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RESUMO

Os mapas cognitivos nebulosos (FCM, do inglês Fuzzy Cognitive Maps) surgiram como

métodos interpretáveis das Séries Temporais Nebulosas (FTS, do inglês Fuzzy Time Series)

para uma variedade de aplicações no campo de previsão. A construção da estrutura dos

FCMs e a extração das conexões ponderadas entre os conceitos compõem a contribuição

central das abordagens baseadas em FCMs na literatura. Apesar do sucesso das metodolo-

gias propostas, ainda existem algumas lacunas e limitações nesse domı́nio. Para cobrir

alguns desses desafios, esta tese apresenta novas técnicas de previsão baseadas em FCMs

para prever séries temporais univariadas e multivariadas, focando no design da nova

arquitetura e na aceleração da fase de treinamento. Assim, a principal contribuição desta

tese é introduzir novas técnicas de previsão pela fusão de FTS e FCMs para gerar FCMs

aleatórios de alta ordem (R-HFCM, do inglês Randomized high-order FCM) como modelos

de computação de reservatório pela primeira vez na literatura. O R-HFCM é um tipo de

rede de estado de eco (ESN, do inglês Echo State Network ), onde a camada do reservatório

consiste em um grupo de sub-reservatórios de tal forma que os pesos dentro de cada

sub-reservatório são escolhidos aleatoriamente de acordo com a inicialização de pesos do

ESN. Os experimentos computacionais demonstram que o R-HFCM supera em termos de

precisão e velocidade de treinamento quando comparado aos FCMs tradicionais treinados

por algoritmos evolutivos como o algoritmo genético (GA, do inglês genethic algorithm).

Para preencher a ausência de modelos de Entrada Múltipla e Sáıda Múltipla (MIMO, do

inglês Multiple-Input Multiple-Output), extensões do método R-HFCM univariado são

apresentadas para lidar com a previsão de séries temporais de baixa e alta dimensionalidade.

Vale ressaltar que, em ambos os métodos MIMO, apenas a camada de sáıda é treinável

utilizando o método dos mı́nimos quadrados por ser de baixo custo computacional. Os

métodos propostos obtiveram resultados promissores e competitivos em comparação com

uma variedade de métodos de aprendizado profundo e aprendizado de máquina em termos

de precisão e parcimônia.

Palavras-chave: Previsão de Series Temporais; Séries Temporais Nebulosas; Mapas Cogni-

tivos Nebulosos; Algoritmo Genético; Computação de Reservatório; Rede de Estado de

Eco; Mı́nimos Quadrados; Entrada Múltipla Sáıda Múltipla; Análise de Componentes

Principais por Kernel.



ABSTRACT

Fuzzy Cognitive Maps (FCMs) have emerged as interpretable Fuzzy Time Series (FTS)

methods used in a variety of forecasting applications due to their interesting features.

Constructing the structure of FCMs and extracting weighted connections among the

concepts compose the crux contribution of the proposed FCM-based approaches in the

literature. Despite the success of the proposed methodologies, there are still some gaps

and limitations in this domain. To cover some of these challenges, this thesis introduces

new forecasting techniques based on FCMs to predict univariate and multivariate time

series focusing on both aspects including designing the new architecture and speeding

up the training phase. Thus, the main contribution of this thesis is to introduce novel

forecasting techniques by merging FTS and FCMs to generate randomized high-order FCM

(R-HFCM) as reservoir computing models for the first time in the literature. R-HFCM

is a kind of ESN where the reservoir layer consists of a group of sub-reservoirs such that

the weights inside each sub-reservoir are randomly chosen according to the ESN weight

initialization. The computational experiments demonstrate that R-HFCM outperforms in

terms of both accuracy and training speed when compared to the traditional FCMs trained

via evolutionary algorithms like genetic algorithm (GA). To fill the absence of Multiple-

Input Multiple-Output(MIMO) models, extensions of the univariate R-HFCM method

are presented to handle low-dimensional and high-dimensional time series forecasting. It

is worth noting that in both MIMO methods, only the output layer is trainable using

the time-effective least squares method. The proposed methods obtained promising and

competitive results compared with a range variety of deep learning and machine learning

methods in terms of accuracy and parsimony.

Keywords: Time Series Forecasting; Randomized Fuzzy Cognitive Maps; Reservoir Com-

puting; Echo State Network; Multiple-Input Multiple-Output.
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N The number of variables

M The number of principal components

γ The kernel coefficient of KPCA
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1 INTRODUCTION

Time series forecasting (TSF) is a challenging problem that has been long attended

by many researchers in various fields such as medicine, economy, finance, hydrology,

energy, and so on (BOSE; MALI, 2019; TEALAB, 2018). Despite the existence of various

forecasting procedures in the literature, the accurate prediction of future values remains

an open challenge in various domains. Complicating factors are, for instance, the existence

of non-linearity and uncertainty in some real phenomena (SHANCHAO; LIU, 2018;

PANIGRAHI; BEHERA, 2020). Classic statistical time series forecasting methods, such

as Auto Regressive Integrated Moving Average (ARIMA), Quantile Auto-Regression

(QAR), and the Bayesian Structural Time Series (BSTS) tend to be time-consuming, lack

scalability and explainability, and are not well-suited to deal with uncertainty and complex

problems in the real world (SILVA, 2019).

Fuzzy time series (FTS), presented by Song e Chissom (1993), Song e Chissom

(1994), Qiang, Leland e Chissom (1997) have shown the ability to handle the mentioned

problems. They are known to be simple, explainable, flexible, easy to update and read, and

highly accurate (BOSE; MALI, 2019). In Silva (2019), it has been shown that producing

forecasts through a weighted sum of fuzzy rules can significantly improve the accuracy of

the FTS models. Nevertheless, the right way to assign weights to each fuzzy rule remains

an open question.

Fuzzy Cognitive Maps (FCMs), proposed by Kosko (1986), combine concepts of

fuzzy logic and neural networks, and it can be seen as a weighted FTS approach in which

the weights are learned from the data. This weighted model consists of nodes (representing

concepts) and signed directed relations (causal relations) between pairs of concepts. It

has been used to represent the dynamic behavior of various complex systems with a high

ability to deal with uncertainties (SHANCHAO; LIU, 2018; PAPAGEORGIOU et al., 2019;

VANHOENSHOVEN et al., 2018; VANHOENSHOVEN et al., 2020; YUAN et al., 2020).

Time series forecasting by FCMs, in general, consists of two stages (GAO; DU;

YUEN, 2020). Firstly, one has to design the appropriate architecture using common

techniques including granularity (STACH; KURGAN; PEDRYCZ, 2008b), membership

values representation (SONG et al., 2010), Fuzzy c-means clustering (LU et al., 2014) and

combination of wavelet transformation with empirical mode decomposition (EMD) (LIU;

LIU, 2020; SHANCHAO; LIU, 2018). Secondly, the model has to learn the weight matrices

which is one of the main concerns of the method. Salmeron et al. (2019), Felix et al. (2019),

Orang et al. (2020) applied population-based methods in the learning process. However, as

the number of parameters grows, the use of these methods becomes prohibitive. Therefore,

evolutionary learning has been replaced with other techniques in some references. For
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instance, the least squares in Feng, Lu e Yang (2021a), the ridge regression in Shanchao e

Liu (2018), Yuan et al. (2020), Wu et al. (2019), the Bayesian ridge regression in Liu e

Liu (2020), and the Moore-Penrose inverse in Vanhoenshoven et al. (2020).

In spite of the advances in training procedures, they can still be very time-

consuming due to the high number of parameters that must be adjusted. In this context,

one of the main objectives of this work is to reduce this cost by introducing univariate and

multivariate FCM-based time series forecasting models inspired by the Echo State Network

(ESN) reservoir computing. In the ESN, the weights in the hidden layer are assigned

randomly and are not trainable. Thus, the training cost can be significantly decreased.

Figure 1 – Proposed thesis methods and contributions.

Figure 1 shows the main contributions and proposed techniques in this thesis.

As can be seen from this figure, the main contribution is to combine FCM and FTS

to generate univariate forecasting models (HFCM-FTS and R-HFCM) and multivariate

models (MO-RHFCM and MFCM). Therefore, this thesis is mainly focused on both

challenging aspects of FCM-based time series forecasting models: designing a new FCM

structure as well as speeding up the training phase.

It is worth observing that HFCM-FTS is a hybrid univariate FCM-based method

namely combines high order FCM (HFCM) and high order FTS (HOFTS) trained via

genetic algorithm (GA) (ORANG et al., 2020). This method is only focused on designing a

new frame of FCM. Since the proposed training methodology will get very time-consuming

as the number of concepts increases, the concepts of HFCM and ESN are merged to

build a new forecasting technique, called Randomized HFCM (R-HFCM) (ORANG et al.,

2022) trained via least squares (LS) algorithm. The architecture of R-HFCM is similar to

ESN and composed of three layers including an input layer, reservoir, and output layer

such that only the output layer is trainable. It is worth noting that the reservoir consists
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of a group of randomized HFCM-FTS models (as sub-reservoirs) in which weights are

initialized randomly according to weight initialization in ESNs.Thus, the training cost can

be significantly decreased compared to the HFCM-FTS method. As a result, the R-HFCM

technique is focused on both aspects including designing a new forecasting structure as

well as speeding up the training phase.

To fill the absence of Multiple-Input Multiple Output (MIMO) FCM-based method-

ologies, two randomized-based methods called MO-RHFCM and MFCM are introduced.

MO-RHFCM is an extended frame of the univariate R-HFCM technique and is designed

to predict low-dimensional multivariate time series. MO-RHFCM is a hybrid method

merging the concepts of multivariate FTS (MVFTS), HFCM, and ESN. Although the

structure of MO-RHFCM is inspired by the R-HFCM method, each univariate HFCM-FTS

is replaced by a combination of MVFTS and HFCM termed MVFCM-FTS. In this case,

each MVFCM-FTS receives all the variables as input and generates outputs fed to the

output layer. Then LS algorithm is applied to train the output layer and generate the final

predicted values. Therefore, MO-RHFCM is also focused on both aspects: designing a new

frame and speeding up the training phase.

On the other side, the study explores the application of MIMO-FCM (MFCM) to

assess the potential benefits of using randomized FCMs as a MIMO forecasting model for

high-dimensional time series datasets in IoT(Internet of Things) applications. MFCM is a

hybrid method combining data embedding transformation, HFCM, and ESN. Firstly, the

original data set is transmitted through kernel principal component analysis (KPCA) to

create a user-defined number of principal components. Then each component is predicted

by one univariate cascade randomized HFCM unit. Finally, inverse KPCA is applied to

reconstruct the original time series. The underlying model within MFCM is a cascade of

R-HFCMs (or CR-HFCM) models. Each CR-HFCM consists of three layers, including the

input layer, reservoir (internal layer), and output layer, such that only the output layer

is trainable using the least squares minimization algorithm. The weights inside each sub-

reservoir are selected randomly and remain fixed during the training process. Accordingly,

MFCM also considers both aspects in terms of new structure and fast training.

The results indicate the efficiency and efficacy of our proposed models in handling

a range of univariate and multivariate time series datasets, including both low-dimensional

and high-dimensional time series. Our proposed methods outperform a variety of base-

line and state-of-the-art machine learning and deep learning forecasting methods with

competitive results.
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1.1 Objectives

The focal purpose of this thesis is to design a new scalable forecasting technique

based on the FCM concept. The specific objectives are pointed out as follows:

• Combine FTS and FCM into new hybrid models for time series modeling and

forecasting;

• Propose randomized FCM-based forecasting techniques as reservoir computing models

for the first time in the literature to predict multivariate and univariate time series;

• Investigate the elements affecting the accuracy of the proposed models;

• Introduce MIMO forecasting models based on FCMs for the first time in the literature;

• Investigate the potential benefits of the proposed method for dealing with high-

dimensional time series data;

• Compare the efficacy and efficiency of the proposed method with other baseline and

state-of-the-art machine learning and deep learning techniques.

1.2 Thesis Structure

The thesis is organized as follows:

• Chapter 2: provides an overview of recent developments on time series forecasting

methods using FCMs and explores potential future research opportunities. Also, it

covers an introduction and revision on some corresponding properties/fundamentals

of FCM (including the structure of FCMs and reasoning rules, high order FCMs,

extensions of FCMs, and dynamic properties of FCMs) and FCMs learning method-

ologies.

• Chapter 3: introduces a hybrid method, named HFCM-FTS, which combines HFCM

and HOFTS, where the weight matrices associated with the state transitions are

learned via the genetic algorithm from the data.

• Chapter 4: introduces a novel univariate time series forecasting technique, which is

composed of a group of randomized high-order FCM models labeled R-HFCM. The

novelty of this model is relevant to merging the concepts of FCM and ESN where

the least squares algorithm is applied to train the model.

• Chapter 5: proposes an FCM-based methodology to predict low-dimensional mul-

tivariate time series for MIMO systems, called MO-RHFCM. This hybrid model
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combines MVFTS, ESN, and randomized HFCM trained with time-effective learning

inspired by reservoir computing.

• Chapter 6: introduces an FCM-based methodology to predict high-dimensional

multivariate time series for MIMO systems named MIMO-FCM. MIMO-FCM is a

hybrid method combining data embedding transformation (KPCA), HFCM, and ESN,

which is trained using the least squares algorithm inspired by reservoir computing.

• Chapter 7: summarizes the obtained results by highlighting the limitations as well

as suggestions for future work directions.
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2 FUZZY COGNITIVE MAPS

Tackling 1 complex problems in a highly reliable way has always been a major

challenge for researchers. Increasing complexity arises due to some characteristics, such as

uncertainty, ambiguity, inconsistency, and high dimensionality. Some of these features are

common among most real-world problems, which are considered complex and dynamic.

In other words, since the data and relations in real-world applications are usually highly

complex and inaccurate, modeling complex systems based on observed data is a challenging

task, especially for large-scale and non-stationary datasets. Therefore, to cover and address

these difficulties, the existence of a computational system with the capability of extracting

knowledge from the complex system with the ability to simulate its behavior is essential

(YE et al., 2015).

Soft computing methods, such as fuzzy logic, neural networks, genetic algorithms,

or a combination of these, have the potential to make complex problems tractable, to deal

with issues of non-linearity, uncertainty, and impreciseness, and to obtain more practical

solutions. Two types of methods are used for analyzing and modeling dynamic systems,

namely quantitative and qualitative approaches. In some cases, modeling complex and

nonlinear systems through quantitative techniques is difficult and costly (AGUILAR,

2005). In contrast, qualitative methods do not suffer from the mentioned restrictions.

Fuzzy Cognitive Map (FCM) is a kind of important qualitative soft computing technique

proposed by Kosko (1986), as an extension of cognitive maps. FCM has attracted great

attention among researchers, with a high capability of modeling dynamic and complex

problems.

FCM is a graph knowledge-based method and, in the same way as any traditional

cognitive map, is composed of concepts and causal relationships among them. The difference

is that in FCM the concepts are modeled by fuzzy sets and the relationships among them

are defined by fuzzy connections. In other words, the existence of fuzzy feedback in the

FCM structure creates an option to extract and model the causal knowledge. According

to Papageorgiou (2014), FCM can be better described by two defining characteristics.

The first one is the type of relationship among the concepts with different intensities, as

represented by uncertain fuzzy numbers. The second one is the system dynamics, i.e.,

activation of the concepts evolves with time. In FCM structures composed of feedback,

changes in one concept may influence all the others. These models have the ability to

incorporate human knowledge and adapt it through learning procedures (PARSOPOULOS;

PAPAGEORGIOU; VRAHATIS, 2002). The fundamental features of FCM are briefly

1 This chapter is derived from a survey paper titled: Time series forecasting using fuzzy cognitive maps:
a survey, published in Artificial Intelligence Review journal (ORANG; SILVA; GUIMARAES, 2022)
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presented in Section 2.1.

FCM seems to have similarities to recurrent neural networks (RNNs) and can

be classified as a neuro-fuzzy method. In other words, FCM is a mixture of aspects

from fuzzy logic, neural networks, and expert systems, making it a powerful tool for

simulating and studying the dynamic behavior of complex systems. Therefore, FCM can

learn due to its dynamic structure from an Artificial Intelligence (AI) point of view. This

learning capability makes the FCM able to adapt its structure and hence its computational

behavior (PARSOPOULOS; PAPAGEORGIOU; VRAHATIS, 2002; PAPAGEORGIOU,

2011b; SALMERON, 2009). By considering this feature, diverse methods of learning

algorithms have been proposed in the literature to improve the performance of FCM,

such as Differential Hebbian Learning (DHL) (DICKERSON; KOSKO, 1993), Genetic

Algorithm (GA) (FROELICH; JUSZCZUK, 2009; STACH et al., 2005), Ant Colony

Optimization (ACO) (DING; LI, 2011) and many others (see Section 2.4).

Qualitative modeling, ease of perception, high ability to deal with uncertainties,

capability to represent nonlinear and causal behaviors, flexibility, and explainability can be

accounted as interesting attributes of FCM (VLIET; KOK; VELDKAMP, 2010). According

to these properties, plenty of papers were published in the field of FCM that cover diverse

domains involving decision-making, control systems, time series forecasting, classification,

electrical and software engineering, and medicine (STACH; KURGAN; PEDRYCZ, 2005;

FELIX et al., 2019; PAPAGEORGIOU, 2014).

FCMs and their extensions have been exploited widely in the area of time series

forecasting (FELIX et al., 2019). These weighted fuzzy time series forecasting models

are employed to predict univariate and multivariate time series considering different

architectures as well as various learning algorithms. Basically, time series prediction

using FCM includes two stages. Firstly, constructing the proper architecture of FCM

using some strategies that may involve granularity (STACH; KURGAN; PEDRYCZ,

2008b), fuzzy c-means clustering (LU et al., 2014), grid partitioning (ORANG et al.,

2020), wavelet transformation and empirical mode decomposition (EMD) (GAO; DU;

YUEN, 2020). Secondly, learning the optimal or near-optimal values of the weight matrix

– the learning methods can be classified into three groups consisting of Hebbian-based

methods, population-based methods, and hybrid methods, which are a combination of

Hebbian-based and evolution-based types of learning algorithms. Based on the references

(GAO; DU; YUEN, 2020; ZOU; LIU, 2018), the major proportion of the references

has focused on population-based algorithms to optimize the weight matrix, like GA

(STACH; KURGAN; PEDRYCZ, 2008b; FROELICH; SALMERON, 2014; FROELICH

et al., 2012; LU; YANG; LIU, 2013) and Particle Swarm Optimization (PSO) (LU et al.,

2014; HOMENDA; JASTRZEBSKA; PEDRYCZ, 2014a; HOMENDA; JASTRZEBSKA;

PEDRYCZ, 2014c; LU; YANG; LIU, 2014). However, some drawbacks including time
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consuming and convergence issues limit their functionality particularly when raising the

number of parameters. These limitations imply that there is a genuine need to develop

and design FCM-based forecasting models with more time-efficient and robust learning

strategies. Therefore, some researchers replaced evolutionary learning methods with other

regression-based techniques such as ridge regression in Shanchao e Liu (2018), Yuan et al.

(2020), Wu et al. (2019), Bayesian ridge regression in Liu e Liu (2020), Moore-Penrose

inverse in Vanhoenshoven et al. (2020) and least squares in Feng, Lu e Yang (2021a).

The crux purpose of this study is to present an overview of the progress in the

studies of time series forecasting utilizing FCM as a modeling technique. Although there

are some review papers on FCM in the literature, they often have focused on a partial

and specific subject. For instance, two surveys on FCM were presented in 2005. One is a

survey of the several applications of FCM in different domains, which was presented by

Aguilar (2005), and the other is a review of FCM learning methods, which was proposed

by Stach, Kurgan e Pedrycz (2005). In 2011, another survey on FCM was published by

Papageorgiou (2011a) focusing on learning methodologies and algorithms for FCM. In

2013, Papageorgiou e Salmeron (2012) published a survey on FCM applications and trends

in diverse scientific fields over a decade (2000-2010). In 2018, a review study of FCM in

medicine was reported by Amirkhani et al. (2017). To the best of our knowledge, the latest

review paper on FCM was published by Felix et al. (2019), considering several aspects

containing some fundamentals of FCM, applications of FCM to time series forecasting and

time series classification, as well as providing an overview of software tools for FCM until

2017. In the context of fuzzy-based models for time series forecasting, a brief review of

modeling approaches based on fuzzy time series (FTS) is given by Singh (2017) in 2017

and a comprehensive review of FTS models is presented by Bose e Mali (2019) in 2019.

However, these reviews on FTS do not approach FCM models for time series forecasting.

In our investigation, the main effort is concentrated on providing a comprehensive

review of up-to-date FCM-based time series forecasting techniques until mid-2022. Also,

this thesis covers a comprehensive review of the proposed learning algorithms for FCM

(highlighting those that have been applied for time series forecasting models), as well as a

review of employed fuzzification and defuzzification techniques in the design of FCM-based

forecasting models. Furthermore, some major characteristics and advanced aspects of FCM

are discussed, including high-order FCM (HFCM), extensions of FCM, dynamic properties

of FCM, and similarities and differences between FCM and Artificial Neural Networks

(ANNs). It is worth noting that more than 200 papers have been analyzed and referenced

or commented on in this investigation.

This chapter is structured as follows:

• In Section 2.1, some fundamental features of FCM are reviewed
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• Section 2.2 focuses on time series forecasting using FCM.

• Section 2.3 lists performance evaluation metrics as well as datasets employed in the

reviewed papers.

• Section 2.4 gives a summary of the most relevant learning strategies for FCM

learning. Table 3 summarizes a list of the FCM-based time series forecasting models

reviewed in Section 3, taking into account some important parameters such as

learning methods, order number, presence of bias, the number of nodes, activation

function, and prediction horizons. Table 4 summarizes the learning methods for FCM

in general.

• Section 2.5 provides a discussion and insights over the proposed methodologies

covered in the literature.

2.1 Fuzzy Cognitive Map

2.1.1 Fundamentals

Fuzzy Cognitive Map (FCM), proposed by Kosko (1986), is a particular family of

Cognitive Map (CM) theory that was introduced by Axelrod a decade before (AXELROD,

1976). The term CM was introduced to investigate the cognitive activities of rats using

some learning experiments on their choice of an appropriate path to food. Later Axelrod,

a political scientist, used the knowledge of people to form the CM in the form of causal

relationships between concepts to formulate decision-making in political science.

CM is a causal and qualitative model composed of concepts (nodes) and the causal

connection between any two concepts (edges). These directed signed arrows between the

concepts are represented as weights that reflect the effect of one node on another one.

These assigned directions between concepts of the CM can be positive or negative. In Eden,

Ackermann e Cropper (1992), Eden (2004) several methodologies have been suggested

to represent the CM and analyze its complexity. If the node influences others, we say

it is a cause and if influenced by others, it is an effect (cause and effect causality 2). In

binary cognitive maps (BCM) the concept labels are mapped to binary states denoted

as ai ∈ {0, 1}, where the value 1 means that the concept is activated. Also, the weights

belong to the crisp set wij ∈ {−1, 0, 1} in BCM (AXELROD, 1976). The value 1 represents

positive causality, thus the activation (change from 0 to 1) of concept ci occurs concurrently

with the same activation of concept cj or that deactivation (change from 1 to 0) of ci

occurs concurrently with the same deactivation of concept cj. The value −1 represents

2 Notic that causality in FCMs refers to the relationships between the concepts or variables represented
in the map. These causal connections determine how the values of the concepts propagate and interact
within the FCM.
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the opposite situation, in which the activation of ci deactivates the concepts cj or vice

versa. Those edges with wij = 0 mean that there are no concurrently occurring changes in

the states of the concepts. CM was used in various areas such as decision-making (EDEN,

2004; EDEN; ACKERMANN, 2004; KLEIN; COOPER, 1982), financial (KIM, 2004), and

other areas.

Accordingly, FCM is a hybrid soft computing technique based on the CM concept

as a combination of fuzzy logic and CM to present uncertainties and complex characteristics

of the systems. FCM has also emerged as a powerful paradigm for knowledge representation

by providing a flexible mechanism for knowledge representation of intelligent systems

(MIAO et al., 2001a; PAPAKOSTAS et al., 2011; SALMERON, 2009; TABER, 1991;

TABER; YAGER; HELGASON, 2007). In FCM there exist partial causal relations among

the concepts. Thus these connections can be represented by using fuzzy subsets which

indicate vague values in the range [−1, 1]. It means that the elements of the weight matrix

in FCM can be full positive (+1), full negative (−1), or any value positioned in the

interval [−1, 1]. Thus, this feature discriminates FCM from CM and enables FCM to deal

with imprecise and uncertain data. For each FCM with k number of concepts, the causal

relations among concepts are represented by one k × k square weight matrix (also called

connection matrix) W.

W =


w11 . . . w1k

...
. . .

...

wk1 . . . wkk

 (2.1)

Each member wij of the matrix denotes the directed connection between concepts

ci and cj which governs the intensity of the relationships between a pair of concepts to

measure their influence degree on each other. On the other hand, the strength of causal

relations among concepts is represented by absolute fuzzy values. The higher absolute

value of weight among concepts leads to a stronger (closer) relationship among a couple

of concepts. In detail, there exist three possible options for each individual of the weight

matrix as follows:

1. wij < 0: means negative connection among concepts ci and cj. It means that a

decrease/increase in the value of node ci makes an increase/decrease in the value of

node cj.

2. wij > 0: means positive connection among concept ci and cj. It means that a

decrease/increase in the node ci makes a decrease/increase in the node cj.

3. wij = 0: confirms null relation among nodes ci and cj.
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Figure 2-A shows a simple example of FCM with k = 5 concepts while Figure 2-B

presents the connections among the concepts, aggregated as a weight matrix, with the

dimension of 5× 5.

Figure 2 – Simple FCM with 5 nodes (A) graphical structure (B) Weight matrix

From the graphical perspective, FCM is composed of concepts and connections

among them that are represented by signed, weighted, and directed arcs. Thereupon,

FCM is a signed, weighted digraph. In other words, the degree, sign, and direction of the

influence of one concept on the others are required, apart from the number of concepts.

C = {c1, . . . , ck} is the set of k concepts which are variables (nodes of the graph) that

compose the system and W is the connection matrix among the concepts. FCMs are

defined by the 4-tuple (C,W, a, f) where the third element, a = (a1, . . . , ak) is the state

vector containing the activation degree of all concepts. At any time t, each concept ci has

an activation or fuzzy value restricted into the interval [0, 1]. On the other hand, FCM

operation is based on the application of a specific inference rule, which calculates the next

activation value of each concept by considering the total impact of the concepts directly

connected to this one in each iteration. Generally, based on the literature Papakostas

e Koulouriotis (2010), Felix et al. (2019), there exist different kinds of inference rules

with respect to the past activation’s values and self-connection relation for each concept.

Equation (2.2) indicates Kosko’s transition rule for concept ci from time t to time t+ 1,

with no self-connection and without memory, considering the influence of all other concepts

cj. This is widely used in many FCM-based applications.

ai(t+ 1) = f

(
k∑

j=1,j ̸=i

aj(t)wji

)
(2.2)
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where k is the number of concepts and wji highlights the causal connection3 between

concepts cj and ci, whereas ai(t) denotes the sate value of concept ci at time step t. It

can be said that ai(t + 1) and ai(t) are the response vector and state vector of FCM

respectively. Once the values of all weights of the FCM (i.e. the relationship matrix of

FCM) are determined, the model starts from a given initial state vector to carry out

reasoning through the consecutive iterations computation according to (2.2). At each time

step, the FCM generates a state vector that contains all concept activations. The state

vector a(t) = (a1(t), . . . , ak(t)) refers to the activation level of all concepts at time t. This

updating rule can be iterated until the termination condition is satisfied. It means that in

any iteration a new state value of the concepts is determined and after a certain number of

repetitions, one of the three possible states can occur for FCM (KOSKO, 1986): converging

to a fixed equilibrium point, to limited cycle or presenting a chaotic behavior. In both

cases of chaotic or cyclic, the output may be partially unreliable because of the lack of

stability. When the FCM reaches a fixed equilibrium point, it can be concluded that the

FCM has converged.

Although the mentioned updating rule has been used in many FCM-based ap-

plications, other modifications have been developed in the literature (PAPAKOSTAS;

KOULOURIOTIS, 2010; FELIX et al., 2019). The investigations proposed by Stylios e

Groumpos (2004), Parsopoulos, Papageorgiou e Vrahatis (2002) introduce the modified

version of the updating rule as the formula below indicates. In this way, in addition to the

corresponding weights and activation values from other concepts, concepts consider their

own past activation value known as memory factors for the nodes. Therefore, Equation

(2.3) shows Kosko’s updating rule with memory and without self-connection.

ai(t+ 1) = f

(
ai(t) +

k∑
j=1,j ̸=i

aj(t)wji

)
(2.3)

Although the above equations ignore the effect of self-connection, equation (2.4)

highlights the inference rule by adding self-connection.

ai(t+ 1) = f

(
ai(t) +

k∑
j=1

aj(t)wji

)
(2.4)

The other type of rule updating is described by equation (2.5) where only the

effect of self-connection is taken into account and ignores the memory element.

ai(t+ 1) = f

(
k∑

j=1

aj(t)wji

)
(2.5)

3 Notice that in order to compute the effect of the other concepts cj ̸= ci into ci, we need to perform the
summation of terms wjiaj(t), given that wji reflects the causal connection between cj and ci.
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Papageorgiou e Froelich (2012) have reported another version of updating the

inference rule presented by equation (2.6), without considering memory and self-connection,

according to the following equation. They found that this updating rule outperforms (2.2)

when used for prediction tasks implemented on real-world data.

ai(t+ 1) = f

(
k∑

j=1,j ̸=i

(2aj(t)− 1)wji

)
(2.6)

The other alternative was proposed in Papageorgiou (2011b) to avoid the conflicts

emerging in the case of inactive concepts. From this perspective, it can be said that the

element (2ai(t)− 1) acts as a bias weight. More clearly, it prevents saturation problems

where there is no information about the initial concepts state (FELIX et al., 2019).

ai(t+ 1) = f

(
k∑

j=1,j ̸=i

(2aj(t)− 1)wji + (2ai(t)− 1)

)
(2.7)

Choosing the convenient updating rule to model the dynamic behavior of the

system depends on the problem and a strong understanding of the target simulated system.

The function f(·) in updating rule equations specifies the transfer/activation/limiting

function used to maintain the activation state of each concept to the predefined range.

Table 12 highlights the most commonly used activation functions in the literature (FELIX

et al., 2019). Both bivalent and trivalent are discrete and generate a finite number of states.

The hyperbolic tangent and the sigmoid function are categorized in the continuous group

and produce infinite states. Unlike generating finite states by using the first two discrete

functions, hyperbolic tangent and sigmoid functions, as continuous functions, generate an

infinite number of states used for simulating qualitative and quantitative cases. In fact,

some studies verified the higher performance of FCM by applying continuous activation

functions (TSADIRAS, 2008). A benchmarking study was organized in Bueno e Salmeron

(2009) where the best performance is obtained using the sigmoid activation function in

comparison to the other ones.

In the sigmoid activation function, γ is the steepness parameter (function slope).

The higher the value of steepness, the more sensitive the function is to the changes in its

input. Depending on the characteristics of the problem, different values of γ can be tuned.

Generally, the values of γ are no greater than five in most of the references in the literature.

For instance, Aguilar (2005) defined the value of γ equal to 5. Furthermore, a dynamical

optimization of γ has been suggested by Salmeron e Froelich (2016) and Oikonomou e

Papageorgiou (2013) to choose the optimal value according to the problem.
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Table 1 – Most widely used FCM activation functions

Activation Function Mathematical Representation

bivalent f(x) =

{
0 if x < 0
1 if x ≥ 0

trivalent f(x) =


1 if x ≥ 0.5
0 if −0.5 ≤ x ≤ 0.5
−1 if x ≤ −0.5

hyperbolic tangent f(x) = exp2x −1
exp2x +1

sigmoid f(x) = 1
exp−γx +1

2.1.2 High Order Fuzzy Cognitive Map (HFCM)

Dynamically speaking, equations (2.2) to (2.6) express the first-order FCM. It

means that through this way only the first-order dynamics of FCM will be obtained. For

instance, by rewriting (2.5) in matrix form, it becomes clear to see that the activation

value of each concept, at a particular time step (t+ 1), only relies on the activation level

of all concepts at t, as displayed via the equation (2.8).

a(t+ 1) = f (a(t) ·W ) = f
(
W t · at(t)

)
(2.8)

where W is the weight matrix as specified in (2.1).

For the purpose of tackling the aforementioned restriction and improving per-

formance, especially for describing the dynamic behavior of the complex systems more

accurately, high-order FCM was introduced in which the reasoning rule equation is modified

and described as follows (LU et al., 2014; SHANCHAO; LIU, 2018; LIU; LIU, 2020):

ai(t+ 1) = fi

(
w0

i +
k∑

j=1

w1
jiaj(t) + w2

jiaj(t− 1) + . . .+ wΩ
jiaj(t− Ω + 1)

)
(2.9)

where Ω represents the order, wn
ij ∈ [−1, 1] stands for the casual relation originating from

ci and pointing to cj at time step t− n+ 1, while w0
i ∈ [−1, 1] is the bias weight related

to the i-th node.

As the above equation exhibits, the activation level of the i-th concept at t+ 1

depends on the activation values of all concepts at {t, t− 1, . . . , t− Ω + 1} moments, not

only the activation values of the concepts at time t, during the consecutive iterations.

fi is defined as the associated activation function for each concept. For instance,

if we consider the sigmoid activation function, the activation function for each concept

can be defined based on the steepness parameters γi associated with the i-th concept as

follows:

fi(x) =
1

e−γix + 1
(2.10)
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In matrix form, the high-order FCM is replaced by the equation (2.11).

a(t+ 1) = f
(
w0 + a(t) ·W 1 + . . .+ a(t− Ω + 1) ·WΩ

)
(2.11)

where f = (f1(·), f2(·), . . . , fk(·)) is the activation function vector where each member

denotes the activation function related with the i-th concept. W 1,W 2 . . . ,WΩ are the

weight matrices storing all weights of the HFCM. w0 = (w0
1, w

0
2, . . . , w

0
k) is the bias vector

of the HFCM. It is necessary to mention that, according to the above formula, increasing

the order leads to increasing the number of parameters in the FCM model, regarding the

size of the weight matrices.

2.1.3 Advanced Aspects

2.1.3.1 Extensions of FCM

According to the literature, extensions of FCM have been designed to enhance

the performance of the traditional FCM proposed by Kosko. Fuzzy Grey Cognitive

Maps (FGCM) (SALMERON, 2010), Intuitionistic Fuzzy Cognitive Maps (iFCM) (IAKO-

VIDIS; PAPAGEORGIOU, 2011; PAPAGEORGIOU; SALMERON, 2012), Belief-Degree-

Distributed Fuzzy Cognitive Maps (BDD-FCM) (RUAN; HARDEMAN; MKRTCHYAN,

2011), Rough Cognitive Maps (RCM) (CHUNYING et al., 2011), Dynamical Cognitive

Networks (DCN) (MIAO et al., 2001b), Evolutionary Fuzzy Cognitive Maps (E-FCM) (CAI

et al., 2009), Fuzzy Time Cognitive Maps (FTCM) (PARK; KIM, 1995), Dynamic Random

Fuzzy Cognitive Maps (DRFCM) (AGUILAR, 2003), Rule-Based Fuzzy Cognitive Maps

(RB-FCM) (CARVALHO; TOMé, 2001), Fuzzy Rules Incorporated in Fuzzy Cognitive

Maps (FRI-FCM) (SONG et al., 2011) and Generalized FCM (GFCM) (NAIR; RECKIEN;

MAARSEVEEN, 2019) are some of these extensions of the traditional FCM.

A proposal of various FCM models was raised to cover FCM limitations including

dealing with uncertainty or dynamic problems. For instance, FGCM, iFCM, BDD-FCM,

and RCM have been presented to deal with uncertainty problems. On the other side,

DCN, E-FCM, FTCM, and DRFCM have been developed to deal with dynamic problems.

Nair, Reckien e Maarseveen (2019) proposed a new form of FCM called GFCM to deal

with both uncertainty and dynamic problems. Also, it provides a literature review of

the conventional FCM approaches and figures out the strengths and weaknesses of some

important advances in FCM to understand their potential in modeling complex qualitative

systems. Since most of these models are employed in decision-making domains, they are

not elaborated on in detail in this review paper.
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2.1.3.2 Dynamic Properties of FCM

As discussed, FCM produces a new state vector at each discrete time step in an

iterated process until the stop condition is met such as a maximum number of iterations

or the system stabilizes. More precisely, the relational structure and inference mechanism

of FCM play critical roles in its dynamic behavior to determine the state value at time

t+ 1 by considering the previous state at time t. Based on this perspective, three possible

scenarios are available to present the dynamic behavior of FCMs (GREGOR; GROUMPOS,

2013b; FELIX et al., 2019). If the activation degree of the concepts remains stable after a

finite number of time steps, then a fixed point is obtained with the convergence ability.

Mathematically speaking, ∃tα ∈ {1, 2, . . . , T−1} : a(t+1) = a(t),∀t ≥ tα. In the limit cycle

scenario, FCM generates dissimilar responses with the exception of a few states that are

periodically produced. Mathematically, ∃tα, P ∈ {1, 2, . . . , T −1} : a(t+P ) = a(t),∀t ≥ tα

Finally, in the chaos scenario, a different state vector is generated at each iteration. Thus,

the system is neither fixed nor cyclic.

Although updating the reasoning rule stops once a maximum number of iterations

is reached, the output can be unreliable due to the lack of stability in chaotic or cyclic

situations. It means that in order to better understand the system’s behavior, stable

responses are needed. Hence, convergence is often preferable in some scenarios includ-

ing decision-making and pattern classification. According to Felix et al. (2019), some

factors including the method for updating activation values, the pattern encoded in the

weight matrix, and non-decreasing activation functions are the most important issues

regarding the convergence of FCM-based systems. Accordingly, there exist some studies

around this subject such as (BOUTALIS; KOTTAS; CHRISTODOULOU, 2009; KOTTAS;

BOUTALIS; CHRISTODOULOU, 2007; KOTTAS; BOUTALIS; CHRISTODOULOU,

2010; KYRIAKARAKOS et al., 2012; NAPOLES; BELLO; VANHOOF, 2014).

2.1.3.3 FCM against Artificial Neural Network (ANN)

Gregor e Groumpos (2013b) proposed the relation between FCM and ANN. Based

on the close resemblance between FCM and ANN, it can be said that an FCM can be

expressed as a single-layer recurrent neural network with sigmoid squashing functions and

synchronous activation of units. Besides, FCM can be regarded as an extension of Hopfield

RNN with a different structure to which wij = wji is needed to converge to a fixed point.

Also, the structure of the Hopfield network has been constructed for binary or bipolar

activations using the sign activation function, and its units are activated asynchronously.

Based on these differences, the modified ANN learning methods are used as FCM learning

strategies and it is impossible to use them directly.

Generally speaking, however, there are similarities between FCM and ANN, but
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there are some limitations and differences. From a structural point of view, an FCM is

taken into account as a special type of RNN. In other words, FCM can be viewed as

interpretable RNNs based on their interpretability as the significant feature. From this

perspective, FCM consists of fuzzy logic elements during the knowledge engineering phase.

In fact, the concepts of FCM can be supposed as neural processing entities indicating

that the activation degree of each neuron is defined through the value of the transformed

weighted sum unit received from the connected neurons in the network.

Apart from the topological similarity between FCM and RNN, they function

differently. It is related to the knowledge interpretability of FCM as its super property.

This feature enables FCM to be used successfully in modeling complex real-world problems.

This means that, unlike traditional ANNs/RNNs, FCM neurons and the causal relations

among them provide an accurate interpretation of the system for humans. However, in

ANNs/RNNs, the neurons are considered as a computational unit without reflecting any

clear meaning. In other words, an ANN/RNN performs its duty in a perfect manner but

with limited interpretability because the presence of hidden neurons is neither interpretable

nor explains why/how the solution is appropriate for the desired problem. On the other

hand, in an FCM, each node has its meaning with a clear relation to other nodes. Therefore,

as discussed, it is often said that there is a trade-off between the interpretability of FCM

and the approximation ability of ANN. A few studies interpret FCM-based methods as

ANNs (TSADIRAS; MARGARITIS, 1999; TSADIRAS, 2008; PAPAKOSTAS et al., 2012;

NAPOLES et al., 2016; NAPOLES et al., 2017).

To encapsulate, like other fuzzy logic systems, learning has a basic role in designing

FCM in practical applications. Although a variety of methods are introduced in the

literature to adapt FCM, the close relation between FCM and ANN theories can provide

a promising FCM learning strategy. Hence, the next section examines some important

learning methods proposed in the literature for FCM.

2.1.4 Application Domains of FCM

Studies show remarkable advances in FCM based on some specific characteris-

tics such as simplicity, qualitative modeling, modeling complex dynamic systems, flex-

ibility, interpretability, and high ability to deal with uncertainties. Due to the men-

tioned features, FCMs are applied in various areas. Social and politics in behavioral

sciences (ANDREOU; MATEOU; ZOMBANAKIS, 2005; ANDREOU; MATEOU; ZOM-

BANAKIS, 2003), business (JETTER, 2006; WEI; LU; YANCHUN, 2008; XIROGIANNIS;

GLYKAS, 2004), software engineering (VARGAS; SALMERON, 2012), control engineering

(STYLIOS; GROUMPOS, 2004; LU; YANG; LI, 2010), medicine (AMIRKHANI et al.,

2017; PAPAKOSTAS et al., 2011; SALMERON; PAPAGEORGIOU, 2012), environmental

and agriculture (TAN; ÖZESMI, 2005; RAJARAM; DAS, 2010; KOK, 2009), education
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(LAUREANO-CRUCES; RAMIREZ; TERAN, 2004) and telecommunications (LI et al.,

2009) are some examples of FCM applications to solve classification (FELIX et al., 2019;

SZWED, 2021; RAMIREZ-BAUTISTA et al., 2020; YU et al., 2022) prediction (FELIX

et al., 2019), modeling (BAGDATLI; DOKUZ, 2021; GROUMPOS, 2015) and decision

making (LUO; WEI; ZHANG, 2009; BEENA; GANGULI, 2011; GLYKAS, 2010; PAPA-

GEORGIOU; GROUMPOS, 2005; PAPAGEORGIOU; STYLIOS; GROUMPOS, 2006;

KETIPI et al., 2020) problems. Since the main goal of this study is focused on time

series forecasting using FCM, the rest of this chapter covers a review and summary of the

presented methods in this field until mid-2022.

2.2 Time Series Forecasting using Fuzzy Cognitive Map

2.2.1 Terminology of the problem

Time series forecasting includes predicting future observations based on the trained

model on historical observations. Thus, defining an accurate prediction model plays an

essential role in making better decisions in several fields for instance engineering, medicine,

economy, meteorology, and so on. A univariate time series is represented by a collection of

values (samples, observations) y(t) ∈ Y ⊂ R at time t = 1, . . . , N , where N is the sample

size. A multivariate time series is a collection of historical observations of n variables

under the same time index t = 1, . . . , N . The goal of time series forecasting models is to

predict the next values of time series given the past values of the series and considering

the prediction horizon (H ∈ Z+), which can be divided into four categories including very

short, short, medium and long term forecasting. Also, models for time series forecasting

can be classified as univariate and multivariate models. In the case of univariate models,

only information up to time t from a single variable is used to form predictions along the

time. More formally, we have

ŷ(t+H) = Mu(y(t), y(t− 1), y(t− 2), . . . , y(t− L)) (2.12)

where ŷ is the forecast (estimated, predicted) value and Mu : RL+1 7→ R is the univariate

forecasting model, which is used to calculate the next values of time series with regards to

the H value. More generally, Mu can be regarded as a nonlinear auto-regressive mapping.

In the case of multivariate models, information up to time t from multiple variables

is used to forecast the value of either a target variable or all the variables at t + H.
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Mathematically, we have
ŷ1(t+H)

ŷ2(t+H)
...

ŷn(t+H)

 = Mm


y1(t) . . . y1(t− L)

y2(t) . . . y2(t− L)
...

...

yn(t) . . . yn(t− L)

 (2.13)

where Mm : Rn×(L+1) 7→ Rn is the multivariate forecasting model.

Multivariate models can be grouped into Multiple Input Single Output (MISO)

and Multiple Input Multiple Output (MIMO) models, depending on whether the model

returns the forecast for a single target variable or for all the variables. For instance, (SILVA,

2019) provides both MISO-FTS and MIMO-FTS forecasting models. In MISO approaches,

one of the variables is chosen as the endogenous (or target) variable while the others are

considered as explanatory or exogenous variables. In contrast, in the MIMO approach, all

variables have a chance to be forecast, that is, all variables become target and explanatory

variables.

However, there is no perfect model to predict exact future values due to the

existence of uncertainty and non-linearity associated with most real-world phenomena.

Accordingly, numerous time series forecasting methods have been presented in the lit-

erature to perform forecasting operations and estimate forecasted value ŷ(t+H), from

statistical methods, such as Auto Regressive Moving Average ARMA), Auto Regressive

Integrated Moving Average (ARIMA), Seasonal Auto-Regressive Integrated Moving Aver-

age (SARIMA), to some new intelligent techniques, such as Long Short-Term Memory

(LSTM), Temporal Convolutional Neural Network (TCNN), Gated Recurrent Unit (GRU).

Thereby, constructing the proper model is vital to minimize the prediction error between

forecasted and real values.

Song e Chissom (1993) proposed the concept of Fuzzy Time Series (FTS) in 1993

to handle vague and imprecise knowledge in time series data which has been widely used

during recent decades. Although plenty of FTS forecasting methods were introduced in the

literature, they follow the following steps (BOSE; MALI, 2019; SINGH, 2017). Firstly, the

Universe of Discourse (UoD) is defined for the given time series. Then, UoD is partitioned

into some overlapping intervals using fuzzy sets. Then the membership degree of each value

y(t) ∈ Y to each fuzzy set Ci ∈ C is calculated using membership function µCi
: R → [0, 1].

The most common membership functions are triangular, trapezoidal, sigmoidal, and

Gaussian functions. The fuzzification process is employed to convert the original crisp

time series y(t) into a fuzzy time series f(t), which is a sequence of membership values of

the sample y(t) at time t to the fuzzy sets Ci ∈ C. In the context of FCM, the first key

step in designing an FCM model for time series is the definition of concepts, see Section

2.2.2. The fuzzification of the time series into concepts leads to an FTS considering these
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concepts. In other words, the state vector a(t) with the activation degree of all concepts

can be viewed as an FTS representation of the original time series.

Studies show remarkable advances in time series forecasting using FTS models

based on some basic characteristics such as simplicity, readability, scalability, and high

forecasting accuracy (LEE; JAVEDANI et al., 2011; SADAEI et al., 2017; SILVA et al.,

2020a). A comprehensive review of FTS forecasting models was proposed by Bose e Mali

(2019), covering some recent univariate and multivariate techniques focusing on different

aspects and forecasting stages. It is worth observing that some extensions of FTS were

introduced in the literature to embrace other extensions of time series forecasting. For

instance, Alves et al. (2018) proposed an approach to handle non-stationary time series.

Silva, Sadaei e Guimarães (2016) introduced an interval forecasting technique. The authors

in Silva et al. (2020b) and Silva et al. (2017) developed probabilistic FTS forecasting

models. In addition, some researchers introduced weighted rule-based FTS models to

improve the accuracy of forecasting (YU, 2005; SILVA et al., 2020b). Also, FCMs as

weighted knowledge-based FTS techniques have found excellent applicability in the field

of time series forecasting as a significant part of FCM’s research in many areas. Therefore,

the following subsections provide the general structure of FCM-based forecasting models

as well as a review of some proposed FCM forecasting models in the literature.

2.2.2 Design Issues

FCMs have been introduced as convenient models to represent time series in an

easy and meaningful way. Knowledge-based representation and realizing inference processes

enable FCM with the ability to capture the dynamic behavior of a given system. The

main objective of this section is how to design a forecasting model based on FCM to

achieve modeling and forecasting time series. Fundamentally, there are three substantial

problems that must be taken into account when an FCM is applied to model time series.

Therefore, designing proper FCM structure under a given time series, calculating the FCM

parameters (weight matrices), and reconstructing numerical values based on the FCM are

essential considerations as they are applied for time series modeling, time series dynamic

behavior explanation and forecasting (HOMENDA; JASTRZEBSKA, 2016; LU et al.,

2014).

One of the key stages in designing FCM is concept definition and extraction. The

aim of FCM-based models is to select abstract concepts that represent the information in an

aggregated fashion and cover the dataset. For instance, granular knowledge representation

schemes and fuzzy sets are used commonly to represent concepts mathematically.

The number of concepts defined by the users have meaningful relations with the

specificity and generality of the model. In this perspective, there is a trade-off between the



2.2. TIME SERIES FORECASTING USING FUZZY COGNITIVE MAP 42

specificity and generality of the model. It means that the more the number of concepts,

the more specific the model. Conversely, the model must be designed with a small number

of concepts to reach more generalization. Therefore, there must be a balance between

specificity and generality. In more particular, although increasing the number of concepts

can improve the accuracy of problem modeling in the real world, the interpretability

of the model is degraded (HOMENDA; JASTRZEBSKA, 2016). Although some papers

(PAPAGEORGIOU; POCZETA, 2016; PAPAGEORGIOU; POCZETA; LASPIDOU, 2016)

focused on reducing the complexity of FCM by selecting the most important nodes and their

connections, extracting the optimal number of concepts remains a challenging question,

without a precise solution in the literature (HOMENDA; JASTRZEBSKA, 2016).

Discovering the appropriate structure of FCMs has been mainly done using

common successful strategies comprising granularity (STACH; KURGAN; PEDRYCZ,

2008b; FROELICH; PEDRYCZ, 2016), membership values representation (SONG et al.,

2010), fuzzy c-means clustering (LU et al., 2014; LU; YANG; LIU, 2013; HOMENDA;

JASTRZEBSKA; PEDRYCZ, 2014a; HOMENDA; JASTRZEBSKA; PEDRYCZ, 2014c;

LU; YANG; LIU, 2014; LU et al., 2014) to extract concepts and construct the architecture of

FCM in time series forecasting domains. Furthermore, cluster validity indexes (HOMENDA;

JASTRZEBSKA, 2016), moving window (HOMENDA; JASTRZEBSKA; PEDRYCZ,

2014b; HOMENDA; JASTRZEBSKA; PEDRYCZ, 2014a), wavelet transformation and

empirical mode decomposition (EMD) are also proposed to identify FCM’s structure and

enhance the forecasting performance, see for instance Liu e Liu (2020), Shanchao e Liu

(2018), Gao, Du e Yuen (2020).

After mapping FCM nodes to time series variables or intervals of these variables,

learning FCM is considered the second phase. This involves searching for the optimal or

near-optimal weight matrices to describe the dynamic behavior of the system by testing

within the prediction horizon. Without high-quality weight matrices, the system will lose

its interpretability, even with crystal clear FCM reasoning (VANHOENSHOVEN et al.,

2018).

In conclusion, it can be said that input fuzzification, FCM learning, modeling, and

output defuzzification can be considered significant stages of designing FCM-based fore-

casting models (FENG et al., 2021; STACH; KURGAN; PEDRYCZ, 2008b; SHANCHAO;

LIU, 2018). Therefore, Table 2 summarizes a brief review of different fuzzification and

defuzzification methods adopted in this area. In addition, it provides some information

relating to the main focus of each paper as well as the hyper-parameters affecting the per-

formance of the associated approaches. Regarding the column for hyper-parameters, blank

cell means that the authors of that paper did not evaluate the effect of hyper-parameters

in their study.
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Table 2 – Review of fuzzification and defuzzification methods used in FCM-based forecast-

ing techniques

Ref. Fuzzification Defuzzification Main focus HPs

Stach, Kurgan e

Pedrycz (2008b)
Triangular MF

Center of area

method
FCM structure

Number of

linguistic labels,

window size

Wojciech e Juszczuk

(2009)

Min-Max normaliza-

tion
Without FCM Learning

(SONG et al., 2010)
Gaussian MF

via linguistic layer

standard volume

based centroid via

mapping layer

learning mechanism

+ causality estima-

tion

–

Papageorgiou e

Froelich (2012)

Min-Max normaliza-

tion
Not detailed

Interpretability +

multi-step ahead

prediction + learn-

ing FCM

–

Froelich e Papageor-

giou (2014)
Equation (2.14) Equation (2.15)

FCM learning +
fuzzification and

activation function

Steepness

parameter,

fuzzification

coefficients

Froelich et al. (2012)
Min-Max Normal-

ization
Not detailed

multi-step ahead

prediction + learn-

ing FCM

–

Lu, Yang e Liu (2013)
Fuzzy C-means clus-

tering

Not needed (linguis-

tic prediction)

FCM learning +

structure
–

Homenda, Jastrzeb-

ska e Pedrycz (2014a)

Fuzzy C-means clus-

tering
without FCM structure

Window size,
NC

Homenda, Jastrzeb-

ska e Pedrycz (2014c)

Fuzzy C-means clus-

tering
Not detailed

FCM structure +

complexity reduc-

tion

NC, weights

Lu, Yang e Liu (2014)
Fuzzy C-means clus-

tering
Equation (2.16)

FCM structure +

large-scale time se-

ries prediction

–

Lu et al. (2014)
Fuzzy C-means clus-

tering

Via output HFCM:

(1) By adding a new

node to the FLFCM

(2) by adding edges

from FLFCM to the

newly added node

FCM structure +

large-scale time se-

ries prediction

NC, order

Froelich e Salmeron

(2014)
Equation (2.17) Equation (2.18)

FCM structure +

Learning FCM +

forecasting IVTS

Prediction hori-

zon

Homenda, Jastrzeb-

ska e Pedrycz (2014b)
Without Without FCM structure Map size, bias

Poczketa e Yastrebov

(2015)
Not detailed Not detailed FCM Learning

Learning param-

eters

Continued on next page
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Table 2 – continued from previous page

Author Fuzzification Defuzzification Main focus Parameters

Papageorgiou,

Poczeta e Laspi-

dou (2015)

Normalization Without FCM Learning
Learning param-

eters

Papageorgiou e

Poczeta (2015)
Not detailed Not detailed FCM Learning

Learning param-

eters

Papageorgiou e

Poczeta (2016)
Normalization Without

FCM structure +

complexity reduc-

tion

Learning param-

eters

Papageorgiou,

Poczeta e Laspi-

dou (2016)

Normalization Without

FCM structure +

complexity reduc-

tion

Learning param-

eters

Homenda e Jastrzeb-

ska (2016)

Fuzzy C-means clus-

tering
Without

FCM structure

(node selection)
NC

Salmeron e Froelich

(2016)

Min-Max normaliza-

tion
Denormalization FCM structure

Learning param-

eters, experimen-

tal parameters

Vanhoenshoven et al.

(2018)
Normalization Not detailed

Predicting oscil-

lating time series

+ multiple steps

ahead prediction +

Maintaining both

predictive accuracy

and transparency of

the weight matrix

Poczeta e Papageor-

giou (2018)
Normalization Without

FCM structure+ In-

crease flexibility +

improve simplicity

+ reduce training

time

–

Shan, Lu e Yang

(2018)

Improved fuzzy C-

means clustering
Equation (2.16) FCM structure

NC, steepness

index, fuzzifica-

tion coefficients

Poczeta, Papageor-

giou e Yastrebov

(2018)

Min-Max normaliza-

tion
Without

FCM learning +

complexity reduc-

tion + multi-step

ahead prediction

Learning param-

eters

Shanchao e Liu

(2018)

Min-Max normaliza-

tion
Not detailed

FCM structure

+ time efficient

learning + han-

dling large-scale

non-stationary

NC, order, regu-

larization factor

Papageorgiou et al.

(2019)

Min-Max normaliza-

tion
Without

FCM structure+

FCM learning
–

Continued on next page
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Table 2 – continued from previous page

Author Fuzzification Defuzzification Main focus Parameters

Wu et al. (2019)
Min-Max normaliza-

tion
Not detailed

FCM structure +

FCM learning

NC, order,

sparsity, SPTc,

WDIC

Wang et al. (2019) Fuzzy C-Means Equation (2.19)

FCM structure +

concept-drift han-

dling

–

Hajek, Froelich e

Prochazka (2020)

Equations (2.20)-

(2.23)

Equations (2.25)-

(2.26)

FCM structure +

dealing with high

uncertainty time se-

ries

–

Liu e Liu (2020) Normalizing Renormalizing

handling non-

stationary and

large-scale time

series + FCM

learning + FCM

structure

Order, learning

parameters

Hajek, Prochazka e

Froelich (2018)

IVI-fuzzy sets + tri-

angular MF

Equations (2.25)-

(2.26)
FCM structure –

Gao, Du e Yuen

(2020)

Min-Max normaliza-

tion
Not detailed

FCM structure +

FCM learning
NC, order

Yuan et al. (2020)

Kernel mapping to

generate KFTS in-

stead of FTS

Reverse kernel map-

ping

FCM structure +

FCM learning

NC, order, regu-

larization factor

Vanhoenshoven et al.

(2020)
Not detailed Not detailed Learning FCM –

Wang et al. (2020) Sigmoid MF Equation (2.27) FCM structure –

Orang et al. (2020)
Grid partitioning +

triangular MF
Equation (2.28) FCM structure

Bias, activation

function, NC

Poczeta, Papageor-

giou e Gerogiannis

(2020)

Min-Max normaliza-

tion
without

FCM structure +

Complexity reduc-

tion

–

Feng et al. (2021)
Modified fuzzy C-

means clustering
Equation (2.29)

FCM structure +

FCM learning +

multi-step predic-

tion

prediction hori-

zon

Wang et al. (2021)
Fuzzy C-means al-

gorithm

maximum member-

ship rule

FCM structure

+ FCM learn-

ing + prediction

large-scale data +

flexibility improve-

ment

Number of clus-

ters, cooperation

coefficient

Continued on next page
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Table 2 – continued from previous page

Author Fuzzification Defuzzification Main focus Parameters

Feng, Lu e Yang

(2021a)

Fuzzy C-means clus-

tering
Equation (2.30)

FCM Learning +

FCM structure

NC, steepness

(shape) param-

eter in sigmoid

function

Feng, Lu e Yang

(2021b)

Fuzzy C-means +

triangular MF
Equation (2.31) FCM structure

NC, number of

partitions

Ding e Luo (2022)

Fan-shape fuzzy in-

formation granule +

Fermi function as

MF

Not detailed

FCM structure

+ learning large-

scale FCM +

interpretability

+ generalization

improvement

NC, order, slid-

ing window size,

sliding step size

Xixi, Ding e Luo

(2022)
IFM + IFS Not detailed

FCM structure +

enhance uncertainty

representation +

dealing with non-

stationary data

NC, order

Wang et al. (2022)

Gaussian LFIG +

fuzzy C-means algo-

rithm

Equation (2.34)

FCM structure +

interpretability +

trend capturing

+ flexibility im-

provement + error

reduction

Cluster number,

l1-trend filtering,

min length of

granules, min

slope difference

of evaluating

key points, pre-

diction horizon

MF → membership function; NC → Number of concepts

SPTc → sparsity penalty term controller; FLFCM → Fully learned FCM

WDIC → weight decay importance controller; KFTS → key features time series

IVTS → Interval-valued time series; IVI → Interval-valued intuitionistic

IMF → Intrinsic mode functions; IFS → Intuitionistic fuzzy sets

LFIG → Linear fuzzy information granules

A modified normalization function was proposed by Froelich e Papageorgiou (2014)

as a fuzzification function described in the equation (2.14).

ai(t) =

(
vi(t)−mean(vi) + λi.stdDEV (vi)

2.λi.stdDEV (vi)

)
(2.14)

where ai(t) = µ(vi(t)) calculates the activation state of concept ai at time t or the

membership degree in which vi belongs to fuzzy set ci. λi depends on the distribution of

source data. Through this way, the directional coefficient of the fuzzification function is

not affected by the outliers that are far away from the mean of the variable. Note that the
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defuzzified value can be realized via Equation (2.15).

x̂(t) =
(
µ−1(a(t)

)
(2.15)

in Lu, Yang e Liu (2014) the defuzzification is performed based on the equation

(2.16)

x̂(t) =

(∑k
j=1 aj(t)

m(pj)∑k
j=1 aj(t)

m

)
(2.16)

where k is the number of clusters, m is the fuzzification coefficient, pj is prototype, aj(t)

is the activation value of jth node of FCM model at time t, and x̂(t) is the predicted

numerical value at t.

Equations (2.17) and (2.18) stand for the proposed fuzzification and defuzzification

approaches in (FROELICH; SALMERON, 2014), respectively.

ai(t) =

(
vi(t)−min(vi(t))

max(vi(t))−min(vi(t))

)
(2.17)

where the value of ai(t) = µ(vi(t)) denotes the degree to which real valued variable (vi(t))

belongs to the fuzzy set ci at time t.

µ−1(ai(t)) = vi(t) = ai(t)(max(vi(t))−min(vi(t))) + min(vi(t)) (2.18)

Wang et al. (2019) exploited the equation (2.19) to compute the final output.

x̂i(t) =

(
k∑

j=1

wi(j)ĉi(j)× (M −m) +m

)
(2.19)

where k is the number of clusters, wi is the membership of premise to the cluster k, m

and M represent the minimum and maximum values of the original time series.

The universe of discourse is divided into n equal intervals such that for each

interval, an initial triangular membership function is constructed (HAJEK; FROELICH;

PROCHAZKA, 2020). Thus, the fuzzy set ai = [µL(⊗(ai), µ
U(⊗(ai)] is obtained, where

µL(⊗(ai) and µU(⊗(ai) denote the membership degree for the lower bound and upper

band, respectively and νL(⊗(ai) and µU (⊗(ai) denote the non-membership degree for the

lower bound and upper band of interval-valued time series (ITS). The fuzzification of the

lower and upper bounds of the ITS has been given using the equations (2.20) to (2.23).

µL(⊗(ai)(t) =
(
µL(⊗(ai)(t)× (1− δD)

)
(2.20)

µU(⊗(ai)(t) =
(
µU(⊗(ai)(t)× (1− δD)

)
(2.21)

νL(⊗(ai)(t) =
(
1− µU(⊗(ai)(t)× (1− δD)− δD

)
(2.22)
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νU(⊗(ai)(t) =
(
1− µL(⊗(ai)(t)× (1− δD)− δD

)
(2.23)

whereD=(max(µU (⊗(ai)(t),µ
U (⊗(ai)(t−1),. . . ,µU (⊗(ai)(t−4))−min((µL(⊗(ai)(t),

µL(⊗(ai)(t− 1),...,µL(⊗(ai)(t− 4))) and δ = 1. Thus, interval-valued intuitionistic fuzzy

sets are attained as

⊗(ai)(t) = [µL(⊗(ai)(t), µ
U(⊗(ai)(t)], [ν

L(⊗(ai)(t), ν
U(⊗(ai)(t)] (2.24)

To calculate the defuzzified values, equations (2.25) and (2.26) are employed for the upper

and lower bounds of ITS:

x̂L(t+ 1) =

(∑n
i=1(µ

L(⊗âi(t+ 1))− νL(⊗âi(t+ 1))).pi∑n
i=1(µ

L(⊗âi(t+ 1))− νL(⊗âi(t+ 1)))

)
(2.25)

x̂U(t+ 1) =

(∑n
i=1(µ

U(⊗âi(t+ 1))− νU(⊗âi(t+ 1))).pi∑n
i=1(µ

U(⊗âi(t+ 1))− νU(⊗âi(t+ 1)))

)
(2.26)

where pi denotes the modal values of the triangular membership functions µL(⊗(ai(t))

and µU(⊗(ai(t)). Note that only those concepts for which the membership degrees are

greater than the non-membership degrees were considered that is µL(⊗âi)− νL(⊗âi) = 0

and µU(⊗âi)− νU(⊗âi) = 0 if νL(⊗âi) > νL(⊗âi) and νU(⊗âi) > νU(⊗âi).

Wang et al. (2020) utilized the equation (2.27) to defuzzify the fuzzy activation

state of each concept.

x̂j(t+ 1) =
(
f−1(aj(t)).σj + µj

)
(2.27)

where σj and µj are the mean and standard deviation of xj.

The final defuzzified value in Orang et al. (2020) is obtained using the equation

(2.28).

x̂(t+ 1) =

(∑k
j=1 aj(t+ 1).mpj∑k

j=1 aj(t+ 1)

)
(2.28)

where k is the number of concepts, aj(t+ 1) is the activation state of each concept at time

step t+ 1 and mpj is the center of each concept cj.

In Feng et al. (2021), Equation (2.29) has been utilized as defuzzification technique:

x̂(t+ 1) =

(∑k
j=1 â

m
j (t+ 1).(Vj)∑k

j=1 â
m
j (t+ 1)

)
(2.29)

where a(t) = (a1(t), a2(t), ..., ak(t)) is the state vector at time t and â(t) = (â1(t), â2(t), ..., âk(t))

is the next predicted state vector which is calculated by â(t+ 1) = f(a(t)W ), m is the

fuzzification coefficient, Vj denotes j-th cluster center and finally ŝ(t + 1) presents the

prediction segment.
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The numerical predicted values in Feng, Lu e Yang (2021a) are reconstructed

using the following equation (2.30).

x̂(t+ 1) =

(∑k
j=1 â

m
j (t+ 1).(vj)∑k

j=1 â
m
j (t+ 1)

)
(2.30)

where

m is the fuzzification coefficient, and vj is the FCM concept calculated by the

fuzzy C-means clustering algorithm.

The final predicted value in Feng, Lu e Yang (2021b) is given by aggregating the

produced results by an ensemble of sub-FCM models based on the equation (2.31).

ŷ(t+ 1) =

(∑P
j=1wj

t.yj∑P
j=1 wj

t

)
(2.31)

where yj indicates the obtained output from each sub-model at time t and wt
j ∈ [0, 1] is

the corresponding weight to the outputs at time t.

In Ding e Luo (2022), no details on defuzzification were provided however the

outputs of the attention module are calculated according to the equations (2.32) and

(2.33).

c = α⊙ U (2.32)

Z = σ(Wc[c;U ]) (2.33)

where ⊙ represents the element-wise product, α represents the vector of the attention coef-

ficients, c denotes the vector of the attention values, Wc denotes the learnable parameters

of the fully connected layer, and Z denotes the outputs of the attention module.

In Wang et al. (2022) the equation (2.34) is exploited to output the final prediction.

x̂(t) =
(
k̂

′

N ′+1
× (t−N) + b̂

′

N ′+1

)
(2.34)

where k̂
′

N ′+1
and b̂

′

N ′+1
are obtained using the inverse function of normalization, N

′
is the

number of segments, N is the number of data and t ∈ [N + 1, N + T̂N ′+1].

As recorded in Table 2, various fuzzification and defuzzification techniques have

been developed. For univariate time series, concepts usually represent fuzzy partitions of

the range of that variable; these partitions can be defined by grid partition or found with

fuzzy C-means clustering. For multivariate time series, concepts can represent clusters in

n-dimensional space, fuzzy granules, or in some studies, each variable becomes a concept

and the membership is found by normalization of the variable to [0, 1]. Clearly, the

fuzzy C-means technique has been widely used as a common fuzzification strategy in

FCM-based prediction models. According to the literature (AL-GUNAID et al., 2017)

and as can be seen in Table 2, normalization can be considered as a usual fuzzification
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procedure in multivariate FCM. It means that, instead of the complex construction of

fuzzy concepts, we simply normalize the value sets of the attributes to a specific range

(WOJCIECH; JUSZCZUK, 2009). However, in some references, no details of fuzzification

and defuzzification have been provided. The following section gives more information

about the proposed methods.

2.2.3 Overview of FCM-based models in the literature

With the support of the Web of Science (WoS) database, the search for potential

papers was carried out by cross-searching a comprehensive set of keywords (time series

AND fuzzy AND fuzzy cognitive map AND (forecast* OR predict* OR analysis OR

modeling)) appearing in the title or keywords of an article. In addition, the abstracts of

all identified papers were checked to verify that they were directly related to the topic

addressed here.

The main purpose of this section is to provide a review study of some of the

relevant FCM-based time series forecasting methods in the literature which are listed by

year of publication. According to Table 3, after filtering for relevant papers, 49 FCM-based

time series forecasting articles retrieved from Elsevier journals, IEEE Xplore (conferences

and journals), Springer (conferences and journals), and MDPI online journals for the time

period 2008 to 2022 have been reviewed in our investigation. We could not find any paper

using FCM in time series forecasting prior to 2008.

An extension of the FCM-based time series forecasting method has been designed

in Stach, Kurgan e Pedrycz (2008b). This two-level technique enables the model to carry

out modeling and forecasting in both numerical and linguistic terms as the crux advantage

by combining FCM and granules. The outstanding characteristic of this candidate FCM

corresponded to the benefits of the proposed RCGA learning technique. It must be

considered that the number of granular time series from the output of the fuzzification

module represents the number of nodes in FCM-based modeling. Further, equal width of

fuzzy sets and equal data frequency are used in this paper. The results indicate linguistic

accuracy of the proposed method decreases as the number of fuzzy sets becomes higher,

while at the same time, the numerical prediction accuracy increases. This shows that some

trade-off exists between the quality of the numerical and linguistic predictions. Also, the

tests show that the statistical characteristics of the input time series influence the quality

of the results. A higher standard deviation of the input time series results in a slightly

worse accuracy of prediction.

The authors in Wojciech e Juszczuk (2009) published a comparative analysis of

the evolutionary and adaptive learning method of FCM to evaluate the proper method for

a special prediction problem. In other words, the performance of the proposed method
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was evaluated by RCGA and DE as the evolutionary methods in comparison to DHL

and balanced differential learning algorithm (BDA) as adaptive methods. The results

demonstrate that the predictive capabilities of adaptive methods are not competitive

with evolutionary algorithms. The predictive capabilities of the proposed method were

examined by forecasting weather conditions in this study.

An unprecedented model for predicting chaotic time series was designed in Song

et al. (2010) and Song et al. (2010) by implementing FCM based on a novel fuzzy neural

network. On contrary to the principal drawback of the conventional FCM models, where

determining the states of the investigated system and quantifying causalities mainly

depends on the expert’s knowledge, the proposed model equips the inference mechanism of

original FCM with the automatic identification of membership functions and quantification

of causalities. Thereby, the construction of FCM can be modeled automatically from the

data independently with less intervention from experts. In this manner, the proposed

fuzzy neural network is composed of four layers. The first layer consists of input variables

and each node represents a concept in the concerned system. The second layer performs

fuzzification while each node represents the linguistic-term set of inputs. In the third layer,

the nodes represent the output variables’ linguistic terms, and two tasks comprising the

causalities among concepts in FCM and defuzzification are carried out. Finally, in the

last layer, the nodes represent non-fuzzy variables. The application of the proposed fuzzy

neural network provides a crystal mathematical representation of the causalities and makes

the inference process more understandable. Note that the Backpropagation-based learning

algorithm is employed to adjust the relevant parameters by minimizing the RMSE as

the objective function. Simple architecture and better forecasting accuracy confirmed the

superior performance of the proposed method.

The aim of the proposed research in Froelich et al. (2012) is to create the FCM

model for long-term prediction of prostate cancer based on an improved learning evolution-

ary learning method enabling FCM to better optimize the fitness function for long-term

prediction of multivariate time series. In other words, in this investigation, two types of

FCM are designed for both short and long-term prediction by adding a horizon parameter

(H) to the prediction error. Therefore, two different FCM structures are developed for

H = 1 and 1 < H ≤ 7. The experimental results confirmed that obtained in-sample and

out-of-sample prediction errors are much better for the second type by considering the

propagation of errors that occurred given H > 1. Noteworthy, the model complexity has

been reduced by removing those weights for which |wij| < 0.3.

The model elaborated in Papageorgiou e Froelich (2012) is another application of

evolutionary learning FCM in which the main target is focused on the multi-step prediction

of pulmonary infection based on the real clinical dataset. The experimental results confirm

the good performance of the model for long-term forecasting and the capability of the
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proposed multi-step learning method to simulate fully both the system’s dynamic nature

and internal changes.

A feasible and effective time series forecasting framework based on FCM was

investigated in Lu, Yang e Liu (2013) to predict the enrollments of the University of

Alberta on the linguistic level. The proposed quantitative technique is a composition of

the C-means clustering algorithm, FCM, and RCGA. The FCM structure is formulated

by using C-means clustering, which transforms the original time series into an FTS and

extracts linguistic labels. Then, the constructed FCM is trained through the RCGA

algorithm to represent the converted FTS and realize linguistic forecasting.

Apart from various partitioning methods proposed in the literature, the fuzzy

c-means clustering technique has been used widely to generate fuzzy sets (concepts) by

dividing the Universe of Discourse (U) into intervals with some overlaps. The research

reported by Homenda, Jastrzebska e Pedrycz (2014a), Homenda, Jastrzebska e Pedrycz

(2014c) are examples of univariate time series forecasting using FCM in which fuzzy

C-means clustering technique is applied to cluster all learning values of time series such

that the number of clusters (denoted as concepts) is defined by the user and each cluster

acts as a fuzzy set. Through this method, at any time, the membership degree indicates

the value of the time series that belongs to the generated cluster. Meanwhile, the degree

of membership of the current value of time series y(t) to the concept ci determines the

activation value ai. This procedure is done for all concepts to reach the state vector. PSO

is used as a learning method to obtain a weight matrix to minimize the Mean Absolute

Error (MAE) error between the FCM responses and the targets.

Homenda, Jastrzebska e Pedrycz (2014a) proposed a method based on the moving

window technique, influenced by window size and widow step size, to extract the concepts.

Then, a map composed of several layers is formed such that the obtained concepts in the

previous step are located in each layer. Although it is an interpretable and clear model,

extracting the appropriate number of concepts is a hard task. Thus, there is a trade-off

between window size and accuracy in this model. In other words, the accuracy of this model

depends significantly on the size of the window. The larger the window size, the bigger

the map which creates some problems in relation to training, visualizing, and interpreting.

On the other hand, the researchers in Homenda, Jastrzebska e Pedrycz (2014c) suggested

a posteriori FCM simplification strategies, and complexity reduction, by removing weak

nodes and weights after evaluating their effectiveness in the map. Hereby it turned out

that around 1
6
of the edges and 1

3
of the nodes could be dropped without any substantial

increase in the prediction error.

In (LU; YANG; LIU, 2014), a univariate time series forecasting method was

introduced based on the coupling of FCM and information granules employing fuzzy

c-means clustering technique to translate the original time series into granular time series.
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Thus, in the following, FCM is employed to describe obtained granular time series and

accomplish forecasting tasks. PSO has been used as the learning algorithm in this method

to extract the weight matrix among the concepts (granules). The proposed model is suitable

for large-scale time series prediction because of its automatic framework. Noticeable that

the greater the number of clusters, the higher the accuracy, and the less interpretable the

model is.

A new time series forecasting method was outlined in Lu et al. (2014) by combining

HFCM and fuzzy c-means clustering. The proposed model consists of two stages. In the

first stage, the HFCM model is constructed and the second stage exploits the generated

HFCM prediction model to perform inference and prediction. In other words, firstly, a fuzzy

c-means clustering algorithm is exploited to create information granules by translating

the original time series into granular time series and generating a structure of the HFCM

model automatically. Next, the PSO algorithm is implemented as a learning method to

extract weight matrices and complete the HFCM prediction model. Then, the designed

HFCM is used to generate numeric prediction by doing inference in the granular space.

To be noted that the adopted method is driven by a couple of adaptable parameters: the

number of clusters and the order Ω. The best outcomes are obtained when the number of

clusters and order are 9 and 4 respectively.

Researchers in Homenda, Jastrzebska e Pedrycz (2014b) implemented a new

method to predict time series where the lagged time series is mapped to the concepts. The

method is a mixture of FCM reconstruction procedures with a moving (sliding) window

approach considered for both training and testing samples. In this method, the size of the

map corresponds to the moving window size and it informs about the length of historical

data, which produces a time series model. It is a note of worth that, unlike other existing

forecasting methods, fuzzification and defuzzification steps are not performed in this

study and fuzzification has been replaced by min-max normalization in this paper. More

precisely, time series modeling and forecasting depend on the moving window technique.

PSO learning method is used to optimize objective function (MSE) for three real-time

series data. Moreover, the performance of the model was evaluated in two cases: with and

without the presence of the bias weights. Thus, this paper investigated the roles of map

size and bias on the accuracy performance of the proposed method. Additionally, it is not

equally good for all kinds of data and does not perform well for trend and seasonal data.

One extended evolutionary learning of FCM has been introduced in Froelich e

Papageorgiou (2014) to predict multivariate time series. The basic core of this research

study is concentrated on three extensions. Firstly, transformation function optimization is

such that the steepness values of logistic functions are not the same for all the concepts

and they are optimized separately. Secondly, optimization of the fuzzification function.

Finally, implementing modified quality metrics due to the integration of the fuzzification
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function into the process of FCM training. The effectiveness of the proposed model has

been tested over a number of real medical data gathered from the intensive care unit

(ICU).

In another investigation, a new method was proposed in Froelich e Salmeron (2014)

to alleviate the problem of forecasting multivariate interval-valued time series for the first

time. For this purpose, FGCMs as an easy-to-interpret knowledge representation tool was

designed as a non-linear predictive model. A genetic algorithm has been developed for

training FGCM based on historical data. In this model, the approximation of the time series

is subjected to a forecast instead of accurate numerical time series. As the experimental

results indicated, better prediction performance is obtained when the prediction horizons

are limited or for short-term prediction. For instance, it outperformed compared to

ARIMA, VAR, or näıve models for just up to three days prediction horizons. Note that this

investigation has used a sliding window concerning both the size of training and testing

windows and their effect on the final results. The model meets the better performance

with the short prediction horizon, fewer data variability, and absence of trends in data.

A combination of FCM with a multi-step supervised learning algorithm for time

series prediction and monitoring was developed in Poczketa e Yastrebov (2015). The

application of the gradient model and Markov model of the gradient are used as a multi-

step learning strategy for FCM in this investigation. On the other hand one-step gradient,

multi-step gradient method, and Markov model of the gradient were employed to learn

FCM and tune the relevant parameters by minimizing the forecasting error. Using the

mentioned strategy provides the possibility of forecasting the next values according to the

currently monitored values of the system. High flexibility, especially in small datasets, ease

of usage, and cheap cost of implementation are the bold characteristics of the model. Most

importantly though, less complex FCM is produced through the SOGA training algorithm

with semantic meaning in the provided relationships among concepts. The concepts of the

obtained FCM are used as input for ANN with high accuracy.

Papageorgiou, Poczeta e Laspidou (2015) investigated a new FCM learning al-

gorithm for the water demand problem. Thereby, the focal objective of this research is

to present the new SOGA learning method compared with other learning procedures

including the multi-step gradient model (MGM) and RCGA to optimize an objective

function. In addition to investigating learning algorithms of FCM for multivariate time

series modeling and prediction in this research, introducing a new FCM learning algorithm

that finds the most important connections is considered as the other objective of this paper.

However MSE, RMSE, MAPE, and MAE were used to evaluate the model’s performance,

it seems that the SOGA performs more efficiently regarding the MSE as the accuracy

metric of the model. Further, based on the outcomes, the accuracy of summer demand

prediction is better than winter demand.
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A multivariate FCM-based forecasting model was implemented to predict elec-

tricity consumption by Papageorgiou e Poczeta (2015). The key attention of this paper

has been focused on handling the complexity of the model using three learning algorithms

consisting of MGM, RCGA, and SOGA. It is worth mentioning that the main aim is to

forecast the electricity demand for three targets (output) concepts. Based on the results,

the most accurate model is obtained when MGM is applied for training the model. Also,

the obtained results confirmed the outperformance of the model against ARIMA, ANFIS,

and ANN.

The other approximate time series forecasting framework was proposed by Froelich

e Pedrycz (2016), which is a kind of new double-phased approach. In the first phase, the

original time series is transformed into a sequence of granules to organize granular time

series (GTS). In the second phase, the obtained granules from the first phase are clustered

using fuzzy c-means clustering, and the centers of obtained clusters are regarded as the

FCM concepts. Through this procedure, FCM is applied to forecast the concepts’ activation

vectors. Conceptually, the maximum activation level of the FCM concept is depicted in

the forecasted granule. Numerically, the forecasted granule is considered a fuzzy set that

is described in terms of its bounds and modal value. It should be reminded that in this

research GA has been defined as the FCM learning method. The model is not suitable for

random time series; however, it is the most proper for ones with a stable cyclic component

as well as forecasting the changes of the amplitude.

An approach proposed for time series modeling and forecasting is developed by

Homenda e Jastrzebska (2016), using clustering technique to design FCM in which the

main focus is on the structure or map node selection. In the proposed scheme, firstly, the

time series is transformed into a two-dimensional space of amplitude–change of amplitude

as a basic and popular method. In other words, the set of concepts in FCM is positioned

in the two-dimensional space of amplitude and change of amplitude (STACH; KURGAN;

PEDRYCZ, 2008b). Then, the FCM clustering technique is used to create concepts

(k = 3, 4, 5, ..., 24). Cluster validity indexes are applied in the next step to evaluate the

generated concepts. 40 different validity indexes are exploited to evaluate the properties

of the obtained concepts such as similarity of the points located in the same clusters,

dissimilarity of the points belonging to various clusters, both of them, or other features.

Among all, just five cluster validity indexes performed well as the top five indexes. Step

four includes the application of PSO as a learning algorithm for proposed FCM with

k = 3, 4, 5, . . . , 24 concepts, for minimizing the MSE as the fitness function and evaluating

the model performance. In other words, the evaluation is centralized on selecting the best

structure of FCM using cluster validity indexes with the promising and minimum MSE

value.

Furthermore, Papageorgiou e Poczeta (2016) explored a novel ensemble time
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series forecasting technique that combines FCM and artificial neural network (ANN). This

multivariate method is based on the efficient capabilities of evolutionary FCM enhanced

by structure optimization algorithms and ANNs including two stages. In the first stage,

an evolutionary FCM is made based on the SOGA in (PAPAGEORGIOU; POCZETA;

LASPIDOU, 2015; ZAMORA-MARTINEZ et al., 2014). The use of SOGA allows the

construction of the FCM model automatically from the historical data in which the most

effective nodes (attributes) and weights are chosen to provide a less complex and more

efficient FCM-based model. In the next stage, the created FCM determines the inputs of

ANN where the BP method with momentum or Levenberg-Marquardt (LM) algorithm is

exploited as ANN training strategies. Various kinds of accuracy metrics were employed to

assess the model’s performance using four datasets. It is worth noting that the developed

software tool ISEMK (intelligent expert system based on cognitive maps) is used to

evaluate the proposed method in all the experiments.

Despite several advantages of FCM in solving decision-making problems due to

their transparent and comprehensive nature, some FCM shortcomings limit its perfor-

mance in the domain of time series forecasting and analysis. Vanhoenshoven et al. (2018)

introduced a novel practical FCM method employing ARIMA to enable FCM to predict

multi-steps ahead of a fluctuating time series which keeps prediction accuracy, as well as

keeping transparency of the weight matrix. In other words, to overcome the convergence

issue, the updating rule adopted utilizing moving average and weight amplification function.

Also, it has applied a modified version of the sigmoid activation function to confine the

activation values in the allowable range. The results confirm the advantage of the model in

predicting multiple steps of an oscillating time series, some parameters like lower prediction

accuracy as well as less transparency affect these achievements.

Dynamic optimization of the FCM (DFCM) method was suggested by Salmeron

e Froelich (2016) to predict time series. The main goal of the DFCM method is to

optimize not only the weights but also all elements of FCM as well as the whole learning

process to reach more accuracy. Accordingly, the structure of the FCM together with the

transformation function and its parameters as well as the length of the learning period are

optimized. In this case, five different population-based algorithms such as GA, PSO, SA,

ABC, and DE were applied to optimize all of the mentioned parameters. The proposed

method is competitive compared with other methods in the literature and is useful only

for linear and stationary time series.

A novel two-stage forecasting technique is introduced by Poczeta e Papageorgiou

(2018), which combines FCM and ANN to predict day-ahead gas consumption in Greece.

In the first step, the SOGA learning algorithm is employed to construct the FCM from

the original time series. In other words, SOGA is applied to extract the weight matrices as

well as the model simplification by discarding the less effective concepts on the prediction
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accuracy. In the second stage, the selected concepts of the simplified FCM are considered

as inputs for ANN trained with the application of the back-propagation method with

momentum and the Levenberg-Marquardt algorithm.

In addition to the aforementioned options, to determine the FCM’s architecture

and elevate the forecasting performance of FCM, wavelet transformation and empirical

mode decomposition (EMD) were recommended by some authors. A time series forecasting

method has been adopted by Shanchao e Liu (2018) based on the synergy of high order

FCM and wavelet transform (redundant Haar wavelet) which is termed as Wavelet-HFCM.

The proposed method is useful to handle large-scale non-stationary time series while the

original signal is decomposed into the multivariate time series by wavelet transform. Then,

HFCM is exploited for modeling and forecasting the multivariate time series. Making more

generalization, the proposed model was trained via ridge regression to solve optimization

problems unlike the lasso regression procedure adopted for FCM learning in Tsaih, Hsu e

Lai (1998), Martens (2002) . Based on the outcomes, the regularization factor and the

number of nodes have a considerable effect on the accuracy, unlike the lower impact of the

order.

Another combination of fuzzy C-means clustering with FCM was proposed by Shan,

Lu e Yang (2018) to predict univariate time series. In this approach, the architecture of FCM

is constructed using an improved fuzzy C-means clustering which involves optimizing the

membership matrix with a membership optimization function to reduce the sensitivity of

clustering against outliers. The clustering method has been exploited to extract knowledge

from data and generate the concepts of FCM, while PSO has been employed to learn

FCM’s weights automatically. This research evaluated the influence of the steepness index,

clustering number as well as fuzzification coefficient on the accuracy of the model.

In the case of multivariate time series forecasting based on FCM, Poczeta, Papa-

georgiou e Yastrebov (2018) developed a new method to predict power electric consumption.

In contrast to the proposed model in Papageorgiou e Poczeta (2016), Papageorgiou e

Poczeta (2015), the main contribution of this investigation has been focused on multi-step

ahead prediction with the exploitation of FCM and SOGA. In this approach, SOGA

was used to automatically select the most important concepts and weights similar to

the first stage in Papageorgiou e Poczeta (2016). Thereafter, SOGA was executed for

three-step ahead prediction. Since SOGA is an extension of RCGA, the proposed model

was compared with the model trained with RCGA. The best performance was reached

with 5 concepts and 9 weight interconnections using SOGA with respect to the effect of

learning parameters.

Interval-valued intuitionistic FCM (IVI-FCM) was implemented by Hajek, Proc-

hazka e Froelich (2018) to predict univariate interval-valued time series (ITS). In spite

of traditional FCM, interval-valued intuitionistic fuzzy sets were employed to represent
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fuzzy sets in this approach. In this way, firstly universe of discourse is partitioned into

some even-length intervals using the triangular membership function. Thus, IVI-fuzzy

sets are built through the fuzzification of both bounds of the ITS. After that IVI-FCM is

constructed such that every concept of the proposed model is an IVI-fuzzy set considering

the value of the membership function for both lower and upper bounds of the ITS as

well as the value of the non-membership function for the lower and upper bounds of the

ITS. Furthermore, the value of the membership function and non-membership function

for the upper and lower bounds of the weights are considered. Then, the state of each

concept is updated via the reasoning rule. Finally, the final predicted output is obtained

by exploiting the defuzzification step. It is noticeable that daily minima and maxima of

the Nasdaq-100 index were used to represent the lower and upper bounds of the ITS.

A new time series forecasting strategy is proposed by Wu et al. (2019) based

on a sparse Autoencoder (SAE) and a high-order FCM (HFCM), named SAE-FCM to

handle some time series forecasting pitfalls such as the inability to extract good features

of original time series, trapping in local minima and low prediction accuracy. SAE has

been exploited to deal with the first limitation by extracting features from the original

time series through an unsupervised training method. Then the second limitation is solved

by a combination of outputs of SAE and HFCM to calculate the forecasted value. Finally,

the batch gradient descent method (limited-memory Broyden-Fletcher-Goldfarb-Shanno

(L-BFGS)), as a fine-tuning algorithm inspired by deep learning, is used to update the

weights of SAE-FCM and to improve the performance of SAE-FCM by removing the

third limitation. The obtained results demonstrate the high accuracy performance of the

proposed SAE-FCM.

Moreover, another novel ensemble forecasting methodology developed by Papa-

georgiou et al. (2019) is based on evolutionary FCM, artificial neural networks (ANNs),

and their hybrid structure (FCM-ANN). In other words, the ensemble learning technique

in this method combines various learning algorithms including SOGA-based FCM, RCGA-

based FCM, efficient and adaptive ANNs architectures, and a hybrid SOGA-FCM-ANN

recently proposed for time series forecasting structure proposed by Papageorgiou e Poczeta

(2016) to solve the time series prediction problem of gas consumption in Greece. In this

research, two of the most popular ensemble methodologies including the simple average and

error-based (LEMKE; GABRYS, 2010; MAKRIDAKIS; WINKLER, 1983) are employed

to evaluate the performance of individual predictors, the ensemble predictors, and their

combination. The obtained results indicate the efficacy and efficiency of the defined method

when compared with other autonomous methods like ANN, FCM, and LSTM.

An adaptive online time series forecasting based on a novel dynamic FCM (DFCM)

was presented by Nannan e Chao (2019). In this investigation, FCM is dynamically

constructed by means of the set of information granules in which PSO was exploited as
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a training method. Also, a dynamic fuzzy C-means clustering algorithm is employed to

online regulate the cluster center and weight based on the effect of the incoming data. More

explicitly, both the map and the weights of the proposed FCM model can be dynamically

adjusted along with the pattern change of the updated data which has a direct effect on

the forecasting accuracy improvement.

A new adaptive FCM-based forecasting technique was introduced by Wang et al.

(2019), composed of a collection of FCM. Thus, the architecture of the proposed model

consists of multiple FCMs to enhance the adaptability of FCM as well as deal with concept

drift in time series. In particular, constructing the premises at each time step; employing

of fuzzy C-means algorithm to cluster the given time series into the predefined clusters;

building individual FCM on each cluster, and calculating the final prediction using the

weighted sum of the predictions of all the generated FCM according to the clusters of the

given premise are the main steps of the proposed forecasting technique. The novelty of

this adaptive technique is related to the clustering stage. After building both input and

target matrices, fuzzy C-means is employed to cluster the premises of training and test

data into 6 clusters which leads to generating a partition matrix. It is noticeable that each

FCM is constructed using the PSO algorithm to adjust the weight matrices with the same

dimension for each FCM. The obtained results for real and synthetic time series confirmed

the superiority of the model compared with other fuzzy-based models.

Although Shanchao e Liu (2018) developed a wavelet-HFCM method to handle

large-scale non-stationary times series successfully, it suffers from some weaknesses relating

to the wavelet transformation. Regarding this issue, a novel and robust forecasting technique

is proposed by Gao, Du e Yuen (2020) based on the synergy of HFCM and empirical

wavelet transformation (EWT) to boost the performance of conventional FCM dealing

with non-stationary and outliers. EWT is used as a novel adaptive signal decomposition

method with a significant effect on the model in analyzing non-stationary time series

data. EWT is employed to decompose the original time series into different levels in the

Fourier domain which captures information of different frequencies. Afterward, HFCM

will be trained through a novel method based on ϵ-support vector regression (ϵ-SVR),

which elevates its robustness against outliers. The experimental results on eight publicly

available time series show the superiority of the proposed model by comparing it with

other models.

A new model has been adopted by Hajek, Froelich e Prochazka (2020) for fore-

casting interval-valued time series mixing interval-valued intuitionistic fuzzy sets (IVI-FS)

with an FCM trained via the DE learning method. Also, this study has been focused on

forecasting the approximation of time series to create interval-valued time series (ITS).

That is, the exact values are replaced by minimal and maximal values in the predefined

periods. For this reason, an FCM-based model has been designed to predict ITS which
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is termed the Intuitionistic Fuzzy Grey Cognitive Map (IFGCM) using interval-valued

intuitionistic fuzzy sets. The obtained results verify the satisfactory effect of the method

compared with FCM and FGCM.

An accurate and robust method to deal with non-stationary and large-scale time

series was proposed by Liu e Liu (2020), which is based on the combination of empirical

mode decomposition (EMD) as a self-adaptive feature extraction technique and high-order

FCM (HFCM), known as EMD-HFCM. Therefore, the EMD-HFCM is useful to handle

some of the limitations of existing FCM methods including low precision and sensitivity

to hyper-parameters. This novel method exploits EMD to create the set of stationary

nodes of HFCM by extracting features from the original sequence. Then, a precise and

efficient learning model based on Bayesian ridge regression, which is more robust than

ridge regression, was employed to provide regular parameters from data. The experimental

results verify the excellent performance of the proposed EMD-HFCM on eight public time

series datasets dealing with large-scale and non-stationary time series compared to other

available models.

Although FCMs have a strong ability to apply for time series forecasting, their

performance is limited due to some deficiencies in using available feature extraction

frameworks which influence the FCM’s prediction accuracy. In other words, in these

methods, some features of the original time series will be lost when it is mapped to FTS.

For instance, Shanchao e Liu (2018) applied Harr wavelet to extract the features time

series. To deal with some limitations of proposed feature time series models, a novel and

generalized feature time series extraction method was suggested by Yuan et al. (2020)

merging kernel mapping and HFCM that has been inspired by the kernel methods and the

support vector regression (SVR), referred to as kernel HFCM. Kernel mapping is defined

to transfer the original one-dimensional time series into the multidimensional feature time

series, and then key feature time series (KFTS) from the multidimensional feature time

series are selected through the proposed feature selection algorithm to develop HFCM. In

the next step, a fast HFCM learning algorithm based on ridge regression is applied to adopt

the fuzzy relationship of the HFCM. Lastly, the predicted one-dimensional time series

is generated from the feature time series by exploiting reverse kernel mapping. However

employing kernel mapping can help to capture the implicit patterns in the data, a suitable

method for KFTS evaluation is still required to reduce the regression problem of the

non-stationary time series and to improve the accuracy of the prediction.

Another FCM-based time series forecasting strategy was presented by Vanhoen-

shoven et al. (2020) using a pseudoinverse learning model namely FCM-MP. Therefore,

this study mainly has focused on developing a new time-efficient learning algorithm based

on the Moore-Penrose inverse to deal with some FCM learning limitations including time-

consuming and poor accuracy of evolutionary and Hebbian-based methods respectively.
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High forecasting accuracy, cheap cost of computation, multiple-step-ahead multivariate

forecasting, and lack of laborious adjustment of parameters are counted as the significant

strengths of the proposed learning strategy. The experiment results on 41 different time

series highlight the superiority of the mentioned technique considering the value of the

slope parameter of activation function λ in the set {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}.

Wang et al. (2020) formulated a new extension of FCM for multivariate time series

forecasting termed DEEP FCM (DFCM). A deep neural network-based FCM model was

introduced to reach interpretable multivariate prediction. The proposed model combines

the strength of interpretability of FCM with the strength of deep neural networks by

introducing the deep neural network models into the FCM knowledge-based models as the

main solution for building an interpretable predictor strategy. DFCM as an extension of

conventional FCM modeled the nonlinear and non-monotonic effects among the concepts

and unknown exogenous factors that have a latent influence on system dynamics via a

fully connected neural network and a recurrent neural network (LSTM-based u-function)

respectively. Furthermore, to calculate the strength of the connection between a pair of

concepts, the model is equipped with a partial derivative-based approach to guarantee

interpretability. An Alternate Function Gradient Descent (AFGD) approach based on

Backpropagation (BP) also was exploited for parameter inference which enhanced its

prediction ability compared to other standard FCMs.

Feng, Lu e Yang (2021a) published a new time series modeling based on least

square FCM termed as LSFCM. In this developed method, Fuzzy c-means clustering is

employed to construct concepts of FCM while the least square method is exploited to

adopt the weight matrices from the given historical observation of time series. In contrast

to other traditional FCMs, the LSFCM model is a direct and one-time solution of matrix

equation without repetitious stochastic searching. The LSFCM model is a straightforward,

robust, and rapid learning method, owing to its reliability and efficiency. In the first stage

of this two-stage model, the least square method is exploited to form an FCM model.

In the second step, the LSFCM is optimized through concept refinement by relocating

the concept’s positions to obtain the optimal concepts through PSO to improve the

prediction accuracy. In this study, the slope parameter of sigmoid activation function λ

plays a significant role in keeping the values of weights elements in the interval [−1, 1].

It means that the proper weight matrix is obtained when λ ≥ λ1 and λ1 = max{|wij|},
i, j = 1, 2, . . . , k. The results confirm the efficiency and accuracy of the model compared

with other conventional models considering various time series for the different values of

concepts ranging from {2, 3, ..., 20} and λ belongs to {1, 5, 10, 50}.

In order to promote the reasoning capability in time series forecasting, a novel

technique termed CNN-FCM was introduced by Liu, Liu e Wu (2020) embedding FCM

into deep neural networks. The ability of FCM in system modeling enhances the stability
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of deep learning in time series prediction. Since FCM-based methods have the ability to

learn complex systems, the proposed CNN-FCM model can fill the gap in deep learning

methods. For this purpose, CNN-FCM is based on a fuzzy cognitive block (FCB) which

embeds the learning of HFCM into the deep learning architecture. Inside FCB, a Temporal

Convolutional Network (TCN) is exploited to decompose the original time series into some

components and extract the time series data of latent variables. Then, the state of each

latent variable is updated based on the updating rule in HFCM and the fully connected

layers within FCB learn the correlation of the latent variables (weights) in a different

order. Finally, a regression model predicts the next observation according to the output of

FCB. Structurally speaking, decomposition, dimensionality reduction, FCM, and linear

regression construct the architecture of CNN-FCM. The decomposition unit consists of

both residual blocks and average pooling. Afterward, a dimensionality reduction unit is

employed. In this step, the output of TCN is inferred and compressed by two convolution

layers to obtain the time series of latent variables. Then FCB and fully connected layer

are utilized to produce the final output. Moreover, the sensitivity of the proposed model

to the number of latent variables as well as the length of input has been analyzed in this

research.

Poczeta, Papageorgiou e Gerogiannis (2020) introduced an FCM-based forecasting

model with nested structure so that each concept at a higher map level is decomposed into

another FCM to present a precise representation of complex time series. Then evolutionary

learning algorithm is employed to optimize this nested structure. In order to extract

significant links among the concepts as well as to assign the weights of these relations,

the entire nested architecture is restructured using dynamic optimization. More clearly, a

nested FCM structure is constructed through the following steps. Firstly, data is clustered

by applying the K-means clustering algorithm. Secondly, the first level of the nested

structure is constructed such that for each cluster the average values for concepts are

calculated. The calculated values are normalized into the interval [0, 1] using the standard

min–max normalization. The averaged normalized data are divided into training and

testing records. Then, the general FCM with k concepts is initialized and trained via

RCGA and SOGA to determine the relationships between concepts at the first level of the

nested structure. After that, in the next stage, the FCM models for the second level of

the nested structure are constructed. Subsequently, the forecasted values for the second

level of the nested structure are calculated. Finally, the testing data is used to evaluate

the performance accuracy of the obtained models.

Shen, Liu e Wu (2021) implemented a fast prediction hybrid model combining

elastic net and HFCM to deal with multivariate long non-stationary time series to predict

human actions through the Electroencephalogram (EEG) data. In this technique, each

node in an FCM represents a variable in the multivariate time series, thus an N-node FCM

should be constructed as the prediction model. HFCM is responsible for capturing the
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patterns of trends. In the first step, EEG signals are predicted using the historical data,

and then a 1d-convolutional neural network (1d-CNN) is exploited to classify the predicted

time series. It is important to highlight that the penalized least squares approach was

exploited to solve a convex optimization problem and obtain the weight matrix that works

better than LASSO. In other words, the optimization problem is a convex combination of

LASSO and ridge penalty known as an elastic net penalty (or Naive elastic net) which has

the characteristics of both the LASSO and ridge regression.

A novel multi-step ahead FCM-based long-term forecasting model was introduced

by Feng et al. (2021). The proposed model integrates FCM, time series segmentation, and

fuzzy clustering. In the first step, the normalized time series is divided into a set of non-

overlapping segments in chronological order. Then, the obtained segments are transformed

into fuzzy time series (FTS) utilizing a modified fuzzy c-means based on dynamic time

warping (DTW). Subsequently, the long-term prediction model with FCM is constructed

from the fuzzy time series. Next, a convex optimization-based method is applied to learn

FCM by solving constrained least squares problems. Finally, the well-learned FCM model

is exploited to produce predictive outputs and then defuzzify and compute the forecasted

output values. In this study, 5, 10, 15, and 20 have been chosen as lengths of horizons for

small-scale time series whereas for large-scale time series 10, 20, 40, and 60 have been

predefined as the length of horizons.

A novel adaptive FCM-based (AFCM-based) forecasting method trained via

Knowledge-Guidance Learning Mechanism was presented by Wang et al. (2021) to predict

large-scale time series. In traditional FCM-based causal links among the concepts are

determined based on all the training data and remain fixed later on. This issue restricts

the model’s flexibility, particularly when the goal is to predict large-scale drifting data.

Therefore, one of the added values of this paper is to alleviate this problem. Furthermore,

this article can tackle another problem evident in the original FCM-based forecasting

procedure, in which the map remains unaltered. Given these two aspects, the authors

developed a knowledge-guidance learning mechanism to train the AFCM-based forecasting

model. Thus, dynamic and adaptive characteristics are exhibited in two ways so first,

AFCM is trained through different causal relationships from the old data to build an

AFCM-based forecasting model. Secondly, the already-constructed model is retrained on

the new data with the guidance of knowledge mined from the old data.

The impact of the number of clusters and cooperation coefficient (the ratio of

the new data to the old data) on the learning method was assessed in this study. The

pseudo-F-statistics (PFS) index has been used to decide about the number of clusters

for each case study. The larger the value of F, the more reasonable the clustering result.

Therefore, a different number of clusters have been selected for each case study. But

experimentally the value of the cooperation coefficient was set to 0.9 as the default value.
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The obtained results indicate that the proposed model is much faster and more accurate

than other competitors.

A new FCM-based prediction model has been proposed by Feng, Lu e Yang (2021b)

based on partitioning strategies. Firstly, fuzzy c-means clustering is employed to partition

time series into several sub-sequences. Consequently, each partition has its corresponding

sequences. Subsequently, FCM is constructed in terms of these sub-sequences respectively.

Finally, the FCM models are merged by fuzzy rules. Therefore, this model has not been

designed by modeling the whole data directly similar to other existing models in the

literature. The constructed model performs well in numerical prediction and also has good

interpretability. As the results indicate, the forecasting precision can not continuously

improve by increasing the number of nodes. In reverse, the model is more accurate as the

number of partitions increases.

Another univariate FCM-based forecasting technique was proposed by Xixi, Ding

e Luo (2022) combining high-order intuitionistic FCM (HIFCM) with variational mode

decomposition (VMD). In this study, an intuitionistic fuzzy set (IFS) is introduced

into FCM with a temporal high-order structure. In more detail, IFS and VMD are

responsible for improving the capability of the model to deal with uncertainty and

capturing fluctuation features of series data, respectively. Therefore, VMD is applied to

decompose the original time series into several intrinsic mode functions (IMFs). In the

next step, FCM is constructed by using the obtained IMFs as concepts. For the purpose

of learning temporal dependence, FCM is extended to construct HFCM. Subsequently,

an intuitionistic fuzzy set (IFS) is introduced into HFCM to enhance the model ability

of uncertain data. Finally, PSO is utilized to train the model and search for the weight

parameters.

A novel long-term interpretable univariate HFCM-based forecasting model with

spatial attention for high-volatility time series was presented by Ding e Luo (2022). In this

model, a kind of extended polar fuzzy information granules (FIGs) has been employed

to capture fluctuation features of time series and to generate granule sequences from

the original time series. As such, an FCM with a different structure is formulated in

which each node in the FCM is defined through the obtained FIG, representing a specific

short-term fluctuation feature. Equipping the model with polar-FIGs enables it to handle

uncertainties as well as eliminate noise, outliers and disturbance from the original data.

Noteworthy that this model is based on the attention mechanism and HFCM. Firstly,

the generalization ability of the model is improved by eliminating the noisy data through

the attention mechanism. Further, HFCM is exploited to upgrade the capability of the

model to cope with the long-term dependence relationship. Finally, the proposed model

is trained via a two-stage training process. In the first part, HFCM is trained using the

ridge regression algorithm to generate its outputs for the training of the spatial attention
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mechanism module. To be more precise, HFCM with spatial attention mechanism includes

the following steps. Firstly, the attention module is fed through the obtained measured

weights and state values (as inputs) of each order in HFCM. Then, the fully connected layer

is applied to get the feature vector transforming the inputs. In the following, the second

fully connected layer is used to guarantee that the output is the same length as the input

layer. Subsequently, the attention coefficients are produced employing the softmax layer.

Then attention values are obtained via weighted inputs considering attention coefficients.

Finally, the attention values are concatenated and injected into a fully connected layer

used to get the final outputs concatenated with the inputs, and the concatenated result is

output through a fully connected layer. The obtained results indicate the outperformance

of this technique compared to some recent FCM models like Wavelet-HFCM (SHANCHAO;

LIU, 2018) and EMD-HFCM (LIU; LIU, 2020) as well as other baseline models such as

LSTM, SVR, ANN, ARIMA, and Holt-Winters.

The Trend-Fuzzy-Granulation-Based Adaptive FCM for long-term time series fore-

casting was proposed by Wang et al. (2022). Different from original FCM-based forecasting

models with fixed causal relations, this adaptive FCM model is based on non-constant

causal relationships because constant causal relations are unreasonable and good prediction

accuracy cannot be achieved as discussed earlier in Wang et al. (2021). Interpretability

improvement, trend capturing and a higher level of flexibility are considered as the main

added values of this investigation. Also, since in this approach, long-term prediction is not

obtained based on the successively iterated one-step predictions, cumulative forecasting er-

rors are reduced as the main advantage of this method. Granulating, normalizing, clustering,

building the input matrix and the target matrix, constructing sub-FCMs, and forecasting

constitute the main stages of the proposed model. Therefore, firstly the original time series

is transformed into a granular time series LG = {LG1, ..., LGN} consisting of Gaussian

linear fuzzy information granules (LFIGs). LGi is expressed as a vector Gi = (ki, bi, σi, Ti).

Thus each FCM with four concepts can be built corresponding to the slope k, the intercept

b, the standard deviation σ, and the length of granules T respectively. After normalizing

each parameter according to the Min-Max normalization, the fuzzy C-means algorithm is

applied to generate some number of clusters such that the intercept of a granule is not

significant in comparison to the slope, length and fluctuation amplitude of each granule.

The obtained partitioning matrix and clustering centers from the clustering step are

respectively employed for training sub-FCMs and calculating the membership degrees of

the input vectors to clusters. In the next step, the input matrix and target matrix are

constructed. Also, in this step, the sub-FCMs are built while each sub-FCM is trained by

applying PSO to realize the optimum weight and bias matrices. Finally, in the forecasting

step, before calculating the final predictions, the inverse function of normalization is

utilized to predict the trend information. The minimum slope difference of evaluating key

points (slopmin); minimum length of granules; the parameter of l1-trend filtering and the
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number of clusters are the most effective parameters on the model performance.

It is worth mentioning that Table 3 summarizes a list of these proposed FCM-based

time series forecasting strategies arranged according to the date of publication taking into

account some important parameters such as learning methods, order number, presence of

bias, the number of nodes, activation function and prediction horizons.
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Table 3 – Summary of the most relevant time series forecasting methods using FCM in the literature

Author Method
U/M

Learning method Order Bias Concepts f H

Stach, Kurgan e

Pedrycz (2008b)
FCM+ig M RCGA 1 Y 9 bivalent 1

Wojciech e Juszczuk

(2009)
adaptive+ E-FCM M

DHL, BDA, DE,

RCGA
1 N {4, 5, 8} sigmoid 1

Song et al. (2010) FCM+ANN M gradient descent(BP) 1 N - - 1

Papageorgiou e

Froelich (2012)
E-FCM M

Single-step RCGA+
New Multi-step learning 1 N 15 logistic {2, 3, ..., 7}

Froelich e Papageor-

giou (2014)
FCM+EEL M EEL based on GA 1 N 15 logistic 1

Froelich et al. (2012) E-FCM M RCGA 1 N 6 logistic {1, 2, ..., 7}
Lu, Yang e Liu (2013) FCMc+FCM U RCGA 1 N 5 sigmoid 1

Homenda, Jastrzeb-

ska e Pedrycz (2014a)
FCMc+FCM+ MW U PSO 1 N

Node=3,
map size={3,6,..,27} sigmoid 1

Homenda, Jastrzeb-

ska e Pedrycz (2014c)
FCMc+FCM U PSO 1 N 27 sigmoid 1

Lu, Yang e Liu (2014) FCMc+FCM+ig U PSO 1 Y {3, 4, ..., 8} sigmoid 1

(LU et al., 2014) FCMc+HFCM U PSO {1, 2, ..., 5} Y {3, 5, 7, 9, 10} sigmoid 1

Froelich e Salmeron

(2014)

FGCM,FGCM/ARIMA,

FGCM/naive,FGCM/ES,

FGCM/VAR
M Interval-based EA 1 N 5 sigmoid {1, 2, ..., 7}

Homenda, Jastrzeb-

ska e Pedrycz (2014b)
FCM+MW U PSO 1 N+Y {3, 4, ..., 12} sigmoid 1

Poczketa e Yastrebov

(2015)
FCM+M-S-LA M

Gradient method and
Markov Model of Gradient1 N 22 sigmoid 1
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Papageorgiou,

Poczeta e Laspi-

dou (2015)

FCM+MGM+
population-based methods M MGM,RCGA,SOGA 1 N 6 sigmoid 1

Papageorgiou e

Poczeta (2015)

FCM-RCGA,FCM-SOGA,
FCM-MGM M RCGA,SOGA,MGM 1 N 8 sigmoid 1

Papageorgiou e

Poczeta (2016)
FCM+ANN M

RGGA,SOGA
BP with momentum and LM1 N {8,9,14,26} sigmoid 1

Papageorgiou,

Poczeta e Laspi-

dou (2016)

FCM+ANN M
SOGA +BP
SOGA+ LM 1 N 9 sigmoid 1

Froelich e Pedrycz

(2016)
FCMc+granular FCM U GA 1 N {2,3,4,5,6} sigmoid 1

Homenda e Jastrzeb-

ska (2016)
FCM+VIC M PSO 1 N {3, 4, . . . , 24} sigmoid 1

Salmeron e Froelich

(2016)
DFCM U PSO,RCGA,ABC,SA,DE self-adaptive N self-adaptive

Trivalent
sigmoid
tanh

1

Pedrycz, Jastrzebska

e Homenda (2016)
FCM+ig+FCMc U PSO 1 N {5, 6, ..., 10} sigmoid 1

Vanhoenshoven et al.

(2018)
FCM+ARIMA M

Real-valued Genetic Al-

gorithm
1 N 7

Modified
sigmoid ≥ 1

Poczeta e Papageor-

giou (2018)
FCM+ANN M RCGA,SOGA+BP,LM 1 N 6 sigmoid 1

Shan, Lu e Yang

(2018)
FCM+improved FCMc U PSO 2 Y {3, 4, ..., 10} sigmoid 1

Poczeta, Papageor-

giou e Yastrebov

(2018)

FCM+SOGA M SOGA 1 N {5,8} sigmoid {1, 2, 3}

Shanchao e Liu

(2018)
Wavelet+HFCM M Ridge regression {2, 3, 4, 6, 23} Y {4, 5, ..., 8} tanh 1
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Papageorgiou et al.

(2019)
FCM+ANN M SOGA,RCGA,BP 1 N - sigmoid 1

Nannan e Chao

(2019)
DFCM U PSO 1 Y {2, 3, ..., 10} sigmoid 1

Wang et al. (2019) Adaptive FCM U PSO 1 Y 3 sigmoid 1

Wu et al. (2019) SAE+HFCM U
Ridge regression+(L-

BFGS)
{4, 5, 8, 13} Y {25,30,35,45} sigmoid 1

Hajek, Froelich e

Prochazka (2020)
IFGCM U+M DE 1 N 5 logistic {1, 5}

Liu e Liu (2020) EMD+HFCM U
Bayesian ridge regres-

sion
{2,6,9,11,22} N self-adaptive tanh 1

Hajek, Prochazka e

Froelich (2018)
IVI-FCM U DE 1 N Not detailed Logistic 1

Gao, Du e Yuen

(2020)
EWT+HFCM U ϵ-SVR {12, 48} N 3 tanh 1

Yuan et al. (2020) Kernel mapping+ HFCM U Ridge regression {2, 3, ..., 7} Y {2, 3, ..., 7} sigmoid 1

Vanhoenshoven et al.

(2020)
FCM-MP M Moore-Penrose inverse 1 Y {2,3,4,5,6,10,14,50} sigmoid {1, 2, ..., 60}

Wang et al. (2020) Deep FCM M AFGD based on BP 1 N {6, 9} tanh 1

Orang et al. (2020) HFCM-FTS U GA 2 N+Y {5, 10, 20}
sigmoid
tanh
ReLU

1

Liu, Liu e Wu (2020) CNN+HFCM U linear regression {2, 3, , 4, 5} Y {2, 3, . . . , 14} sigmoid 1

Poczeta, Papageor-

giou e Gerogiannis

(2020)

Nested FCM M RCGA,SOGA 1 N 26 sigmoid 1

Shen, Liu e Wu

(2021)
ElasticNetHFCM M Naive elastic net {1, 2, ..., 6} Y 32

sigmoid
tanh 1

Feng et al. (2021) FCM+TSS+FCMc U convex optimization 1 N {6, 7, 8, 9} sigmoid
{5,10,15,
20,40,60}
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Wang et al. (2021) AFCM+KGLM U PSO 1 Y 3 sigmoid 1

Feng, Lu e Yang

(2021a)
LSFCM U least squares 1 N {2, 3, ..., 20} sigmoid 1

Feng, Lu e Yang

(2021b)
Partitioning strategies U

constrained least

squares
1 N {3, 5, 7} sigmoid 1

Ding e Luo (2022)
HFCM+Polar FIG+spatial

attention mechanism U Ridge regression+BP {2, 3, . . . , 14} Y
n2 for n ∈

{3, 4, . . . , 12} sigmoid 1

Xixi, Ding e Luo

(2022)
HIFCM+VMD U PSO {2, 3, 4, 5} N {3, 4, ..., 8} tanh 1

Wang et al. (2022) TFGBA-FCM U PSO 1 Y 4 sigmoid {PH1+PH2}
ig → information granules ; E-FCM → Evolutionary-based FCM ; MW → Moving Window ; FCMc → Fuzzy C-means clustering

M-S-LA → Multi-step learning algorithm ; TSS → time series segmentation ; MGM → multi-step gradient method

U/M → Univariate/ Multivariate ; Y/N → Yes(with bias)/ No(without bias) ; f → Activation function; H → Prediction horizon

DFCM → Dynamic optimization of FCM ; BP → back-propagation algorithm ; EEL → Extended evolutionary learning

VIC → Validity Index Clustering ; KGLM → Knowledge-Guidance learning mechanism

PH1 = {1,14,28,42,52,90,100,104,116,155,180,200,208,232,235,270,300,304,348,398,416,470,608,624,678,705,749,796,912}
PH2 = {1195,1235,1498,1835,2248,4382,8764,13146} ; TFGBA-FCM → Trend Fuzzy Granulation-based FCM
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2.3 Performance Evaluation Metrics

As shown in Table 3, various time series forecasting based on FCMs were in-

troduced in the literature. With the goal of estimating the accuracy of these proposed

models, different error measurement techniques have been used that can be found via a

table presented in our review paper (ORANG; SILVA; GUIMARAES, 2022). Since these

experiments were performed using different real and synthetic datasets, this table also

highlights datasets applied to each forecasting method.

2.4 Learning Algorithms

The core contribution of FCM learning is to extract the weight matrix according to

either expert intervention and/or the available historical data. In fact, learning algorithms

aim to fine-tune FCMs. However, diverse FCM learning methodologies are available in

the literature, they are mostly classified in a triple class based on their fundamental

learning pattern comprising Hebbian-based, population-based and hybrid techniques

(PAPAGEORGIOU, 2011a). Therefore, this section concentrates specifically on examining

and explaining the available methods in the literature.

2.4.1 Hebbian-Based Learning Methods

The particular aim of such unsupervised learning methods is to find weight matrices

based on the domain experts’ knowledge. Various Hebbian-based learning algorithms exist

in the literature and some of these relevant methods are introduced in the following.

Differential Hebbian Learning (DHL) was suggested by Dickerson e Kosko (1993)

based on the Hebbian theory (MORRIS, 1999); it is the first Hebbian-Based algorithm

proposed by Dickerson and Kosko. In DHL, the weight matrices are modified when the

value of corresponding concepts changes. Thus, the value of weights is updated repeatedly

such that if there is no change in the value of concepts, the weight values remain the same

in the next iteration. In other words, the learning process modifies the weight values until

it reaches the desired state. The main drawback of this learning methodology is that the

weight between a couple of concepts is updated by considering only the corresponding

concepts and the effect from other concepts is ignored. Moreover, the order of data

presentation plays a considerable role in the DHL method (SALMERON et al., 2019). The

weight is updated according to the equation (2.35).

wij(t+ 1) =

{
wij(t) + ηi[∆ai(t)∆aj(t)− wij(t)] if ∆ai(t) ̸= 0

wij(t) if ∆ai(t) = 0
(2.35)
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where ηi is the learning factor, ai(t) is the activation value of concept ci and ∆aj(t) =

ai(t)− ai(t− 1) computes discrete changes along the time.

To handle the aforementioned DHL issue, an improved version of DHL known as

the Balanced Differential Algorithm (BDA), was suggested by Huerga (2002). Through

this way, the change of all concepts at the same time step and with the same direction

is considered in the weight updating process. This method improves on the limitation

of DHL by considering the values of all the concepts that change at the same time as

the weights are updated. Although DBA alleviates the limitation of the DHL method,

its application is restricted to just binary FCMs. Noteworthy that the Equation (2.36) is

employed to update the weights.

wij(t+1) =


wij(t) + ηi

[( ∆ai(t)

∆aj(t)∑n
k=1

∆ai(t)

∆ak(t)

)
− wij(t)

]
if ∆ai(t)∆aj(t) > 0, i ̸= j

wij(t) + ηi

[( −∆ai(t)

∆aj(t)∑n
k=1

∆ai(t)

∆ak(t)

)
− wij(t)

]
if ∆ai(t)∆aj(t) < 0, i ̸= j

(2.36)

In 2004, other two unsupervised Hebbian-based learning algorithms called Active

Hebbian Learning (AHL) in Papageorgiou, Stylios e Groumpos (2004) and Nonlinear

Hebbian Learning (NHL) in Papageorgiou, Stylios e Groumpos (2003) were adopted by

Papageorgiou et al., although the learning of FCMs was still dependent on the expert’s

intervention (BEENA; GANGULI, 2011; PAPAGEORGIOU, 2005; PAPAKOSTAS et al.,

2011). In the NHL method the range of values for the concepts, as well as the sign of

edges, are specified by expert intervention while zero edges are not updated. Hence the

main drawback of NHL is the construction of the initial graph which is recommended

by experts. The initial graph structure elicited by the experts has remained during the

learning process, thus, its physical interpretation is preserved. The stopping criterion

is formed based on constraints imposed on nodes. The weights are adjusted when the

stopping criteria are satisfied which include: (1) a close-enough solution to the desired

response has been reached or (2) a fixed-point attractor has been identified. In this method,

the weights are updated using the equation (2.37).

wij(t+ 1) = wij(t) + ηaj(t)(ai(t)− aj(t).wij(t)) (2.37)

In AHL the desired set of concepts, an initial structure, and interconnections of

concepts as well as the sequence of activation concepts are determined by expert knowledge.

Unlike other methods, all weights are updated not only nonzero ones. Thus, the weights

in AHL are adjusted in a seven-step iterative learning process to satisfy the predefined

criteria. Furthermore, to prevent getting stuck in a local minimum, Li e Shen (2004)

designed the Improved Nonlinear Hebbian Learning (INHL) technique in which a new
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term named impulse was added to the update rule. In this case, the rule to compute the

weights can be summarized via the equation (2.38).

wij(t+ 1) = (1− γ)wij(t) + ηai(t)[aj(t)− aj(t).wij(t)] (2.38)

Data-driven nonlinear Hebbian Learning (DD-NHL) was introduced by Stach,

Kurgan e Pedrycz (2008a) as an improved NHL method. DD-NHL method relies on a

similar learning principle as NHL, but the learning quality of DD-NHL is higher because of

the use of historical data and decision concepts. Unlike other Hebbian methods, the initial

weight matrix can be produced randomly in DD-NHL. Although the experimental results

support the superior performance of the proposed method compared to NHL methods, its

performance is poor in classification problems.

2.4.2 Population-Based Learning Techniques

In these supervised learning methods, the historical data is used in the shape of

input-output pairs to train the model. In other words, we design the algorithm with the

correct answer for each member of a dataset. In such problems, the algorithm tries to

calculate the output for each new input by considering datasets into account. Therefore,

the main goal is to derive the weight matrix to reflect the impact among the concepts by

utilization of optimization algorithms to minimize error among the target and predicted

responses. For this reason, these approaches can also be called Error-driven approaches

Felix et al. (2019) and the experts are replaced by historical data. Such learning methods

aim to search the parameter space to optimize a given objective function, which is

computationally expensive. Thus, developing automatic learning methodologies based

on historical observations becomes an important challenge. Accordingly, various types of

evolutionary algorithms were introduced in the literature for training FCM and searching

for the (near) optimal weight matrix.

Parsopoulos, Papageorgiou e Vrahatis (2002) introduced PSO as a learning method

of FCMs using historical data to determine and formulate the sub-optimal weight matrix

of FCMs. The authors used the proposed method to minimize the fitness function to

reach a desired final value for the FCMs with fixed architecture, whereas determining the

constraints depends on human knowledge in this way.

Real-coded GA (RCGA) was exploited by Stach et al. (2005) as an FCM learning

method to create an FCM structure using the historical data in the frame of time series,

which includes a single sequence of state vector values and without human intervention.

The proposed RCGA is employed to minimize three various fitness functions to select

the best one. Then the selected function is used to perform experiments by considering a

different number of concepts and FCM densities. The bigger the size of the input data, the
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more precise the learning is. On the other hand, the accuracy depends on the size of input

data in the proposed RCGA and the learning performance degrades when increasing the

size of the maps.

Multi-objective evolutionary FCMs are the other evolutionary learning algorithm

proposed by Mateou, Moiseos e Andreou (2005) based on GA to support multi-objective

decision-making problems. This method is applied to search the optimal weight matrix,

which satisfies predefined activation levels among the participant nodes by the selection of

the initial weights randomly.

Evolution strategy (ES) has been introduced by Koulouriotis, Diakoulakis e Emiris

(2001) as an efficient way to design and construct FCMs. To ignore external intervention

for fine-tuning FCM parameters, more specifically in complex systems, the paper focused

on ES as a robust and flexible training procedure. The proposed method, which is a

composition of FCM and ES, is examined for potential implementation in FCM-based

systems. In this algorithm, the learning process will stop when the optimal FCM structure

is obtained.

A Memetic PSO (MPSO) algorithm has been suggested by Petalas et al. (2005)

as another FCM learning method to extract the weight matrix by minimizing the fitness

function to construct the desired system. The proposed MPSO is a combination of PSO

as a global search algorithm and the Hooke and Jeeves (HJ) algorithm as a local search

component. The final results have proved the outperformance of MPSO in comparison to

PSO.

The simulated Annealing (SA) algorithm was introduced by Ghazanfari et al.

(2007) as another metaheuristic FCM learning method to extract weight matrices from

the input historical data without expert intervention. The comparison of the performance

of SA and GA in this paper illustrates that with more nodes (complex FCMs), the GA

algorithm will deteriorate the FCM performance meanwhile SA improves the learning

quality by covering the GA limitation, as well as improving the speed of training for each

node’s number. Thereby, the proposed method performs effectively for every map size.

That is, the GA learning method is used for small FCM sizes while SA in large FCM sizes

in this experiment.

Later an improved SA learning algorithm called Chaotic Simulated Annealing

(CSA) was considered as an FCM learning method by Alizadeh e Ghazanfari (2009).

According to the results, with more nodes, CSA outperforms SA with smaller learning

errors. Although the CSA performs well for every map size, the execution time is longer in

comparison to SA. Thus, Alizadeh et al. (2007) introduced another new learning strategy

based on Tabu Search (TS) in which the quality of learning improved in comparison to

GA. This algorithm generates smaller errors in comparison to GA as well as using fewer

nodes. Besides, in some cases, the computational time of TS is less than GA, especially
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for FCMs with small map sizes. To sum up, in terms of efficiency, the performance of CSA

and TS is greater than conventional SA.

In addition to the above learning strategies, there exist other various types of

population-based learning algorithms in the literature. For instance, Salmeron et al. (2019)

has presented a novel learning technique namely asexual reproduction optimization (ARO)

and Modified ARO (MARO). Also, it provides a comprehensive review of the available

population-based learning methods. Game-based learning model was reported by Luo, Wei

e Zhang (2009) by mixing FCM with game-based learning. Immune algorithm (IA) was

developed by Lin (2009), which can be utilized for designing and modeling complex systems,

Big Bang-Big Crunch (BB-BC) by Yesil e Urbas (2010), Ant Colony Optimization (ACO)

as FCM learning algorithm by Ding e Li (2011), Extended Great Deluge Algorithm (EGDA)

in Baykasoğlu, Durmusoglu e Kaplanoglu (2011), Artificial Bee Colony (ABC) algorithm

in Yesil et al. (2013), Cultural Algorithm (CA) in Ahmadi et al. (2014), Imperialist

Competitive Learning Algorithm (ICLA) Ahmadi et al. (2015) as a new robust, fast and

accurate FCM learning method, Multi-objective optimization algorithm so-called MOEA-

FCM in Chi e Liu (2015), dynamic multi-agent genetic algorithm (DMAGA) proposed in

Liu, Chi e Zhu (2015), evolutionary multi-tasking multi-objective memetic FCMs (MMMA-

FCMs) learning algorithm adopted in Shen, Liu e Wu (2019), Inactivation-based batch

many-task evolutionary algorithm (IBMTEA-FCM) proposed in Wang et al. (2021) are

some other examples of population-based FCM learning methodologies which have been

introduced in the literature.

As discussed, learning algorithms are employed in FCMs to extract/tune/adjust

the weight matrix. With regard to the problem, based on the expert’s knowledge and

historical data, the proper learning method is used to construct an accurate FCM model.

There are some strengths and limitations for both population-based and Hebbian-based

methods.

Various learning methodologies are applied in different domains for FCM modeling,

FCM time series prediction, FCM classification, FCM decision making, and FCM optimiza-

tion as detailed in Papageorgiou (2014). Based on the literature, population-based methods

are used widely in a major proportion of the applications due to their lower simulation

error, higher functionality, robustness, and generalization abilities (PAPAGEORGIOU,

2011a). Unlike the mentioned advantages, some generic limitations such as time-consuming,

a large number of learning parameters, availability of historical data, a large number of

learning processes, and convergence issues may hinder the application of these learning

approaches in some cases in this category. Hebbian-based methods, on the opposite side,

are useful because of some features such as cheap cost of computing, ease of use, keeping

signs of connection, and causal meaning of adjusted weights. Poor generalization, reliance

on knowledge extraction from the experts, dependence on initial states and connections,
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and low deviation from the initial weights can be taken into account as the main drawbacks

of the Hebbian-based methods. Due to the mentioned analysis, it can be deduced that

Hebbian-based algorithms are suitable for control problems Salmeron e Papageorgiou

(2013), while the population-based methods are applied more widely in areas such as

time series forecasting, classification, simulating the chaotic behavior, and virtual system

(STACH et al., 2005).

2.4.3 Hybrid Methods

As noted earlier, both Hebbian and population-based methods are confined in some

cases due to their limitation. To alleviate the existing drawbacks and improve efficiency,

hybrid techniques that incorporate Hebbian and population methods were proposed as an

alternative. In the sense that hybrid learning methods consider both features including

the effectiveness of Hebbian learning and the global search ability of population-based

methods to train FCMs. Indeed, the focus of hybrid methods is to update/modify the

connection matrices extracted from the historical data and experts’ knowledge. Although

hybrid algorithms can cope well with complex systems, according to the literature, few

studies have been devoted to this approach.

A hybrid method was introduced in Papageorgiou e Groumpos (2005) which is a

mixture of unsupervised learning methods, NHL algorithm, and differential evolution (DE)

strategy to handle some FCMs drawbacks, improve the behavior of the FCMs dynamically

and enhance the flexibility of FCMs. Ease of implementation, inexpensive computation,

lower number of control parameters, comparable DE convergence properties as well as

efficient handling of nonlinear, non-differentiable, and multimodal fitness functions are

the motivation factors of the investigated technique in this paper. The proposed NHL-DE

algorithm is divided into two steps. Primarily the NHL method is employed to learn

FCM then DE is used for FCM retraining. The goal of the first stage is to search for the

appropriate weights while the responsibility of the second stage is recomputing the weights

and minimizing the fitness function. Note that in this method the initial DE population

directly depends on the performance of the first stage. Good solutions in the first stage are

incorporated in the evolutionary computation stage thus affecting its performance. Two

termination conditions are considered in this method and the minimization process will

be finished as the optimization criterion is satisfied in the second stage. The experimental

results illustrate the high speed and efficiency of the model examined in three various

FCM models.

Besides, Yan-chun e Wei (2008) introduced a new hybrid learning FCM method

coupling NHL and RCGA algorithms. Exploiting RCGA and NHL as the key components

of the algorithm improves the FCM’s ability to extract data from historical data and search

for the optimal weight matrices based on expert knowledge. This method benefits from both
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the effectiveness of the NHL learning method and the global search ability of the RCGA

method. In the proposal method, RCGA is applied as an input data mining algorithm

while the NHL is used for refining the weights. Although the results are promising, the

model is time-consuming as the model’s size increases.

A hybrid method has been proposed by Ren (2012) using NHL and extended

great deluge algorithm (EGDA). EGDA approach is similar to the SA training method

with global search ability however it requires a lower number of parameters. Simplicity,

high speed of convergence, and dealing with continuous values for the concepts are the

main outstanding properties of the NHL algorithm. After training FCM using the NHL

algorithm, the outcome is fed to EGDA. In other words, the method has been constructed

in two steps. In the first step, NHL is applied for FCM training to extract a local optimal

weight matrix. Afterward, the candidate objective function is optimized using the EGDA

algorithm in the second step.

2.4.4 Other Methods

There exist other methods proposed by investigators to construct or optimize

FCM-based systems that do not belong to the triple above categories.

Konar e Chakraborty (2005) developed a novel unsupervised learning method.

The weights of the directed edges are adapted from the transition to the Petri Net via

the learning process. To analyze the dynamic behavior of the algorithm, the Hebbian-

based learning algorithm was exploited considering natural decay in weights. After the

convergence of the learning algorithm, the network can be used to compute the beliefs

of the desired propositions from the supplied beliefs of the axioms (places with no input

arcs). The conditional nature of the algorithm in terms of stability allows the model

to be used in complex decision-making and learning. The other model was developed

for knowledge refinement by adaptation of weights in a fuzzy Petri net using a different

form of Hebbian learning. Also, combined fuzzy cognitive maps (FCMs)–Petri nets (PN)

approach has been developed by Kyriakarakos et al. (2012) for the energy management

of autonomous polygeneration microgrids. The PN is used as an activator in the fuzzy

cognitive map structure to enable different FCMs to be activated depending on the state

of the microgrids.

Another technique based on Fuzzy Boolean Nets (FBNs) as a hybrid fuzzy neural

technique adopted by Carvalho e Tomé (2007) for training rule-based FCMs. In this method,

fuzzy Boolean nets are employed to extract qualitative fuzzy rules from crisp/quantitative

data. Even though the main focus of this work is on the optimization and completion

of Fuzzy Causal Rule Bases (FCRb), it can be generalized to all fuzzy rule-based. In

other words, FBNs act like qualitative interpolators with perfect generalization ability.
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However, as the process generalizes, the performance of the method deteriorates due to

the exponential increase in FBN size as the number of predecessors increases, even if it

can be compensated by granularity employment in FBN’s internal memories.

Zhang, Zhang e Sun (2017) proposed a new FCM learning framework (e-FCM)

for recognizing speech emotion. In this approach, the pleasure-arousal-dominance emotion

scale is employed to measure the causal relations among emotions where the structure

of the network is determined via certain mathematical derivations. The structure of e-

FCM includes an input layer that collects data from speech features and an output layer

composed of emotion classes. The proposed method is much faster and more accurate than

traditional and population-based methods such as GA, particularly for large-scale FCMs.

Moreover, Mls et al. (2017) outlined a learning method based on partial expert

estimation and evolutionary algorithms to handle the lack of certainties in expert estima-

tions of FCM weight matrices. This article hired a modification of Interactive Evolutionary

Computing (IEC) for training and optimizing FCM termed Interactive Evolutionary

Optimization of Fuzzy Cognitive Maps (IEO-FCM).

Besides the aforementioned methods, the other FCM adaptation methods include

gradient-based techniques. However these methods are used to minimize the cost function

as a kind of error-driven approach, they do not use metaheuristics. Therefore, they are

classified into this learning group. A new FCM gradient-based learning method was

suggested by Madeiro e Zuben (2012) to improve the performance of population-based

methods through their combination with local search approaches (MADEIRO; ZUBEN,

2012). Hence, this study evaluates the performance of the proposed automatic learning

method which combines RCGA and DE with a gradient-based local search method. In

fact, the mentioned method considers both abilities of exploitation and exploration in

gradient procedures and evolutionary ones respectively.

Chi e Liu (2014) implemented a hybrid method combining the memetic algorithm

(MA) and artificial neural network (ANN) has been adopted to learn large-scale FCMs,

referred to as MA-NN-FCM. However MA is considered as a fast evolutionary-based

method to find a set of regulated nodes, it suffers from the slow rating of weight matrix

exploration. Therefore, a neural network is employed to extract the weight matrix using

the gradient descent approach. Experimental results prove the efficiency of the proposed

method of learning large-scale FCMs up to 100 nodes.

Based on the network topology of FCM, several FCM learning methods are

inherited from ANN learning approaches to computing the weight matrix. Gregor e

Groumpos (2013a) proposed a supervised gradient-based methodology based on the

delta rule and Backpropagation principle which was originally developed for multi-layered

networks. The extended version of the Backpropagation algorithm termed Backpropagation

through time (BPTT) is applied in this investigation. Thus, three approaches including
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One-step Delta Rule, Every-step Delta Rule with Windowed BPTT, and One-step Delta

Rule with Windowed BPTT have been employed to measure the regression problem of

FCM training.

Chunmei e Yue (2012) introduced an automated FCM learning method that

exploits the evolutionary structure of cellular automata to train the weight matrix of FCM

based on historical data consisting of one sequence of state vectors. Encoding the weight

parameters is adopted via one-dimension cellular automata and a cell space is made by

selecting the states of cellular in the range [0,1]. In this method, the learning algorithm

is composed of 7 elements including C-Cellular Automata code, E-fitness function, P-

initialize Cellular Automata Configuration, M-initialize Cellular Automata Configuration

size, S-selection, R-rule, T-stopping condition which can be defined as a 7-tuple (C, E, P,

M, S, R, T). It is necessary to highlight that the employment of a mutation operator in

the algorithm will improve the speed of convergence.

An optimization technique was introduced by Papageorgiou et al. (2016) to model

complex systems containing a large number of concepts in the domain of decision-making

and management. The focus of this paper is to present a new FCM concept reduction

approach and its application to develop a less complex FCM that is easy to use. Accordingly,

a clustering algorithm based on the fuzzy tolerance method was introduced as an FCM

reduction procedure by reducing the number of nodes and connections among them. The

concepts with the same behavior are classified into the same cluster. Afterward, the weight

values are recalculated. The constructed FCM model with less complexity is capable of

dealing with the uncertainty in different scientific fields.

Deterministic learning of hybrid Fuzzy Cognitive Maps and network reduction

approach was proposed by Napoles et al. (2020). In this technique, FCMs are exploited to

model dynamic systems, which are conditioned by several input variables that influence

output ones. Thus, in this study expert knowledge combines with population-based

knowledge mining as a hybrid method to create such a system. It means that the relation

among input variables is determined by experts, while the extracted model from data

provides the simulation of the output variable states. So, the scheme of the proposed

model depends on both expert knowledge and historical data. As the other contribution,

the authors introduced a very fast, deterministic (inverse method), and accurate learning

rule to determine the weight matrix to define the system based on the Moore-Penrose

inverse, thus it does not require any parameter to be specified. Also, to guarantee that the

learned weights are within the allowable range, a weight normalization approach has been

considered. At last, a model was proposed to distinguish irrelevant weights in the learned

FCM network. As the model motivation, the absolute weight values have been taken into

account as well as the concept activation values. Additionally, offset correction and weight

correction methods were employed to tune FCM-based after removing a weight, however,
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the results verify that sigmoid slop calibration is more convenient than weight calibration

in terms of efficacy. The reported MSE and processing time over 35 datasets indicate the

superiority of the model compared with PSO, RCGA, and DE.

Feng et al. (2021) introduced a new straightforward, rapid, and robust learning

method referred to as LEFCM proposed to tackle some limitations of convenient learning

methods such as time-consuming dealing with large-scale FCMs, lack of robustness when the

experimental data contain noise as well as rarely weight distribution which affects the FCM

performance. The crux of the investigated method is that the learning problem of FCM

can be considered as a convex optimization problem with constraints that can be solved

in polynomial time complexity by applying the gradient-based method. In the LEFCM

method, the introduction of the least squares term into the convex optimization problem

ensures the robustness of the well-learned FCM. Furthermore, the performance of the

generated FCM is improved because of the existing more reasonable weight distribution by

considering entropy constraints in the convex optimization problem. Overall the proposed

method is rapid and robust to learning large-scale FCMs up to 200 neurons, specifically,

for learning FCMs using noisy data.

Also, Gradient Residual Algorithm (ZHANG; SHEN; MIAO, 2011), Extreme Learn-

ing Machine (HUANG; SHEN, 2013), Gradient-based search (GREGOR; GROUMPOS,

2013c), Multi-step Gradient (PAPAGEORGIOU et al., 2015) and LASSOFCM by Wu e

Liu (2016) belong to the last group of FCM learning methods, as can be seen from the

Table 4.

Table 4 summarizes the proposed FCM learning algorithms into different groups

while population-based methods make up the major proportion of learning methods. A

more detailed look at the table reveals that some of the population-based algorithms have

been introduced to deal with large-scale problems. In other words, based on Wang et al.

(2021), the large-scale FCM learning problems can be solved by exploiting three types of

evolutionary-based algorithms including high-dimensional optimization technique (LIU;

CHI; ZHU, 2015; YANG; LIU, 2020), decomposition strategy (CHEN; MAZLACK; LU,

2012; YANG; LIU, 2019) and search space reduction (ZOU; LIU, 2018; LIU; LIU, 2018).

However, all of these methods are either ineffective or time-consuming to cope

with the large-scale FCM learning problems due to the large search space (WANG et

al., 2021). In order to enhance the speed and performance of the existing methods, a

random inactivation-based batch multitasking evolutionary algorithm, IBMTEA-FCM

was proposed by Wang et al. (2021) to handle large-scale FCM learning problems. In

this method, the learning of local connections of nodes in a single FCM is modeled as a

many-task optimization (MaTO) problem.
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Table 4 – Proposed FCM learning techniques in the literature

Category Learning Technique Author Number of Nodes

Hebbian-based

Differential Hebbian Learning (DHL)
(DICKERSON; KOSKO,

1993, 1993)
10

Balance Differential Algorithm (BDA) (HUERGA, 2002) {5,7,10}

Nonlinear Hebbian Learning (NHL)

(PAPAGEORGIOU;

STYLIOS; GROUMPOS,

2003)

5

Active Hebbian Learning (AHL)

(PAPAGEORGIOU;

STYLIOS; GROUMPOS,

2004)

8

Data-Driven NHL
Stach, Kurgan e Pedrycz

(2008a)
{5,10,20}

Particle Swarm Optimization(PSO)
Parsopoulos, Papageor-

giou e Vrahatis (2002)
5

Genetic Algorithm(GA)
Mateou, Moiseos e An-

dreou (2005)
16

Real Coded Genetic Algorithm (RCGA) Stach et al. (2005) {4,6,8,10}

Parallel RCGA
Stach, Kurgan e Pedrycz

(2007)
{10,20,40,80}

Population-based Evolutionary Strategy (ES)
Koulouriotis, Diakoulakis

e Emiris (2001)
6

Memetic Particle Swarm Optimisation (MPSO) Petalas et al. (2005) 18

Simulated Annealing (SA) Ghazanfari et al. (2007) {2,3,...,15}

Chaotic Simulated Annealing (CSA)
Alizadeh e Ghazanfari

(2009)
14

Tabu Search (TS) Alizadeh et al. (2007) {3,4,...,15}
Game based learning Luo, Wei e Zhang (2009) 33

Continued on next page
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Table 4 – continued from previous page

Category Learning Technique Author Number of Nodes

Immune Algorithm (IA) Lin (2009) 26

Differential Evolutionary (DE) Juszczuk e Froelich (2009) 5

Big Bang-Big Crunch (BB-BC) Yesil e Urbas (2010) {5,6,10}

divide and conquer RCGA
Stach, Kurgan e Pedrycz

(2010)
40

Ant Colony Optimization (ACO) Ding e Li (2011) 40

Extended Great Deluge Algorithm (EGDA)
Baykasoğlu, Durmusoglu e

Kaplanoglu (2011)
6

Sparse RCGA
Stach, Pedrycz e Kurgan

(2012)
40

Decomposed ACOR based on ACO Chen, Mazlack e Lu (2012) 100

Artificial Bee Colony (ABC) Yesil et al. (2013) 13

Cultural Algorithm (CA) Ahmadi et al. (2014) 13

Population-based Imperialist Competitive Learning Algorithm (ICLA) Ahmadi et al. (2015) {5,7,8,10,13,20,24,30,40,50}

Structure Optimisation Genetic Algorithm (SOGA)
Poczeta, Yastrebov e Pa-

pageorgiou (2015)
8

Dynamic Multi-Agent Genetic Algorithm (DMAGA) Liu, Chi e Zhu (2015) {5,10,20,40,100,200}
Decomposed RCGA with tournament selection Chen et al. (2015) {10,50,100,200,300}
Multi-objective Evolutionary Algorithm (MOEA-

FCM)
Chi e Liu (2015) {5,10,20,40}

Decomposition-based DMAGA Wang et al. (2021) {300,500}
Mutual Information based Two-phase Memetic

Algorithm(MIMA-FCM)
Zou e Liu (2018)

{7,8,10,13,20,24,40
,100,200,300,500}

Niching-based Multi-Modal Multi-Agent GA

(NMMMAGA − FCM)
Yang e Liu (2019) {5,10,20,40,100}

Asexual Reproduction Optimisation (ARO) and Mod-

ified ARO (MARO)
Salmeron et al. (2019) {5,6,7,10,24,100}

Continued on next page
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Table 4 – continued from previous page

Category Learning Technique Author Number of Nodes

RCGA combined boosting strategy(RCGA-BFCMs) Yang, Liu e Wu (2019) {10,20,40,100}
Multi-tasking Multi-objective Memetic FCMs

(MMMA-FCMs)
Shen, Liu e Wu (2019) {10,20,40,100,200,400,600}

Population-based
MAGA based on the convergence error (MAGA-

Convergence)
Yang e Liu (2020) {5,10,20,40,100,200}

Inactivation-based batch many-task evolutionary al-

gorithm( IBMTEA-FCM)
Wang et al. (2021) {20,40,100,200,330,500}

Hybrid

NHL+DE
(PAPAGEORGIOU;

GROUMPOS, 2005)
8

RCGA +SA Ghazanfari et al. (2007) 15

NHL+RCGA Yan-chun e Wei (2008) 3

NHL+EGDA Ren (2012) 3

PSO+ACO Napoles et al. (2014) 25

Other

Gradient Residual Algorithm Zhang, Shen e Miao (2011) 7

RCGA+ DE+a gradient-based method Madeiro e Zuben (2012) {4,6,8,10,12,24,38}
Extreme learning machine Huang e Shen (2013) 6

Gradient-based search
Gregor e Groumpos

(2013c)
20

MA+Gradient descent Chi e Liu (2014) {20,40,100}
Multi-step Gradient Papageorgiou et al. (2015) 8

Extended Delta Rule
Rezaee, Yousefi e Babaei

(2016)
34

LASSOFCM Wu e Liu (2016) {10,20,40,100,200}
e-FCM Zhang, Zhang e Sun (2017) 5

IEO-FCM Mls et al. (2017) 6

Entropy-based method (LEFCM) (FENG et al., 2021) {20,40,100,200}
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2.5 Discussion

As discussed in Sections 2.2.2 and 2.2.3, building the structure of the FCM and

learning the weights of FCM based on historical data are critical issues in designing

FCM-based forecasting models. We can summarize the observations from the above study

as follows:

1. Building structure: In relation to multivariate models, the structures are built in such

a way that each variable represents a concept. Equivalently, an FCM is constructed

so that the number of concepts and the number of variables in the time series are

equal. Despite the success of the existing methods in the literature, in our opinion,

these methods will not be very effective in dealing with high-dimensional time series.

The more the number of variables, the more the number of concepts. This fact leads

to an increment in the dimension of the weight matrices, particularly in high-order

models, and consequently, model training will be more time-consuming. Although

some researchers provided solutions in the literature to reduce the complexity of

the models (HOMENDA; JASTRZEBSKA; PEDRYCZ, 2014c; PAPAGEORGIOU;

POCZETA, 2016; PAPAGEORGIOU; POCZETA; LASPIDOU, 2016; POCZETA;

PAPAGEORGIOU; GEROGIANNIS, 2020), it is still an open challenge in this area.

This issue becomes more acute when dealing with big data, for example when the

goal is to predict the IoT time series with more than 100 variables.

To the best of our knowledge, univariate FCM-based forecasting methods followed

the same pattern. More specifically, the given univariate time series is transformed

into a multivariate one applying prevalent strategies comprising clustering, moving

window, wavelet transform, empirical mode decomposition, and other techniques

as explained in detail in section 2.2.3. However, Wang et al. (2021) implemented a

new adaptive FCM-based model using different techniques focusing on map size and

causal alterations.

2. Learning methods: Another valuable problem that needs to be discussed is how to

train FCM effectively and efficiently. Hebbian-based and population-based models

have been successfully used for small-scale FCM learning problems (FENG; LU;

YANG, 2021a), with population-based techniques showing superior performance in

comparison to the Hebian-based methods in the domain of time series forecasting

(FROELICH; JUSZCZUK, 2009). Also, Table 3 evidently confirms that a major

proportion of the research has concentrated on a population-based algorithm to train

weights of FCM, where GA and PSO have been widely used.

It is worth highlighting that various fitness functions were employed to assess the

performance of the proposed FCM-based forecasting models trained via population-

based techniques. To be more precise, each chromosome’s measurement of the fitness
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function is done via one-step modeling of the relevant FCM. The output error among

the actual responses of the system against the obtained state vectors, as FCM

responses, is exploited to measure the fitness value. Therefore, the objective of fitness

function applications is the assessment of the corresponding FCM by calculating the

accumulated prediction error among the response values and real ones.

Based on Wang et al. (2021), the construction of FCM using Hebbian-based methods

is conducted through a very fast iterative optimization scheme, but the generalization

ability of the model is limited. On the other side, population-based (or evolutionary

algorithm-based (EA-based)) methods are the most popular, because of improve

the forecasting accuracy, robustness, generalization abilities as well as simplicity of

application in comparison to the accuracy of the Hebbian-based method. In spite

of these achievements, as explained in Shen, Liu e Wu (2021), the application of

EA-based algorithms is limited to modeling short stationary time series and they

are unable to deal with long non-stationary time series. In addition, EA-based

models are more time-consuming and this issue becomes more apparent with the

increase in the size of the time series. In other words, they lose their ability and

efficiency to handle large-scale high-dimensional time series because evolutionary

algorithms must evaluate the fitness functions in each iteration when optimizing

targets. This leads to a very slow and time-consuming training process. Therefore,

there is a necessity to replace EA-based models with other rapid learning algorithms.

Accordingly, regression-based prediction models have recently been introduced to

address the problems of EA-based models. For example, Shen, Liu e Wu (2021)

proposed a new fast multivariate long-time series forecasting framework based on

the näıve elastic net integrating both LASSO and ridge regression. Feng, Lu e

Yang (2021a) developed an FCM-based forecasting model utilizing a least-squares

algorithm to eliminate the strenuous iterative computation. Ding e Luo (2022)

implemented a new FCM-based forecasting method trained with ridge regression to

predict large-scale time series. Yuan et al. (2020) proposed a kernel-HFCM technique

learned by ridge regression and the comparison between ridge regression-based HFCM

learning algorithm and other classical learning algorithms like RCGA, ICLA, and

MARO shows the outperformance of ridge regression. In addition, ridge regression

by Shanchao e Liu (2018), Bayesian ridge regression by Liu e Liu (2020), support

vector regression-based (ϵ-SVR) learning by Gao, Du e Yuen (2020) demonstrated

the fact that recently the main focus is on regression-based learning techniques.

Nevertheless, Wang et al. (2021) introduced a new knowledge-guidance learning

mechanism based on PSO for large-scale time series forecasting which is much faster

and more accurate than the original and other adaptive FCM-based models. The

existing consensus reveals that equipping FCM with efficient learning methods still

remains the main concern in this area.



2.6. CHAPTERS’ HIGHLIGHTS 86

3. Order: According to Tables 2 and 3, among the parameters affecting the performance

accuracy of the models, the first rank belongs to the number of concepts followed by

the order. However, the majority of proposed forecasting models have been designed

based on first-order FCM. Also, the effect of bias has been considered in a few

numbers of references.

4. Activation function: as listed in Table 3, sigmoid has been widely used as the most

common activation function with different steepness values. From this point of view,

the effect of using different activation functions on the performance of the models

has not been evaluated in the literature. However, very few studies considered this

subject in their investigations (SALMERON; FROELICH, 2016; ORANG et al.,

2020; SHEN; LIU; WU, 2021).

5. Forecasting horizon: more than 80% of the papers have been focused on one-step ahead

forecasting. Interestingly, an adaptive FCM-based forecasting model was implemented

by Wang et al. (2022) considering different forecasting horizons (MinH = 1 and

MaxH = 13146) as mentioned in Table 3.

2.6 Chapters’ Highlights

This chapter has been organized to provide an overview of recent developments

in time series forecasting methods using FCMs and to explore potential future research

opportunities. Also, this chapter covers an introduction and revision on some corresponding

properties/fundamentals of FCM (including the structure of FCMs and reasoning rules,

high-order FCMs, extensions of FCMs, and dynamic properties of FCMs) and FCMs

learning methodologies.

With respect to the FCM structure, the core attention of FCM-based approaches

is basically focused on building FCM’s structure and extracting weight connections among

the concepts. It means that common methods such as C-means clustering or information

granules are employed to formulate the FCM structure and then learning algorithms are

introduced to capture causal relations among a couple of nodes. Hebbian-based methods,

population-based methods, and their combinations, as well as ANN-based methods, are

the main categories of FCM learning approaches, which, as mentioned, have advantages

and disadvantages. In addition, a variety of activation functions and reasoning rules

were explored by researchers to generate exact and meaningful results by choosing the

appropriate ones.

FCMs as an efficient member of soft computing society, have been widely used in

the time series forecasting domain to improve the accuracy as well as interpretability as a

nonlinear predictive model. Time series forecasting applying FCMs includes two stages:
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designing a proper FCM structure and appropriate weight training techniques. Hence,

different FCM models have been implemented to predict time series taking into account

different numbers of concepts and orders as well as various learning strategies. Since most

FCMs have used evolutionary learning algorithms, the recent remarkable challenge of

FCMs is to find a fast training method such as least squares because evolutionary-based

learning methods are more time-consuming. Although various univariate and multivariate

methods have been presented to boost the conventional FCM, particularly dealing with

uncertainty in data, still exist some open challenges and future research possibilities which

will be discussed in chapter 7.
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3 PROPOSED HFCM-FTS TECHNIQUE

The main contribution of this chapter is to introduce a new FCM-based forecasting

model to predict univariate time series. FCMs as weighted knowledge-based models are

used to do the task of forecasting by extracting knowledge in FTS models as Figure 3

represents. Thus, this chapter introduces a hybrid method, named HFCM-FTS, which

combines HFCM and High Order Fuzzy Time Series (HOFTS), where the weight matrices

associated with the state transitions are learned via the GA from the data. The objective

of FCM is to find the weight matrices that model the causal relations among the concepts

defined in the Universe of Discourse. Generating the rules in FTS by employing the FCM

learning model is considered as the novelty of the approach in the literature.

The proposed model is compared with some recent methodologies in the literature

Silva (2019) such as HOFTS, Weighted High Order FTS (WHOFTS), and Probabilistic

Weighted FTS (PWFTS). The obtained results are competitive with regard to the influence

of the basic elements on the forecasting accuracy including the number of concepts,

activation function, and bias. Thus, we organized the rest of this chapter as follows: Section

3.1 introduces the proposed method in detail; Section 3.2 presents the experimental results

and discussion; finally, the paper conclusion and some possibilities of future works are

drawn in Section 3.3.

3.1 Proposed HFCM-FTS methodology

The main contribution of this section is to introduce our proposed prediction

HFCM-FTS model. First of all, to fully comprehend the concept of the proposed methods,

the FCM-FTS method is introduced as the first order of the HFCM-FTS method which

is a combination of FCM and HOFTS (SILVA, 2019). Then, the proposed HFCM-FTS

method is detailed as a mixture of HFCM and HOFTS methods.

3.1.1 FCM-FTS Model

FCM-FTS model is obtained considering Ω = 1. What this really means is that

the structure of the both FCM-FTS and HFCM-FTS models are the same and composed of

some stages including partitioning, fuzzification, FCM learning method, defuzzification, and

measurement of the accuracy. Hereby, firstly we focus on the FCM-FTS model subsequently

the HFCM-FTS method will be explained by highlighting the differences.

As discussed earlier, apart from learning strategy, defining the appropriate struc-

ture of FCM is the basic step in time series modeling and forecasting. Figure 4 illustrates
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Figure 3 – Generic time series forecasting procedure using FCM

the structure of the FCM which is used in the FCM-FTS model. Figure 4-A displays a

given partition of the universe of discourse and the definition of seven concepts, which is

also the number of fuzzy sets because in our model the number of concepts and fuzzy sets

are considered the same. As shown in Figure 4-C, FCM is a collection of concepts and

causal interactions among these concepts as described in 2. According to Figure 4-B, this

weight matrix is a square connection matrix. For an FCM with k concepts, the weight

matrix is of size k × k. Each weight saves the corresponding relationship between the

source and the target concept, that is, for example, w05 presents the relation between

source concept c0 and target concept c5.

It is clear from Figure 4 that the objective of FCM is to find the weight matrix

for the concepts defined in the Universe of Discourse. These weights should be learned

from the data. Regardless of the number of orders, the general procedure for the proposed

method is divided into two stages: the Training Procedure and the Forecasting Procedure.

Since GA is exploited to train the model, before diving into the FTS-FCM procedure, it is

worth having a brief introduction to the GA algorithm and the steps involved.

Genetic Algorithm (GA)

Genetic Algorithm(GA) is a member of the evolutionary algorithm(EA) family on

the basis of biological evolution (BE). The main aim of GA is to reproduce offsprings that

are better than their parents. Thus, GA consists of some steps including parents selection,

reproduction, mutation, and offsprings as detailed in the following:

1. Initializing population (P): In GA, a population of candidate solutions for an

optimization problem is evolved to a better solution. Each candidate of individuals(
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Figure 4 – Structure of FCM where the number of concepts and partitions are equal

phenotypes) contains a set of features that can be muted and changed. Solutions

can be presented in binary or real-valued to the optimization problem. In this step,

the population is generated randomly while its size depends on the nature of the

problem.

2. Selection of parents: To breed a new generation, a portion of the randomly

generated population over a consecutive generation. A fitness-based procedure is

employed to select the population solutions. Random selection, tournament selection,

and roulette wheel selection are the main techniques to select the best individuals

for breeding.

3. Crossover(Pcrus): In this step, new offspring is generated through overlapping,

mixing, or swapping certain genes from both selected parents. It inherits the character-

istics of both parents using common methods such as single-point crossover,two-point

crossover, uniform crossover, etc.

4. Mutation(Pmut): Mutation is employed to keep the diversity of genetics from one

generation of a population of chromosomes to the next. In other words, since the

parent chromosomes reproduced during the crossover step, there is no guarantee

that the whole genes of the parents are copied. Thus, there exists an error. The value

of Pmut defines the percentage of the child chromosome that undergoes mutation

and it helps to solve the problem more efficiently.

5. Evaluating the offsprings: After mutation, the offsprings are evaluated with cost

function to determine their fitness values. In each iteration, the best solution is

replaced.

6. Integrating offspring with the initial population: To reproduce parents in

the next generation, it is necessary to merge offspring. Then the new population is

sorted based on the fitness score. Since the size of the population remains stable in
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each some individuals with the worst fitness values are eliminated from the selection

process to breed new offspring and the process continues.

FCM-FTS Procedures

In this section, the training and forecasting steps related to the proposed FCM-FTS

model are described.

Training Procedure

The aim of the Training Procedure is to create the linguistic variable C with k

concepts and find the set of Ω = 1 weight matrices Wt, given a crisp training set Y and

the activation function f informed by the user. The steps of the method are listed below:

1. Partitioning: Split the Universe of Discourse, U = [min(Y ),max(Y )] into k even

length and overlapped intervals, and for each interval, a fuzzy set Ci (i.e. concept)

is defined with a membership function µCi
. The group of the k concepts forms the

linguistic variable C, such that Ci ∈ C, ∀i = 1..k, as shown in Figure 4.

2. Weight Matrix Learning: Each matrix Wt, for t = 1..Ω, is a k × k matrix where

wt
ij ∈ R is the weight between the concepts Ci and Cj at the time lag t, and Ω is the

order of the model. These weight matrices are trained using a Genetic Algorithm

(GA) where the genotype is real encoded and simply contains the list of all wt
ij

matrix values.

The fitness of each genotype is the forecasting error, using the Root Mean Squared

Error (RMSE) metric, using the training sample Y and the weight matrices represented

by the genotype in the Forecasting step. Initially a population P with random individuals

is created, such that wt
ij ∼ N (0, 0.1), ∀i, j = 0..k, t = 0..Ω.

After the evaluation of the individuals, a percentage Psel of the individuals are

selected using tournament selection. Then a percentage Pcross of the population undergoes

crossover and a percentage Pmut is chosen for random mutation. This process is repeated

for G generations. This iterative process aims to minimize the fitness function (the RMSE)

for the given training set Y .

It is worth noting that in the FCM-FTS model, only the first-order FCM (Ω = 1)

was considered. Thus there is only one weight matrix for times t as shown in Figure5.
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Figure 5 – The structure of the proposed FCM-FTS method.

Forecasting Procedure

The aim of the Forecasting Procedure is to estimate the crisp value y(t+ 1) given

the linguistic variable C, the weight matrices Wt, the activation function f and a crisp

input Y . The steps of the method are listed below:

1. Fuzzification: Given the crisp input sample Y with size T , each instance y(t) ∈
Y, t = 1..T , is transformed into an activation vector a(t) such that ai(t) = µCi

(y(t)),

∀Ci ∈ C, that is, each value ai(t) ∈ a(t) corresponds to the membership degree of

y(t) to the concept Ci.

2. Activation: The state value for each concept in time t+ 1 can be defined by the

following formula:

a(t+ 1) = f
(
w0 +Wt · a(t)

)
(3.1)

where w0 is bias, Wt is the weight matrices at time t and a(t) represents the state

value of each concept at time t. In addition to the sigmoid and tanh, as described in

table 12, ReLU is also employed in this study which can be defined by the following

formula:

ReLU(x) = max(0, x) (3.2)
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Figure 6 – The structure of the proposed HFCM-FTS method.

3. Defuzzification: After calculating the activation degree of each concept, in this step,

the defuzzification is carried out to produce the forecasts. Equation (3.3) defines the

forecast produced by FCM-FTS:

ŷ(t+ 1) =

∑k
i=1 ai(t+ 1) ·mpi∑k

i=1 ai(t+ 1)
(3.3)

where ai(t+1) is the activation calculated from the previous step for each concept at

time t+ 1 and mpi is the center of each concept Ci. With this equation, the forecast

value at time t+ 1 is obtained in numeric terms.

3.1.2 HFCM-FTS method

The HFCM-FTS method is a combination of HFCM and HOFTS as a high-order

version of the FCM-FTS model using similar structures and procedures. Since the order

is selected as Ω = 2 in our model, there are two weight matrices in time t and t − 1 as

depicted in Figure 6. It means that, GA must train Wt and Wt−1 not only the weight

matrices at time step t. Accordingly, the activation step in the forecasting procedure alters

to compute the activation state of each concept at time step t+1 according to the modified

equation as follows.
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a(t+ 1) = f

(
w0 +

Ω∑
j=1

Wt−j+1 · a(t− j + 1)

)
(3.4)

For Ω = 2, the equation is rewritten as follows:

a(t+ 1) = f
(
w0 +Wt · a(t) +Wt−1 · a(t− 1)

)
(3.5)

The predicted value is obtained by replacing the Equation 3.5 in Equation 3.3.

Noticeable that the grid partitioning is used to generate versions of the FCM with

k = {5, 10, 20} as well as triangular membership function µCi
. Root Mean Square Error

(RMSE), described in 3.6, is employed as the accuracy metric to evaluate the performance

of the HFCM-FTS model.

RMSE =

√√√√ 1

N

N∑
i=1

(yi(t)− ŷi(t))
2 (3.6)

3.2 Computational Experiments

(A) SONDA Dataset:

SONDA - Sistema de Organização Nacional de Dados Ambientais (Brazilian National

System of Environmental Data Organization), is a governmental project that groups

environmental data (solar radiance, wind speed, precipitation, etc.) from INPE -

Instituto Nacional de Pesquisas Espaciais (Brazilian Institute of Space Research).

This dataset was retrieved directly from the SONDA Project page at ⟨http://sonda.
ccst.inpe.br/⟩1.

Since the HFCM-FTS model is designed to predict univariate time series, to test the

utility of the proposed method, in this section, we apply it to solar radiation time series

data 2. Noteworthy that the minimum, maximum, average and standard deviation

of the proposed solar radiance time series are {−6.0667, 1228.65, 223.261, 311.239},
respectively.

In this experiment, as shown in Figure 7, 8,000 samples have been used, with a

sliding window of 2,000 samples in the cross-validation method. 80% of the window

for training and 20% for test.

The number of concepts (partitions), the type of activation function, and the presence

of bias terms are the main parameters affecting the accuracy of the proposed model.

1 Access in 19/05/2019
2 Available at ⟨https://query.data.world/s/2bgegjggydd3venttp3zlosh3wpjqj⟩ accessed on April 4, 2020

http://sonda.ccst.inpe.br/
http://sonda.ccst.inpe.br/
https://query.data.world/s/2bgegjggydd3venttp3zlosh3wpjqj


3.2. COMPUTATIONAL EXPERIMENTS 95

Figure 7 – Samples of solar radiance time series

Thus, in sections(B) and(C), we assess the importance of the bias term and test

different types of activation functions, respectively. Finally, in Section(D), we compare

the proposed method with state-of-the-art fuzzy time series methods.

(B) The influence of the bias term: To assess the effect of the bias term, we execute

the proposed methodology with 5, 10, and 20 concepts, with and without the bias

terms. In this experiment, the sigmoid was used as the activation function and since

the learning method is stochastic (a GA), each configuration was tested 15 times.

Table 5shows the number of parameters for each configuration, the best, the average,

and the worst RMSE of the 15 independent runs. It can be seen that adding bias

improves the accuracy of the proposed model. Without the bias term, a null activation

vector at time t− 1 can produce activations greater than 0 at time t which, in turn,

should not make sense. It must be noticed, however, that the number of parameters

increases when compared to the models without bias.

k
Parameters

(−bias)
Min.RMSE

(−bias)
Ave.RMSE

(−bias)
Max.RMSE

(−bias)
Parameters

(+bias)
Min.RMSE

(+bias)
Ave.RMSE

(+bias)
Max.RMSE

(+bias)
5 50 146.332 152.939 158.968 60 111.207 119.565 132.957
10 200 183.894 193.658 198.827 220 141.576 162.576 184.484
20 800 223.537 231.972 240.436 840 172.900 183.355 196.890

Table 5 – The effect of the bias on the accuracy of the proposed HFCM-FTS method with
Sigmoid activation function

k
Min. RMSE

ReLU
Ave. RMSE

ReLU
Max. RMSE

ReLU
Min RMSE

sigmoid
Ave. RMSE

sigmoid
Max. RMSE

sigmoid
Min. RMSE

tanh
Ave. RMSE

tanh
Max. RMSE

tanh
5 105.886 119.191 131.393 111.207 119.565 132.957 110.802 128.726 139.687
10 136.60 157.401 171.147 141.567 162.576 184.484 153.032 164.789 188.700
20 166.922 182.044 189.306 172.900 183.355 196.890 173.340 183.828 199.511

Table 6 – Performance of the proposed HFCM-FTS method using different activation
functions when bias has been considered



3.2. COMPUTATIONAL EXPERIMENTS 96

k
HFCM-FTS

Parameters
HFCM-FTS

Min.RMSE
HFCM-FTS

Ave.RMSE
HFCM-FTS

Max.RMSE HOFTS WHOFTS PWFTS
5 60 105.886 119.191 131.393 368.42 182.98 149.79
10 220 136.60 157.401 171.147 288.51 146.15 134.91
20 840 166.922 182.044 189.306 204.18 134.43 134.22

Table 7 – Comparison of the accuracy of the proposed HFCM-FTS by considering ReLU
activation function and bias weights with other methods

GA Hyperparameters Pcrus Pmut Population Generation
0.5 0.3 50 30

Table 8 – Hyper-parameters for GA learning algorithm

(C) The influence of the activation function:

In Table 6, we compare the accuracy of the model using different activation functions.

In addition to varying the activation function, we vary the number of concepts,

running the model with 5, 10, and 20 sets. In this experiment, all the models include

a bias term. The results indicate that when the model uses ReLU, on average, the

accuracy is slightly better.

(D) Comparison with other Fuzzy Time Series methods

In this section, we compare the proposed method with other fuzzy time series

forecasting methods available in the pyFTS library (SILVA et al., 2019). In particular,

the proposed method is tested against HOFTS (High Order Fuzzy Time Series),

WHOFTS (Weighted High Order Fuzzy Time Series), and PWFTS (Probabilistic

Weighted Fuzzy Time Series). PWFTS showed the best-performing method in a

multitude of experiments against many statistic forecasting methods, other FTS, and

machine learning methods (SILVA et al., 2020b). Since GA was used as a learning

method, and it is a stochastic optimization algorithm, the HFCM-FTS method was

executed 15 times, with the GA hyper-parameters defined according to Table8.

Table 7 presents the results considering bias terms, the ReLU activation function,

and sliding window cross-validation for various numbers of concepts (partitions) in

comparison with the aforementioned methods. The results show the superiority of

HFCM-FTS, which is a mixture of HOFTS and FCM, over HOFTS. This indicates

that adding FCM to HOFTS indeed improves the methodology. The results also show

that the proposed method is superior to all the other methods when the number of

sets was 5. On the other hand, as the number of concepts increases the HFCM-FTS

performance deteriorates. Meanwhile, the performance of the other methods improves

as the number of concepts increases.

We hypothesize that the decrease in the performance of HFCM-FTS is due to the

lack of convergence of the learning algorithm. We suspect that the GA settings were
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not adequate to train the model for such a high number of parameters.

Nevertheless, the results of HFCM-FTS were quite competitive with the other

methods. It is noticeable that the best results achieved by WHOFTS and PWFTS

required a partition with 20 concepts, with a higher number of rules, while the

average results of HFCM-FTS with 5 concepts were significantly better.

3.3 Chapter’s Highlights

In this chapter, we developed a hybrid univariate FCM-based forecasting model

termed HFCM-FTS combining HFCM and HOFTS trained via GA. It also The paper

also covers the influence of three elements on the accuracy of the model including the

number of concepts, activation function, and bias. The results are still limited and more

experiments are required to assess the efficacy of the method. Nevertheless, in the given

scenario the proposed method presented competitive results when compared to other fuzzy

time series methods in particular when the number of concepts is limited. It is important

to highlight that keeping the number of concepts small may positively affect the readability

and interpretability of the model.

3.3.1 Model’s limitation and challenges

Despite the success of the HFCM-FTS model when the number of concepts is low,

the proposed training methodology will get very time-consuming as this number increases.

For instance, when the number of concepts is 30 the GA will have to solve an 1860 variable

problem. Increasing this number by only 10, from 30 to 40 concepts, the GA will have

to solve a 3280 variable problem. Besides, this issue will certainly be more acute if the

model is used to predict a multivariate FTS. Thus, to tackle the aforementioned problem,

finding an alternative to GA, which is not very efficient, is highly recommended.
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4 PROPOSED R-HFCM TECHNIQUE

As we discussed, the HFCM-FTS model is very time-consuming due to the high

number of parameters that must be adjusted. In this context, the main objective of this

chapter is to reduce this cost by introducing a univariate FCM-based time series forecasting

model inspired by the Echo State Networks (ESNs) reservoir computing. In the ESNs,

the weights in the hidden layer are assigned randomly and are not trainable. Thus, the

training cost can be significantly decreased.

More specifically, the concepts of High Order FCM (HFCM) and ESNs are merged

to produce a new forecasting technique, called, Randomized HFCM (R-HFCM). The

proposed model consists of three layers: the input layer, the reservoir, and the output

layer. The reservoir layer consists of a group of HFCM-FTS (ORANG et al., 2020) but in

this case, the weights are randomly initialized such that the Echo State Property (ESP)

condition in ESN reservoir computing is satisfied. Then, each sub-reservoir generates its

output independently after feeding input into each sub-reservoir separately. Finally, the

least squares minimization technique is applied to train the output layer and generate the

final predicted value. As the computational experiments reveal, in addition to improving

the accuracy, the proposed model is much faster than the HFCM-FTS method.

It is important to highlight that ESNs and various ESN-based methods with

different structures using multiple sub-reservoirs have been successful in many applications

(YAO; WANG, 2019; LI; LI, 2019). Also, there are in the literature references that introduce

a combination of ESNs and fuzzy logic systems (MAHMOUD et al., 2021; ZHANG et al.,

2020; HAN; LEE, 2014). For instance, the authors in Mahmoud et al. (2021) introduced

a new hybrid model referred to as Takagi-Sugeno-Kang (TSK) fuzzy ESN (TSKFESN)

which incorporates the advantages of the TSK fuzzy inference system and the reservoir

computing of ESN with multiple reservoirs in a unified network. In addition, in (ZHANG

et al., 2020) a novel deep fuzzy ESN (DFESN) based on a Single-Layer Fuzzy ESN(SFESN)

was presented. Although there are similarities between these models and the R-HFCM

including the consideration of sub-reservoirs, integration of fuzzy logic, and fast training,

the general architecture of these models is quite different from R-HFCM. Besides, ESNs

are employed to generate sub-reservoirs in TSKFESN and DFESN. On the other hand,

the randomized HFCMs are the basis of the structure of each sub-reservoir in R-HFCM. In

addition, DFESN has a sequential structure in which there are links among successive sub-

reservoirs whereas R-HFCM includes parallel frames with no links between sub-reservoirs.

Accordingly, this study presents R-HFCM as a combination of reservoir computing (ESN)

and HFCM for the first time in the literature.

The main contributions of this research can be summarized as follows:
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1. The development of a forecasting model using HFCM in an ESN model. This leads

to a hybrid fuzzy time series forecasting model with effective learning achieved using

ESN;

2. A study of the effect of four hyperparameters including the number of concepts, the

size of the reservoir, the model order, and the type of activation function on the

performance of the proposed R-HFCM model; and

3. The validation of R-HFCM in ten univariate time series datasets. The experimental

results demonstrate that R-HFCM is efficient and accurate in comparison to the

other existing approaches.

The remainder of this chapter is organized as follows: Section 4.1 presents a brief

description of Echo State Network; Section 4.2 introduces the proposed method in detail;

Section 4.3 presents the experimental results and discussion; finally, some highlights and

possibilities of future works are drawn in Section 4.4.

4.1 Echo State Network

The ESN was proposed by Jaeger (2001) as an improved Recurrent Neural Network

(RNN). Standard RNNs have been considered as a powerful tool to simulate complex

dynamic systems. However, training algorithms for RNNs involve some downsides including

relatively high computational costs, potentially slow convergence, and vanishing gradients

(ZHENG et al., 2020). With the goal of handling these issues, the approach known as

Reservoir Computing (RC) was proposed to focus on the initialization conditions and

stability instead of the training algorithm. The ESNs take advantage of this structure

and consist of three basic components: (i) an input layer, (ii) a large recurrent hidden

layer, the dynamical reservoir, with fixed sparse hidden-to-hidden connections, (iii) and

an output layer.

Differently from traditional RNNs, the dynamical reservoir or hidden layer in

ESNs is untrainable and only the output weights are trained. Figure 8 shows the structure

of traditional ESN with M input units, N reservoir units and L output (readout) neurons,

while u(t) = (u1(t), . . . , uM(t))T , x(t) = (x1(t), . . . , xN(t))
T , and y(t) = (y1(t), . . . , yL(t))

T

determine their activation at each time step. The output of dynamic reservoir neurons

and the output of ESN at time step t+ 1 are updated according to the equations (4.1)

and (4.2), respectively.

x(t+ 1) = f(Win · u(t+ 1) +Wres · x(t) +Wfb · y(t)) (4.1)

y(t+ 1) = f out(Wout[x(t+ 1); u(t+ 1)]) (4.2)
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Figure 8 – Structure of Traditional ESN

where the N ×M input weight matrix Win represents the connections between the input

units and the reservoir neurons; the internal connections among neurons inside the reservoir

layer are represented by the N × N weight matrix Wres; the output weight matrix is

represented by Wout with L × (M + N) dimension. Finally, an N × L weight matrix

represents the forward and backward connections between the readout neurons and the

reservoir units. They are represented by the Wfb and the Wback matrices, respectively.

Interestingly, both internal and input weights are initialized randomly with no

changes during the training and testing process. Thus, an ESN is trained through a

supervised learning method in two stages. At the first level, the M dimensional inputs are

mapped into a high dimensional reservoir state to reach the echo states x. Finally, the

least squares method is used to fit the output weights.

Initialization and Hyper-parameters

An ESN has several hyper-parameters, such as the reservoir size, N , the input

scale, IS, the spectral radius, ϵ, and the reservoir sparsity γ. The input scale, IS, is used

to initialize the hidden weight matrix Win such that each member of Win obeys the

uniform distribution in [−IS, IS]. γ determines the proportion of non-zero elements in

Wres and ϵ is the spectral radius of Wres, which must be set smaller than 1 (MA; SHEN;

COTTRELL, 2017).

As mentioned before, just the readout weight matrices are trainable while the

Wres is selected randomly with a uniform distribution before training execution to provide

the requirements of echo state condition (JAEGER, 2001; MA; SHEN; COTTRELL, 2017).
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The initialization of Wres is done with the following procedure to ensure that the maximum

absolute eigenvalue or the spectral radius is less than one. Firstly an internal random

weight matrix Wrand will be generated. Then it is scaled to meet the ESP condition

described by the equation (4.3).

Wres =
ϵ ·Wrand

ρmax(Wrand)
(4.3)

where ρmax(W
rand) denotes the maximum of the absolute value of the eigenvalues of the

matrix Wrand when its elements are generated randomly. To guarantee the stability of

the ESN, ϵ must be set smaller than 1 (JAEGER, 2001). The final step is to determine

Wout which is computed with the equation (4.4).

Wout = (XTX)−1XTY (4.4)

where (XTX)−1 denotes the inversion of square matrix XTX.

4.2 Proposed R-HFCM method

This section introduces the Randomized HFCM (or R-HFCM) which consists

of a group of randomized HFCM-FTS models to predict univariate time series. The

innovation of the proposed R-HFCM model is the integration of concepts from the FCMs

and ESN reservoir computing method exploiting the least-squares regression algorithm as

the learning strategy.

From a structural perspective, this model consists of three layers, as illustrated

in Figure 9. The input layer, the reservoir layer, and the output layer. The reservoir is a

group of random HFCM-FTS models fed only by the external input time series. Then, as

Figure 9 shows, the obtained independent outputs from each sub-reservoir (represented

by ŷ1(t+ 1),ŷ2(t+ 1),...,ŷn(t+ 1)) are fed to the output layer. As shown in Figure 9, the

reservoir structure consists of a number of sub-reservoirs (NSR) such that there are no

links among them. This means that the proposed model does not have a hierarchical

stacking structure similar to deep learning models.

The structure of each sub-reservoir in the proposed R-HFCM model is an HFCM-

FTS model with random weights. The training of the R-HFCM model is mainly concen-

trated on finding the output layer coefficients using least squares regression. Thus, each

randomized HFCM-FTS unit provides its output with different dynamics from the input.

Afterward, the output layer is utilized to make a connection between the input and the

outputs from each sub-reservoir.

From another perspective, it can be said that the proposed R-HFCM is a type

of ESN in which only the output layer is trainable, while the reservoir parameters are
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Figure 9 – Generic structure of the proposed R-HFCM method.

initialized randomly and remain unchanged in the training process. The weights of each

sub-reservoir in the reservoir layer are chosen randomly to meet the ESP condition in

ESN and then each sub-reservoir generates its output independently. It means that, in

our model, the reservoir weights are initialized based on the ESP condition in the ESN

reservoir computing, and then the least squares minimization algorithm is applied to the

output units to generate the final prediction.

The proposed R-HFCM method is divided into two procedures: the Training

procedure and the Forecasting procedure, detailed in sections 4.2.1 and 4.2.2.

4.2.1 Training Procedure

The main objective of the training procedure is to find appropriate weights for

the output layer given a crisp training set Y . It means that the training dataset is fed

to each sub-reservoir to generate the inputs for the output layer. Then, the least-squares

algorithm is used to find the optimal least-squares coefficients. The training procedure is

divided into two steps: constructing the structure of each sub-reservoir and determining

the least squares coefficients.

4.2.1.1 Randomized Model Initialization

Each matrix Wt, for t = 1, . . . ,Ω, is a k × k matrix where, wt
ij ∈ R is the weight

between the concepts Ci and Cj at the time lag t, and Ω is the order of the model. As

mentioned earlier, the innovation in the proposed model is that the weight matrices of

each HFCM-FTS are randomly chosen from a uniform distribution over an interval [-1,1].
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Then, they are scaled according to the ESN reservoir computing to preserve the ESP

condition as described by the equation (4.5).

Wt = Wrand ·
(

ϵ

ρmax(Wrand)

)
(4.5)

where ρmax(W
rand) is the maximum of the absolute value of the eigenvalues of Wrand,

Wrand is selected randomly with a uniform distribution in the range [-1,1] and ϵ ∈ (0, 1)

is the desired spectral value (scaling parameter). Also, since the members of the weight

matrix in the FCM must be in the range [-1,1], the value of ϵ in our model is equal to 0.5

to satisfy the corresponding condition. Moreover, it is worth reminding that the condition

ρmax(W
rand) < 1 is not necessary, but sufficient for the activation functions applied in

the article (tanh, sigmoid, ReLU, softmax).

w0 is the bias weight vector in equation (??) which is initialized based on the

equation (4.6).

w0 = w0
rand ·

( ϵ
S

)
(4.6)

where the value of (S) represents the maximum singular value of w0
rand, w

0
rand is

selected randomly with a uniform distribution in the range [-1,1] and ϵ = 0.5.

4.2.1.2 Partitioning

Since R-HFCM is composed of a group of HFCM-FTS models, they must share

the same linguistic variables, i.e., the group of fuzzy sets defined over the Universe of

Discourse U = [min(Y ),max(Y )].

The partitioning is the process of splitting U into k even length, evenly spaced,

overlapped intervals, where, mpi, i = 1..k, are the midpoints of each interval. Then, a

fuzzy set Ci (i.e. a concept) is defined with midpoint mpi and a membership function µCi
.

In each sub-reservoir, a group of the k concepts form the linguistic variable C, such that

Ci ∈ C, ∀i = 1, . . . , k. Here grid partitioning is used and the number of concepts is the

same as the number of partitions.

Figure 4 shows a simple example of the FCM structure used in this model with

triangular membership functions µCi
. In Figure 4-A the universe of discourse is partitioned

to generate seven concepts, which is also the number of fuzzy sets. As shown in Figure

4-C, the FCM is a collection of nodes (concepts) and interactions among these concepts

represented by the weight matrix. As can be seen in Figure 4-B, this weight matrix is a

square connection matrix defined randomly.



4.2. PROPOSED R-HFCM METHOD 104

4.2.1.3 Fuzzification

The fuzzification step aims to convert the crisp time series Y into a fuzzy series

A which represents the activation state ai(t) of each concept Ci ∈ C for each time series

sample. Then, for each sample y(t) ∈ Y the corresponding fuzzified sample a(t) ∈ A is the

set of activations ai(t) ∈ a(t) such that ai(t) = µCi
(y(t)), for i = 1 . . . k.

4.2.1.4 Activation

For each HFCM-FTS with index j = 1 . . . NSR, the state value of each concept in

time t+ 1 can be defined using the equation (4.7).

aj(t+ 1) = f

(
w0 +

Ω∑
l=1

Wl · a(t− l + 1)

)
(4.7)

4.2.1.5 Defuzzification

After calculating the activation level of each concept, in this step, the defuzzifi-

cation is carried out to produce the output related to each sub-reservoir. Therefore, the

forecast values for each sub-reservoir j = 1 . . . NSR at time t+ 1 in numeric terms can be

calculated via the equation (4.8).

ŷj(t+ 1) =

∑k
i=1 aji(t+ 1) ·mpi∑k

i=1 aji(t+ 1)
(4.8)

where aj(t+1) is the activation calculated from the previous step for each concept at time

t+ 1 and mpi is the center of each concept Ci ∈ C.

4.2.1.6 Least Squares coefficients determination

Given the outputs yj(t + 1), j = 1 . . . NSR for each input sample y(t) ∈ Y ,

t = 1 . . . T , a design matrix X ∈ RNSR×T is created to represent the linear system Y = λX,

where λ = [λ0, . . . , λj ] is the coefficient vector. Then, the Least Squares method is employed

to solve this linear system and find the λ vector of coefficients that minimizes the Mean

Squared Error.

Figure 10 shows a simple structure of the R-HFCM model considering NSR = 2

while in each sub-reservoir the order is Ω = 2. Thus there are two weight matrices for

times t and t− 1 for each randomized HFCM-FTS as indicated in the figure. It is worth

noting that the model contains the bias weights while they are discarded from Figure 10

just because of ease of notation.
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Figure 10 – The simple example of the proposed model mechanism considering NSR = 2.

4.2.2 Forecasting Procedure

The main goal of this stage is to compute the predicted crisp values ŷ(t + 1)

of each sub-reservoir as well as the final predicted value ŷf(t + 1), given the linguistic

variable C, the weight matrices Wt, the activation function f and a crisp input Y (t). The

forecasting process includes some stages which are fully explained in the following.

4.2.2.1 Fuzzification

The same as Step 3 in the Training procedure.

4.2.2.2 Activation

The same as Step 4 in the Training procedure.

4.2.2.3 Defuzzification

1. Sub-reservoir forecasts defuzzification: The same as Step 5 in the Training procedure.

2. Final forecast defuzzification:

The predicted value at time t+ 1 is computed through the linear combination of the

obtained outputs of all sub-reservoirs and the least squares coefficients. The final

predicted value is described through the equation (4.9).

ŷf (t+ 1) = λ0 +

NSR∑
j=1

λj · ŷj(t+ 1) (4.9)

For instance, as highlighted in Figure 10, the final output is estimated via the

equation (4.10) when NSR = 2 :
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ŷf (t+ 1) = λ0 + λ1 · ŷ1(t+ 1) + λ2 · ŷ2(t+ 1) (4.10)

where {λ0, λ1, λ2} denote the obtained least square coefficients from the training

procedure and ŷ1(t + 1) and ŷ2(t + 1) are the generated outputs for the first and

second sub-reservoirs respectively according with equation (4.8).

As shown in Figure 10, the number of least squares coefficients directly depends

on the number of sub-reservoirs NSR. To be more precise, the number of least squares

coefficients in this model is equal to NSR + 1. Thereby, for NSR = n, the final predicted

value is described by the equation (4.11) using n+ 1 least-squares coefficients.

ŷf (t+ 1) = λ0 + λ1 · ŷ1(t+ 1) + λ2 · ŷ2(t+ 1) + ...+ λn · ŷn(t+ 1) (4.11)

The computational complexity of proposed methods can be analyzed together,

once the most computationally expensive steps (the fuzzification and the activation) are

the same in both. Then, given an input sample size T , the number of operations in each

method scales linearly to the number of reservoirs NSR, the order Ω of each reservoir,

and the square of the number of concepts k, because the size of the squared matrices

W t ∈ Rk×k, such that the complexity cost is O(NSR ×Ω× k2 × T ). It is worth noting that

the training procedure accounts for an additional cost of O((NSR × T )3) due to the Least

Squares Minimization.

4.3 Computational Experiments

In this section, the accuracy of the proposed model is evaluated and compared

against other models available in the literature. Firstly, the dataset descriptions and

experimental setup are briefly introduced. Then, the effectiveness of the proposed R-

HFCM model in time series forecasting is assessed on hourly electrical and solar energy

datasets.

All the computational experiments were implemented with Python 3.6.12 using

open-source packages such as Scikit-learn, Pandas, Numpy, and pyFTS. The Python code

of the model is publicly accessible for research replication via the link address given as

follows: ⟨https://github.com/OMIDUFMG2019/RHFCM⟩.

4.3.1 Datasets

To evaluate the effectiveness of the proposed R-HFCM model, in this section,

ten univariate time series from five datasets are used including the Brazilian SONDA

https://github.com/OMIDUFMG2019/RHFCM
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dataset, the Malaysian electrical load dataset, the solar energy dataset from the United

States National Renewable Energy Laboratory (NREL), the electrical load dataset from

Global Energy Forecasting Competition 2012 (GEFCom 2012) and PJM hourly energy

consumption, which are shown below. Table 9 presents information about the minimum,

maximum, average, and standard deviation of the chosen time series.

Table 9 – Summary statistics of the ten-time series datasets used in the experiments

Time series Minimum Maximum Average Standard deviation
SONDA (Brazil) -5.355 1166.616 220.244 307.194
Malaysia (load) 19088.000 75447.000 3931.976 4346.684
NREL (DHHL 1) -0.358 1126.881 223.768 295.962
NREL (DHHL 2) -0.369 1129.417 226.168 299.341
NREL (DHHL 3) -0.472 1164.598 229.575 306.113

GEFCom2012 (zone1) 8688.000 39584.000 17477.747 5189.690
GEFCom2012 (zone2) 82672.000 270013.000 163801.625 33478.453
GEFCom2012 (zone3) 89204.000 291344.000 176742.299 36123.321

PJM (AEP) 9823.000 24015.000 15657.673 2594.208
PJM (DEOK) 1870.000 5445.000 3056.217 640.022

4.3.1.1 SONDA Dataset

SONDA - Sistema de Organização Nacional de Dados Ambientais (Brazilian

National System of Environmental Data Organization), is a governmental project that

groups environmental data (solar radiance, wind speed, precipitation, etc) from INPE -

Instituto Nacional de Pesquisas Espaciais (Brazilian Institute of Space Research). This

dataset was retrieved directly from the SONDA Project 1. Since the R-HFCM model has

been designed to predict univariate time series, to test the utility of the proposed method,

we apply the model to predict solar radiation time series data2 (glo avg variable in Table

10). In this experiment, 8,000 samples of the data have been used as shown in Figure 11.

Table 10 – SONDA dataset variables

Variable Type Description
DateTime Time Stamp yyyy-MM-dd HH:MM
glo avg Real Global average solar radiation
ws 10m Real Wind speed in meters by second (m/s)

4.3.1.2 Malaysia Dataset

According to Table 11, the Malaysia dataset includes the hourly electric load of

the power supply company of the city of Johor in Malaysia sampled between 2009 and

1 ⟨http://sonda.ccst.inpe.br/⟩
2 ⟨https://query.data.world/s/2bgegjggydd3venttp3zlosh3wpjqj⟩ accessed on April 4th, 2020

http://sonda.ccst.inpe.br/
https://query.data.world/s/2bgegjggydd3venttp3zlosh3wpjqj
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Figure 11 – Plotting of (A) 8,000 Samples of Brazilian solar radiance and (B) 8,760 samples
of hourly electric load Malaysia dataset

2010, with 17,519 (ORANG et al., 2022). Figure 11 shows 8,760 samples (the year 2009)

of the referred hourly load time series used in this chapter.

Table 11 – Malaysia dataset variables

Variable Type Description
DateTime Time Stamp yyyy-MM-dd HH:MM
temperature Real Temperature in Celsius degrees (oC)

load Integer Electric load in Mega Watts by hour (MW/h)

4.3.1.3 NREL solar energy dataset

The solar energy dataset was obtained from the United States National Renewable

Energy Laboratory (NREL)3. Among the solar stations, three of them are chosen as the

case studies in this paper including DHHL 1 (Latitude: 21.31533, Longitude: -158.087),

DHHL 2 (Latitude: 21.31451, Longitude: -158.08534) and DHHL 3 (Latitude: 21.31236,

Longitude: -158.08463). There exist 38,766 samples per each site from 2010-06-01 to

2011-07-31. As Figure 12 shows, 8,000 samples of hourly solar energy (in w/m2) from

the selected time series are employed to evaluate the performance of the R-HFCM model.

Accordingly, the original time series is resampled from 15 minutes to hourly before being

injected into the model.

3 ⟨https://midcdmz.nrel.gov/apps/sitehome.pl?site=OAHURS1M⟩

https://midcdmz.nrel.gov/apps/sitehome.pl?site=OAHURS1M
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Figure 12 – Plotting of 8,000 samples of hourly solar radiance time series including DHHL 1
(A), DHHL 2 (B), and DHHL 3 (C)

4.3.1.4 GEFCom 2012 load dataset

Global Energy Forecasting Competition 2012 (GEFCom 2012) is a well-known

dataset that is published on the Kaggle platform 4. It is an hourly time series and consists

of 20 zones starting from 2004-01-01 to 2008-07-07 and is in kilowatts. As shown in Figure

13, 8,000 samples of hourly load data of zones 1, 2, and 3 are applied to evaluate the

performance of the R-HFCM model.

4.3.1.5 PJM Hourly Energy Consumption Data

PJM Interconnection LLC is a regional transmission organization (RTO) in the

USA. The dataset is hourly energy consumption data (in megawatts (MW)), that is

available at Kaggle and comes from PJM’s website5. Figure 14 shows 8,000 samples of

the hourly energy consumption of American Electric Power (AEP) and Ohio / Kentucky

Duke Energy (DEOK) used to test the R-HFCM model in this study.

4.3.2 Experimental Methodology

For the quantitative evaluation of the proposed model, the performance metrics

Root Mean Squared Error (RMSE), described in equation (3.6), Mean Absolute Percentage

4 ⟨https://www.kaggle.com/c/global-energy-forecasting-competition-2012-load-forecasting/data⟩
5 ⟨https://www.kaggle.com/robikscube/hourly-energy-consumption?select=NI hourly.csv⟩

https://www.kaggle.com/c/global-energy-forecasting-competition-2012-load-forecasting/data
https://www.kaggle.com/robikscube/hourly-energy-consumption?select=NI_hourly.csv
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Figure 13 – Plotting of 8,000 Samples of hourly load time series from three zones of
GEFCom2012 dataset zone 1 (A), zone 2 (B), and zone 3 (C)

Figure 14 – Plotting of 8,000 samples of PJM hourly energy consumption including AEP
data (A) and DEOK data (B)
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Error (MAPE), described in equation (4.12) and Theil’s U Statistic (U), described in

equation (4.13) are used where y(t) and ŷ(t) stand for the actual and forecast values

respectively.

MAPE =
1

n

n∑
i=1

∣∣∣yi − ŷi
yi

∣∣∣ (4.12)

U =

√
1
n

∑n
i=1(yi − ŷi)2√

1
n

∑n
i=1 y

2
i +

√
1
n

∑n
i=1 ŷ

2
i

(4.13)

These performance metrics were computed with the sliding window cross-validation

method, where the time series data is split into T overlapped data windows with size L,

displaced by an increment, I. In each data window, a new model will be trained with

80% of the data and tested with 20% of the data, where the performance metrics are

collected. In this research, the window size is L = 2000. Noteworthy, that the mentioned

cross-validation method is used for measuring the influence of the R-HFCM parameters (in

section 4.3.3) as well as for evaluating the performance of the proposed R-HFCM against

the other baseline models in all case studies.

The Performance of the models was compared statistically using the Kruskal-

Wallis approach for the equality of means. In the Kruskal-Wallis method, H0 represents

the null hypothesis that stands for equality of the average RMSE errors of all methods,

and the H1 represents the alternative hypothesis in which at least one of the averages is

not equal to the others. The null hypothesis is rejected if the p-value is below 0.05. In case

of H0 rejection, it is necessary to apply post hoc tests that compare the equality of each

pair of means (the H0 hypothesis). In this research, the Wilcoxon method was chosen for

post hoc tests.

4.3.3 SONDA Case Study

In this experiment, two aspects are covered: (i) the analysis of the effects of four

significant hyperparameters including the number of concepts (k), the size of the reservoir

(NSR), the order of the model (Ω) and the type of activation function (f); and (ii) the

validity of the proposed R-HFCM model. Thus, in sub-section 4.3.3.1 the influence of map

and reservoir size is examined. In sub-sections 4.3.3.2, 4.3.3.3 the effect of different types of

activation functions as well as the effect of the order of the model are evaluated, respectively.

In sub-section 4.3.3.4 the proposed method is compared with the state-of-the-art fuzzy

time series methods and, finally, in sub-section 4.3.3.5 the obtained results are compared

statistically.
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Table 12 – Proposed activation functions to design R-HFCM model

Activation Function Mathematical Representation
sigmoid f(x) = 1

exp−x +1

hyperbolic tangent f(x) = exp2x −1
exp2x +1

ReLU f(x) = max(0, x)
softplus f(x) = ln(1 + expx)

4.3.3.1 The influence of map and reservoir size

In the first scenario, 8000 samples from the SONDA dataset have been utilized

as shown in Figure 11. The experiment was executed considering the presence of bias

terms, k = {3, 4, 5, 7, 10, 20}, NSR = {2, 5, 10, 20, 30, 40}, order (Ω = 2), and Softplus as

the activation function to assess the model performance.

Table 13 provides information about the average RMSE and U for 20 independent

runs, given a different number of concepts and sub-reservoirs. As Table 13 shows, in all

cases, the accuracy of the model is improved by increasing the number of sub-reservoirs.

More specifically, raising it from 2 to 20 without considering the number of concepts. For

instance, the model performs much better when NSR = 20 compared with NSR = 5. On

the other hand, increasing the number of concepts has an inverse effect on the accuracy

of the model, especially, for NSR ∈ {2, 5, 10, 20}. It means that the higher the number of

fuzzy sets, the worse the model accuracy.

A closer look at the results indicates some exceptions to this rule. For the models

with 3 and 4 concepts, the accuracy is degraded by increasing the number of sub-reservoirs

to 30 and 40 in comparison to the models with a higher number of concepts. For instance,

the R-HFCM models with k = {3, 4} and NSR = {30, 40} are less accurate than the models

with k = 20 and NSR = {30, 40}. Moreover, the performance of the models with k = {3, 4}
are much better than the proposed method with k ∈ {5, 7, 10, 20} when NSR ∈ {2, 5}.
In contrast, for NSR ≥ 10 the minimum forecasting errors are related to the model with

5 concepts. Therefore, the best result is achieved for the model with 5 concepts and 20

sub-reservoirs.

Figure 15 shows the performance of the proposed model when the number of

sub-reservoirs and concepts are varied. Each point represents the average value of RMSE

or U after 20 experiments.

It can be seen in Figure 15 that when the number of concepts is greater than

4, the model accuracy improves by increasing the number of reservoirs. This figure also

reveals that for NSR ∈ {2, 5} the minimum error is obtained when k = 3 while by raising

the number of sub-reservoir( NSR ≥ 10), regardless of the size of the reservoir, the best

performance belongs to the model with 5 concepts. Moreover, for k ≤ 10 the model
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accuracy is decreased when NSR ∈ {30, 40}. More specifically, there is a slight difference

between the accuracy of the model when k ∈ {5, 7, 10} and NSR ≥ 20. Conversely, model

performance reduces significantly when k ∈ {3, 4}. Therefore, the model is highly sensitive

to the selection of both k and NSR parameters, and the optimal model in this setting was

the one with NSR = 20 and 5 concepts in each sub-reservoir.

Table 13 – The summary of the model performance for SONDA dataset considering
different k and NSR when Ω = 2 and activation function is Softplus

k NSR RMSE U k NSR RMSE U

3

2 184.796 1.440

7

2 231.143 1.803
5 113.513 0.867 5 179.721 1.400
10 106.094 0.819 10 126.137 0.964
20 102.436 0.783 20 101.246 0.772
30 214.189 1.770 30 101.329 0.772
40 458.926 3.946 40 110.576 0.845

4

2 208.748 1.625

10

2 241.925 1.888
5 134.830 1.039 5 198.386 1.544
10 105.050 0.800 10 159.452 1.234
20 102.843 0.784 20 106.474 0.812
30 149.157 1.135 30 104.288 0.795
40 347.024 2.640 40 110.104 0.843

5

2 223.973 1.748

20

2 256.276 2.003
5 159.525 1.235 5 222.999 1.741
10 104.022 0.794 10 194.612 1.516
20 98.548 0.750 20 161.760 1.253
30 100.675 0.766 30 133.573 1.020
40 105.104 0.835 40 117.598 0.897

Figure 15 – Comparison of the model performance in terms of the average RMSE and U
considering different map sizes and the different sizes of reservoirs (SONDA

data)
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4.3.3.2 The influence of activation function (f)

The goal of this section is to evaluate the effect of activation functions on model

accuracy. According to the section 4.3.3.1, the best model performance is achieved with

k = 5. Hence, in addition to varying the activation functions, the number of sub-reservoirs

also changes. The number of concepts is fixed by k = 5.

Table 14 – The effect of using different activation functions on the model accuracy

f NSR RMSE U f NSR RMSE U

sigmoid

2 218.796 1.710

softplus

2 223.973 1.748
5 159.677 1.237 5 159.525 1.235
10 104.005 0.794 10 104.022 0.794
20 98.882 0.753 20 98.548 0.750
30 101.484 0.772 30 100.675 0.766
40 104.459 0.795 40 105.104 0.835

ReLU

2 226.013 1.766

tanh

2 221.770 1.732
5 173.637 1.351 5 159.952 1.242
10 131.307 1.013 10 109.322 0.836
20 105.869 0.809 20 99.445 0.757
30 100.411 0.766 30 98.778 0.752
40 99.539 0.759 40 100.421 0.7643

Table 14 shows that the effect of the activation functions on the model accuracy

is smaller than the effect caused by other factors. This means that there is no significant

difference in the accuracy of the model when using different activation functions, particularly

in the cases that have a high value of NSR. In fact, the model performance is less sensitive

to the choice of the activation function.

Table 15 shows the best-performing models from Table 14. Despite the slight

difference in the accuracy of the model using different types of activation functions, the

minimum error is achieved by applying Softplus. More precisely, the results indicate that

when the model uses Softplus, the accuracy is slightly better. Accordingly, we employ

Softplus as the model activation function in the next sections of this chapter.

Table 15 – The summary of the best performance of the model considering different
activation function(f), k = 5 and Ω = 2

f NSR Parameters RMSE U
sigmoid 20 21 98.882 0.753
ReLU 40 41 99.539 0.759

softplus 20 21 98.548 0.750
tanh 30 31 98.778 0.752
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4.3.3.3 The influence of order

In the previous sections, we assessed the effect of three parameters on our proposed

R-HFCM model, including the size of the reservoir, the number of concepts, and the

influence of the activation function. This section is mainly focused on the impact of the

order on the proposed model performance. For this purpose, the proposed methodology

is executed with k ∈ {3, 4, 5, 7, 10, 20}, NSR ∈ {10, 20, 30, 40}, Softplus as the activation

function and Ω ∈ {3, 4, 5}. The summary of the experiments is presented via Table 16.

According to this table, it can be said that for the given order number, the

relationship between the model accuracy, map size, and reservoir size is the same as

the second-order R-HFCM model. It means that regardless of both the order value and

the number of concepts, increasing the number of layers (sub-reservoirs) leads to better

accuracy. Exceptions are the cases with k ∈ {3, 4}, Ω ∈ {3, 4}. In these cases, the accuracy

of the models does not improve by increasing NSR from 30 to 40. The other highlight

is that we can not define a specific rule for the effect of the order. In other words, it is

not possible to say that in all cases increasing the order improves the accuracy. In more

detail, increasing the order value amends the performance for the models including (a):

k ∈ {3, 4, 5}, NSR ∈ {30, 40}, (b): k = 3, NSR = 20 and (c): k = 7, NSR = 40. In all the

other cases the better results are related to the models designed with Ω = 3 except in the

models including (a): k = 4, NSR = 20, Ω = 4 (b): k = 7, NSR = 30, Ω = 4 and (c): k = 10,

NSR = 40, Ω = 4 which have the lower error in comparison to the model with order three.

Moreover, it is interesting to mention that in comparison to the second-order randomized

FCM, increasing the order improved the model accuracy significantly, particularly when

k ∈ {3, 4}, NSR ∈ {30, 40}. Also, it must be noted that for the model with 20 concepts,

increasing the order reduces the accuracy and the model performs more accurately by

adjusting Ω = 2. In other words, we have the constant rule for 20 concepts: the lower the

order, the more accurate the model.

Overall, the performance of the models with 3, 4, and 5 concepts are very close to

each other, especially for NSR ≥ 20 and regardless of the order. Also, it can be confirmed

from Table 17 which shows the summary of the best performance of the R-HFCM model

for the SONDA dataset, extracted from Table 16, for the defined number of concepts.

Figures 16 and 17 show a better understanding of the model performance with

respect to the map size, reservoir size, and the order in terms of RMSE and U. Accordingly,

increasing the number of sub-reservoirs improves the accuracy of the model with a

constant number of concepts except in the second order model where k ∈ {3, 4} and

NSR ∈ {30, 40}. In reverse, raising the number of concepts for the models with a fixed

number of sub-reservoirs degrades the accuracy. Furthermore, there exist slight differences

in the performance of the models constructed with 3, 4, and 5 concepts when NSR ≥ 20
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and Ω ∈ {3, 4, 5}.

Table 16 – The effect of the order on the accuracy of the proposed R-HFCM model for
different k and NSR

k NSR Ω RMSE U k NSR Ω RMSE U

10
3 101.130 0.770

10
3 157.630 1.219

3 4 105.141 0.801 7 4 166.384 1.293
5 112.640 0.861 5 175.647 1.369

20
3 95.712 0.730

20
3 99.420 0.750

3 4 92.069 0.703 7 4 112.454 0.861
5 92.495 0.705 5 124.518 0.955

30
3 94.743 0.720

30
3 95.609 0.729

3 4 90.505 0.690 7 4 93.834 0.716
5 88.590 0.677 5 98.114 0.748

40
3 97.352 0.746

40
3 95.344 0.726

3 4 90.947 0.693 7 4 92.000 0.701
5 88.690 0.676 5 91.859 0.700

10
3 103.748 0.791

10
3 178.294 1.385

4 4 117.148 0.899 10 4 190.056 1.480
5 131.019 1.011 5 201.068 1.567

20
3 94.434 0.718

20
3 126.946 0.968

4 4 92.649 0.700 10 10 141.0465 1.086
5 94.412 0.719 5 151.736 1.169

30
3 96.095 0.732

30
3 100.079 0.763

4 4 89.881 0.684 10 4 109.373 0.835
5 89.835 0.683 5 121.317 0.931

40
3 102.318 0.780

40
3 98.114 0.748

4 4 90.099 0.686 10 4 96.961 0.739
5 87.935 0.669 5 102.992 0.785

10
3 121.505 0.933

10
3 211.071 1.645

5 4 141.587 1.092 20 4 218.188 1.702
5 151.199 1.170 5 221.940 1.731

20
3 95.659 0.720

20
3 179.111 1.394

5 4 95.170 0.727 20 20 191.092 1.488
5 100.443 0.770 5 189.334 1.474

30
3 92.975 0.708

30
3 155.260 1.198

5 4 90.670 0.689 20 4 165.824 1.287
5 90.423 0.680 5 169.128 1.314

40
3 92.736 0.705

40
3 130.405 0.998

5 4 89.612 0.682 20 4 145.985 1.126
5 87.341 0.611 5 152.173 1.176

As Table 17 indicates, it is concluded that designing the R-HFCM model with

5 concepts is the best choice but as we discussed earlier the performance of the models

with 3, 4, and 5 concepts are very close. Also, as can be seen from this table, the best

accuracy is obtained for NSR = 40 regardless of the size of the map but with the same

order (k ∈ {3, 4, 5, 7}) or different order values (k ∈ {10, 20}). Finally, we increased the
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Table 17 – The summary of the best performance of the model considering different k,
NSR and Ω

k NSR Parameters Ω RMSE U
3 30 31 5 88.590 0.677
4 40 41 5 87.935 0.669
5 40 41 5 87.341 0.611
7 40 41 5 91.859 0.700
10 40 41 4 96.961 0.739
20 40 41 2 117.598 0.897

Table 18 – The summary of the best model performance considering 60 sub-reservoirs and
k ∈ {3, 4, 5}

k NSR Parameters Ω RMSE U
3 60 61 5 89.421 0.682
4 60 61 5 88.689 0.674
5 60 61 5 87.936 0.668

number of sub-reservoirs to 60 and executed the model for the best choices of concepts

k ∈ {3, 4, 5}. Table 18 guarantees that there exist no improvements in the results by

increasing the number of sub-reservoirs.

Figure 16 – Comparison of the model performance in terms of the average RMSE and U
using different map sizes, size of reservoirs, and Ω = {2, 3} for SONDA data
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Figure 17 – Comparison of the model performance in terms of the average RMSE and U
using different map sizes, size of reservoirs, and Ω = {4, 5} for SONDA data

4.3.3.4 Comparison with other Fuzzy Time Series methods

In this section, the proposed method is tested against other recent fuzzy time

series forecasting methods available in the literature. In particular, the proposed model is

tested against HOFTS, Weighted HOFTS (WHOFTS), and Probabilistic Weighted FTS

(PWFTS) methods introduced by Silva (2019) and HFCM-FTS (ORANG et al., 2020).

Bear in mind that the structure of each sub-reservoir in the R-HFCM model is a kind of

HFCM-FTS model whereas the weights are generated randomly. Since the weights and

biases are randomly chosen to meet the ESP condition according to the ESN reservoir

computing, the R-HFCM results are obtained after 20 independent runs.

Accordingly, Table 19 compares the performance of the aforementioned methods

with each other regarding the number of partitions in terms of RMSE and NRMSE defined

by equations (3.6) and (4.14), respectively. Therefore, in order to have a better comparison,

firstly we evaluate the performance of R-HFCM against the HFCM-FTS model.

NRMSE =
RMSE

ymax − ymin

(4.14)

As the results indicate, unlike the HFCM-FTS model, the proposed R-HFCM
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model is more accurate for each number of fuzzy sets. The other added value of the

R-HFCM model is the reduction of training time in comparison to the HFCM-FTS model.

It means that the R-HFCM is much faster than the HFCM-FTS model because it has

fewer parameters. In other words, since the weights and biases matrices are determined

randomly in the proposed model, the number of parameters only depends on the number

of NSR. For instance, with 10 concepts, the parameters of HFCM-FTS are more than 5

times that of the proposed R-HFCM model which can considerably decrease the training

times. Thus, the least squares regression algorithm in the proposed R-HFCM model will

solve a linear problem with fewer parameters compared to GA (Pcruz=0.5, Pmut=0.3,

Population=50, Generation=30) in HFCM-FTS model which is a more time-consuming

and iterative learning algorithm. Although the HFCM-FTS model has fewer parameters

when compared with the R-HFCM model for k = 3, it is not comparable in terms of

accuracy and training speed due to the GA-based learning process. As mentioned by Orang

et al. (2020), in order to assess the efficacy of the HFCM-FTS model, more experiments

are needed, as the GA parameters also have to be adjusted. For instance, increasing the

number of generations or the population has an effect on the training time. Therefore, the

results confirm the superiority of the proposed methodology against HFCM-FTS. Finally,

despite the mentioned differences, their functions follow similar behavior: as the number

of concepts increases, the performance of both models deteriorates.

Based on the results in Table 19, it can be inferred that, despite the success of the

HFCM-FTS model in comparison to the WHOFTS and PWFTS models, when the number

of concepts is low, the use of R-HFCM model will fill this gap. It means that the R-HFCM

model outperforms the other methodologies regardless of the map size. In addition, as can

be seen in Table 19, increasing the number of partitions leads to increasing the number of

parameters of HOFTS, WHOFTS, and PWFTS models significantly when compared with

the R-HFCM model. For instance, the number of parameters in the HOFTS, WHOFTS,

and PWFTS models is 69 and 16 times that of the R-HFCM model, respectively, when

k = 20 and k = 10. From another perspective, in contrast to R-HFCM and HFCM-FTS,

increasing the number of concepts meliorates the performance of HOFTS, WHOFTS and

PWFTS models.

Also, it is necessary to mention that increasing the number of concepts (fuzzy sets)

to 40 or 60, does not improve the accuracy of the HOFT, WHOFTS, and PWFTS models.

Therefore, R-HFCM ranked first in terms of accuracy in comparison to the other models.

In conclusion, the optimal performance is achieved by R-HFCM employing k = 5 and

Ω = 5 followed by R-HFCM (k = 3, Ω = 5) and R-HFCM (k = 10, Ω = 4), respectively.
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Table 19 – Evaluation of the accuracy of the proposed method against other models in
terms of RMSE and NRMSE

k Model Parameters RMSE NRMSE

3

R-HFCM 31 88.590 0.071
HFCM-FTS 24 116.850 0.094
HOFTS 27 368.470 0.298

WHOFTS 27 247.800 0.200
PWFTS 27 158.700 0.125

5

R-HFCM 41 87.341 0.070
HFCM-FTS 60 119.191 0.096
HOFTS 123 342.640 0.277

WHOFTS 123 173.090 0.140
PWFTS 123 137.390 0.111

10

R-HFCM 41 96.610 0.078
HFCM-FTS 220 157.401 0.127
HOFTS 656 251.600 0.203

WHOFTS 656 141.050 0.114
PWFTS 656 135.430 0.109

20

R-HFCM 41 117.598 0.095
HFCM-FTS 840 182.044 0.147
HOFTS 2855 192.920 0.156

WHOFTS 2855 134.370 0.108
PWFTS 2855 135.420 0.109

4.3.3.5 Statistical testing

The Kruskall-Wallis method was used to statistically compare the R-HFCM,

HFCM-FTS, HOFTS, WHOFTS, and PWFTS results. The obtained test statistic and

p-value were 66.016 and 1.571e-13, respectively. For this p-value, H0 is rejected at the

predefined significance level (α = 0.05) indicating that there is a significant difference

between the means of at least one of the competitor models. Accordingly, the Wilcoxon

method was used in the pairwise comparison as illustrated in Table 48. According to

these results, the R-HFCM model performs statistically better than all other models.

Interestingly, the PWFTS and WHOFTS methods share the second rank. Overall, Table

20 shows a summary of the statistical ranking of the models in which R-HFCM ranks first,

while HOFTS is the worst method

Table 20 – The Summary of statistical ranking of models

Rank Algorithm
1 R-HFCM
2 PWFTS
3 HCM-FTS
2 WHOFTS
4 HOFTS
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4.3.4 Malaysia Case Study

In the second scenario, to test the utility of the proposed model, we consider the

hourly electric load of the Malaysia dataset. 8760 samples of load data are selected as

the model inputs as shown in Figure 11. Since the model has been designed to predict

univariate time series, the hourly electric load time series is fed into the model. Thus, this

section is divided into two sub-sections. In section 4.3.4.1 the performance of the proposed

R-HFCM model is evaluated considering the influence of its hyperparameters in the model

accuracy. In section 4.3.4.2, the model is compared with other state-of-the-art time series

forecasting models in the literature.

4.3.4.1 Forecasting Hourly electric load dataset

Similar to the first case study, a sliding window of 2, 000 samples in the cross-

validation method has been used but in this scenario, 90% of the window is for training

and 10% for testing. The experiment is executed with k ∈ {3, 4, 5, 7, 10} concepts, Ω ∈
{2, 3, 4, 5}, NSR ∈ {2, 5, 10, 20, 30, 40, 60, 70, 80} sub-reservoirs, Softplus activation function

and by considering bias terms to assess the model performance. According to Table 46

shown in section A, the performance of the proposed method is evaluated by considering

RMSE, MAPE, and U as the accuracy metrics. Therefore, the influences of the effective

parameters including reservoir size, map size, and the order over the model’s accuracy are

discussed as follows.

Firstly, we assess the effect of the reservoir size. As shown in Table 46, it can

be said that, in general, increasing the number of sub-reservoirs decreases the prediction

errors regardless of the number of concepts and the order value. However, there are some

limited cases where the accuracy does not improve. For instance for the models with

(k = 3, Ω = {2, 3, 4}) and (k = 10, Ω = 2), increasing the reservoir sizes from 70 to 80

actually reduces the accuracy.

In the second phase, the impact of the map size on the proposed model is evaluated.

As can be seen in Table 46, increasing the number of concepts harms the model performance.

Accordingly, the most accurate model is reached when k = 3 regardless of the reservoir

size and the order value. Generally speaking, it can be said that raising the number of

concepts has an inverse impact on the model accuracy. It means that with a constant

number of sub-reservoirs, the fewer the number of concepts, the more accurate the model.

In summary, as in the SONDA case, the accuracy of the model has positive and negative

relation with NSR and k respectively. Moreover, it is worth mentioning that, the model

with the lowest map size (k = 3) performs better in comparison to the other cases and the

most accurate R-HFCM is reached when k = 3, NSR = 80 and Ω = 5.

Finally, the impact of the order on the proposed model is examined. As deduced
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from the results, it is clear that finding a fixed rule that explains the model behavior for

the defined number of orders is not possible. Thus, in this step, the effect of the order is

assessed for each map size separately in terms of RMSE, MAPE, and U metrics as follows:

1. k=3: As the results show, for NSR ≤ 10, NSR = 20 and NSR ≥ 30, the best models

are obtained by setting Ω = 2, Ω = 3 and Ω = 5, respectively.

2. k=4:In this case, the optimum models for NSR ≤ 10, NSR ∈ {20, 30} and NSR ≥ 40

are generated by setting Ω = 2, Ω = 3 and Ω = 5, respectively.

3. k=5: In this case, the most accurate models are obtained by selecting Ω = 2, Ω = 3

and Ω = 5 for the models with NSR ≤ 20, NSR = 30 and NSR ≥ 40, respectively.

4. k=7: In this case, the best performance could achieve by setting Ω = 2, Ω = 3 and

Ω = 5 when NSR ≤ 20, NSR ∈ {30, 40} and NSR ≥ 60, respectively.

5. k=10: This is the same as the model with 7 concepts. It means that for NSR ≤ 20,

NSR ∈ {30, 40} and NSR ≥ 60, the orders could be set as Ω = 2, Ω = 3 and Ω = 5,

respectively, to reach the least prediction error.

In a nutshell, it can be concluded that the performance of the model has been upgraded by

setting Ω = 5 and NSR = {70, 80} for the given map sizes. On the other hand, the worst

results are reached with the minimum number of sub-reservoirs regardless of the map size

and order value. Also, constructing the second-order models for NSR ≥ 30 is considered

the worst option. Moreover, for k ∈ {3, 4, 5, 7} and NSR ≥ 40, the models perform more

accurately with order values equal to five, three, four, and two, respectively. It means that

fourth and second-order R-HFCMs are the worst cases in this category.

More precisely, Figures 18 and 19 represent the model performance for the given

model order, sub-reservoirs, and concepts in terms of RMSE, MAPE, and U. In general, as

the figures indicate, increasing the number of concepts and sub-reservoirs has an inverse

and direct effect on the model accuracy, similar to the one observed in the SONDA dataset.

Also, the performance of the models with 3, 4, and 5 concepts are very close especially for

NSR ≥ 30.

The summary of the best performance of the model in terms of average RMSE,

MAPE, and U is shown in Table 21. It can be seen that there are very small differences in

the accuracy of the model using 3, 4, and 5 concepts, especially in terms of MAPE and U

comparison. According to these results, extracted from Table 46, the maximum accuracy is

achieved by setting k = 5, NSR = 80 and Ω = 5, while the maximum error is obtained by

selecting 10 concepts in our model. Interestingly, constructing the model with NSR = 80

and Ω = 5 leads to the highest level of accuracy for the given number of concepts.
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Figure 18 – Comparison of the model accuracy in terms of the average RMSE, MAPE,
and U considering the different number of concepts and sub-reservoir when

Ω ∈ {2, 3}(Malaysia load data)

Figure 19 – Comparison of the model accuracy in terms of the average RMSE, MAPE,
and U considering the different number of concepts and sub-reservoir when

Ω ∈ {4, 5}(Malaysia load data)
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Table 21 – The summary of the best R-HFCM performance considering different map
sizes k ∈ {3, 4, 5, 7, 10}

k NSR Parameters Order RMSE MAPE U
3 80 81 5 1870.096 3.033 0.409
4 70 71 5 1904.884 3.048 0.417
5 80 81 5 1872.186 3.043 0.409
7 80 81 5 1955.056 3.213 0.427
10 80 81 5 2137.144 3.447 0.467

4.3.4.2 Comparison With Other Methods

In this section, the proposed R-HFCM model is tested against other investigated

models in the literature whereas the target is to predict the hourly electric load. Accordingly,

Table 22 shows the collection of the obtained results from the proposed R-HFCM method

and other competitor models in terms of average MAPE, RMSE, and NRMSE. R-HFCM

is executed considering k = {3, 4, 5, 10, 20} concepts.

FTS-CNN was introduced by Sadaei et al. (2019) as a combination of FTS and

convolutional neural networks (CNN). This methodology is composed of three phases

including processing the time series to make them ready for converting multivariate time

series into multi-channel images, creating image time series, and in the last step, the

proper model (image size=32, batch size=100, number of epochs=20, learning rate=0.001)

for the prediction is selected. The other aforementioned baseline models in Table 22 are

explained briefly here (SADAEI et al., 2019). Autoregressive Integrated Moving Average

(SARIMA)(1,0,3)(2,1,2) performs perfectly among other linear models with the mentioned

value of parameters. PWFTS, Weighted FTS (WFTS), and Integrated Weighted Fuzzy

Time Series (IWFTS) are some new FTS techniques available in the pyFTS library (SILVA

et al., 2019). In addition, Long Short-Term Memory (LSTM) was introduced by Hochreiter

e Schmidhuber (1997) which is one of the most important deep learning models and a

member of the RNNs family. Based on the Sadaei et al. (2019), LSTM is tested with

regards to the various former lags covering 168, 72, 48, and 24 for LSTM, LSTM model 3,

LSTM model 2, and LSTM model 1, respectively, to predict the target time series at time

t+ 1. Table 22 compares the accuracy of the models in terms of average MAPE, RMSE,

and NRMSE defined by equations (4.12), (3.6) and (4.14), respectively.

As Table 22 suggests, the performance of R-HCM and FTS-CNN are very close in

terms of MAPE metrics. Therefore, in terms of MAPE, the best performance belonged to

the R-HFCM(k = 3) and FTS-CNN followed by R-HFCM(k = 4) and R-HFCM(k = 5).

However, FTS-CNN outperforms all models considering RMSE (or NRMSE) metrics.

Overall, it can be concluded that FTS-CNN has better performance in comparison to

the R-HFCM model. Even though FTS-CNN is located in the first rank, the results for

R-HFCM with k={3, 4, 5} are still promising because there is no significant difference
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Table 22 – Comparison of the proposed R-HFCM method with other models in terms of
average MAPE, average RMSE and NRMSE

Methods MAPE RMSE NRMSE
R-HFCM (k = 3) 3.033 1870.096 0.033
R-HFCM (k = 4) 3.048 1904.884 0.034
R-HFCM(k = 5) 3.043 1872.186 0.033
R-HFCM (k = 7) 3.213 1955.056 0.034
R-HFCM (k = 10) 3.447 2137.144 0.038

FTS-CNN 3.020 1777.990 0.032
LSTM 3.710 2194.190 0.039

LSTM model 1 4.550 2689.420 0.048
LSTM model 2 4.110 2413.600 0.043
LSTM model 3 3.930 2317.880 0.041

WFTS with differences 5.330 2930.360 0.052
IWFTS with differences 5.327 2961.170 0.052
PWFTS with differences 4.590 2987.400 0.053

PWFTS 3.860 2230.910 0.039
SARIMA 4.680 2763.660 0.049

among the forecasting errors and their performance is very close. Also, the results indicate

the superiority of the proposed R-HFCM models in comparison to the other competitor

models. For instance, the proposed R-HFCM model could achieve 24.08% 22.07%, 21.91%,

15.4%, and 7.62% better accuracy than LSTM, when the number of R-HFCM concepts

are k = {5, 3, 4, 7, 10}, respectively. Besides, the R-HFCM model is like a shallow model

with fewer parameters and a cheaper computational cost than the FTS-CNN and LSTM

methods. These results indicate that the proposed R-HFCM model, which is equipped

with a fast and non-iterative learning algorithm, is competitive with other FTS methods

and some state-of-the-art methods.

4.3.5 Other case studies

According to Figures 12, 13 and 14, we employed eight additional univariate

time series from NREL, GEFCom2012, and PJM datasets to assess the efficiency of our

proposed model. In all cases, 8000 samples of the time series have been utilized using

sliding window cross-validation as explained in section 4.3.2.

Table 47, which is shown in section A, represents the accuracy of the R-HFCM

model in terms of average RMSE considering six univariate time series including DHHL 1,

DHHL 2 and DHHL 3 taken from NREL datasets and the zones 1, 2 and 3 electric load

time series taken from GEFCom2012 dataset. As shown in Table 47, the experiments are

executed with k ∈ {3, 4, 5}, Ω ∈ {3, 4, 5}, NSR ∈ {20, 40, 60}, Softplus activation function

and considering bias term. In the following, according to the obtained results, we evaluate

the model performance for NREL, GEFCom2012, and PJM datasets.
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4.3.5.1 NREL dataset(DHHL 1, DHHL 2, DHHL 3)

As indicated in Table 47, in terms of order, the accuracy of the model is improved

by raising the order value. Therefore, it can be said that regardless of both the number of

concepts and sub-reservoirs, the more accurate model is obtained by setting Ω = 5. On the

other hand, for a specific number of concepts, designing the model with NSR = 20 leads

to the highest forecasting error when we increase the order value. Obviously, for each time

series in this category, the more accurate model is achieved by choosing NSR = 40 when

k = {3, 5} and Ω ∈ {3, 4}. Meanwhile, the best results are obtained by setting NSR = 60

and Ω = 5. Additionally, in the case of k = 4, the most accurate model is achieved by

setting NSR = 40 for any number of orders. With a constant size of the reservoir, the

model with 3 concepts shows the best performance with one exception when k = 5 and

NSR = 60, which is more accurate than the models with k = {3, 4}.

4.3.5.2 GEFCom2012 dataset (zone1, zone2, zone3)

In order to evaluate the model accuracy, Table 47 also lists the performance of the

proposed model employing the GEFCom2012 dataset using a different number of concepts,

sub-reservoirs, and order. In this case study, in general, raising the order value improves

the performance of the model when NSR ∈ {40, 60} so that the worst case is associated

with Ω = 3. For NSR = 20, we have some scenarios based on the zones. In zone 1, the

optimal accuracy is achieved when Ω = 5 and k = 3. In contrast, increasing the order

value degrades the model accuracy when k ∈ {4, 5}. In zones 2 and 3, the performance of

the model is improved by increasing the order. It means that the higher the order, the

more accurate the model. However, in the case of k = 3, the best accuracy is achieved by

adjusting Ω = 4.

It is worth noting that with the constant number of sub-reservoirs, the accuracy of

the model is upgraded by adjusting k = 4. For instance, suppose that zone 1 is the input

data. For each number of defined sub-reservoirs, the best values of RMSE are 753.464,

716.364, and 732.174, which are achieved when k = 4 for 20, 40, and 60 sub-reservoirs,

respectively. On the other side, for the constant number of concepts, we can consider the

following scenarios:

1. k=3: increasing the number of NSR from 20 to 60 declines the accuracy.

2. k=4: depends on the order such that for Ω = 3 the highest accuracy is provided with

NSR = 20. For Ω ∈ {4, 5}, the best performance is achieved with 40 sub-reservoirs.

3. k=5: it behaves similar to the model with k = 4 concepts.
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Table 23 – The summary of the best R-HFCM performance in terms of average RMSE

Data k NSR order RMSE
NREL(DHHL 1) 3 60 5 86.421
NREL(DHHL 2) 5 60 5 86.154
NREL(DHHL 3) 5 60 5 89.050

GEFCom2012(zone1) 4 40 5 716.364
GEFCom2012(zone2) 4 40 5 5531.027
GEFCom2012(zone3) 4 40 5 5837.610

Table 23 summarizes the optimal performance of the R-HFCM model exploiting

NREL and GEFCom2012 datasets. As can be seen from this table, Ω = 5 is the best

choice of order for both datasets. Interestingly, for GEFCom2012 the highest accuracy

is obtained with k = 4 and NSR = 40 while for NREL we have highest accuracy when

NSR = 60 with k={3,5,5} for NREL(DHHL 1), NREL(DHHL 2) and NREL(DHHL 3),

respectively.

4.3.5.3 PJM dataset (AEP and DEOK)

In this case, Table 24 provides just the best results for both AEP and DEOK time

series. In all cases, the best model performance is achieved by setting NSR = 20 regardless

of the map sizes. In other words, increasing the number of sub-reservoirs greater than 20

has an inverse effect on the model accuracy. A more detailed look at the table reveals

that for AEP data, R-HFCM can produce the highest accuracy when k = 4, whereas, for

DEOK, the most accurate performance is achieved when k = 3. Also, it is noticeable that

these optimal results have been achieved when Ω = 5 except in one case for DEOK data

with k = 3 and NSR = 20, in which the best performance is obtained by setting Ω = 4.

4.3.5.4 Comparison with other methods

In this section, the performance accuracy of the proposed R-HFCM is quantita-

tively compared to some of the baseline models. As listed in Table 25, R-HFCM is tested

against LSTM, PWFTS, and ESN models, and the prediction error was measured in terms

of RMSE defined by equation (3.6) and NRMSE calculated via equation (4.14).

As we discussed earlier, the PWFTS method was developed recently as a powerful

FTS technique in comparison to many statistic forecasting methods, other FTS, and

machine learning methods. Another selected method is LSTM which has been applied

in time series forecasting applications by many researchers. The best results for LSTM

are presented in Table 25 when 24 former lags were selected. The last competitor model

is ESN as explained in section 4.1. Note that the ESN model was implemented using
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Table 24 – The summary of the R-HFCM performance in terms of average RMSE (AEP
and DEOK data)

PJM(AEP) PJM(DEOK)
k NSR RMSE k NSR RMSE

20 641.305 20 136.783
3 40 878.101 3 40 178.636

60 1802.222 60 325.730
20 624.151 20 202.148

4 40 644.408 4 40 470.219
60 1011.252 60 942.807
20 782.124 20 175.145

5 40 1143.738 5 40 183.175
60 1462.928 60 312.400

the PyESN6 library. In this study, various settings were tested and the best results were

recorded in Table 25.

The superiority of R-HFCM over competitor models can be recognized visually

when looking at the error values given in Table 25. As reported in this table, the first rank

belonged to R-HFCM for any case studies. PWFTS performs better than R-HFCM with a

slight difference when DEOK is fed to the model. As can be seen from Table 25, LSTM

performs differently. More clearly, for the NREL time series, the second rank belonged to

LSTM while for the remaining time series, LSTM is the worst choice and it becomes more

acute for GEFCom2012 (zone 2) and GEFCom2012 (zone 3) with high prediction errors.

On the other hand, PWFTS ranks second after R-HFCM except where NREL datasets

are injected into the model as inputs. As the results represent, the third place goes to

the ESN model, except when NREL datasets are fed to the model, which leads to the

worst-case results.

4.3.5.5 Statistical testing

The Kruskall-Wallis method was employed to compare the R-HFCM, PWFTS,

LSTM and ESN method results on the datasets NREL (DHHL 1, DHHL 2, DHHL 3),

GEFCom2012 (zone1, zone2, zone3) and PJM (AEP and DEOK), as presented in Table

49.

Based on this table, H0 has been rejected for all datasets. Thereby, a post-hoc

test was exploited to compare all the models with each other as specified in Table 50. The

results in this table confirm that R-HFCM is a winning model compared to other models

regardless of the type of datasets. More precisely, Table 44 summarizes the rank of each

model for each dataset separately. According to the calculated average ranks, as reported

6 ⟨https://pypi.org/project/pyEsn/⟩

https://pypi.org/project/pyEsn/
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Table 25 – Evaluation of the accuracy of the proposed method against other models

Data Model RMSE NRMSE

NREL(DHHL 1)

R-HFCM 86.421 0.077
LSTM 88.191 0.078
PWFTS 105.883 0.094
ESN 331.415 0.294

NREL(DHHL 2)

R-HFCM 86.154 0.076
LSTM 90.692 0.081
PWFTS 110.269 0.097
ESN 438.782 0.389

NREL(DHHL 3)

R-HFCM 89.050 0.076
LSTM 92.093 0.079
PWFTS 111.736 0.096
ESN 440.594 0.378

GEFCom2012(zone 1)

R-HFCM 716.364 0.023
LSTM 9952.014 0.3221
PWFTS 939.671 0.030
ESN 5258.725 0.171

GEFCom2012(zone 2)

R-HFCM 5531.027 0.029
LSTM 139798.901 0.746
PWFTS 6826.440 0.036
ESN 34911.848 0.186

GEFCom2012(zone 3)

R-HFCM 5837.610 0.028
LSTM 162303.694 0.802
PWFTS 7365.544 0.036
ESN 37669.955 0.186

PJM(AEP)

R-HFCM 624.151 0.044
LSTM 7071.920 0.498
PWFTS 674.244 0.047
ESN 3038.478 0.214

PJM(DEOK)

R-HFCM 136.783 0.038
LSTM 1176.827 0.329

PWFTS 136.183 0.038
ESN 718.079 0.201
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in Table 44, the first rank belongs to the R-HFCM model followed by PWFTS, LSTM,

and ESN, respectively.

Table 26 – The summary of the rank of models considering eight various datasets

Dataset R-HFCM PWFTS LSTM ESN
PJM(DEOK) 1 2 3 4
PJM(AEP) 1 2 4 3

GEFCom2012(zone1) 1 2 4 3
GEFCom2012(zone2) 1 2 4 3
GEFCom2012(zone3) 1 2 4 3

NREL(DHHL 1) 1 3 2 4
NREL(DHHL 2) 1 3 2 4
NREL(DHHL 3) 1 3 2 4
AVG.RANK 1 2.375 3.125 3.5

In brief, R-HFCM as a new hybrid FTS model combining HFCM and ESN reservoir

computing was tested over 10 different univariate time series to predict hourly solar and

electrical load consumption. The proposed model has been designed based on different sets

of parameters such as map sizes, reservoir size, and order value. As the results indicate,

the relationship between the accuracy and the number of concepts are opposite of each

other. That is, in general, the most accurate model is achieved with the lowest number of

concepts (k = {3, 4, 5}). On the other side, the optimal performance of the presented model

is reached by increasing the size of the reservoir adjusting NSR ≥ 20 for different datasets.

Interestingly, the model performs with a higher level of accuracy by selecting Ω = 5 in

most of the cases. Moreover, according to the obtained results, it can be concluded that

the R-HFCM model is more accurate than other baseline and recent FTS models such

as ESN, LSTM, and PWFTS. Although the accuracy of the proposed R-HFCM model

is slightly inferior to that of FTS-CNN, the results are very close and promising as we

discussed earlier.

4.4 Chapter’s Highlights

This chapter provides a new randomized-based method to predict univariate time

series using FCM. It introduces a novel FCM forecasting model, called R-HFCM, which

combines reservoir computing (ESN) and HFCM.

The R-HFCM model is a group of random HFCM-FTS models integrating the

concepts of FCM and ESN. More specifically, R-HFCM is composed of three layers

employing random HFCM-FTS models as the components of the reservoir unit called

sub-reservoirs. Since the structure of each sub-reservoir is the same as HFCM-FTS, the

main focus of this model is on training the output layer using least squares. The weights of

each sub-reservoir in the internal layer are initialized randomly so that the ESP condition
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of ESN is met. Then, the least squares regression method is applied to the output units to

generate the final predicted value. The model performance has been evaluated using 10

univariate time series from 5 different public datasets. Based on the results, the size of the

reservoirs, the map size, and the model order have considerable influence on the model

accuracy. Meanwhile, the activation function has the least effect on the accuracy of the

proposed method.

Compared with the HFCM-FTS, the R-HFCM offers advantages such as high speed

and accuracy while working with a similar number of concepts. It is important to highlight

that as the number of concepts increases, the accuracy of the prediction, interpretability,

and readability of the model deteriorates. Moreover, the number of parameters in R-HFCM

directly depends on NSR. Thereby, the least squares method will solve a linear problem

with fewer variables than GA, which can be regarded as an effective element in the training

speed of the model. Also, the obtained results verify the efficiency and effectiveness of the

R-HFCM compared to other state-of-the-art models and methods listed in the literature,

including PWFTS, WHOFTS, FTS-CNN, LSTM, and ESN.

Since the model has been designed to predict univariate time series, predicting

multivariate time series, either low dimension or high dimension, can be considered as

the possibility for the model extension. Thus, the key attention of the next chapters is to

introduce Multiple Input Multiple Output (MIMO) methods with the ability to handle

the above-mentioned issues.
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5 PROPOSED MO-RHFCM TECHNIQUE

Multivariate time series forecasting methodologies are categorized into Multiple

Input Single Output (MISO) and Multiple Input Multiple Output (MIMO) methods.

Unlike MISO models with only one target variable (or endogenous), MIMO models employ

more than one endogenous which means that all the variables can be set as target variables.

To the best of our knowledge, there is a significant gap in the literature regarding MIMO

FCM-based forecasting models. Hence, the key objectives of this chapter are to introduce

a novel randomized multivariate FCM technique to predict multiple outputs labeled as

MO-RHFCM. MO-RHFCM is a hybrid model merging the concepts of HFCM, multivariate

FTS (MVFTS) (SILVA, 2019), and ESN trained via the least squares algorithm.

The contributions of this chapter are summarized as follows:

1. Developing a new FCM-based forecasting model integrating the concepts of MVFTS,

HFCM, and ESN termed MO-RHFCM, which is trained with time-effective learning

inspired by reservoir computing;

2. The first proposal of multi-output time series forecasting with randomized multivari-

ate FCMs in the literature according to the best of our knowledge;

3. Validation of MO-RHFCM, which is tested on two low-dimensional data sets. The

experimental results demonstrate that the proposed model is efficient and competitive

in comparison to the other existing approaches.

The remainder of this chapter is structured as follows: Section 5.1 introduces

the proposed method in detail; Section 5.2 describes the case studies used to test our

methodology; Section 5.3 represents the experimental results and discussion; and finally

the conclusions and some possibilities of future work are drawn in Section 5.4.

5.1 Proposed MO-RHFCM model

This section introduces a new FCM-based time series forecasting model to predict

multivariate time series. Figure 20 presents the general structure of the proposed MO-

RHFCM technique.

MO-RHFCM is a randomized-based hybrid technique where the least squares

algorithm is used to train the model. In terms of structure, as shown in Figure 20,

MO-RHFCM consists of three components:
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Figure 20 – General structure of the proposed MO-RHFCM method.

1. Input Layer: Given a multivariate time series Y T×N , where N ∈ N+ is the number

of variables and T is the number of samples, and each sample given by y(t) =

[y1(t), . . . , yN(t)], for t = 1..T , the input of the model are the Ω ∈ N+ last lags of

the time series Y ;

2. Reservoir: the reservoir consists of a group of NSR ∈ N+ sub-reservoirs represented

by random multivariate HFCM-FTS termed Random MVFCM-FTS. Each random

MVFCM-FTS layer is fed by all the variables in the external multivariate time series

from the input layer;

3. Output Layer: The obtained independent outputs from each sub-reservoir (repre-

sented by ŷsub(j)(t+ 1),j = 1 . . . NSR) are fed to the output layer;

4. Final Result: Shows the final predicted values for time t+ 1.

As Figure 20 displays, the reservoir structure of the proposed model consists of a

number of sub-reservoirs with no links between them, unlike deep learning models with

hierarchical stacking structure.

In the proposed MO-RHFCM model the weights inside each sub-reservoir are

randomly initialized similarly to the R-HFCM model. More specifically, it can be said that

MO-RHFCM is the extended form of the R-HFCM model. Thus, MO-RHFCM is also a

type of ESN in which only the output layer is trainable whereas the reservoir parameters

are initialized randomly and remain fixed during the training process. It means that, in

our model, the reservoir weights are initialized based on the ESP condition in the ESN

reservoir computing, and then the least squares minimization algorithm is applied to the

output units to generate the final prediction.

The proposed MO-RHFCM method is divided into two procedures: the Training

procedure and the Forecasting procedure, detailed in sections 5.1.1 and 5.1.2.
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Figure 21 – A simple example of the proposed MO-RHFCM mechanism considering N = 2, NSR = 2,Ω = 2 and
k = 3. Firstly, the original time series is fed to the reservoir. Interestingly, each variable is presented
by one FCM with k = 3 concepts. A, B, and C are used to model variable y1 while variable y2 is
modeled by another FCM with D, E, and F. Since Ω = 2, eight randomly weight matrices are set in
each sub-reservoir. After that, the generated outputs are injected into the output layer. Finally, the
least squares algorithm is applied to train the output layer and produce the final predicted values.

5.1.1 Training Procedure

The main aim of the training procedure is to find appropriate weights for the

output layer given a crisp training set. It means that the training dataset is fed to each

sub-reservoir to generate the inputs for the output layer. Then, the least-squares algorithm

is used to find the optimal least-squares coefficients. It can be said that the training

procedure is divided into two steps: constructing the structure of each sub-reservoir and

determining the least squares coefficients as detailed in the following.

5.1.1.1 Randomized Model Initialization

Each matrix Wt, for t = 1, . . . ,Ω, is a k × k matrix where, wt
ij ∈ R is the weight

between the concepts Ci and Cj at the time lag t, and Ω is the order of the model. As

mentioned earlier, in the proposed model the weight matrices of each MVFCM-FTS are

randomly chosen from a uniform distribution over the interval [-1,1]. Then, they are scaled

according to the ESN reservoir computing to preserve the ESP condition as described

by the equation 4.5. It is worth observing that each sub-reservoir (or MVFCM-FTS)

consists of N2 × Ω weight matrices with k × k dimensions. For instance, Figure 21 shows

a simple structure of our proposed MO-RHFCM model considering NSR = 2,Ω = 2 and

k = 3. Suppose a time series with two variables Y (t) = [y1(t), y2(t)] which are fed to both

sub-reservoirs. Each variable in each sub-reservoir is represented by one FCM using three

concepts. Concepts A, B, and C with their relations are used to represent y1(t) while the

concepts D, E, and F and their relations are used to present y2(t). Thus, we have eight (or
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22 × 2) randomly weight matrices with the dimensions of 3× 3. Note that the map size

for each variable is chosen equally in our model. W11 represents weight matrix for y1(t),

W22 represents weight matrix for y2(t), W12 and W21 demonstrate weight matrix among

both variables. Also, it is worth noting that the model contains the bias weights which are

computed using equation 4.6 while they are discarded from Figure 21 just because of the

ease of notation.

5.1.1.2 Partitioning

Since MO-RHFCM is composed of a group of MVFCM-FTS models, they must

share the same linguistic variables, i.e., for each yi ∈ Y the group of fuzzy sets defined

over the Universe of Discourse Uyi = [min(yi),max(yi)].

In this step, Uyi is split into k even length, evenly spaced, overlapped intervals,

where, mpi, i = 1..k, are the midpoints of each interval. Then, a fuzzy set Ci (i.e. a concept)

is defined with midpoint mpi and a membership function µCi
. In each sub-reservoir, a

group of the k concepts form the linguistic variable C, such that Ci ∈ C, ∀i = 1, . . . , k.

Here grid partitioning is used and the number of concepts is the same as the number of

partitions.

Figure 4 shows a simple example of the FCM structure used for each variable in

this model, with triangular membership function µCi
.

5.1.1.3 Fuzzification

In this stage, the values of the original numerical time series (Y (t)) are transformed

to a fuzzy series A which represents the activation state ai(t) of each concept Ci ∈ C

for each time series sample. Then, for each sample in each time series y(t) ∈ yi(t) the

corresponding fuzzified sample a(t) ∈ A is the set of activations ai(t) ∈ a(t) such that

ai(t) = µCi
(y(t)), for i = 1, . . . , k.

5.1.1.4 Activation

In this proposed model the state values of the concepts of each variable depend on

the state values of the related concepts and weights among the concepts of the associated

variable as well as the state values and causal relations among the concept of the relevant

variable and other variables. Thus, for each MVFCM-FTS with index j = 1 . . . NSR, the

state value of each concept for each variable (y1, y2,..., yN ) in time t+ 1 can be defined by

the equations (5.1) to (5.3).
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ay1(j)(t+ 1) = f

(
w01 +

Ω∑
l=1

Wl
11 · ay1(t− l + 1) +Wl

12 · ay2(t− l + 1) + ...+Wl
1N · ayN(t− l + 1)

)
(5.1)

ay2(j)(t+ 1) = f

(
W02 +

Ω∑
l=1

Wl
21 · ay1(t− l + 1) +Wl

22 · ay2(t− l + 1) + ...+Wl
2N · ayN(t− l + 1)

)
(5.2)

. . .

ayN (j)(t+1) = f

(
W0N +

Ω∑
l=1

Wl
N1 · ay1(t− l + 1) +Wl

N2 · ay2(t− l + 1) + ...+Wl
NN · ayN(t− l + 1)

)
(5.3)

where w01,w02, ...,w0N are bias weight vectors, W11,W22, ...,WNN represent the weight

matrices among the concepts of variables y1, y2,..., yN , respectively. W12,. . . ,W1N respec-

tively represent the causal relations among the concepts of variable y1 and the concepts

of variables y2,y3,...,yN . The relations among the concepts of variable y2 and the con-

cepts of variables y1,y3,...,yN are respectively represented by W21,W23,. . . ,W2N, and

WN1,WN2,. . . ,WN(N−1) present the relations among the concepts of variable yN and the

concepts of variables y1,y2,...,yN−1. Based on these equations, the activation level of the

nodes of a specific variable at the moment t+ 1 depends on the activation degree of all

concepts of this variable at {t, t− 1, .., t− Ω + 1} moments as well as the state values of

the nodes of other variables at {t, t− 1, .., t−Ω+ 1} moments. Also, it is worth reminding

that the number of concepts for each variable is determined equally so that all the weight

matrices have the same dimensions (k × k).

5.1.1.5 Defuzzification

After calculating the activation level of each concept, in this step, the defuzzifi-

cation is carried out to produce the output related to each sub-reservoir. Therefore, the

forecast values for each sub-reservoir (ŷsub(j)(t+1), j = 1 . . . NSR) at time t+1 in numeric

terms can be calculated via the equations (5.4) to (5.6).

ŷ1j(t+ 1) = ŷy1(j)(t+ 1) =

∑k
i=1 ay1(j)i(t+ 1) ·mpi∑k

i=1 ay1(j)i(t+ 1)
(5.4)

ŷ2j(t+ 1) = ŷy2(j)(t+ 1) =

∑k
i=1 ay2(j)i(t+ 1) ·mpi∑k

i=1 ay2(j)i(t+ 1)
(5.5)

...

ŷNj(t+ 1) = ŷyN (j)(t+ 1) =

∑k
i=1 ayN (j)i(t+ 1) ·mpi∑k

i=1 ayN (j)i(t+ 1)
(5.6)

where ay1(j)(t + 1),ay2(j)(t + 1),. . . ,ayN (j)(t + 1) are the activation calculated from the

previous step for each concept at time t + 1 and mpi is the center of each concept

Ci ∈ C. Simply, the equation (5.7) is used to generate the predicted values for ŷyv(j)(t+1),

v = 1 . . . N ,j = 1 . . . NSR.



5.1. PROPOSED MO-RHFCM MODEL 137

ŷyv(j)(t+ 1) =

∑k
i=1 ayv(j)i(t+ 1) ·mpi∑k

i=1 ayv(j)i(t+ 1)
(5.7)

Accordingly, the predicted outputs for each sub-reservoir directly depend on the

dimension (N) of the original injected input to our model. Hereupon, the reservoir layer

generates N × j predicted values which are fed to the output layer.

5.1.1.6 Least Squares coefficients determination

Given the outputs ŷyv(j)(t+ 1), v = 1 . . . N ,j = 1 . . . NSR for each input sample

y(t) ∈ yv(t), t = 1 . . . T , a design matrix X ∈ RNSR×T is created for each variable to

represent the linear system Y = λX, where λ = [λ0, . . . , λj] is the coefficient vector.

Thus, λtot = [λ01, λ11, . . . , λ1N , λ02, λ21 . . . , λ2N , . . . , λ0N , λj1, . . . , λjN ] form the whole set

of coefficients in our proposed model with respect to the number of variables as well as the

size of reservoir. Then, the Least Squares method is employed to solve this linear system

and find the λtot vector of coefficients that minimizes the Mean Squared Error.

For instance Figure 21 demonstrates a simple structure of the proposed MO-

RHFCM technique considering N = 2 and NSR = 2. Therefore, each sub-reservoir generates

two outputs. In this case, the least squares learning method is employed to solve two

equations to find six coefficients ( N ×NSR + 2 biases=6).

5.1.2 Forecasting Procedure

The main goal of this stage is to compute the predicted crisp values ŷsub(t+ 1)

of each sub-reservoir as well as the final predicted values ŷ1(t+ 1),ŷ2(t+ 1),. . .,ŷN(t+ 1),

given the linguistic variables C, the weight matrices W, the activation function f and the

numerical input time series Y (t). The steps of the forecasting procedure are fully described

as follows.

5.1.2.1 Fuzzification

The same as Step 3 in the Training procedure.

5.1.2.2 Activation

The same as Step 4 in the Training procedure.
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5.1.2.3 Defuzzification

1. Sub-reservoir forecasts defuzzification: The same as Step 5 in the Training procedure.

2. Final forecast defuzzification:

The predicted value at time t+ 1 is computed through the linear combination of the

obtained outputs of all sub-reservoirs and the least squares coefficients. The final

predicted values for each variable (yv, v = 1, . . . , N) is described by the equation

(5.8).

ŷv(t+ 1) = λ0v + λv1 · ŷv1(t+ 1) + λv2 · ŷv2(t+ 1) + . . .+ λvNSR
· ŷvNSR

(t+ 1) (5.8)

which can be formulated as follows:

ŷv(t+ 1) = λ0v +

NSR∑
j=1

λvj · ŷvj(t+ 1) (5.9)

For instance, as highlighted in Figure 21, the final predicted values for each variable

are calculated via the equations (5.10) and (5.11).

ŷ1(t+ 1) = λ01 + λ11 · ŷ11(t+ 1) + λ12 · ŷ12(t+ 1)) (5.10)

ŷ2(t+ 1) = λ02 + λ21 · ŷ21(t+ 1) + λ22 · ŷ22(t+ 1)) (5.11)

where {λ01, λ11, λ12, λ02, λ21, λ22} denote the obtained least square coefficients from

training procedure, ŷ11(t+ 1) and ŷ21(t+ 1) are the generated outputs for the first

sub-reservoir, ŷ12(t + 1) and ŷ22(t + 1) are the generated outputs for the second

sub-reservoir and ŷ1(t+ 1) and ŷ2(t+ 1) are the final predicted values for y1(t) and

y2(t) respectively. In addition, it is worth observing that ŷ11(t+1) and ŷ12(t+1) are

measured using the equation 5.4 and ŷ21(t+ 1) and ŷ22(t+ 1) are measured using

the equation 5.5.

5.2 Computational Experiments

This section is mainly focused on evaluating the accuracy of the proposed MO-

RHFCM approach. The first subsection provides a brief description of the case studies

as well as evaluation metrics. Then, the efficiency of the proposed MO-RHFCM model is

verified by applying two low-dimensional time series. All the experiments are implemented

with Python 3.6.12 using open-source packages such as Scikit-Learn, Keras, Tensorflow,

PyTorch, Pandas, Numpy, and pyFTS.
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5.2.1 Case studies

To assess the efficacy of the proposed MO-RHFCM technique, in this experiment,

two data sets with two variables including the Brazilian SONDA dataset and the Malaysian

dataset have been employed as explained earlier in section 4.3.1. In the case of SONDA,

the model was applied to predict solar radiation and wind speed in Brazil. In the Malaysia

dataset, we used the proposed model to predict electrical load consumption and temperature

in the city of Johor in Malaysia.

It is worth noting that some pre-processing techniques are applied to clean the

original data set by removing outliers and missing values. Also, it is worth observing that

8760 samples of each variable of each dataset are used in our experiments.

5.2.2 Experimental Methodology

To evaluate the performance of the proposed methodology, we utilized two com-

parison criteria of the forecasting accuracy including RMSE described in equation (3.6),

Mean Absolute Error (MAE) described in equation (5.12), NRMSE described in equation

(4.14), and the coefficient of determination (R2), described in equation (5.13), where RSS

stands for the residual sum of squares, TSS stands for a total sum of squares, y(t) and

ŷ(t) stand for the actual and forecast values, respectively.

MAE =
1

T

T∑
i=1

| yi − ŷi | (5.12)

R2 = 1− RSS

TSS
= 1−

∑T
i=1(yi − ŷi)

2∑T
i=1(yi − ȳ)2

(5.13)

These forecasting accuracy metrics were calculated using the sliding window

cross-validation technique, where 90% of each window is used as a training set and 10%

for testing. For each variable yi(t) ∈ Y of each data set dj ∈ D, the samples were divided

into 35 windows w ∈ W . For each window, we train and test the models m ∈ M using

respectively the training and test subsets. Noteworthy that the accuracy of the models is

evaluated over the test data computing the average values of accuracy metrics obtained

for all 35 windows.

To compare the performance of the models statistically, the Kruskal-Wallis test

was conducted with the confidence level of α = 0.05 in terms of the average NRMSE of all

variables in each data set for each window. In this method, the null hypothesis H0 stands

for the equality of average NRMSE errors of all methods and H1 presents an alternative

hypothesis such that at least one of the averages is different from the others. When H0 is
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Table 27 – The summary of the best performance of the model for SONDA dataset
considering different k, NSR and Ω

k Ω NSR Variable RMSE MAE R2 NRMSE

3 5 100
glo avg 95.011 59.199 0.895 0.096
ws 10m 0.339 0.257 0.682 0.120

4 5 100
glo avg 96.224 59.896 0.893 0.097
ws 10m 0.341 0.259 0.675 0.119

5 5 100
glo avg 96.783 61.449 0.892 0.098
ws 10m 0.340 0.259 0.678 0.120

6 4 100
glo avg 99.500 60.997 0.886 0.100
ws 10m 0.339 0.257 0.682 0.119

7 4 80
glo avg 100.365 62.869 0.884 0.101
ws 10m 0.338 0.257 0.682 0.119

8 4 100
glo avg 101.021 62.815 0.883 0.102
ws 10m 0.343 0.261 0.674 0.120

9 4 100
glo avg 101.711 63.842 0.881 0.103
ws 10m 0.343 0.261 0.672 0.120

10 4 80
glo avg 102.822 65.317 0.879 0.104
ws 10m 0.341 0.259 0.678 0.119

15 3 80
glo avg 108.577 66.843 0.865 0.110
ws 10m 0.348 0.263 0.664 0.122

20 2 80
glo avg 114.156 67.826 0.853 0.116
ws 10m 0.355 0.265 0.655 0.124

30 2 100
glo avg 122.112 70.493 0.829 0.123
ws 10m 0.369 0.272 0.611 0.129

40 2 100
glo avg 156.429 96.557 0.730 0.160
ws 10m 0.392 0.299 0.571 0.137

not accepted, it is needed to apply post hoc tests to compare the equality of each pair of

means. In this investigation, we selected the Wilcoxon approach for the post hoc test.

5.3 Results

The goal of this section is to present the obtained experimental results of our

proposed model and to compare our approach against other forecasting techniques that

are tested over the mentioned case studies.

This section is divided into four sub-sections. Subsection 5.3.1 is focused on

presenting a discussion and analysis of our proposed model’s hyperparameters to reach

the best forecasting accuracy. The second subsection 5.3.2 provides a brief introduction to

the baseline models as well as hyperparameter tuning. Subsection 5.3.3 is responsible for

comparing the accuracy of the proposed model with other baseline models. Finally, the

models are compared statistically in subsection 5.3.4.
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5.3.1 Parameter setting for MO-RHFCM

This part is organized to analyze the influence of effective hyper-parameters on

the accuracy of the proposed method. The number of concepts (k), the number of layers

or sub-reservoirs (NSR), and the order value (Ω) are the most influential parameters on

the model forecasting accuracy.

The experiments are executed with k ∈ {3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40}, NSR ∈
{2, 5, 10, 15, 20, 30, 40, 60, 80, 100} and Ω ∈ {2, 3, 4, 5, 6}. Since the effectiveness of the

proposed model is sensitive to the proper choice of these hyper-parameters, the goal is

to set them optimally to achieve the best performance in terms of prediction accuracy.

The best configuration of these hyperparameters is obtained empirically (through trial

and error) based on the training data set. More specifically, models are executed by

varying these hyper-parameters. Also, it is worth mentioning that in this investigation the

activation function in FCM is set to the sigmoid function.

Tables 27 and 28 summarize the obtained results with the optimal combinations

of the parameters adjusted separately for each variable for SONDA and Malaysia time

series datasets, respectively. In accordance with the results recorded in these tables, it

is clear that the best performance of the model is achieved by increasing the size of the

reservoir (NSR ∈ {80, 100}). In contrast, there is a reverse relation between map size and

forecasting accuracy. To be more precise, the optimal forecasting accuracy is obtained

with the least number of concepts.

To have a better comparison, Table 29 represents a summary of the forecasting

accuracy of the model in terms of average NRMSE. As can be seen, for both cases, the most

accurate results are obtained only with k = 3, although there are very slight differences in

the performance of models considering k ∈ {3, 4, 5}. In addition, the results demonstarte

that the accuracy of the model is degraded as the size of the map increases.

5.3.2 Baseline models

To confirm the validity of our proposed model, a comparison against some common

machine learning and deep learning models is reported. Hereupon, eight baseline models

including popular machine learning and deep learning methods are coded which are briefly

described. Then, the results of the proposed model are compared with the results of these

competitor models in subsection 5.3.3.

In this investigation, two different types of RNNs Long Short-term Memory

(LSTM) and Gated Recurrent Unit (GRU) as well as Multilayer perceptron (MLP) as

a fully connected class of feedforward artificial neural network are used as competitor

models which are implemented using Keras framework.
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Table 28 – The summary of the best performance of the model for Malaysia dataset
considering different k, NSR and Ω

k Ω NSR Variable RMSE MAE R2 NRMSE

3 5 100
temperature 0.886 0.598 0.894 0.088

load 1958.516 1401.437 0.981 0.044

4 5 100
temperature 0.894 0.604 0.892 0.089

load 1962.226 1412.620 0.980 0.044

5 5 100
temperature 0.889 0.606 0.893 0.089

load 2011.188 1440.706 0.979 0.045

6 3 100
temperature 0.895 0.609 0.892 0.089

load 2164.534 1564.875 0.976 0.049

7 5 100
temperature 0.896 0.613 0.891 0.089

load 2098.788 1519.511 0.978 0.047

8 3 100
temperature 0.893 0.608 0.893 0.089

load 2148.369 1550.375 0.977 0.048

9 3 100
temperature 0.905 0.615 0.890 0.090

load 2285.157 1597.223 0.972 0.051

10 3 100
temperature 0.907 0.618 0.889 0.090

load 2397.055 1673.326 0.968 0.054

15 3 100
temperature 0.916 0.628 0.887 0.091

load 2423.465 1738.890 0.969 0.054

20 2 100
temperature 0.980 0.646 0.861 0.098

load 2623.41 1817.464 0.964 0.059

30 2 100
temperature 1.022 0.659 0.844 0.102

load 3231.658 1987.116 0.923 0.072

40 2 100
temperature 1.038 0.674 0.818 0.104

load 3249.561 2028.324 0.917 0.073

Table 29 – Evaluation of the model’s performance in terms of average NRMSE

Dataset k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 15 k = 20 k = 30 k = 40
SONDA 0.108 0.1085 0.109 0.1095 0.110 0.111 0.1115 0.1115 0.1160 0.120 0.126 0.1485
Malaysia 0.066 0.0665 0.067 0.158 0.0755 0.068 0.073 0.0695 0.0925 0.0765 0.075 0.071

Gradient Boosting (GB), eXtreme Gradient Boosting (XGB), and Light Gradient

Boosting machine (LGBM) are the other popular machine learning regressor algorithms

that are coded using the Sklearn library as baselines in this work.

Additionally, Random Forest (RF) (BREIMAN, 2001) and Extremely Randomized

Trees( Extra Trees) (GEURTS; ERNST; WEHENKEL, 2006) were selected as other baseline

models implemented using the Sklearn library. Table 30 reports the optimal values of

hyper-parameters for these models using the Randomized Search technique.

5.3.3 Comparison against baselines

The key objective of this section is to make a comparison between the accuracy of

the proposed MO-RHFCM approach and baseline techniques which are detailed in Table

31.
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Table 30 – Optimal parameters of each dataset for baseline models

Model Hyperparameters SONDA Malaysia

LGBM

Max depth 9 23
estimator 20 112
Num.leaves 21 49
learning rate 0.2 0.05

GB

Max depth 2 4
estimator 100 72

min samples leaf 5 9
min samples split 3 19

learning rate 0.5 0.2

XGB

Max depth 5 5
estimator 100 20
gamma 2 3
reg alpha 60 140

learning rate 0.05 0.9

GRU
activation function ReLU ReLU

batch size 16 16
neuron 67 85

LSTM
activation function ReLU ReLU

batch size 32 16
neuron 75 58

MLP

activation function ReLU ReLU
batch size 64 64
neuron1 63 28
neuron2 13 23
neuron3 39 91

RF

max depth 27 11
min leaf nodes 30 20
min samples leaf 3 9
min samples split 7 10

estimator 100 300

Extra Trees

max depth 12 26
min samples leaf 8 4
min samples split 10 2

estimator 300 50

The reported results in Table 31 confirm the outperformance of our proposed

MO-RHFCM model compared with other baseline techniques. However, in a few cases,

MO-RHFCM is a loser with very slight differences. Thus, as can be observed, ranking the

methods with respect to the obtained results is difficult due to the unstable forecasting

accuracy of the methods for each variable. As such, the average NRMSE over all variables

for every data set has been calculated to compare the methodologies more precisely as

shown in Table 32. This Table suggests the superior performance of our proposed method

followed by Extra Trees for both case studies.

5.3.4 Statistical testing

As explained in section 5.2.2, Kruskall-Wallis is utilized to statistically compare

the MO-RHFCM technique with other baseline techniques. According to the listed p-values
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Table 31 – Evaluation of the accuracy of the proposed method against other baseline
models

Dataset SONDA Malaysia
Model Variable RMSE MAE R2 NRMSE Variable RMSE MAE R2 NRMSE

MO-RHFCM(k=3)
glo avg 95.011 59.199 0.895 0.096 temperature 0.886 0.598 0.894 0.088
ws 10m 0.339 0.258 0.682 0.120 load 1958.516 1401.437 0.981 0.044

MO-RHFCM(k=4)
glo avg 96.224 59.896 0.893 0.097 temperature 0.894 0.604 0.892 0.089
ws 10m 0.341 0.259 0.675 0.120 load 1962.226 1412.620 0.980 0.044

MO-RHFCM(k=5)
glo avg 96.783 61.449 0.892 0.098 temperature 0.900 0.613 0.890 0.089
ws 10m 0.340 0.259 0.678 0.120 load 2149.452 1549.505 0.976 0.048

GB
glo avg 112.402 63.931 0.856 0.114 temperature 0.938 0.643 0.881 0.093
ws 10m 0.360 0.274 0.640 0.126 load 2383.030 1699.112 0.971 0.053

XGB
glo avg 125.851 80.644 0.825 0.128 temperature 1.214 0.879 0.803 0.120
ws 10m 0.417 0.326 0.519 0.146 load 2899.048 2074.125 0.958 0.065

LGBM
glo avg 104.549 57.285 0.873 0.106 temperature 0.900 0.605 0.886 0.091
ws 10m 0.343 0.260 0.674 0.120 load 2167.382 1509.273 0.978 0.048

LSTM
glo avg 108.087 67.365 0.867 0.109 temperature 2899.048 2074.125 0.887 0.091
ws 10m 0.338 0.258 0.684 0.119 load 0.914 0.645 0.963 0.062

GRU
glo avg 113.196 75.026 0.853 0.115 temperature 0.901 0.628 0.890 0.09
ws 10m 0.344 0.261 0.670 0.121 load 2650.018 1938.483 0.965 0.06

MLP
glo avg 108.880 67.858 0.864 0.110 temperature 0.884 0.603 0.894 0.088
ws 10m 0.340 0.258 0.682 0.119 load 2392.469 1679.621 0.971 0.054

RF
glo avg 103.224 55.545 0.877 0.104 temperature 0.926 0.621 0.884 0.092
ws 10m 0.347 0.262 0.667 0.121 load 2630.708 1886.509 0.965 0.059

Extra Tree
glo avg 101.643 57.645 0.881 0.103 temperature 0.896 0.598 0.891 0.089
ws 10m 0.343 0.259 0.676 0.120 load 2077.621 1424.353 0.978 0.047

Table 32 – Evaluation of the models’ accuracy in terms of average NRMS over all
variables for each dataset

Dataset k = 3 k = 4 k = 5 RF Extra Trees GB LGBM XGB LSTM GRU MLP
SONDA 0.108 0.1085 0.109 0.1125 0.1115 0.120 0.1130 0.1370 0.1140 0.1180 0.1145
Malaysia 0.066 0.0665 0.067 0.0755 0.068 0.073 0.0695 0.0925 0.0765 0.075 0.071

and test statistics in Table 33, H0 has been rejected for all data sets. Accordingly, post-hoc

test is employed to compare all the models. The obtained results from the Wilcoxon test

indicate the superior performance of the proposed MO-RHFCM model in comparison to

other baseline models. More transparently, a summary of the statistical ranking of the

models for each data set according to the obtained results obtained from the Wilcoxon

test is reported in Table Table 34 based on the times in which H0 can not be rejected. As

Table 34 details, the first rank belongs to the MO-RHFCM model for both case studies

followed by Extra Trees.

Table 33 – Kruskal-Wallis mean comparison test results

data set Statistic p-value Result
Malaysia 108.470 7.850e-20 H0 is rejected
SONDA 56.541 2.212e-09 H0 is rejected

Table 34 – The summary of the ranking of the forecasting models

Dataset MO-RHFCM(k=3) RF Extra Trees GB LGBM XGB LSTM GRU MLP
Malaysia 1 6 2 5 3 9 7 6 4
SONDA 1 3 2 8 3 9 3 7 5

In summary, it can be claimed that our proposed model focused on two main

aspects of FCM-based time series forecasting models by designing a new FCM structure
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as reservoir computing to predict multiple outputs where the training phase is accelerated.

The obtained results showed the proposed model is robust with high-performance accuracy

in comparison to other ML and DL models. Also, as can be seen in Table 35, our method is

less complex, cheaper, and more parsimonious than deep learning models due to the lower

number of parameters. In our model, the number of parameters is only determined by the

number of least squares coefficients calculated by (N ×NSR)+NSR = 2× 100 + 100 = 300.

Table 35 – Comparison among the number of parameters of our proposed model with
deep learning methods

dataset MO-RHFCM LSTM GRU
Malaysia 300 14038 22612
SONDA 300 23100 2430

5.4 Chapter’s Highlights

In this chapter, a new hybrid forecasting method was implemented to predict low-

dimensional multivariate time series referred to as MO-RHFCM. This method is inspired

by a combination of the concepts of MVFTS, reservoir computing (ESN) and HFCM

trained via least squares algorithm as time effective learning technique. MO-RHFCM was

suggested as a MIMO FCM-based forecasting model to predict multiple outputs.

Structurally, MO-RHFCM consists of three layers: the input layer, the reservoir,

and the output layer. Similar to the R-HFCM technique, the reservoir includes a group of

sub-reservoirs presented by random MVFCM-FTS. Each random MVFCM-FTS is fed by

all the variables from the input layer. Then, each layer inside the reservoir unit generates

independent outputs which are fed to the output layer. The number of outputs from

each sub-reservoir directly depends on the number of variables of the original time series.

Finally, the least squares algorithm is applied to train the output layer and generate the

final predicted values for each variable. It is worth mentioning that MO-RHFCM is a

kind of ESN because weights inside each sub-reservoir are initialized randomly and kept

constant during the training process. That is the reservoir weights are initialized based on

the ESP condition in the ESN reservoir computing, then the least squares minimization

algorithm is applied to the output, units to generate the final prediction.

To examine the effectiveness of the proposed MO-RHFCM method, we used

two low-dimensional datasets including SONDA and Malaysia datasets only with two

variables. The obtained results indicate the validity of our proposed model compared

with other baseline machine learning and deep learning methods. Since MO-RHFCM was

designed to predict low-dimensional time series, another new MIMO FCM-based technique

is introduced in the next chapter to predict high-dimensional time series.
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6 PROPOSED MIMO-FCM TECHNIQUE

Despite the remarkable success of FCMs in the field of time series forecasting and

analysis, handling large-scale multivariate time series is still one of the main challenging

topics in this area. Few studies can be found in this direction, for instance, Shanchao e Liu

(2018) developed a wavelet-High Order FCM (wavelet-HFCM) model trained via ridge

regression algorithm to predict large-scale multivariate time series.

Likewise, presenting a novel MIMO FCM-based technique with the ability to

handle high-dimensional data sets with promising results in Internet of Things (IoT)

applications can be considered one of the objectives of this chapter. More clearly, IoT

means a worldwide network of interconnected objects uniquely addressable, based on

standard communication protocols (GUBBI et al., 2013). In this context, data is recorded

from different sensor nodes in the form of streaming time series. Thereby, a high-dimensional

time series is generated where each dimension represents the measurements recorded by a

sensor node.

Smart buildings and smart cities are considered as the most popular IoT applica-

tions, which are employed as case studies in this investigation. It is worth mentioning that

several machine learning and deep learning models have been introduced in the literature

to enhance the IoT forecasting accuracy (CANDANEDO; FELDHEIM; DERAMAIX,

2017; CHAMMAS; MAKHOUL; DEMERJIAN, 2019; CHAI et al., 2019; SAJJAD et al.,

2020; KHAN et al., 2020; PARHIZKAR; RAFIEIPOUR; PARHIZKAR, 2021).

The proposed model has been equipped with least squares regression to predict

multiple outputs with promising forecasting accuracy. In terms of structure, the MIMO-

FCM model represents a hybrid model composed of cascade randomized HFCMs (CR-

HFCM) with respect to the number of principal components. More precisely, MIMO-

FCM combines the concepts of HFCM, ESN, reservoir computing, and Kernel Principal

Component Analysis (KPCA) (KIM; FRANZ; SCHÖLKOPF, 2005).

In summary, the following contributions are brought to life in this chapter:

1. Developing a new FCM-based forecasting model integrating the concepts of em-

bedding (KPCA), FCM, and ESN termed MIMO-FCM, which is trained with

time-effective learning inspired by reservoir computing;

2. Introducing multiple output FCM-based forecasting model to predict high-dimensional

time series with more than 100 variables for the first time in the literature according

to the best of our knowledge;
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3. Validation of MIMO-FCM, which is tested on three high-dimensional IoT data

sets. The experimental results demonstrate that the proposed model is efficient and

competitive in comparison to the other existing approaches.

The remainder of this chapter is structured as follows: Section 6.1 presents a brief

description of the dimensionality reduction; Section 6.2 introduces the proposed method in

details; Section 6.3 describes three IoT case studies used to test our methodology; Section

6.4 represents the experimental results and discussion; and finally the conclusions and

some possibilities of future work are drawn in Section 6.5.

6.1 Preliminaries

Dimensionality reduction

Different types of dimensionality reduction (embedding) techniques have been

introduced in the literature covering feature selection and feature extraction. Despite

feature selection techniques in which a subset of the original variables are selected, in

feature extraction, a set of new variables is generated through some linear or non-linear

mapping techniques from the existing input variables. The goal of feature extraction is

to map N -dimensional variables measured (i.e. time series) over T time steps into the

reduced M -dimensional feature space with M ≪ N .

However there exist several techniques used for the purpose of reducing dimensions,

PCA and KPCA are the most common strategies which have been widely used and are

explained briefly in the following.

PCA is a method to reduce the number of dimensions in a data set while the most

significant information is kept. It means that PCA calculates the principal components

by projecting high-dimensional data onto its main components of variation known as

principal components containing the maximum variance. In summary, PCA contains the

following steps: computing the covariance matrix of all variable dimensions, calculating

the eigenvectors and eigenvalues of the covariance matrix, and data projection along the

eigenvectors.

Since PCA extracts only a reduced linearly uncorrelated set of variables, KPCA is

employed as nonlinear PCA to extract nonlinear correlation. Therefore, KPCA can handle

nonlinear feature extraction utilizing a proper mapping function (Φ) named the kernel

function. The polynomial function, Gaussian radial basis function (RBF), and sigmoid

function are examples of kernel functions that can be used in KPCA.
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6.2 Proposed MIMO-FCM model

In this investigation, a new FCM-based time series forecasting model is introduced

to predict multiple output high-dimensional multivariate time series. Figure 22 presents

the general structure of the proposed MIMO-FCM technique.
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Figure 22 – General structure of the proposed MIMO-FCM method. Firstly, the original data set is transmitted
through KPCA to create M principal components. Then each component is predicted by one univariate
cascade randomized HFCM unit. Finally, inverse KPCA is applied to reconstruct the original time
series.

Our proposed method is mainly focused on two challenging aspects of FCM-based

time series forecasting models: designing a new FCM structure as well as speeding up the

training phase. As such, in the first step, the general structure of MIMO-FCM is explained,

then our strategy for learning FCM is detailed.

Structurally speaking, as shown in Figure 22, the MIMO-FCM model is a combina-

tion of KPCA and FCM. In more details, the original data set is transmitted through KPCA

data transformation to create M principal components, yemb = (yemb(1), yemb(2), ..., yemb(M)),

defined by a user in a new feature space such that M ≪ N where N is the number of

variables of the original time series. After that, the obtained components are fed as inputs

to R-HFCM models independently. Then, the predicted outputs (ŷemb(1),ŷemb(2),. . . ,ŷemb(M))

from M models are fed to the inverse KPCA operation, which is responsible to calculate

the final predicted value for each original feature.

Figure 23 illustrates the internal structure of each univariate model. As can be

seen from this figure, each model consists of three layers: input layer, intermediate or

reservoir layer, and output layer. Each principal component (yemb(i)(t), i = {1, 2, ...,M})
is injected to each model individually. It means that for each component there will be a

corresponding CR-HFCM model. The CR-HFCM is composed of successive randomized

HFCM block reservoirs (L). In this structure, yebm(M)(t) only is fed to the first block, and

its calculated output is considered as input for the second block as well as the output

layer. This process is repeated for all subsequent blocks which means that the output of

the previous block (L − 1) is considered as both the input of the next one (L) and the

input for the output layer. It is worth mentioning that L acts in the same role as NSR in
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our previous models.

Regarding the training phase, since the structure of each sub-reservoir in the

reservoir layer is designed based on the R-HFCM model, as introduced in Orang et al.

(2022), the model is mainly concentrated on training the output layer using least squares

regression. From another perspective, it can be said that the model is a kind of ESN in

which only the output layer is trainable, while the reservoir parameters are initialized

randomly and remain unalterable during the training process.

yemb(M)(t)

Univariate 
input 

   Random HFCM-FTS1

.

.

.

.

.

.

 Least squares Minimization

ŷemb(M)(t+1)
ŷsub(L-1)(t+1)

ReservoirInput Output

ŷsub(L)(t+1)

ŷsub(L-1)(t+1)

ŷsub(2)(t+1)

ŷsub(1)(t+1)ŷsub(1)(t+1)

ŷsub(2)(t+1)

ŷsub(L)(t+1)

   Random HFCM-FTS2

   Random HFCM-FTSL

Figure 23 – Internal structure of each univariate CR-HFCM unit. Each CR-HFCM is composed of three layers:
the input layer, the reservoir, and the output layer. The reservoir consists of L sub-reservoirs in
which weights are initialized randomly so that the Echo State Property (ESP) condition is satisfied in
the ESN reservoir computation. Each extracted principal component is only fed into the first block
to generate the input for both the second block and the output layer and so on. Accordingly, the
generated output from each randomized HFCM block is injected as input to the next successive block
as well as to the output layer. Finally, the least squares algorithm is employed to train the output
layer and generate the predicted value for each principal component.

On the other hand, the weights of each sub-reservoir in the reservoir layer are

chosen randomly to meet the ESP condition in ESN and then each sub-reservoir generates

its output independently (ŷsub(1)(t+1),ŷsub(2)(t+1),. . . ,ŷsub(L)(t+1), where L = NSR). The

least squares minimization algorithm is applied to the output units to generate the final

predicted value for each principal component (ŷemb(1)(t+1),ŷemb(2)(t+1),. . . ,ŷemb(M)(t+1)).

Finally, based on Figure 22, Inverse KPCA is exploited to reconstruct and predict all the

original variables (ŷ1(t+1),ŷ2(t+1),. . . ,ŷN (t+1)) from the predicted principal components

(ŷemb(1)(t+ 1),ŷemb(2)(t+ 1),. . . ,ŷemb(M)(t+ 1)).

The proposed MIMO-FCM method is divided into two procedures: the Training

procedure and the Forecasting procedure. These procedures are detailed in the next

sections.
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6.2.1 Training Procedure

The main objective of the training procedure is to train the output layer in each

CR-HFCM to find the least square coefficients, given a crisp training embedded data set.

It means that the training data set from each component is fed to the CR-HFCM model

to generate the inputs for the output layer. Then, the least square algorithm is employed

to train the output layer to find the optimal least squares coefficients. Accordingly, the

training procedure is divided into two steps: constructing the structure of each block(sub-

reservoir) in each CR-HFCM and determining the least squares coefficients as described in

the following.

6.2.1.1 Embedding

In this stage, RBF kernel PCA is applied to extract M principal components from

the original high-dimensional time series (Y = [y1(t), y2(t), . . . , yN(t)] where Y ∈ RT×N)

accordingly to the following steps. Firstly, the kernel similarity matrix is constructed with

the equation (6.1).

k(xi,xj) = exp(−γ ∥ xi − xj ∥22) (6.1)

where γ is the kernel coefficient. Since it is not guaranteed that the kernel matrix is

centered, in the second phase the centered kernel matrix M̃ = M − 1TM −K1M +1TM1T

is computed where 1T is an T × T matrix with all values equal to 1/T . The third step

includes eigenvalue problem-solving based on M̃αi = λiTαi. Finally, eigenvectors of the

centered kernel matrix which correspond to the largest eigenvalues, are obtained.

After applying KPCA according to the above-mentioned process, each component

in Yemb = (yemb(1)(t), yemb(2)(t), . . . , yemb(M)(t)), where Yemb ∈ RT×M , is fed to the first layer

in the reservoir of CR-HFCM individually, as we discussed earlier.

6.2.1.2 Randomized model initialization

The goal of this step is to initialize the weight matrix for each sub-reservoir in

CR-RHFCM in Figure 23. It is worth mentioning that the weights and bias inside each

sub-reservoir are generated randomly similar to the R-HFCM initialization technique as

discussed in section 4.2.1.
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6.2.1.3 Partitioning

CR-HFCM is composed of randomized HFCM models with the same linguis-

tic variable, i.e., the group of fuzzy sets defined over the Universe of Discourse U =

[min(Yemb),max(Yemb)].

The goal of the partitioning process is to split U into k even length and evenly

spaced and overlapped intervals, where mpi, i = 1..k, is the midpoint of each interval.

Then, a fuzzy set Ci (i.e. a concept) is defined with midpoint mpi and a membership

function µCi
. In each sub-reservoir, the group of the k concepts form the linguistic variable

C, such that Ci ∈ C, ∀i = 1, . . . , k. Here grid partitioning is used in which the number of

concepts is equal to the number of partitions.

Figure 4 shows a simple example of the FCM structure used in this model, with

triangular membership function µCi
.

6.2.1.4 Fuzzification

The aim of the fuzzification step is converting crisp time series (Yemb) into a fuzzy

series A which represents the activation state ai(t) of each concept Ci ∈ C for each time

series sample. Then, for each sample yemb(t) ∈ Yemb the corresponding fuzzified sample

a(t) ∈ A is the set of activations ai(t) ∈ a(t) such that ai(t) = µCi
(yemb(t)), for i = 1, . . . , k.

6.2.1.5 Activation

For each sub-reservoir with index j = 1, . . . , L, the state value of each concept in

time t+ 1 can be defined by the equation (6.2).

aj(t+ 1) = f

(
w0 +

Ω∑
l=1

Wl · a(t− l + 1)

)
(6.2)

6.2.1.6 Defuzzification

After calculating the activation level of each concept, in this step, the defuzzifi-

cation is carried out to produce the output related to each sub-reservoir. Therefore, the

forecast values for each sub-reservoir j = 1, . . . , L at time t+ 1 in numeric terms can be

calculated via the equation (6.3).

ŷj(t+ 1) =

∑k
i=1 aji(t+ 1) ·mpi∑k

i=1 aji(t+ 1)
(6.3)
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where aj(t+1) is the activation calculated from the previous step for each concept

at time t+ 1 and mpi is the center of each concept Ci ∈ C.

6.2.1.7 Least Squares coefficients determination

Given the outputs (ŷsub(1)(t+ 1), ŷsub(2)(t+ 1),..., ŷsub(L)(t+ 1) where t = 1, ..., T )

from each sub-reservoir, a design matrix X ∈ RL×T is created to represent the linear

system Y = λX, where λ = [λ0, ..., λj] is the coefficient vector. Then, the Least Squares

method is employed to solve this linear system and find the λ vector of coefficients that

minimizes the Mean Squared Error.
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Figure 24 – A simple example of the proposed MIMO-FCM mechanism considering Ω = 2, M = 1, NSR = 2.

A simple structure of the MIMO-FCM model considering Ω = 2,M = 1,NSR = 2

has been shown in Figure 24. Accordingly, KPCA is used to translate the original high-

dimensional time series Y ∈ RT×N into yemb ∈ RT×1. The obtained yemb is fed to the first

sub-reservoir to generate its output with regards to the weight matrices at times t and

t− 1 for each sub-reservoir. It is worth noting that the model contains the bias weights

while they are discarded from Figure 24 just because of the ease of notation.

6.2.2 Forecasting Procedure

The main objective of this stage is calculating the predicted crisp value for each

sub-reservoir (ŷsub(L)(t+1) and NSR = 1, 2, ..., L), the predicted crisp value of principal

components (ŷemb(1)(t+ 1),ŷemb(2)(t+ 1),...,ŷemb(M)(t+ 1)) as well as employing the inverse

KPCA unit to predict the final crisp values of all the variables (ŷ1(t+1),ŷ2(t+1),. . . ,ŷN (t+

1)), given the linguistic variable C, the weight matrices Wt, the activation function f and

a crisp input Y (t). The steps of the forecasting process are fully explained as follows:

6.2.2.1 Embedding:

In this step, the KPCA transformation is used for test data.
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6.2.2.2 Fuzzification:

The same as Step 4 in the Training procedure.

6.2.2.3 Activation:

The same as Step 5 in the Training procedure.

6.2.2.4 Defuzzification

(A) Sub-reservoir forecasts deffuzification: The same as Step 6 in the Training

procedure.

(B) Final forecast defuzzification for each principal component:

The predicted value of each principal component at time t+ 1 is computed through

the linear combination of the obtained outputs of all sub-reservoirs and the least

squares coefficients. The final predicted value is described using the equation (6.4).

ŷemb(M)(t+ 1) = λ0 +

NSR∑
j=1

λj · ŷsub(j)(t+ 1) (6.4)

For instance, as Figure 24 demonstrates, since M = 1 and NSR = 2 , the final output

is estimated by the equation (6.5).

ŷemb(t+ 1) = λ0 + λ1 · ŷsub(1)(t+ 1) + λ2 · ŷsub(2)(t+ 1) (6.5)

where {λ0, λ1, λ2} denote the obtained least square coefficients from the training

procedure and ŷsub(1)(t+ 1) and ŷsub(2)(t+ 1) are the generated outputs for the first

and second sub-reservoirs respectively according with equation (6.3).

Obviously, as Figure 24 shows, the number of least squares coefficients directly

depends on the number of sub-reservoirs (NSR). To be more precise, the number of

least squares coefficients in this model is equal to NSR + 1. Thereby, for NSR = n,

the final predicted value is described by the equation (6.6) using n+ 1 least-squares

coefficients.

ŷemb(t+1) = λ0 + λ1 · ŷsub(1)(t+1)+ λ2 · ŷsub(2)(t+1)+ ...+ λn · ŷsub(n)(t+1) (6.6)

(C) Final predicted crisp values for original variables of each data set:

In the last step, as can be seen from figures 22 and 24, inverse KPCA is applied to

construct the final predicted crisp values (ŷ1(t+ 1),ŷ2(t+ 1),. . . ,ŷN (t+ 1)) from the

obtained predicted values for each component.
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6.3 Computational Experiments

This section is mainly dedicated to evaluating the accuracy of our proposed

approach. The first subsection provides a brief description of the case studies as well as

evaluation metrics. Then, the efficiency of the proposed MIMO-FCM model is verified

by applying some high-dimensional IoT data sets. All the experiments are implemented

with Python 3.6.12 using open-source packages such as Scikit-Learn, Keras, Tensorflow,

PyTorch, Pandas, Numpy, and pyFTS.

6.3.1 Case studies

The effectiveness of the proposed MIMO-FCM method is assessed on two types of

IoT applications, which include smart buildings and air quality monitoring (smart city).

Accordingly, three public data sets are used to evaluate the performance of the proposed

approach, as presented in the following subsections. It is worth mentioning that some

pre-processing techniques are applied to clean the original data set by removing outliers

and missing values.

As the first case study, we used the UCI Appliances energy prediction data set

(AE-DS) which is accessible at the UCI ML repository (DUA; GRAFF, 2017). The data set

includes 10-minute sample information collected for about 4.5 months. A Zigbee wireless

sensor network was used to monitor the house temperature and humidity conditions which

were merged with the weather data collected from the nearest airport weather station.

The data set contains 19,735 samples and 27 variables.

In the second case study, Smart home with Weather Information data set (SH-DS)

is employed which is published on the Kaggle platform (KAGGLE, 2021). The data set

consists of time-span house appliances in KW from a smart meter and weather conditions

of a particular region, ranging from January 2016 to December 2016 at a frequency of 1

minute with 29 variables including 18 electricity variables, 10 weather variables, and 1

temporal feature. It should be noted that the original time series is resampled from 1 to

10 minutes, before injecting to the model.

The UCI Beijing Multi-Site Air-Quality data set (AQB) (ZHANG et al., 2017) was

considered as the final case study which consists of sets of hourly meteorological and air

pollutants information from 12 nationally-controlled air-quality monitoring sites/stations:

Aotizhongxin, Changping, Dingling, Dongsi, Guanyuan, Gucheng, Huairou, Nongzhanguan,

Shunyi, Tiantan, Wanliu, and Wanshouxigong. In each air quality station, meteorological

data are matched with the nearest weather station from the China Meteorological Admin-

istration. The data set contains 35,065 instances with multi-variables in each station over

a four-year period from March 1st, 2013 to February 28th, 2017.
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6.3.2 Experimental methodology

To evaluate the performance accuracy of the proposed approach, three comparison

criteria for the forecasting accuracy including RMSE described in equation (3.6), MAE

described in equation (5.12) and NRMSE, described in equation (4.14) are employed,

where y(t) and ŷ(t) stand for the actual and forecast values, respectively.

These forecasting accuracy metrics were calculated using the sliding window

cross-validation technique, where 75% of each window is used as a training set and 25%

for testing. For each variable yi(t) ∈ Y of each data set dj ∈ D, the samples were divided

into 30 windows w ∈ W . For each window, we train and test the models m ∈ M using

respectively the training and test subsets. Noteworthy that the accuracy of the models is

evaluated over the test data computing the average values of accuracy metrics obtained

for all 30 windows.

To compare the performance of the models statistically, the Kruskal-Wallis test

was conducted with the confidence level of α = 0.05 in terms of the average NRMSE of all

variables in each data set for each window. In this method, the null hypothesis H0 stands

for the equality of average NRMSE errors of all methods and H1 presents an alternative

hypothesis such that at least one of the averages is different from the others. When H0 is

not accepted, it is needed to apply post hoc tests to compare the equality of each pair of

means. In this investigation, we selected the Wilcoxon approach for post hoc test.

6.4 Results

In this section, we present the obtained experimental results of our proposed

model and provide a comparison of our approach against other forecasting models that

are tested over the mentioned case studies.

This section is divided into three sub-sections. Subsection 6.4.1 is focused on

presenting a discussion and analysis of our proposed model’s hyperparameters to reach

the best forecasting accuracy. The second subsection 6.4.2 provides a brief introduction of

the baseline models as well as hyper-parameter tuning and subsection 6.4.3 is responsible

for comparing the accuracy of the proposed model with other baseline models.

In order to prove the potential of our presented approach in dealing with high-

dimensional MIMO time series, we considered two scenarios for AQB data set. Firstly, six

sites comprising Aotizhongxin, Changping, Dingling, Dongs, Guanyuan and Gucheng have

been selected to predict all 66 variables (i.e AQB-6). In the next scenario (i.e AQB-12), 12

stations are considered to predict all 132 variables.



6.4. RESULTS 156

6.4.1 Parameter setting for MIMO-FCM

The aim of this part is to analyze the influence of effective hyper-parameters

on the accuracy of the proposed method. The number of concepts (k), the number of

components (M), the number of layers or sub-reservoir (NSR), the order value (Ω) and the

kernel coefficient of KPCA (γ) are the most influential parameters on the model forecasting

accuracy.

The experiments are executed with k ∈ {3, 4, 5, 7, 10, 20},M ∈ {1, 2, 3, 4, 5, 7, 8, 10},
NSR ∈ {2, 3, 4, 5, 7, 10, 20}, Ω ∈ {2, 3, 4, 5, 6} and γ ∈ {0.1, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9}. Since
the effectiveness of the proposed model is sensitive to the proper choice of these hyper-

parameters, the goal is to set them optimally to achieve the best performance in terms of

prediction accuracy. The best configuration of these hyperparameters is obtained empiri-

cally (through trial and error) based on the training data set. More specifically, models

are executed by varying these hyper-parameters. Also, it is worth mentioning that in this

investigation the activation function in FCM is set to ReLU (3.2).

Table 36 summarizes the optimal combinations of the parameters adjusted sepa-

rately for each case study. Table 36 exhibits that the most accurate models are obtained

utilizing the minimum values of hyper-parameters as the strengths of the proposed model.

This means that in MIMO-FCM, the models with the fewest concepts (k = 3, 4) and

sub-reservoirs (NSR = 2) have the lowest forecasting errors. It is worth observing that

increasing the number of blocks (sub-reservoirs) has a negative effect on our model per-

formance. In addition, in all case studies, the highest forecasting accuracy is achieved by

setting k = 1, NSR = 2, and γ = 0.9.

It is worth mentioning that selecting the optimal values of hyper-parameters using

the grid search technique would be a better choice which is planned for future work.

Table 36 – Optimal parameters of our proposed model for each data set

data set k Ω NSR M γ
AE-DS 3 4 2 1 0.9
SH-DS 3 3 2 1 0.9
AQB-6 3 4 2 1 0.9
AQB-12 4 4 2 1 0.9

6.4.2 Baseline models

In this section, a comparison against several common machine learning and deep

learning models is reported to emphasize the validity of our proposed model. Thereby, six

baseline models including popular machine learning and deep learning methods are imple-
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mented in this investigation, which are briefly described. Then, the results of the proposed

model are compared with the results of these competitor models in subsection 6.4.3.

In this work, three different types of RNNs including Vanilla RNN, Long Short-

term Memory (LSTM) (HOCHREITER; SCHMIDHUBER, 1997) and Gated Recurrent

Unit (GRU) (CHUNG et al., 2014) are used as competitor models which are implemented

using PyTorch framework. Various experiments were conducted to adjust the best hyper-

parameters for these models whereas the optimal values were obtained with layers = 1,

epochs = 300, batch size = 64, learning rate = 0.001, weight decay = 0.1 and optimizer

= Adam. Also, the number of hidden neurons is determined considering the number of

dimensions and instances of each data set, varying from 3 to 467.

In addition, stacked encoder-decoder LSTM (SLSTM) was implemented as another

type of vanilla LSTM that is more complex and designed for sequence-to-sequence problems.

The encoder stage reads the input and produces an expressive fixed-length embedded

representation, while the decoder interprets the latent space used to predict the output.

The best performance could be yielded with epochs = 25, batch size = 32, neurons = 200,

and optimizer = Adam, after various settings.

Random Forest (RF) (BREIMAN, 2001) and Support vector regression (SVR)

(DRUCKER et al., 1996) were selected as other baseline models. Table 37 reports the opti-

mal values of hyper-parameters for these models using the Randomized Search technique.

Table 37 – Optimal parameters of each data set for RF and SVR models

Model Hyperparameters AE-DS SH-DS AQB-6 AQB-12

RF
Max depth 20 15 30 30

Max leaf nods 10 20 30 30
Min samples leaf 6 3 2 2

SVR
C 5.76 17.07 25.71 25.71
ϵ 0.07 0.15 0.05 0.05

6.4.3 Comparison against baselines

The main purpose of this section is to provide a comparison among the obtained

results for the proposed model and baseline methods considering the above-mentioned

case studies. In other words, this section can be divided into three subsections such that

in each subsection the models are run by feeding three different high-dimensional IoT

time series as explained in the following. Since AQB6 and AQB12 data sets contain many

variables, it is impractical to report the prediction results obtained for all variables of

these data sets. Hereby, in these cases, the forecasting accuracy of MIMO models for two

variables (PM2.5 and PM10) are presented and evaluated in terms of accuracy metrics.
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Table 38 – Evaluation of the accuracy of the proposed method against other baseline
models in terms of Average RMSE and average MAE (AE-DS data set)

Metric AVG.RMSE AVG.MAE
Variable MFCM SLSTM RF SVR LSTM GRU RNN MFCM SLSTM RF SVR LSTM GRU RNN
Appliance 66.31 79.55 72.91 86.81 78.06 77.56 75.02 33.54 47.93 42.74 58.11 46.76 49.34 47.67
lights 5.19 6.60 5.36 7.06 5.90 5.67 5.92 2.92 4.38 3.65 5.12 4.19 3.98 4.30
T1 0.17 0.41 0.25 0.70 0.29 0.27 0.26 0.13 0.35 0.19 0.56 0.23 0.21 0.21

RH 1 0.55 1.22 0.83 2.05 1.06 1.01 0.96 0.32 0.93 0.53 1.66 0.76 0.73 0.71
T2 0.36 0.65 0.31 1.04 0.51 0.49 0.5 0.24 0.54 0.21 0.84 0.40 0.39 0.40

RH 2 0.63 1.47 0.74 2.20 0.99 0.94 0.95 0.41 1.20 0.52 1.82 0.77 0.75 0.73
T3 0.12 0.55 0.37 0.72 0.35 0.34 0.317 0.08 0.45 0.27 0.60 0.27 0.26 0.24

RH 3 0.31 0.99 0.56 1.49 0.74 0.67 0.66 0.21 0.82 0.39 1.23 0.57 0.52 0.52
T4 0.17 0.69 0.32 0.85 0.41 0.43 0.41 0.12 0.58 0.25 0.72 0.32 0.34 0.32

RH 4 0.32 1.09 0.61 1.90 0.82 0.69 0.69 0.22 0.89 0.41 1.57 0.66 0.56 0.56
T5 0.14 0.46 0.28 0.63 0.33 0.31 0.32 0.09 0.36 0.20 0.50 0.25 0.24 0.25

RH 5 2.11 5.28 3.09 6.94 4.97 4.34 4.85 0.93 3.94 1.95 5.27 3.54 3.24 3.54
T6 1.04 1.61 0.89 2.70 1.42 1.24 1.43 0.66 1.27 0.66 2.17 1.15 1.01 1.17

RH 6 3.72 7.53 2.14 10.12 5.67 5.64 5.16 2.44 6.19 1.41 8.20 4.54 4.60 4.16
T7 0.10 0.37 0.22 0.58 0.25 0.22 0.24 0.07 0.31 0.16 0.48 0.20 0.17 0.19

RH 7 0.56 1.84 1.03 2.89 1.14 1.10 1.02 0.39 1.55 0.80 2.45 0.93 0.91 0.86
T8 0.13 0.62 0.23 0.70 0.39 0.34 0.37 0.09 0.53 0.17 0.58 0.32 0.28 0.31

RH 8 0.87 1.66 0.87 2.80 1.48 1.43 1.46 0.61 1.37 0.63 2.31 1.21 1.17 1.21
T9 0.06 0.30 0.22 0.40 0.16 0.14 0.15 0.04 0.26 0.17 0.34 0.13 0.11 0.12

RH 9 0.53 1.42 0.62 2.19 1.10 0.90 0.94 0.36 1.21 0.47 1.89 0.89 0.72 0.76
T out 0.79 1.29 0.71 2.24 1.04 0.91 1.01 0.51 1.10 0.52 1.84 0.84 0.73 0.81
Press 0.42 2.57 1.23 3.40 1.51 1.61 1.45 0.28 2.17 0.97 3.03 1.30 1.38 1.24
RH out 3.28 6.31 1.85 8.57 4.31 4.19 4.11 2.18 5.24 1.32 6.76 3.36 3.30 3.26

wind speed 0.49 1.40 0.40 1.55 1.12 1.03 1.07 0.36 1.17 0.27 1.25 0.91 0.84 0.89
visibility 4.31 6.31 2.39 7.99 7.50 6.30 7.14 3.08 5.14 1.60 6.59 6.02 4.97 5.78
Tdewpoint 0.39 1.29 0.70 1.94 1.03 0.88 0.94 0.27 1.05 0.52 1.58 0.84 0.71 0.77

However, the full results are publicly accessible via the link address given as follows:

⟨https://github.com/OMIDUFMG2019/MIMO-FCM⟩.

Tables 38, 39, 40 and 41 compare the forecasting accuracy of the proposed model

with competitors for the given data sets in terms of RMSE and MAE. In all tables, MFCM

represents short abbreviations of the MIMO-FCM model. It is worth mentioning that

Tables 40 and 41 record only the obtained results for two variables. More precisely, all

the 66 and 132 variables have been predicted while only PM2.5 and PM10 (i.e. the most

important air quality indexes) have been chosen to present in our method. Based on the

obtained results, the superiority of our proposed model can be recognized visually when

looking at the error values in all these tables.

As Table 38 details, in the case of SE-DS, the highest accuracy is achieved by

the MIMO-FCM method for 73% and 81% of variables in terms of average RMSE and

MAE, respectively. In the second scenario, the SH-DS dataset is fed to the models to

assess their forecasting accuracy as shown in Table 39. In this case, MIMO-FCM is the

most accurate model for 59.25% (16 out of 27) and 78% (20 out of 27) of variables in

terms of average RMSE and MAE, respectively. It is worth highlighting that for some

variables, RF performs better than our proposed model with very slight differences. Finally,

the performance accuracy of our proposed model is quantitatively compared with other

baseline models feeding the AQB data set considering two scenarios. Firstly, six stations

consisting of Aotizhongxin, Changping, Dingling, Dongs, Guanyuan, and Gucheng have

been selected to predict 66 variables. The listed results in this table confirm the superiority

 https://github.com/OMIDUFMG2019/MIMO-FCM
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Table 39 – Evaluation of the accuracy of the proposed method against other baseline
models in terms of Average RMSE and average MAE (SH-DS data set)

Metric AVG.RMSE AVG.MAE
Variable MFCM SLSTM RF SVR LSTM GRU RNN MFCM SLSTM RF SVR LSTM GRU RNN

Use 0.54 0.56 0.51 0.65 0.55 0.53 0.53 0.33 0.38 0.34 0.47 0.38 0.37 0.37
Gen 0.03 0.04 0.03 0.07 0.04 0.039 0.03 0.02 0.03 0.01 0.05 0.03 0.02 0.02

Dishwasher 0.14 0.14 0.11 0.15 0.12 0.12 0.13 0.03 0.04 0.02 0.07 0.06 0.05 0.05
Furnace1 0.09 0.09 0.08 0.11 0.09 0.09 0.09 0.05 0.06 0.06 0.08 0.06 0.06 0.06
Furnace2 0.10 0.10 0.09 0.12 0.098 0.09 0.09 0.06 0.07 0.07 0.09 0.07 0.07 0.07
H.office 0.03 0.04 0.04 0.06 0.04 0.04 0.04 0.01 0.02 0.02 0.03 0.03 0.03 0.03
Fridge 0.06 0.05 0.05 0.06 0.06 0.05 0.05 0.03 0.04 0.03 0.05 0.04 0.04 0.04

WineCellar 0.02 0.03 0.03 0.04 0.03 0.03 0.03 0.01 0.02 0.02 0.02 0.02 0.02 0.02
G.door 0.01 0.01 0.09 0.09 8e-3 8e-3 8e-3 2e-3 2e-3 3e-3 3e-3 3e-3 3e-3 3e-3

Kitchen12 4e-3 6e-3 7e-3 8e-3 5e-3 5e-3 5e-3 1e-3 2e-3 2e-3 4e-3 2e-3 2e-3 2e-3
Kitchen14 0.05 0.04 0.05 0.04 0.04 0.04 0.04 0.01 0.01 0.02 0.02 0.02 0.02 0.02
Kitchen38 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Barn 0.07 0.08 0.07 0.09 0.07 0.06 0.07 0.02 0.03 0.02 0.04 0.03 0.03 0.03
Well 0.08 0.06 0.06 0.07 0.06 0.06 0.06 0.02 0.02 0.03 0.03 0.03 0.03 0.03

Microwave 0.07 0.06 0.07 0.06 0.05 0.05 0.05 0.01 0.01 0.02 0.02 0.02 0.02 0.02
Livingroom 0.04 0.05 0.05 0.06 0.05 0.05 0.05 0.01 0.02 0.02 0.04 0.03 0.02 0.03

Solar 0.03 0.04 0.03 0.07 0.04 0.04 0.04 0.02 0.03 0.01 0.05 0.03 0.03 0.02
Temperature 1.21 2.47 1.63 4.97 2.25 1.98 1.81 0.63 1.70 0.98 3.49 1.69 1.46 1.36
Humidity 0.03 0.05 0.02 0.09 0.05 0.05 0.05 0.01 0.03 0.01 0.06 0.04 0.03 0.03
Visibility 0.25 0.55 0.38 0.91 0.45 0.38 0.42 0.11 0.33 0.17 0.57 0.31 0.27 0.30

App.Temperature 1.38 2.81 2.00 5.68 2.64 2.32 2.09 0.72 1.93 1.19 3.99 1.98 1.69 1.55
Pressure 0.61 2.42 1.11 3.71 1.59 1.27 1.39 0.33 1.83 0.71 2.76 1.21 0.93 1.06

WindSpeed 0.78 1.20 0.65 1.80 1.17 0.99 1.09 0.41 0.82 0.37 1.31 0.85 0.71 0.79
Cloud Cover 0.06 0.09 0.07 0.17 0.09 0.07 0.08 0.03 0.06 0.04 0.12 0.06 0.05 0.06
WindBearing 28.98 38.15 28.84 54.55 35.92 33.68 36.07 11.43 24.42 14.83 39.48 23.42 21.12 23.70
PrecipIn. 2e-3 5e-3 4e-3 7e-3 0.04 0.04 0.04 1e-3 2e-3 1e-3 3e-3 3e-3 3e-3 3e-3
Dew Point 0.95 2.60 1.81 4.88 1.99 1.76 1.87 0.52 1.83 1.13 3.52 1.53 1.36 1.48
Preciprob. 0.03 0.06 0.05 0.10 0.09 0.08 0.08 0.01 0.03 0.02 0.06 0.06 0.05 0.05

Table 40 – PM2.5 and PM10 prediction accuracy of our proposed models and baseline
methods over six stations data (AQB-6) in terms of RMSE and MAE

Metric AVG.RMSE AVG.MAE
Variable(Station) MFCM SLSTM RF SVR LSTM GRU RNN MFCM SLSTM RF SVR LSTM GRU RNN

PM2.5(Aotizhongxin) 22.15 32.06 26.15 47.73 35.97 35.10 32.10 12.78 21.34 15.36 32.14 25.96 25.83 23.65
PM10(Aotizhongxin) 34.39 46.95 42.52 66.84 54.05 51.00 47.25 20.34 30.98 26.15 46.55 38.35 36.22 33.64
PM2.5(Changping) 20.79 29.93 23.73 42.28 34.78 32.11 31.01 11.96 20.20 14.51 28.71 25.68 23.38 23.03
PM10(Changping) 31.41 41.94 36.83 57.02 49.98 46.13 45.52 18.43 27.75 22.52 39.49 35.58 32.23 32.41
PM2.5(Dingling) 19.58 29.36 23.44 41.43 37.15 33.93 32.83 10.85 19.88 13.97 28.27 27.64 25.11 23.65
PM10(Dingling) 29.53 39.28 34.44 53.15 47.80 45.03 45.10 16.45 25.59 20.56 36.79 33.93 31.48 32.52
PM2.5(Dongsi) 21.99 35.04 26.95 50.72 37.41 35.02 32.94 13.17 23.56 16.06 34.95 27.04 25.80 24.14
PM10(Dongsi) 33.58 47.26 41.60 67.73 55.16 52.47 50.95 19.71 31.01 25.10 47.48 38.96 37.61 37.03

PM2.5(Guanyuan) 21.77 33.07 25.92 47.11 36.68 33.39 30.51 12.98 22.18 15.29 31.96 27.12 24.76 22.86
PM10(Guanyuan) 32.65 43.23 37.66 62.45 53.18 48.99 46.66 19.33 28.73 22.93 43.28 38.48 35.56 33.29
PM2.5(Gucheng) 24.12 37.24 28.55 49.07 39.18 37.85 33.48 13.68 25.17 16.66 33.41 28.82 27.43 23.76
PM10(Gucheng) 39.77 51.96 44.39 71.51 59.47 57.17 55.39 24.85 36.63 29.24 51.95 43.72 42.32 41.16

of our proposed technique for all six stations. In the next scenario, the experiments are

executed for all 12 stations to predict 132 variables and the results have been stored

in Table 41. Again, the obtained results demonstrate the excellent performance of the

proposed MIMO-FCM model for all stations. However, in three cases, RF provides better

performance in comparison to our proposed model with very slight differences.

As can be seen from the results, it can be concluded that ranking the methods

with respect to the obtained values of RMSE and MAE is difficult due to the unstable

forecasting accuracy of the methods for each variable. As such, in order to have a more

precise comparison among the methodologies, the average NRMSE over all variables for

every data set has been calculated as shown in Table 42. As this table suggests, our

proposed model outperforms the other competitor models for the given input time series.
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Table 41 – PM2.5 and PM10 prediction accuracy of our proposed models and baseline
methods over all stations data (AQB-12) in terms of RMSE and MAE

Metric AVG.RMSE AVG.MAE
Variable(Station) MFCM SLSTM RF SVR LSTM GRU RNN MFCM SLSTM RF SVR LSTM GRU RNN

PM2.5(Aotizhongxin) 22.07 31.37 25.35 36.56 49.77 40.82 55.67 12.41 21.34 15.63 26.35 36.37 31.61 45.27
PM10(Aotizhongxin) 32.41 38.86 31.92 47.64 51.85 51.09 69.04 19.89 26.65 20.73 34.74 38.42 39.31 52.60
PM2.5(Changping) 19.54 30.85 21.75 34.26 35.97 39.20 47.90 11.66 22.34 14.02 25.17 27.80 29.61 38.36
PM10(Changping) 28.13 36.67 28.05 42.81 45.12 44.64 55.21 17.65 26.45 18.73 31.90 33.83 34.36 42.26
PM2.5(Dingling) 17.55 28.41 20.57 31.32 36.99 36.18 48.04 10.08 20.49 13.21 23.14 27.23 28.41 37.25
PM10(Dingling) 24.51 34.22 25.81 39.27 42.46 41.98 50.24 14.89 24.84 17.50 29.34 32.90 33.38 39.77
PM2.5(Dongsi) 23.01 31.67 25.05 38.57 41.75 46.89 61.41 13.45 21.80 15.54 27.81 32.47 38.31 48.84
PM10(Dongsi) 33.75 41.18 33.03 49.73 57.01 55.54 75.85 20.27 28.33 21.48 35.48 42.00 41.37 58.31

PM2.5(Guanyuan) 20.59 29.96 23.31 35.66 37.89 37.16 52.70 12.26 20.90 14.54 25.76 28.25 28.17 41.28
PM10(Guanyuan) 28.37 36.09 29.22 45.17 50.63 52.61 72.88 17.91 25.48 19.38 32.90 40.58 40.57 57.13
PM2.5(Gucheng) 20.86 32.94 24.06 36.60 41.44 43.92 55.27 12.75 23.32 15.76 26.62 30.60 31.87 42.78
PM10(Gucheng) 35.86 44.96 37.17 54.44 55.69 60.31 75.40 23.77 32.48 26.66 40.50 42.53 46.99 60.03
PM2.5(Huairou) 18.26 30.00 21.07 31.35 37.62 36.95 46.17 10.56 21.35 13.44 22.82 28.20 27.21 35.98
PM10(Huairou) 31.11 38.60 31.58 43.62 48.47 47.32 57.54 18.51 26.99 20.82 32.03 36.01 35.93 45.26

PM2.5(Nongzhanguan) 22.34 32.01 25.08 37.47 40.96 44.21 66.66 13.11 22.07 15.63 26.96 31.02 35.36 56.01
PM10(Nongzhanguan) 30.58 38.75 31.41 46.79 48.91 53.68 67.26 19.04 27.10 20.82 33.91 36.96 40.83 52.00

PM2.5(Shunyi) 21.93 35.11 24.66 38.44 49.61 43.51 53.88 12.86 24.77 16.00 28.00 37.76 32.71 40.19
PM10(Shunyi) 29.85 42.31 31.90 47.06 52.32 50.98 61.46 18.48 30.47 21.29 34.15 39.34 39.23 47.94
PM2.5(Tiantan) 21.66 29.57 23.43 35.39 42.77 40.35 52.71 13.02 20.28 14.81 25.33 31.14 31.26 40.61
PM10(Tiantan) 31.87 39.49 32.64 46.63 49.95 48.29 66.24 19.77 27.14 21.81 33.58 38.27 35.56 52.29
PM2.5(Wanliu) 20.17 32.53 23.98 36.08 38.91 46.01 58.76 12.07 22.61 15.19 25.75 29.16 34.20 47.04
PM10(Wanliu) 30.52 38.05 31.56 46.37 48.98 48.98 74.51 19.81 26.85 21.59 34.05 37.16 38.00 60.57

PM2.5(Wanshouxigong) 23.16 33.43 26.76 39.55 43.02 41.79 56.57 13.91 23.31 17.18 28.43 32.55 31.89 44.77
PM10(Wanshouxigong) 33.15 42.18 34.53 50.02 52.35 52.84 67.78 21.04 29.82 23.68 36.76 39.20 40.11 54.08

In brief, the obtained results confirm the efficacy and efficiency of our proposed

model employing four high-dimensional time series containing 27, 29, 66, and 132 variables

from three data sets in IoT applications. In other words, for all case studies, the ideal

forecasting accuracy has been achieved using MIMO-FCM over other competing algorithms

with regard to average NRMSE. Additionally, the experimental results justify that the

performance of RNN models is close to each other in most cases. The other noteworthy

point is that RNN models are less accurate than our proposed model. One of the possible

hypotheses is related to the number of samples of data sets. In other words, the more

samples, the more accurate the RNN models. More specifically, stacked LSTM is classified

as the worst model because of the insufficient harmony associated with the number of

samples and the complexity of the model. However, promising results have been generated

by SLSTM in comparison to the SVR approach.

Table 42 – Evaluation of the models’ accuracy in terms of average NRMSE

Methods AE-DS SH-DS AQB-6 AQB-12
MFCM 0.086 0.0882 0.0973 0.109
RF 0.138 0.266 3.227 0.176
SVR 0.394 1.596 1.077 0.274

SLSTM 0.273 0.615 0.507 0.171
LSTM 0.176 0.111 0.153 0.193
GRU 0.162 0.105 0.144 0.189
RNN 0.164 0.106 0.142 0.228
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6.4.4 Statistical testing

As described in section 6.3.2, we used the Kruskall-Wallis method for statistical

comparison of our proposed model with other baseline methods. Based on the reported

p-values and test statistics in Table 43, H0 has been rejected for all data sets. Hereupon,

all the models are compared using post-hoc test. The obtained results from the Wilcoxon

test reveal that MIMO-FCM is a winning model compared to other baseline models. More

clearly, Table 44 summarizes the statistical ranking of the models (based on the times in

which H0 can not be rejected) for each data set according to the obtained results from the

Wilcoxon test. As Table 44 details, the first rank belongs to the MIMO-FCM model for all

case studies followed by RF. The complete Wilcoxon test results are also available in the

supplementary material.

In summary, it can be said that our proposed model is robust and effective with a

high ability to predict high dimensional time series. Additionally, MIMO-FCM focuses

on both aspects by designing a new frame of randomized FCMs as reservoir computing

that speeds the training process. Furthermore, as shown in Table 45, the number of

parameters of our model is considerably lower than deep learning models which results

in less complexity of our model. The reason is associated the number of parameters in

our model depends only on the number of least squares coefficients which is equal to the

number of sub-reservoirs (NSR = 2) plus one. Thereby, MIMO-FCM is more parsimonious

as well as more interpretable than deep learning models.

Table 43 – Kruskal-Wallis mean comparison test results

data set Statistic p-value Result
AE-DS 146.661 3.929e-29 H0 is rejected
SH-DS 106.861 9.255e-21 H0 is rejected
AQB-6 95.494 2.181e-18 H0 is rejected
AQB-12 127.301 4.755e-25 H0 is rejected

Table 44 – The summary of the ranking of the forecasting models

data set MFCM SLSTM LSTM GRU RNN RF SVR
AE-DS 1 6 5 3 4 2 7
SH-DS 1 6 4 2 2 2 7
AQB-6 1 3 5 3 3 2 7
AQB-12 1 3 5 4 7 2 4

6.5 Chapter’s Highlights

In this chapter, a new hybrid forecasting method was introduced to predict high

dimensional multivariate time series called MIMO-FCM. The method is inspired by inte-

grating the concepts of reservoir computing (ESN), HFCM, and embedding transformation.
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Table 45 – Comparison among the number of parameters of our proposed model with deep
learning methods

data set MFCM LSTM GRU RNN
AE-DS 3 7132 3199 1413
SH-DS 3 2687612 707532 244268
AQB-6 3 4152 2739 1353
AQB-12 3 2172 1761 939

MIMO-FCM was adopted as a MIMO FCM-based forecasting approach to predict multiple

outputs.

The structure of MIMO-FCM consists of a certain number of univariate models

based on the defined number of principal components returned by KPCA. In other words,

KPCA is applied to reduce the dimension of the original time series by extracting some

principal components. It is worth noting that each principal component is fed only as

input to the first block(sub-reservoir) of the CR-HFCM. Since the CR-HFCM has a

sequential architecture, the output from each sub-reservoir is considered as input for the

next sub-reservoir as well as input for the output layer. In the next step, the least squares

minimization technique is applied to train the output layer and generate the final predicted

value for each principal component. Finally, the inverse KPCA is applied over all the

obtained predicted values from each principal component to reach the final predicted

values.

Three high-dimensional non-stationary IoT data sets, covering 27, 29, 66, and

132 variables, were employed to evaluate the validity of our proposed method against

some popular deep learning and machine learning algorithms. The obtained results verify

the superior performance of our proposed model with low values of the effective hyper-

parameters including the number of components, map size, and reservoir size. In future

work, we intend to replace the univariate HFCM block with a multivariate one. Also,

future work intends to implement deep models by extending the shallow structure.
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7 CONCLUSION AND FUTURE WORKS

The task of TSF is to predict the future values of a phenomenon using historical

observation. Among plenty of forecasting methods presented in the literature, the usage of

FTS techniques is growing. FTS was introduced as the main substitution for traditional TSF

models to mitigate some of their drawbacks including the expensive cost of computation,

lack of scalability and explainability, and insufficient ability to deal with uncertainty and

complex problems in the real world.

Based on the presented investigations in the literature, weighted FTS methods

improve the forecasting accuracy significantly in comparison to the weightless FTS model.

Nevertheless, the right way to assign weights to each fuzzy rule remains an open challenge.

FCMs as a weighted FTS approach has achieved remarkable success in the area

of time series forecasting by extracting knowledge in FTS models. This weighted FTS

model is a kind of interpretable RNN combining the concepts of fuzzy logic and neural

networks in which the weights are learned from the data. In this model, the neurons have

special meanings, called concepts in the FCM terminology, with regard to the problem

under investigation; whereas the edges represent the causal relationships between a pair

of concepts. The usage of these weighted knowledge-based models continues to grow

in popularity more specifically due to their high potential to design more complex ML

solutions as well as their high ability to deal with uncertainties.

Likewise, a variety of univariate and multivariate FCM-based times series forecast-

ing methodologies have been presented in the literature. Designing a proper structure of

FCMs and learning weight matrices are considered the main steps of time series forecasting

using FCMs. Based on the literature, common techniques to construct the structure of

FCMs include granularity, membership values representation, Fuzzy c-means clustering,

and a combination of wavelet transformation with empirical mode decomposition (EMD).

Despite the remarkable success of FCMs in the field of time series forecasting and

analysis, there are still some challenging topics in this area. Regarding learning weights,

according to the literature, the major proportion of studies have focused on applying

population-based methods to adjust weights matrices due to some of the benefits including

lower simulation error, higher functionality, robustness, and generalization abilities in

comparison to the Hebbian-based methods. For instance, GA and PSO have been exploited

widely. However, some limitations including a time-consuming, large number of learning

hyper-parameters, a large number of learning processes, and convergence issues confined

the usage of population-based strategies. These issues encouraged the researchers to

employ other time-efficient learning techniques such as ridge regression and Bayesian ridge
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regression.

Handling high-dimensional non-stationary multivariate time series is considered

another main issue in this area. Few studies can be found in this direction. Additionally,

there is a significant gap in the literature regarding MIMO FCM-based methods.

Therefore, the core concentration of this thesis was to design new FCM-based

forecasting methodologies to predict univariate as well as low/high dimensional multivariate

time series to cope with some of these challenges. The proposed approaches introduce

new HFCM forecasting techniques integrating the concepts of FCM and FTS focusing

on both challenging aspects of FCM-based time series forecasting models: designing new

FCM frameworks to predict univariate and multivariate time series as well as speeding up

the training phase.

In my first proposed approach, a hybrid univariate forecasting model named

HFCM-FTS was introduced. HFCM-FTS combines HFCM and HOFTS, where the weight

matrices associated with the state transitions are learned via the GA from the data. The

objective of FCM is to find the weight matrices that model the causal relations among the

concepts defined in the Universe of Discourse. The model has been tested over public data

to predict solar radiation in Brazil.

Despite the success of the HFCM-FTS model when the number of concepts is low,

the proposed training methodology was very time-consuming as this number increased.

Thus, to tackle the aforementioned problem, we suggested a novel univariate time series

forecasting technique composed of a group of randomized HFCM-FTS models labeled

R-HFCM. The novelty of the proposed R-HFCM model is relevant to merging the concepts

of FCM and ESN as an efficient and particular family of RC models, where the LS

algorithm is applied to train the model. The structure of R-HFCM consists of the input

layer, reservoir layer(composed of some number of sub-reservoirs), and output layer so

that only the output layer is trainable while the weights of each sub-reservoir components

are selected randomly and kept constant during the training process. Thus, it is worth

observing that R-HFCM is much faster than HFCM-FTS. Although R-HFCM provides

advantages in both terms of building a new structure and training way, it also examines

the impact of effective parameters on forecasting accuracy.

In the next step, MO-RHFCM and MIMO-FCM (or MFCM) models were in-

troduced to fill the absence of MIMO models in the literature. Firstly, we developed

MO-RHFCM to predict low-dimensional multivariate time series. MO-RHFCM is a hybrid

method integrating the concepts of MVFTS, HFCM, and ESN using LS as the learning

algorithm. As an extended frame of R-HFCM, MO-RHFCM consists of three layers in-

cluding an input layer, an intermediate layer(reservoir), and an output layer where the

least squares algorithm is applied to train the output layer in the model. In MO-RHFCM,

each sub-reservoir is constructed by a multivariate MVFCM-FTS model. MVFCM-FTS
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is a combination of MVFTS and randomized HFCM with the same weight initialization

strategy. In this model, each sub-reservoir is fed by all the variables. Therefore, each

sub-reservoir generates multiple outputs which depend on the number of variables in the

input time series. One further feature that sets MO-RHFCM apart from the majority

of discussed techniques in the literature is that each variable is not characterized by a

single concept. It means that each variable is presented by one FCM considering the

user-defined number of concepts which can be considered an efficient solution for modeling

the dynamics of complex systems.

Since MO-RHFCM was constructed to predict multivariate datasets with low

dimensions, in the second scenario we developed another MIMO technique named MFCM

with the ability to handle high-dimensional multivariate datasets. More specifically, MFCM

is a hybrid method combining kernel principal component (KPCA), HFCM, and ESN.

Firstly, the original data set is transmitted through KPCA to create principal components

defined by the user. Then each component is fed to each sub-reservoir to be predicted

by one univariate cascade randomized HFCM unit. Finally, inverse KPCA is applied to

reconstruct the original time series. Interestingly, the underlying model within MFCM is

composed of cascaded R-HFCM models with different architectures such that only the

output layer is trainable using the LS algorithm. The weights inside each sub-reservoir are

selected randomly and remain fixed during the training process. To compare the proposed

MFCM technique with some baseline methods, real-world high-dimensional time series in

IoT applications with more than 100 variables were employed to evaluate the performance

of the proposed method.

The obtained results show the success of our proposed models using several

univariate datasets as well as multivariate datasets (either low-dimensional or high-

dimensional time series) with competitive and promising results when compared to other

FTS methods and some state-of-the-art machine learning and deep learning methods. Also,

noteworthy that our proposed models are cheap computationally and more parsimonious

than other deep-learning models.

7.1 Summary of contributions

Thus, the continuations of this investigation can be listed as follows:

1. A comprehensive review of up-to-date FCM-based time series forecasting techniques

until mid-2022;

2. Proposal of a new hybrid forecasting method based on FCM, named HFCM-FTS, as

a combination of HFCM and HOFTS, where weights are learned via the GA;
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3. First introduction of randomized FCMs as reservoir computing called R-HFCM. This

leads to a hybrid univariate FTS forecasting model trained via LS as time-effective

learning;

4. A study of the effect of the main influential elements on the accuracy performance

of the proposed models;

5. The first proposal of MIMO FCM-based forecasting methods to predict:

(a) low-dimensional multivariate time series termed MO-RHFCM combining the

concepts of multivariate FTS (MVFTS), randomized HFCM, and ESN trained via

LS;

(b) high-dimensional multivariate time series labeled MFCM integrating the concepts

of embedding (KPCA), FCM, and ESN trained via LS;

6. Evaluating the effectiveness of the proposed: (a) univariate techniques as well as

MO-RHFCM model to predict solar radiance and electric load consumption; (b)

MFCM model on four high-dimensional non-stationary time series with more than

100 variables in IoT applications (smart cities and smart buildings).

7.2 Methods limitations and future investigations

Although this study covered some gaps in the field of TSF using FCM, there are

still some limitations and gaps. Some of these limitations are summarized as follows.

Our proposed methods still comprise weaknesses in dealing with nonstationarity,

outliers, and concept drifts. The other limitation of our proposed models is related to

the forecasting horizon because they have been constructed to forecast one step ahead

(H=1). Also, our proposed models do not provide the possibility of probabilistic and

interval forecasting. The final limitation is relevant to the lack of hyperparameters (Hp)

optimization because they are tuned empirically in our methods.

Therefore, some future research directions should be stated as follows, although

some of them are derived from the methods’ limitations:

1. Extending our one-step ahead forecasting models to multi-steps ahead;

2. Enabling our models to handle outliers and concept drift challenges in non-stationary

time series;

3. To the best of our knowledge, there is no probabilistic FCM-based forecasting method

in the literature. As such, we intend to equip our randomized methods with these

capabilities;
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4. The use of an optimization technique to find a well-performing HP configuration of

the proposed models on the given data set;

5. Extending our shallow MIMO techniques to deep randomized HFCM model;

6. Apply and develop our proposed methods in other applications such as hydrology,

medicine, etc;

7. Investigating the interpretability of the proposed methods.
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TAN, C. O.; ÖZESMI, U. A generic shallow lake ecosystem model based on collective
expert knowledge. Hydrobiologia, v. 563, p. 125–142, 2005.



REFERENCES 181

TEALAB, A. Time series forecasting using artificial neural networks methodologies: A
systematic review. Future Computing and Informatics Journal, Elsevier, v. 3, n. 2, p.
334–340, 2018.

TSADIRAS, A. K. Comparing the inference capabilities of binary, trivalent and sigmoid
fuzzy cognitive maps. Inf. Sci., Elsevier Science Inc., USA, v. 178, n. 20, p. 3880–3894,
out. 2008. ISSN 0020-0255.

TSADIRAS, A. K.; MARGARITIS, K. G. An experimental study of the dynamics of the
certainty neuron fuzzy cognitive maps. Neurocomputing, Elsevier, v. 24, n. 1-3, p. 95–116,
1999.

TSAIH, R.; HSU, Y.; LAI, C. C. Forecasting sp 500 stock index futures with a hybrid
ai system. Decis. Support Syst., Elsevier Science Publishers B. V., NLD, v. 23, n. 2, p.
161–174, jun. 1998. ISSN 0167-9236.

VANHOENSHOVEN, F. et al. Pseudoinverse learning of fuzzy cognitive maps for
multivariate time series forecasting. Applied Soft Computing, Elsevier, v. 95, p. 106461,
2020.

VANHOENSHOVEN, F. et al. Fuzzy cognitive maps employing arima components for
time series forecasting. In: . [S.l.: s.n.], 2018. p. 255–264. ISBN 978-3-319-59420-0.

VARGAS, C. L.; SALMERON, J. Dynamic risks modelling in erp maintenance projects
with fcm. Information Sciences, v. 256, 06 2012.

VLIET, M. van; KOK, K.; VELDKAMP, T. Linking stakeholders and modellers in
scenario studies: The use of fuzzy cognitive maps as a communication and learning tool.
In: . [S.l.: s.n.], 2010.

WANG, C. et al. Learning large-scale fuzzy cognitive maps using an evolutionary
many-task algorithm. Applied Soft Computing, v. 108, p. 107441, 04 2021.

WANG, J. et al. Deep fuzzy cognitive maps for interpretable multivariate time series
prediction. IEEE Transactions on Fuzzy Systems, IEEE, 2020.

WANG, Y. et al. A new adaptive fuzzy cognitive map-based forecasting model for time
series. In: 2019 IEEE 14th International Conference on Intelligent Systems and Knowledge
Engineering (ISKE). [S.l.: s.n.], 2019. p. 1112–1118.

WANG, Y. et al. Training novel adaptive fuzzy cognitive map by knowledge-guidance
learning mechanism for large-scale time-series forecasting. IEEE Transactions on
Cybernetics, p. 1–12, 2021.

WANG, Y. et al. The trend-fuzzy-granulation-based adaptive fuzzy cognitive map for
long-term time series forecasting. IEEE Transactions on Fuzzy Systems, p. 1–1, 2022.

WEI, Z.; LU, L.; YANCHUN, Z. Using fuzzy cognitive time maps for modeling and
evaluating trust dynamics in the virtual enterprises. Expert Systems with Applications,
v. 35, p. 1583–1592, 11 2008.

WOJCIECH, F.; JUSZCZUK, P. Predictive capabilities of adaptive and evolutionary
fuzzy cognitive maps - a comparative study. In: . [S.l.: s.n.], 2009. v. 252, p. 153–174.
ISBN 978-3-642-04169-3.



REFERENCES 182

WU, K.; LIU, J. Robust learning of large-scale fuzzy cognitive maps via the lasso from
noisy time series. Know.-Based Syst., Elsevier Science Publishers B. V., NLD, v. 113,
n. C, p. 23–38, dez. 2016. ISSN 0950-7051.

WU, K. et al. Time series prediction using sparse autoencoder and high-order fuzzy
cognitive maps. IEEE Transactions on Fuzzy Systems, IEEE, v. 28, n. 12, p. 3110–3121,
2019.

XIROGIANNIS, G.; GLYKAS, M. Fuzzy cognitive maps in business analysis and
performance-driven change. Engineering Management, IEEE Transactions on, v. 51, p.
334 – 351, 09 2004.

XIXI, Y.; DING, F.; LUO, C. Time series prediction based on high-order intuitionistic
fuzzy cognitive maps with variational mode decomposition. Soft Computing, v. 26, p.
1–13, 01 2022.

YAN-CHUN, Z.; WEI, Z. R. An integrated framework for learning fuzzy cognitive
map using rcga and nhl algorithm. 2008 4th International Conference on Wireless
Communications, Networking and Mobile Computing, p. 1–5, 2008.

YANG, Z.; LIU, J. Learning of fuzzy cognitive maps using a niching-based multi-modal
multi-agent genetic algorithm. Applied Soft Computing, v. 74, p. 356–367, 2019. ISSN
1568-4946.

YANG, Z.; LIU, J. Learning fuzzy cognitive maps with convergence using a multi-agent
genetic algorithm. Soft Computing, v. 24, p. 4055–4066, 2020.

YANG, Z.; LIU, J.; WU, K. Learning of boosting fuzzy cognitive maps using a real-coded
genetic algorithm. In: IEEE. 2019 IEEE Congress on Evolutionary Computation (CEC).
[S.l.], 2019. p. 966–973.

YAO, X.; WANG, Z. An intelligent interconnected network with multiple reservoir
computing. Applied Soft Computing, v. 78, p. 286–295, 2019. ISSN 1568-4946.

YE, N. et al. Learning fuzzy cognitive maps using decomposed parallel ant colony
algorithm and gradient descent. In: IEEE. 2015 12th International Conference on Fuzzy
Systems and Knowledge Discovery (FSKD). [S.l.], 2015. p. 78–83.

YESIL, E. et al. Fuzzy cognitive maps learning using artificial bee colony optimization.
2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), p. 1–8, 2013.

YESIL, E.; URBAS, L. Big bang - big crunch learning method for fuzzy cognitive maps.
11 2010.

YU, H.-K. Weighted fuzzy time series models for taiex forecasting. Physica A: Statistical
Mechanics and its Applications, Elsevier, v. 349, n. 3-4, p. 609–624, 2005.

YU, T. et al. A new fuzzy cognitive maps classifier based on capsule network.
Knowledge-Based Systems, v. 250, p. 108950, 2022. ISSN 0950-7051.

YUAN, K. et al. Time series forecasting based on kernel mapping and high-order fuzzy
cognitive maps. Knowledge-Based Systems, Elsevier, v. 206, p. 106359, 2020.



REFERENCES 183

ZAMORA-MARTINEZ, F. et al. On-line learning of indoor temperature forecasting
models towards energy efficiency. Energy and Buildings, Elsevier, v. 83, p. 162–172, 2014.

ZHANG, H.; SHEN, Z.; MIAO, C. Train fuzzy cognitive maps by gradient residual
algorithm. In: IEEE. 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE
2011). [S.l.], 2011. p. 1815–1821.

ZHANG, S. et al. Cautionary tales on air-quality improvement in beijing. Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences, The Royal Society
Publishing, v. 473, n. 2205, p. 20170457, 2017.

ZHANG, S. et al. Deep fuzzy echo state networks for machinery fault diagnosis. Trans.
Fuz Sys., IEEE Press, v. 28, n. 7, p. 1205–1218, jul 2020. ISSN 1063-6706.

ZHANG, W.; ZHANG, X.; SUN, Y. A new fuzzy cognitive map learning algorithm for
speech emotion recognition. Mathematical Problems in Engineering, v. 2017, p. 1–12, 07
2017.

ZHENG, K. et al. Long-short term echo state network for time series prediction. IEEE
Access, IEEE, v. 8, p. 91961–91974, 2020.

ZOU, X.; LIU, J. A mutual information-based two-phase memetic algorithm for large-scale
fuzzy cognitive map learning. IEEE Transactions on Fuzzy Systems, v. 26, n. 4, p.
2120–2134, 2018.



184

A Long Tables- Complete R-HFCM results for Malaysia, NREL, and GEFCom2012

Table 46 represents the obtained results for the proposed R-HFCM model con-

sidering various values of order Ω, map size k and reservoir size NSR in terms of average

RMSE, MAPE and U metrics for Malaysia dataset.

Table 47 shows a summary of the obtained results using R-HFCM considering

various values of Ω, k, and NSR in terms of average RMSE for NREL and GEFCom2012

datasets.

Table 46 – Complete results of the proposed R-HFCM for different values of Ω, k, and

NSR in terms of average RMSE, MAPE, and U metrics (Malaysia data).

Begin of Table

k Ω NSR RMSE MAPE U k Ω NSR RMSE MAPE U

2 8057.492 15.383 1.756 2 9314.501 18.539 2.034

5 4416.291 7.250 0.963 5 5100.143 9.293 1.115

10 2721.366 4.467 0.595 10 2955.623 4.829 0.644

20 2520.703 4.017 0.551 20 2519.803 4.134 0.551

3 2 30 2385.128 3.739 0.521 4 2 30 2384.070 3.796 0.520

40 2323.078 3.580 0.508 40 2350.703 3.702 0.513

60 2313.620 3.489 0.506 60 2329.441 3.592 0.526

70 2314.204 3.476 0.506 70 2422.967 3.551 0.530

80 2365.847 3.482 0.518 80 2422.717 3.561 0.530

2 9235.783 18.176 2.012 2 10470.710 21.085 2.286

5 5897.559 10.426 1.284 5 6634.820 12.414 1.445

10 3129.842 5.343 0.683 10 3431.517 5.830 0.747

20 2412.889 3.961 0.527 20 2498.325 3.199 0.546

3 3 30 2333.533 3.804 0.509 4 3 30 2315.558 3.718 0.505

40 2240.754 3.637 0.489 40 2245.132 3.562 0.490

60 2100.133 3.297 0.46 60 2116.214 3.337 0.462

70 2078.911 3.168 0.454 70 2076.996 3.266 0.454

80 2096.302 3.231 0.460 80 2064.286 3.191 0.451

2 9850.804 19.581 2.147 2 10872.103 22.463 2.377

5 5920.061 10.522 1.288 5 7416.954 14.344 1.620

10 3804.708 6.834 0.830 10 4473.214 7.977 0.972

20 2494.743 4.187 0.544 20 2687.664 4.471 0.586

3 4 30 2299.614 3.818 0.503 4 4 30 2378.232 3.866 0.520

40 2235.445 3.674 0.488 40 2269.199 3.629 0.496

60 2124.831 3.4011 0.464 60 2150.956 3.422 0.470

70 2065.715 3.184 0.452 70 2141.944 3.371 0.469

80 2123.815 3.273 0.465 80 2092.803 3.269 0.459

2 10515.150 21.210 2.292 2 11607.423 24.051 2.532

5 7045.649 13.428 1.535 5 8193.999 15.761 1.782

10 4314.591 7.782 0.940 10 4410.328 7.996 0.958
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Continuation of Table 46

k Ω NSR RMSE MAPE U k Ω NSR RMSE MAPE U

20 2527.866 4.444 0.552 20 2833.951 4.801 0.617

3 5 30 2137.298 3.593 0.467 4 5 30 2343.558 3.950 0.512

40 2010.003 3.335 0.439 40 2100.606 3.505 0.459

60 1943.688 3.178 0.425 60 1961.00 3.1405 0.429

70 1895.067 3.103 0.413 70 1904.884 3.048 0.417

80 1870.096 3.033 0.409 80 1911.764 3.049 0.417

2 9849.642 19.661 2.151 2 10916.727 22.136 2.383

5 6204.021 11.516 1.354 5 7716.306 14.360 1.684

10 3069.797 5.134 0.670 10 4275.027 7.342 0.935

20 2540.412 4.084 0.555 20 2634.038 4.308 0.576

5 2 30 2390.658 3.792 0.522 7 2 30 2462.800 3.982 0.538

40 2368.729 3.723 0.518 40 2444.084 3.898 0.534

60 2474.040 3.614 0.543 60 2481.736 3.750 0.543

70 2563.532 3.604 0.561 70 2739.217 3.710 0.600

80 2447.504 3.540 0.535 80 2815.926 3.760 0.615

2 10748.072 22.080 2.348 2 11529.570 23.683 2.514

5 7076.185 13.441 1.542 5 8761.517 16.783 1.909

10 4193.412 7.542 0.915 10 5793.352 10.465 1.265

20 2546.370 4.170 0.555 20 2809.531 4.833 0.614

5 3 30 2327.434 3.797 0.507 7 3 30 2393.709 3.972 0.522

40 2217.739 3.579 0.484 40 2294.180 3.766 0.501

60 2090.421 3.281 0.456 60 2192.973 3.518 0.480

70 2074.233 3.212 0.452 70 2125.343 3.375 0.464

80 2065.736 3.153 0.450 80 2169.000 3.376 0.474

2 11536.614 23.738 2.521 2 11959.080 24.904 2.609

5 8838.086 17.710 1.928 5 9392.704 18.249 2.048

10 5315.146 10.145 1.1622 10 6626.356 12.268 1.446

20 2742.238 4.690 0.598 20 3445.598 6.147 0.754

5 4 30 2440.293 4.061 0.532 7 4 30 2574.640 4.423 0.562

40 2271.706 3.745 0.496 40 2340.258 3.919 0.511

60 2114.182 3.378 0.462 60 2186.663 3.569 0.478

70 2097.599 3.344 0.457 70 2117.565 3.464 0.463

80 2047.606 3.215 0.447 80 2160.816 3.497 0.473

2 11884.637 24.509 2.592 2 12302.511 25.617 2.682

5 8722.499 17.185 1.904 5 9927.018 19.490 2.165

10 5876.603 11.464 1.281 10 7192.6139 13.568 1.569

20 2989.220 5.394 0.653 20 4196.601 7.5486 0.917

5 5 30 2362.917 4.003 0.515 7 5 30 2726.0522 4.699 0.595

40 2173.468 3.663 0.474 40 2323.451 3.960 0.507

60 1981.024 3.278 0.432 60 2042.421 3.377 0.446

70 1900.525 3.092 0.414 70 1969.191 3.253 0.430

80 1872.116 3.043 0.409 80 1955.056 3.213 0.427

2 12046.617 25.150 2.631 2 12662.432 26.684 2.764

5 9333.250 18.306 2.037 5 10630.154 21.306 2.320

10 6330.156 11.535 1.382 10 8472.634 16.398 1.849
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Continuation of Table 46

k Ω NSR RMSE MAPE U k Ω NSR RMSE MAPE U

20 2957.031 4.781 0.648 20 5067.756 9.116 1.105

30 2806.552 4.321 0.617 30 3236.711 5.493 0.707

10 2 40 3119.889 4.470 0.691 10 4 40 2769.708 4.587 0.608

60 4534.300 4.928 1.006 60 2400.924 3.887 0.525

70 11547.010 9.276 2.622 70 2313.466 3.726 0.507

80 14393.648 10.386 3.235 80 2464.105 3.765 0.544

2 12343.679 25.831 2.692 2 12953.864 27.442 2.825

5 10160.819 20.253 2.216 5 11054.099 22.3242 2.411

10 7638.937 14.400 1.665 10 9005.943 17.557 1.966

20 3816.230 6.730 0.832 20 5890.285 11.116 1.287

10 3 30 2692.0748 4.233 0.590 10 5 30 3900.382 7.018 0.852

40 2659.655 4.166 0.585 40 2777.466 4.877 0.605

60 2521.522 3.854 0.555 60 2364.608 3.811 0.519

70 3026.792 4.089 0.669 70 2166.487 3.604 0.475

80 2661.02 3.855 0.588 80 2137.144 3.447 0.467

End of Table

Table 47 – Complete results of the proposed R-HFCM for different values of order, map

size and reservoir size in terms of average RMSE (NREL and GEFCom2012

datasets).

Begin of Table

NREL(DHHL 1) NREL(DHHL 2) NREL(DHHL 3)

k NSR Ω RMSE k NSR Ω RMSE k NSR Ω RMSE

3 91.891 3 93.058 3 96.114

3 20 4 90.152 3 20 4 91.315 3 20 4 93.770

5 90.189 5 90.983 5 93.572

3 89.671 3 90.764 3 94.206

3 40 4 87.932 3 40 4 89.039 3 40 4 91.369

5 86.687 5 87.593 5 89.856

3 92.359 3 93.162 3 99.313

3 60 4 88.029 3 60 4 89.500 3 60 4 90.427

5 86.421 5 87.206 5 89.634

3 91.929 3 93.287 3 96.287

4 20 4 90.796 4 20 4 91.613 4 20 4 94.256

5 91.455 5 92.085 5 94.231

3 91.183 3 91.893 3 96.247

4 40 4 87.327 4 40 4 89.910 4 40 4 92.3987

5 86.798 5 88.675 5 90.168

3 102.594 3 96.277 3 99.341

4 60 4 88.960 4 60 4 90.665 4 60 4 93.137

5 86.936 5 88.843 5 90.984

3 92.512 3 94.017 3 96.590

5 20 4 92.833 5 20 4 95.055 5 20 4 96.340
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Continuation of Table 47

k NSR Ω RMSE k NSR Ω RMSE k NSR Ω RMSE

5 98.437 5 97.622 5 101.391

3 90.468 3 91.909 3 94.634

5 40 4 88.849 5 40 4 89.561 5 40 4 91.090

5 87.823 5 88.770 5 90.582

3 92.068 3 93.049 3 95.483

5 60 4 87.950 5 60 4 89.355 5 60 4 91.753

5 86.647 5 86.154 5 89.050

GEFCom2012(zone 1) GEFCom2012(zone 2) GEFCom2012(zone 3)

3 950.226 3 6043.718 3 6782.452

3 20 4 779.530 3 20 4 5964.476 3 20 4 6452.415

5 764.601 5 6071.217 5 6719.522

3 4347.515 3 8994.901 3 8789.426

3 40 4 1277.452 3 40 4 6210.837 3 40 4 6566.107

5 834.066 5 6136.744 5 6402.676

3 19132.751 3 15940.346 3 23764.711

3 60 4 1208.587 3 60 4 7900.542 3 60 4 7520.464

5 1147.397 5 7181.690 5 6871.729

3 753.464 3 5711.891 3 6153.115

4 20 4 769.604 4 20 4 5753.411 4 20 4 6423.982

5 847.805 5 6167.448 5 6736.355

3 1027.872 3 6037.326 3 6889.979

4 40 4 738.129 4 40 4 5608.940 4 40 4 5984.054

5 716.364 5 5531.027 5 5837.610

3 2237.307 3 9965.255 3 10904.258

4 60 4 864.482 4 60 4 6312.521 4 60 4 6903.886

5 732.174 5 5676.048 5 6061.141

3 828.133 3 5844.780 3 6281.373

5 20 4 963.518 5 20 4 6592.041 5 20 4 7028.272

5 1008.525 5 7591.047 5 8239.029

3 973.594 3 5910.525 3 6720.246

5 40 4 805.513 5 40 4 5734.343 5 40 4 6284.737

5 816.769 5 5556.940 5 6279.130

3 2048.510 3 8388.159 3 7968.098

5 60 4 934.968 5 60 4 6526.877 5 60 4 6551.153

5 839.134 5 5922.283 5 6271.211

End of Table
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B Complete statistical results for SONDA, NREL, GEFCom2012, and PJM data

Complete statistical results for evaluating our proposed R-HFCM model against other methods

Table 48 – Wilcoxon post hoc test results for SONDA dataset.

Comparison Statistic p-value Result
R-HFCM vs PWFTS 0.0 0.999999 H0 is accepted

R-HFCM vs HFCM-FTS 55.0 0.999922 H0 is accepted
R-HFCM vs HOFTS 0.0 0.999999 H0 is accepted

R-HFCM vs WHOFTS 0.0 0.999999 H0 is accepted
PWFTS vs R-HFCM 496.0 5.867e-07 H0 is rejected

PWFTS vs HFCM-FTS 124.0 0.992451 H0 is accepted
PWFTS vs HOFTS 0.0 0.999999 H0 is accepted

PWFTS vs WHOFTS 203.0 0.811069 H0 is accepted
HFCM-FTS vs R-HFCM 441.0 7.774e-05 H0 is rejected
HFCM-FTS vs PWFTS 372.0 0.007548 H0 is rejected
HFCM-FTS vs HOFTS 0.0 0.999999 H0 is accepted

HFCM-FTS vs WHOFTS 361.0 0.013400 H0 is rejected
HOFTS vs R-HFCM 496.0 5.877e-07 H0 is rejected
HOFTS vs PWFTS 496.0 5.877e-07 H0 is rejected

HOFTS vs HFCM-FTS 496.0 5.877e-07 H0 is rejected
HOFTS vs WHOFTS 496.0 5.877e-07 H0 is rejected
WHOFTS vs R-HFCM 496.0 5.870e-07 H0 is rejected
WHOFTS vs PWFTS 293.0 0.188930 H0 is accepted

WHOFTS vs HFCM-FTS 135.0 0.986599 H0 is accepted
WHOFTS vs HOFTS 0.0 0.999999 H0 is accepted

Table 49 – Kruskal-Wallis mean comparison test results for datasets NREL (DHHL 1,
DHHL 2, DHHL 3), GEFCom2012 (zone1, zone2, zone3) and PJM (AEP and

DEOK)

Dataset Statistic p-value Result
PJM(DEOK) 86.912 1.008e-18 H0 is rejected
PJM(AEP) 98.453 3.341e-21 H0 is rejected

GEFCom2012 (zone1) 100.789 1.051e-21 H0 is rejected
GEFCom2012 (zone2) 106.725 5.558e-23 H0 is rejected
GEFCom2012 (zone3) 106.972 4.918e-23 H0 is rejected

NREL(DHHL 1) 77.547 1.030e-16 H0 is rejected
NREL(DHHL 2) 80.421 2.492e-17 H0 is rejected
NREL(DHHL 3) 79.768 3.441e-17 H0 is rejected
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Table 50 – Wilcoxon post hoc test results for datasets NREL (DHHL 1, DHHL 2, DHHL 3),

GEFCom2012 (zone1, zone2, zone3) and PJM (AEP and DEOK)

Dataset Comparison Statistic Adjusted p-vale Result

DEOK

R-HFCM vs PWFTS 86.0 0.999249 H0 is accepted

R-HFCM vs LSTM 30.0 0.999990 H0 is accepted

R-HFCM vs ESN 31 0.999989 H0 is accepted

PWFTS vs R-HFCM 410.0 0.000750 H0 is rejected

R-HFCM vs LSTM 0.0 0.999990 H0 is accepted

R-HFCM vs ESN 31 0.999989 H0 is accepted

LSTM vs R-HFCM 466.0 9.688e-06 H0 is rejected

LSTM vs PWFTS 496.0 5.870e-07 H0 is rejected

LSTM vs ESN 158.0 0.961107 H0 is accepted

ESN vs R-HFCM 465.0 1.057e-5 H0 is rejected

ESN vs PWFTS 496.0 5.870e-07 H0 is rejected

ESN vs LSTM 338.0 0.038892 H0 is rejected

AEP

R-HFCM vs PWFTS 157.0 0.962730 H0 is accepted

R-HFCM vs LSTM 0.0 0.999999 H0 is accepted

R-HFCM vs ESN 0.0 0.999999 H0 is accepted

PWFTS vs R-HFCM 339.0 0.037269 H0 is rejected

PWFTS vs LSTM 0.0 0.999999 H0 is accepted

PWFTS vs ESN 0.0 0.999999 H0 is accepted

LSTM vs R-HFCM 496.0 5.870e-07 H0 is rejected

LSTM vs PWFTS 496.0 5.870e-07 H0 is rejected

LSTM vs ESN 485.0 1.705e-06 H0 is rejected

ESN vs R-HFCM 496.0 5.870e-07 H0 is rejected

ESN vs PWFTS 496.0 5.870e-07 H0 is rejected

ESN vs LSTM 11.0 0.999998 H0 is accepted

GEFCom2012 (zone1)

RHFCM vs PWFTS 0.0 0.999999 H0 is accepted

R-HFCM vs LSTM 0.0 0.999999 H0 is accepted

R-HFCM vs ESN 0.0 0.999999 H0 is accepted

PWFTS vs R-HFCM 496.0 5.870e-07 H0 is rejected

PWFTS vs LSTM 0.0 0.999999 H0 is accepted

PWFTS vs ESN 0.0 0.999999 H0 is accepted

LSTM vs R-HFCM 496.0 5.870e-07 H0 is rejected

LSTM vs PWFTS 496.0 5.870e-07 H0 is rejected

LSTM vs ESN 475.0 4.325e-06 H0 is rejected

ESN vs R-HFCM 496.0 5.870e-07 H0 is rejected

ESN vs PWFTS 496.0 5.870e-07 H0 is rejected

ESN vs LSTM 21.0 0.999995 H0 is accepted

R-HFCM vs PWFTS 1.0 0.999999 H0 is accepted

R-HFCM vs LSTM 0.0 0.999999 H0 is accepted

R-HFCM vs ESN 0.0 0.999999 H0 is accepted

GEFCom2012 (zone2) PWFTS vs R-HFCM 495.0 6.480e-07 H0 is rejected

PWFTS vs LSTM 0.0 0.999999 H0 is accepted

PWFTS vs ESN 0.0 0.999999 H0 is accepted

Continued on next page
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Table 50 – continued from previous page

Dataset Comparison Statistic Adjusted p-value Result

LSTM vs R-HFCM 496.0 5.870e-07 H0 is rejected

LSTM vs PWFTS 496.0 5.870e-07 H0 is rejected

GEFCom2012 (zone2) LSTM vs ESN 496.0 5.870e-07 H0 is rejected

ESN vs R-HFCM 496.0 5.870e-07 H0 is rejected

ESN vs PWFTS 496.0 5.870e-07 H0 is rejected

ESN vs LSTM 0.0 0.999995 H0 is accepted

GEFCom2012 (zone3)

R-HFCM vs PWFTS 3.0 0.999999 H0 is accepted

R-HFCM vs LSTM 0.0 0.999999 H0 is accepted

R-HFCM vs ESN 0.0 0.999999 H0 is accepted

PWFTS vs R-HFCM 493.0 7.887e-07 H0 is rejected

PWFTS vs LSTM 0.0 0.999999 H0 is accepted

PWFTS vs ESN 0.0 0.999999 H0 is accepted

LSTM vs R-HFCM 496.0 5.870e-07 H0 is rejected

LSTM vs PWFTS 496.0 5.870e-07 H0 is rejected

LSTM vs ESN 496.0 5.870e-07 H0 is rejected

ESN vs R-HFCM 496.0 5.870e-07 H0 is rejected

ESN vs PWFTS 496.0 5.870e-07 H0 is rejected

ESN vs LSTM 0.0 0.999995 H0 is accepted

NREL(DHHL 1)

R-HFCM vs PWFTS 1.0 0.999999 H0 is accepted

R-HFCM vs LSTM 29.0 0.9999991 H0 is accepted

R-HFCM vs ESN 0.0 0.999999 H0 is accepted

PWFTS vs R-HFCM 495.0 6.480e-07 H0 is rejected

PWFTS vs LSTM 406.0 0.0009799 H0 is accepted

PWFTS vs ESN 0.0 0.999999 H0 is accepted

LSTM vs R-HFCM 467.0 8.867e-06 H0 is rejected

LSTM vs PWFTS 90.0 0.999020 H0 is accepted

LSTM vs ESN 0.0 0.999999 H0 is accepted

ESN vs R-HFCM 496.0 5.870e-07 H0 is rejected

ESN vs PWFTS 496.0 5.870e-07 H0 is rejected

ESN vs LSTM 0.0 0.999995 H0 is accepted

NREL(DHHL 2)

R-HFCM vs PWFTS 0.0 0.999999 H0 is accepted

R-HFCM vs LSTM 109.0 0.996774 H0 is accepted

R-HFCM vs ESN 0.0 0.999999 H0 is accepted

PWFTS vs R-HFCM 496.0 5.870e-07 H0 is rejected

PWFTS vs LSTM 492.0 8.697e-07 H0 is rejected

PWFTS vs ESN 0.0 0.999999 H0 is accepted

LSTM vs R-HFCM 387.0 0.003225 H0 is rejected

LSTM vs PWFTS 4.0 0.999999 H0 is accepted

LSTM vs ESN 0.0 0.999999 H0 is accepted

ESN vs R-HFCM 496.0 5.870e-07 H0 is rejected

ESN vs PWFTS 496.0 5.870e-07 H0 is rejected

ESN vs LSTM 496.0 5.870e-07 H0 is rejected

R-HFCM vs PWFTS 0.0 0.999999 H0 is accepted

NREL(DHHL 3) R-HFCM vs LSTM 116.0 0.995155 H0 is accepted

Continued on next page
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Table 50 – continued from previous page

Dataset Comparison Statistic Adjusted p-value Result

R-HFCM vs ESN 0.0 0.999999 H0 is accepted

PWFTS vs R-HFCM 496.0 5.870e-07 H0 is rejected

PWFTS vs LSTM 492.0 8.697e-07 H0 is rejected

PWFTS vs ESN 0.0 0.999999 H0 is accepted

LSTM vs R-HFCM 380.0 0.004844 H0 is rejected

NREL(DHHL 3) LSTM vs PWFTS 0.0 0.999999 H0 is accepted

LSTM vs ESN 0.0 0.999999 H0 is accepted

ESN vs R-HFCM 496.0 5.870e-07 H0 is rejected

ESN vs PWFTS 496.0 5.870e-07 H0 is rejected

ESN vs LSTM 496.0 5.870e-07 H0 is rejected


	Title page
	Dedication
	
	
	
	
	Contents
	INTRODUCTION
	Objectives
	Thesis Structure

	FUZZY COGNITIVE MAPS 
	Fuzzy Cognitive Map
	Fundamentals
	High Order Fuzzy Cognitive Map (HFCM)
	Advanced Aspects
	Extensions of FCM
	Dynamic Properties of FCM
	FCM against Artificial Neural Network (ANN)

	Application Domains of FCM

	Time Series Forecasting using Fuzzy Cognitive Map
	Terminology of the problem
	Design Issues
	Overview of FCM-based models in the literature

	Performance Evaluation Metrics
	Learning Algorithms
	Hebbian-Based Learning Methods
	Population-Based Learning Techniques
	Hybrid Methods
	Other Methods

	Discussion
	Chapters' Highlights

	PROPOSED HFCM-FTS TECHNIQUE
	Proposed HFCM-FTS methodology
	FCM-FTS Model
	HFCM-FTS method

	Computational Experiments
	Chapter's Highlights
	Model's limitation and challenges


	PROPOSED R-HFCM TECHNIQUE
	Echo State Network
	Proposed R-HFCM method
	Training Procedure
	 Randomized Model Initialization
	Partitioning
	 Fuzzification
	Activation
	Defuzzification
	Least Squares coefficients determination

	Forecasting Procedure
	Fuzzification
	Activation
	Defuzzification


	Computational Experiments
	Datasets
	 SONDA Dataset
	 Malaysia Dataset
	 NREL solar energy dataset
	 GEFCom 2012 load dataset
	PJM Hourly Energy Consumption Data

	Experimental Methodology
	SONDA Case Study
	The influence of map and reservoir size
	The influence of activation function (f)
	The influence of order 
	Comparison with other Fuzzy Time Series methods
	Statistical testing

	Malaysia Case Study
	 Forecasting Hourly electric load dataset
	Comparison With Other Methods

	Other case studies
	NREL dataset(DHHL_1, DHHL_2, DHHL_3)
	GEFCom2012 dataset (zone1, zone2, zone3)
	PJM dataset (AEP and DEOK)
	Comparison with other methods
	Statistical testing


	Chapter's Highlights

	PROPOSED MO-RHFCM TECHNIQUE
	Proposed MO-RHFCM model 
	Training Procedure
	 Randomized Model Initialization
	Partitioning
	Fuzzification
	Activation
	Defuzzification
	Least Squares coefficients determination

	Forecasting Procedure
	Fuzzification
	Activation
	Defuzzification


	Computational Experiments
	Case studies
	Experimental Methodology

	Results
	Parameter setting for MO-RHFCM
	Baseline models
	Comparison against baselines
	Statistical testing

	Chapter's Highlights

	PROPOSED MIMO-FCM TECHNIQUE
	Preliminaries
	Proposed MIMO-FCM model 
	Training Procedure
	Embedding
	Randomized model initialization
	Partitioning
	Fuzzification
	Activation
	Defuzzification
	Least Squares coefficients determination

	Forecasting Procedure
	Embedding:
	Fuzzification:
	Activation:
	Defuzzification


	Computational Experiments
	Case studies
	Experimental methodology

	Results
	Parameter setting for MIMO-FCM
	Baseline models
	Comparison against baselines
	Statistical testing

	Chapter's Highlights

	CONCLUSION AND FUTURE WORKS
	Summary of contributions
	Methods limitations and future investigations
	Publications

	REFERENCES
	Long Tables- Complete R-HFCM results for Malaysia, NREL, and GEFCom2012
	Complete statistical results for SONDA, NREL, GEFCom2012, and PJM data

