symmetric in its two lower
indices. Developing the equation a bit more will lead us to

(Vi VulVy = [0u(0,V, = T}, Vo) = T, (0, Vi — T7, Vo )]
= [0.0,V, — 0,(T7 Vo) = Tk 0, Vi + T T, Vo],
and here the first term in the last line vanishes since it is symmetric in [u, v]. The second term
will dismember in —0,(I'7,V,) = =V,9,I'7, — I'7,0,Ve = —V,0,I'7, — 'k ,0,Vi, which, when
plugged back in the expression above will give
Vo, VoIV, = [-Vo0,00, = T5 0,V — T},0,Vie + T8 17, V]
= [-V,0,7, — (T%,0.Vi + T},0, Vi) + T, IV, ).

Now note that the term in parenthesis is symmetric in [, v], therefore it vanishes due the
antisymmetrization. Finally, the equation is reduced to

Vs VoIV, = [=V50,T5, + 5, T2, Vo]
=[0I, + 5 T0V,
= 0,17, = T3, LIV,
= (9,19, — 9,1, + Tk I, —Th TV, (3.14)
The curvature is then given by
R, =09, —9,I + Ty —Tk 7. (3.15)

Equation (3.15) defines the Riemann tensor, a (1,3) tensor that carries the information about
the curvature of the space. One can raise or lower indices of this tensor as with any other using

the metric:
RTPPW = gTUR(To,uu‘

One can also define the Ricci tensor R,, by the contraction

Ry, = 9" Ryppy = 9"(9-0R,,,) = 0L R°,,, = RY

puv puv puY?

and also the curvature scalar R by the total contraction of indices

R=g¢"R,,.
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3.3.4 Bianchi’s identity

Back to the discussion that ended the section Newtonian limit, to write the equation for
gravity in a manifestly covariant way we were looking for a tensor G, that had, at most, second
order time derivatives of the metric tensor. One could think of the tensor G, as being the
curvature tensor, let us say the Ricci tensor R, for instance. The idea is that the energy
momentum tensor, on the right-hand side of (3.13), is the object that generates curvature, which
must appear on the left-hand side of the equation.

However, from the conservation of energy and momentum, we must have

v, T" =0, (3.16)

where the conservation of energy is the equation for © = 0 and the conservation of the 3-
momentum is satisfied for p = 1,2, 3.

But the derivative of the Ricci tensor — and also of the Riemann tensor — is not zero,
so R, = 8rG1T,, although it has the element which generates curvature on one side and the
curvature itself on the other, can not be the equation we are looking for. (Historically speaking,
Einstein and Grossmann dismissed it because they were unable to recover Newtonian physics in
the weak field limit[12], as discussed in section 3.2.2).

On the other hand, one can contract Bianchi’s identity
V)\Raﬁ,uu + VuRoz,B)\,u + v,uRaﬁu)\ = 07

to get to
1
V, (R“” - 2Rg‘“’) = 0. (3.17)

Now, we have built a symmetric tensor
1
G;w = R;w - iRng’ (318)

which is related to the curvature, has its covariant derivative vanishing and it is of second order,
since the curvature has at most second order derivatives of g, .

3.3.5 Einstein’s field equations

Equation (3.13) was built in a covariant way from the Newtonian limit as a restriction.
Our goal was to find the left-hand side that would make the physics hold. We could do some
attempts of finding some tensors GG, that satisfies certain properties, however, we have already
built the tensor G, that we need.

In order to write an equation for gravity that will contain the equivalence principle (equation
(3.4)), reduce to Newtonian gravity in the classical limit (equation (3.12), will be manifestly
covariant and will, beyond satisfying the conservation laws (equation (3.17)), also contain the
physical idea that the presence of mass — 7}, — is responsible for the curvature — R, — of
spacetime, then our tensor G, that does that is the Einstein tensor, given by (3.18). He have
then built the Einstein field equation

1
R — 5 Rgu = 87GT,,. (3.19)

Since the metric is compatible with the covariant derivative V,, a more general equation for
gravity could be built by adding any term in the left-handside proportional do the metric, since
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this would not affect the conservation laws. So, a more general equation would then be
1
R, — §Rg,w + Ag = 87GT,,. (3.20)

The parameter A is called the cosmological constant, and it was added by Einstein to
give solutions for a static cosmological model. This was done before Hubble’s work about the
expansion of universe.

One can note that the addition of this new term will make appear, in the classical limit,
beyond the gravitational Newtonian force, a repulsive force proportional to A and to the distance.
So, for small A, this repulsive term would be relevant only for great distances.

This term, although denied by Einstein and considered by him as an error, proved to be
very important later on. It is responsible for the dark energy and it is the term that explained
the accelerated expansion of the universe later detected in 1990.

However, since our work will not enter deep into cosmology, equation (3.19) will be our main
subject.

3.4 The Lagrangian Formulation of GR

It is always possible to obtain the same evolution equation via the Lagrangian formalism,
using variational calculus. Depending on what the dynamical variables in play are, one can
write different Lagrangians for gravity. The idea of trying a variational approach came from
Paul Bernays, a student of David Hilbert [12].

3.4.1 The Einstein-Hilbert action

Here we consider the metric g, as our only dynamical variable. The field equations for
gravity are extracted from the Einstein-Hilbert action:

Sl = 15 | Bv=a'

= m/g'ij#V\/ —gd4fL' (321)

Since g,, is our only variable, the dynamics of gravity comes from setting = 0. From

(3.21):

0Guw

58 = WG [ @'z [ROV=3) + V=30" (6Ru) + V=3Ru(59")].

We can break this integral in three terms (here we omited some constants)
e 651 = [d'zR(6/—9).

. 38y = [ d'ey/=gg" (5R,).

e 0S5 = [d*a\/=gR,.(6g").
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For the first one we use §(det M) = det(M)M;;'6M;;, which leads us to
0(vV/—9) = ———gg"dg,
(V=9)=5 =599" 09
1
- 5 \% _gguyég;w

1
= =5V 99u 09" (3.22)

where, in the last step, we used §(g,,9"") = ¢"6g,, + 9,,09"" = 0. Hence, we are left with

1
.- o {1 <3.23>
For the second term we will use the Palatini identity, which states that

SRA,,, = V017, — V,6T7, .

pov

So, for the Ricci tensor we get

0R,, = 0R’,,, = V0%, —V,0I", . (3.24)

ppv

Therefore, the corresponding contribution to the variation of the action is written as
65 = [ d'ay/=g9" (V,01%,, ~ VT,
= [ d'ay/=g(V,g" 0T, ~ V,g"oT",)
_ / d'2/=gV (9" 517, — g"oT", )
= /d4x\/—gvaw", (3.25)

which is just a boundary term, that vanishes if I'),, vanishes at infinity.
The third term is already written in terms of the variation of the metric dg*”. Hence, taking
back the constants, we are left with

08 (051 + 055 + 053)

~ 167G
1 1
=—— [ =gd* {—R s+ R V}a o
167TG/ UL T 1 09
Then, setting 05/0¢g"” = 0 gives us Einstein equation in vacuum
1
R#y - iRg“y =0.

If we consider matter, then the action would be, except for some constants, S = Sg g + Su,
where Sg g stands for the Einstein-Hilbert action previously developed, and S); for the action
related to matter. Then, setting

05 ~0
V=gog
we are led to

1 | 1 8Su
Y DI S /Y 3.26
167G (R“ 5 1t ) =g 09 (3:26)
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which gives us the equation of motion
1
R, — §R9/w 8nGT,,,

if one defines the energy momentum tensor as

1 0Su
T, =— . .2
I 2 /__g 59#1/ (3 7)

3.4.2 The Palatini action

In the Palatini approach we consider that the connection I' can also play a dynamical role.
So we write the Palatini action

— / Ry/—gd's
_ / 9" R, (T)y/—gd'z. (3.28)

The curvature is completely determined by the connection, therefore it is not affected by
variations of the metric. So, as we previously did, varying this action with respect to the metric
and setting §.5/dg" = 0 will lead us to

1
RW(F) - §R(F)9W =0,

which is just the Einstein field equation.

However, for this method to be equivalent to the Einstein-Hilbert one we need the connection
to be compatible with the metric.

So, for the second equation of motion, we vary the action with respect to the connection
and set 0.5/6I',, = 0. We will then get

5Sp = / d'ar/—gg" (5R,)
= [ d'ov/=g9"(V 0T, — V,0T%,)
— [ d'sv=g(g" V0T, — 97V ,0T, )

= —/d4x\/—g Vg =6,V 9" )ol" (3.29)

where we used the Palatini identity (3.24) in the second line and, in the last one, we did an
integration by parts and neglected the boundary term.

Assuming that the connection is symmetric in [, v], the variation will vanish if the sym-
metrization of the integrand vanishes:

Vg + Vg — U ,g" — 81V ,9"7 =

2V, — 55V ,g"" — 58V ,g"" =0, (3.30)
and, contracting with 0f, we get

Vﬂg/“’ - vggua - vggua = 07
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which, renaming dummy indices, leads us to V,¢”? = 0. When plugged in (3.30) we get
V,g" =0, (3.31)

which states that the covariant derivative V with respect to the connection I' gives a null
derivative of the spacetime metric, i.e., the metric is compatible with the connection.

So, the first equation of motion gives us Einstein field equation and the second equation of
motion states that our connection, previously placed as a dynamical variable, is fixed to be the
Levi Civita connection.
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Chapter 4

The Hamiltonian Formulation of GR

Lagrange has perhaps done more
than any other analyst by
showing that the most varied
consequences respecting the
motion of systems of bodies may
be derived from one radical
formula; the beauty of the
method so suiting the dignity of
the results, as to make of his
great work a king of scientific
poem.

Wiliam Rowan Hamilton

4.1 Introduction

In the canonical formulation of GR, the geometry of spacetime is given in terms of fields in
spatial slices X, whose geometry is encoded in a 3-metric h,,. Each spatial slice 3 corresponds
to an instant of time, and, in this view, the 3-metric h,;, evolves in time through these slices.

Since there’s no absolute time in GR, the decomposition of the metric g, in its spatial part
hay Will be necessary so one can define a time parameter in order to talk about the evolution of
the system.

The spacetime geometry being generally covariant is expressed, in this formalism, by the
presence of constraints in the fields. As said before, there is no absolute time in this description,
neither a Hamiltonian generating evolution, there will be only the constraints: the diffeomorphism
constraints and the Hamiltonian constraints, both of them will express the general covariance
of spacetime.

4.2 Constrained Systems

We can see in Einstein’s field equations some constraints regarding the temporal components
of the Einstein tensor G, defined as

1
Gy = Ry = 5 Ry = 87GT . (4.1)
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The reduced Bianchi identity states that
V.Gy =0, (4.2)
and, developing (4.2) we have

V,.Gh = 0,Gl — TGl 4+ T Gh = 0.

n

Opening 9,GY as 9,GY + 0;G", for i spatial we get
0GY) = —0,Gl, + I'7,Gl —Th GE, (4.3)

and, since

o 1 ov
Fu)\ = 59 (a)\g;w + aug)\u - augu)\) )

the right-hand side of (4.3) has, at least, second order time derivatives, given that the Christoffel
symbols I' have at most first order time derivatives and the Einstein’s tensor contains first
derivatives of those symbols. Hence, from the left-hand side of the equation we can infer that
GY has at most first order time derivatives. Therefore, since we have other equations with
second order time derivatives, those four equations for GY are not evolution equations: they are
constraints that the initial data must satisfy. From symmetry, the Einstein’s field equations are
a set of ten partial differential equations, of which only six are time evolution equations. The
equations Gg = 87rGTS relate initial values of fields instead of determining how fields evolve.

If we proceed with the computation we can see that only spatial components of the metric
Jap appear with their second order time derivatives. The other components do not play the
same dynamical role as g,,. The ggo and g, equations will be the constraints — they will play
the role of the lapse function and the shift vector, as we will see later.

4.2.1 The Lagrangian formalism

For a system with n (finite) degrees of freedom its action is

Slg'()] = / L(q',¢")dt, (4.4)

for i =1,2,3,...,n. From the least action principle, one can get the Euler Lagrange equations

by setting 6.5 = 0:
d (0L oL
— - | — — =0. 4.
dt <8q’2> aq" 0 (4.5)

By the chain rule, one can expand the time derivative as

d_ 0dg, 0 dj
dt  Og¢t dt  0¢' dt

and, plugging this in (4.5) one gets

0L\ .. O*L \ .. 0L
4 2J —
(893'3@") ¢ <3qj862i) ST N (4.6)

If we define the first term as

0L
Wij = w—%=,
04904
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then, equation (4.6) is written as

. 0*L . OJL
Wi’ — | ¢ — — =0. 4.8
If the matrix Wj; is non-degenerate, then one can invert (4.8) to obtain an explicit equation
for ¢7:
, 0L .  OL
) = W’_-l I i - . 49
Py (o + o) (19)

However, if W;; is singular, then det(IV;;) = 0 and equation (4.8) cannot be inverted. In that
case, ¢/ can not be uniquely determined by positions and velocities, and the system is said to
be constrained, which we will detail better soon.

4.2.2 The Hamiltonian formulation

In this formulation constraints can arise in a similar way as happened in the Lagrangian
formulation.
The starting point is to define the canonical momenta as

oL
P pa (4.10)
Equation (4.7) can then be rewritten as
Ipi
Wi = =—. 4.11
e (4.11)

If W is nonsingular we can obtain in (4.11) the ¢'s in terms of ¢'s and p's, and then (4.10)
will indeed provide n independent variables — the p.s. However, if W is singular, there is no
unique solution of the momenta definition equation expressing the velocities in terms of the
canonical coordinates ¢* and conjugate momenta p;. In this case, there exists certain relations
¥s(q', pj) connecting the momentum variables:

Us(d',p;) = 0. (4.12)

The ¢'s and p’s — the dynamical variables of the system — are connected by the primary
constraints, given by (4.12).

V520
(g°. 9°) '——)//\/?’6/
e

Figure 4.1: The constrained phase space

The map (¢*,¢") — (¢*,p;), when there are no constraints, is a one-to-one map. In the
presence of constraints, it maps the unrestricted space (¢*, qi) to the surface of primary constraint
¥s(¢*, pj) = 0 on the phase space, as shown in figure 4.1. We will name this constrained surface
as C from now on.
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Hamiltonian equations

Let us consider the usual Legendre transformation

H = {'pi(q,q) — L(q, q), (4.13)

on the unconstrained manifold (¢*, ¢").

If H is a Hamiltonian of the system we need to be able to express it in terms of ¢’ and p;,
and not only in terms of ¢ and ¢*. However, in the constrained case, equation (4.10) cannot be
inverted, so, we cannot express all of the ¢'s in terms of p’s, which may lead us to conclude that
it is not possible to write such a function as H(q, p(q,q)) in the phase space.

Still, the function H(¢’, p;) is well defined, as we can easily see. From equation (4.13):

§H = 6¢'p; + ¢'6p; — 0L(q", ")

, , oL .. OL ..
=0¢'p; + ¢'op; — —0q¢" — —0¢"
q'pi + q'op 270 ~ 5%
y y oL _ , i
=5qpi+q5pi—w5q — pidq
q
oL _ . ,
=26 + {'opi
g +¢'op
= —pidq" + q'opi
OH .. O0OH
= —0¢" Op;.
dq* 1 +3pz’ b

In the fourth line one can easily see that the variation  H depends only on the variations of the
momenta p; and the position ¢’, not on the velocities ¢'.
Equating the last two lines we get

oH . ; oH B
<8qi —l—pi) 0q" + <api q ) op; = 0. (4.14)

For any variation ¢ = (dq', dp;) tangent to the primary constraint surface, the equation above

shows that the vector 5 5
H H -
V= : )i, — — (' 4.15
<8qz+p o0, q) (4.15)

is normal to the surface, since t'V; = 0
A basis of normal vectors to C is

v, = grad () = <(?;§:, gﬁj) : (4.16)
Then, for some functions A on the surface of primary constraints, we have
V = Mo, (4.17)
Finally, with equations (4.15), (4.16) and (4.17) one can get the equations of motion:
pi = —gg + Asg?gj, (4.18)
L Ll (4.19)

B Ip; Op; ‘
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Comparing the last equations with the Hamilton’s equations of motion, those can be rewritten

as
) O(H — N1)g) ONS
;= — . — Yy, 4.20
P o7 (@ o7 (4.20)
4 O(H — N\y) ON®
= s , 4.21
q o 0 o0, (4.21)
where we can define the total Hamiltonian of the system as
Htotal =H - )\S,lvz)& (422)
We can rewrite the Hamilton’s equation in terms of the total Hamiltonian:
. 8Htotal
p oG (4.23)
.3 a}[total
= . 4.24
q o, (4.24)

Here, we introduce the weak equality symbol ~, denoting an equality valid only in the constrained
surface.

The value of the total Hamiltonian does not change on the surface of primary constraints by
adding primary constraints and is independent of the A\*. However, the evolution of the system
depends on derivatives of the 15, which might not be zero, and then the evolution depends
on the \°. To see the role of the A* on the evolution the mathematical theory of constraints,
described in terms of the Poisson structure, is very useful.

4.2.3 Poisson Brackets

In canonical coordinates (¢',p;) on the phase space, the Poisson bracket of the functions
f(a,p) and g(q, p) is given by

& (0fdg 09 0f
{f,9} = ; (aqi I 3¢ apl) : (4.25)

It satisfies the following properties:

1. It is antisymmetric:

2. It is linear in both entries:

{fi+ fa, 9} = {f1,9} +{fe, 9},

{9, /1 + fo} ={g. fi} + {9, 2}
3. It obeys the Leibniz law:

{fi-forgy = filfeg) + fo{f1,9)-

4. Tt satisfies the Jacobi identity:

{f g h}y +{9.{h, f}} +{n.{f. g}} = 0.
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Using the Poisson bracket we can rewrite the Hamilton’s equations of motion 4.24 as:

Pi =~ {pi, Hiotar } (4.26)
§' ~ {¢, Hiotat } , (4.27)
which actually is valid for any function F'(¢q,p) on the phase space, as is easily seen:
F_dF_8F~i+8F.
Cdt 8q"q 8pl-pl
—~ aF aHmml + aF _aHtotal
- oq' Op; Opi oq'
- {Fa Htotal} . (428)

The total Hamiltonian then generates the dynamical flow of the variables of the phase space in
time.

Because the primary constraints v are originated directly from the definition of the canonical
momenta, they need to hold during all the evolution of the system. This means that the evolution
of the system must be contained in the surface of primary constraint 5. These are called
consistency conditions, expressed by

&s ~ {%, Htotal} = 0. (429)

These conditions can add new constraints to the evolution of the system, known as secondary
constraints. Those constraints must also satisfy the consistency conditions, which can lead to a
new generation of constraints. This process goes on until no more constraints are generated.

Opening equation (4.29) we get:

Vs = {hs, Hiotar} = {0, H = Nty |
= {0y, H} = {vs, oy }
= {s, H} = X {0, 00} — i {0, X}
~ e HY = N {, i}
= (¢, H} — MOy, = 0, (4.30)

where we have defined
Csk = {¢s7¢k} .

If Cg is non singular the structure of the constraint system is uniquely determined: one can
solve for the \* via

)\k = Os_kl {w&H}

In this case, no further constraints arise and we can fulfill the consistency condition. However, if
the matrix Cjy, is singular, we cannot determine all the A\*. In that case, equation (4.30) implies
the secondary constraints aforementioned. Those follow from the equations of motion, not from
the definition of the momenta as the primary constraints.

4.2.4 Gauge Transformations

Since the Hamiltonian generates the evolution of the system, we can define, as stated in
(4.28), the Hamiltonian vector field X associated to any function f as

Xf:{'mf}'
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We call a constraint 1, first class with respect to all constraints if its Hamiltonian vector
field is everywhere tangent to the constraint surface C. That is, for all constraints ¢, on the
constraint surface C we must have

{¢s, Q/Jk} = 07

and we call it second class if that Poisson bracket is nonvanishing on the constraint surface.
First class constraints generate gauge transformations, as we now show.
Consider all constraints, and consider also an arbitrary dynamical variable F', then define
the transformation

F(q,p) = F(q,p) + {F, ey}, (4.31)

where € is a control parameter arbitrarily small. Due to the consistency conditions, this
transformation does not affect the Hamiltonian

H(q,p) — H(q,p) +{H, ey} ~ H.

That is, the transformation takes solutions of the equations of motion and constraints into new
solutions. This is a gauge transformation, and that is why constraints are generators of gauge
transformations. Solutions that are related by gauge transformations are then treated as the
same solution.

Any particular choice for the total Hamiltonian will result in equations of motion written
in a specific gauge. But since the theory is invariant under gauge transformations generated
by constraints, the choice of a total Hamiltonian does not matter, and all sets of equations of
motion obtained for different gauges are equivalent.

4.3 Spacetime 3+1 decomposition

4.3.1 Introduction

When we are interested in studying the evolution of the spacetime, something strange
immediately appears: it evolves with respect to what parameter?

GR treats space and time on the same footing, which is not what happens in Hamiltonian
formulations. Spacetime does not evolve in time, it just is. However, we can interpret the
spacetime as the evolution of the 3D space. For that, we will need to do a (34+1) decomposition,
choosing an arbitrary parameter as time ¢, and considering that spacetime is the evolution of
spatial slices X fixed for each ¢t with respect to this time parameter.

This will be necessary because when we write down the Hamiltonian formalism it gives us
the evolution of the system with respect to time, which is not absolute in GR. So, one needs
to choose an arbitrary function to play the role of time and do this decomposition in order to
write the Hamiltonian formalism for GR.

We assume the existence of a foliation of spacetime in terms of space-like 3 dimensional
surfaces S of the spacetime manifold M. Thus, we consider the Lorentzian manifold M to be
diffeomorphic to R x S.

There are lots of ways to build a diffeomorphism

o:M—RxS,

which means that time is not absolute in GR. There are different ways of defining a coordinate
t on the manifold to play the role of time, which we will discuss later on. For now, assume that
Y € M is a slice of M for t = constant for some time coordinate t. This can always be done in
globally hyperbolic manifold [4].
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4.3.2 Geometry of Hypersurfaces

Consider a spatial slice ¥, in a foliated spacetime manifold R x S. This can be considered
as a constraint surface such as ¢y, =t —t9 = 0.

The spacetime is just the history of the space >; with respect to t. In any instant t the
spacetime is described as the immersion of ¥; in the manifold M, as shown in figure 4.2, where
the dashed line is the integral curve of the time vector field — which will be precisely defined
later — joining the same point in the surface along its evolution.

[ ] P Btz

“p Lt

Figure 4.2: The 3+1 decomposition

The surface ¥ is called a slice. The foliation is such that

1. Etl ﬂ2t2 - @, lf tl #tz

In this way, every point of spacetime belongs to a unique slice. Any embedding that satisfies
this relations is a valid foliation, which reminds us that the foliation is not unique [4].

We can assign to each point of a slice ¥; a time-like vector orthogonal to the surface at
that point. That enables us to define, for a given foliation, a time-like normal vector field n®,
normalized such that

g(n,n) =nn, = —1, (4.32)
and the negative sign shows that this vector is time-like, as we wanted.

The foliation allows us to decompose all vectors in components parallel and perpendicular
to the spatial slice ;. This can be done via the projection operator [2]:

Py TMw— Ty M (4.33)

% = 2% 4 g(n, z)n® = 1 + nya’n?,
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Z'lo

Figure 4.3: The spatial slice

and the orthogonal operator

P :TMw— T\ M (4.34)

1% = —g(n, z)n® = —npa’n?,

as shown in the Figure 4.4.

A

Figure 4.4: The projections on the slice

These projections allow us to break any geometrical object X (a vector or tensor) in its
tangential (€ 7} M) and perpendicular (€ Ty M) parts:

X = (B X) + (P.X).

For the dual space T* (M) the action of those operators is similar. The action of the projection
operator on a 1-form w , for instance, is:

Py T"M T M (4.35)

Wa — Wa + g(n,w)ng = wy + nPwyng.
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For a rank (r,s) tensor T, the projection operator acts as follows
P(T) (0", 0?0 wr, way oy ws) = T (P, B, ..., P’ Pwi, Pjwa, .., Pjws), (4.36)

where v* € T(M) and wy, € T*M. Therefore, the projection operator acting on a tensor is the
same as the tensor acting on the projections of its entries. The same is true for the orthogonal
operator.

4.3.3 Metric decomposition

Since we can apply the projection operator to any geometrical object, let us do this for the
metric. The part of the metric that is tangential to the slice X is called the induced metric,

and we will denote it by h, so:
h= Py, (4.37)

or, in components:
= gap(X* + nXyn®, Y + ndYn?)
= g XY + g X Y0 4+ g4 Y "0 X n® 4+ gapn®X.nnYyn®
= g XV + Xyn’n?Y,; 4+ Y,n"n X, — n°X.nY;
= g XV + X YNy + Y1, X%y — n° X %Y,
= (gab + nanb)XaYb
= hap XY, (4.38)
One can note that

1. The metric hgy lives in X:

nahab = na<gab + nanb) = nagab + nananb =Ny —Np = 0. (439)

2. Let s* be a vector tangent to %J;, then
haps® = (Gab + 1anp)S* = Gaps® + s ngny.
But sn, = 0 since they are orthogonal, hence:

haps® = Gaps®. (4.40)

So, when applied to vectors tangent to ¥, the induced metric h,y, gives the same geometry
as Gab-

One can then use the induced metric h,, to describe projections of any geometrical object.
In coordinates, for a rank (m,n) tensor, one gets:

(PT )y = bt herhy! o By Tt (4.41)

To study the dynamics of the canonical formulation, we consider the induced 3-metric hy, as

a time-dependent 3-dimensional tensor field evolving on a family of manifolds >;. Then, the
time dependent field h,, will be the configuration variables of canonical gravity.

However, in order to do this, we have to define a time evolution vector field t* that specifies

the directions of time derivatives, since one will need to take time derivatives of the induced
metric or any other vector fields.
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4.3.4 Time derivatives

If the spacetime is the history of the evolution of the slices ¥;, how can one say how a field

in 3, let us say, hy, evolves?

[~ /w/

Figure 4.5: The time vector field

If one has just two slices in the foliation, it is impossible to say how a field defined on them
changes, unless we can uniquely associate a point on one slice to a point on the other one. The
vector field that connects a point in one slice to its correspondent point in another one is the
time evolution vector field ¢, whose integral curves are shown in the right part of figure (4.5).

To ensure that this vector field agrees with the concept of time it is required that

'Vt =1, (4.42)
which states that the change of ¢ in the direction of the time evolution vector field ¢* is just the
unity.

It is assumed that the spatial coordinates x° are held fixed:

'V 2" = 0, (4.43)
so that 5

'V, = —. 4.44

g (4.44)
By introducing the shift vector N¢
N = Pt* = ht, (4.45)

and the lapse function N, which is the amount of the vector field ¢* in the direction orthogonal
to Zt:
Nn® = t* — b, (4.46)

and by acting with n, on both sides of equation (4.46) one gets
Nnn, = ngt® — n,h®t, = n,t®.
Since n®n, = —1, we get
N = —n,t° (4.47)
The time evolution vector field t* can then be written in its normal and tangential parts
with respect to the surface X;:
= Nn®+ N°. (4.48)
And now, with the projection operators, the definition of a time derivative of any tensor
field is also possible:

Ty = Py (LoTyrpem ) = (her . herhit o g ) LT, (4.49)
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Figure 4.6: The components of the time vector field

4.3.5 Metric decomposition

From (4.48), the normal vector field can be written as

ne = jlv(ta _ Ny, (4.50)

which allows us to write the inverse spacetime metric as
g = = 1 (N~ N, (4.51)

We can then invert this matrix and get the line element
ds® = gapda®da® = —N?dt? + hey(da® + N°dt)(dz® + NPdt). (4.52)

We have then decomposed the metric in ten independent terms: the lapse function N and
the three components of the shift vector N*; and six independent terms h,, . The idea is to
express any geometrical property in terms of these variables: N, N® and hgp.

It will be also useful to express the determinant g of the metric g, in terms of the determinant
h of the induced metric hgy, since it appears in the Einstein-Hilbert action. One can do this as
follows: from equation (4.51) we can see that ¢ = —1/N?2. Then we can use the relation

C..
A—l L/ 2,
(A7) det A’
where (A™1)¥ is the element of the i-th row and j-th column of the inverse matrix of A, and

Cj; is the correspondent cofactor matrix, i.e. the determinant of the minor matrix obtaining by
eliminating the i-th row and j-th column from the matrix A. Then we have

from which we conclude that

g = det(gay) = —N>det(heg) = —N? h. (4.53)
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4.3.6 Intrinsic and Extrinsic Geometry

The induced metric hy, allows us to define a unique covariant derivative metric compatible
in ;. If we represent it by D,, the metric compatibility requires — beyond the torsion free
condition — that

Dahye = 0. (4.54)

One can show that this covariant derivative D, compatible with the induced metric hg, is
just the parallel part of V,, i.e.
D, = PV,. (4.55)

This is proven as follows:

Dahbc = PH [vahbc] = -P|| [va(gbc + nbnc)]
= Py [Va(npne)]
= P|| [ncvanb + nbVanc)]

= Py(ne) P|(Vany) + Py (n) By (Vane)

=0, (4.56)
where in the second line we used the compatibility of V, with the metric g4, and in the last line
the fact that Pj(n;) = 0.

This covariant derivative D, can be seen as the projection in ¥; of the derivative V, by the
induced metric hg:

DTy = (hey by by RN (T (4.57)
Definition 4.3.1 (Intrinsic Curvature). Given the three dimensional covariant derivative D,,

we can define the intrinsic-curvature tensor *R,,? as for any other covariant derivative:

*R,%wq = Dy Dyw, — DyD,w, (4.58)

abc
for any spatial 1-form w, i.e., w,n® = 0.

With this definition, one can obtain the Ricci tensor >Ry, and the Ricci scalar 2R by the
usual contractions.

The intrinsic geometry refers only to (X, hyp). But because ¥ is spatial, we cannot talk about
the evolution of the system using only parameters intrinsic to the manifold.

A geometrical object — the extrinsic curvature K, — will naturally arise when we try to
make the induced metric evolve:

Lphay = nVehay + hae Vn© + hp.Vn

= n°Ve(gap + natp) + Vong + Vany,

= nVe(ngm) + Ving + Vany

=nn,Veny + nnpyVeng + Vyng + Vany,

= (g5 + nan®)Vemy + (g5 +mn)Ven,

= hiVeny + hiVen,

= Kup + Kpa, (4.59)
where the object K, appears in the context of the evolution of the induced metric hy,. Also,

in the third line we developed hu.Vyn® = (gac + nane) Ven® = Viyng + ngn.Vyn® = Vyn,, since
n.Vyn® = 0 as shown in equation (4.61).
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Definition 4.3.2 (Extrinsic Curvature). Given any normal vector n® to the surface X, the
extrinsic-curvature tensor is a spatial tensor on ¥ defined by

Ko = Dgny = h hiV ng. (4.60)
We could also omit the first projector h¢ on the definition because

Kup = Dyny, = R, hgvcnd
= he (g8 + nny)Veng
= h gffVcnd + hgnbndvcnd
= hg Veng,

since, in the third line, n?V ny = 0. This is easy to see, since
1 1
nV.ng = i(ndvcnd + ndVCnd) = ivc(ndnd) =0. (4.61)

Another way of thinking about the extrinsic curvature tensor is as the normal component of
the derivative of v with respect to u, for u and v spatial:

K(u,v) = —g(V,v,n). (4.62)
This notion is captured when one splits the derivative V,v in its normal and tangential parts
Vo =—g(Vyo,n)n+ (Voo + g(Vyo,n)n),

where the first term represents the normal part of it and the second one the tangential part. So,
when we parallel transport v, who lives in ¥, in the direction of u, which also lives in ¥, the
emergence of a normal component in this parallel transport measures exactly the curvature in
that region.

This way of thinking agrees with our previous definition of K, since, from the that definition,
we had

Kau™v® = (Dgny)u®
= he(Veny)uv’
= (Vemp)u’, (4.63)

and, from the notion now placed, we have

K(u,v) = —g(Vy,v,n)
= —Gap(Vu0")n’
= —(uV.0")n,
= u(Veng))v®

= (Venp)u’, (4.64)

where in the third line we used the metric to lower the index of n’ and in the fourth line we
used the fact that both v and w are spatial, then V.(v*n,) = 0, then n,V.0* = —v*V.n,. In
the last line we only renamed a dummy index so it agrees with equation (4.63).

With this view, the tensor K measures how much the surface X is curved in the way it
sits in M, because it says how much a vector tangent to ¥ will fail to be tangent if parallel
transported using the Levi-Civita connection V on M.
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In components, we have
K(u,v) = Kju'v’

in local coordinates, where

From this point of view it is easy to see that this tensor is symmetric, since
Kij — Kji = K(0;, 33‘) — K(0;,0:)

g([@, 3 ] )
—9(0,n)
—0. (4.65)
The extrinsic-curvature tensor has some important properties:
1. It is symmetric:
K = K, (4.66)

as shown right above.

2. As developed in equation (4.59) and using the property above, we get that the extrinsic
curvature tensor is half of the Lie derivative of the intrinsic metric along the unit normal:

ab - ‘C hab (467)

3. The extrinsic curvature tensor can be related to the intrinsic curvature h,y, the shift vector
N® and the lapse function N via

Ko = hay = DaNy = DyN, ) (4.68)

1
o

which can be proven as follows:

Ky = ;Enhab
= §[ncvchab + hac Vn© + hyVan©
2;\[ [NNV chap + hae Vi (NNS) + hpe Vo (ND6)]
- ziv[w = N)Vehay + hae V(1 = N°) + eV (8 = N°)]
_ izt_Nhab
= 2Nhghb[,t_thd
- ﬁ hehg[Lihea — Lvhed)
_ 2N (hdh%t cd = hAhELNPed)

= o% (hab D N, — DbNa) :



CHAPTER 4. THE HAMILTONIAN FORMULATION OF GR 57

where, from the third to the fourth line we used equation (4.48), and in the sixth line we
just smuggled in the induced metric to get the spatial part of the calculation, since K,
is purely spatial. In the last line we just used the definition of the time derivative of a
tensor given by (4.49) and used the fact that the shift vector is spatial, then

Lnhay = PNV chay + hae VeN© + hyc Vo N
=P [NV hap) + P [hae VeN¢ 4+ hpV  N€]
= N°P[Vchab) + Py[(gac + 11ane) VeN + (ghe + none) Vo N €]
= N°Dchap + P [VeNa + VN
=0+ D,Ny + DN,
= D,Ny, + DyN, .

4.3.7 Curvature relations

Using the definitions and properties previously mentioned we can prove the following relations
among the curvature tensors [4].

The Gauss equation

This relation comes from computing the Riemann curvature tensor Refg in terms of the

intrinsic curvature >R, @

we and the extrinsic curvature K :

he b hd R,," =3R4 + KooK — Ky K¢ (4.69)

efg

The Codazzi equation

This relation comes from computing the parallel part of the Riemann curvature tensor
contracted with the unitary normal vector P (Rabcdnd) which equals

Pi(Rapean®) = b by h$ Rapean® = DKy — Dy Koy (4.70)

The Ricci equation

This last equation comes from taking the lie derivative £,, along the unit normal n® if the
extrinsic curvature Ky :

Rapeann® = =L, Koy — Koo K§ + Daap) + aqap, (4.71)

where a, is the normal acceleration a, = n°V.n, (with a,n* = 0).

We could also use the Ricci equation (4.71) with the relation Rgn®n® = R, %nn® to get

Rann® = (K%)? — K K" + V0°, (4.72)
where the vector field v® is defined as
v = —n*V.n° +nV.n"

Using the Gauss-Codazzi equations with the Ricci equations one can read the Ricci scalar R:
R=3R+ K K™ — (K%)* — 2V (4.73)

Hence, up to a divergence term, we can decompose the Ricci scalar into a potential term *R
and a kinetic term — quadratic in extrinsic curvature. Then, the extrinsic curvature, as shown
in equation (4.68), plays the role of a velocity of the spatial metric hg, and is, thus, a candidate
for its momentum when we formulate the GR in terms of canonical variables, as we do next.
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4.4 The ADM formalism

The action of general relativity in metric variables is given, as already presented, by the

Einstein-Hilbert action
1 4 _
Se.u.lg] = 167G /d ry/—detgR = /dtLgmv.

Using equations (4.53) and (4.73) one can write the Lagragian for gravity as

1
L rav —
g 167G

/ FPaNVaeth (*R+ KoK — (K°)%) | (4.74)

where the term proportional to V,v* was left out once it is a boundary term which does not
affect the equations of motion.

From equation (4.68) we can see that the action depends on hab because of the K, term,
but it is independent of time derivatives of the remaining space-time metric components, as
expected, and also of time derivatives of N and N®.

So we may already extract the primary constraints:

(SLgr(w

= ———=0, 4.75
) = S (4.75)
and 5L
o(7) = =L =0. 4.76
Pa(®) =~ @) (4.76)
The conjugate momenta of the induced metric hyy, is
5L Tav
Wab(l') - 9
5hab($)
= Mﬂﬁ (4.77)
0K ap hep(z)
0Ly 1
= — 4.
0K 2N’ (4.78)
where the last line comes from equation (4.68).
So we get
Vdeth
ab _ ab __ grc 1ab
(1) = 6 (K= K¢ h™). (4.79)
Contracting this relation with h,, we get
167G,
————=T"hep = ha K** — K¢ h*h,,
Vdeth T e e
=K% — 3K,
= 2K,
and it follows that I
Ko = -7 e (4.80)
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which allows us to isolate K in equation 4.79:

G
vdet h

With this last relation we can express hig in (4.68) in terms of its conjugate momenta 7

K* = (27" — 7 hP). (4.81)

167GN
vdet h

Then we can obtain the Hamiltonian through

hap = (27" — 72h™) + 2D, Ny). (4.82)

0= [ @ (17l + Aox + 1°pa) — (1) (4.83)

where the \ and y's are the Lagrange multipliers of the constraints.

Using equation (4.82) to write Ry in terms of its conjugate momenta 7% we can write (4.83)
as
16mrGN 1 N+/det h
H= / By | 2 (wabwab - (#;)2) 21 DN, — SRR 4 Apy o+ 4P| . (4.84)
Vdet h 2 167G

Applying the consistency conditions (4.29) to the constraints we get secondary constraints:

0= pN - {pN, Htotal} grav(haba Wab)» (485>
0 = Po = {Pa, Hiotat} = —C"* (hgp, ™). (4.86)

And if we work out the Poisson’s brackets above we get [4]

Cgr(w =

167GN 1 NVdeth .
il (mmrab ) )2) _ VA hsp o, (4.87)

Jdet h 9\Ta 167G

which is called the Hamiltonian constraint.
Working out the second Poisson bracket [4] we get

CI"* = —2D,7? = 0, (4.88)
which is called the diffeomorphism constraint.

We can now see that, putting these in (4.84), the lapse function N and the shift vector N*
play the role of Lagrange multipliers of the secondary constraints:

H= / B2 [NCyraw + NCI™ + Apy + 1°pa] + Hos, (4.89)
where the last term refers to the Hamiltonian of the boundary term.

We have finally built a Hamiltoninan representation of the dynamics of the spacetime
geometry. The canonical variables here are the induced metric h,, and its conjugate momenta
7%, 'With this Hamiltonian it is now possible to study the spacetime dynamics in a canonical
way, using every tool of the Hamiltonian formalism.
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4.5 The equations of motion

Let us now obtain the evolutionary part of Einstein’s equations canonically.
The Hamilton equations give N(x) = A(x) and N%(x) = p%(z), which means that these
functions can change arbitrally due to reparametrizations. We have also the equations

hay = {hap, Hyraw}

which gives us back equation (4.82). Finally, we have also the equation of motion
ab _ {,ﬂab’ ngav} :

which, when developed, gives us

cab _ N+vdet h < Rab _

167G
_ 327GN < b
vdet h ¢

ach
+ Vdet D, ( \/_h> @D NY. (4.90)

1 TGN 1

- Rhab) + hab< e 2) +
2 Vet h Mot~ 5 ()

1
2

b C) N Vvdet h

AT (D*D°N — b D.D°N)
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Chapter 5

Tetrads Formalism and Palatini Action

Geometry is the archetype of the
beauty of the world.

Johannes Kepler

5.1 Introduction

Since Riemannian manifolds are locally flat, one can choose an orthonormal basis of vectors
{ep, €1, €2, €3} for each point P on the manifold M, as shown in figure (5.1).

5

Figure 5.1: The local tetrad basis.

One can write the basis vector of T,,M as a linear combination of the orthornormal local
tetrad basis at P:

0, = ejjer, (5.1)

where the matrix eﬁ contain the coefficients of the linear combination. The greek letters represent
the world indices in the manifold — it refers to the coordinalization of the manifold. The latin
letters represent an internal index, referring to the components of the local orthonormal basis at
P. This is shown in figure (5.2).
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(53

Figure 5.2: Internal vs World indices.

5.2 Tetrad formalism

Since the tetrads represent an orthonormal basis, it is required that e; - e; = n;;, then, using
(5.1) we get

Juv = g(8w 81/)
=0,-0,

= (eqer) - (epes)

= eﬁeinu, (5.2)
and we can also rewrite this relation in index free notation as
g= eTn e.

In this way, we can see the tetrad as a similarity transformation that diagonalizes the metric
g and scales it to the unit. The 7 matrix is the euclidean metric if we are talking about 3D
space (then the basis e should be called a triad) or the Minkowski metric if we are talking about
spacetime — where the name tetrad makes more sense.

Taking the determinant of this equation we get

g= _627 (5?))

where g stands for the determinant of the spacetime metric g,,, and e for the determinant of the
matrix eﬁ. The minus sign comes from the determinant of the Minkowski metric.

Hence, the tetrad represents the square root of the metric and has, therefore, all the
information about the geometry of the manifold. We can thus consider the tetrad as the
fundamental description and the metric as a derived concept.

The spacetime indices are contracted with the metric g,,,, as usual, and the internal indices
are contracted with the flat spacetime metric 7y, which, consisting of 0s and £1s is much easier
to deal with than g, — we will see that this is the whole point of the formalism.

Thinking of e(x) as a square matrix, we can define its inverse ef such that
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eiel = 67. (5.4)

It can be sometimes confusing in the literature what does the term tetrads specifically refers
to. Here, when we say tetrad, one can think of the local orthonormal basis vectors e;, or its
dual — the 1-form e’ = e/ dz" — or also the matrix ], containing the coefficients of the linear
transformation.

5.3 Connections via tetrads
If we have a spacetime vector field v* and we take its derivative in a certain direction we get
(Vou)t = 00" + T 0", (5.5)

where I', is the Levi-Civita connection.
In a similar way, when we compute the derivative of vectors in the internal space, we expect
something such as
(Dav)l = aavl + wa]JUJ> (56>

where the 1-form w/; is the spin connection. This is of course valid for a vector. For a general
tensor we add a w factor for each of its indices, just as in the covariant derivative with the
Levi-Civita connection. So, for a rank (7, s) tensor we would have:

D, T# b = §,THr

V1...Ug Vi...Ug
K1 ke Hr ol k

+w ak Lyl W T, +

M- #T _ H1---Hor

Tlc Vg . w az/sTyl...k .

It can be easily seen that the spin connection is a 1-form since, on a curved manifold, when
we move from a point x to a nearby point x + dx it is expected that the local frame will rotate
(in Euclidean space) or Lorentz transform (in Minkowski flat spacetime), thus, an infinitesimal
translation has the effect of rotating the 1-form ef(z) infinitesimally. Hence, if we apply the
exterior derivative d to this 1-form we should get

de’ = —wlje’, (5.7)

for some antisymmetric wyy, since the generators of rotations or Lorentz transformations are
antisymmetric. The minus sign is just a convention. Since e! is a 1-form, de’ is a 2-form and

wh = wlujdx“, (5.8)

is also a 1-form.
If we evaluate the covariant derivative of the Minkowski metric we get

Danry = 0anry + WaKInKJ + waK JIIK
= waffrUKJ + Wf JNIK
= Wq 1J + Wa JI, (5.9)

and, if the covariant derivative is required to be compatible with n we get

Wa 1J = —Wq JjI, (5-1())
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which attest the antisymmetry of the spin connection in its internal indices, as said before. This
means that the coefficients of the connection take values in the Lie Algebra of the Lorentz group
of that signature, as developed in appendix A.

We can built the relation between the spin connection w on the internal space and the Levi
Civita connection I' on the manifold. Remember that we can always express a vector v at point
P by a linear combination of the internal basis vectors e; or by the spacetime basis vectors on
the tangent space T, M, the 9)s: v = vler =09,

Also, the connection w on the internal space induces a connection on the tangent space T, M
for a given tetrad e. The covariant derivative D on the internal space is defined via

Vv = e De(v)). (5.11)
Developing these two derivatives leads us to
V,u= Vp(vlel) =V, (v"0,)
er(D0") + v5w] ey = (O + v %0,

1

and, using J, = e, K

e; on the right side and v = Ve, we get

e10,(v'e]) + vtel w! ey = (D" + vF T el e
ervt(0,e ) +ere, L,0") +e v“ngeJ = (0, U“)e er +kapke er
V(D)) + € U“ng = kake

v
d, e + e# wp k=T pk
from where we can express the spin connection in terms of the Levi Civita connection:
wh ;= eb(0,eh +e5T,), (5.12)

which will be useful later.

5.4 Curvature and Torsion via tetrads

If one defines the exterior covariant derivative as D, = d+w where d is the exterior derivative,
it is possible to extract the curvature in the Cartan formalism. This is how one can take covariant
derivatives of n-forms taking values in the internal space. We will use just D from now on to
denote the exterior covariant derivative with respect to the connection w.

Consider a 0-form ¢!, which has no spacetime index — only internal indices. Then [16]

Dl¢7 = do" + whe”. (5.13)

If we calculate
DEDL¢7 = d(de™ + wBe¢7) 4+ Wi (dot + whe?), (5.14)

the curvature will immediately emerge. The first term gives
dd¢' + (dw'y)¢” — wlde”,

and the second term gives
wihde" + whwhe’.
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Then, since d> = 0, the sum gives, maintaining only the operators in the equation:
DYDY = dw® + whwh = FY, (5.15)

where F' is the curvature 2-form:
FY = Fldada?, (5.16)

i.e., this is the curvature of the connection 1-form wl];] on the internal space. Since it is an
antisymmetric tensor, its components are easily extracted from (5.15) and are given by

FI = 9,0l — 0,01 + [ w,]. (5.17)

If we use equation (5.12) in (5.17) we can get the relation between the curvature 2-form F!/

and the Riemann curvature tensor R/, , = 9,l',, — 9,1, + ', T7 —T7 1%, which is

This relation shows that the Riemann curvature tensor Rf,,, of the connection V is just the
spacetime image of the curvature F ., ; of the spin connectlon w.

We can also convert all mdlces of F, [ . to internal indices, which will be very useful to
calculate the Ricci tensor and Ricci scalar Thus, let us introduce the object

Fyi s =FL; ek (5.19)
We can get the internal Ricci tensor by the usual contraction
Fry=Fyuih, (5.20)
and the Ricci tensor can be built from this via
R, = Fiyee;. (5.21)
We can also get the Ricci scalar in the usual way:
R=Fiyn". (5.22)

It is also easy to see that this scalar, in the internal structure, is the same as the Ricci scalar on
the manifold:

R="Fn"
= R/ﬂ/e?e; 77”
= R,ul/g/w
=R,

where, in the second line, we used equation (5.22) with inverses of efL applied.
We also may define the torsion in the local Minkowski space. First, the torsion 7" in the
tangent bundle is given by
T(v,u) = Vyu— Vo — [v,u], (5.23)

which is, in coordinates:
Tﬁy - VN8 V a - F[HV]
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However, from equation (5.12) we can write this as
o _ piad o I g T
T, = er(0ue, dve, +w', €, wVJeH)
_ P I
= e7(De")
or, in spacetime index free notation
O W ¢
T' =e (De'),

which states that the torsion in the tangent bundle is the pullback of De’ by the inverse of the
tetrad. So, the torsion in the Minkowski bundle is just

T' = De! = de' + W', ne’. (5.24)

5.5 Cartan’s view of Riemannian geometry

Equations (5.7) and (5.15) are called first and second Cartan’s structural equations, re-
spectively. In Cartan’s formalism, Riemannian geometry can be summarized by these two
equations:

de! +wi Nef =0,

FY = dw’ + wl Awh. (5.25)

The protocol goes as follows: given a metric, one chooses a basis of tetrads e satisfying equation
(5.2). Then one can use the first of Cartan’s equations to figure out the spin connection w, and,
finally, with the second of Cartan’s equations, one has the curvature 2-form F. This is the
easiest way of computing the Riemann curvature tensor, which can be done with the relations

between F!7 and R, developed in the previous section.

5.5.1 The 2-sphere

It is instructive to develop an example to see how the formalism works, which we will do for
the 2-sphere. The same can be done for the Schwarzschild metric or any other [9].
For the 2-sphere, writing the line element in spherical coordinates, we have

ds* = Gudatdr” = R%d6? + R*sen’d do?.

From g,, = nr Jeie;] we can immediately choose, for the tetrads:
eg =R
635 = Rsend,

1

with all the other components vanishing. For the 1-forms, we have e’ = eﬁdaz”, so we get

el = Rdé,
e? = Rsenfdg.
Now, from the first of Cartan’s structural equations we get
de' +winel =0
wie' +wye? =0

wi RdO = —wj Rsenfd, (5.26)
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and, since w; = 0, it follows that w3 is a 1-form proportional to d¢.
Again, using the first of Cartan’s structural equations:

de* +wiNel =0

d(Rsenfd¢) + wie' + wie® =0

Rcos0(df A dp) + w? Rdf + w3 Rsenfdg = 0,
(5.27)

and again, since w® = 0 (it is anti symmetric) we get

w? = cos Od¢
wy = — cos Odep,
with all the other components vanishing.
Now, from the second Cartan’s structural equation:
Fl o= dw’; + w'ie AW,
we get directly the vanishing components RY, = R% = 0 and the non-vanishing components:
Fy = dwly + whe Awh
= send(df A do) + w' Awh +wh Awd
= senf(df A do),

and, similarly, we get F2 = —senf(df A d¢).
With these components in hand we can use equation (5.16) to write

FL=F! L g datdx”,
so, from the non-vanishing components we get

FY = sen(0)df A dp =

uv L datdr”
from where we get
Fgld)2 = send,

and, in a similar way,
2
Fys1 = —send.

Now, from (5.18), we can write the components of the Riemann curvature tensor,

P
R =efe! F;wJ

uvo
_ 2
ele F,,2+e2e ijl

The only non-vanishing component, up to the symmetries of the Riemann tensor, is:
0 0.1 12
Rysp = el% F9¢2 +e5ey Fygq
— €1€¢ F9¢2
=R 'R sen(G)Fg(lz,2

= sen?d.
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Also, from (5.19) and (5.20) we can write the component Fj; of the Ricci tensor in internal
indices:
F = F/w]\lfe‘](,ef
= F s R
=F ¢921€§R_1
= sen(f)(Rsend) 'R}
=1/R%

The Fy component can be extracted in the same way:

N _p ¢
6 26N€2

Fy =F,
= F, ¢l (Rsend) ™!
= Fyy'5¢l(Rsend) ™"
= (senf)(R) ' (Rsenfd) "
=1/R?,
with the other components being Fo = Fy; = 0.
We can also use (5.21) to write the Ricci tensor in spacetime:

I_J
Rpg = FIJ%@@

1,1 2 2
= Fliegey + Farepey

and, for the other non-vanishing component:
R¢¢ = F]J@éei
_ F 1.1 F 2 2
= I'negey + I'neyey
= F22<€§)>2
= R ?(Rsenf)?

= sen?f.

For the Ricci scalar, using (5.22), we have, finally

2
R=Fin" = Fun' + Fouon®™ = Fyy + Fyy = ok

5.6 The Palatini action

The Palatini action for GR is just the Einstein-Hilbert action written as a function of the
frame field e and the connection w:

Sle,w] = 16er [ day/=detg Bl (5.28)
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From equation (5.3) we can write det g in terms of the tetrads. And, from equation (5.18)
we can get the Ricci tensor by the usual contraction:

R, =Ry, =Fl el (5.29)

uvo
hence, the curvature scalar can be written as
_ o
R=R,g
- F Qv Jeleag

v J MN
—FVJ@I%U eMeN

= VJUMJG?G‘X/[
= FfJe,eJ, (5.30)
where, in the third line we used the contraction e/e$, = 6% and in the last line we just renamed
a dummy index. Now we have R[w]. So, the Palatml action is
Sle,w] = —— [ diz e herFl7 (5.31)
Wl =165 zeeres .y, .

where e = y/— det g.

We now just apply the variational principle to the action (5.31) to get the equations of
motion. First, we vary the action with respect to the tetrad, i.e., we compute S assuming
0w = 0. This leads us to

0S =

167rG/d4 561)6JF1J+€61((5€J)F1J (5e)eIeJFU}

o 4
_SWG/da:e

where the last term is calculated via §(det A) = det A Tr(A};' 0A;;):

1
eZF/fJ((SeI) ~ 5% eIeJF”((Sef()} , (5.32)

Se = e e%bel = —e el des, (5.33)

where in the last equality we used §(eXeg) = 0.
Hence, if we set 0.5 = 0 we get

1
FETer — 260 eIeJF” = 0.
If we act with e,x = ng e’ on both sides we get:

1
~(eXelng)efesFLl =0,

KJ
F . eerx — 5

where, from (5.2), the term in parenthesis is just g,,, the last part of the second term, from

equation (5.30), is just the Ricci scalar R, and the first term, from equation (5.18), is just the
Ricci tensor R.,. We then derived Einstein’s field equations in vacuum

1
R.; — sRg.. = 0.
9 g
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We need also to vary (5.31) with respect to w, assuming de = 0:

08 =

e /d4x e efe(5FL), (5.34)

from (5.17) we get
SFLY = 0u(0wl?) = 0,(0u0l?) + (8wl )l + o (Bu) = (Buolge ool — (Buof Yok
(a[#dwu] + 5(*] qu ] ‘|‘ w[M|K|(5w )
=2 (a[uéwy] +W[M|K|5wyl - CUMK‘(SWV} ) = (a (5@0”] + 2w M|K|5W|K|J]) ’

1
where we used A, = 2 (A — Ayy). Hence, in equation (5.34) we have
3S = d Aol + 2wl! - owli] 5.35
87TG e efe (00w, J 4 wMK' w, ) (5.35)

The first term can be rewritten as
e efe O bwlf = —e efre 00w’ ;,
then, integrating by parts we have (neglecting boundary terms)
/d4x e e?eljaméwl{f = /d4x 9, (e efrel)ow' ;. (5.36)
The second term can be also rewritten as follow
K] _

v K|J v
2 e elfelw u|K|(5w =2e¢ eﬁeJ]w[I#K(Sij] Y eﬁeJ]wiK(&ufJ),

where, in the last step, we just left out the antisymmetrization [, v| since the expression is

already antisymmetric.
So, we have, for the second term of the action, renaming some dummy indices

— /d4x(2 e e’[’Ke‘}}w,f(I)(SwiJ, (5.37)
so, in (5.35) we have:

4
0S = 167TG/d (ee

then, if we set §.5/dw!’” = 0 we get

nen) —2e e[KeJ}wfI) 5wi‘], (5.38)

dy(eefrel) —2e e’[’Keﬁ}wfl = 0.
However, if we took the covariant derivative of the e ef‘lej] term we would get

v v K v K v
D, (e eﬁeﬂ) =0, (e e’fleJ]) —w, e efgey — wy e efreyy,

which is exactly the expression above, whose value is zero:

D, (e efie) = 0. (5.39)
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Since ]
wov o wraf K L
€ 6[I€J] = 4€[JKLE € eﬂ,

we have, in (5.39):

1
Dl, (6 eﬁ,ef}}) = ZE[JKLE‘uyaﬁ |:(Dy€§>eé/ + (Dl,eg)eﬂ

1
= §6UKL€Waﬁ(Du€§)€§,

where, in the first line the two terms in the parenthesis are equivalent since the expression is
antisymmetric in [K, L] and [«, 5], contributing with two factors of minus one to the last term,
making it identical do the first one. We are left with

e *?(D,el)el =0,

where the symbol €757 was removed since it’s action on antisymmetric rank 2 tensors is
invertible. If we act with €/ on both sides we are left with

Dyely = 0. (5.40)

This implies that the torsion is zero, and, since we have a metric compatibility — equation
(5.10) — we know that we are talking about the Levi Civita connection.

This implies that the tetrad is constant with respect to the covariant derivative defined via
the connection w. So, just as it happened in the Palatini approach for the variables g, and I',
the variation of the action with respect to the connection told us that the metric was compatible
with the covariant derivative defined by that connection. Here, the tetrad, playing the role of
the metric, is compatible with the connection w.

5.6.1 The covariant notation

We can write the same formalism using the notation of forms, in a coordinate independent
way, which will be useful later.
We can write the Palatini action in this notation as

1 1 I T KL
= — . A1
S[e,w] 167TG/2€[JKL6 Aes A (5 )
If we open the integrated term in coordinates we will have

1 1 1
§€[JKL€I Ael NFEE = §eIJKL(edex“) A (eldz”) A <2Fa KL dz® A dxﬁ>

1

= Ze”KLefLel{FaBKL (da:“ Adz” A dx® A dxﬁ)
1

= Z€IJKL€#VQB€£61{FQ KLd4I

=e e[;e/z]Fa KLty

= eRd*z,

where, in the fourth line we used one of the relations from appendix B, and in the last line we
just removed the antisymmetrization in [c, 5] since the expression is already antisymmetric.
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To get the equations of motion we first vary the action with respect to the connection w,
which gives us (removing the constants):

0S = /GUKLeI Ael N (SFEE)
= /EUKLeI Ael A D(6w™E)
= /D (EUKLeI Ael A (5wKL> - /D (EUKLeI A e‘]) A SwiE
= _2/€[JKL <D61> Ael ASwEE,

where the boundary term was neglected from the third to the fourth line and we used the
Palatini identity (see appendix C) in the second line.

So, if we set §.5/6w = 0 we will get De! = 0, which states that the connection w is torsion
free, as we already knew.

If we now vary the action with respect to the tetrads we will have

58 == /eIJKL(deJ) A €I A FKL,

and, setting §5/de’ = 0 will lead us to
GIJKLGI A FEE = .
and, when we open this equation in coordinates we get
eUKL(eéFfVL)d;U" Adx! A\ dx” = 0. (5.42)

One should note that the only free index in the above equation is L, which then gives us
four equations — one for each value of L = 0,1,2,3 — stating that a certain 3-form vanishes.
And, since in a n-dimensional space a p-form has (Z) independent components, our 3-forms will

have (g) = 4 independent components. Equation (5.42) is then grouping 16 different equations,
which may lead one to infer that this is probably Einstein’s field equations — which indeed is,
as we will now show.

Acting with dz” in (5.42) gives us
EIJKL(GCI,FffVL)dZL’U Adz? A dx? A dxP = 0.
Since €7"Pdiy = dx® A dz* A dx¥ A dx?, and contracting e;yxrel
to

= € €5¢h€] €sapy, this leads us

eJeKeZFKL €M Pesnpy = 0.
Since J is a free index, one can act with ] to get efe] FELe P 5. = 0. However, ey e] FXL =
RBJV and
€7MPe gy = —2 (5[u51’]5p 5[05/451/ iy 1/56 (5,0)
which gives us
R, (61006 + olrst v + ol otlar) = 0.
Therefore,
1
R’ — §R6§ =0,

where Rf = RIZ and R := Rfj. Acting with g,, we then obtain Einstein’s field equations in

vacuum, as expected:

1
R#V — iRgMV =0.
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5.7 The Holst action

One could think about the dual of the terms in the Palatini action, such as the dual of the
curvature 2-form:

1
(EV = L F"

Varying the action with this term in the same way we did before leads us to the same compatibility
condition, i.e., we are still dealing with the connection that preserves the tetrads.
This allows us to generalize the Palatini action to

1
Sle,w] = e /d4x eefes P FRE. (5.43)
where the new term is defined as
1
IJ
P, = glsh %eﬂ,’@. (5.44)

Again, if we vary this action with respect to the connection, we are led to
GadeGIJKLPK]l\//[NDa(eiVIGQV) = O,

which still remains being the compatibility condition.

Varying the action with respect to the tetrads, as we did in (5.32), will lead to the Einstein’s
field equation with an extra term e/®°R,;;;,, which vanishes by the symmetries of the Riemann
tensor.

Therefore, for any value of v, we get the same equations of motion from this new action.
The action in (5.43) is called the Holst action, and ~ is the Barbero-Immirzi parameter.

This action is a step towards constructing the Ashtekar’s formulation of general relativity.

5.7.1 Forms notation

It is also possible to write this action in the notation of forms, which would lead us to

1 1
327TG/ l<*+7> e[/\ejl A F (5.45)

Varying this action with respect to the connection gives us

1 1 I
32WG/[<*+7> eI/\eJ] ANOF

1 1 7
327rG/[<*+’y> 6[/\6]‘| A D(6w™)
S / *+1 (Der) A
- 167G 0 er) et

where we used 67/ = D(6w!”) in the second line and we integrated by parts and neglected the
boundary term in the next line.

From equation (5.24) it can be seen that forcing this variation to vanish leads us to the
torsion free condition:

08 =

A dw!?,

T = De! = 0.
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This can also be taken as the definition of w: our connection is the one that can be entirely
determined by the tetrads, given this condition. So, the only independent variable in our theory
is e/. Defining the connection in this way would obviously make it satisfy the equation of
motion — i.e. there is no variation with respect to w since it is not an independent variable.
This formulation is called first order, while the formulation where both e and w is independent
is called first order.

Finally, varying the action with respect to the tetrad gives us

v f+2)]

Hence, setting §5/de = 0 leads us to

0S =

1
ey A <* + > F' =o. (5.46)
v

The second term vanishes since, from the first Bianchi identity (see appendix C) we have
that e; A F'Y = D?e; = 0, since the connection is torsion free. So, the v term vanishes on-shell,
i.e., when the torsion is zero.

Hence, we are left only with the first term:

es A (xF) =0, (5.47)

which is just Einstein’s field equations in forms notation, which can be shown in a similar way
as we did in the Palatini section, using coordinate notation.
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Chapter 6

Ashtekar Formulation of GR

Mathematics is a language plus
reasoning; it is like a language
plus logic. Mathematics is a tool
for reasoning.

Richard Feynman

6.1 Introduction

This formalism consists in developing a Hamiltonian formalism for the Holst action. Hence,
one needs to talk about some field that is evolving in time, where we will enter with the (341)
split, in a similar way as we did in the ADM formalism, however, now, with different variables.

While following the path to get a Hamiltonian field in this spacetime foliation with the local
3D frame field &/ being our dynamical variable, we will also define new variables — the Ashtekar
variables — the densitized triad and the Ashtekar-Barbero connection, which are going to play
an important role when one follow the steps to quantize the theory.

6.2 Triads and Time Gauge

In the ADM formalism one splits the metric g, — the main dynamical variable — into its
spatial part, the induced metric hgp, and define a time vector field t* to study the spacetime
evolution as the history of the spatial slices >; evolving through the time ¢°.

Here, similar to the spatial canonical metric h,;,, we define the spatial tensor field

e} = ej +nny, (6.1)

where n® is the unitary normal vector to the spatial slice and n; = efn,.
This breaks the basis of tetrads e} in its spatial part, the basis of triads €%, which lives in
the spatial slice ¥, as is easily seen:

€Ny = €Ny + n'nin,
=Ny —ny
=0, (6.2)

which can also be seen in figure (6.1).
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tto

Figure 6.1: The triad

However, in the triad formalism, there is an additional condition to the usual spacetime
split done in the ADM formalism, which is the split in the internal directions of the tetrad in
Minkowski time and space components.

There are two ways of doing this gauge fixing. The first one is to require that e§ = nfe? = n®
be the unit normal to the foliation, this is known as the time gauge. Here we assumed n! =}
to be a timelike internal vector field. Internal Lorentz transformations that preserve n! are
reduced to spatial rotations around the fixed direction n'.

Another way of doing it, which will show to be more practical in the calculations we are
going to develop, is to open the tetrads in its spatial and time components and set the time
gauge directly from it.

First, let us consider the 1-forms e’. For the Minkowski time component:

e = egdx“ = egdr” + eXdx®.

Here we set the spatial part to be zero:

leaving just the time component for this tetrad:

0o_ 0 o
e’ =e,dr
= egdr® + eXdx”
_ 0.0
= epdx

— Ndt, (6.4)

where we defined the lapse function €) := N. This fixes the Minkowski time in the internal
space: the direction orthogonal to the spatial slice.
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Now, for the spatial Minkowski components one can write
el = ezdas“
= ehdr® + €’ dx”
= N'd2® + €l da*, (6.5)
where we defined the shift vector N* := €.

With these, the (3+1) split of the tetrad is done: one has the lapse function N, the shift
vector N and the spatial triads e’ :
N N
el = (o e) (6.6)

a

In the formalism that we are going to develop, the 3-metric of the ADM formalism is
substituted by the new dynamical variable, the triads, and those contain the same geometrical
information: Ay, = (5ij5f15{). The ADM formalism variables will then be replaced by

(haba Wab) — (527 Az)7

where A} is an SU(2) connection, the canonical conjugate variable to the triad, which will
appear shortly in our development.

6.3 The space-time split

6.3.1 The Holst Action

We will now expand the Holst action in equation (5.45) in order to do the 3+1 split in the
triads variable.
First, let us note that
el Nel NFEE = (e dzt) A (eldx”) A (Fifdxpdx”)
=e, eJFKL (dz* N da” A da? A dx?)
= —e‘“’p"eueiFlz(f (dxo Adz' A dz® A dx3)
= —€“”pae£eiF§§dt AdPz, (6.7)
where, in the third line we used the fact the the term dx* A dx¥ A dz? N dx® is completely
anti-symmetric in prpo, then, it can be written in terms of the Levi Civita symbol. The minus
sign comes from the fact that we will use €,,,, to represent the Levi-Civita symbol and €**7 is

defined as being the Levi-Civita symbol multiplied by sign(g) = —1. We can then plug this into
the action in (5.45):

1 1
S:/<*+>€[/\6J/\FIJ
4 gl

1 1 1
= 4/{26[]KL€I Ael N FEL + *77[[(77][161 Ael A FKL}
Y

1 1 1
= —Z/dt/dgili ervre {QEIJKLG GJFKL + ?7[KT]JL6 JFKL} . (68)
Y
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6.3.2 The 3+1 split

Now, given the relations in (6.6), we can decompose the terms in the action (6.8) doing the
(341) split in the spacetime indices. First, note that

€r JKLg“”’”ei 61{ FI;C% = €KL (gOabc F + galbe 1 g F + €aboc e FKL + Eabco e FKL)

~0abc J ~a0bc J ~ab0c I KL ~abOC KL
:eUKL( epel FAL 4 gatbeel el I L TERE 4+ (—e™)ele] (— FOc))
= €KL (2€0abceé JF Ly 2€abOCeI JFISCL)
b KL
= €1y €™ (260 FEL 1 2elel P 0c> : (6.9)
where we defined in the last line €2%¢ := %% and the factor of 2 in the first term came from:
~a0bc I _J KL ~Qabc I _J KL
€ EUKLeanF be — —€ e[JKLeanF be
~0Oab I JpKL
= CEJ[KLSGGOF be
_ ~Qabc J I KL
= —€ EJIKLeanF be

~Oabc J I KL
= € GIJKLeae()F be

hence, the second term in the second line of (6.9) is equal to the first. This was for the first
term in (6.8), but the calculation is analogous for the second term with the 1 parameters.
Therefore, plugging (6.9) in (6.8) we are led to

1 1 1
5= _Z/dt/d% e {ZEUKLe v FKL + 771K77JL€ JFKL}
Y
1 1 1 1 1 ‘
= _Z/dt/d% gabe {22€[JKL€éegFI§cL + 2§€1JKL6£65,]FI(§CL + Q;nIKnJLeéegF[ch + 2;7711(77”6{1@‘517%5

abe 1 1 1
— _7/dt/d3 b { EIJKLeoe Fbc + §€[JKL6 ebFOc + ymKnJLeoe Fbc —+ VmKnJLe ebngcL} .
(6.10)

We now do the same (3+1) split in the internal indices. For the first term inside the brackets
in (6.10) we get

1 1 o 1 1 1
I JpKL _ 00 ik 0 J
§€]JKL€0€(1F e = ieowkeoeaF be T 2610]k60€ Fbc—i- 2%0/&606 Fbc—i- 2%140606 Fbc
1 1 o 1 o
_ = - i g0k - i g k0
= €0ijk€oh e €0ijk€o el L e
2 2 2
1 . 1 o 1 o
_ 0,0 ik - i ,j 0k i ,j 0k
- 260Uk€0€aF be + 2601Jk60€aF be + 2601]k606aF be
1
2

1
26,]kNe FI¥ + e, Neiel FOF | (6.11)

0 i mjk
€0ijk€0Ca e T

0 i ik 7 7 10k
€0ik€0Ca T " pe T €0ijkCoCL T pe

where the second term in the first line vanishes because of the time gauge (€2 = 0) and in
the last term we recovered the definitions of the lapse function N = € and the shift vector
= N' = N4, and we also defined €g;j; = €.
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Now, for the second term in parenthesis in equation (6.10) we have

1 1 . 1 1 1
I JKL 0 i ik k0
§€IJKL€a€bF0c = §€Oijk€a€bF 0c T 2610]196 ebF 0c T+ QEUOke ebF 0c T 2€ka06 ebF Oc
1
ok kO
261]0;@6 ebF 0e T 2ewkoe ebF 0c
1 1
0k
260,”;@6 ebF 0c ~ 5 €0ijkCa eb< FOC)
0k
= €;jke, ebF O (6.12)

where the first two terms in the first line vanishes due to the time gauge (e2 = 0) and in the
last term we also used e€pijr = €jk-

For the last two terms in (6.10) we will open the indices in space and time using the metric
relations above:

NooMoo = 1
= 0
NIkNIL = 1o0hs ! (6.13)
NijMoo = _51‘]'

NikNjt = Oikdji
Then, for the third term in (6.10) we get
;THKUJLBO el FhL _77007700606 OF%. + noonaeoel F%, + noomiwebea e, + nanjeqel Fh,

[ 0_0 7700 j 0 77k0 j
_eoe F%Q — §epel FOL. — Sinebed FR. + b uehel I }

[ 0 _j 0l i 0 k0 i gkl
—djegel Fy. — direge, B + didjiepel F' bc}

00Nl el F}. — 6, Nel FO] | (6.14)

Q\P—RQM—‘QM—RQM—‘

where the first term in the second line vanishes since the curvature 2-form is anti-symmetric
(F* = 0), in the third line the second term also vanishes due to the time gauge, and in the last
line we plugged in the definitions of N and N = e} = N},

Finally, for the fourth term in parenthesis in equation (6.10) we get
JFKL — 1

0 0 7200 0 _j -0l i 0 kO i j okl
§UIK77JL6 e {Uooﬁooeaebf7 oe T MoonjieqaeyE o0 + NikNooeyy I o + Niknjieq ey F o,

[6 ey, — 6;0e2 eiFOl — Oipeled R + dikdje eiFkl }

0, 70l 0 k0 i J okl
{ Suelel FO, — el e) B + Sidjelel F Oc}

»-n\g\»—n\gm—ug\

= ~0pdjele] FR (6.15)
gl

where the first two terms in the third line vanishes due to the time gauge.
Now, plugging (6.11), (6.12), (6.14) and (6.15) in the action (6.10) leads us to

1 1 1 1 .
5= _i/dt/d% e {ZEUKLeOeJFKL o CTTKL % 2 Floc + ,yUIKnJLeoejF be T+ KL eJFKL}

:_;/ﬁ/fxwwy (6.16)
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where the term in parenthesis is
1 o o .
{} = (276@'jkN€ZFJ§c + ’YfijkNdeéetszOfC) + (VeijkezeiFo&f)
+ (5¢k(5led€fj€iszfc - 5ij€iFol§c) + (5ik5ﬂ€ieZF’%C) ’ (6.17)
which, by grouping terms proportional to N and N¢, can be written as
{} = (5ik§jleieZFkéc + 7€¢jk€Z€gFO§c) +
+ N¢ (@kéjleéeiFkéc + 'YEijkefieiFolfc) +
j 1701 1 i ik
— N 5jl€aF be ~ §f}/€ijkeaF be ° <618>

Now, with (6.18) in (6.16) we can break the integral in three terms:

1
S—= /dt/d%(Ll 4 Lo+ Ly), (6.19)

f‘)/

where we have .
L, = —iéabcezej (5ik5lekéc + 'yeiijO(])"’c) , (6.20)
1 o
Ly = —§Nd€“bce’defl (@kélekéc + 'yeiijOfc) , (6.21)
_ l i ~abe 0k 1 ik

Ly = 2Neae dir F 27eka be | - (6.22)

We will treat those terms separately since each of them will be responsible for a different
constraint in our Hamiltonian formalism, as we will be soon developing.

6.4 The Ashtekar-Barbero Variables

Having defined the triads let us now do some minor modifications in those to define the
Ashtekar-Barbero variables, which are the variables in terms of which we will write the action
and the Hamiltonian.

6.4.1 Densitized Triad
The densitized triad E¢ is defined as

E? = det (e) e}, (6.23)

where det (e) stands for the determinant of €.

There are some useful identities relating the densitized triad that will be useful along the
development. We will prove some of them here.

First, let us manipulate the determinant identity for a 3-dimensional matrix e:

el-jkefleief = det (€) €zpe-
One can multiply it by e and use e’ e = §} to get to

Jj k a ~ R Al
ejrepe. = det (€)e] €ape = Ej'€qpe.
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bed and using €q,.6°°¢ = 252[ we are left with

~bed ik _ ofd
€ “ejrere, = 2E7,

Contracting now with €

and, renaming some dummy indices, we get

1 ,
B = igabceijke{,e’g. (6.24)
One can also show that - s
. €l B EY
i - Wik 6.25
%= T 9 det(e) (6.25)

For that, let us compute e’ ef:

b b
e’ eabcEjE,g u

@ T T det(e)
det(e) ik ~ c_a
= 5 € jkﬁabcesekel
det y
det ’
= e2(e)25; det(e)™"
=0},

where in the second line we just used (6.23). In the third line we used the equation for the 3-
dimensional determinant (see Appendix B) and in the fourth line we used det(A™') = (det A)~".
Some other useful identities that follow from those definitions are

~abe j _ b c j
el = epepe’M dete, (6.26)

and .
e = 2 (6.27
et

which follows from (6.25). Those identities will be useful along further development.

6.4.2 Ashtekar-Barbero Connection

One can use the spatial components of the (3+1) split on the spin connection wlfj to define
a new connection on the spatial slice.
We start by defining the extrinsic curvature K! via

- 0 0i
K, =w,"=—-w,"

Secondly, let us remember that the spin connection is anti-symmetric in its internal indices:
wy = —w]'. Hence, it is a 2-form on the internal space. Taking its Hodge dual we obtain the
dual spin connection T'%:

1 . .
Ffz - §Ezjkwa]ka
or, inverting the equation:
wlt = —¢"T,.

With those elements in hand we can define the Ashtekar-Barbero connection A?:

Al =T + K, (6.28)

where 7 is the Barbero-Irimizi parameter. This object is a 1-form in space, not spacetime, since
we have done the (3+1) split in defining those quantities.
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6.5 The Curvature Terms

We will now do the (3+1) split in the curvature terms that appear in equations (6.20), (6.21)
and (6.22). Let us remind the definition of the curvature 2-form

1
F =5 —F J{,’ dxtdz”,

whose components are given by
1

1J LJ

QFHV = a[uw ] + T]KLW[ WV] .
Doing the (3+1) split in the spacetime indices:

1

§F0cj 8[0w + nKLw[OKwC]L‘], (6.29)

1

§Fbc a[bwc] +77KLw[b w}LJ (6.30)
With those, we can decompose it in the internal space, using w’ = 0, 1790 = —1 and

ni; = 9;;. Looking into equations (6.20), (6.21) and (6.22) we see that we have four different
terms involving the curvature. Let us write down in the (3+1) internal split each of those terms.
For the first term we get

1

3 Ok — 8[0w + nmlw[ " w ﬁ“l
= —8[0K -0 lK[O wc]
= —8[0K] + Gy’ qK[(TI‘C]’
= —0pKJ — ' KgTF, (6.31)
where we used w?® = K in the second line and in the third we used w? = —e” T'*,
The second curvature term which appears in the integral is

1
§F(;€cl a[owc] + 7700(*}[ c] + nmnw[omwcﬁll

- 8[0&.}0] + K[O c] + 6mnw [0 wc?l
=~ 0008 + Kig K + O™ €, T T
=~ 008 + KK § — Tl (6.32)
For the third curvature term we have
1
§Fbkc = 8[5,%?’“ + nmlw[omw ﬁk
= _a[ch? ) lK[b wc]
—8[5ch + 0. 16 qK[gan

]’

(6.33)
and, finally, the last curvature term appearing in the integral is
1

§Fbkcl = a[bwc] -+ 7700&][

kO nl

c] +77mnw[b We)

[

= —* 00 ] + K K + o€ pe™ U pT ]

= —¢ pf)[bf —i—K[ K] +5mnw[b wﬁ"

[

=~ 0 + K Ky — T (6.34)
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6.6 The Ashtekar action and the equations of motion

Now, inserting equations (6.31), (6.32), (6.33) and (6.34) in (6.20), (6.21) and (6.22) we get,
finally, the partial terms of the action completely decomposed in the (341) split — in internal
and spacetime indices. As said before, each of these three terms, when developed, will lead us
to constraints in the system, as we will now show.

6.6.1 L;: The first term and the (Gauss constraint

From equation (6.20) we have
1 o
Ll = — ié‘lbce;e{) ((5ik(5ﬂFk[l)c + ’yeiijO(lfc) =
= eeel oo (1,000 8 — KEK S+ T D) +
+ gabcei ei’Yﬁijk ((%de + kaqK[gF q) .

a c]

~ . 1 o
Opening the anti-symmetrizers and using £ = §€abceijkefle{, we get

1. -
Ly = 5™ ;b (€, (00T = 0.T) = KFK !+ KFKS 4+ TgT! = TFT] +
+ By (00K F — 0K + € (KT8 = KT
and using d;0;€7™ e, = 207" we are left with
. . 1.
Ly = E;0o? — E50.I't + 5Efne"}d (rokr Tl - KfK!+ KF Kol) n
+ nyl(c: {aOch - aC[(Ok + Ekpq (K()prcq - chFOq)} .

Now remember from equation (6.19) that the L; term is being integrated in space and time.
Hence, integrating by parts we get, neglecting boundary terms:

- [ Bgor = [ Tio.E
_/IYEliacKOk = /7K0kacE~lg'
Then, we have

Ly = ES00T% + TH0.ES + B (TgT! — KFK ) +
+yELO K+ yKFOEE + yEgek ,, (KFT 2 — KPTJ),

where in the parentheses of the first line we used the fact that €™y, is anti-symmetric in [k, []
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and that A = 3 (A — Ai). Grouping now some terms and relabeling some indices we get

- (Ekaol“k +YEf00K F) + (Th0Eg + VK 0. By ) + Eget, T (T3 + v K1) — Egeh Ki (KI —4T1) =
= E5do (TF +yK}) + 0.5 (T +yK¢) + Egeb, Ty (T4 + vK7) — Eget K (K7 —TY) =

= Egoo (T + 9K }) + 13 {0.E¢ + Egét (T]+vK) } + 7K {a B¢ — B, ( K7 — FJ>} =

= By (T8 +vKF) + T {0.E¢ + Biey (T +7KY) | - iK o {770 Ef + Byt (7K —°TY) } =

= By (T5 + K F) + T4 {0.Ef + Eget (10 ++K7) } - iK" {=720.E¢ + Ege iy K] — Ege 7Ty} =
= By (TE + v K ) + T {0.E¢ + Bt (T + k1) | - iKé {0.¢ + Byt (T4 +KI) } +

ijoc

c c 0 v
; ~ 1 1
+KO 8CE1 ’Y"’; +E67,]F¢]: 74—; =

E£0, (r’; + VKC’“) + (rg — iKé) {acE; + Efet, (rg + ng’)} + K} ('y + i) {a Ee+ Ecafwrg} :

1 .
— =K {~7*0.Ef — Ee ;T — Egck 4*T) — 0,E;
5

where, from the fifth to the sixth line we added and subtracted the term 9.E¢ + Ege” ;;['7 inside
the last parentheses of the equation.
Now, using

A =Tk yKF (6.35)
and introducing the quantities
, 1
al = ( —|—fy> K, (6.36)
v
) . 1 .
AN =T — —Kj, (6.37)
Y
G; = 0.E¢ + Efe ”A’ (6.38)
we are left with . ‘ o
Ly = E{OgAL + NG + o (0:Ef + Fgel 7). (6.39)

The last term in parentheses is just drF, which vanishes. This happens because the
connection I' is torsionless, i.e. T = dre = 0, where e is the frame field in form notation. One
could also write the densitized triad in forms notation via

) ) ) 1 )
i1 ik __ 7
E ab = € jk€,6, = 5[8,6] abs

hence, it is easy to see that

1
drE = idp[e,e] = [dre,e] = [T,e] =0
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indeed vanishes.

Hence, the first term is just ~ '
Ly = E{do AL + NG, (6.40)

where G; is called the Gauss Constraint, which generates SU(2) gauge transformations as we
will discuss later.

6.6.2 Lo: The second term and the Diffeomorphism constraint
From equations (6.33) and (6.34) in (6.21) we get

1 "’(l C Z
Ly = — g Neeye] (0udpF"s + veinFS.) =

= N'eteekel oy (eflopl s — KK j+ TpT)) +
+ N%&meeh el ye, (8[1)}(@ (—:qu[ch}) .

Note that 5“95];6 » = €ijp, and, relabelling some dummy indices we can write

L2 = ngabcel 6] €Z]ka[brc] + Nd abce 6‘7 5lk5]l (F[b o~ K[?Kc]) +
+ Neabeeied (fyewka[bK] + vewke KpF q)

and, grouping some similar terms we are led to
Ly = N chehesin (TS +10pK ) + N'e™eyelsudy (TETE — KK ) +
+ Ndeabeet el T Y€ijKE qu[pF (}1

From the definition of the Ashtekar-Barbero connection one can easily write the first term
in parentheses as G[bFC’f + 'y@[chf = 8[5,AC’]“. Also, in the last line we can write:

eijke’;q = nmkeijkepqm = nmk(éipéthskm 0ig0ipOmik) = Oip0jq — 0iglijp-
Then we are left with
Ly = N¥&e)el ey Al + NUe™eielondn (TET) — KFKS) +
+ Nde®eel el (8,05 — 0igljp) KT | =
= N'eteeheleipndp Al + Neeelelondy (TET) — KFKS) +
+ Neepel v (Kl g — KiTy),

q
and, since the entire expression is being multiplied by €%*¢, which is already anti-symmetric in
[bc], we can drop out the anti-symmetrizers:

Ly = N%&®eeied {Eijk&,Af + 0ix0j1 (Fbkrcl - Kkacl> + (K, T - ijrci)} =
= Ndetbeeied {eijkﬁbAlj + (F;ch - ijKcZ) +(K, T - ijrci)} - (6.41)

However, the curvature 2-form of the Ashtekar-Barbero connection A¥ is defined, in index

notation, as
1

1 m
2 —eh ALA™. (6.42)

a[bAc] + 2
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Hence, expanding A% = I'* + vK* and contracting both sides of (6.42) with é%°¢,;;, we get

1 "’a C [ 1 m m
gﬁabc%kac = & einOpAg + 5 eijre’, (T + VK (0 + 7KL )}

2

r 1
_ gabc €z]ka[bAc] + = (5 0. im — 52m5ﬂ)(ré + WKIZ,)(FZ” + VK?)]

2
_ gabc Eljka[bAC] 4= (5zl53m o 52m6ﬂ)(rlrm + F ’YKm —+ ’)/Kbrm + 72Kme):|

_ zabe :eijka[b Al 4 000 {TITI 4+ 7 (TLKT + KT ) + 2 KUK}

1
where in the last line we used again the notation for anti-symmetric objects A, = §(AW —A,,).
Therefore, subtracting €%°6;;0;,,(1 + v*) K} K™ from both sides we can write
1
e { S = Gl (1 VK | = & (e 0 Al + Gty { (T2 = KLEC) 4+ (TR + KU}
Hence, in equation (6.41) we have

S|
Ly=N de“bcefiefl {

2Eijk’Fbkc — Gi0jm (1 + Vz)KéKén} ;

and since €] = ebete/? det e (equation (6.26)) we have
Ly = Neiehet|e|e {;Giijbkc — Oiudjm (1 + ’VQ)KéKgn}
= Néeebestel {5607 — P01 — 8aert (1 + )KL
= NYe| {ei (ebeSFY — eleC FiL) — Suehebese’d (1 + VQ)KéKZ”}
= NYe| { [ (eheS)FE — (ehel)e CFZ?C)} — 5iledepeqep;fl(1 + v )Kme}
= NYe| {2 [egFg; — echc)} — buehebece’d (14 )Kme}
= NYe| {egFlZ Sueenece’d (1 + WQ)KéK;"} : (6.43)

where we used ejef = 0g in the fifth line and A,, = (A,, — A,,)/2 in the last one.
We can also express this in terms of the densitized triad Ef = |e|ef:
Ly = N°le| {eb F, — Suchehecems (14 +*) KiK'}
= —N“Je| { ) FE, + dacieheces (1 ++7) K K.}

= —N{EJF5, + dueke(1+ ) Kjeht KIS} (6.44)
Note that, from (6.38) we can write:
G; = 0.Ef + Efe', (T + vK7)
= 0.F¢ + Efe", ) + Eget v K]

ijo ¢

- Egﬁ z]’nga

since 0L + EkelJFJ =drE =0.
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~ 1
Therefore we can write that ¢/ K" Ef = ——GP. Hence, in (6.44) we get
v

1
Ly =—N° {E§ vy — Oaeher <7+7> K,’,Gp}.

The part with the Gauss constraint G? is redundant, its content is already covered by L;.
We are then left with

Ly=—N"EJFY, (6.45)
or, defining the momentum constraint as
V, = ELFY (6.46)
we can write it as
Ly = —NV,. (6.47)

This is called the vector constraint, which is related to spatial diffeomorphisms, as we will
show and discuss later.

6.6.3 L3: The third term and the Hamiltonian constraint
Finally we get, for the third term, from equations (6.33) and (6.34) in (6.22):

1 .
2761;ij]£€0>

= N@Zgabcéik (—8[bK — € qu[éJFc?)

a

1 .
Ly = S Neje™ (@kF

1 i ~abc j j
- §Neae Pevein (—ejkpa[bfc? + K[JKC] F[iFC]f) .

Using equation (6.27) we are left with
Ne zmnEb Ec

Vi b0 (B KT +
(§

1N Ezmn Eb Ec
2 det

Ly =
= [Ewkej ML + € (p]p ~ K Kk)]

where we dropped the anti-symmetrizers since the expression is already anti-symmetric in [b, c|.
Also, since eijkeg,k = 20,5, and renaming some dummy indices, we get

Ne zmnEb Ec
L :—¢ 6;;00 K7 + € KT,
’ Vdet E ( ! ! )
Ne zmnEb Ec 1 )
I Jjpk J k
== [@jabr + Seik (rirf - K/ K, )]

and, regrouping some terms:

NeimnEb Ec [ ' 1 '
Ly = —mNn (5l'y@b (FCJ — Kg)] +
’ Vdet E ! Y

Ne zmnEb Ec 1 )
_2E Pmome [K TE 4 oy (KJ K - Fgrf)]
det K 2
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. 1, . ,
Now, plugging K7 = —(AZ —I'7) into the equation we are led to
Y

sznEbE 1 ) )
Ly=———m=n 1549 — (A —TI) ||+
’ det E [ﬂ b( Jat )ﬂ

Nem b Ee 1 1 (1, . ,
_ W_%k lV(A{) — )Lk + 37 {72(14{) —TY)(AF —TF) - FbJFCkH 7

and, developing the equation:
Ne zmnEb Ec 1 ] ] )
Ly = ﬁ [81, (”yf" V(AZC — Fi)) Emk,y(A] Fi)Fck] +
S o B |5 { i - airt it - oy ] -
e

2
= — = [PAT - AL+ AT — (4]~ T +
Ne zmnEb Ec

vdetE

Note that the term proportional to €, is

1 . ) . .
“ijig (A A¥ — AJTY 4+ TJTE — T AF) — /TT .

) 1. 1 . 1 . 1 . 1 .
—ATF 4+ T - §A{)A’§ - 5Agr’; - §rgr’g - inA'j - iﬁrgrf,

which can be simplified as

1 1,
——A’F + 2rfrﬂ — fAJA’“ + FJA’“ + 572F13Fc’“,
or, finally
1 1 1 T
~Trry - fAJA’“ A TJTF = (1 + )T FT — -~ Al AF.
9 ¢ 2 + 2 2( +7) c—b 2 b4 c

Hence, we can write the Lagrangian as

N zmnEb Ec ]
Ly — BAL — (L + ) (T | +
Ne zmnEb Ec |:1 ) 1 .
SR TmTn IS ATAR — (14 Fc’“FJ] ,
7\/@ Jk 947b 2( ) b
then,
Ne zmnEb Ec 1 . 1 ;
L3 = - K&,A + Ez kA Ak) - (1 + ’}/2) (abFf: + =€ kFC’“FJH
vdetE ’ 27 ’
or, using €mn" = §Pemn

NemnEb fe 1 1
Ly= -G ZmZn (g 40y 2 AJA’“)— 142 (arz Fkrf)]
’ Wdet E K AL+ 5 €A (1497 (e + 3¢

88
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However, the expressions in parentheses are the equations in components for the curvature
2-forms of the connections Aj and I}, respectively:

§Fgc = O AL + = 5€ JkAJA’“ (6.48)
i i 1 i ]
§Rbc = Ol + 3¢ ¢ D2y,
Hence, the expression can be written as
N mnEb Ec )
Ly=— Fi — (1+~*)RY.| . (6.49)
’ 2vVdet E [ ’ ’ }
If one defines the scalar constraint C' as
mnEb Ec )
Ci=— Fi — (1++*)R,|, (6.50)
27V det [ ’ ’ ]
then
L3 = NC, (6.51)

where C' is the scalar constraint — or Hamiltonian constraint — and N is just a Lagrangian
multiplier.

6.7 The Hamiltonian as a Linear Combination of Con-
straints

Back to equation (6.19) we can now write the action as
1 - . A
S=- / dt / d*x (B20,AL + NG, + N°V, + NC), (6.52)
g

which is the Ashtekar action for classical gravity. From the first term we can see that the
Ashtekar-Barbero connection A} and the densitized triad E are conjugate variables. Here,
A, N® and N are Lagrange multipliers. The following terms — already previously defined —
deserve to be highlighted again for the sake of clarity:

« Gauss constraint: G; = 0,E¢ + Ege’szg
« Vector constraint: V, == EVF,

) ) ) emn Eb Ec ) ]
 Hamiltonian constraint: C':= ————2=L [F} — (1 +~*)R",]

27\/ det £

We can then get the Hamiltonian
HIA Ef] = /d3:c (NGi+ NV, + NC), (6.53)

with the first class constraints, which generates the expected gauge freedom: the triad rotations
and spacetime diffeomorphisms, which is discussed in the next section.

If one writes the Hamilton equations that result from this Hamiltonian, one will indeed
reproduce Einstein field equations, as expected.
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6.8 Geometrical interpretation of the Constraints

We will now conclude our discussion by developing the geometrical interpretation of the
constraints in the Hamiltonian on Ashtekar’s formulation of General Relativity.

6.8.1 Electromagnetism

Let us first develop the geometrical interpretation of the constraints for a more familiar
theory, classical electromagnetism. The Lagrangian for electromagnetism is

1
L= / PrF,, P, (6.54)

where F),, = 0,A, — 0, A, is the electromagnetic tensor and A, is the vector potential. It is easy
to see that the zeroth component of the vector potential will not appear with a time derivative,
since F),, vanishes for © = v. Hence, only spatial derivatives of A, appear in the Lagrangian,
which means that it does not play a dynamical role. It is, actually, a Lagrange multiplier, as we
will show later.
Hence, being A, our dynamical variable, its conjugate momentum is given by
, OL

= 6.55
"= iT (6:55)

which, when one takes the functional derivative of (6.54), gives E* — the electric field. The
canonical variables are then A,(z) and E’(z), where a stands for spatial coordinates, as usual:
a =1,2 or 3 (remember that Ay is not a dynamical variable).

When taking the functional derivative we get a density, as expected, since the Lagrangian is
a volume integral, hence, its integrand must be a scalar density. When one takes a functional
derivative, the integral disappears and the result must be a density. The Poisson bracket of
E’(z) and Ay(x) (which is not a density) is again a density, as expected

{Ay(2), E'(z)} = 050%(x — y).

By the usual Legendre transformation one can build the Hamiltonian
H = /d3x (Eb(x)Ab(x) — [i)
which, when written in terms of the canonical pairs, gives

1= [ i (; [E(2) B () + B*(2) B"(x)) 6.1 — AoaaE“> (6.56)

1
where B* = §eachbc is the magnetic field, which is a function of A,.

Working out the equation of motion for 7° we get [8]

70 = {71'0, H }
= 0,F", (6.57)
. o 5L o .
which should vanish, since 7¢ = A FY is zero for a = 0. Hence, its time evolution should

also vanish. Therefore we get 0, £ = 0, which is Gauss’s law without the presence of charges.
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This is a constraint, since it implies that we cannot have any E® for a electric field, but only
configurations for which the divergence is zero. We can now see how constraints are generators
of symmetries. Here, it is good to introduce the idea of a smeared constraint

G(\) = / B, B,

where the parameter A is an arbitrary smooth and differentiable function of z. Requiring that
the smeared constraint G(\) vanishes for all A is equivalent to requiring that the constraint
itself vanishes at all points of the manifold. This is important to do since we are dealing with
densities and distributions and not with functions itself. Since distributions behave better under
an integral, it will be in most cases easier to deal with the smeared constraint than with the
constraint itself.

Taking the Poisson bracket of the smeared constraint and the Hamiltonian, one finds out
that it vanishes

{G(A),H} =0,

as expected, which means that the Hamiltonian does not change under the transformation
generated by the constraint; hence, the theory and the physics is unmodified, and this is indeed
a symmetry, as expected.

Taking the Poisson bracket of the smeared constraint with the conjugate variables we get

{G),E} =0,

which means that the electric field is unchanged under the transformation generated by the
constraint. And, finally, one can compute that

{G()‘>7 Aa} = aa)\a

which means that the vector potential may change by the gradient of a function A(z). We
already knew that the vector potential is defined up to the gradient of a function, which is a
gauge freedom of the theory. Therefore, we see that the constraints give rise to symmetries,
which are revealed in the gauge freedom of the system. In this context, Gauss law is called the
generator of gauge transformations, since it comes up as a constraint and it gives rise to the
gauge freedom that we have in choosing the potential vector A,. Moreover, A° is the Lagrange
multiplier of the constraint 0, %, as we mentioned previously.

By computing the time evolution of the canonical variables A, and E® one can recover the
rest of Maxwell equations

Aa = {Aa7H} =FE,+ aaAAD
B = {E H} = "8, B,
where it is easy to note that the evolution depends on the choice of the Lagrange multiplier A,

which makes the vector potential defined only up to the gradient of a function A(x), which is
the gauge symmetry of Maxwell’s theory.

6.8.2 Gravity

We may now apply the same reasoning to the Hamiltonian in (6.53) in terms of the conjugate
canonical pair E¢ and A°.
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We can introduce a combination of the vector and Gauss constraints, which we call the
diffeomorphism constraint: .
C,=V,— A G, (6.58)

Writing the smeared diffeomorphism constraint V as
O(N) = / BrNeC,

and computing the Poisson bracket of this smeared constraint with a function of the canonical
coordinates f(F, A), one gets

{C(N), F(E,A)} ~ Ly, (6.59)

which states that the orbit generated by the constraint in phase space is just the Lie derivative
along N, up to a constant factor that depends on the choice of renormalization. Therefore, this
is called the diffeomorphism constraint, since it generates infinitesimal spatial diffeomorphism
transformations.

One can also smear the Gauss constraint G; and get

G(\) = / o yen
which generates the infinitesimal gauge transformation
{G(N), A} ~ da) (6.60)

and also

{GO), B} ~ [\ E] (6.61)

which are the SU(2) gauge transformations.
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Chapter 7

Conclusion

Archimedes will be remembered
when Aeschylus is forgotten,
because languages die and
mathematical ideas do not.
“Immortality” may be a silly
word, but probably a
mathematician has the best
chance of whatever it may mean.

G.H. Hardy

We have built a full development of GR in many different ways. Each approach allows us to
see different sides of some symmetries and some results of the theory.

We first presented the foundations of GR from a somehow historical point of view, discussing
the equivalence principle stated by Einstein and working out the Newtonian limit as a limiting
case. Exploring Bianchi’s identity, we showed that one can build an equation that is generally
covariant, relating the metric g,, to the curvature R, and the energy momentum tensor 7,,. We
have concluded that the only way to do this in an equation that would contain the equivalence
principle, reduce to Newtonian gravity in the classical limit, be manifestly covariant and also,
beyond satisfying the conservation laws, would also include the physical idea that the presence
of mass — T},, — is responsible for the curvature — R, — of spacetime was in Einstein’s field
equations

1
R, — ERgW = kT, .

We have also shown how one can get to the same equation using the Lagrangian formalism.
We first did this for the classic Einstein-Hilbert action — an action where the dynamical variable
is the metric itself. We then developed the same formalism for the so called Palatini action,
where not just the metric g, but also the connection I' plays a dynamical role. We then got
two equations of motion. The first one, obtained when varying the action with respect to the
metric, led us to Einstein field equations. The second one, obtained when varying the action
with respect to the connection, stated that the connection in play was the one compatible with
the metric — the Levi-Civita connection.

Next, we developed the theory of constrained Hamiltonian systems. We introduced a (3 4+ 1)-
split by switching the metric g, as a dynamical variable to the 3-metric hyp, living in spatial
slices >y, for t constant. In this way, we were able to tell the history of spacetime as the evolution
of the spatial slices ¥; through time ¢t. This needs to be done since there is no absolute time in
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GR, so the decomposition of the metric g4, in its spatial part hy, will be necessary for one to
define a time parameter in order to talk about the evolution of the system, which is necessary if
one wants to build a Hamiltonian representation of the system.

This allowed us to develop a Hamiltonian formalism for GR — the ADM formalism —
where we could write a Hamiltonian as a sum of constraints multiplied by Lagrange multipliers.
This provided a Hamiltonian representation of the dynamics of the spacetime geometry. The
canonical variables here are the induced metric hy, and its conjugate momenta 7,,. With this
Hamiltonian it becomes possible to study the spacetime dynamics in a canonical way, using
every tool of the Hamiltonian formalism.

We then developed the tetrads formalism. Here, we replaced the metric g,, as the main
dynamical variable for the tetrads elﬂ and e/. Since Riemannian manifolds are locally flat,
one can always choose an orthonormal basis of vectors {e, €1, €2, e3} for each point P on the
manifold M, and that is the starting point of this new formalism. The tetrads contain the
same geometrical information from the manifold as the metric g, since they are related via
9w = €lelnry. Hence, by taking the determinant, we get g = —e? and the tetrad is just the
square root of the metric and it has, therefore, all the information about the geometry of the
manifold. We can thus consider the tetrad as the fundamental description and the metric as a
derived concept.

We then built the two Cartan’s structural equations. The first one was de! + w! e =0,
which allowed us to find the spin connection w if we had the tetrads e. The second one was
FEX; = dw® ; + wi rw¥;, which allowed us to find the curvature 2-form FX. So, given a metric,
one chooses a basis of tetrads e!, founds the spin connection and then the curvature 2-form with
both of Cartan’s structural equations.

Since we had the relation between F/7 and the Riemann curvature tensor Rf,,, we were then
able to translate the Palatini action in terms of the tetrads and the curvature 2-form F. This
action led us to the same conclusions that we arrived before, only now in a different language —
the Einstein field equations and the metric compatibility equation in the notation of differential
forms. Finally, we did a slight modification in this action, by introducing a parameter 7, the
Barbero-Immirzi parameter. This did not change the equations of motion, but we were led to a
more general action — the Holst action.

Finally, we developed the Hamiltonian formalism using the Holst action, which led us to the
formulation of GR in terms of some new variables — the Ashtekar-Barbero connection A% and
the densitized triad E;’ . In a way, we mixed what was developed in the last two chapters, since
the main idea here consisted in developing a Hamiltonian formalism after we did the (341)-split
of the geometry. However we have used the Holst action instead of the Einstein-Hilbert one,
hence, our variables were in terms of the triads — the spatial part of the tetrads — and not
the 3-metric hy,. Although the development was extensive, the steps followed in this part led
us to the construction of a constrained Hamiltonian for GR, which allowed us to extract some
symmetries of the system, the constraints giving rise to gauge transformations.

This puts us one step behind the quantization of gravity. In the Hamiltonian formalism,
one can promote the Poisson brackets to commutators and the conjugate variables to operators,
and, at least in theory, quantize gravity. The path followed for the canonical quantization of
gravity in this approach with the Ashtekar formulation of gravity is known as loop quantum
gravity, which can be studied in a future work.
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Appendix A

Spin Connection and Lie Algebra

A transformation A is said to be a Lorentz transformation if
ATnA =1, (A.1)

where n is the Minkowski metric.

The group of all Lorentz transformations is called de Lorentz group, and it is the O(3,1)
group.

If one wants to characterize the Lorentz group in terms of properties of its associated Lie
Algebra, one needs to consider an infinitesimal transformation

A=e"~1+uw,
from where we get, in (A.1):

n=A"nA
= (1+w)n(1+w)
= (n+wn(1+w)
=1+ nw+w'n,
where, in the last line, we have neglected second order terms in w.

So, we are left with
nw+w'n =0 (A.2)
or, in terms of coordinates:
Nagw’, + W, e = 0,
or
naﬁwﬁp = —w' o
which leads as to

Wap = —Wyo- (A.3)

So, as we see from (5.10), the spin connection coefficients assume values in the Lie algebra
of the Lorentz group, as told before.



Appendix B

Useful formulas for tetrads relating the
Levi Civita symbol

For any square matrix A,, in 4D we have
det A = P70 A, Ay s Ay Ass. (B.1)

From that, one can prove the following identities:

[ v 14 o] vpo
e e; erele :Ee“p €IIKL

ool _ L pe L
eejeer = ge“ P erIKLE,
[ V] _ 1 Qv po L K
eere; = —~¢€ EIJKLeg'ep
no_ 1 Qv po L _K_J
eer = 66 EIJKLeg'ep €,
_l,uupcf L K_J_I (B2)
€ = 4!6 EIJKLeg'ep 6,/6“ .

For the 3-dimensional case the determinant can be calculated via

det(e) = eijkéabcefe;’-ez (B.3)
or, for the inverse of e .
det(e™) = ;" €l ele” (B.4)

a c



Appendix C

Bianchi and Palatini identities

The Bianchi identities in forms notation can be easily deduced by computing the exterior
covariant derivative of the two structure equations.
For the first one, let us take two covariant derivatives of the an arbitrary vector V':

D*V' =DV +we AVE)+ w0l A @V +whe AVE)
= (dw'x AVE —wlhe AdVE) + (W) AdVT + 0!y Awle ATV
= dw'y ANVE+ 0! Awlhe AVE
= (d&)IK‘f’WIJ/\wI[() /\VK
= LV,

which is the first Bianchi identity. This could be done just by taking the derivative of the torsion
Th=e' +whe’.

Now, the second Bianchi identity can be built by taking the derivative of the second of
Cartan’s structural equations F% = dw® + wf AWl -

DFE® = dF% + WM AFE + 0 A FY
= (dw; AW — dw™ A W) + WM A (dw; + wE AW F Wl A (dw®S + 0 Awh)
=0

Note that the first terms on the last two parenthesis cancel out with the terms in the first
parenthesis. Also, the expression w™ A (W Awh)) + Wi A (W) AWY) = =l AW AWE +
Wi AWl AW =0.

The equation DF = 0 is the second Bianchi identity.

The Bianchi identities hold, in general, in a geometric structure satisfying the metric
compatibility condition Vg = 0, even in the case of non-vanishing torsion.

It is also useful to have the Palatini identity written in tensor coordinate notation

ORy, = V(817 — V,(017,) (C.1)

or in forms notation
SFEE = D(sw™h). (C.2)

1J

To see that this is indeed true, let us compute 6.

First, since

KJ 1 KJ

Iy _ 7 I
F.=0w," —0w, +wukw,’ —w,gw,
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we have that

6Flf;] = 0[“500% + w{uK&ui}(‘] — w[LK&ui]K

= D(6w') v
or, suppressing the spacetime indices

SF = D(w!)
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Tensor vs Tensor Densities

The object dz° A dx' A dx? A dx® is not a tensor, but a tensor density. Note for the 2
dimensional case that

1
dz' A dz? = E(d:zs1 ® dr® — dz® @ dat)
If we change for the coordinate system dz*, the we forms will transform as

ozt
M = — v
dz 9" dzx

therefore, the object dx! A dx? will be written, in those new coordinates, as

dz' A dz* = %(dml ® dr? — dz* @ dat)
B 1 [zt o, oxt ox? 0z, ox* _,  0x* ozt Ozt
L[(00022 0808 oy o e (080022 000!

21 [\ 0zt 032 0%%0%? 0z? 0zt 07?07t

1 A .,
= E(dicl ® di* — d3* @ di')|J|

) di? ® dil}

and we see that the determinant of the Jacobian |J| appears in the transformation, making the
object a tensor density.

We call it a tensor density of weight 1, since the determinant of the Jacobian appears raised to
the first power. A tensor density of weight w transforms as a tensor except that it is additionally
multiplied (or weighted) by a power w of the Jacobian determinant of the coordinate change
function.

Therefore, the object dz® A dx' A dz? A dx® is also a tensor density of weight 1, and it can
be written in terms of the Levi Civita symbol as

dx® A dxt A da® A dx® = —€uwop dxt Ndzx” N dx A dz”

Here, the tilde on the Levi Civita symbol stands for the fact that is a tensor density, and not
a tensor itself. The minus sign comes from that fact that sign(g) = —1. The symbol is defined
as
+1 if (uvop) is an even permutation of (0, 1,2, 3)
€uwop = -1 if (uvop) is an odd permutation of (0, 1,2, 3)
0 if there is any repetition of two indices
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This quantity is the same in any coordinate system, which is why it is not a tensor. However
we can relate the tensor density A to the proper tensor A via

A=(lg"?)" A

where w is the weight of the tensor density and ¢ stands for the determinant of the metric.

One can show that
’1/2

Euwop = 19| “€uvop

and thus the Levi Civita symbol is a tensor of weight +1.

For the indices (/JK L), we have not used the tilde since those indices are of the internal

flat space, and, hence, €/”5% is actually a tensor and not a density.

It is also possible to define the 3-dimensional symbol as é%¢ := €%¢ which could also be

done for 2D or 1D. The same could be done for the (/JK L) indices in the internal space.



