
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Alex Guimarães Cardoso de Sá

Automated Multi-Label Classification: Methods, Issues and Prospects

Belo Horizonte
2019

Alex Guimarães Cardoso de Sá

Automated Multi-Label Classification: Methods, Issues and Prospects

Final Version

Dissertation presented to the Graduate Program in Computer
Science of the Federal University of Minas Gerais in partial
fulfillment of the requirements for the degree of Doctor in
Computer Science.

Advisor: Gisele Lobo Pappa

Belo Horizonte
2019

© 2019, Alex Guimarães Cardoso de Sá.
 Todos os direitos reservados

 Sá, Alex Guimarães Cardoso de.

S111a Automated multi-label classification: [recurso
 eletrônico] methods, issues and prospects / Alex Guimarães
 Cardoso de Sá. 2019.
 1 recurso online (210 f. il, color.): pdf.

 Orientador: Gisele Lobo Pappa.

 Tese (Doutorado) - Universidade Federal de Minas
 Gerais, Instituto de Ciências Exatas, Departamento de Ciência
 da Computação.
 Referências: f. 136-156.

 1. Computação – Teses. 2. Aprendizado de máquina –
 Teses. 3 Classificação multirrótulo – Teses. 4.Mineração de
 dados – Teses. I. Pappa, Gisele Lobo. II. Universidade Federal
 de Minas Gerais, Instituto de Ciências Exatas, Departamento de
 Ciência da Computação. III. Título.

CDU 519.6*73(043)
Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende Costa

CRB 6/1510 - Universidade Federal de Minas Gerais - ICEx

This work is dedicated to my family: Larissa, Meire, José

Roberto and Lucas.

Acknowledgments

Eu penso que seria imposśıvel começar esta seção sem agradecer aos meus pais, José

Roberto e Meire, e ao meu irmão, Lucas. Sempre houve um apoio incondicional da parte

deles, seja no ńıvel educacional, profissional ou pessoal. Por isso, agradeço imensamente

a vocês por tudo que vocês fizeram por mim.

De forma muito especial, também gostaria de agradecer profundamente à minha

noiva, Larissa Natany, que me acompanhou pessoal e profissionalmente em todas as etapas

do meu doutorado. Eu acredito que não conseguiria finalizar o meu doutorado sem o seu

amor e companheirismo. Não tenho palavras suficientes para te agradecer.

À minha famı́lia e à famı́lia da Larissa (agora minha segunda famı́lia), que também

contribúıram de forma significativa para este trabalho, principalmente em momentos em

que nós nos reuńıamos. Esses momentos foram aqueles em que eu tinha importantes

peŕıodos de descanso e relaxamento. Em especial, gostaria de citar os meus tios e

tias (Andraiza e Sidney, Mı́riam, Mércia, Ediney, Ednaldo, Ruy e Eny), primos e pri-

mas (Let́ıcia e Lesley, em particular), Ana Tércia, Wallace, Mateus e Ana, e dona Loya.

Além disso, às minhas cadelas, Mel (in memoriam) e Amora, pela alegria e carinho.

Outros momentos que pude relaxar e descansar foram aqueles em que pude compar-

tilhar com os meus amigos e colegas. Dentre eles estão: amigos do Véio do Rio (Murdock,

Ph, Sérgio e William); amigos do LaIC VIP (Karen, Matheus, Iago e Cristiano); amigos

do grupo de F1 (Arthur, Gustavo, Léo, Hendrik, Paulo e Danilo); amigos e colegas do

LAIC (Samuel, Luiz Otávio, Tarsila, Pedro, Tiago Cunha, Renato Miranda, Marcelo,

Luis Fernando, Juliana, João Francisco e Walter); alunos/amigos de IC do LaIC com

quem trabalhei diretamente (Isadora, Felipe, Laura, Paulo e Ingrid); amigos e colegas do

e-Speed (Carlos Mazza, Vińıcius, Roberto Nalon, Gui Maluf, Gustavo, Walter, Elverton

e Derick); sifu, amigos e colegas do Tai Chi (Sifu Vânio, Túlio, Henrique, Tulio e Gláucia,

Ćıntia e Fernando); amigos e colegas do LaPO (Vinicius, Vitor, Luis Henrique, Evel-

lyn, José Mauŕıcio, Iago, Amadeu e Dilson); amigos e colegas do doutorado/qualificação

(Bruno, Victor, Júlio, Filipe, Rodrigo e Paulo); amigos e colegas que fiz enquanto estive

em Canterbury (Pablo, Fábio, Talita, Léo, Carol, Jak e An); colegas da residência em

ciência de dados (Aracelli, Fernanda e Rúbia); amigos e colegas da UFMG e aqueles que

estão espalhados pelo mundo (Afonso, Wagner e Sanye, Elerson, Michelle Brandão, David

Saldaña, Sérgio Canuto, Rafael Aquino, Saulo, Tháıs Tekka, Edoardo Fadda, Nathália e

Borges). Obrigado a todos vocês.

Também gostaria de demostrar o meu agradecimento às minhas professoras de

inglês Marcilla, Emily e Estefânia. Com certeza, pude crescer muito desde que comecei

a ter aulas com vocês e tenho certeza que certas oportunidades não viriam sem isso. Em

particular, à Marcilla, pelas ótimas conversas e pela amizade.

Aos meus psicólogos, Luciana Leão e Igor Gaigher, que me ajudaram de diferentes

formas a conseguir lidar melhor com questões pessoais e profissionais. Meu muito obrigado

a vocês dois por me ajudar tanto nessas questões.

Gostaria de dizer muito obrigado à minha orientadora, profa. Gisele Pappa, pela

orientação cont́ınua desde o meu mestrado e pelo trabalho em conjunto. Considero

que evolúı muito como profissional, no mestrado e doutorado, sob a sua supervisão. O

doutorado não é um dos momentos mais fáceis, mas com certeza foi excelente poder tra-

balhar com você para contribuir para a área de AutoML. Sem dúvidas, o nosso trabalho

continua.

Também gostaria de destacar e reconhecer a supervisão e colaboração do prof.

Alex Freitas, que me supervisionou enquanto estive na University of Kent no peŕıodo de

doutorado sandúıche. Embora tenham sido poucos meses no Reino Unido, acredito que o

aprendizado foi muito extenso. Muito obrigado por isso e pela colaboração que se manteve

em seguida. Nesse ponto, agradeço também à School of Computing da University of Kent

por me aceitar como aluno de doutorado visitante. Essa foi uma das melhores fases do

meu doutorado, visto que tive um número muito grande de ideias e vivências.

Aos funcionários e professores do DCC/UFMG, gostaria também de agradecer.

Em especial, gostaria de dizer muito obrigado aos professores Wagner Meira Jr., Adriano

César Pereira, Renato Assunção, Mário Alvim, Gabriel Coutinho e Jussara Almeida.

Além disso, meu muito obrigado às funcionárias, Antônia, Ludmila, Ermelinda e Sônia,

por toda ajuda e paciência enquanto estive no DCC. Adicionalmente, estendo o meu

agradecimento aos professores membros da banca desta tese de doutorado, André de

Carvalho, Luiz Merschmann, Adriano César Pereira e Renato Vimieiro, por aceitarem o

convite.

Por fim, gostaria de agradecer e ressaltar o apoio financeiro, técnico e cient́ıfico dos

seguintes projetos, agências de pesquisa, empresas e instituições durante o meu doutorado:

CAPES/PROEX (Código de Financiamento 001); CAPES/PDSE (número do processo:

88881.136011/2016-01); CNPq; FAPEMIG; projeto ATMOSPHERE; projeto MASWeb;

Tenbu; Laboratório e-Speed; Universidade Federal de Minas Gerais (UFMG); e Departa-

mento de Ciência da Computação (DCC-UFMG).

“Autumn is a second spring when every leaf is a flower.”

(Albert Camus, 1942)

Resumo

Aprendizado de Máquina Automatizado (AutoAM) surgiu para lidar com a tarefa de sele-

cionar automaticamente algoritmos e seus hiper-parâmetros para resolver com sucesso um

determinado problema de Aprendizado de Máquina (AM). Isto é feito principalmente para

evitar abordagens ad hoc para essa finalidade. Com a crescente popularidade dos algorit-

mos de AM e seu uso indiscriminado por profissionais que não necessariamente conhecem

as peculiaridades desses algoritmos, a área de AutoAM tornou-se mais relevante do que

nunca. Esta tese, em particular, é centrada em AutoAM para problemas de Classificação

Multirrótulo (CMR). Em CMR, cada exemplo no conjunto de dados pode estar associado

simultaneamente a vários rótulos, tornando-o uma generalização de sua versão canônica

ou monorrótulo (i.e., com a associação de um único rótulo de classe para cada exemplo).

Essencialmente, CMR se preocupa em aprender um modelo que separa os rótulos de classe

em relevantes e irrelevantes para cada exemplo da base de dados. Embora tenhamos ex-

perimentado a progressão do campo de AutoAM, que introduziu métodos eficazes para

problemas de classificação tradicional (i.e., monorrótulo) e de regressão, ainda existem

vários problemas na pesquisa de AutoAM que permanecem em aberto. Esta tese se con-

centra em três deles. Primeiro, investigamos se nossos quatro métodos AutoAM propostos

podem funcionar tão bem para problemas de CMR, assim como funcionam para proble-

mas de classificação tradicional e de regressão. Apesar dos desafios inerentes à CMR (e.g.,

a dificuldade de aprender com esse tipo de dados, o esforço para avaliar seus modelos e o

custo computacional envolvido), nossos resultados mostraram que é posśıvel desenvolver

métodos AutoAM para problemas de CMR que executam tão bem quanto, ou melhor,

do que métodos de busca conhecidos. Em segundo lugar, apresentamos uma análise

relativa ao tamanho de três espaços de busca propostos e ao desempenho dos métodos

AutoAM na recomendação de configurações de algoritmos de aprendizado. Ao aumentar

e diminuir o tamanho do espaço de busca, mostramos que os métodos AutoAM propostos

não balanceiam satisfatoriamente bem entre diversificação e intensificação, apesar de seus

resultados. Nossa análise de convergência também indicou que ainda devemos melhorar

os métodos AutoAM propostos para garantir esse balanceamento. Por fim, investigamos

como limitações de tempo distintas podem influenciar e restringir o comportamento dos

métodos de busca do AutoAM e seu desempenho preditivo geral.

Palavras-chave: Aprendizado de Máquina Automatizado, Classificação, Configuração,

Métodos de Busca, Espaços de Busca.

Abstract

Automated Machine Learning (AutoML) has emerged to deal with the task of automati-

cally selecting learning algorithms and their hyper-parameters to successfully solve a given

ML problem. This is mainly done to avoid ad hoc approaches to perform this task. With

the outgrowing popularity of Machine Learning (ML) algorithms and their indiscriminate

use by practitioners, who do not necessarily know the peculiarities of these algorithms,

the field of AutoML has become more relevant than ever. This thesis, in particular, is

centered on AutoML for Multi-Label Classification (MLC) problems. In MLC, each ex-

ample in the dataset can be simultaneously associated with several class labels, making

it a generalization of its canonical single-label version (i.e., with a single class label per

example). Essentially, MLC is concerned with learning a model that separates each class

label into relevant and irrelevant for each example in the dataset. Although we have

experienced the progression of the field of AutoML, which introduced effective methods

for Single-Label Classification (SLC) and regression problems, there are still several issues

in AutoML research that remain open. This thesis focuses on three of them. First, we

investigate if our four proposed AutoML methods can work for MLC problems as well as

they work for SLC and regression problems. Apart from the inherent challenges in MLC

(e.g., the hardness of learning from this type of data, the strain to evaluate its models,

and the computational cost involved), our results showed that it is possible to develop

AutoML methods for MLC problems that perform as good as or better than well-known

global and local search methods. Second, we present an analysis relating to the size of

three designed search spaces and the performance of the AutoML methods in recom-

mending configured learning algorithms. By increasing and decreasing the search space

size, we show that the proposed AutoML methods do not satisfactorily trade-off between

exploration (novelty) and exploitation (locality) besides their results. Our convergence

analysis also indicated that we must still improve the proposed AutoML methods (i.e.,

their internal mechanisms) to ensure this trade-off. Finally, we investigate how distinct

time budgets (constraining the whole AutoML process) can influence and constrain the

behavior of the AutoML search methods and their overall predictive performance.

Keywords: Automated Machine Learning (AutoML), Multi-Label Classification, Con-

figuration, Search Methods, Search Spaces.

List of Algorithms

2.1 A generic pseudo-code for evolutionary algorithms. 31

2.2 Example of a programming code. 33

2.3 A generic pseudo-code of Bayesian optimization. 38

5.1 General pseudo-code for evolutionary algorithms for MLC. 83

List of Boxes

2.1 Grammar for generating the tree of Figure 2.1a. 36

5.1 Defined grammar – Part 1: General and SLC trees algorithms. 76

5.2 Defined grammar – Part 2: SLC rules and lazy algorithms 77

5.3 Defined grammar – Part 3: SLC functions, Bayesian and other types of algo-

rithms. 78

5.4 Defined grammar – Part 4: SLC meta-algorithms. 79

5.5 Defined grammar – Part 5: MLC problem transformation methods. 80

5.6 Defined grammar – Part 6: MLC algorithm adaptation methods. 81

5.7 Defined grammar – Part 7: MLC meta-algorithms. 81

List of Figures

1.1 The possible hierarchy levels in MLC. 24

2.1 Examples of parse trees for Equation 2.1 and Algorithm 2.2. 34

4.1 A typical AutoML process. 56

5.1 The general AutoML framework to select and configure MLC algorithms. . . . 68

5.2 GA-Auto-MLC: The proposed genetic algorithm to select and configure MLC

algorithms. 84

5.3 Possible phenotypes of GA-Auto-MLC’s individuals (for the search space Small). 85

5.4 A possible genotype of an individual in the search space Small. 86

5.5 Evaluation process of one individual in GA-Auto-MLC. 87

5.6 Auto-MEKAGGP: The proposed GGP method to select and configure MLC

algorithms. 88

5.7 Evaluation process of one individual in Auto-MEKAGGP 88

5.8 Auto-MEKAspGGP: The proposed speciation-based GGP method to select and

configure MLC algorithms. 91

5.9 Auto-MEKABO: The proposed Bayesian optimization method to select and

configure MLC algorithms. 93

5.10 Evaluation process of one individual in Auto-MEKABO. 94

6.1 Bar plots for the algorithms’ selection at the MLC level over all runs. 120

6.2 Bar plots for the algorithms’ selection at the Meta-MLC level over all runs. . . 121

6.3 Barplots for the algorithms’ selection at the SLC level over all runs. 123

6.4 Bar plots for the algorithms’ selection at the Meta-SLC level selection over all

runs. 124

6.5 Convergence of fitness/quality values for the dataset GPP. 127

6.6 Convergence of fitness/quality values for the dataset CAL. 128

List of Tables

3.1 Overview of the PT algorithms described in Section 3.1.1. 48

3.2 Overview of the AA algorithms described in Section 3.1.2. 49

3.3 Overview of the ensemble algorithms described in Section 3.1.3. 49

5.1 Multi-Label Classification (MLC) algorithms used in the MEKA data mining

tool for the proposed AutoML methods∗. 70

5.2 Single-Label Classification (SLC) algorithms used in the WEKA data mining

tool for the proposed AutoML methods∗. 71

5.3 Estimation of the number of possibilities for the Single-Label Classification

(SLC) algorithms∗. 74

5.4 Multi-Label Classification (MLC) algorithms used in the MEKA data mining

tool for the proposed AutoML methods∗. 75

5.5 Employed polynomial multi-fidelity approach in terms of the number of at-

tributes of the dataset based on the specified time budget. 95

5.6 Employed exponential multi-fidelity approach in terms of the number of at-

tributes of the dataset based on the specified time budget. 96

5.7 Employed polynomial multi-fidelity approach in terms of the number of in-

stances of the dataset based on the specified time budget. 96

6.1 Datasets used in the experiments. 100

6.2 Results in terms of quality measure (defined in Equation 5.1) on the test set

within one hour of training for the proposed AutoML search methods. 104

6.3 Results in terms of the quality measure (defined in Equation 5.1) on the test

set within five hours of training for the proposed AutoML search methods. . . 104

6.4 Auto-MEKAspGGP ’s results based on the quality measure (defined in Equa-

tion 5.1) on the test set with the presence and absence of resampling within

one hour. 106

6.5 Auto-MEKAspGGP ’s results based on the quality measure (defined in Equa-

tion 5.1) on the test set with the presence and absence of resampling within

five hours. 106

6.6 Possible scenarios for the multi-fidelity approaches. 107

6.7 Auto-MEKAspGGP ’s multi-fidelity tuning results based on the average quality

measure (defined in Equation 5.1) on the test set within one hour. 108

6.8 Auto-MEKAspGGP ’s multi-fidelity tuning results based on the average quality

measure on the test set within five hours. 108

6.9 Auto-MEKAspGGP ’s multi-fidelity average number of generations within one

hour. 108

6.10 Auto-MEKAspGGP ’s multi-fidelity average number of generations within five

hours. 108

6.11 Auto-MEKAspGGP ’s results based on the defined quality measure on the test

set for varying the intra/inter-species crossover probabilities within one hour

of training. 110

6.12 Auto-MEKAspGGP ’s results based on the defined quality measure on the test

set for varying the intra/inter-species crossover probabilities within five hours

of training. 110

6.13 Comparison of the exact match (to be maximized) obtained by the proposed

search methods and the baseline methods in the test set for the three designed

search spaces within one and five hours of execution. 112

6.14 Comparison of the hamming loss (to be minimized) obtained by the proposed

methods and the baseline methods in the test set for the three designed search

spaces within one and five hours of execution. 113

6.15 Comparison of the F1 macro-averaged by label (to be maximized) obtained by

the proposed methods and the baseline methods in the test set for the three

designed search spaces within one and five hours of execution. 114

6.16 Comparison of the ranking loss (to be minimized) obtained by the proposed

methods and the baseline methods in the test set for the three designed search

spaces within one and five hours of execution. 115

6.17 Comparison of the fitness (to be maximized) obtained by the proposed methods

and the baseline methods in the test set for the three designed search spaces

within one and five hours of execution. 116

Contents

1 Introduction 19

1.1 Motivation . 22

1.2 Objectives . 26

1.3 Contributions . 27

1.4 Thesis Organization . 27

2 Search and Optimization Methods 29

2.1 Evolutionary Algorithms . 29

2.1.1 Genetic Algorithm . 32

2.1.2 Genetic Programming . 33

2.1.3 Grammar-Based Genetic Programming 35

2.2 Bayesian Optimization Algorithms . 37

2.2.1 Tree-Structured Parzen Estimator 39

2.2.2 Sequential Model-based Algorithm Configuration 40

2.3 Final Remarks . 40

3 Multi-Label Classification 42

3.1 Categorization of MLC Methods . 43

3.1.1 Problem Transformation Methods 44

3.1.2 Algorithm Adaptation Methods . 45

3.1.3 Ensembles Methods . 46

3.1.4 Overview of the MLC Algorithms 48

3.2 Evaluation in MLC . 50

3.2.1 Bipartition Measures . 50

3.2.1.1 Example-based Bipartition Measures 50

3.2.1.2 Label-based Bipartition Measures 51

3.2.2 Ranking Measures . 53

3.3 Final Remarks . 53

4 Automated Machine Learning 55

4.1 A Categorization of the AutoML Methods 57

4.2 Related Work on AutoML Methods for Selecting and Configuring ML

Pipelines . 58

4.3 Related Work on Automated Multi-Label Classification 64

4.4 Final Remarks . 66

5 AutoML Methods for Multi-label Classification 67

5.1 General Framework . 67

5.2 Search Spaces for Automated Multi-Label Classification 68

5.2.1 Components of the Search Spaces 69

5.2.1.1 Multi-label Classification Algorithms 69

5.2.1.2 Single-label Classification Algorithms 70

5.2.2 Search Space Structure and Size . 70

5.2.3 A Detailed Description of the MLC Search Space 73

5.3 Search Methods for Automated Multi-Label Classification 82

5.3.1 Evolutionary-based Methods . 82

5.3.1.1 MLC Fitness Evaluation Process 84

5.3.1.2 Genetic Algorithm for Automated Multi-Label Classification 84

5.3.1.3 Automated Multi-Label Classification using Grammar-based

Genetic Programming . 87

5.3.1.4 Automated Multi-Label Classification using Specialized

Grammar-Based Genetic Programming 89

5.3.2 Automated Multi-Label Classification using Bayesian Optimization 92

5.3.2.1 Quality Function . 94

5.4 Multi-fidelity Methods for MLC . 94

5.5 Final Remarks . 97

6 Experimental Analysis 98

6.1 Experimental Setup . 99

6.1.1 Datasets . 99

6.1.2 Parameter Setting . 100

6.1.3 Baseline Methods . 101

6.1.4 Statistical Comparisons . 102

6.2 Preliminary Comparison of the Proposed Methods 103

6.3 Auto-MEKAspGGP’s Hyper-Parameter Tuning 105

6.3.1 Resampling the Training Set . 106

6.3.2 The Multi-Fidelity Approach . 107

6.3.3 Tuning the Inter/Intra-Species Crossover Probability 109

6.4 Experimental Results . 111

6.4.1 Final Remarks . 117

6.5 Analysis of the Diversity of the Selected Algorithms 119

6.5.1 Final Remarks . 124

6.6 Analysis of Convergence . 125

6.6.1 Final Remarks . 129

7 Conclusions and Future Work 130

7.1 Issue 1: Proposing AutoMLMethods for the Multi-label Classification Con-

text . 130

7.2 Issue 2: Presence of an Exploration-Exploitation Trade-off in AutoML

Methods . 131

7.3 Issue 3: The Impact of Constrained Time Budgets on the Performance of

AutoML Methods . 133

7.4 Final Remarks . 133

7.5 Publications . 134

Bibliography 136

Appendix A Multi-Label Classification Search Space in the MEKA Soft-

ware 157

A.1 Search Space – Algorithms from WEKA 157

A.1.1 C4.5 . 157

A.1.2 Logistic Model Trees . 159

A.1.3 Decision Stump . 161

A.1.4 Random Forest . 161

A.1.5 Random Tree . 162

A.1.6 REPTree . 163

A.1.7 Decision Table . 163

A.1.8 JRip . 164

A.1.9 One Rule . 165

A.1.10 PART . 165

A.1.11 Zero Rule . 166

A.1.12 K-Nearest Neighbors . 166

A.1.13 K* . 167

A.1.14 Voted Perceptron . 168

A.1.15 Multi-Layer Perceptron . 169

A.1.16 Stochastic Gradient Descent . 170

A.1.17 Sequential Minimal Optimization 171

A.1.18 Logistic Regression . 172

A.1.19 Simple Logistic . 173

A.1.20 Näıve Bayes . 174

A.1.21 Bayesian Network Classifier . 174

A.1.22 Näıve Bayes Multinomial . 175

A.2 Search Space – Meta Classification Algorithms from WEKA 175

A.2.1 Locally Weighted Learning . 176

A.2.2 Random Subspace . 177

A.2.3 Bagging of Single-Label Classifiers 177

A.2.4 Random Committee . 178

A.2.5 Ada Boost M1 . 179

A.3 Search Space – Preprocessing Algorithms from WEKA 180

A.3.1 Attribute Selection Classifier . 180

A.4 Studying the Search Space of Multi-Label Classification Algorithms 181

A.5 Search Space – Multi-Label Classification Algorithms 182

A.5.1 Binary Relevance . 182

A.5.2 The ‘Quick’ Version of Binary Relevance 182

A.5.3 Classifier Chain . 183

A.5.4 The ‘Quick’ Version of Classifier Chains 183

A.5.5 Bayesian Classifier Chain . 184

A.5.6 (Bayes Optimal) Probabilistic Classifier Chain 184

A.5.7 Monte-Carlo Classifier Chains . 185

A.5.8 Population of Monte-Carlo Classifier Chains 186

A.5.9 Classifier Trellis . 187

A.5.10 Conditional Dependency Networks 189

A.5.11 Conditional Dependency Trellis . 189

A.5.12 Four-Class Pairwise Classification 191

A.5.13 Ranking and Threshold . 191

A.5.14 Label Combination . 191

A.5.15 Pruned Sets . 192

A.5.16 Pruned Sets with Threshold . 193

A.5.17 Random k-Label Pruned Sets . 193

A.5.18 Random k-Label Disjoint Pruned Sets 194

A.5.19 Multi-Label Back-Propagation Neural Network 195

A.6 Search Space – Multi-Label Meta Classification Algorithms 196

A.6.1 Subset Mapper . 197

A.6.2 Bagging of Multi-Label Classifiers 197

A.6.3 Bagging of Multi-Label Classifiers with Duplicates 198

A.6.4 Ensemble of Multi-Label Classifiers 199

A.6.5 Random Subspace Multi-Label . 200

A.6.6 Expectation Maximization . 201

A.6.7 Classification Maximization . 201

List of Abbreviations and Acronyms 203

19

Chapter 1

Introduction

We are experiencing the era of data. With its extensive availability, people in general

(e.g., practitioners, data scientists, enthusiasts, students, and researchers) are trying hard

to extract useful information encoded on it [191]. This resulted in outgrowing popularity

and the indiscriminate use of Machine Learning (ML) algorithms and data analytics

techniques, which are the base approaches of data science. Consequently, the number of

people self-entitled as data scientists has more than doubled between 2011 and 2015 [153].

And we continue to observe an inherent and logical expansion of the field of data science.

Accordingly, the increasing number of people in different institutions (e.g., com-

panies, government, universities, hospitals, and others) trying to understand their data

certainly brought more investments to the field of ML. But it also created a natural

conflicting issue: it is unrealistic to think these people will have the same experience

and knowledge regarding ML, programming languages, data analytics, and other com-

mon topics in data science. There is a great variety of algorithms, methods, models, and

approaches used in data science. Hence, it is difficult for all these people to know all the

details and inner peculiarities about them.

Furthermore, given the emerging problems that can use ML as a solution (at least,

partially), the supply of data scientists capable of building such ML models to solve these

problems has not kept up with the demand [184]. In this context, developing off-the-shelf

solutions to assist different types of users became more relevant than ever.

The field of Automated Machine Learning (AutoML) [109] has emerged to deal

with the aforementioned issues. This field aims to democratize ML in a way that can be

used with fewer difficulties by general audiences [109]. In addition, AutoML also aims to

assist experienced data scientists. In both scenarios, the field of AutoML has the scope of

recommending learning algorithms (together with hyper-parameters or not) when people

face a particular problem that might be (partially or totally) solved with ML.

AutoML consists of an end-to-end process where data is given as the input, and

the model’s predictions are given as outputs. With the great variety of proposed ML algo-

rithms (and, consequently, the enormous variety and complexity of hyper-parameters to

control each algorithm’s behavior), this process seemed impractical to the users. AutoML

methods tackled this problem by searching, executing, evaluating, and optimizing ML al-

20

gorithms (with a specific and/or default hyper-parameter setting) on the input dataset. In

the end, the AutoML method returns the best ML algorithm (according to some predictive

measure) on the input dataset. Tuning the hyper-parameter of these algorithms is an op-

tion, but several AutoML works dedicate their efforts only to choosing and recommending

the learning algorithms [23, 109, 208], whereas others focus on selecting ML algorithms

together with the configuration of their respective hyper-parameters [64, 73, 109]. Never-

theless, this whole process is transparent to the user, who does not need to worry about

each decision (only if wanted) to make about each ML algorithm and its hyper-parameters

to create an effective ML model.

Based on that, it is also worth mentioning that solving the tasks performed au-

tomatically by AutoML is considered hard even for experts, who usually follow ad-hoc

approaches to choose and configure learning algorithms. In most cases, such decisions on

these approaches are based on trial and error when testing different methods from the lit-

erature or on the recommendation of other experienced data scientists. Furthermore, the

algorithm’s hyper-parameters are rarely deeply explored to achieve the best algorithm’s

performance for the given problem, basically testing a few numbers of combinations or

using their default settings. This scenario makes ML solutions overall biased, incomplete,

and inefficient. Broadly speaking, the field AutoML proposes to deal with this user’s

biases by customizing the solutions (in terms of algorithms and configurations) to ML

problems following different approaches.

This work, in particular, is interested in AutoML methods for classification. Clas-

sification is one of the most essential tasks in ML [220]. In a traditional (single-label)

classification problem, the goal is to learn a model that expresses the relationships be-

tween a set of predictive attributes (features describing the example) and a predefined set

of class labels. A discrete value represents each class label. In a traditional Single-Label

Classification (SLC) problem, each dataset example is associated with a single label.

However, an increasing number of applications require associating an example to

more than one class label, including medical diagnosis, gene function prediction, image

and video annotation, and tag suggestion for text mining [87]. For example, in the context

of medical diagnosis, a patient can be associated with one or more diseases (e.g., diabetes,

pancreatic cancer, and hypertension) simultaneously. In the case of gene function pre-

diction, a gene in a protein can present several functions simultaneously. In an image

(or video frame), we can identify several objects or types of landscape at once. Finally,

a text can be concurrently associated with several subjects (e.g., soccer, politics, health,

and other topics).

This classification scenario is known as Multi-Label Classification (MLC) [204] and

is considered a more challenging problem for the ML community. The challenges in MLC

are described as follows. First, the MLC algorithm needs to consider the label correlations

(i.e., detecting if they exist or not) to learn a model that produces accurate classification

21

results [227]. Second, the limited number of examples for each class label in the dataset

makes the generalization for MLC harder than SLC, as the MLC algorithm needs more

samples to create a good model from such complex data [58]. Third, there is a strain

to evaluate MLC classifiers as several metrics follow contrasting aspects to define a good

MLC prediction [162]. Finally, the learning algorithms applied to solve MLC problems

need more computational resources than the ones used to solve SLC [101]. This aspect

is mainly because MLC is a generalization of SLC, meaning that the algorithms need to

look at several labels instead of just one.

In the context of AutoML, most systems proposed to date focus on automating

the generation of sequences of steps (i.e., ML pipelines1) to solve SLC problems [50, 75,

131, 144, 155, 200, 212]. Some of these works also concentrate on regression problems [75,

155, 200]. Nevertheless, to the best of our knowledge, only a few studies are associated

with modern AutoML for MLC [179, 211].

Despite the challenges found in MLC, we justify that this step is needed to continue

bringing progress to AutoML. Furthermore, we would like not only to create novel methods

but also to make them ready to be used in different types of data. Therefore, this thesis

investigates AutoML methods for MLC. Our central hypothesis is that if AutoML is

successfully used for SLC and regression problems, it can also be appropriately translated

and applied to MLC problems.

We conduct our investigation based on two well-known methods, i.e., Evolutionary

Algorithms (EAs) [10, 62], and Bayesian Optimization (BO) [13, 108]. Algorithmically,

both methods run a global procedure over the search space representing the solutions (in

our case, the MLC configurations). EAs are inspired by the Darwinian evolutionary pro-

cess and the survival of the fittest to search for or optimize solutions to specific problems.

To do that, they use biological abstractions of heredity, natural selection, recombination,

and mutation as an engine for the search itself. An EA works with a population of can-

didate solutions (individuals) to the problem at hand (in our case, MLC algorithms with

a specific set of hyper-parameters) and employs an iterative process (namely evolution)

to find approximate solutions to the problem.

BO, in contrast, is usually applied to problems where the evaluation functions

are naturally expensive, which is an inherent aspect of MLC. BO methods approximate

these functions with a cheaper surrogate to overcome this complexity. A traditional BO

method relies on a so-called response surface (performance) model. Usually, a regression

model takes place to predict the performance of configured algorithms and, consequently,

to assist in their optimization. In essence, BO methods concentrate on iterating between

constructing a performance model (with promising MLC configurations, in our case) and

1An ML pipeline is a sequence of tasks to be employed on data associated with an ML problem. It
can include preprocessing steps (e.g., data cleaning, data discretization and feature selection [216]), a
machine learning model (such as a classifier or a regressor [148]), and post-processing steps that may help
to combine the results of several ML models (for instance, a voting method [216]).

1.1. Motivation 22

selecting additional data to improve the model’s performance (in terms of better selection

of MLC configurations).

1.1 Motivation

The AutoML research field has extensively used several types of methods to solve

specific SLC and regression problems, including BO [75, 200], EA [50, 131, 155], random

search [13, 14], multi-armed bandits [135], hierarchical planning [144, 212], and hybrid

approaches [197]. As previously stated, this thesis pays particular attention to the first

two types of methods (i.e., BO and EA) in MLC problems. These two types of methods

have been chosen because they are considered state-of-the-art in several AutoML tasks.

In spite of that, there are a few open issues regarding AutoML methods and prob-

lems, in general, which we will investigate. From these investigated issues, we derive our

research questions (see Section 1.2). Next, we describe each of the investigated issues and

how they are linked to this thesis.

Issue 1. AutoML methods can work for MLC problems as well as for SLC and regression

problems.

Most AutoML methods deal with hierarchical search, where the learning algorithm

is first chosen and, thereafter, its hyper-parameters. Hence, the hierarchy is used to

compose the AutoML configurations, i.e., which algorithm and hyper-parameter setting

to use to achieve good predictive performance.

In the case of AutoML for SLC and regression problems, we have at most two al-

gorithmic levels: the SLC (base) level and the meta/ensemble level. Whereas the former

has algorithms that can be applied individually, the latter has algorithms that combine

several base learning algorithms aiming to improve their individual results. During the

AutoML search, the meta/ensemble level can be turned on or off in different configura-

tions. After selecting the algorithms, their hyper-parameters are set in the subsequent

levels.

In the case of AutoML for MLC, the problem is considered more complex as we

can have more hierarchical levels. As detailed later (for more details, see Chapter 3), we

can divide the MLC algorithms into three categories: problem transformation, algorithm

adaptation, and meta/ensemble methods. It is worth noting that the first category (i.e.,

problem transformation) defines algorithms that transform an MLC problem into one or

more SLC problems. Internally, this means this type of MLC algorithm will (somehow) use

1.1. Motivation 23

the output of one or several SLC classifiers (that can be a traditional or a meta/ensemble

SLC classifier) to create an MLC output.

As this first category of MLC must use SLC algorithms to accomplish its respective

task, we would have, in this case at most, four algorithmic levels: the MLC (base) level,

the MLC meta/ensemble level, the SLC (base) level, and SLC meta/ensemble level. For

each level of the hierarchy, an AutoML method has to handle its essential components

(i.e., the functional parts of the algorithm) and its respective hyper-parameter settings in

their respective subsequent levels of the hierarchy. Besides, the AutoML method has to

decide if the MLC and SLC meta/ensemble levels will take part of the MLC configuration.

In the same way, the SLC and MLC meta/ensemble levels could be activated or not,

depending on how the search proceeds. In contrast, we would have at most two algorithmic

levels when using the algorithm adaptation category: the MLC (base) level and the MLC

meta/ensemble level.

Figure 1.1 illustrates these possible levels of the hierarchy in one practical example.

For this figure, suppose that among all possible algorithms, the AutoML method decides

to select the classifier chain algorithm [175] at the MLC (base) level and the random

forest algorithm [25] at the SLC (base) level. Whereas the former does not present hyper-

parameters, the latter has hyper-parameters that should be configured by the AutoML

method, including the number of features to subsample and the maximum depth of the

trees. In addition, the AutoML method may opt for activating or not the MLC and SLC

meta/ensemble levels. When the MLC meta/ensemble level is turned on, algorithms such

as bagging of multi-label classifiers [169] and multi-label random subspace [25] have to be

considered in the process. When the SLC meta/ensemble level is activated, algorithms

such as Ada Boost M1 [82] and bagging [24] should be present in the final MLC configura-

tion iff. they improve the performance of this configuration. For each algorithm at these

levels, hyper-parameters such as the bag size percentage and the number of iterations

(classifiers) should be tuned. For more details about the aforementioned algorithms and

hyper-parameters, see Appendix A.

These different ways to compose the MLC hierarchy make the AutoML task more

difficult. The method that performs this task must appropriately define more or fewer

levels at different time frames. Besides, as MLC encompasses SLC in some categories of

algorithms, the AutoML methods are looking for a more significant number of learning

algorithms and, consequently, hyper-parameters.

Issue 2. AutoML methods do not trade-off well between exploration and exploitation.

Depending on the approach the AutoML method follows, the size and definition of

its search space can highly influence the results obtained. This is because what is searched

and/or optimized by an AutoML method represents how well this method performs its

1.1. Motivation 24

Figure 1.1: The possible hierarchy levels in MLC.

Meta/Ens. MLC

None

(Base) MLC

Classifier
Chain

OR

Meta/Ens. SLC

Bagging

None Bagging
AdaBoost

M1

(Base) SLC

OR

Random
Forest

...Random
Subspace

...

task. In practice, the bigger the search space, the harder the search/optimization is. To

properly search/optimize over bigger search spaces, the AutoML method should settle

an appropriate trade-off between exploration (the search is focused on untested regions

of the search space) and exploitation (the search concentrates on the neighborhood of

known solutions) to select algorithms with good predictive results. Of course, this balance

depends on the AutoML problem (i.e., the search space) and the AutoML method.

This investigation becomes particularly important as several methods in the Au-

toML literature presented results similar or not statistically different to the ones obtained

by blind heuristic search methods (e.g., random search and beam search) [13, 14, 50,

155, 135]. This is more likely to happen in smaller search spaces. Nevertheless, if blind

non-heuristic search methods can beat robust AutoML methods, this indicates that the

AutoML methods do not produce a reasonable exploration-exploitation trade-off.

Hence, analyzing how good AutoML methods perform in search spaces with differ-

ent sizes could indicate why and when blind non-heuristic search methods perform better

than robust AutoML methods. After this analysis, the search or optimization mechanisms

used by the AutoML methods could also be better understood and possibly modified to

ensure the aforementioned trade-off satisfactorily.

Finally, we can associate this issue with two contrasting properties of genetic pro-

1.1. Motivation 25

gramming [11], namely sufficiency and parsimony. Sufficiency means that the search space

should be powerful enough to represent a candidate solution (in our case, an MLC algo-

rithm) to the problem at hand. This power of expression is mandatory in AutoML, where

we must find a suitably configured learning algorithm for a dataset of interest. However,

as we already mentioned, if we enlarge too much the search space, this can make the

search for an appropriate solution harder. Thus, in the case of AutoML, it implies that it

is unnecessary to include all learning algorithms and hyper-parameters in the search space

that may solve the problem, just the ones that matter (i.e., the ones that can perform

satisfactorily well in accordance to a quality metric). This desirable property is called

parsimony and means that the search space should contain only necessary solutions to

solve the problem.

Issue 3. AutoML methods are budget-constrained, which can significantly influence their

performances regarding the recommendation of learning algorithms and hyper-parameters.

ML is considered a very hard task. Looking at an important theoretical side of the

problem, we can say, according to the No Free Lunch (NFL) theorem [217, 218]2, that the

choice of which ML algorithm is the best for a given problem is still an open problem,

even with the undeniable progression in the fields of AutoML (and meta-learning). The

NFL theorem states that any two algorithms are equivalent when their performances

are averaged based on all possible problems. In ML, each problem is associated with a

dataset of interest. Given the NFL theorem and considering all possible datasets, it is

not practical to find an ML algorithm (with its corresponding hyper-parameters) that

could perform the best, on average, for all of them. Nevertheless, this will likely happen

for specific ML problems (i.e., applications). Hence, this also justifies the use and study

of AutoML because a practitioner is not interested in all ML problems but actually in

particular applications.

Based on the diversity of the ML problems, we could have algorithms that take a

short time to run and algorithms that take a long time to run. Nevertheless, it is not rare

when the combination of algorithm and problem produces an impractical model to train

(in terms of time and memory). For instance, when we have a dataset with thousands of

attributes and millions of examples, and we decide to use an ML algorithm that depends

on these two characteristics (e.g., Bayesian network classifier algorithms [15]), this is likely

to happen. Hence, the AutoML method should avoid suggesting such algorithms in the

aforementioned situations.

At this issue, we would like to investigate which time budget we should apply to

each evaluated ML algorithm during the AutoML process to avoid that scenario and how

2This theorem was brought to the machine learning field into the law of conservation for generalization
performance [90, 185].

1.2. Objectives 26

this execution aspect can influence AutoML’s results in terms of selected algorithms and

predictive accuracy. We believe that setting shorter time budgets would make the chosen

algorithms to naturally create less effective models. In contrast, more extended time

budgets may lead the AutoML methods to choose ML algorithms with a higher chance of

producing models that overfit. For an AutoML method, the trade-off between these two

scenarios is also relevant, making this study essential.

In addition, AutoML will work only if enough time budget is given to complete the

AutoML process. In this context, this issue also relates to the minimal time budget to

effectively proceed with a complete AutoML search/optimization process. Two aspects

can influence this decision: (i) the input dataset, which represents the ML problem; (ii) the

covered search space, which is associated with the AutoML problem itself. Therefore, we

would like to examine how AutoML’s execution time budget can influence the respective

method’s performance in terms of predictive accuracy and coverage of the search space. If

the AutoML method is not stable enough, this budget could drastically affect its results,

selecting algorithms with few conditions to produce models that generalize to the input

data.

Although it is crucial to investigate these aspects, the literature in AutoML is

more concerned with creating novel methods than analyzing why the already proposed

ones presented good or bad behaviors in specific scenarios. This study of running the

proposed methods using distinct time budgets (for the AutoML method and each algo-

rithm’s configuration) will help us assess and understand the classification performance

of these methods in other scenarios. Consequently, this can provide us with more reliable

information regarding which method performs better.

1.2 Objectives

The overall objective of this thesis is to investigate the open issues in the AutoML

field and to propose new methods to overcome their main associated challenges. More

specifically, we would like to answer the following questions, corresponding to the issues

presented in the previous section:

• Research Question 1 (RQ1): Can we propose novel AutoML methods to handle

the complex hierarchical complexity of the MLC search space? (Relates to Issue 1)

• Research Question 2 (RQ2): How do the sizes of the search spaces affect the pre-

dictive performances of the AutoML methods? How can we enhance the search and

1.3. Contributions 27

optimization mechanisms to promote an adequate exploration-exploitation trade-

off? (Relates to Issue 2)

• Research Question 3 (RQ3): How do distinct time budgets (constraining the

whole AutoML process) influence the behavior of AutoML methods and, conse-

quently, the respective learning performances of the selected and configured learning

algorithms? (Relates to Issue 3)

1.3 Contributions

Based on the defined issues and research questions, the main expected contributions

of this thesis are:

1. Formalize AutoML for multi-label classification;

2. Propose novel AutoML methods for the context of multi-label classification;

3. Model MLC search spaces for the context of AutoML;

4. Evaluate whether the proposed AutoML methods can deal with the complex hier-

archical nature of the MLC search spaces;

5. Understand how the size of the search space influences the performance of the Au-

toML search methods;

6. Comprehend how distinct time budges applied to the AutoML methods can affect

the final predictive performance of the selected and configured MLC algorithms.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapters 2 and 3 present the

fundamental concepts regarding search and optimization methods and multi-label clas-

sification. Chapter 4 introduces the main AutoML methods and also the related work

to AutoML for multi-label classification. Chapter 5, in turn, details the four proposed

methods, showing that it is possible to create AutoML in the MLC context (RQ1). The

1.4. Thesis Organization 28

experimental results and analysis of the generated MLC algorithms are presented in Chap-

ter 6, supporting the fulfilment of RQ1 and completely answering RQ2 and RQ3. Finally,

Chapter 7 draws conclusions and discusses the steps necessary to completely cover the

topics raised by RQ1, RQ2, and RQ3.

29

Chapter 2

Search and Optimization Methods

This chapter defines the fundamental concepts of search and optimization methods that

are commonly and successfully used to solve AutoML problems, i.e., evolutionary and

Bayesian optimization algorithms. It is worth mentioning that evolutionary and Bayesian

optimization algorithms were chosen to solve the AutoML task because they are considered

in the literature state-of-the-art methods to perform global search and optimization [62,

81, 109], respectively. Nevertheless, other methods could also be applied to this work

without a lack of generalizability.

Section 2.1 overviews evolutionary search methods, covering their main framework

(i.e., evolutionary algorithms) and specific methods, such as genetic algorithms, canonical

genetic programming, and grammar-based genetic programming. Next, in Section 2.2,

Bayesian optimization algorithms are introduced and have their main methods discussed,

i.e., tree-structured Parzen estimator and sequential model-based algorithm configuration.

2.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) [10, 62] are a category of computational intelligence

search methods that simulate the Darwinian evolutionary process. Basically, an EA aims

to stochastically find approximate solutions in search or optimization problems. They

are based on biological abstractions of heredity, natural selection, recombination, and

mutation. This means that these biological abstractions will be used as an engine of

evolutionary-based search methods.

Considering these biological aspects, Eiben and Smith [62] discuss the eight main

components of an EA, which consequently define its main characteristics:

1. Population: In these algorithms, the concept of population is used to define the

solution space to a given problem. The population is composed of a set of individ-

uals, which represents the candidate’s solutions to the problem at hand. The main

2.1. Evolutionary Algorithms 30

idea of an EA is to evolve these individuals through its iterations (also known as

generations).

2. Representation: This component defines the individuals of a population. In an

EA, the individuals can be represented in different ways, such as: trees (in the case

of genetic programming algorithms); binary, integer, or real-coded arrays (in the

case of genetic algorithms); real-valued arrays (in the case of evolutionary strategy

algorithms); and others. The representation (and, consequently, the instantiation)

of the individual in the EA will be hardly dependent on the problem to be modeled.

3. Evaluation function: The evaluation function (which is also known as fitness

function) has the role of determining how good each individual of the population is

at solving the input problem.

4. Parent selection mechanism: This mechanism is used to distinguish among the

individuals in the population based on their fitness, i.e., their quality with respect

to the problem. Particularly, this mechanism plays an important role in the EA,

allowing the higher-ranked individuals (in terms of the employed fitness function)

to become the parents of the individuals in the next generation. Parent selection

is usually probabilistic in the sense that individuals with better fitness values have

a higher probability of being chosen. Finally, it usually does not depend on the

individual representation, but it inherently depends on the evaluation function.

5. Variation operators: Mutation and recombination are considered the two prin-

cipal variation operators in EAs. These operators are also probabilistic and are

responsible for creating new individuals from old ones. On the one hand, mutation,

a unary operator, determines that an individual suffers modifications in specific

regions of its genetic material. This brings novelty to the population of the next

generation. On the other hand, recombination (or crossover), a binary operator,

combines the genetic material of two individuals, generating one or two offspring.

6. Survivor selection mechanism: Also known as the replacement mechanism, it

is called after producing the offspring of the selected parents. Replacement is used

to decide which individuals of the population will be substituted by the produced

offspring. Usually, this process is performed based on the fitness or age of the current

individuals.

7. Initialization: Most EAs keep this step as simple as possible, generating the first

population at random. However, heuristics can also be used to create a population

with better average fitness or with a desirable feature.

8. Termination condition: It defines the criterion used to stop the evolutionary

process to return the best-evolved individual to the problem. For example, if the

2.1. Evolutionary Algorithms 31

problem has an optimal solution, the EA can set a quality level to achieve. The

number of generations and the number of evaluations are also known as instantia-

tions of the termination condition. Finally, EAs can combine several termination

conditions to help at providing good but also feasible solutions to hard problems.

Algorithm 2.1 denotes these main components [81]. It represents only the EA’s ba-

sic steps, allowing several differences in methods proposed in the literature. For instance,

crossover and mutation operators can be applied in parallel, instead of being performed in

a sequenced fashion. It is also worth mentioning that the way the individual is represented

is implicit in the algorithm, but crucially inherent to the problem at hand. Furthermore,

an EA has several parameters to be defined, such as population size, crossover probability,

mutation probability, parent selection approach (e.g., tournament or roulette wheel, and

their respective parameters), stopping criteria (e.g., number of generations, quality level,

and time budget), and others.

Initially, Algorithm 2.1 receives as inputs the population size (i.e., S), a parent

selection mechanism (i.e., M), the crossover probability (i.e., Pc), the mutation probability

(i.e., Pm), a fitness function (i.e., f), and a stopping criterion (i.e., SC). Given the

individual representation, an initial population of S individuals is created (line 2). Whilst

the stopping criteria SC is not reached, the evolutionary algorithm iterates by evaluating

individuals i based on the fitness function f(line 4), selecting the evaluated individuals

(line 5) with M (which is based on fitness), applying the variation operators (lines 6 and

7) to create new individuals, and updating the population with these created individuals

(line 8). In the end, the EA will return the best individual with respect to the fitness

function.

Algorithm 2.1 A generic pseudo-code for evolutionary algorithms.

1: Inputs: Population size, S; parent selection mechanism, M ; crossover probability, Pc;
mutation probability, Pm; fitness function, f ; stopping criteria, SC.

2: Create an initial population P of S individuals;
3: while stopping criteria SC not reached do
4: f(i): Calculate the fitness of each individual i in P ;
5: [SI]: Select individuals using M based on fitness;
6: Crossover([SI], Pc);
7: Mutation([SI], Pm);
8: Update the current population (new individuals replace old individuals);
9: end while

10: return the individual i with the best fitness value.

EAs are usually well-known to present a balanced trade-off between exploration

(i.e., emphasis on searching in not tested regions of the search space) and exploitation

(i.e., emphasis on searching over the neighborhood of the known good solutions), although

2.1. Evolutionary Algorithms 32

this is not universally accepted by the EA community [61]. Whereas too much exploration

would lead to an inefficient search as its behavior would be practically random, too much

exploitation would lead to premature convergence, as the population would lose its diver-

sity quickly.

2.1.1 Genetic Algorithm

The canonical Genetic Algorithm (GA) was proposed by Holland [105], who aimed

to study adaptive behavior in natural and artificial systems. In Holland’s proposed GA,

the individual is represented by a binary string with fixed length [62]. Apart from its

canonical version, other traditional binary representations have been proposed for GA.

Given a new problem at hand that can be modeled by a GA, it is important to find an

appropriate length for the individual genotype (in this case, the size of the array of bits)

and how to decode it (from genotype to phenotype).

Integer or real-valued representations are also possible choices for GAs [62]. These

two types of representations are used when the binary one is not suitable to define the

problem search space. For instance, if the problem is to find the optimal values of cate-

gorical variables, which all take integer values, the integer GA is more appropriate.

Following Algorithm 2.1, the population (of individuals) is commonly initialized

at random. With the population defined, its individuals can pass through evaluation

and, thereafter, selection. For selection, mechanisms such as the roulette wheel and

tournament are often employed. The roulette wheel mechanism proportionally selects

individuals based on their fitness. Hence, given a population with N individuals and

a particular individual i with fitness fi, the roulette wheel selects this individual with

probability pi = fi∑N
i=j fj

. Differently, the tournament mechanism chooses k individuals

from the population, ranks them by their respective fitness, and returns the individual

with the best fitness value. For more details about these mechanisms, see [62].

It is worth noting that, in the binary GA, the variation operators are focused on

recombination, consequently giving low emphasis (i.e., low probability) to mutating the

genes of the individuals (i.e., flipping the bits of the array). The most common recombina-

tion approaches for this GA are the one-point crossover and the uniform crossover. Given

two selected individuals from the population, the one-point crossover randomly chooses

a position in the array, and the right and left parts (based on the chosen position) of the

arrays of the two individuals are exchanged. The uniform crossover [199], in contrast,

builds a uniformly distributed binary mask the size of the individual’s genotype. A mask

value of one (1) means that exchanges will occur in that gene position, while a value of

2.1. Evolutionary Algorithms 33

zero (0) does not modify the content of the corresponding gene.

In cases where the mutation is performed, the binary-coded GA uses the bit-wise

approach. It considers each gene individually, allowing each bit to flip with a small

probability. This means that the number of bits changed is not fixed and depends on the

random numbers generated [62].

In the case of integer and real-coded GAs, we can still use the aforementioned

crossover operators, i.e., one-point and uniform crossover operators. In the case of mu-

tation, the one-point approach is commonly used. The one-point mutation is applied to

one of the possible positions of the array (i.e., the genes of the individual). Each gene has

the same probability of being selected, and the value of the selected gene is replaced by a

value randomly chosen within its domain (which can vary with the problem).

2.1.2 Genetic Programming

Genetic Programming (GP) [11, 62, 130] is another EA-based algorithm initially

created to evolve computer programs, i.e., executable codes. In GP, individuals are repre-

sented by parse trees, which map expressions (functions) into a formal syntax. Arithmetic

functions and programming codes are examples of possible individual’s phenotypes in GP.

Equation 2.1 gives an example of an arithmetic formula, and Algorithm 2.2 specifies an

example of a programming code. The possible parse trees of these two examples are

illustrated in Figures 2.1a and 2.1b, respectively.

(7.0× x÷ 80.0)× (4.0× x÷ 7.0) (2.1)

Algorithm 2.2 Example of a programming code.
i = -100;
while (i < 5) do

i = i + 1
end while

These parse trees are defined by two sets: the function set and the terminal set.

The elements in the terminal set are allowed to be only at the leaves of the trees, whereas

the elements of the function set are the internal nodes. Each one of the function set’s

elements (i.e., the function symbols) has an arity, which is the number of arguments these

function symbols need to be properly specified. A function symbol can have as arguments

terminal symbols or even expressions composed by other function and terminal symbols.

It is highly recommended that each function symbol accepts as input any terminal

symbol or even any output produced by another function symbol. This is better known

2.1. Evolutionary Algorithms 34

Figure 2.1: Examples of parse trees for Equation 2.1 and Algorithm 2.2.

(a) Parse tree for Equation 2.1. (b) Parse tree for Algorithm 2.2.

as the closure property. GP needs this property to allow operators, such as crossover and

mutation, to be correctly performed.

After defining the representation and its properties, a typical EA initializes its

respective population. In GP, initialization is typically performed by the three follow-

ing methods: grow, full, and ramped half-and-half. All three methods consider a tree

maximum depth Dmax in different ways. The grow method constructs trees that have

branches with different depths, up to the limit Dmax. All tree’s branches built by the full

method have depth Dmax. Finally, the ramped half-and-half method combines grow and

full methods to promote diversity in the population. In ramped half-and-half, the depth

of the individuals varies from two (2) to Dmax. Given the length of this range, Lrange,

ramped half-and-half divides the population size by Lrange and uses this value to create

subsets of individuals per depth (with the same number of individuals). For each subset,

half of the individuals are initialized using the grow method, and the other half using the

full method.

After generating a population of individuals, they need to be evaluated and se-

lected. Given that all individuals in the population have been associated with a fitness

score, this evolutionary process goes into parent selection, where the individuals are se-

lected based on their fitness score. For this reason, roulette wheel or tournament are

mechanisms that can also be applied in GP.

Next, GP’s mutation is commonly performed by randomly selecting an individual

subtree (starting at a given internal node) and replacing it with a randomly generated

tree. Crossover is usually implemented using subtree crossover, which means the operator

interchanges the subtrees (starting at two randomly chosen internal nodes) of two parents.

Both operators must respect the maximum tree depth Dmax, which is an input parameter.

2.1. Evolutionary Algorithms 35

2.1.3 Grammar-Based Genetic Programming

The major issue of the canonical genetic programming algorithm, presented in the

previous section, is that several problems present functions (non-terminals represented by

internal nodes in the trees) with typed/specific arguments. I.e., the function symbols may

not accept as inputs all terminal symbols and outputs of the remaining function symbols.

For instance, in the division function, the denominator must not be zero (0), as this result

is not valid. Therefore, this makes it difficult for the canonical GP to respect the closure

property in several problems.

Whigham [214] discusses that this is simply overcome by creating a set of con-

straints in the syntactic structure of the individuals. Nevertheless, when operators are

performed, they must respect the syntactic type of the trees to create only valid individ-

uals. For instance, in the crossover operator, when the first internal node is selected in

one individual, the second internal node of the other individual must syntactically match.

One general way to handle these closure requirements for GP is to use a Context-Free

Grammar (CFG) [192] to represent the search space and also to constrain the population

initialization and the genetic operators.

Formally, a grammar G is represented by a four-tuple <N, T, P, S>, where N

represents a set of non-terminals, T a set of terminals, P a set of production rules and S (a

member of N) the start symbol. In this thesis, we will use the Backus Naur Form (BNF) to

represent grammars. This means that each production rule has, for instance, the following

form <Start>::= [<A>] | <C> (d | e) . Symbols wrapped in “< >” represent

non-terminals, whereas terminals (such as d and e) are not bounded by “< >”. The

special symbols “|”, “[]”, and “()” represent, respectively, a choice, an optional element,

and a set of grouped elements that should be used together. Additionally, the symbol “#”

represents a comment in the grammar, i.e., it is ignored by the grammar’s parser. The

choice of one among all elements connected by “|” is made using a uniform probability

distribution (i.e., all elements are equally likely to occur in an individual).

When using this formalism (i.e., the CFG), the GP algorithm is well-known as

CFG-GP or Grammar-based GP (GGP) [141, 214]. Being a version of the canonical GP

algorithm, each GGP individual is also represented by a tree, which is derived from the

expansion of the production rules of the grammar. To create an executable program

(phenotype) from the derivation tree (genotype), a mapping process is performed by

taking the terminals from the tree and constructing a valid program from them as it is

done in traditional GP. Box 2.1 shows a grammar used to create the tree of Figure 2.1a.

One of the benefits of using this formalism in the GP is that the CFG incorporates

into the search space prior knowledge (from specialists) about the problem, properly

guiding the search process. In addition, the CFG also gives flexibility in the definition of

2.1. Evolutionary Algorithms 36

Box 2.1: Grammar for generating the tree of Figure 2.1a.

<Start> :: <equation>

<equation> ::= <argument> <operator> (<equation> | <argument>)

<operator> ::= × | ÷
<argument> ::= <float-number> | <variable>

<variable> ::= x | y | z

<float-number> ::= Random float number between 0.0 and 1000.0

the search space, as the grammar rules can be modified anytime. Finally, the grammar

can introduce semantics along with its syntax, possibly allowing the evaluation of the

complexity of the search space.

Taking the CFG into account, initialization, crossover, and mutation procedures

for GGP are detailed next. The initialization methods from GP (i.e., grow, full, and

ramped half-and-half) are also commonly used in GGP to create the individuals of the

first population. The only practical difference is that the individual’s genotypes (i.e., the

derivation trees) are restricted to the input CFG.

After the population is created, the individuals are evaluated and selected. The

selection mechanisms (i.e., roulette wheel and tournament) presented in the previous

section can also be used in GGP, as they depend entirely on fitness values.

When compared to GP, the variation operators (i.e., crossover and mutation) need

to be changed in GGP to ensure the creation of individuals that are valid according to the

CFG. The crossover operator, for instance, depends on seven basic steps to be correctly

used by GGP [214]: (i) the first individual represented by a derivation tree, t1, is selected;

(ii) the second individual, t2 is selected; (iii) an internal node (non-terminal) is randomly

selected in t1; (iv) if no non-terminal from t1 matches in t2, go to step (ii); (v) otherwise, a

non-terminal from t2 is randomly selected; (vi) if this non-terminal does not match to the

t1’s selected non-terminal, go to step (ii); (vii) otherwise, a swapping operation is applied

between the two subtrees bellow those selected non-terminals. It is worth mentioning

that some crossover operations may be discarded as they may not respect the maximum

depth Dmax of the tree.

Mutation, in turn, is a simpler operator. As discussed by Whigham [214], this

GGP operator has to first select a non-terminal (internal node) from a derivation tree.

After that, the subtree below this non-terminal is removed, and a new subtree is created

using the CFG to replace it. As it happens in the GGP’s crossover, the maximum tree

depth must be respected.

2.2. Bayesian Optimization Algorithms 37

2.2 Bayesian Optimization Algorithms

Bayesian Optimization (BO)1 – also known as Sequential Model-Based Optimiza-

tion (SMBO)2 – is a stochastic black-box technique for optimization. This technique

and its algorithms are mainly used to globally configure algorithms in problems where

acquiring the evaluation function, f : X → R, is really expensive [13, 108]. In practice,

BO algorithms approximate complex and/or expensive functions with a cheaper surrogate

function [13].

The idea of BO is to iterate between constructing a model and selecting additional

data to improve the model’s performance [108]. Hence, a typical BO algorithm is based

on a so-called response surface model, which is a regression model used to predict perfor-

mance and, consequently, for optimization. This performance model helps to select the

most promising configurations for the next iteration by employing an acquisition (utility)

function. In other words, BO fits a surface response model to the data gathered (i.e., to

the promising configurations) using an acquisition function.

Given these notions, Algorithm 2.3 defines a generic pseudo-code for BO [13, 200].

First, this algorithm receives as inputs the performance model (i.e., ML), a time budget

(i.e., T), an evaluation (quality) function (i.e., f) that returns a loss value (e.g., the clas-

sification error), and an acquisition function (i.e., S). In BO, the Gaussian process [167]

is a common approach to model the configurations’ performance. The model is initialized

in line 2 of the pseudo-code, by running the target algorithm with few initial parameter

configurations [108]. In line 3, the set H is instantiated as having no elements. This set

will track all the evaluated configurations. While there is time to be expended, the algo-

rithm iterates by selecting the most suitable configuration of hyper-parameters λ∗ with

S given ML (line 5), evaluating this configuration (line 6), adding the configuration and

its evaluation performance to H (line 7), and updating ML given H (line 8). At the end

of its sequential process, the BO will return the configuration with the best evaluation

performance value.

Algorithm 2.3 addresses the problem of finding promising configurations over an

algorithm’s search space of configurations. According to Hutter et al. [108], promising

configurations are the ones that can be found in regions where the model is still uncertain,

and/or are predicted to perform well. To select these configurations, it is necessary to

employ an appropriate acquisition function, which aims to trade-off between exploration

and exploitation and, consequently, avoid issues such as premature convergence and lack

1Although the term “Bayesian optimization” is highly used in the machine learning community,
it is considered a bad term because there is nothing particular Bayesian involved in the optimization
process [107].

2This term is commonly used in the optimization community.

2.2. Bayesian Optimization Algorithms 38

Algorithm 2.3 A generic pseudo-code of Bayesian optimization.

1: Inputs: Performance model, ML; time budget, T ; evaluation function, f ; acquisition func-
tion, S.

2: Initialise ML;
3: H = ∅; ▷ Set of evaluated configurations
4: while optimization time budget T not exceeded do
5: λ∗ = argmaxλ S(λ,ML);
6: Evaluation: c(λ) = f(λ∗);
7: H = H ∪ {(λ∗, c)};
8: Update ML given H;
9: end while

10: return λ from H with the lowest c.

of diversity of the configurations.

Apart from the existence of several acquisition functions in the literature [116, 118,

187, 195], the positive Expected Improvement (EI) is considered as the most prominent

approach [200]. EI quantifies how much improvement we are expected to achieve if we

sample at a given configuration [116]. BO simply maximizes this function over the set of

all possible configurations Λ to find the most useful configuration λ∗ ∈ Λ to evaluate next

(line 5 in Algorithm 2.3).

Formally speaking, let cmin be the value of the minimal error loss when performing

an evaluation, and let c(λ) be the error loss of the configuration λ. Further, following

Thornton et al.’s definitions [200], the positive improvement I over cmin is formalized in

Equation 2.2.

Icmin
(λ) = max{cmin − c(λ), 0} (2.2)

As it is impractical to know c(λ), the expectation with respect to the current model

ML, computed in Equation 2.3, is a practical alternative.

EML
[Icmin

(λ)] =

∫ cmin

−∞
max{cmin − c, 0} · pML

(c | λ) dc (2.3)

where pML
(c | λ) is the conditional probability distribution of the loss function c given

the configuration λ based on the performance model ML.

Bergstra et al. [13] and Thornton et al. [200] argue that one of the main differences

among BO algorithms is how they choose the configurations given the model ML, i.e., how

they express EML
to select the most promising configurations and improve the model’s

performance. Next, we review two well-known BO algorithms to perform this task: Tree-

structured Parzen Estimator (TPE) and Sequential Model-based Algorithm Configuration

(SMAC). Both algorithms deal with a hierarchical structure of configurations, making

them capable of handling different types of learning algorithms and hyper-parameters

2.2. Bayesian Optimization Algorithms 39

(e.g., discrete, continuous, and their conditional dependence), which is the main focus of

this thesis.

2.2.1 Tree-Structured Parzen Estimator

The Tree-structured Parzen Estimator (TPE) algorithm [13] represents the hier-

archical nature of the hyper-parameters configurations by a tree structure. Each node of

this tree has a 1-D Parzen estimator, which is used to model the node’s corresponding

hyper-parameter. To simplify, TPE assumes the independence of the hyper-parameters

that do not appear together in any path from the tree’s root to one of its leaves [200].

Formally, TPE models pML
(c | λ) from Equation 2.3 by using two separate models

pML
(c) and pML

(λ | c). Particularly, TPE expresses pML
(λ | c) by considering two density

estimators, which are conditioned on the value of c and on a threshold t. Equation 2.4

shows this TPE expression.

pML
(λ | c) =

ℓ(λ), if c < t

g(λ), if c ≥ t
(2.4)

In Equation 2.4, ℓ(λ) is a density estimator learned from all previous configurations

λ with a loss smaller than the threshold t. Intuitively, this means ℓ(λ) represents good

configurations (with respect to the threshold). In the second part of this equation, we

have g(λ), which is a density estimator learned from all previous configurations λ with

a loss greater than or equal to the threshold t. Hence, g(λ) characterizes configurations

with poor performance values (with respect to the threshold). In Thornton et al. [200], t

is chosen as the γ-quantile of the losses TPE obtained until the current time (where γ is

a parameter with a default value of 0.15).

Bergstra et al. [13] derived EML
[Icmin

(λ)] of Equation 2.3, showing that the EI can

be computed in terms of γ, ℓML
(λ) and gML

(λ). Equation 2.5 defines EML
[Icmin

(λ)] taking

this TPE formulation into account.

EML
[Icmin

(λ)] ∝

(
γ +

g(λ)

ℓ(λ)
· (1− γ)

)−1

(2.5)

In this case, TPE maximizes EML
[Icmin

(λ)] by generating several candidate config-

urations λ at random, and choosing the ones with the smallest value of the rate g(λ)/ℓ(λ).

2.3. Final Remarks 40

2.2.2 Sequential Model-based Algorithm Configuration

Instead of applying separate models to define pML
(c | λ), like TPE, the Sequen-

tial Model-based Algorithm Configuration (SMAC) algorithm [108] does it directly. In

SMAC, the random forest regression model [25] (ML instantiation) is used to capture

the dependence between the loss function c and the hyper-parameter configuration λ in

pML
(c | λ). Although other algorithms can be used, the authors mention that random

forests were used as they tend to perform well with discrete and high-dimensional data.

Usually, random forest is not used as a probabilistic model. Hence, to determine

pML
(c | λ), SMAC uses a Gaussian N (µλ, σ

2
λ), where µλ and σ2

λ are the mean and the

variance, respectively, obtained from frequentist estimates over the predictions of the

individual’s trees for λ [200].

Given that cmin from Equation 2.3 is characterized as the error loss of the best

hyper-parameter configuration found so far, we can derive this into Equation 2.6 [200]:

EML
[Icmin

(λ)] = σλ · [u · Φ(u) + φ(u)], (2.6)

where u = cmin−µλ

σλ
, and Φ and φ represent the cumulative distribution function and the

probability density function of a Gaussian distribution, respectively.

Thornton et al. [200] emphasizes three key ideas used by SMAC. First, SMAC tries

to progressively perform better estimates, balancing between accuracy and computational

cost. Second, this algorithm implements what is so-called aggressive racing. This means

that configurations that have poor performances are discarded as soon as they are eval-

uated and compared to the current best configuration. Finally, SMAC has a mechanism

to promote diversification. That is, every second configuration is selected at random to

ensure robustness even when the model is misleading.

2.3 Final Remarks

Evolutionary and Bayesian optimization algorithms are both types of methods that

employ a global strategy to search or optimize – in this work, both are used for algorithm

selection and configuration in machine learning (i.e., for AutoML). However, they are

based on different frameworks. Whereas EA-based methods rely on biological abstrac-

tions of heredity, natural selection, and survival of the fittest individual, BO-based meth-

2.3. Final Remarks 41

ods (such as sequential model-based algorithm configuration and tree-structured Parzen

estimator) are based on a performance model and an acquisition function.

Similarly, both BO and EA follow an iterative-based process to perform their re-

spective tasks. Although they have been presenting successful results in terms of selecting

and configuring machine learning algorithms [12, 50, 75, 109, 153, 159, 200], which is the

main focus of this thesis, it is not clear yet how they perform in search spaces of different

sizes. Usually, there is little control in the experiments to evaluate the impact on the

method’s trade-off between exploration and exploitation based on the size of the search

space. Besides, to the best of our knowledge, apart from this thesis, these methods have

never been used to select and configure multi-label classification algorithms (the main

topic of the next chapter).

Given the No Free Lunch (NFL) theorem for optimization [217, 218], we are aware

that there is no single optimization/search method that can outperform all the others

when taking into account all optimization/search problems. Based on the great variety of

optimization/search methods in the literature (e.g., simulation annealing [121], ant colony

optimization [59] and multi-armed bandits [215]), we have decided to proceed with the EA

and BO frameworks because of their state-of-the-art AutoML results [109]. Basically, we

believe these results can be transposed to AutoML for MLC problems. Furthermore, as

AutoML is a specific field and encompasses particular problems, there are more chances

for single optimization/search methods (such as EA and BO algorithms) to perform well.

Therefore, this thesis investigates the performance of EA and BO methods in tailoring

MLC algorithms for a given dataset of interest.

42

Chapter 3

Multi-Label Classification

Classification is one of the most important tasks in Machine Learning (ML) [18, 126, 216].

In a traditional classification problem, the goal is to learn a model that expresses the

relationships between a set of predictive attributes (features describing the example) and

a predefined set of class labels. Each class label is represented by a discrete value. In

the traditional case, each example of the dataset is associated with a single label, which

consequently entitles this type of problem to Single-Label Classification (SLC).

More formally, each example from the SLC domain is defined by a tuple (X, y),

where X = {x1, ..., xd} is a d-dimensional vector representing the feature space (i.e., the

categorical and/or numerical characteristics of that example) and y is the class value,

where y ∈ L, a set of disjoint classes. Given that |L| > 1, if |L| = 2, the problem is

categorized as binary classification. Otherwise, if |L| > 2, the problem is categorized as a

multi-class classification.

There is a wide range of data mining applications that are concerned with solving

SLC problems, e.g.: anomaly detection (e.g., classifying a credit card transaction into

fraudulent or legitimate) [33], predicting cancer (e.g., classifying a patient into having or

not having breast cancer) [46, 129], and text classification (e.g., classifying a text into a

topic such as sports, politics, entertainment or commerce) [2].

Nevertheless, there is an increasing number of applications that require associat-

ing an example to more than one class label, including medical diagnosis [163, 190], tag

suggestion for text classification [119], scene classification [21], and protein function pre-

diction [209]. In the context of medical diagnosis, a patient can be associated with one or

more diseases (e.g., diabetes, pancreatic cancer, and/or high blood pressure) at the same

time. In tag suggestion, a text document can be associated with several different topics

(e.g., medicine, sports, and/or economics). For scene classification, we may have pho-

tographs representing scenes that may contain different landscapes (e.g., urban, beach,

mountain, and/or desert). Finally, a single protein may often have multiple functions

(e.g., cell fate, cell type differentiation, and/or cell cycle and DNA processing).

This classification scenario is better known as Multi-Label Classification (MLC) [87,

136, 202, 204, 227]. According to Tsoumakas et al. [204], MLC is a task concerned with

learning a model that returns a bipartition of the set of class labels. Given a query in-

3.1. Categorization of MLC Methods 43

stance, this bipartition separates the labels into relevant and irrelevant. More precisely,

each example in MLC is also represented by a tuple (X, Y), whereX is the d−dimensional

feature array, and Y ⊆ L is a set of non-disjoint class labels. Hence, we would like to find

a model h: X → 2|L| such that h maximizes a quality criterion λ.

Besides, MLC is usually associated with the task of Label Ranking (LR) [136].

In LR, the objective is to learn a model that outputs an ordering of the class labels in

accordance with their relevance to the query instance. In this case, we would like to find

a model h: X → R such that f maximizes a quality criterion λ, and returns a ranking

R of the labels for a given example. Ideally, we would like to create methods that are

capable of producing models that create both a bipartition (in the case of MLC) and an

ordering (in the case of LR) of the labels. Such combined task is well-known as Multi-

Label Ranking (MLR) [26] and is considered an interesting and useful generalization of

both related tasks [204].

Given these characteristics, it is important to emphasize that MLC is considered

a more general and challenging problem than SLC. First, the algorithm needs to consider

the label correlations (i.e., detecting if they exist or not) in order to learn a model that

produces accurate classification results [227]. Second, the limited number of examples for

each class label in the dataset makes generalization harder, as the algorithm needs more

examples to create a good model from such complex data [58]. Third, the imbalance is a

problem that affects MLC even more than it does SLC, as each label may have different

distributions and, consequently, locally imbalanced problems [34, 101]. Fourth and finally,

there is usually a higher strain to evaluate MLC models as there exist several contrasting

evaluation measures from different perspectives that try to express what is an optimal

MLC model given the input data [162] (see Section 3.2 for more details).

3.1 Categorization of MLC Methods

The majority of works in the literature follow the taxonomy proposed by Tsoumakas

and Katakis [202], which divides MLC methods into problem transformation and algo-

rithm adaptation. More recently, some works [87, 136, 146] extended this taxonomy to

include ensemble methods as a new category. We follow this extended taxonomy and

review methods in these three categories.

3.1. Categorization of MLC Methods 44

3.1.1 Problem Transformation Methods

Basically, Problem Transformation (PT) methods transform the multi-label prob-

lem into one or more single-label classification problems. Using this concept, it is possi-

ble to apply traditional single-label classifiers in order to obtain the classification out-

puts. Different works discuss the main approaches to perform problem transforma-

tion(s) [21, 38, 87, 202, 204, 223].

The simplest PT approaches are copy, copy-weight, select-max, select-min, select-

random, and ignore. Given a multi-label example (Xi, Yi), copy replaces the multi-label

example (Xi, Yi) with |Yi| single-label examples (Xi, ϕj), for every ϕj ∈ Yi. Similarly to

copy, copy-weight makes the same replacement, but also adds a weight of 1
|Yi| to each one of

the copied examples. All select approaches, in contrast, replace Yi with one of its members.

For instance, select-max and select-min replace Yi with the most and the least frequent

members of Yi among all examples, respectively. The select-random approach randomly

selects a member of |Yi| and makes the replacement. Finally, ignore just discards the

multi-labeled examples.

Raising the level of complexity of the PT methods, we have the Label Power-

set (LP) and Binary Relevance (BR). LP creates a single class for each unique set of

labels that are associated with at least one example in a multi-label training set. This

means that LP naturally considers all label correlations. However, if a novel labelset ap-

pears in the test set, LP will not be able to predict this labelset correctly, presenting just

the most probable class labels from the training set. BR, in turn, learns |L| independent
binary classifiers, one for each label in the labelset L. This implies that BR does not take

into account the label correlations, as the binary classifiers are trained separately.

In addition, there are PT methods that only modify the previously cited PT ap-

proaches in order to improve their predictive performance or to reduce their learning

complexity. For example, the Pruned Sets (PS) method [168, 169, 174] was created to use

the power of LP’s paradigm without its disadvantages. In order to do this, this algorithm

has two important steps: a pruning step and a labelset subsampling step. The pruning

step removes infrequently occurring labelsets from the training data. This removes un-

necessary complexity from the LP-transformed data by reducing the number of labelsets.

Nevertheless, PS does not simply discard the pruned examples. Instead, PS subsamples

from these infrequent labelsets, evaluating those subsamples that occur more frequently

in the training data. It then attaches these label subsets to these examples (those with

infrequent labelsets), creating new modified examples and reintroducing them into the

training set.

Following a different approach, Classifier Chain (CC) [175] changes the BR method

to take into account label correlations. To do this, CC creates |L| binary classifiers, like

3.1. Categorization of MLC Methods 45

BR. However, unlike BR, the classifiers in CC are also linked along a chain, where each

classifier deals with one BR problem. The attribute space of each link in the chain is

increased with the classification outputs of all previous links.

Further, we have Bayesian Classifier Chain (BCC) [221], Probabilistic Classifier

Chains (PCC) [52], Monte-Carlo Classifier Chains (MCC and M2CC) [170, 171], and

Classifier Trellis (CT) [172], which are all variations of the CC method. The idea behind

BCC is to create a maximum spanning tree based on marginal label dependencies, define

a Bayesian network from it [15], and then employ a classifier chain using the order of the

labels found by the Bayesian network model. The original paper used Näıve Bayes [115]

as a base classifier, but other types of base classifiers can be used. PCC, in turn, acts

exactly like CC at training time but explores all possible paths as inference at test time.

For this reason, PCC is defined as a Bayes optimal method. The methods MCC and

M2CC apply classifier chains with Monte-Carlo optimization [56, 71], using a maximum

number of inference and chain-order trials. MCC has a tractable label prediction scheme

only at test time, whereas M2CC performs an additional search for the optimal chain

sequence at training time. Differently, CT builds classifier chains by considering a trellis

structure rather than a cascaded chain. In CT, it is possible to set the width and type of

connectivity of the trellis structure, and optionally change the payoff function that guides

the placement of nodes (labels) within the trellis.

Finally, Conditional Dependency Networks (CDN) [95] build a fully connected

undirected network, where each node (which defines the classification of one label) is

connected to each other node (which defines the classification of each other label). Hence,

CDN applies a binary classifier on each node j (where j ∈ {1, ..., |L|}), predicting the

probability term p(yj|x, y1, ..., yj−1, ..., y|L|). Then, the inference is done using the iterative

Gibbs Sampling method [89]. Additionally, a final number of iterations is used to collect

the marginal probabilities, which become the label predictions.

3.1.2 Algorithm Adaptation Methods

Algorithm Adaptation (AA) methods simply extend single-label classification algo-

rithms so they can directly handle multi-label data [87]. In other words, SLC algorithms

such as (deep) artificial neural networks, decision trees, support vector machines, and

k-nearest neighbors [216] can be internally modified to perform multi-label classification.

Next, we discuss the main AA methods and how they deal with multi-label data.

Let us start with the Multi-Label Back-Propagation Neural Network (ML-BPNN)

algorithm [225], which is a standard back-propagation neural network with multiple out-

3.1. Categorization of MLC Methods 46

puts corresponding to (a ranking of the) multiple labels. Each node in the output layer in

the model created by ML-BPNN represents a different class label. ML-BPNN is trained

with gradient descent with an error function that takes into account the multi-label data.

The deep version of ML-BPNN is the Multi-Label Deep Back-Propagation Neural Net-

work (ML-DBPNN) algorithm [173], which uses Restricted Boltzmann Machines (RBMs)

or Deep-stacked Boltzmann Machines (DBMs) [103] to pre-train the network, learning a

layer of hidden features in an unsupervised fashion. Basically, this layer is plugged into

the ML-BPNN model.

Decision Tree (DTree) algorithms from the SLC context have also suffered mod-

ifications to perform MLC. E.g., Clare and King [40] carried out an adaptation of the

entropy definition of the C4.5 algorithm [166], enabling multiple labels in the tree’s leaves.

Predictive Clustering Trees (PCT) [16] is another example of a DTree-based algorithm

adapted to MLC. The idea of PCT is to build a decision tree by hierarchically clustering

the data. The clusters separate tuples of variables to be predicted. In this case, each label

is a member of this target tuple.

Finally, Ranking-based Support Vector Machines (Rank-SVM) [63] and Multi-

Label K-Nearest Neighbors (ML-KNN) [224, 226] modify two other classical SLC algo-

rithms for the MLC scenario, i.e., Support Vector Machines (SVM) [44] and K-Nearest

Neighbors (KNN) [45], respectively. In a nutshell, Rank-SVM constructs a linear model

that minimizes the ranking loss while trying to maintain a large margin, which is related

to SVM’s model representation. To do this, this SVM adaptation uses a cost function

that is defined as the averaged fraction of incorrectly ordered pairs of labels, i.e., the

ranking loss metric [136] (see Section 3.2 for more details about this metric). This makes

the strategy of finding the maximum margin to consider the multiple labels.

Contrastingly, ML-KNN, like KNN, first identifies the k nearest neighbors for the

unseen instance. However, unlike KNN, it applies the maximum a posteriori principle

to define the labelset for this unseen instance, based on statistical frequency information

of each label within the k nearest neighbors. For more details on algorithm adaptation

methods, see [87, 101, 204, 227].

3.1.3 Ensembles Methods

The last category of multi-label methods concerns ensemble methods [87, 101, 146].

These methods use at their base level multi-label classifiers, such as the ones described

in Sections 3.1.1 and 3.1.2. Hence, we have the ensemble method on top of the problem

transformation and algorithm adaptation approaches, aiming to combine these multi-

3.1. Categorization of MLC Methods 47

label models to produce a more robust predictive performance. Next, we review the main

ensemble methods.

Aiming to improve BR’s performance, we have Meta-BR (MBR, which is also

known in the literature as stacked-BR or 2BR) [91] and Ensemble of BR (EBR) [169, 175].

Whereas MBR just stacks the BR method with previous predicted BR label outputs (i.e.,

the label predictions of a first BR method become the features for a second BR), EBR

constructs a bagging [24] of BR classifiers, where each base classifier is trained on the

part of the original training set. Although EBR brings more diversity over the MLC base

classifiers, it can not deal with label correlations, while MBR does.

Ensemble of Label Powersets (ELP) [146], Ensemble of Pruning Sets (EPS) [174],

and Ensemble of Classifier Chains (ECC) [169, 175] are three other examples of bagging

of multi-label classifiers, which turn these methods broadly similar to EBR. ELP uses

bagging of LPs to produce diversity in the set of LP classifiers, combining their predictions

using majority voting. Given this process, ELP is able to predict a labelset that is not

present in the training set, an advantage over LP. EPS, in turn, was mainly proposed to

reduce the overfitting effects of the PS pruning strategy [146]. A voting process with a

threshold (taking into account all PS classifiers in the ensemble) is used to determine the

final labelset of a query instance. Finally, ECC tries to overcome the major issue of CC,

which is to define the optimal label order for the data at hand. To do that, each CC in

the ensemble is trained on a sample of the data with a different label order. As multiple

orders are tested, ECC can use the average of the confidence values for each label to create

the label bipartition for the test instance.

It is also worth mentioning other classical ensemble methods, such as Random k -

Labelsets (RAkEL) [204, 206] and Hierarchy of Multi-Label Classifiers (HOMER) [203].

RAkEL trains several PS classifiers with a different, small, and fixed number of k labels,

i.e., the taken labelsets for each classifier. The labelsets can be either disjoint (RAkELd)

or overlapping (RAkELo), depending on the strategy to construct them. In the end,

RAkEL combines the label votes from the PS classifiers to get a label-vector prediction.

HOMER also tries to reduce the complexity of performing MLC, like RAkEL. However,

it does not do that randomly. Instead, HOMER creates a cluster of labels by using an

algorithm called balanced k-means, which is a variant of k-means. Further, given the

created clusters, HOMER uses the divide-and-conquer paradigm to transform a large set

of labels L into a tree-shaped hierarchy of simpler MLC tasks, which can be solved using

a classical multi-label classifier, such as binary relevance. Given a new query instance to

classify, HOMER starts at the root classifier (associated with all labels). Next, it goes

to each child node (classifier) only if the parent predicts any of its labels. At the end of

the process, HOMER returns the union of the predicted labels at the leaves for the given

query instance [146].

Ensembles of algorithm adaptation classifiers are also possible options in MLC.

3.1. Categorization of MLC Methods 48

For example, the Random Forest of ML-C4.5 (RFML-C4.5) [136] and Random Forest

of Predictive Clustering Trees (RF-PCT) [122, 123] are MLC ensembles that use the

ML-C4.5 and PCT tree models, respectively, as base classifiers. Both methods use two

diversification schemes. Whilst the first diversification scheme is based on bagging (i.e.,

random forest-based approach [24]), the second is based on randomly changing the feature

space.

3.1.4 Overview of the MLC Algorithms

This subsection overviews the main aspects of the aforementioned MLC algorithms.

Table 3.1 summarises the algorithms described in Section 3.1.1. Table 3.2, in turn, en-

compasses the details of the algorithms presented in Section 3.1.2. Finally, Table 3.3

shows the main aspects of the algorithms reviewed in Section 3.1.3. In these three tables,

we present each MLC algorithm based on its name, acronym (if indicated), algorithm’s

inspiration (if possible), and main idea.

Table 3.1: Overview of the PT algorithms described in Section 3.1.1.

MLC Algorithm Acronym
Algorithm’s

Inspiration
Main Idea of the Transformation

copy - -
For each label ϕj in the labelset Yi, it creates a copy of the single-

label example i, i.e., (Xi, ϕj).

copy-weight - copy
For each label ϕj in the labelset Yi,, it creates a copy of the single-

label example i, i.e., (Xi, ϕj) with a weight equals to 1
|Yi|

.

select-max - -
It replaces Yi with its most frequent member among all

examples.

select-min - -
It replaces Yi with its least frequent member of Yi among all

examples.

select-random - - It replaces Yi with a random member of its labelset.

ignore - - It ignores the multi-label examples, discarding them.

Label Powerset LP -
It creates a single class for each unique labelset that occurs in the

training set.

Binary Relevance BR - It builds one independent SLC classifier for each label.

Classifier Chain CC BR

It builds one SLC classifier for each label. The classifiers are linked

to each other into a chain structure. The output of one classifier

serves as a new input for another classifier in the chain.

Pruned Sets PS LP
It employs LP but removes the infrequent labelsets that occur in

the training set.

Bayesian CC BCC CC
It creates a Bayesian network to define the order of the labels,

using a CC next.

Probabilistic CCs PCC CC
Like CC during training, but it explores all possible order paths

during an inference phase at testing time.

Monte-Carlo CC

(1st version)
MCC CC

It is a CC with Monte Carlo optimization to define the optimal

label-orders during training time.

Monte-Carlo CC

(2nd version)
M2CC CC and MCC

It is a CC with Monte Carlo optimization to define the optimal

label-orders during training and testing times.

Classifier Trellis CT CC
Like CC, but it employs a trellis structure instead of just using a

cascade chain.

Conditional Dependency

Networks
CDN CC

It builds a fully connected undirected network, where the nodes

into the network are labels, making the prediction:

p(yj |x, y1, ..., yj−1, ..., y|L|).

3.1. Categorization of MLC Methods 49

Table 3.2: Overview of the AA algorithms described in Section 3.1.2.

MLC Algorithm Acronym
Algorithm’s

Inspiration
Main Idea of the Adaptation

Multi-Label Back-Propagation

Neural Network
ML-BPNN Neural Networks

It is trained with an error function that takes into

account the multiple labels, where the output layer

represents the predictions of them.

Multi-Label Deep Back-Propagation

Neural Network
ML-DBPNN Neural Networks

It uses restricted Boltzmann Machines to learn hidden

features, plugging them into the ML-BPNN model.

Multi-Label C4.5 ML-C4.5 Decision Trees
It adapts the entropy definition of the C4.5 algorithm,

enabling multiple labels in the tree’s leaves.

Predictive Clustering Trees PCT Decision Trees

It builds a decision tree by performing hierarchical

clustering on data, where the cluster represents tuples

of labels.

Ranking-based Support

Vector Machines
Rank-SVM

Support Vector

Machines

It constructs a linear SVM model that minimizes a

specific ranking-based multi-label measure, i.e., the

ranking loss.

Multi-Label K-Nearest Neighbors ML-KNN Nearest Neighbors

Given the k neighbors, it applies the maximum a

posteriori principle to define the labelset for the

unseen instance.

Table 3.3: Overview of the ensemble algorithms described in Section 3.1.3.

MLC Algorithm Acronym
Algorithm’s

Inspiration
Main Idea of the Ensemble

Meta Binary Relevance,

Stacked Binary Relevance

or Two Binary Relevance

MBR,

Stacked-BR

or 2BR

Stacking
In this algorithm, the label predictions of a first BR method are

used as the features for a second BR.

Ensemble of Binary Relevance EBR Bagging
It is a bagging of BR classifiers, where each classifier is trained

with part of the training set.

Ensemble of Label Powerset ELP Bagging
It uses bagging of LPs to produce label diversity on this set of

classifiers in the ensemble.

Ensemble of Classifier Chain ECC Bagging
It employs a bagging of CCs, where each CC is trained with part

of the training set and also with a different label ordering.

Ensemble of Pruning Sets EPS Bagging

It tries to reduce the overfitting effects of the PS pruning strategy

by creating a bagging of PS classifiers, where a voting process

with a threshold is used to predict the target labelset.

Random k-Labelsets RAkEL Bagging

It trains several PS classifiers with a different, small and fixed

number of k labels, which models the labelsets for each classifier.

These labelsets can be either disjoint (RAkELd) or overlapping

(RAkELo) among the classifiers in the ensemble.

Hierarchy of Multi-Label

Classifiers
HOMER

Clustering

and

tree-shaped

hierarchy

It creates a cluster of labels and, given the members of the built

clusters, it transforms a large set of labels into a tree-shaped

hierarchy of simpler MLC tasks, which are solved by a common

MLC model.

Random Forest of ML-C4.5 RFML-C4.5 Bagging

It employs a bagging of ML-C4.5, where a diversification scheme

is used to randomly change the feature space for each ML-C4.5

classifier in the ensemble.

Random Forest of PCT RFML-PCT Bagging

It employs bagging of PCTs, where a diversification scheme is

used to randomly change the feature space for each PCT classifier

in the ensemble.

3.2. Evaluation in MLC 50

3.2 Evaluation in MLC

In multi-label classification, researchers and practitioners typically evaluate the

MLC algorithm using multiple measures because of the additional degrees of freedom the

MLC setting introduces [136]. Usually, these measures follow different perspectives to

quantify how good a classification algorithm is to a given dataset [204]. This performance

evaluation for MLC algorithms differs significantly from SLC, where researchers and prac-

titioners are used to evaluate the whole classification system using a few SLC measures,

such as F1-measure (F1) and accuracy [216].

As already mentioned, MLC is also usually associated with the LR task. This

means that we have measures to evaluate both a bipartition (in the case of MLC) and

a ranking (in the case of LR) generated by a given multi-label model. Hence, let L =

{ϕ1, ..., ϕq} be the total set of labels where q = |L|; Yi ⊆ L and Zi ⊆ L be the true

and the predicted subset of labels for the instance Xi, respectively. Let r(ϕj) be the

raking for the predicted label ϕj, for j = 1, ..., q representing the order of the ranks, where

the most and the least relevant ranks are represented by the highest (1) and lowest (q)

ranks, respectively. Given these definitions, we define the main measures in which group

(bipartition or ranking) next. All measures are based on the description of the works of

Tsoumakas et al. [204] and Pereira et al. [162].

3.2.1 Bipartition Measures

The bipartition measures are divided into two groups, i.e., example-based and

label-based. Example-based measures are the ones that make an average of the differences

between the true and the predicted set of labels over all examples for the input dataset.

Label-based measures, on the other hand, break down the evaluation process by taking

each label into account separately and, after that, combining their evaluations into an

average over all labels. Sections 3.2.1.1 and 3.2.1.2 cover the most important measures in

both groups.

3.2.1.1 Example-based Bipartition Measures

Exact Match (EM, which is also known as classification accuracy and subset accuracy)

is a very strict evaluation metric, as it only takes the value one when the predicted label

set is an exact match to the true label set for a given example, and takes the value zero

3.2. Evaluation in MLC 51

otherwise. For this reason, EM is a really important measure in domains where the labels

in the dataset are highly correlated. Given the generated model h and the dataset D with

n examples, EM is defined in Equation 3.1:

EM(h,D) =
1

n
·

n∑
i=1

I(Zi = Yi), (3.1)

where the function I(.) takes the value 1 when Zi = Yi, and 0 otherwise.

Hamming Loss (HL), in turn, calculates how many times an example-label pair is

misclassified. In other words, it counts when a label not belonging to the example is pre-

dicted or when a label belonging to the example is not predicted. This metric is basically

the opposite measure of EM, as it disregards the label correlations. In other words, HL

is actually the average binary classification error [204], as defined in Equation 3.2:

HL(h,D) =
1

n
·

n∑
i=1

|Zi △ Yi|
n

, (3.2)

where △ represents the symmetric difference between the two labelsets.

Accuracy, precision, recall, and F1 are measures adapted from the SLC context to

take into account partially correct predicted labelsets. They are formally defined in Equa-

tions 3.3, 3.4, 3.5, and 3.6, respectively. The accuracy measures the overall effectiveness

of a classifier. Precision, in turn, measures how the actual labels agree with the positive

labels predicted by the classifier. Recall, which is also known as sensitivity, evaluates the

performance of the classifier in terms of retrieving positive labels. Finally, F1 is defined

as the harmonic mean between precision and recall.

Accuracy(h,D) =
1

n
·

n∑
i=1

|Zi

⋂
Yi|

|Zi

⋃
Yi|

(3.3)

Precision(h,D) =
1

n
·

n∑
i=1

|Zi

⋂
Yi|

|Zi|
(3.4)

Recall(h,D) =
1

n
·

n∑
i=1

|Zi

⋂
Yi|

|Yi|
(3.5)

F1(h,D) =
1

n
·

n∑
i=1

2 · |Zi

⋂
Yi|

|Zi|+ |Yi|
(3.6)

3.2.1.2 Label-based Bipartition Measures

Any measure from the SLC context can be adapted for the label-based bipartition sce-

nario, e.g., precision, recall, accuracy, and area under the Receiver Operating Characteris-

tic (ROC) curve. As already mentioned, this happens because of the label decomposition

of the evaluation process in label-based bipartition measures. First, the measures are

3.2. Evaluation in MLC 52

calculated individually for each label and then averaged over all labels. It is worth men-

tioning two averaging approaches, called micro-averaging and macro-averaging [87, 204].

The macro-averaging measures give equivalent weights to all class labels, regardless of

their frequency (per-label averaging). This makes the macro-averaging measures more

impacted by the performance of rare class labels. In contrast, the micro-averaging mea-

sures give equivalent weights to all examples (per-example averaging). This makes the

micro-averaging measures more influenced by the performance of common class labels.

Gibaja and Ventura [87] discuss that the macro-averaging approach is preferred when

the multi-label method needs to perform well across all class labels, whereas the micro-

averaging is more convenient when the density of the class labels is important.

Let TP, TN, FP, and FN be the number of true positives, true negatives, false

positives, and false negatives used to evaluate single-label classifiers, respectively. Given

an SLC classifier h and a datasetD with n examples, the traditional binary SLC measures,

i.e., accuracy, precision, recall, and F1, are defined as follows by Equations 3.7, 3.8, 3.9

and 3.10.

AccuracySLC(h,D) =
TP + TN

n
(3.7)

PrecisionSLC(h,D) =
TP

TP + FP
(3.8)

RecallSLC(h,D) =
TP

TP + FN
(3.9)

F1 SLC(h,D) =
2 · TP

2 · TP + FP + FN
(3.10)

Given these specific binary measures, let B(TPϕ, TNϕ, FPϕ, FNϕ) denote a gen-

eral binary evaluation measure considering these countings for a given class label ϕ. The

macro-averaged and micro-averaged versions of any single-label binary measure B for a

given MLC classifier h over a dataset D are defined in Equations 3.11 and 3.12, respec-

tively.

Bmacro(h,D) =
1

q
·

q∑
ϕ=1

B(TPϕ,TNϕ,FPϕ,FNϕ) (3.11)

Bmicro(h,D) = B

(
q∑

ϕ=1

TPϕ,

q∑
ϕ=1

TNϕ,

q∑
ϕ=1

FPϕ,

q∑
ϕ=1

FNϕ

)
(3.12)

3.3. Final Remarks 53

3.2.2 Ranking Measures

In this section, we discuss the three main measures to evaluate multi-label ranking

methods, which are ranking loss, coverage, and average precision. Starting with Ranking

Loss (RL), which calculates the number of times that irrelevant labels are ranked higher

than relevant labels. This means that RL penalizes the label pairs that are reversely

ordered in the ranking for a given example. Equation 3.13 formalizes this measure.

RL(h,D) =
1

n
·

n∑
i=1

1

|Yi| · |Yi|
· | (ϕa, ϕb) : ri(ϕa) > ri(ϕb), (ϕa, ϕb) ∈ Yi × Yi | (3.13)

Distinctly, Coverage (Cov) analyzes how far (in-depth) it is needed to go down in

the label ranking list to cover all the relevant labels of a given example. This measure is

defined in Equation 3.14.

Cov(h,D) =
1

n
·

n∑
i=1

max
ϕ∈Yi

ri(ϕ)− 1 (3.14)

Finally, we define the Average Precision (AvgPrec) measure in Equation 3.15. This

measure checks the average fraction of labels that are ranked above a relevant label ϕ in

the true labelset Yi of an example i.

AvgPrec(h,D) =
1

n
·

n∑
i=1

1

Yi

·
∑
ϕ∈Yi

|ϕ′ ∈ Yi : ri(ϕ
′) ≤ ri(ϕ)|

ri(ϕ)
(3.15)

3.3 Final Remarks

This chapter showed there is a large variety of MLC algorithms, each one having

its own assumptions and biases. For example, when the BR algorithm is chosen to deal

with an MLC problem, the label correlations are disregarded. In the case of LP, RAkEL,

and CC, label correlations are considered in different ways.

Different algorithm assumptions can lead to different predictive performances, de-

pending on the characteristics of the dataset and the algorithm. As Tsoumakas et al. [204]

observed, the label cardinality (average number of labels of the examples in the dataset)

and the label density (average number of labels of the examples divided by the total num-

ber of labels in the dataset) tend to influence the way the MLC algorithm performs and,

consequently, lead to good or poor class label predictions for different algorithms.

3.3. Final Remarks 54

Therefore, it is very difficult to choose the best MLC algorithm and its best hyper-

parameter setting (i.e., the algorithm and the hyper-parameter setting that maximize the

predictive accuracy) for a particular dataset provided by a user. In this context, this work

proposes methods for automatically selecting and configuring the best MLC algorithm for

a given input dataset, which is a type of AutoML task, as discussed in the next chapter.

55

Chapter 4

Automated Machine Learning

Although the term Automated Machine Learning (AutoML) was recently coined1, the

field itself is not new. As far as we know, Rich [177] and Rich and Knight [178] were

the first to point out the inherent/dual interaction between methods for representing and

using knowledge (i.e., ML algorithms) and methods for conducting heuristic search (i.e.,

search and/or optimization methods). This interaction basically defines what AutoML is.

Because the ideas behind AutoML appeared in the fields of machine learning and

optimization at different time frames and were developed mostly independently [160],

there is still some level of confusion about naming this field. In fact, AutoML has already

received names such as algorithm selection (for machine learning), hyper-heuristics, hyper-

parameter optimization, and selective or constructive meta-learning.

Apart from this confusion, the main objective of AutoML is always to automatically

recommend machine learning algorithms (together or not with their respective hyper-

parameters) to learning tasks (associated with datasets) without much dependency on

user knowledge [153]. Usually, the background knowledge required to learn the AutoML

task is defined by a search space, which is embedded into a search mechanism that builds

personalized solutions to the problem at hand.

This process is exemplified in the Figure 4.1. This figure represents a typical Au-

toML system receiving as input the dataset of interest and a search space composed of ML

algorithms (together with their respective set of hyper-parameters). Besides, prior knowl-

edge from the specialists can be included in the ML algorithms and hyper-parameters.

For instance, the prior knowledge can come from a set of configuration files and/or from

a context-free grammar. These define the search space of ML algorithms (and hyper-

parameters) the AutoML system handles. This possibility is represented by the dotted

line in the figure. In the end, the system will output a personalized ML solution to the

input data, i.e., (a set of) learning algorithm(s) with the best hyper-parameters.

Given the constant growth of generated data and the need of interpreting, classi-

fying, and contextualizing this data into useful information, the importance of AutoML

systems is undeniable. This area has become even more important given the limited num-

ber of experts and an increasing number of enthusiastic practitioners that follow ad hoc

1https://www.automl.org/events/workshops/

https://www.automl.org/events/workshops/

56

Figure 4.1: A typical AutoML process.

Dataset
Auto-ML
Method

Personalized ML solution:
Best algorithm(s) with best hyper-parameters

Prior
Knowledge

From
Specialists

...

Hyper-
parameters

Hyper-
parameters

...

 ML
Algorithm 1

 ML
Algorithm M

processes to deal with their data [50, 155].

Formally, an AutoML problem can be cast as the Combined Algorithm Selection

and Hyper-parameter (CASH) optimization problem [17, 127, 200]. Therefore, let A =

{A(1), ..., A(M)} be a set of learning algorithms, where each algorithm A(i) ∈ A will have its

own set of hyper-parameters, Λ(i) = {λ(1), ..., λ(S)}, defined from the full set of algorithm’s

hyper-parameters Ω. Further, let Dtrain = {(x1, y1), ..., (xn, yn)} be the training set con-

taining n examples, which is divided into K cross-validation folds {D(1)
learn, ..., D

(k)
learn} and

{D(1)
valid, ..., D

(k)
valid}, where D

(j)
learn = {Dtrain/D

(j)
valid} for each j = 1, ..., K. Finally, let

LF (A
(i)

Λ(i) , D
(j)
learn, D

(j)
valid) be the loss function, which measures the loss value of algorithm

A(i) on D
(j)
valid, having its model learned from D

(j)
learn with the hyper-parameters Λ(i). Based

on these definitions, an AutoML problem deals with the task of selecting the learning al-

gorithm and its respective hyper-parameters, which minimize the value achieved by the

loss function, as defined in Equation 4.1:

A∗
Λ∗ ∈ argmin

A(i)∈A,Λ(i)⊆Ω

1

K
·

K∑
j=1

LF (A
(i)

Λ(i) , D
(j)
learn, D

(j)
valid) (4.1)

In addition, we might extrapolate this problem to select and configure machine

learning pipelines instead of focusing on algorithms and hyper-parameters. A pipeline

may have one or several preprocessing techniques (e.g., feature selection, normalization, or

imputation), must have at least one processing algorithm (e.g., single-label classification,

multi-label classification, clustering, or regression), and may consider a post-processing

approach (e.g., probability calibration or ensemble construction). So, given a search

space of pipelines P = {P(1), ...,P(V)}, each pipeline is basically a sequence of learning

algorithms, P(g) = {A(1), ...,A(U)}, that are used to solve a learning task. Similarly

to the previous definition, each pipeline will have its respective set of pipeline’s hyper-

4.1. A Categorization of the AutoML Methods 57

parameters, Γ(i) = {Λ(1), ...,Λ(S)}, which defines the hyper-parameters for each process

into the pipeline. In this case, Equation 4.1 would be generalized to Equation 4.2 to

accept pipelines instead of only ML algorithms.

P∗
Γ∗ ∈ argmin

P(i)⊆P,Γ(i)⊆Ψ

1

K
·

K∑
j=1

LF (P(i)
Γ(i) , D

(j)
learn, D

(j)
valid) (4.2)

It is important to emphasize that the formulation in Equation 4.2 to include hi-

erarchical ML pipelines into the CASH problem also makes part of the contributions of

this thesis.

4.1 A Categorization of the AutoML Methods

In the literature, there are several ways to organize AutoML methods. In this

section, we discuss the most common and novel ways to organize and categorize these

methods. Hutter et al. [109], for instance, categorize the methods into hyper-parameter

optimization [73], meta-learning [208] and neural architecture search [64, 65], separating

the AutoML methods in terms of their main topics.

This is a simplistic way to look at AutoML, but there are other ways to organize

it. We can categorize these methods by their purpose (general or specific), the type of

search/optimization they use (such as Bayesian optimization, random search, evolution-

ary algorithms, multi-armed bandits, and hybrid methods), the learning task they are

associated with (such as single-label classification, multi-label classification, regression,

multi-target regression, and clustering), and their respective application domain (such as

bioinformatics, fraud detection, and health informatics).

In this thesis, we define an alternative organization of the AutoML methods that

respects their generality, i.e., the “level of complexity” they focus on. Some of them are

more specific (i.e., taking into account one or few algorithms), and others are considered

more general or complex (i.e., focusing on selecting entire pipelines). So far, we have iden-

tified three (3) categories of methods concerning different aspects of AutoML problems,

as discussed below:

1. Specific ML algorithms: In this case, the proposed AutoML methods aim

to select only components and/or hyper-parameters from ML algorithms. E.g.,

kernels and/or their hyper-parameters in support vector machines [57, 93], hyper-

parameters in neural networks (such as learning rate and number of layers) [142],

and distance functions for graph-based semi-supervised learning [143].

4.2. Related Work on AutoML Methods for Selecting and Configuring ML Pipelines 58

2. Family of ML algorithms: In this category, the proposed AutoML methods

usually select or construct (new) ML algorithms based on a set of components

describing them. Bayesian networks for classification [48, 49], decision trees [12],

artificial neural networks [7, 219, 222] and rule induction [159] are examples of

families of algorithms that search methods explore and recommend customized ML

algorithms. E.g., given several algorithms in a family of tree-based algorithms – such

as C4.5 [166], decision stump [216], random forest [25], logistic model trees [133,

196] and random tree [216]) – and their respective hyper-parameters, the AutoML

method would have to choose one of them and configure its hyper-parameters to

the input data.

3. Complete ML pipelines: Given the advances in the ML and AutoML fields,

this category emerged to create methods that search for and configure pipelines

over ML frameworks (such as WEKA [97] and Scikit-Learn [161]). Recall that ML

pipelines are a sequence of tasks performed in order to accomplish an ML task

associated with a dataset of interest [148]. The tasks included in the pipeline may

represent different ways of transforming or preprocessing the dataset, as well as

a classification or a regression algorithm and its associated hyper-parameters [50].

The works of Thornton et al. [200], Feurer et al. [75], Olson et al. [153], de Sá

et al. [50] and Mohr et al. [144] are important examples of this category. It is

worth mentioning that the methods of this category need to face a great number

of preprocessing, classification/regression, and post-processing methods to return a

pipeline that suits the input learning task. Thus, they must perform an outstanding

search – i.e., presenting a suitable trade-off between exploration and exploitation –

to generate appropriate pipelines.

Although all presented categories are important subfields in the context of Au-

toML, we will pay particular attention to subfields described in item 3, which are the

ones we consider contemporary AutoML. For this reason, we review these AutoML meth-

ods next, grouping them by the type of method they use.

4.2 Related Work on AutoML Methods for

Selecting and Configuring ML Pipelines

Let us start with the Bayesian Optimization (BO) algorithms for AutoML (see

Section 2.2 for more details), which were primarily represented by Auto-Prognosis [5, 6],

4.2. Related Work on AutoML Methods for Selecting and Configuring ML Pipelines 59

Auto-WEKA [127, 200], and Auto-sklearn [74, 75, 76]. AutoPrognosis is an AutoML

method specifically designed for clinical prognostic, using Scikit-Learn. AutoPrognosis

searches for ensembles of pipelines using a novel batched BO algorithm. This new method

uses the BO principles to predict the performance of different pipeline configurations in

a scalable fashion by learning a structured kernel decomposition that identifies pipelines

with correlated performance [113, 198]. AutoPrognosis consists of classification, tempo-

ral, and survival nodes, enabling distinct types of analysis of clinical data. Although

presenting an important AutoML work, AutoPrognosis was not proposed for general pur-

pose, meaning that this method can only be applied to clinical prognostic data. The next

two BO-based methods are of general purpose, as they were developed to receive any

classification or regression problem as input.

Auto-WEKA and Auto-sklearn are methods that currently rely on a BO algorithm

called Sequential Model-based Algorithm Configuration (SMAC) [108]. A typical BO al-

gorithm for AutoML optimizes the combination between complete ML pipelines and their

respective hyper-parameters to a dataset at hand, using a hierarchical approach. In this

case, the AutoML method first chooses the classification algorithm (or the preprocessing

method) and, only after this step, the hyper-parameters of this algorithm are optimized.

The use of this hierarchical optimization approach can be advantageous in the sense that

it divides the search space into two, but it may also leave out algorithms that, with the

right parameters, could generate better results than the selected ones.

Auto-WEKA automates the process of selecting the best ML pipeline in WEKA,

whereas Auto-sklearn aims to optimize the pipelines in the Scikit-Learn library. The

choice of these libraries by current AutoML methods is motivated by the great number of

ML algorithms they already implement and their popularity. Both methods implemented

the random forest-based version of SMAC that provides a better performance than the

Tree-structured Parzen Estimator (TPE) BO-based algorithm [13, 200]. Nevertheless,

we observed some improvements in Auto-sklearn when we compared it to Auto-WEKA.

For instance, Auto-sklearn can be initialized via meta-learning [76] (to warm-start the

SMAC process) and can also construct an ensemble in a post-processing stage by using

an ensemble selection approach [30, 31] to combine the best pipelines found during the

search [74].

Nevertheless, Fusi et al. [86] and Li et al. [135] observed that SMAC-based Au-

toML methods tend to suffer in high-dimensional hyper-parameter search spaces and

usually present similar or worst performances than a random search, on average. This

aspect was observed experimentally by both authors and occurred due to the necessity of

sampling enough hyper-parameter configurations to achieve a suitable estimation of the

predictive posterior probability over a high-dimensional space. This issue of BO methods

is mainly due to the nature of the hyper-parameters, as the search space can have dis-

crete, ordinal, categorical, continuous, and/or conditional hyper-parameters. This may

4.2. Related Work on AutoML Methods for Selecting and Configuring ML Pipelines 60

cause discontinuity of the function that models the performance of ML pipelines, and

SMAC-based methods tend not to fit well in this case. As the search space enlarges,

including different types of hyper-parameters, SMAC-based methods tend to suffer in the

final predictive performance of their selected and configured pipelines.

In this context, Fusi et al. [86] try to overcome this issue by casting the AutoML

task in Scikit-Learn as a collaborative filtering problem. In a nutshell, the main idea is

if two datasets have similar results for a few ML pipelines, it is likely that the remaining

pipelines will produce results that are similar as well. This resembles a collaborative fil-

tering problem, which is solved by Fusi et al. using a probabilistic matrix factorization

algorithm. Therefore, the authors propose the so-called Probabilistic Matrix Factoriza-

tion for AutoML (PMF-AutoML) method. This method basically replaces the Gaussian

process (or the random forest) model with a PMF model (more specifically, the one pro-

posed by Salakhutdinov and Mnih [182]) to predict the performance of new ML pipelines

and uses an acquisition function from Bayesian optimization methods (i.e., the expected

improvement acquisition function) to decide which pipeline to evaluate next.

Aiming to overcome the same issue, Li et al. [135] proposed Hyperband and

formulated the AutoML task as a pure-exploration non-stochastic infinite-armed bandit

pro-blem [27, 29, 67, 112]. This method relies on a principled early-stopping strategy

to allocate resources (e.g., number of iterations, data samples, or number of features) to

the randomly sampled configurations, allowing it to evaluate orders of magnitude more

configurations than uniform allocation strategies. Basically, Hyperband dynamically al-

locates (in each round of its main procedure) more resources to the top K promising

configurations2, after discarding the least promising ones3. Hyperband was evaluated

using Scikit-Learn, PolyLearn [151] and Keras [39], and is considered a general-purpose

approach that requires a low set of assumptions, unlike prior configuration evaluation

approaches [135].

Although it is an important method in the literature, Hyperband does not stand

for optimizing ML pipelines, only hyper-parameters of specific ML methods. Given that,

das Dôres et al. [47] extended Hyperband and created AutoBand, which is an AutoML

framework to deal with the task of recommending ML pipelines based on the WEKA

tool. Noticing the importance of Hyperband to the context of AutoML, the authors of

Auto-sklearn extended their AutoML method to consider success halving into Bayesian

optimization, resulting in the hybrid method, namely Portfolio Successive Halving Auto-

sklearn (or simply, PoSH Auto-sklearn) [72].

Auto-Tuned Models (ATM) [197] is a system that merges the aforementioned ideas

by presenting a hybrid Bayesian and multi-armed bandit optimization method for Au-

2Hyperband takes into account a constant that defines the maximum amount of resource that can be
allocated to a single configuration.

3At each round i, the number of configurations of that round, ni, is reduced by a factor of η.

4.2. Related Work on AutoML Methods for Selecting and Configuring ML Pipelines 61

toML in the Scikit-Learn library. To proceed with this hybrid approach, ATM breaks

the AutoML process into two phases. The first phase is used to select a hyper-partition,

which is a set of hyper-parameters that defines a path through the conditional parameter

tree. Basically, this tree expresses the hyper-parameter search space for a given learn-

ing algorithm. Given the selected hyper-partition, the second phase is then employed for

hyper-parameter tuning. Whereas the first phase in ATM is solved by a multi-armed ban-

dit method, the second phase uses a traditional BO method to tune the hyper-parameters.

In addition, ATM comprehends a (meta) model recommender method that exploits pre-

vious learning methods’ performances on a variety of datasets.

Evolutionary Algorithms (EAs) are also commonly adopted to perform AutoML

(see Section 2.1 for more details about this type of method). For instance, the Tree-

based Pipeline Optimization Tool (TPOT) [153, 154, 155] applies a canonical Genetic

Programming (GP) algorithm to search for the most appropriate ML pipeline in the

Scikit-Learn library. Each pipeline in TPOT is represented by a tree, representing a set

of machine learning procedures (e.g., preprocessing steps, feature construction, applying

an ML model, and/or constructing an ensemble of several ML models). One difference

in the search space of TPOT when compared to the aforementioned methods is that it

allows the use of many copies of the dataset, which are processed in parallel by different

preprocessing methods and later combined. For example, a pipeline can have two or

more feature selection methods, and then a combination method is used to verify the

common and distinct features found by the techniques. This can turn the trees produced

by TPOT very large, as unlimited ML components can be combined. Based on this, a

multi-objective version of TPOT was developed considering the use of Pareto selection

(with the Non-dominated Sorting Genetic Algorithm II, or simply NSGA-II) [51]. In this

case, two separate objectives are considered: maximizing the final accuracy measure of

the pipeline as well as minimizing the pipeline’s overall complexity, given by the total

number of pipeline components, in order to avoid overfitting.

Additionally, TPOT has two independent versions, which are TPOT with Multi-

factor Dimensionality Reduction (TPOT-MDR) [194] and Layered TPOT (LTPOT) [88].

TPOT-MDR is a version designed specifically for bioinformatics studies, implementing

two new preprocessing operators that are used in genetic analysis of human diseases:

Multifactor Dimensionality Reduction (MDR) and an Expert Knowledge Filter (EKF).

On the other hand, LTPOT aims to create customized ML pipelines equally good as the

original version of TPOT but in significantly less time. LTPOT does that by initially

evaluating the pipelines on a small subset (of examples) of the data and only letting the

most promising pipelines to be evaluated on the full dataset. This idea is similar to the

one Hyperband uses.

Nevertheless, besides its popularity, it is important to mention that one of the

major drawbacks of TPOT is that it can create ML pipelines that are arbitrary/invalid.

4.2. Related Work on AutoML Methods for Selecting and Configuring ML Pipelines 62

I.e., it can create an ML pipeline that fails to solve a classification problem, as there are

no constraints in which type of components can be combined. For example, TPOT can

create a pipeline without a classification algorithm [153, 154, 155]. This characteristic of

TPOT leads to a waste of computational resources, as these individuals are identified as

invalid and given a very low fitness value during the evaluation of the pipelines. Besides,

even with its multi-objective version, there are also indications that TPOT can generate

very complex pipelines4 [144, 212], given the fact that it can create large trees with a

great number of ML components during its iterative search.

Genetic Programming for Machine Learning (GP-ML) [131] is another EA-based

AutoML method that overcomes this limitation by using a Strongly Typed Genetic

Programming (STGP) algorithm [145]. The STGP algorithm restricts the Scikit-Learn

pipelines in such a way they are always valid from the machine learning point of view.

In addition, GP-ML applies an asynchronous evolutionary algorithm [188] instead of a

generational one. Scott and De Jong [188] observed that asynchronous evolution is biased

towards the evaluation of faster pipelines in some parts of the search space. However,

Křen et al. [131] consider this bias an advantage to the AutoML task, because a faster

pipeline is usually preferable to a slower one, when both present similar predictive ac-

curacy values. GP-ML also has two multi-objective versions, named t-mGP-ML and

s-mGP-ML [132], which use Pareto selection (i.e., with NSGA-II) to perform the search.

Both try to maximize the pipeline’s classification performance (by using the quadratic-

weighted kappa and the accuracy measures). The difference is that whereas the former

minimizes the training time, the latter minimizes the size of the generated pipeline (i.e.,

the number of ML methods).

Resilient Classification Pipeline Evolution (RECIPE) [50] is an AutoML frame-

work that follows the same basic principle of GP-ML by avoiding the generation of invalid

pipelines during the evolutionary process. In order to guarantee that, RECIPE defines a

grammar that encompasses the classification methods present in Scikit-Learn. Therefore,

RECIPE makes use of a Grammar-based Genetic Programming (GGP) method to per-

form the search for the most suitable classification pipeline. The grammar prevents the

generation of invalid/arbitrary pipelines and can also speed up the search process.

Autostacker [36] also follows an EA in the context of AutoML. Nevertheless, it

presents a novel idea: given the dataset at hand, it composes a stacking layered-based

architecture. In Autostacker, each layer can have several ML algorithms, which are nodes

at the layer. A raw dataset is used as input for the first layer. In the subsequent layers,

the classification results of the previous layers (considering each node) will be added to

the raw dataset as new features. The main objective of Autostacker is to use an EA to

search for the best instantiation of the ML algorithm and hyper-parameter(s) for each

4In fact, these pipelines are usually unfeasible to run on a dataset because they usually combine
several base and ensemble methods together.

4.2. Related Work on AutoML Methods for Selecting and Configuring ML Pipelines 63

node in each layer.

Furthermore, novel and robust AutoML approaches are constantly being created as

the field continues to evolve. ML-Plan [144, 212], Google Vizier [92], and Autotune [124]

are examples of these approaches. ML-Plan is an AutoML method based on hierarchical

planning. It relies on Hierarchical Task Networks (HTN) [66, 149], an established Artificial

Intelligence (AI) planning technique. ML-Plan is implemented as a global best-first search

over the graph induced by the planning problem at hand. To do that, ML-Plan guides

the search by randomly completing partial pipelines, and its formulation of the HTN

problem leads to an upper and a lower part of the search graph. The upper part is related

to the decision of choosing the feature preprocessing algorithm (if any) and then the

classification algorithm. The lower part refers to the hyper-parameter configurations of

the classification algorithm and then the preprocessing algorithm (if any). ML-Plan can

search for pipelines over the search spaces of both WEKA and Scikit-Learn. In addition,

ML-Plan has a version that is capable of producing unlimited-length pipelines [212], like

the ones generated by TPOT. In this version, it adds the capacity to resolve complex

tasks, e.g., applying two or more feature selection methods in parallel and creating a

feature union to combine the features selected by the methods.

On the other hand, Google Vizier is a general-purpose service for black-box op-

timization that can be used in the context of AutoML, i.e., for tuning models on the

Google Cloud ML engine. It provides nine search methods so far: random search (tra-

ditional and 2×) [14], grid search [14], multi-armed bandit technique using a Gaussian

process regressor (or simply, Gaussian process bandit) [193], batched Gaussian process

bandits [55], SMAC-based BO [108], covariance matrix adaptation evolutionary strat-

egy [98], and probabilistic search [92]. Instead of making the user choose one of these

search methods, Vizier dynamically selects which search method to use for a given input

ML problem. It can change from one search method to another based on scalability or

any other metric. For instance, it can start the search with a Gaussian Process Bandit,

which usually provides an excellent result quality, and later change it to a more näıve

method (such as grid search) that scales better with a bigger number of points. Thus,

after collecting information about the configurations, Vizier may switch from a complex

search method to a scalable one.

Finally, Autotune is a derivation-free AutoML framework within SAS® Visual

Data Mining and Machine Learning [213], and also operates with multiple search meth-

ods, such as: random search, random Latin Hypercube Sample (LHS) [140], GA, Gen-

erating Set Search (GSS) [94], Bayesian optimization (with Gaussian process surrogate

model) [116], Nelder-Mead variable shape simplex [150], and DIRECT (standard and

hybrid versions) [117]. The idea of AutoTune is not just to run these search methods

concurrently to perform a parallel hyper-parameter tuning but also to combine them to

create new hybrid methods. For instance, the default search method in Autotune basi-

4.3. Related Work on Automated Multi-Label Classification 64

cally combines the elements of LHS, GA, and GSS methods, exploiting the strengths of

each method. As there is a sharing of objective evaluations across the search methods,

this feature could be implemented for other methods as well.

4.3 Related Work on Automated Multi-Label

Classification

All AutoML methods discussed in the previous section were designed to solve the

conventional single-label classification and regression tasks. In other words, they can

not handle multi-label data. As far as we know, there are only a few works related to

automated multi-label classification. We review them next.

Chekina et al. [35] were the first authors to note the importance of helping

researchers in selecting the most appropriate multi-label classification algorithm for a

dataset of interest. Particularly, they developed a meta-model for selecting one out of

11 multi-label classification algorithms, taking into account 30 characterizing measures

and 36 meta-datasets. To induce the meta-model, the authors use a K-Nearest Neigh-

bors (KNN) classifier [45], where the value of K was equal to 20. Nevertheless, as it is a

preliminary work, it only selects the classification algorithm to use for a given multi-label

problem, not setting the algorithm’s hyper-parameters.

In a similar direction, Rivolli and de Carvalho [179] created a meta-learning sys-

tem to recommend a suitable learning algorithm for each binary problem built by the

BR multi-label classification algorithm. Therefore, given a dataset with |L| labels, |L|
single-label algorithms will be recommended for the BR’s base level, one for each label.

The authors considered four classification algorithms in their system: (i) Support Vec-

tor Machines (SVM), (ii) Random Forest (RF), (iii) Näıve Bayes (NB), and (iv) KNN.

However, they discarded NB in the end because of its poor performance. All these single-

label classification algorithms had their hyper-parameters fixed before the aforementioned

experiments. Considering these algorithms, a meta-dataset is generated for 13 datasets

from Mulan repository5 with 19 attributes describing each binary sub-problem. These

attributes comprehend simple measures (e.g., number of attributes and number of in-

stances), statistical measures (e.g., attribute correlation and skewness), and information

theory measures (e.g., entropy and noise). They induced a meta-classification model –

in this case, an SVM – with this meta-dataset, where the best of the three classification

algorithms (e.g., SVM, RF, and KNN) for this meta-dataset is selected in terms of the F1

5Available at http://mulan.sourceforge.net/datasets-mlc.html.

http://mulan.sourceforge.net/datasets-mlc.html

4.3. Related Work on Automated Multi-Label Classification 65

metric. With the trained meta-model, they used it to recommend algorithms for other

MLC datasets.

Differently from the previous authors, Cano et al. [28] proposed G3P-ML, which

is a grammar-guided genetic programming algorithm for solving multi-label classification

problems using IF-THEN classification rules. Thus, given a multi-label problem, G3P-ML

constructs a customized set of rules, which are specified in the grammar. The major issue

about G3P-ML is that this algorithm must be run several times to find the classification

rules, where each run focuses on a particular label. Therefore, the minimum number of

runs to cover all the labels is equal to the number of labels |L|. However, one rule is not

usually sufficient to distinguish all the examples for that particular label.

Chen et al. [37], in turn, performed a study about kernel selection for multi-label

classification based on a kernel alignment method [210]. Chen et al. describe that a

kernel alignment method aims to calculate the degree of agreement (i.e., the alignment

value) between a kernel and a learning task and find the one with the highest agreement.

This alignment is for adapting a kernel to the target(s) before training the ML algorithm.

In order to do that, they first set an optimal kernel in terms of the multiple labels,

and later, they set the combined kernel as a linear combination of base kernels. After

these definitions, their method aims to select the parameters of the combined kernel by

maximizing the alignment value between the combined kernels and the one defined as

ideal, which is inherently related to the learning task. To test their approach, a binary

relevance multi-label classifier was augmented with a support vector machine classifier

that incorporates the selected combined kernel. Although this is a very interesting study

for the multi-label community, it is not general enough. Their kernel alignment method

relies only on one problem transformation method, i.e., the binary relevance method. This

means that correlations among the labels are never considered by the proposed method,

resulting in poor performances on certain multi-label problems.

Furthermore, Pakrashi and Namee [158] have recently presented CascadeML, which

is considered the first automatic neural network algorithm (i.e., a neural network architec-

ture search method) for general multi-label classification problems. CascadeML is trained

in a way that it can cascade neural networks. To do so, this method employs only the

Multi-Label Back-Propagation Neural Network (ML-BPNN) algorithm [225] at the bot-

tom level and uses the Cascade-correlation Neural Network (Cascade2) algorithm [68]

at the top-level to cascade the neural network models. This AutoML method focuses

only on finding the neural architecture, not caring about the hyper-parameters to train

the learning algorithm (i.e., ML-BPNN). Therefore, this seems a very specific AutoML

method as it considers only one learning algorithm in its search space. The difficulty is

finding the best cascading of neural networks.

Evolutionary Multi-Label Ensemble (EME) [147] encompasses the problem of se-

lecting MLC algorithms to compose MLC ensembles. Given a dataset of interest, EME

4.4. Final Remarks 66

takes into account three main characteristics for the automatic generation of the final en-

semble: (i) the relationships among the labels, (ii) the imbalance of the data, and (iii) the

complexity of the output space. The main idea of EME stands on the simplicity of each

multi-label classifier, which is focused on a small subset of the labels but still considers

the relationships among them and avoids the high complexity of the output space. Al-

though important to the AutoML field, EME takes into account only one type of model

to compose the ensembles (i.e., the model produced by the label powerset algorithm).

Therefore, it is still not general enough to deal with all types of MLC problems.

Finally, Wever et al. [211] extended ML-Plan in the context of multi-label clas-

sification, naming this novel method as ML2-Plan (Multi-Label ML-Plan). ML2-Plan

searches over a huge MLC search space by also using a hierarchical planning approach.

Basically, ML2-Plan follows the same principles as ML-Plan, although its search space

of MLC algorithm configurations is bigger than those explored by ML-Plan, making it

harder. Besides this method and the ones proposed in this thesis, we are not aware

of other methods that perform modern automated multi-label classification in complex

hierarchical search spaces.

4.4 Final Remarks

In this chapter, we observe the clear progress of the field of AutoML throughout

the years. Guyon et al. [96] and Hutter et al. [109] basically showed the importance of

the main AutoML methods, challenges, and workshops to this progress to happen.

Nevertheless, we still see AutoML in its early stages, where not all types of data

were encompassed, and neither all-important analyses of the results of the already pro-

posed methods were performed. Therefore, there are several issues in the field to be

addressed. In other words, there is a need to bring more understanding regarding how

and why AutoML works instead of just proposing novel methods. We claim that the

science behind AutoML needs to be progressed fully.

This particular thesis aims to bring more understanding to AutoML in the context

of multi-label classification, which is a field not very explored. Here, we propose four

automated multi-label classification methods and provide analysis in terms of the size and

difference of the search spaces, the trade-off between exploration and exploitation, and

the convergence of these proposed methods. Thus, this thesis gives an overall assessment

of automated multi-label classification.

67

Chapter 5

AutoML Methods for Multi-label

Classification

This chapter unifies the concepts presented in the three previous chapters, i.e., proposing

novel AutoML methods, based on evolutionary and Bayesian optimization methods, in the

context of MLC. It addresses Issue 1 of Section 1.1 (and, consequently, RQ1 of Section 1.2),

showing that it is possible to handle the complex hierarchical nature of the MLC search

space.

To address the referred issue, Section 5.1 introduces the general framework followed

by all proposed methods in this thesis to perform the MLC AutoML task, organizing them

into two main components: the proposed search methods and the search spaces they

explore. In Section 5.2, we present and compare the search spaces used by the proposed

AutoML methods. In Section 5.3, we define the search methods. Furthermore, Section 5.4

presents multi-fidelity methods that were incorporated into the search methods in order

to speed up their training procedures.

5.1 General Framework

This section presents the generic framework followed by all AutoML methods pro-

posed in this thesis. As illustrated in Figure 5.1, the AutoML method receives as input a

specific multi-label dataset (with the attribute space X and the class labels L1 to Lq). As

aforementioned, the proposed AutoML methods have two main components: the search

space and the search method.

The search space comprehends the main building blocks (e.g., the prediction thresh-

old values, the hyper-parameters, and the algorithms at the MLC and SLC levels) from

previously designed MLC algorithms. To explore this search space, the AutoML method

uses a search method, which suggests appropriate MLC algorithms for the dataset at hand.

However, the performance of the search method depends on what is specified in the search

5.2. Search Spaces for Automated Multi-Label Classification 68

space.

Following, the AutoML method outputs an MLC algorithm tailored to the in-

put dataset based on that search space. This MLC algorithm is specifically selected

and (hyper-)parameterized to this data, although it could be applied to any multi-label

dataset. In the end, the customized MLC algorithm returns an MLC model and, conse-

quently, its classification results.

Figure 5.1: The general AutoML framework to select and configure MLC algorithms.

Multi-Label
Dataset

AutoML Method

OutputInput

Customized
MLC Algorithm

 X L1,…,Lq Search Method

Search Space
 Classification Model

Generated by the
MLC Algorithm

We proposed three search spaces, namely Small, Medium, and Large. Section 5.2

introduces these search spaces, explaining how they differ. In summary, they differ from

each other in terms of complexity, but all search spaces are based on the MLC and SLC

algorithms described in Appendix A.

Furthermore, we have designed four search methods, namely GA-Auto-MLC, Auto-

MEKAGGP , Auto-MEKASpGGP and Auto-MEKABO. Whereas Auto-MEKABO works

with BO, the other methods are EA-based, as detailed in Section 5.3.

5.2 Search Spaces for Automated Multi-Label

Classification

The search spaces of the proposed AutoML methods for MLC data were speci-

fied using the MEKA framework [176]1, which is a multi-label extension to the WEKA

software [97]. MEKA has a large variety of algorithms, focusing mainly on Problem Trans-

formation (PT) methods. As it is mostly based on PT methods, MEKA intrinsically uses

the algorithms from WEKA (see Chapter 3 for more details). MEKA also includes a

variety of evaluation metrics from the literature, which are important to measure the

performance of MLC algorithms from different classification perspectives.

To design the search spaces for the AutoML methods, we first performed a deep

study about multi-label classification in the MEKA software, which resulted in Ap-

1Although we employed WEKA to develop our AutoML search spaces in the context of MLC, other
software can be used with the same objective.

5.2. Search Spaces for Automated Multi-Label Classification 69

pendix A. We analyzed in detail all the algorithms and their hyper-parameters, the default

value of each hyper-parameter, the constraints associated with different hyper-parameter

settings, and the hierarchical nature of operations performed by problem transformation

methods and meta-algorithms, among other issues.

Based on that, we decided to design three search spaces : Small, Medium, and

Large. The reason behind this threefold modeling is basically because we want to test

different levels of search space complexity. The components and organization of these

search spaces are discussed next.

5.2.1 Components of the Search Spaces

Recall that the MLC algorithms were divided into three categories (see Section 3.1

and Appendix A for more details): Problem Transformation (PT), Algorithm Adapta-

tion (AA), and Meta-MLC algorithms (Meta-MLC). PT algorithms call the SLC algo-

rithms to solve an MLC problem, transforming the given problem into one or various

SLC problems. On the other hand, AA methods do not need to transform the data in a

preprocessing step, applying their learning process in a direct way. Finally, Meta-MLC

algorithms have the aforementioned MLC algorithms (PT or AA) as base algorithms,

using the base classifiers’ outputs in different ways to try to improve MLC performance.

Because of that, the search spaces in this work have two main types of components:

multi-label classification algorithms and single-label classification algorithms, together

with their main hyper-parameters.

5.2.1.1 Multi-label Classification Algorithms

Table 5.1 lists the 26 MLC algorithms present in the three different versions of the pro-

posed search spaces, showing their names, acronyms, and their respective types. Table

5.1 also indicates if the MLC algorithm in the row belongs or not (‘Y’ for yes and ‘N’ for

no) to the respective search space in the column (i.e., if the MLC search space compre-

hends that algorithm), and how many hyper-parameters (#HP) it encompasses (when it

is used). With this information, we can compare the three defined search spaces in more

detail.

5.2. Search Spaces for Automated Multi-Label Classification 70

Table 5.1: Multi-Label Classification (MLC) algorithms used in the MEKA data mining
tool for the proposed AutoML methods∗.

Small Medium Large

id Algorithm Name Acronym Category Used? #HP Used? #HP Used? #HP

1 Back Propagation Neural Network ML-BPNN AA Y 4 Y 4 Y 4

2 Binary Relevance BR PT Y 0 Y 0 Y 0

3 Classifier Chain CC PT Y 0 Y 0 Y 0

4 Label Powerset LP PT Y 0 Y 0 Y 0

5 Random k-Label Pruned Sets RAkEL PT Y 4 Y 4 Y 4

6 Bayesian Classifier Chains BCC PT N - Y 1 Y 1

7 Binary Relevance – Quick Version BRq PT N - Y 1 Y 1

8 Classifier Chain – Quick Version CCq PT N - Y 1 Y 1

9 Four-Class Pairwise Classification FW PT N - Y 0 Y 0

10 Monte-Carlo Classifier Chains MCC PT N - Y 3 Y 3

11 Probabilistic Classifier Chains PCC PT N - Y 0 Y 0

12 Pruned Sets PS PT N - Y 2 Y 2

13 Pruned Sets with Threshold PSt PT N - Y 2 Y 2

14 Random k-Label Disjoint Pruned Sets RAkELd PT N - Y 3 Y 3

15 Ranking and Threshold RT PT N - Y 0 Y 0

16 Classifier Trellis CT PT N - N - Y 6

17 Conditional Dependency Networks CDN PT N - N - Y 2

18 Conditional Dependency Trellis CDT PT N - N - Y 5

19 Population of MCC PMCC PT N - N - Y 6

20 Bagging of Multi-Label Classifiers BaggingML Meta-MLC N - N - Y 1

21 Bagging of Multi-Label Classifiers (Duplicate) BaggingMLDup Meta-MLC N - N - Y 2

22 Classification Maximization CMax Meta-MLC N - N - Y 1

23 Ensemble of Multi-Label Classifiers EnsembleML Meta-MLC N - N - Y 2

24 Expectation Maximization EMax Meta-MLC N - N - Y 1

25 Random Subspace Multi-Label RSML Meta-MLC N - N - Y 3

26 Subset Mapper SM Meta-MLC N - N - Y 0

∗All algorithm names are clickable links to their respective description in Appendix A.

5.2.1.2 Single-label Classification Algorithms

As already mentioned, all PT methods in Table 5.1 use a single-label classifier (SLC)2

in order to perform the transformed multi-label classification at a base level. Table 5.2

shows the 28 SLC algorithms used, i.e., the possible algorithms at the MLC base level

and their hyper-parameters. Similar to Table 5.1, Table 5.2 defines the SLC algorithms

in terms of their names, acronyms, and types (i.e., trees, rules, lazy, functions, Bayes,

preprocessing, and meta-SLC). As before, we show if the SLC algorithm in the row is

used or not (’Y’ for yes and ’N’ for no) by the respective search space in the column and

how many hyper-parameters (#HP) it has (when it is used).

5.2.2 Search Space Structure and Size

Based on the information in Tables 5.1 and 5.2, note that for each search space,

we have a different number of algorithms and hyper-parameters. For the search space

2For more details about the SLC algorithms and their hyper-parameters, see [216], and Sections A.1,
A.2 and A.3 of Appendix A.

5.2. Search Spaces for Automated Multi-Label Classification 71

Table 5.2: Single-Label Classification (SLC) algorithms used in the WEKA data mining
tool for the proposed AutoML methods∗.

Small Medium Large

id Algorithm Name Acronym Category Used? #HP Used? #HP Used? #HP

1 JRip JRip Rules Y 4 Y 4 Y 4

2 K-Nearest Neighbors KNN Lazy Y 3 Y 3 Y 3

3 Logistic Regression LR Functions Y 1 Y 1 Y 1

4 Näıve Bayes NB Bayes Y 2 Y 2 Y 2

5 Random Forest RF Trees Y 3 Y 3 Y 3

6 Bayesian Network Classifier BNC Bayes N - Y 1 Y 1

7 C4.5 C4.5 Trees N - Y 8 Y 8

8 Decision Table DT Rules N - Y 4 Y 4

9 K Star K* Lazy N - Y 3 Y 3

10 Logistic Model Trees LMT Trees N - Y 7 Y 7

11 Multi-Layer Perceptron MLP Functions N - Y 6 Y 6

12 PART PART Rules N - Y 4 Y 4

13 REPTree REPTree Trees N - Y 3 Y 3

14 Stochastic Gradient Descent SGD Functions N - Y 5 Y 5

15 Sequential Minimal Optimization SMO Functions N - Y 6 Y 6

16 Decision Stump DS Trees N - N - Y 0

17 Näıve Bayes Multinomial NBM Bayes N - N - Y 0

18 One Rule OneR Rules N - N - Y 1

19 Random Tree RTree Trees N - N - Y 4

20 Simple Logistic SL Functions N - N - Y 3

21 Voted Perceptron VP Functions N - N - Y 3

22 Zero Rules ZeroR Rules N - N - Y 0

23 Attribute Selection Classifier ASC Preprocessing N - N - Y 1

24 Ada boost M1 AdaM1 Meta-SLC N - N - Y 3

25 Bagging of Single-Label Classifiers Bagging Meta-SLC N - N - Y 3

26 Locally Weighted Learning LWL Meta-SLC N - N - Y 2

27 Random Committee RC Meta-SLC N - N - Y 1

28 Random Subspace RSS Meta-SLC N - N - Y 3

∗All algorithm names are clickable links to their description in Appendix A.

Small, for instance, we have five (5) MLC algorithms, where four (4) of them can be

combined with other five (5) SLC algorithms, as they are from the PT category. The only

algorithm that can not be combined with SLC algorithms is ML-BPNN, which belongs

to the AA category. Therefore, the search space Small comprehends ten (10) learning

algorithms – five MLC algorithms and five SLC algorithms – which gives a combination

of 21 MLC-SLC algorithm configurations.

In contrast, the search space Medium has 15 MLC algorithms, where again, only

one is from the AA category, and the remaining is from the PT category. Considering

the 14 PT algorithms in this search space, we can combine them with 15 SLC algorithms.

Hence, this results in 30 learning algorithms for the search space Medium – 15 MLC algo-

rithms and 15 SLC algorithms – which returns a combination of 211 MLC-SLC algorithm

configurations.

Finally, we have the search space Large, which comprehends 26 MLC algorithms

and 28 SLC algorithms. From the 26 MLC algorithms, one is from the AA category,

18 are from the PT category, and seven are from the Meta-MLC category. Considering

the SLC algorithms, this totalizes 54 learning algorithms – 26 MLC algorithms and 28

SLC algorithms – which produces 16,568 possible combinations of MLC-SLC algorithm

configurations. In this search space, it is important to emphasize that we also added

5.2. Search Spaces for Automated Multi-Label Classification 72

meta-algorithms for both MLC and SLC scenarios.

It is also important to note that those MLC and SLC algorithms were chosen to

compose the search spaces considering their differences. For instance, the search space

Small has five (5) MLC algorithms that differ in how they build the MLC model. We have

tried to do the same for the SLC level. Considering that, the search space Small has one

algorithm of each traditional algorithm category of WEKA (i.e., trees, rules, functions,

lazy, and Bayesian).

We applied this idea of the selection of distinct algorithms to design the other

instances of the search spaces. To understand that, we perform search space comparisons.

By comparing the search spaces Small, Medium, and Large, we observe that there is an

increase in the number of learning algorithms. The search space Small is contained by

the Medium, which, in turn, is a subspace of Large.

Nevertheless, when comparing Medium to Large, besides the rise of complexity

from one search space to another, we have a change in the structure of the search space.

This happens because we added meta-MLC and meta-SLC algorithms into Large. There-

fore, we have more levels in the multi-label hierarchy to consider. For example, when a

search method is selecting a new algorithm in terms of this search space, it must decide

to include or exclude algorithms at the meta-MLC and meta-SLC levels. As a result, this

search space is hierarchically more complex than the other two (i.e., Small and Medium).

One aspect that is common to all search spaces – besides the ten (10) algorithms

in the search space Small – is the definition of the strategy to optimize the prediction

threshold in MLC. The prediction threshold dictates the final MLC performance, and

it is real-valued and indicates if an instance belongs to one class or to another. The

optimization of this threshold adjusts the bipartition result according to the probabilities

scored given by the MLC models [180]. In general, this is better than simply using an

arbitrary threshold of 0.5 [69, 175].

For the three search spaces, we include three strategies to optimize the thresh-

old. First, we let the search method to globally optimize this threshold using a real value

between zero (0.0) and one (1.0). This is a global strategy and establishes the same thresh-

old for all labels. Second, we use the global strategy named Proportional Cut Method by

Instance (PCut1), which minimizes the difference between the label cardinality3 of the

training set and the label cardinality obtained with a given set of predicted labels. Finally,

we also consider the Proportional Cut Method by Label (PCutL) strategy. This strategy

works like PCut1, but for each label individually. Therefore, it is a local strategy to set

the prediction threshold. For more details about the strategies to optimize the prediction

threshold, see Section A.4 of Appendix A.

Taking into account the number of learning algorithms and hyper-parameters,

and the constraints in the choices of algorithms’ components and (hyper)-parameters

3Label cardinality is the average number of labels of the examples in the dataset.

5.2. Search Spaces for Automated Multi-Label Classification 73

in MEKA, we estimated the size of the three search spaces4. In total, the search space

Small has [(5.070 × 107) + (8.078 × 108 × m) + (2.535 × 1010 × q)] possible MLC al-

gorithm configurations, where m is the number of attributes and q is the number of

labels of the dataset. The search space Medium, on the other hand, is estimated as

having [(2.545 × 1016) + (8.078 × 108 × m) + (1.151 × 1012 × q)] possible MLC algo-

rithm configurations. Finally, the search space Large is estimated to have approximately

[(6.555×1029)+(1.443×1014×m)+(3.042×1022×q)+(1.291×1027×√
q)] possible valid

MLC algorithm configurations. For more details about the contribution of each MLC al-

gorithm and also of each SLC algorithm (because of the PT methods), see Tables 5.3 and

5.4, respectively.

In Table 5.3, for instance, we have the number 2,000 defining the contribution of

this algorithm (and its hyper-parameters) to the search space Small. As JRip has one real

hyper-parameter (i.e., theminimal total weight) with 100 possibilities, two Boolean hyper-

parameters (i.e., check error rate and use pruning) with two possibilities, and one integer

hyper-parameter (i.e., the number of optimizations) with five possibilities, to achieve this

contribution we have then 100× 2× 2× 5, which returns 2,000.

In Table 5.4, in turn, we have the number 752,660,500 defining the contribution

of BRq in the search space Medium. To reach this number, we use the total number

of possibilities for the SLC algorithms in this search space, i.e., 7,526,605 (see the last

line of Table 5.3). Apart from the base classifier, the BRq algorithm has only one real-

valued hyper-parameter (i.e., the down-sample ratio). Thus, we reach 752,660,500 by

multiplying the possible options of SLC classification algorithms by 100, which represents

the contribution of BRq’s hyper-parameter.

5.2.3 A Detailed Description of the MLC Search Space

This section describes the grammar used to formally specify the search space listed

in Appendix A and, consequently, the MLC hierarchy. Although this formal definition is

done by a grammar, it can be adapted to be organized by any other formalism or simple

configuration files.

The proposed grammar5 has 125 production rules, in a total of 124 non-terminals

and 213 terminals. Boxes 5.1-5.7 present the produced grammar (in the Backus Naur

Form) that encompasses the knowledge about multi-label classification in MEKA. This

grammar models the search space Large, as this search space includes all learning algo-

4In these estimations, real-valued hyper-parameters have always taken 100 different discrete values.
5For a formal definition of grammar, see Section 2.1.3.

5.2. Search Spaces for Automated Multi-Label Classification 74

Table 5.3: Estimation of the number of possibilities for the Single-Label Classification
(SLC) algorithms∗.

Small Medium Large

id Algorithm Name Acronym Type #Possibilities #Possibilities #Possibilities

1 JRip JRip Rules 2,000 2,000 2,000

2 K-Nearest Neighbors KNN Lazy 384 384 384

3 Logistic Regression LogR Functions 100 100 100

4 Näıve Bayes NB Bayes 3 3 3

5 Random Forest RF Trees 163,200 163,200 163,200

6 Bayesian Network Classifier BNC Bayes 0 6 6

7 C4.5 C4.5 Trees 0 409,600 409,600

8 Decision Table DT Rules 0 80 80

9 K Star K* Lazy 0 800 800

10 Logistic Model Trees LMT Trees 0 206,848 206,848

11 Multi-Layer Perceptron MLP Functions 0 320,000 320,000

12 PART PART Rules 0 1,024 1,024

13 REPTree REPTree Trees 0 2,560 2,560

14 Stochastic Gradient Descent SGD Functions 0 120,000 120,000

15 Sequential Minimal Optimization SMO Functions 0 6,300,000 6,300,000

16 Decision Stump DS Trees 0 0 1

17 Näıve Bayes Multinomial NBM Bayes 0 0 1

18 One Rule OneR Rules 0 0 32

19 Random Tree RTree Trees 0 0 204,800

20 Simple Logistic SL Functions 0 0 404

21 Voted Perceptron VP Functions 0 0 45,000,000

22 Zero Rules ZeroR Rules 0 0 1

23 Attribute Selection Classifier ASC Preprocessing 0 0 105,463,626

24 Ada boost M1 AdaM1 Meta-SLC 0 0 171,139,846,696

25 Bagging of Single-Label Classifiers Bagging Meta-SLC 0 0 609,421,562,841

26 Locally Weighted Learning LWL Meta-SLC 0 0 222,124,920

27 Random Committee RC Meta-SLC 0 0 51,065,280

28 Random Subspace RSS Meta-SLC 0 0 332,210,421,900

Total Number of Possibilities 165,687 7,526,605 1.113 ×1012

∗All algorithm names are clickable links to their respective part in Appendix A.

rithms and hyper-parameters from the other search spaces (i.e., Small and Medium). To

obtain the grammar for the other two search spaces, we would need just to exclude the re-

spective production rules, non-terminals, and terminals – which represent the algorithms

and hyper-parameters – that do not make part of them.

In Box 5.1, the first production rule (<Start>) is used to describe the multi-label

classification (MLC) search space. In this grammar rule, <MLC-PT> denotes problem

transformation, <MLC-AA> denotes algorithm adaptation, and<META-MLC-LEVEL>

denotes the multi-label meta-algorithms. We designed the grammar in such a way that

all the 26 MLC algorithms have the same probability of being chosen (i.e., each MLC

algorithm has ≈3.846% of chance of being selected). Furthermore, the MLC algorithms

must use a prediction threshold (<pred tshd>), which defines the threshold to perform

classification using the model’s confidence outputs [4].

The grammar rule defining the problem transformation methods, i.e., <MLC-PT>,

has two components on the right-hand side, namely the actual problem transformation

algorithm <ALGS-PT> (defined in Box 5.5) and the single-label classification algorithm

(SLC, which is represented by the rule <ALG-SLC> in the grammar) to perform the

single-label classification task(s). This happens because the problem transformation

5.2. Search Spaces for Automated Multi-Label Classification 75

Table 5.4: Multi-Label Classification (MLC) algorithms used in the MEKA data mining
tool for the proposed AutoML methods∗.

Small Medium Large

id Algorithm/Strategy Name Acronym #Possibilities #Possibilities #Possibilities

0 Prediction Threshold pred tshd 102 102 102

1 Back Propagation Neural Network ML-BPNN 7,920,000m 7,920,000m 7,920,000 ×m

2 Binary Relevance BR 165,687 7,526,605 1.113 ×1012

3 Classifier Chain CC 165,687 7,526,605 1.113 ×1012

4 Label Powerset LP 165,687 7,526,605 1.113 ×1012

5 Random K-Label Pruned Sets RAkEL 248,530,500q 11,289,907,500q 1,670 ×1015 × q

6 Bayesian Classifier Chains BCC 0 75,266,050 1.113 ×1013

7 Binary Relevance – Quick Version BRq 0 752,660,500 1.113 ×1014

8 Classifier Chain – Quick Version CCq 0 752,660,500 1.113 ×1014

9 Four-Class Pairwise Classification FW 0 7,526,605 1.113 ×1012

10 Monte-Carlo Classifier Chains MCC 0 2,569 ×1013 3,800 ×1018

11 Probabilistic Classifier Chains PCC 0 2,434 ×1017 1.113 ×1012

12 Pruned Sets PS 0 225,798,150 3,340 ×1013

13 Pruned Sets with Threshold PSt 0 225,798,150 3,340 ×1013

14 Random K-Label Disjoint Pruned Sets RAkELd 0 22,579,815,000 3,340 ×1015

15 Ranking and Threshold RT 0 7,526,605 1.113 ×1012

16 Classifier Trellis CT 0 0 6.908 ×1019 ×√
q

17 Conditional Dependency Networks CDN 0 0 1.001 ×1017

18 Conditional Dependency Trellis CDT 0 0 1.801 ×1018 ×√
q

19 Population of MCC PMCC 0 0 3.599 ×1022

20 Bagging of Multi-Label Classifiers BaggingML 0 0

1.505×1026 +

3.312 ×1010 × m +

6.937 ×1018 × q +

2.964 ×1023 × √
q

21 Bagging of Multi-Label Classifiers (Duplicate) BaggingMLDup 0 0

1,370×1028 +

3.014 ×1012 × m +

6.312 ×1020 × q +

2.698 ×1025 × √
q

22 Classification Maximization CMax 0 0

1.632×1022 +

3.312 ×1010 × m +

6.983 ×1018 × q +

2.964 ×1023 × √
q

23 Ensemble of Multi-Label classifiers EnsembleML 0 0

3.161×1027 +

6.956 ×1011 × m +

1.466 ×1020 × q +

6.225 ×1024 × √
q

24 Expectation Maximization EMax 0 0

1.632×1022 +

3.312 ×1010 × m +

6.983 ×1018 × q +

2.964 ×1023 × √
q

25 Random Subspace Multi-Label RSML 0 0

6.385×1029 +

1.405 ×1014 × m +

2.962 ×1022 × q +

1.257 ×1027 × √
q

26 Subset Mapper SM 0 0

3.672×1024 +

8.078 ×108 × m +

1.703 ×1027 × q +

7.230 ×1021 × √
q

Total Number of Possibilities

5.070 × 107 +

8.078 × 108 × m +

2.535 × 1010 × q

2.545 ×1016 +

8.078 ×108 ×m +

1.151 ×1012 × q

6.555 ×1029 +

1.443 ×1014 × m +

3.042 ×1022 × q +

1.291 ×1027 × √
q

∗All algorithm names are clickable links to their respective part in Appendix A.

5.2. Search Spaces for Automated Multi-Label Classification 76

Box 5.1: Defined grammar – Part 1: General and SLC trees algorithms.

<Start> ::= (<MLC-PT> | <MLC-AA> | <META-MLC-LEVEL>) <pred_tshd>

<pred_tshd> ::= PCut1 | PCutL | RANDOM-REAL(>0.0, <1.0) #pred_tshd=‘prediction threshold’
#PCut1=‘P-Cut method’,PCutL=‘P-Cut method by Label’

<MLC-PT> ::= <ALGS-PT> <ALGS-SLC>

<ALGS-SLC> ::= <ALG-TYPE> | <META1> <ALG-WEIGHTED-TYPE> | <META2> <ALG-RANDOM-TYPE> | <META3> <ALG-TYPE>

<ALG-TYPE> ::= [ASC <sm>] (<TREES> | <RULES> | <LAZY> | <FUNCTIONS> | <BAYES> | <OTHERS>)
#ASC=‘Attribute Selection Classifier’

<sm> ::= GreedyStepwise | BestFirst #sm=‘search method’

<TREES> ::= <C4.5> | DecisionStump | (((RandomForest <nt> | <RandomTree>) <nf>) | <REPTree>) <md>

<C4.5> ::= <C4.5-Basics> ((<cf> [sr]) | u) #sr=‘subtree raising’, u=’unpruned’
<C4.5-Basics> ::= <mno> [ct] [bs] [umc] [ul] #ct=‘collapse tree’, bs=’binary splits’

#umc=‘use MDL correction’, ul=’use Laplace’
<cf> ::= RANDOM-REAL(0.0, 1.0) #cf=‘confidence factor’
<mno> ::= RANDOM-INT(1, 64) #mmo=‘minimum number of objects’

<nt> ::= RANDOM-INT(2, 256) #nt=‘number of trees’
<nf> ::= RANDOM-INT(2, 32) #nf=‘number of features’
<md> ::= RANDOM-INT(2, 20) #md=‘maximum depth’

<RandomTree> ::= <mw> <nfbgt>
<mw> ::= RANDOM-INT(1,64) #mw=‘minimum weight for instances in a leaf’
<nfbgt> ::= 2 | 3 | 4 | 5 #nfbgt=‘number of folds for back-fitting and

for growing the tree’

<REPTree> ::= <mw> [up] #up=‘use pruning’
#mw is not included in the same rule for Random Tree
#and for REPTree because of the grammar’s constraints

method transforms the multi-label task into one or more single-label tasks. We start

discussing the rule defining <ALG-SLC>.

We divided the SLC algorithms into six (6) categories for the grammar following the

WEKA software: Trees, Rules, Lazy, Functions, Bayes and Others. The last category was

created to simplify the grammar (i.e., it is not an inherent WEKA’s category). Box 5.1

shows the grammar rules for Tree algorithms. It also defines the Attribute Selection

Classifier (ASC), a wrapper that can be used together with the SCL algorithms. In this

case, a preprocessing method is used before the classification step is performed. Box 5.2

shows the grammar rules for Rules and Lazy algorithms. Box 5.3 shows the grammar

rules for the other three types of SLC algorithms. For SLC algorithms, we employed the

search space defined by Auto-WEKA [127, 200] to set their hyper-parameter values.

It is also important to mention that some methods at the single-label level, such as

Decision Stump and ZeroR, do not have user-defined hyper-parameters. Others, such as

the Bayesian Network Classifier algorithms, do not have user-defined hyper-parameters

in the Auto-WEKA software, even though they have user-defined parameters in WEKA.

That is, the developers of Auto-WEKA have chosen to use a fixed predefined number of

parameter settings for some algorithms. As we are following Auto-WEKA to define the

parameters at this level (because of its robustness to select SLC algorithms), the absence

of user-defined parameters in some methods was maintained.

5.2. Search Spaces for Automated Multi-Label Classification 77

Box 5.2: Defined grammar – Part 2: SLC rules and lazy algorithms .

<RULES> ::= <DT> | <JRip> | OneR <mbs> | <PART> | ZeroR

<DT> ::= [uibk] <sm> <crv> #uibk=‘use IBk’
#sm=‘search method -- defined earlier’

 ::= acc | rmse | mae | auc #em=‘evaluation measure’
<crv> ::= 1 | 2 | 3 | 4 #crv=‘number of folds for cross-validation’

<JRip> ::= <mtw> [cer] [up] <o> #cer=‘check error rate’, up=‘use pruning’
<mtw> ::= RANDOM-REAL(1.0, 5.0) #mtw=‘minimum total weight for instances

covered by a rule’
<o> ::= RANDOM-INT(1,5) #o=‘number of optimization runs’

<mbs> ::= RANDOM-INT(1,32) #mbs=‘minimum bucket size’

<PART> ::= <PART-BASICS> (rep <nr> | ebp) #rep=‘use reduced-error pruning’
#nr=‘number of folds for reduced-error pruning’
#ebp=‘use error-based pruning’

<PART-BASICS> ::= <mno> [bs] #mno=‘minimum number of objects’
<nr> ::= RANDOM-INT(2,5)

<LAZY> ::= <KNN> | <K*>

<KNN> ::= <k_nn> [loo] [<dw>] #loo=‘leave-one-out to set the k value given the range’
<k_nn> ::= RANDOM-INT(1,64) #k_nn=‘number of neighbors’
<dw> ::= F | I #dw=‘distance weighting’

<K*> ::= <gb> [eab] <mm> #eab=‘entropic auto-blending’
<gb> ::= RANDOM-INT(1,100) #gb=‘global blending’
<mm> ::= a | d | m | n #mm=‘missing mode to deal with missing values’

At the single-label level, we also have meta-algorithms divided into three (3) types:

<META1>, <META2> and <META3>. These three categories of meta-algorithms

are firstly called in Box 5.1. As shown in Box 5.4, <META1> may take the two (2)

meta-algorithms Ada Boost M1 (AdaM1) and Locally Weighted Learning (LWL), which

need a base classifier at the SLC level that handles weighted instances. This is the

reason the rule <ALG-WEIGHTED-TYPE> is defined. On the other hand, <META2>

may take just one algorithm, i.e., Random Committee. The reason for that is because

this SLC meta-algorithm can only be used with randomizable base classifiers. The rule

<ALG-RANDOM-TYPE> expresses these randomizable classifiers. The least restricted

meta-algorithms are Random Subspace and Bagging, which are specified by <META3>,

being able to use any SLC base classifier (from <ALG-TYPE>).

It is important to emphasize that all 28 SLC methods (traditional, meta, and

preprocessing) have the same chance of being chosen by a search method that follows this

grammar. Therefore, each SLC algorithm has a probability of ≈3.571% of being selected.

The second component of problem transformation methods is the actual problem

transformation algorithm to deal with the single-label classification. In other words, this

step defines the choice of the MLC algorithm to handle the results created by the single-

label classification models. For this component, we divided its respective algorithms into

three categories, i.e., three production rules in the grammar (see Box 5.5): <ALGS-PT1>,

<ALGS-PT2> and <ALGS-PT3>. The main reason for the creation of these (sub-

)categories is related to the constraints of the multi-label meta-algorithms in the MEKA

5.2. Search Spaces for Automated Multi-Label Classification 78

Box 5.3: Defined grammar – Part 3: SLC functions, Bayesian and other types of algo-
rithms.

<FUNCTIONS> ::= <VotedPerceptron> | <MultiLayerPerc> |
(<StocGradDescent> | LogisticRegression) <r> | <SeqMinOptimization>

<VotedPerceptron> ::= <i> <mk> <e>
<i> ::= RANDOM-INT(1,10) #i=‘number of iterations’
<mk> ::= RANDOM-INT(5000, 50000) #mk=‘maximum number of alterations to the perceptrons’
<e> ::= RANDOM-REAL(0.2, 5.0) #e=‘The exponent for the polynomial kernel’

<MultiLayerPerc> ::= <lr> <m> <nhn> [n2b] [r] [d] #n2b=‘nominal to binary filter’,
#r=‘use reset approach’,
#d=‘decay in the learning rate’

<lr> ::= RANDOM-REAL(0.1, 1.0) #lr=‘learning rate’
<m> ::= RANDOM-REAL(0.0, 1.0) #m=‘momentum’
<nhn> ::= a | i | o | t #nhl=‘rules to define the number of hidden nodes’

<StocGradDescent> ::= <lf> <lr_sgd> [nn] [nrmv] #nn=‘do not normalize’,
#nrmv=‘do not replace missing values’

<lf> ::= 0 | 1 | 2 #lf=‘loss function’
<lr_sgd> ::= RANDOM-REAL(0.00001, 1.0) #lr_sgd=‘learning rate for SGD’
<r> ::= RANDOM-REAL(0.000000000001,10.0) #r=‘ridge value in the log-likelihood’

<SeqMinOptimization> ::= <c> <ft> [bcm] <kernel> #bcm=‘build calibration models’
<c> ::= RANDOM-REAL(0.5,1.5) #c=‘the cost, i.e.,complexity parameter’
<ft> ::= 0 | 1 | 2 #ft=‘filter type’
<kernel> ::= (NormPolyKernel |

PolyKernel
) <exp> [ulo] | #ulo=‘use lower order’
Puk <om> <sig> | RBF <g>

<exp> ::= RANDOM-REAL(0.2, 5.0) #exp=‘the exponent’
<om> ::= RANDOM-REAL(0.1, 1.0) #om=‘the omega value’
<sig> ::= RANDOM-REAL(0.1, 10.0) #sig=‘the sigma value’
<g> ::= RANDOM-REAL(0.001, 1.0) #g=‘the gamma value’

<BAYES> ::= NaiveBayes [<NB-Parameters>] | <BayesianNetworkClassifiers> | NaiveBayesMultinomial
<NB-Parameters> ::= uke | usd #uke=‘use kernel estimator’

#usd=‘use supervised distribution’

<BayesianNetworkClassifiers> ::= TAN | K2 | HillClimber | LAGDHillClimber | SimulatedAnnealing | TabuSearch

<OTHERS> ::= (SimpleLogistic [ucv] | #ucv=‘use cross-validation’
<LogisticModelTrees>

) [uaic] [<wtb>] #uaic=‘use AIC measure as stopping criteria’

<LogisticModelTrees> ::= <mno> [cn] [sor] [fr] [eop] #cn=‘convert nominal to binary’
#sor=‘split on residuals’
#fr=‘fast regression’, eop=‘error on probabilities’

<wtb> ::= RANDOM-REAL(0.0, 1.0) #wtb=‘weight trim beta’

software. Although all MLC algorithms can be used in a standalone fashion, they can also

be combined with multi-label meta-algorithms. In MEKA, some MLC algorithms work

very well at the multi-label base level of meta-algorithms, whereas others do not. Thus, we

had to create rules in the grammar to overcome the limitations of the used software. The

next paragraphs will refer to the Boxes 5.5 and 5.7 to explain these links and constraints

between problem transformation algorithms and multi-label meta-algorithms.

We referred to the first production rule to define problem transformation methods

as <ALGS-PT1> in Box 5.5. This rule encompasses the traditional algorithms BR, CC,

and LC (which is also known as LP). Besides, it includes the quick versions of BR and

CC (i.e., BRq and CCq), all the complex classifier chains and trellis algorithms (which

are defined by the rule <ComplexCC Trellis>), Four-class pairWise (FW), Ranking and

Threshold (RT), and all the label-powerset based algorithms (which are defined by the rule

5.2. Search Spaces for Automated Multi-Label Classification 79

Box 5.4: Defined grammar – Part 4: SLC meta-algorithms.

<META1> ::= <LWL> | <AdaM1>

<LWL> ::= <k_lwl> [<wk>] #LWL=‘Locally Weighted Learning’
<k_lwl> ::= -1 | 10 | 30 | 60 | 90 | 120 #k_lwl=‘number of neighbors in LWL’
<wk> ::= 0 | 1 | 2 | 3 | 4 #wk=‘weighting kernel’

<AdaM1> ::= <wt> [ur] <ni_ada_and_bagging> #ur=‘use resampling’
<wt> ::= RANDOM-INT(50, 100) | 100 #wt=‘weight threshold’
<ni_ada_and_bagging> ::= RANDOM-INT(2, 128) #ni_ada_and_bagging=‘number of iterations for

AdaM1 and Bagging’

<ALG-WEIGHTED-TYPE> ::= <TREES> | <RULES-PARTIAL> | <KNN> | <BAYES> | <FUNCTIONS-PARTIAL>
<RULES-PARTIAL> ::= <DT> | <JRip> | <PART> | ZeroR
<FUNCTIONS-PARTIAL> ::= <MultiLayerPerc> | <SeqMinOptimization> | <SimpleLogistic> <uaic> <wtb_activate>

<META2> ::= RandomCommittee <ni_random_methods>
<ni_random_methods> ::= RANDOM-INT(2, 64) #ni_random_methods=‘number of iterations for

#random methods’
<ALG-RANDOM-TYPE> ::= (((RandomForest <nt> | <RandomTree>) <nf>) | <REPTree>) <md> |

<StocGradDescent> <r> | <MultiLayerPerc>

<META3> ::= <Bagging> | <RandomSubspace>

<Bagging> ::= (<bsp> | 100 coob) <ni_ada_and_bagging> #coob=‘calculate out-of-bag’
#when coob is true, bag percent size must be 100

<bsp> ::= RANDOM-INT(10, 100) #bsp=‘bag size percent’
<RandomSubspace> ::= <sss> <ni_random_methods>
<sss> ::= RANDOM-REAL(0.1, 1.0) #sss=‘subspace size’

<LP based>). The production rule <ALGS-PT1> is presented in the following rules in

Box 5.7: <META-MLC1> (via <ALGS-PT>), <META-MLC2> and <META-MLC3>.

This means that this category of PT methods describes the majority of the MLC algo-

rithms in MEKA (84.21% of the cases, i.e., 16 of the 19 MLC algorithms) and, in addition,

all these algorithms can be combined with all meta-algorithms in the MEKA software.

Thus, <ALGS-PT1> can be considered the least restrictive of the PT method rules in

the grammar.

<ALGS-PT2>, in Box 5.5, is the production rule to describe solely the Bayesian

Classifier Chain (BCC) algorithm, one of the most constrained algorithms in the MEKA

software. The BCC algorithm can only be executed in a standalone fashion or combined

with the algorithms described by the production rules<META-MLC1> (via<ALGS-PT>)

and <META-MLC3>. This means that BCC can be used with four (4) of the seven

(7) meta-algorithms (in Box 5.7): Subset Mapper (SM), Random Subspace Multi-Label

(RSML), Expectation Maximization (EMax) and Classification Maximization (CMax).

In other cases of trying to use BCC, this will result in errors in MEKA’s output and,

therefore, these cases were not allowed in the grammar.

Similarly to <ALGS-PT2>, we have <ALGS-PT3>, a problem transformation

rule that represents the Population of Monte-Carlo Classifier Chains (PMCC) algorithm.

This algorithm can only be used by itself and at the multi-label base level of five (5) of the

seven (7) meta-algorithms: Subset Mapper (SM), Random Subspace Multi-Label (RSML),

Bagging of Multi-Label methods (BaggingML), Bagging of Multi-Label methods with Du-

5.2. Search Spaces for Automated Multi-Label Classification 80

Box 5.5: Defined grammar – Part 5: MLC problem transformation methods.

<ALGS-PT> ::= <ALGS-PT1> | <ALGS-PT2> | <ALGS-PT3>

<ALGS-PT1> ::= BR | CC | LC | (BRq | CCq) <dsr> | #BR=‘Binary Relevance’, CC=‘Classifier Chain’
<ComplexCC_Trellis> | FW | RT | <LP_based> #LC=‘Label Combination’

#BRq and CCq = ‘quick versions for BR and CC’
#FW=‘Four-class pairWise’, RT=‘Ranking-Threshold’

<ALGS-PT2> ::= BCC <dp_complete> #BCC=‘Bayesian Classifier Chain’
<ALGS-PT3> ::= PMCC <ts> <ii> <chi_PMCC> <ps> <pof> #PMCC=‘Population of Monte-Carlo Classifier Chains’

<dsr> ::= RANDOM-REAL(0.2, 0.8) #dsr=‘down-sample ratio’

<ComplexCC_Trellis> ::= PCC | (MCC <chi_MCC> | <CT>) <ii> <pof> |
(CDN | <CDT>) <i_cdn_cdt> <ci> #PCC=‘Probabilistic Classifier Chains’

#MCC=‘Monte-Carlo Classifier Chains’
#CT=‘Classication Trellis’
#CDN=‘Conditional Dependency Networks’
#CDT=‘Conditional Dependency Trellis’

<chi_MCC>::= <chi_CT> | 0 #chi_MCC=‘nmber of chain iterations for MCC’
<ii> ::= RANDOM-INT(2, 100) #ii=‘number of inference interactions’
<pof> ::= Accuracy | Jaccard index | Hamming score | Exact match | Jaccard distance | Rank loss |

Hamming loss | Zero One loss | Harmonic score | Log Loss lim:L | Micro Recall | One error |
Log Loss lim:D | Micro Precision | Macro Precision | Macro Recall | F1 micro averaged |
Avg precision | F1 macro averaged by example | F1 macro averaged by label | AUPRC macro averaged |
AUROC macro averaged | Levenshtein distance

#pof=‘Payoff function’

<CT> ::= <chi_CT> <w> <dp>
<dp> ::= C | I | Ib | Ibf | H | Hbf | X | F | None #dp=‘dependency type’
<chi_CT> ::= RANDOM-INT(2, 1500) #chi_CT=‘number of chain iterations for CT’
<w> ::= 0 1 | -1 <d> #w=‘width of the trellis’
<d> ::= RANDOM-INT(1, SQRT(L) +1) #d=‘neighborhood density’

#Where L is the number of labels
<CDT> ::= <w> <dp> #parameters defined earlier

<i_cdn_cdt> ::= RANDOM-INT(101, 1000) #i_cdn_cdt=‘total number of iterations’
<ci> ::= RANDOM-INT(1, 100) #ci=‘collection iterations’

<LP_based> ::= (PS | PSt | <RAkEL-based>) <sv> <pv> #PS=‘Pruned Sets’
#PSt=‘Pruned Sets with Threshold’

<sv> ::= RANDOM-INT(0, 5) #sv=‘subsampling value’
<pv> ::= RANDOM-INT(1, 5) #pv=‘pruning value’

<RAkEL-based> ::= (RAkEL <sre> | RAkELd) <les> #RAkEL=‘RAndom k-labEL Pruned Sets’
#RAkELd=‘RAndom k-labEL Disjoint Pruned Sets’

<sre> ::= RANDOM-INT(2, min(2L, 100)) #sre=‘number of subsets to run in an ensemble’
<les> ::= RANDOM-INT(1, L/2) #les=‘number of labels in each label subset’

#Where L is the number of labels
<dp_complete> ::= <dp> | LEAD #dp=‘complete dependency type for BCC’

 ::= RANDOM-REAL(0.01, 0.99) #B=‘Beta factor for decreasing the temperature’
<ts> ::= 0 | 1 #ts=‘Temperature switch’
<ps> ::= RANDOM-INT(1, 50) #ps=‘population size’
<chi_PMCC> ::= RANDOM-INT(51, 1500) #chi_PMCC=‘number of chain iterations for PMCC’

plicates (BaggingMLDup) and Ensemble of Multi-Label methods (EnsembleML). These

five multi-label meta-algorithms are defined by the production rules <META-MLC1> and

<META-MLC2>. Therefore, the creation of <ALGS-PT2> is justified by the fact that

the PMCC algorithm can only be combined with these meta-algorithms, i.e., a constraint

that did not appear in the other rules of the grammar.

Besides the problem transformation methods, we also have a multi-label version

of the back-propagation algorithm for training neural networks, called ML-BPNN. This

algorithm is presented in Box 5.6 and is the only one (for now) representing the algorithm

adaptation (AA) methods, defined by the production rule <MLC-AA>. ML-BPNN can

5.2. Search Spaces for Automated Multi-Label Classification 81

also be associated with meta-algorithms. As we can see in Box 5.7, this MLC algorithm

can be linked to the meta-algorithms defined by the production rules <META-MLC1>,

<META-MLC2> and <META-MLC3>.

Box 5.6: Defined grammar – Part 6: MLC algorithm adaptation methods.

<MLC-AA> ::= <ML-BPNN>

<ML-BPNN> ::= <ne> <nhu_bpnn> <lr_bpnn> <m_bpnn> #ML-BPNN=‘Multi-Label Back Propagation
Neural Network’

<ne> ::= RANDOM-INT(10, 1000) #ne=‘number of epochs’
<nhu_bpnn> ::= RANDOM-REAL(0.2, 1.0) * n_attributes #nhu_bpnn=‘number of hidden units, that

#is a parameter that depends on the
#number of attributes of the dataset’

<lr_bpnn> ::= RANDOM-REAL(0.001, 0.1) #lr_bpnn=‘learning rate for BPNN/DBPNN’
<m_bpnn> ::= RANDOM-REAL(0.2, 0.8) #m_bpnn=‘momentum for BPNN and DBPNN’

Finally, Box 5.7 covers all the multi-label meta-algorithms, which are defined by the

production rule <META-MLC-LEVEL>. As previously explained, we created the pro-

duction rules <META-MLC1>, <META-MLC2> and <META-MLC3> in order to ex-

pand these five rules into <META-MLC-LEVEL> to control the limitations, constraints,

and dependencies of the MEKA software between meta-algorithms and multi-label algo-

rithms (problem transformation and algorithm adaptation methods).

Box 5.7: Defined grammar – Part 7: MLC meta-algorithms.

<META-MLC-LEVEL> ::= <META-MLC1> | <META-MLC2> | <META-MLC3>
#META-MLC 1-3=‘meta MLC algorithms
with different constraints’

<META-MLC1> ::= (SM | <RSML>) (<ALGS-PT> <ALGS-SLC> | <ML-BPNN>)
#SM=‘Subset Mapper -- MLC method as parameter’

<RSML> ::= <bsp> <i_metamlc> <ap> #RSML=‘Random Subspace Multi-Label’
<bsp> ::= RANDOM-INT(10, 100) #bsp=‘bag size percent’
<i_metamlc> ::= RANDOM-INT(10, 50) #i_metamlc=‘number of iterations for

#meta MLC methods’
<ap> ::= RANDOM-INT(10, 100) #ap=‘attribute percent’

<META-MLC2> ::= <alg-meta-mlc2> (<ALGS-PT1> | <ALGS-PT3>) <ALGS-SLC> | <ML-BPNN>)

<alg-meta-mlc2> ::= ((BaggingML | BaggingMLDup <bsp>) | EnsembleML <bsp_ensembleML>) <i_metamlc>
#BaggingML=‘Bagging of Multi-Label methods’
#BaggingMLDup=‘BaggingML with duplicates’
#EnsembleML=‘Ensemble of Multi-Label methods’
#bsp=‘bag size percent -- defined earlier’

<bsp_ensembleML> ::= RANDOM-INT(52, 72) #bsp_ensembleML=‘specific bsp for EnsembleML’

<META-MLC3> ::= ((EMax | CMax) <i_metamlc>) (<ALGS-PT1> | <ALGS-PT2>) <ALGS-SLC> | <ML-BPNN>)
#EMax=‘Expectation Maximization’
#CMax=‘Classification Maximization’

5.3. Search Methods for Automated Multi-Label Classification 82

5.3 Search Methods for Automated Multi-Label

Classification

In this section, we instantiate the search method component of our proposed meth-

ods. We have proposed four different methods: the first three, namely GA-Auto-MLC,

Auto-MEKAGGP , and Auto-MEKAspGGP , are based on evolutionary algorithms. The

fourth, Auto-MEKABO, follows a BO approach. All proposed methods are open-source

and are freely available for download on Github6.

5.3.1 Evolutionary-based Methods

This section details the three methods developed following the evolutionary algo-

rithm framework. The main difference among these methods is in their representation

(and hence genotype-phenotype mapping, and crossover and mutation operations), which

has a direct impact on how the method searches the space of solutions.

However, all methods follow the main framework proposed by evolutionary meth-

ods, described in Algorithm 5.1 and already discussed in Section 2.1. Note that here, an

individual represents an MLC algorithm generated from a combination of the available

components in the search space (described in Section 5.2).

Given a search space Sp, we want to generate a customized MLC algorithm for

a dataset Ds. In addition, we need to specify the basic parameters of the evolutionary

framework (i.e., the population size, crossover and mutation probabilities, a selection

method, and a fitness function). Considering these specifications, the evolutionary-based

methods work as follows.

First, the dataset is divided into three different sets: the learning and validation

sets – which will be used for training, and the test set. For training, 80% of the examples

are in the learning set (Lr) and 20% in the validation set (V al). For the test (Ts), 20% of

the examples are used to evaluate the final predictive performance of the produced model.

To perform this partitioning, we use an iterative stratified sampling method [189].

In a nutshell, this sampling procedure adds the examples to the subsets by considering

the rarest label at first. As there are multiple labels on the examples, it also takes into

account the non-rare labels simultaneously. In this part, it just updates the counts for

the non-rare labels as well. This process continues – by adding examples to the subsets

6Code and documentation are available at https://github.com/alexgcsa/automlc/

https://github.com/alexgcsa/automlc/

5.3. Search Methods for Automated Multi-Label Classification 83

relying on the label rarity – until the least rare label is completely sampled.

Having the data division completed, the individuals in the initial population are

generated at random, regardless of the representation used, according to the components

of Sp. Then, while a maximum time budget MTB is not reached, a mapping process

generates an MLC algorithm A from each individual of the population i. Next, A produces

a classification model M using Lr, and the fitness of the individual is calculated using

the validation set V al, as discussed in Section 5.3.1.1.

Following, the best individual of the population is saved to be added to the new

population (an elitist process), and a probabilistic selection process starts to choose the

individuals that will suffer mutation and crossover. In the end, the current population

is updated. In order to avoid overfitting, during the evolutionary process, the learning

and validation sets are resampled every R generations. Besides, to control premature

convergence, we check if the best individual is kept the same for a predefined number

of generations, GPC, and if the search has reached at least a predefined number of

generations, which is based on CG. To do so, we maintain a list of the best individuals

found so far. If this convergence criteria is reached, we restart the population by creating

new S individuals.

Algorithm 5.1 General pseudo-code for evolutionary algorithms for MLC.

1: Inputs: Search space, Sp; Dataset, Ds; Population size, S; Tournament parent selection
mechanism, TS; Crossover probability, Pc; Mutation probability, Pm; Fitness function, f ;
Maximum Time Budget, MTB; Number of generations on resampling, R; Convergence
Criteria Function, CT ; Current number of generations, CG; Number of generations to pop-
ulation’s convergence, GPC .

2: Divide Ds into three partitions, Lr, V al, Ts;
3: P= Randomly generate an initial population of S individuals using definitions in Sp;
4: while maximum time budget MTB not reached do
5: Map each individual i in P to a MLC algorithm Ai

6: M(i): Train each algorithm Ai using Lr;
7: f(i): Calculate the fitness of each individual Ai in V al;
8: best = Ai with best f(i), saved to the new population;
9: [History]: Best ▷ Keep the history of the best individuals.

10: [SI]: Select individuals via TS;
11: Crossover([SI], Pc);
12: P ′ = Mutation([SI], Pm);
13: P = [P ′, best];
14: Resample Lr and V al every R generation;
15: Restart P with new S individuals if CT ([History], CG,GPC) is reached
16: end while

17: return Ai with the best fitness value;
18: Run Ai in Ts.

Next, in Sections 5.3.1.2, 5.3.1.3 and 5.3.1.4, we present the peculiarities for the

three proposed algorithms, focusing on individual representation, genotype-phenotype

5.3. Search Methods for Automated Multi-Label Classification 84

mapping, and genetic operators.

5.3.1.1 MLC Fitness Evaluation Process

In multi-label classification, an MLC algorithm is usually evaluated using multiple mea-

sures because of the additional degrees of freedom the MLC setting introduces, as already

explained in Section 3.2.

After a MLC model is induced by A, the fitness function is calculated using the

validation set, using the average of four MLC measures, described in Section 3.2: Ex-

act Match (EM), Hamming Loss (HL), F1 Macro averaged by label (FM) and Ranking

Loss (RL), as indicated in Equation 5.1:

Fitness =
EM + (1−HL) + FM + (1−RL)

4
(5.1)

All four metrics in Equation 5.1 are within the [0, 1] interval. However, EM and

FM are measures that should be maximized, whereas HL and RL should be minimized. In

order for the fitness function to be maximized, in Equation 5.1, HL and RL are subtracted

from one (1).

It is important to highlight that these four measures were chosen because they

usually present low correlation among each other, when comparing their results across

different algorithms within different MLC problems [162].

5.3.1.2 Genetic Algorithm for Automated Multi-Label Classification

Following the principles described in the previous section, the first method we propose is

GA-Auto-MLC (Genetic Algorithm for Automated Multi-Label Classification). It uses a

real-valued GA as its search engine, and its main steps are detailed in Figure 5.2. They

reflect the pseudo-code already discussed in Algorithm 5.1.

Figure 5.2: GA-Auto-MLC: The proposed genetic algorithm to select and configure MLC
algorithms.

GA-Auto-MLC
GA individuals:

represented by arrays

MEKA
Framework

Evaluation

Mapping

Stop Criterion
Reached?

GA
Operators

No Yes

Best MLC Algorithm
with hyper-parameters

Selection

R
A
N
D
O
M

I
N
I
T

 SLC Algorithm:
C4.5

 Unpruned?:
False

 MLC Algorithm:
Binary Relevance

Conf. Factor:
0.1

0.1 | 0.5 | 0.6 | 0.2

0.3 | 0.0 | 0.1 | 0.9

0.9 | 0.4 | 0.7 | 0.6

0.8 | 0.1 | 0.9 | 0.5

0.6 | 0.3 | 0.4 | 0.7

5.3. Search Methods for Automated Multi-Label Classification 85

This section discusses the individual representation and the genotype/phenotype

mapping, which are the particularities of this method. Apart from that, the algorithm

implements a roulette wheel individual selection, followed by uniform crossover and one-

point mutation operations (details of these operations are given in Chapter 2).

Individual Representation: GA-Auto-MLC is based on the individual representation

proposed in de Sá and Pappa [49] to search and explore the space of MLC algorithms. GA-

Auto-MLC is guided by the hierarchy of algorithm choices defined by the search space. It

only generates valid individuals at the phenotypic level. A set of configuration files wraps

the MLC hierarchy and, consequently, the whole search space. These configuration files

have the same role as the grammar and describe the algorithms, hyper-parameters, and

constraints found in the search space. Nevertheless, they are represented with a markup

language (in our work, a set of Extensible Markup Language [XML] files are used to

encompass the search space).

Given the algorithms and their respective components, we followed the hierarchy

to create a suitable representation for them. An individual genotype is a real-valued array

with values within the [0, 1] interval.

Considering that each learning algorithm has a different number of hyper-parameters

(see Tables 5.1 and 5.2, and Appendix A to check this information), the GA uses a dynamic

representation, but only at the phenotypic level. The individual genotype representation

is static, always having 12, 16, or 26 positions. Therefore, a position in the real-valued

array can be ignored during the mapping process. Crossover and mutation operations are

then applied to the individual genotype (real-coded array) to avoid problems of individu-

als with different sizes. Figure 5.3 gives examples of possible phenotypes7. In this figure,

a gray box means that this array position refers to an empty component.

Figure 5.3: Possible phenotypes of GA-Auto-MLC’s individuals (for the search space
Small).

- - - - - - -- - - - - - -threshold - - - - - - -0.70
MLC:
BR - - - - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -SLC:

LR
r:

0.1

- - - - - - -- - - - - - -threshold - - - - - - -PCutL
MLC:
BPNN

lrt:
0.02

m:
0.5

- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -ne:
100

nhu:
12

- - - - - - -- - - - - - -threshold - - - - - - -0.70
MLC:
BR - - - - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -SLC:

LogR
r:
0.1

- - - - - - -- - - - - - -threshold - - - - - - -PCut1
MLC:

 RAkEL
les:
1

sre:
10

- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -
SLC:
JRip

mtw:
2.5

cer:
false

up:
true

o:
3

pv:
1

sv:
0

- - - - - - -- - - - - - -threshold - - - - - - -0.09
MLC:

 RAkEL
les:
3

sre:
100

- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -
SLC:
NB

uke:
false

usd:
true

- -pv:
4

sv:
2

As the size of the individual depends on the search space, individuals will have

different sizes for the three search spaces proposed in Section 5.2. For the search space

7Linked to the acronyms of algorithms and hyper-parameters in the Appendix A.

5.3. Search Methods for Automated Multi-Label Classification 86

Small, we have a genome size of 12. I.e., the maximum number of options an MLC

algorithm can have at this search space is 12: the choice of the threshold approach (which

was modeled using two positions in the genome8, choosing JRip at the single-label base

level (four hyper-parameters and the choice of the method itself) and RAkEL at the

multi-label base level (four hyper-parameters and the choice of the method itself).

In contrast, the search space Medium has a genome size of 16. In this case, the

maximum number of options would be the selection of the threshold approach in two po-

sitions, choosing the C4.5 algorithm at the single-label base level (eight hyper-parameters

and the choice of the method itself) and RAkEL at the multi-label base level (five positions

in the genome).

The search space Large is the most complex and, consequently, has a bigger genome

size. At this search space, we could have a maximum of 26 options to build a MLC

algorithm. This would happen if we consider the threshold approach (two positions in the

genome), the C4.5 algorithm at the single-label base level (nine positions in the genome),

AdaM1, bagging or RSS at the meta-SLC level (three hyper-parameters and the choice

of the method itself), CT or PMCC at the multi-label base level (six hyper-parameters

and the choice of the method itself) and RSML as the meta MLC algorithm (three hyper-

parameters and the choice of the method itself). Figure 5.4 gives an example of a possible

genotype for the search space Small.

Figure 5.4: A possible genotype of an individual in the search space Small.

lr.41.26 .42.95 .54 .40 .51 .07 .01.59 .59.48

Genotype-Phenotype Mapping: Figure 5.5 illustrates the whole process of mapping

followed by individual evaluation. To get the phenotype from this real-valued array, we

convert it into an intermediate representation, which is an integer-coded chromosome of

the same length as the original individual, based on the configuration files.

In this conversion, the real number of a gene is multiplied by the maximum number

of choices associated with that component and the resulting value is rounded into an

integer number that indicates a component option in the configuration file. For instance,

suppose that the real value of a gene representing the single-label classification algorithm

for a given PT method is equal to 0.20, and the total number of components for SLC

algorithms is equal to 10. In this case, the rounded integer value will be 2, which means

the second SLC algorithm – presume that the second SLC algorithm would be a Random

Forest – in this configuration file will be selected. When the mapping process finishes,

8This was done because of a drawback in the GA representation. To define a hyper-parameter
standalone, we need a tuple <gene, allele>. Therefore, we need two positions in the genome to represent
an isolated hyper-parameter. This does not happen when we have an algorithm together with the hyper-
parameter.

5.3. Search Methods for Automated Multi-Label Classification 87

unused genes in the integer-coded chromosome receive the value -1, representing empty

components.

Given the integer-coded individual, its chromosome is mapped into an MLC al-

gorithm based on the configuration files. After that, we used the MEKA and WEKA

frameworks to determine the MLC algorithm and calculate the fitness value based on the

process described in Section 5.3.1.1.

Figure 5.5: Evaluation process of one individual in GA-Auto-MLC.

Individual (Integer)

Fitness

Learning
data

Validation
data

2 5 1 7 2
Mapping

0 6

MLC algorithm
with hyper-param.

MEKA
+

WEKA

.9 .5 .9 .8 .0.7

2 5 1 7 05 9

Search Space
(Config. Files)

Individual (Real)

.6

Conversion
Classification

model generated
by the MLC
algorithm

5.3.1.3 Automated Multi-Label Classification using Grammar-based

Genetic Programming

This section introduces Auto-MEKAGGP, a method that relies on a Grammar-based Ge-

netic Programming (GGP) search to automatically select and configure MLC algorithms.

The GGP search has the advantage of naturally exploring the hierarchical nature of the

problem, a missing feature of GA-Auto-MLC.

In order to do that, Auto-MEKAGGP relies on a grammar (see Section 5.2.3),

which encompasses the (hierarchical) search space of MLC algorithms and their hyper-

parameters. Besides, the grammar directly influences the search, as each individual cre-

ated by the GGP is based on its production rules, guaranteeing that all individuals are

valid. In other words, the MLC grammar defines the search space and how the individuals

are created and modified. Figure 5.6 illustrates the main steps of Auto-MEKAGGP, again

in accordance with Algorithm 5.1.

In Auto-MEKAGGP, each individual is represented by a derivation tree gener-

ated from the grammar that represents the search space. Individuals are first gener-

ated by choosing valid production rules from the grammar at random. By choosing the

production rules, the method also derives the respective parse trees for the individuals.

Auto-MEKAGGP uses the ramped half-and-half method to create the initial population

of individuals (see Section 2.1.3 for more details). The mapping process here is much

simpler than in GA-Auto-MLC, as described later in this section.

5.3. Search Methods for Automated Multi-Label Classification 88

Figure 5.6: Auto-MEKAGGP: The proposed GGP method to select and configure MLC
algorithms.

Auto-MEKA
GGP

GGP individuals:
Represented by trees

MEKA
Framework

Evaluation

Mapping

Stop Criterion
Reached?

GGP
Operators

No Yes

Best MLC Algorithm
with hyper-parameters

Selection

Grammar-
based

Initializa-
tion SLC Algorithm:

Random Forest

 Maximum Depth:
15

 MLC Algorithm:
Classifier Chain

Number of Trees:
200

GGP
Operators

Auto-MEKAGGP selects individuals by using tournament selection. Next, the GGP

operators (i.e., Whigham’s crossover and mutation [214]) are applied to the selected indi-

viduals to create a new population. These operators also respect the grammar constraints,

ensuring that the produced individuals represent valid solutions.

It is worth noting that Auto-MEKAGGP was implemented using a modified version

of EpochX [157], an open-source genetic programming framework.

Genotype-Phenotype Mapping: Figure 5.7 details the whole mapping process fol-

lowed by the evaluation process for each GGP individual. Recall that each individual

is represented by a tree, which is derived from the expansion of the production rules of

the MLC grammar. In the example of Figure 5.7, ellipsoid nodes are the non-terminals,

whereas the rectangles are the terminals.

Figure 5.7: Evaluation process of one individual in Auto-MEKAGGP .
Individual Representation Evaluation Framework

Fitness

Learning
data

Validation
data

MLC algorithm

MEKA
+

WEKA

Classification
model generated

by the MLC
algorithm

Start

MLC-PT Pred-Tshd

0.3ALGS-SLCALGS-PT

ALG-TYPE

Functions

Logistic
Regression

ALGS-PT1

0.019

Binary
Relevance

Mapping

Ridge

The mapping process takes the terminals from the tree and constructs a valid

MLC algorithm. The mapping in the figure will produce the following MLC algorithm:

5.3. Search Methods for Automated Multi-Label Classification 89

a Binary Relevance method combined with a Logistic Regression algorithm (with the

hyper-parameter ridge set to 0.019), using a threshold level of 0.3 to classify the MLC

data. Given the mapped MLC algorithm in MEKA (and WEKA), the fitness function

follows the same process described in Section 5.3.1.1.

5.3.1.4 Automated Multi-Label Classification using Specialized

Grammar-Based Genetic Programming

This section introduces a variation of Auto-MEKAGGP that adds a speciation process to

the search method [9], namely Auto-MEKAspGGP. The general idea is to use speciation

to improve the trade-off between exploration and exploitation of the search for MLC al-

gorithms and hyper-parameters. Because the proposed search spaces have an exponential

size and a complex hierarchical nature, it may be crucial to use this approach to deal with

these aspects.

A species is basically a set of individuals that resemble each other more inherently

than the individuals in another species [9]. Back et al. [9] also state that speciation (in

evolutionary computation) has the idea of restricting mating to that among like individ-

uals from the population. In this case, likeness among individuals (i.e., solutions to the

problem at hand) is identified if they have similar genotypes or phenotypes. On the other

hand, speciation tries to discourage mating among individuals with distinct genotypes or

phenotypes.

There are a few different ways to introduce species to the problem. One of them

is by separating the MLC (and SLC) algorithms into groups – e.g., we could have a

species that groups the algorithms based on label powerset (including label powerset

itself, pruned sets, and RAkEL), where different groups of learning algorithms would

correspond to distinct species. Another approach is trying a traditional niching scheme

(e.g., fitness sharing [9, 137]).

We decided to define a set of species for Auto-MEKAspGGP, but each species is

based on the types of hyper-parameters (i.e., categorical, discrete, or continuous) and

their interactions. Therefore, our speciation-based method focuses not exclusively on the

choice of the learning algorithms but primarily on the different types of hyper-parameters,

where the choice of the learning algorithms is set as a special case of the categorical hyper-

parameter.

In general lines, we would like to understand if there is a dependence between

the final AutoML predictive performance and the types (and the interactions) of hyper-

parameters for a given dataset of interest. For instance, if we would like to recommend

MLC algorithms for two datasets with different characteristics, understanding the cate-

gorical hyper-parameters for the first dataset may be more beneficial than approaching

discrete and/or continuous hyper-parameters. This could be the opposite for the second

5.3. Search Methods for Automated Multi-Label Classification 90

dataset, where the interaction between discrete and continuous hyper-parameters may be

more relevant.

Based on this scenario, we design eight (8) species. All species may have instances

of all learning algorithms at both MLC and SLC levels, but they vary on the types of

hyper-parameters that are left with their default values during evolution and cannot be

updated. The eight species are:

Species 1 – Learning algorithms: Only the categorical hyper-parameters referring to

the names of the (traditional and meta) learning algorithms at the MLC

and SLC levels can be combined and evolved. Categorical (not referring

to the names of the learning algorithms), continuous, and discrete hyper-

parameters are set to their default values9.

Species 2 – Learning algorithms and common categorical hyper-parameters:

Together with the categorical hyper-parameters indicating the names of the

learning algorithms (Species 1), this species also allows the combination

and evolution of common categorical hyper-parameters (e.g., the names of

a metric). In addition, it is important to emphasize that this species also

encompasses Boolean hyper-parameters. Discrete and continuous hyper-

parameters, in turn, are set to their default values.

Species 3 – Learning algorithms and discrete hyper-parameters: This species

considers, alongside the categorical hyper-parameters indicating the names

of the learning algorithms, the discrete (integer) hyper-parameters. The

remaining types of hyper-parameters are set to their default values.

Species 4 – Learning algorithms and continuous hyper-parameters: During the

evolution of the individuals at this species, we allow the modification and

combination of the continuous hyper-parameters of Species 1. Common

categorical and discrete hyper-parameters are not explored and remain with

their default values.

Species 5 – Learning algorithms and the combination of common categorical

and discrete hyper-parameters: At this species, we evolve the individu-

als considering the learning algorithms themselves (Species 1) together with

common categorical and discrete hyper-parameters, which are also allowed

to be modified and combined. This would model the interaction of categori-

cal and discrete hyper-parameters. Continuous hyper-parameters have their

values set to their default values.

9The default values are defined in Appendix A.

5.3. Search Methods for Automated Multi-Label Classification 91

Species 6 – Learning algorithms and the combination of common categorical

and continuous hyper-parameters: In this case, we make the evolution-

ary process to consider the hyper-parameters representing the learning algo-

rithms, the common categorical hyper-parameters and the continuous hyper-

parameters. Therefore, the interaction between categorical and continuous

hyper-parameters is modeled. Discrete (i.e., integer) hyper-parameters are

not explored in this species.

Species 7 – Learning algorithms and the combination of discrete and continu-

ous hyper-parameters: This species allows the combination of the names

of the learning algorithms with discrete and continuous hyper-parameters.

In other words, this species tries to understand the effects of the interaction

of discrete and continuous hyper-parameters on the selection of learning al-

gorithms. However, this species does not take into consideration the common

categorical hyper-parameters, which take their default values.

Species 8 – All types of hyper-parameters: This species is more general and recalls

the grammar defined in Section 5.2.3, where all types of hyper-parameters

(categorical referring to the names of the learning algorithms, common

categorical, discrete, continuous hyper-parameters) are modeled to be ex-

plored/exploited.

Figure 5.8 gives an overview of the main steps of Auto-MEKAspGGP. Broadly

speaking, these steps are quite similar to Auto-MEKAGGP’s evolutionary process. Basi-

cally, each species takes the steps defined in Figure 5.6. Here, we are going to underline

the differences between Auto-MEKAspGGP and Auto-MEKAGGP.

Figure 5.8: Auto-MEKAspGGP: The proposed speciation-based GGP method to select
and configure MLC algorithms.

Auto-MEKA
spGGP

GGP individuals over each species:
Represented by trees

MEKA
Framework

Evaluation

Mapping

Stop Criterion
Reached?

GGP
Operators

No Yes

Best MLC Algorithm
with hyper-parameters

Selection

Specialized
Grammar-

based
Initializa-

tion # Hidden Units:
10

Momentum:
0.6

 MLC Algorithm:
ML-BPNN

Learning rate:
0.15

GGP
Operators

Species
1

Species
2

Species
3

Species
4

Species
5

Species
6

Species
7

Species
8

Epochs:
50

5.3. Search Methods for Automated Multi-Label Classification 92

The first step of Auto-MEKAspGGP’s evolutionary process is the initialization pro-

cedure. Here, we have for each species a population of individuals, which are represented

by trees and built based on a specific grammar for that species.

Besides initialization, Auto-MEKAspGGP differs from Auto-MEKAGGP in the cross-

over operator, which can be performed for both intra-species and inter-species individuals.

By interchangeably using both types of crossover operations, we have more chances to test

unknown regions of the search space (exploration) when using the inter-species crossover,

while a more straightforward local search over the different types of hyper-parameters is

performed in each species by the intra-species.

It is worth noting that we decided to design the mutation operator as being local

to each species. By doing that, Whigham’s mutation uses the grow method on the indi-

vidual’s derivation tree but ensures that the MLC grammar of that respective species is

applied over the grow method.

As the operators are based on speciation-based grammars, they also respect their

respective production and constraints, ensuring that the produced individuals represent

valid solutions (i.e., valid MLC algorithms).

5.3.2 Automated Multi-Label Classification using Bayesian

Optimization

Besides the evolutionary-based search methods, we also developed a Bayesian Op-

timization (BO) search method to perform automated multi-label classification, namely

Auto-MEKABO. For more details about BO methods, see Section 2.2. This method is an

extension of the Auto-WEKA tool [127, 200] for MLC domains.

Figure 5.9 illustrates the main aspects of Auto-MEKABO. First, given an MLC

dataset of interest and the defined search space (see Figure 5.1), a BO method uses a

performance model (in our case, a Random Forest) to help the selection of MLC config-

urations (MLC algorithms with hyper-parameters).

In Figure 5.9, this model is initialized with a default MLC algorithm with default

hyper-parameters. In the case of Auto-MEKABO, we initialize the model with different

algorithms as the search spaces allow different types of learning algorithms. For the search

space Small, we run and include into the model the results of the Classifier Chain (CC)

algorithm using the Näıve Bayes (NB) classification algorithm at the single-label base

level.

As the search space Medium has a similarity in terms of the hierarchical levels,

we decided to keep the CC algorithm at the multi-label level. However, we have tried to

5.3. Search Methods for Automated Multi-Label Classification 93

Figure 5.9: Auto-MEKABO: The proposed Bayesian optimization method to select and
configure MLC algorithms.

Performance model
(Random Forest)

Auto-MEKA
BO

MEKA
Framework

Evaluation

Best MLC
configuration

 SLC Algorithm:
KNN

 Dist. weighting:
Inverse

 MLC Algorithm:
Label Powerset

Neighbors:
13

Choose
configuration

SMAC

Set this
configuration as
the best so far?

Time budget
exceeded?

Update model
with last

configuration

No

Init model

Yes

improve the single-label classification level by using a more robust algorithm. I.e., we use

a more sophisticated Bayesian Network Classifier (BNC) algorithm instead of a simple

NB classification algorithm. Hence, at this level, the K2 algorithm is employed.

Finally, for the search space Large, we define as the initial configuration to the

model the Random Subspace Meta-Learning algorithm for multi-label classification (RSML),

using the Bayesian Classifier Chain (BCC) algorithm at the multi-label base level, the

Locally Weighted Learning (LWL) algorithm at the single-label meta-level, and the BNC

K2 algorithm at the single-label base level. Except for RSML, which is a robust meta-

algorithm, the other levels were chosen in an arbitrary fashion, although they are also

considered strong algorithms in the machine learning literature.

After this initialization step, we choose the next configuration from the MLC search

space in the configuration files, relying on this performance model. To do that, the

Sequential Model-based Algorithm Configuration (SMAC) method is used to select a

better configuration (see Section 2.2.2). Next, this MLC configuration is evaluated in the

MEKA framework and then compared with the best MLC configuration found so far (see

Section 5.3.2.1 for more details). If the current configuration has a better score than the

current best configuration, it is saved and set as the new best configuration. Otherwise,

the process continues by verifying if the time budget (i.e., the instantiation of the stopping

criteria) was reached. If this stopping criteria is met, Auto-MEKABO returns the best

configuration found until the current time to that input dataset. Otherwise, the last

evaluated MLC configuration is added to the performance model with its corresponding

quality value, updating it. The process continues following these same steps until the

time budget expires.

5.4. Multi-fidelity Methods for MLC 94

5.3.2.1 Quality Function

Broadly speaking, the evaluation process in Auto-MEKABO is quite similar to the ones

presented in Section 5.3.1.1. Figure 5.10 illustrates this process. In this figure, we can

observe that the main difference is that Auto-MEKABO uses the string (representing

the configuration, i.e., the MLC algorithm with its hyper-parameters) returned from the

SMAC process, instead of the real-valued array or the parse tree. Auto-MEKABO simply

maps this string into an MLC algorithm by employing the configuration files, which

describe the search space, and a set of conversion rules.

Figure 5.10: Evaluation process of one individual in Auto-MEKABO.

Quality
Assesement

Learning
data

Validation
data

Mapping

MLC
Configuration

MEKA
+

WEKA

Search Space
(Config. Files)

Conversion
Classification

model generated
by the MLC
algorithmString returned

from SMAC

Next, MEKA and WEKA frameworks are used to evaluate the respective MLC

configuration in the same way as described in Section 5.3.1.1.

5.4 Multi-fidelity Methods for MLC

The idea of multi-fidelity is to reduce the computational cost involved when train-

ing the AutoML search methods on specific search spaces. In this thesis, the computational

cost is related to train an MLC algorithm with a specific hyper-parameter setting. De-

pending on the type of the dataset of interest, it can be unfeasible to find good solutions

to its associated ML problem. Using multiple types of fidelities to represent this data is

one way to overcome its difficulty. In spite of that, this must be performed carefully in

order to preserve the characteristics of the dataset of interest.

We propose different ways to reduce data complexity when training the AutoML

methods. In order to perform it, we evaluate distinct multi-fidelity approaches by focusing

5.4. Multi-fidelity Methods for MLC 95

on two factors regarding the input dataset: the number of attributes and the number of

instances. While the AutoML method is iterating, we keep evaluating and changing data

multi-fidelity at specific checkpoints.

Our idea is to begin with a few instances and/or a few attributes. As the methods

iterate, we augment data, increasing its complexity until it reaches the original number

of instances and attributes.

To reduce data complexity on the number of attributes, we propose two proce-

dures. The first employs a polynomial function (in our case, a linear function) to perform

attribute selection. At the beginning of this procedure, we define a maximum number of

steps on the multi-fidelity approach to follow, #steps, and divide the number of attributes

of the dataset by #steps, resulting in a dataset with a lower number of attributes. In the

next step, we decrease the value of #steps by one and perform the division again. This is

done until we reach the final search method ’s checkpoint, where #steps finally turns into

the value one, and we use all attributes of the dataset. By doing that, we change/increase

the fidelity/complexity of data over time.

Table 5.5 shows how we increase polynomially the actual number of attributes

(#attributes) as a factor of #steps (which took the initial value of five) based on the

employed search method ’s time budget.

Table 5.5: Employed polynomial multi-fidelity approach in terms of the number of at-
tributes of the dataset based on the specified time budget.

Time budget range Actual Number of Attributes
From 0 hour to 1 hour #attributes / 5
From 1 hour to 2 hours #attributes / 4
From 2 hour to 3 hours #attributes / 3
From 3 hour to 4 hours #attributes / 2
From 4 hour to 5 hours #attributes / 1

The second procedure is similar to the first, but it employs an exponential function

to change the number of attributes over time. Therefore, we set the number of steps

(#steps) as the exponent of a predefined base, b. In our case, we start dividing the

number of attributes by b#steps. We keep decreasing the value of #steps (at specific

checkpoints) until its value reaches zero, where data transforms in your original form (i.e.,

with all attributes). Table 5.6 shows how we increase exponentially the actual number of

attributes (#attributes) as a factor of #steps (which took the initial value of four) based

on the employed time budget.

For both procedures that vary the number of attributes, we select the attributes

considering a ranking-based method, where the scores at its ranking are calculated consid-

ering the gain ratio of the label powerset attribute evaluator [201]. The decision about the

attribute evaluator was taken to allow the attribute selection to consider the correlation

5.4. Multi-fidelity Methods for MLC 96

Table 5.6: Employed exponential multi-fidelity approach in terms of the number of at-
tributes of the dataset based on the specified time budget.

Time budget range Actual Number of Attributes
From 0 hour to 1 hour #attributes / 24

From 1 hour to 2 hours #attributes / 23

From 2 hour to 3 hours #attributes / 22

From 3 hour to 4 hours #attributes / 21

From 4 hour to 5 hours #attributes / 20

among the labels. For some MLC problems, this is inherently important and, therefore,

must be taken care of.

Regarding the second dimension of multi-fidelity (i.e., number of examples), we

test only one procedure for selecting instances on the datasets of interest. Basically, this

procedure employs a polynomial function (in our case, a linear function) to divide data

into learning and validation sets during search method ’s training. It is worth noting that

we always use a stratified cross-validation method to divide data [189]. In this scenario,

we define a total number of folds to split the training data, #folds, where we start learning

the MLC models with one fold and validating with #folds minus one. In the next step,

we increase by one the number of folds to learn the MLC models and decrease by one the

respective number of folds to validate these models. We perform these operations until

we invert the number of folds from learning to validation. Table 5.7 describes how we

actually change the number of folds (and, consequently, the number of instances) to train

and validate the MLC models.

Table 5.7: Employed polynomial multi-fidelity approach in terms of the number of in-
stances of the dataset based on the specified time budget.

Time budget range # Folds to Learn # Folds to Valid
From 0 hour to 1 hour 1 5
From 1 hour to 2 hours 2 4
From 2 hours to 3 hours 3 3
From 3 hours to 4 hours 4 2
From 4 hours to 5 hours 5 1

5.5. Final Remarks 97

5.5 Final Remarks

Within these three proposed search spaces (Small, Medium and Large), four pro-

posed search methods (GA-Auto-MLC, Auto-MEKAGGP , Auto-MEKASpGGP and Auto-

MEKABO) and five different multi-fidelity approaches, we believe we gave a starting seed

to the AutoML field for multi-label classification problems.

In general lines, the proposed search spaces differ from each other in terms of

(hierarchical and extended) complexity. From the search space Small to Medium, we

change just the number of possible learning algorithms (and, consequently, the number of

considered hyper-parameters) the AutoML methods can explore/exploit. However, from

the search space Medium to Large, we also include more hierarchical levels, which makes

the search more challenging than on the two other search spaces.

Besides, recall that each search method has an inherent way to deal with the search

spaces. GA-Auto-MLC, for example, encompasses the search spaces into an array. We

observe that this form to represent individuals has traces to the Grammatical Evolu-

tion (GE) method [156] because of the dynamic phenotype generation for the different

individuals. This gives GA-Auto-MLC an exploration nature as a simple modification on

the genotype can produce a very distinct individual (MLC algorithm).

On the other hand, Auto-MEKAGGP and Auto-MEKASpGGP handles this hierar-

chical aspect of the search space naturally. This is due to the tree-based representation

followed by genetic programming methods. Besides, both methods respect a context-free

grammar to build MLC algorithms, which derives a formal validation of the search space.

Nevertheless, Auto-MEKASpGGP differs from Auto-MEKAGGP in the way it deals with

the different types of hyper-parameters.

Furthermore, Auto-MEKABO approaches the AutoML problem for MLC data by

applying a search method that follows the Bayesian Optimization (BO) principles. Em-

ploying such a hierarchical method is necessary to evaluate if there are no issues in the

search employed by the evolutionary methods. Therefore, in addition to the evolutionary

search methods, we decide to test a state-of-the-art search method (i.e., a BO method) for

the MLC AutoML scenario.

Finally, we define different ways to reduce the cost of training the AutoML meth-

ods, introducing four multi-fidelity approaches. Basically, they aim to change the instance

and/or attribute spaces of the MLC problems in order to provide a simpler training

dataset. Based on that, the MLC algorithms can be run faster, but as data loses fidelity

in comparison to the original problem, the fitness, representing how good this algorithm is,

also loses fidelity and can produce misleading results. Therefore, multi-fidelity approaches

must be used carefully.

98

Chapter 6

Experimental Analysis

This chapter presents the experimental analysis regarding the proposed AutoML meth-

ods in the context of MLC. Experiments were divided into three phases. An initial set of

experiments was performed with the four proposed methods in a set of tuning datasets,

defining the first phase of the experiments. From there, we selected the most promising

method – which was Auto-MEKAspGGP – and dedicated a new phase to tune the pa-

rameters of this single method. This decision was made based on the high cost involved

in the experiments. In a third phase, we selected a new set of datasets and compared

the results of Auto-MEKAspGGP to two out of three remaining proposed methods – i.e.,

Auto-MEKAGGP and Auto-MEKABO –, and two baseline methods1 – Auto-MEKARS,

which employs a random search method [14], and Auto-MEKABS, which uses a beam

search method [152] to seek for and configure MLC algorithms.

It is worth noting that the results of the third phase are also categorized into three

main parts: (i) an analysis of the quality metrics used to evaluate the performance of

the customized MLC algorithms generated by the four proposed AutoML methods and

by the baseline methods; (ii) a discussion of the selected and configured MLC algorithms

(and, consequently, the selected and configured SLC algorithms) tailored by the AutoML

methods; (iii) an analysis of convergence of the AutoML methods.

Recall that the proposed AutoML methods are divided into two main components

in this thesis, i.e., (i) a search space and (ii) a search method. We refer to them considering

these two components. For the first part of the experimental analysis into the third

phase, we use five MLC quality measures and 14 datasets to evaluate the performance

of the proposed search methods against the methods we use to compare with (i.e., Auto-

MEKARS and Auto-MEKABS).

In the second part, we contrast the methods in terms of the generated MLC al-

gorithms. This can help us to gain insights into the general performance presented by

the methods in our first analysis. Analyzing the generated MLC algorithms also helps

us understand the bias and the possible issues of the search performed by an AutoML

method. For instance, these results could show us if the selected and configured MLC

1Both baseline methods were developed for the purpose of comparison within the context of this
thesis.

6.1. Experimental Setup 99

algorithms are indeed good multi-label classification algorithms and how similar they are

to the state-of-the-art MLC algorithms.

Another way to check the quality of an AutoML method is to verify whether its

search or optimization process is converging accordingly. We analyze this aspect in the

third part. Looking at the convergence curves regarding a given quality measure can help

us to implicitly verify whether the search or optimization is stuck in a local optima. This

analysis can change the way the methods operate in future work to improve their search

or optimization processes.

6.1 Experimental Setup

This section discusses the experimental setup. All experiments were run using a

stratified five-fold cross-validation procedure [189]. In addition, five metrics were consid-

ered when evaluating the results in terms of classification quality: Exact Match (EM, see

Equation 3.1), Hamming Loss (HL, see Equation 3.2), F1 Macro averaged by label (FM,

see Equations 3.10 and 3.11), Ranking Loss (RL, see Equation 3.13), and the general

metric we defined as the fitness/quality criteria in Chapter 5 (see Equation 5.1).

6.1.1 Datasets

The experiments reported in this chapter involve a set of 19 datasets selected from

the KDIS (Knowledge and Discovery Systems) repository2 and described in Table 6.1.

These datasets were chosen based on their differences in application domain, the number of

instances (n), the number of attributes (m), the number of labels (q), the label cardinality

– the average number of labels associated with each example in the dataset (Card.), the

label density – the average number of labels associated with each example divided by the

number of labels (i.e., the cardinality divided by the number of labels.) (Dens.), and the

label diversity – the percentage of labelsets present in the dataset divided by the number

of possible labelsets (Div.). [204] states that these different characteristics can influence

the performance of the MLC methods in different applications.

From these 19 datasets, five (5) were selected to be used for tuning the parameters

2The datasets are also available at http://www.uco.es/kdis/mllresources/.

http://www.uco.es/kdis/mllresources/

6.1. Experimental Setup 100

of the most promising method, and the other 14 were used in the remaining experiments3.

From now on, we refer to these datasets using their acronyms, which are also specified in

Table 6.1.

Table 6.1: Datasets used in the experiments.

Datasets Acronym Domain n m q Card. Dens. Div.
Tuning datasets

3sources reuters1000 3SR Text 294 1000 6 1.126 0.188 0.219
Emotions EMT Music 593 72 6 1.868 0.311 0.422
GpositiveGO GPG Biology 519 912 4 1.008 0.252 0.438
HumanPseAAC HPA Biology 3106 440 14 1.185 0.085 0.027
Langlog LGL Text 1460 1004 75 1.180 0.016 0.208

Experimental datasets
Bibtex BTX Text 7395 1836 159 2.402 0.015 0.386
Birds BRD Audio 645 260 19 1.014 0.053 0.206
CAL500 CAL Music 502 68 174 26.044 0.150 1.000
CHD 49 CHD Medicine 555 49 6 2.580 0.430 0.531
Enron ENR Text 1702 1001 53 3.378 0.064 0.442
Flags FLG Image 194 19 7 3.392 0.485 0.422
Genbase GBS Biology 662 1186 27 1.252 0.046 0.048
GpositivePseAAC GPP Biology 519 440 4 1.008 0.252 0.438
Medical MED Text 978 1449 45 1.245 0.028 0.096
PlantPseAAC PPA Biology 978 440 12 1.079 0.090 0.033
Scene SCN Image 2407 294 6 1.074 0.179 0.234
VirusPseAAC VPA Biology 207 440 6 1.217 0.203 0.266
Water-quality WQT Chemistry 1060 16 14 5.073 0.362 0.778
Yeast YST Biology 2417 103 14 4.237 0.303 0.082

6.1.2 Parameter Setting

This section describes the default values used in the proposed methods after

preliminary experiments and considers the values used by other methods in the litera-

ture [50, 62, 109, 144]. For the evolutionary-based search methods, we follow Eiben and

Smith [62] to set the evolutionary parameters (e.g., mutation and crossover rates).

Unless otherwise stated, the three evolutionary methods (i.e., GA-Auto-MLC,

Auto-MEKAGGP and Auto-MEKAspGGP) were run with the following parameters: 80

individuals evolved considering a time budget of five hours, tournament selection of size

two (2), elitism of one (1) individual, and crossover and mutation probabilities of 0.8 and

0.2, respectively. For these methods, the learning and validation sets are also resampled

from the training set every five generations in order to avoid overfitting. Additionally,

we use time and memory budgets for each MLC algorithm (generated by the proposed

3As aforementioned, these datasets structurally differ from each other. Therefore, to perform a fair
selection, we have randomly chosen the datasets composing tuning and comparison experiments.

6.1. Experimental Setup 101

methods) of 180 seconds (three minutes) and 2GB of RAM, respectively. If the MLC

algorithms reach these budgets, they are associated with the lowest fitness, i.e., a fitness

of zero (0.0). Furthermore, the following convergence criterion is considered: at each iter-

ation, we check if the best individual has remained the same for over five (5) generations

and the search method has run for at least 20 generations. If this happens, we restart the

evolutionary process with another pseudo-random seed.

In the case of Auto-MEKAspGGP , as we have eight (8) species, we specify ten (10)

individuals for each species. We define Auto-MEKAspGGP ’s convergence criteria for each

species individually. Furthermore, we set the intra-species and inter-species crossover

probabilities for Auto-MEKAspGGP as 0.3 and 0.7, respectively.

Finally, based on the aforementioned parameters, Auto-MEKABO has kept only

the time and memory budgets – i.e., five hours of run for its respective search method, and

three minutes and 2GB of time and memory budgets for each produced MLC algorithms,

respectively. As in the EA-based methods, the MLC algorithms that reach time and

memory budgets are set to a quality score of 0.0. Furthermore, one intrinsic parameter

is the employed acquisition function, which has taken the expected improvement (EI)

function [110, 127, 200] for Auto-MEKABO in this thesis.

6.1.3 Baseline Methods

The proposed methods are compared to two well-known methods4: (i) a random

search method [14]; and (ii) a beam search method [152].

Basically, the Random Search (RS) iterates over the predefined search space at

random. First, it creates p MLC algorithm configurations (by using a pseudo-random

seed), evaluates them, and saves the best configuration in terms of the proposed quality

measure (see Equation 5.1) into a list. Next, it creates another p new MLC algorithm

configurations, evaluates these configurations, and saves the best at this iteration into the

same list. RS keeps doing this procedure until the total time budget is reached. In the

end, we return the best MLC algorithm configuration from the list based on the quality

measure.

On the other hand, the Beam Search (BS) iterates locally over the given search

space. Based on that, BS works as follows. Taking the search space into account, an

initial random solution (i.e., an MLC algorithm configuration) is generated. We evaluate

4We still have not compared our proposed methods to ML2-Plan [211] due to technical issues in the
experiments. For instance, ML2-Plan does not allow the change of the search space of MLC algorithms
in a straightforward way. Thus, we will keep this comparison for future work.

6.1. Experimental Setup 102

this random solution and keep it as the current best (with a score based on the quality

measure). From this solution, we generate p others by performing local changes into its

representation5. We evaluate these solutions and check if one of them has a better quality

score than the current best MLC configuration. If so, we update the best configuration

with the best score. Otherwise, we maintain the best MLC configuration. Next, we

continue looking at its neighbors from the current best configuration to create, evaluate,

and possibly find better solutions. This search process remains until the final time budget

is reached. In the end, the best-found MLC algorithm configuration is returned based on

the proposed quality measure.

In order to be fair in the comparisons with the evolutionary methods – which deal

with a population of 80 individuals – we set the value of p equal to 80 for both random

and beam search methods.

6.1.4 Statistical Comparisons

Given the average of the runs for each method, results are evaluated using the well-

known statistical approach proposed by Demšar [54] to compare these methods, using an

adapted Friedman test followed by Nemenyi’s post hoc test with a significance level of 0.05.

This approach is used for comparing several methods in several datasets and determines

the non-randomness of the obtained results. More specifically, the Friedman test [84] is

considered a non-parametric counterpart of ANOVA [77] because it does not rely on a

probabilistic distribution to perform its corresponding statistic.

Going into details on Demšar’s approach, let Ri
j be the rank of the j-th of the k

methods on the i-th of the n datasets. With this information, the Friedman test compares

the k methods by assigning a rank for each algorithm j in each dataset i. Next, the test

uses the average of the ranks Rj over all datasets, defined in Equation 6.1.

Rj =
1

n
·

n∑
i=1

Ri
j (6.1)

Under the null hypothesis, which states that the methods are equivalent in these

conditions (i.e., on those datasets), the Friedman statistic is presented in Equation 6.2,

being distributed according to χ2
F with k − 1 degrees of freedom, when n and k are big

enough.

5In this work, we use the aforementioned grammar-based representation for both random and beam
searches. Thus, we generate a derivation tree from the grammar and employ Whigham’s mutation to
perform local operations in this respective tree.

6.2. Preliminary Comparison of the Proposed Methods 103

χ2
F =

12 · n
k · (k + 1)

·

[
k∑

j=1

R2
j −

k · (k + 1)2

4

]
, (6.2)

Iman and Davenpor [111] showed that χ2
F is undesirably conservative and derived

an adjustment for a better statistic, which is formalized in Equation 6.3. This adapted

statistic is distributed according to Snedecor’s F-distribution with k−1 and (k−1)(n−1)

degrees of freedom.

FF =
(n− 1) · χ2

F

n · (k − 1)− χ2
F

, (6.3)

If the null hypothesis is rejected, we can proceed with Nemenyi’s post hoc test for

pairwise comparisons. The results of the two methods are significantly different if their

respective average ranks differ by at least the Critical Difference (CD). The CD is defined

in Equation 6.4, where the critical values qα are based on the Student’s statistic divided

by
√
2.

CD = qα ·
√

k · (k + 1)

6 · n
(6.4)

6.2 Preliminary Comparison of the Proposed

Methods

This section presents an initial and general comparison of the proposed methods

– i.e., GA-Auto-MLC, Auto-MEKAGGP , Auto-MEKAspGGP and Auto-MEKABO – in the

five tuning datasets described in Table 6.1. Given the high computational cost involved

in running the MLC algorithms, tuning procedures will be performed only for the most

promising method and again considering the search space Large.

Tables 6.2 and 6.3 show their results according to the metric defined in Equa-

tion 5.1 – the proposed fitness/quality measure – for time budgets of one and five hours,

respectively. For these two tables (and the following ones), we present the average results

for each dataset across the cross-validation runs together with their respective standard

deviations, which are shown between parenthesis. In addition, results in bold in these

tables indicate the best average values or the ones we take as the most appropriate, and

shaded cells illustrate cases where overfitting was identified when comparing the results

from one hour to five hours of running.

Overall, we observe in Tables 6.2 and 6.3 that the best average value of the proposed

quality measure (based on the five employed datasets) was achieved by Auto-MEKAGGP

6.2. Preliminary Comparison of the Proposed Methods 104

and Auto-MEKAspGGP for both one and five hours of time budget. Nevertheless, Auto-

MEKAspGGP was the only search method that improved its average results from one hour

to five hours and also did not suffer from overfitting.

In the case of AutoML, we define overfitting (or meta-overfitting) when the results

at the beginning of the training process are better than those results achieved at the end

of this process. For instance, this happened on Auto-MEKAGGP , where its results on the

datasets 3SR and GPG within one hour of training are higher than the respective results

within five hours of training. The same occurred for Auto-MEKABO, which had this issue

for both datasets. Therefore, we can conclude that Auto-MEKAGGP and Auto-MEKABO

suffered from overfitting on these two datasets.

Table 6.2: Results in terms of quality measure (defined in Equation 5.1) on the test set
within one hour of training for the proposed AutoML search methods.

Datasets Auto-MEKAGGP Auto-MEKAspGGP GA-Auto-MLC Auto-MEKABO

3SR 0.394 (0.042) 0.392 (0.041) 0.327 (0.003) 0.389 (0.033)
EMT 0.660 (0.017) 0.669 (0.015) 0.645 (0.005) 0.665 (0.017)
GPG 0.930 (0.023) 0.926 (0.048) 0.916 (0.029) 0.930 (0.024)
HPA 0.547 (0.016) 0.549 (0.014) 0.371 (0.003) 0.531 (0.017)
LGL 0.555 (0.017) 0.552 (0.019) 0.427 (0.005) 0.528 (0.024)

Avg. Val. 0.617 0.618 0.537 0.609

Table 6.3: Results in terms of the quality measure (defined in Equation 5.1) on the test
set within five hours of training for the proposed AutoML search methods.

Datasets Auto-MEKAGGP Auto-MEKAspGGP GA-Auto-MLC Auto-MEKABO

3SR 0.387 (0.050) 0.395 (0.048) 0.327 (0.003) 0.376 (0.045)
EMT 0.660 (0.013) 0.671 (0.015) 0.645 (0.005) 0.666 (0.015)
GPG 0.926 (0.042) 0.926 (0.022) 0.916 (0.029) 0.921 (0.029)
HPA 0.551 (0.013) 0.550 (0.013) 0.371 (0.003) 0.539 (0.015)
LGL 0.559 (0.013) 0.558 (0.018) 0.427 (0.005) 0.535 (0.023)

Avg. Val. 0.617 0.620 0.537 0.607

The case of GA-Auto-MLC’s results being the same from the first time budget to

the other has a reason. The issue is related to its selected MLC algorithms, which were

too complex to run at a feasible time during testing (we set a time budget of 15 minutes

to run each MLC algorithm). As we save the best MLC algorithms found in each iteration

of GA-Auto-MLC (elitism), we keep trying to evaluate the second-best, third-best, and

so on. If no selected MLC algorithm reaches the expected final result, we then run a

default MLC algorithm, which is a classifier chain algorithm augmented with a random

forest (with hyper-parameters also set to their default values).

Within this scenario on the general comparison among the proposed AutoML

search methods, we will keep trying to tune the parameters only for the Auto-MEKAspGGP

search method. By looking at and analyzing the overall results of Tables 6.2 and 6.3, we

6.3. Auto-MEKAspGGP’s Hyper-Parameter Tuning 105

believe this is the best decision to take as we consider this search method the most promis-

ing one.

6.3 Auto-MEKAspGGP’s Hyper-Parameter Tuning

This section analyzes the effects of the three hyper-parameters we consider most

relevant to the proposed method in Auto-MEKAspGGP. These hyper-parameters are con-

sidered more important than others because they affect both the search methods and the

execution time. They are: (i) whether to use a resampling approach from time to time to

avoid overfitting; (ii) the use of multi-fidelity approaches; (iii) the hyper-parameter that

controls the inter/intra-species crossover on Auto-MEKAspGGP.

In the resampling, the computational cost increases as we need to re-train and re-

evaluate individuals as the learning and validation sets are resampled. Eliminating this

approach would increase the number of evaluated MLC algorithms and hyper-parameters

– and, as a consequence, enhance the coverage of the search space.

In the case of the multi-fidelity approaches, we would like to evaluate how we

can change the attributes and examples in the learning and validation datasets during

the iterations of the AutoML method without compromising the predictive results. In a

nutshell, these approaches evaluate and validate the MLC algorithms on data with few

instances and few attributes (when compared to the original data) at the first iteration

of the AutoML methods and keep increasing the complexity of the input data (growing

the number of instances and attributes of the learning and validation sets) until we reach

the original data size.

The third parameter we investigate in depth is the inter/intra-species crossover.

Given the probability of crossover on Auto-MEKAspGGP, we split this probability for

happening crossover intra-species (i.e., this crossover is able to change only the types of

hyper-parameters that a species encompasses by mixing the individuals on that species)

and inter-crossover (i.e., this crossover turns possible to mix individuals from different

species, allowing different types of hyper-parameters to be explored/exploited during the

communications between two species). We believe that understanding this parameter

would give Auto-MEKAspGGP a better chance to settle a suitable trade-off between ex-

ploration and exploitation to this specific search method.

Note that we focus on the search space Large in the experiments reported in this

section because of the computational cost involved in training the AutoML methods.

This search space was chosen because it encompasses the others and is the most complex.

Therefore, we believe this setting is a good way to test the method’s capabilities.

6.3. Auto-MEKAspGGP’s Hyper-Parameter Tuning 106

6.3.1 Resampling the Training Set

This subsection investigates whether it is possible to exclude the resampling pro-

cedure from Auto-MEKAspGGP ’s evolutionary process. Considering this experimental

scenario, we ran the experiments without resampling in the evolutionary process and

compared to Auto-MEKAspGGP ’s results of Section 6.2. Tables 6.4 and 6.5 present these

results within one and five hours of training for the five previously defined datasets.

Table 6.4: Auto-MEKAspGGP ’s results based on the quality measure (defined in Equa-
tion 5.1) on the test set with the presence and absence of resampling within one hour.

Datasets With Resampling Without Resampling
3SR 0.392 (0.041) 0.389 (0.044)
EMT 0.669 (0.015) 0.661 (0.016)
GPG 0.926 (0.048) 0.925 (0.020)
HPA 0.549 (0.014) 0.537 (0.020)
LGL 0.552 (0.019) 0.546 (0.020)

Avg. Val. 0.618 0.612

Table 6.5: Auto-MEKAspGGP ’s results based on the quality measure (defined in Equa-
tion 5.1) on the test set with the presence and absence of resampling within five hours.

Datasets With Resampling Without Resampling
3SR 0.395 (0.048) 0.395 (0.049)
EMT 0.671 (0.015) 0.660 (0.019)
GPG 0.926 (0.022) 0.917 (0.046)
HPA 0.550 (0.013) 0.544 (0.015)
LGL 0.558 (0.018) 0.552 (0.018)

Avg. Val. 0.620 0.614

We can observe from these tables that the average results for the quality measure

are slightly higher/better in the presence of resampling for both time budgets. Besides,

by using resampling on data, Auto-MEKAspGGP continued, on average, to improve its

results for all evaluated datasets.

This is not always true when we remove the resampling approach every five genera-

tions from Auto-MEKAspGGP ’s evolutionary process. The average results for the datasets

EMT and GPG were slightly lower/worse at the end of the evolutionary process (within

five hours of training) when we compare them to the beginning of this process (i.e., within

one hour of training). Although this issue is not very significant, as the differences be-

tween five hours and one hour are into the standard deviation, we would like to avoid

these situations as much as possible.

Accordingly, as we expect to train the AutoML methods in different datasets with

distinct characteristics, we decide to keep the resampling approach into the evolutionary

6.3. Auto-MEKAspGGP’s Hyper-Parameter Tuning 107

process of Auto-MEKAspGGP for every five generations, mostly because we are afraid to

face overfitting in sensible datasets in a more serious form.

6.3.2 The Multi-Fidelity Approach

In our experiments, we set #steps equal to five for the number of attributes, and

we change data at each hour of Auto-MEKAspGGP ’s evolutionary process. Nevertheless,

this could be done for all proposed AutoML search methods.

For the number of examples, we set b to two (2) and the initial value of #steps to

four (4). This procedure was performed only in Auto-MEKAspGGP . However, it can also

be generalized to other search methods.

Given these procedures to perform multi-fidelity in terms of the number of at-

tributes and instances (see Section 5.4), we can use the respective procedures in isolation

or in conjunction. The tuning procedure for the multi-fidelity approaches refers to this

analysis, i.e., which multi-fidelity procedure to choose for the attribute selection and

whether the attribute and instance procedures should be used together. Table 6.6 defines

these possible multi-fidelity scenarios and associates them with an acronym.

Table 6.6: Possible scenarios for the multi-fidelity approaches.

Acronym Multi-Fidelity Procedures
NAS-NIS No Attribute Selection, No Instance Selection
EAS-PIS Exponential Attribute Selection, Polynomial Instance Selection
PAS-PIS Polynomial Attribute Selection, Polynomial Instance Selection
NAS-PIS No Attribute Selection, Polynomial Instance Selection
EAS-NIS Exponential Attribute Selection, No Instance Selection
PAS-NIS Polynomial Attribute Selection, No Instance Selection

So far, we have not used any multi-fidelity approach. Thus, the experiments until

Section 6.3.2 use no multi-fidelity procedure, i.e., NAS-NIS. In this subsection, we vary

the possible multi-fidelity approaches and evaluate their results in terms of the proposed

quality/fitness measure and the achieved number of generations. The results considering

the variation of the multi-fidelity approach can be found in Tables 6.7, 6.8, 6.9 and 6.10

for one and five hours. The results of Tables 6.7 and 6.8 are in accordance with average

fitness values on the test set achieved by the selected and configured MLC algorithms. The

results of Tables 6.9 and 6.10, in turn, correspond to the average number of generations

reached by Auto-MEKAspGGP within one and five hours of training, respectively.

By analyzing the multi-fidelity results in terms of the proposed quality measure, we

6.3. Auto-MEKAspGGP’s Hyper-Parameter Tuning 108

Table 6.7: Auto-MEKAspGGP ’s multi-fidelity tuning results based on the average quality
measure (defined in Equation 5.1) on the test set within one hour.

Datasets NAS-NIS EAS-PIS PAS-PIS NAS-PIS EAS-NIS PAS-NIS
3SR 0.392 (0.041) 0.424 (0.050) 0.424 (0.048) 0.408 (0.042) 0.378 (0.047) 0.415 (0.047)
EMT 0.669 (0.015) 0.657 (0.018) 0.668 (0.015) 0.674 (0.013) 0.649 (0.032) 0.668 (0.017)
GPG 0.926 (0.048) 0.924 (0.032) 0.923 (0.028) 0.909 (0.101) 0.912 (0.042) 0.927 (0.023)
HPA 0.549 (0.014) 0.526 (0.030) 0.542 (0.024) 0.537 (0.020) 0.534 (0.023) 0.545 (0.015)
LGL 0.552 (0.019) 0.509 (0.024) 0.525 (0.023) 0.546 (0.019) 0.506 (0.032) 0.529 (0.018)

Avg. Val. 0.618 0.608 0.616 0.615 0.596 0.617

Table 6.8: Auto-MEKAspGGP ’s multi-fidelity tuning results based on the average quality
measure on the test set within five hours.

Datasets NAS-NIS EAS-PIS PAS-PIS NAS-PIS EAS-NIS PAS-NIS
3SR 0.395 (0.048) 0.412 (0.042) 0.436 (0.040) 0.405 (0.038) 0.404 (0.045) 0.396 (0.044)
EMT 0.671 (0.015) 0.668 (0.013) 0.671 (0.013) 0.674 (0.011) 0.667 (0.018) 0.671 (0.015)
GPG 0.926 (0.022) 0.929 (0.023) 0.923 (0.022) 0.912 (0.067) 0.930 (0.020) 0.931 (0.020)
HPA 0.550 (0.013) 0.541 (0.025) 0.540 (0.036) 0.546 (0.016) 0.543 (0.022) 0.545 (0.019)
LGL 0.558 (0.018) 0.543 (0.018) 0.548 (0.021) 0.553 (0.020) 0.551 (0.018) 0.551 (0.018)

Avg. Val. 0.620 0.619 0.624 0.618 0.619 0.618

Table 6.9: Auto-MEKAspGGP ’s multi-fidelity average number of generations within one
hour.

Datasets NAS-NIS EAS-PIS PAS-PIS NAS-PIS EAS-NIS PAS-NIS
3SR 9.5 (2.6) 28.2 (13.7) 20.9 (5.4) 13.4 (2.2) 19.1 (3.8) 15.2 (3.4)
EMT 11.6 (2.3) 21.6 (8.0) 17.3 (5.5) 15.7 (5.4) 17.5 (4.2) 13.8 (3.0)
GPG 12.1 (2.1) 27.8 (10.8) 21.4 (5.5) 15.2 (3.3) 21.1 (6.0) 15.8 (3.2)
HPA 4.0 (0.7) 15.2 (4.6) 9.0 (2.7) 7.1 (1.3) 8.5 (1.3) 6.8 (1.5)
LGL 3.4 (0.9) 11.5 (2.1) 9.1 (1.4) 4.9 (0.7) 8.7 (1.9) 6.2 (1.3)

Avg. Val. 8.1 20.9 15.5 11.3 15.0 11.6

Table 6.10: Auto-MEKAspGGP ’s multi-fidelity average number of generations within five
hours.

Datasets NAS-NIS EAS-PIS PAS-PIS NAS-PIS EAS-NIS PAS-NIS
3SR 68.3 (13.8) 104.4 (25.1) 96.6 (24.8) 76.7 (12.5) 85.2 (19.3) 80.2 (20.0)
EMT 73.8 (13.9) 72.9 (20.1) 69.1 (22.2) 72.0 (18.2) 75.2 (18.1) 72.0 (14.3)
GPG 80.3 (14.4) 93.6 (21.8) 92.2 (17.1) 79.5 (18.5) 92.1 (22.7) 87.9 (16.0)
HPA 42.7 (5.4) 53.2 (15.0) 41.2 (9.4) 39.9 (5.7) 39.6 (5.5) 43.3 (10.1)
LGL 47.8 (5.3) 51.6 (6.8) 47.7 (10.1) 49.1 (8.0) 46.8 (11.0) 42.4 (6.8)

Avg. Val. 62.6 75.2 69.3 63.5 67.8 65.1

6.3. Auto-MEKAspGGP’s Hyper-Parameter Tuning 109

can conclude that the multi-fidelity scenarios EAS-PIS and EAS-NIS improved the average

quality measure for almost all datasets (except for EAS-PIS on the dataset 3SR) when

comparing its results for one hour to the results for five hours. However, in these scenarios,

we believe that the reduction of the original dataset was too aggressive. Observing the

results of the dataset 3SR, for example, which has 1000 attributes and only 294 instances.

Using EAS-PIS or EAS-NIS for this particular type of dataset would significantly change

the data characteristics (e.g., average number of attributes per the number of instances).

Although both multi-fidelity scenarios better explore the search space (see the average

number of generations of Tables 6.9 and 6.10), this is not appropriate.

On the other hand, the multi-fidelity results on the scenarios NAS-PIS and PAS-

NIS are quite conservative. In these scenarios, Auto-MEKAspGGP improved or stabilized

the predictive performance (see Tables 6.7 and 6.8), but the search itself was not improved

as the coverage of the search space was broadly the same (see the average number of

generations for both scenarios). As the number of generations was almost the same for

both scenarios compared to NAS-NIS (i.e., the default scenario), we believe employing

such multi-fidelity approaches would be a waste of time.

In our perspective, the best multi-fidelity scenario is PAS-PIS, which applies linear

functions on the number of attributes and instances to reduce computational time while

keeping or improving the final predictive performance. For PAS-PIS, the results of Auto-

MEKAspGGP kept improving or stayed (about) the same from one hour to five hours.

Besides, the number of generations (i.e., iterations) increased by (about) seven in both

one and five hours of training.

Hence, given this analysis, we conclude that the most appropriate multi-fidelity

scenario is PAS-PIS. As a consequence of its results, we will continue using the multi-

fidelity approach based on this scenario for the next Auto-MEKAspGGP ’s experiments.

6.3.3 Tuning the Inter/Intra-Species Crossover Probability

Despite the fact that we have already changed parameters regarding how we sample

and resample data, we would also like to check the parameters that influence the behavior

of the search methods per se. As we have maintained the tuning only Auto-MEKAspGGP

after Section 6.2 as we believe this is the most promising method, we focus here on one of

its essential parameters, the probability of applying the crossover operator inter-species

and intra-species.

Before going into tuning the inter/intra-species crossover probability itself, recall

that we have a general probability of 0.8 of performing crossover. In addition, we define

6.3. Auto-MEKAspGGP’s Hyper-Parameter Tuning 110

the intra-species and inter-species crossover probabilities for Auto-MEKAspGGP as 0.3 and

0.7 for the previous experiments, respectively. Furthermore, we have ten (10) individuals

per species, resulting in a total of 80 evaluated individuals per generation.

In order to tune these crossover probabilities, we vary their values in a comple-

mentary form. We start with even intra-species and inter-species probabilities (i.e., 0.5

and 0.5, respectively). Next, we increase the value of the intra-species probability by

0.1 while we decrease the value of the inter-species probability by one. We do that until

we have 1.0 for intra-species crossover probability and 0.0 for inter-species probability.

Tables 6.11 and 6.12 present Auto-MEKAspGGP ’s results regarding the tuning of these

crossover probabilities. The results are in terms of the defined quality/fitness measure for

one and five hours, respectively.

Table 6.11: Auto-MEKAspGGP ’s results based on the defined quality measure on the test
set for varying the intra/inter-species crossover probabilities within one hour of training.

Datasets 0.5/0.5 0.6/0.4 0.7/0.3 0.8/0.2 0.9/0.1 1.0/0.0
3SR 0.423 (0.086) 0.381 (0.049) 0.446 (0.024) 0.416 (0.062) 0.405 (0.061) 0.407 (0.062)
EMT 0.667 (0.020) 0.674 (0.020) 0.663 (0.015) 0.656 (0.025) 0.656 (0.022) 0.676 (0.015)
GPG 0.924 (0.031) 0.917 (0.036) 0.921 (0.017) 0.922 (0.013) 0.914 (0.025) 0.932 (0.014)
HPA 0.545 (0.022) 0.530 (0.022) 0.533 (0.017) 0.537 (0.020) 0.538 (0.023) 0.516 (0.013)
LGL 0.532 (0.019) 0.531 (0.024) 0.525 (0.011) 0.526 (0.010) 0.532 (0.016) 0.528 (0.012)

Avg. Val. 0.618 0.608 0.618 0.611 0.609 0.612

Table 6.12: Auto-MEKAspGGP ’s results based on the defined quality measure on the test
set for varying the intra/inter-species crossover probabilities within five hours of training.

Datasets 0.5/0.5 0.6/0.4 0.7/0.3 0.8/0.2 0.9/0.1 1.0/0.0
3SR 0.434 (0.063) 0.426 (0.039) 0.370 (0.034) 0.366 (0.038) 0.421 (0.050) 0.374 (0.052)
EMT 0.667 (0.013) 0.667 (0.011) 0.658 (0.007) 0.641 (0.028) 0.661 (0.022) 0.670 (0.018)
GPG 0.917 (0.030) 0.923 (0.027) 0.930 (0.035) 0.947 (0.013) 0.922 (0.030) 0.917 (0.032)
HPA 0.543 (0.022) 0.545 (0.032) 0.550 (0.017) 0.536 (0.022) 0.520 (0.022) 0.536 (0.015)
LGL 0.557 (0.012) 0.539 (0.016) 0.547 (0.016) 0.559 (0.009) 0.556 (0.017) 0.551 (0.022)

Avg. Val. 0.624 0.620 0.611 0.610 0.616 0.610

Results were better when we considered 0.5 and 0.5 of intra-species and inter-

species crossover probabilities, respectively. The even values for the probabilities made

Auto-MEKAspGGP achieve the best average predictive performance so far (0.618 within

one hour and 0.624 within five hours of training). Although these results are quite close to

the best ones found in Section 6.3.2 and possibly the same when we look at the standard

deviation, one small improvement in AutoML is usually difficult in such enormous search

spaces6. For this reason, in the final experiments of Auto-MEKAspGGP we use resampling,

employ the PAS-PIS multi-fidelity approach, and operate over the search space by working

with 0.5/0.5 of intra/inter-species crossover probabilities.

6We are aware that the datasets GPG and HPA are sensitive to overfitting and we would like to avoid
it. Nevertheless, considering the standard deviations, the results are actually the same for both datasets.
This is also one reason that motivates us to use such intra-species and inter-species crossover rates in our
final experiments.

6.4. Experimental Results 111

It is worth noting that even with using the multi-fidelity approach, our predictive

results were similar to those obtained with the original dataset, without affecting the

multi-label classifier’s predictive performance.

6.4 Experimental Results

This section further analyzes the results obtained by three proposed search methods

– Auto-MEKABO, Auto-MEKAGGP and Auto-MEKAspGGP – in the 14 datasets, selected

for a more detailed experimental analysis. We let GA-Auto-MLC out of the final experi-

ments because of its poor performance in recommending MLC algorithms with a specific

hyper-parameter setting. These results are compared with those obtained by the baseline

methods: Random Search (RS) and Beam Search (BS), here referred to as Auto-MEKARS

and Auto-MEKABS, respectively.

Tables 6.13, 6.14, 6.15, 6.16 and 6.17 show the average values, the average ranks,

and the final statistical analysis – based on the 14 datasets – of Exact Match (EM), Ham-

ming Loss (HL), F1 Macro-averaged by label (FM), Ranking Loss (RL) and fitness for the

three proposed methods (Auto-MEKAspGGP , Auto-MEKAGGP and Auto-MEKABO) and

the two baseline methods (Auto-MEKARS and Auto-MEKABS) in the test set, respec-

tively. We perform this comparison for the three designed search spaces within one and

five hours of running. We take the subscript names for these tables to define the search

methods.

Regarding the results of the EM measure, which is the most conservative, in Ta-

ble 6.13, we observe that the results do not present statistical differences in all three search

spaces in one hour of running. For the search space Small, the best average value and the

best average rank are achieved by Auto-MEKARS. On the other hand, the best average

value in terms of the 14 datasets was found by Auto-MEKABS and the best average rank

by Auto-MEKAspGGP for the search space Medium. Both averages (value and rank) for

the search space Large were found by Auto-MEKABS.

When we change the time budget to evaluate the results of the EM measure, our

analysis has also become different. For the search space Small, the best average and the

rank value are found by Auto-MEKAGGP , which is statistically superior to Auto-MEKARS

on this particular search space. This statistical difference is indicated in Table 6.13 and

in the following tables by the symbol ≻. For the search space Medium, we have not found

evidence of statistical differences, but whereas Auto-MEKABS presented the best average

value, Auto-MEKAGGP showed again the best average rank. In respect of the search

space Large, we identify that the best search methods were Auto-MEKABO and Auto-

6.4. Experimental Results 112

Table 6.13: Comparison of the exact match (to be maximized) obtained by the proposed
search methods and the baseline methods in the test set for the three designed search
spaces within one and five hours of execution.

Time
Budget

Search
Space

Evaluated
Result

spGGP GGP BO RS BS

1 hour Small Avg. Val. 0.344 0.346 0.343 0.352 0.348
Avg. Rank. 3.500 2.679 3.357 2.536 2.928
Stat. Comp. no differences among all methods

Medium Avg. Val. 0.389 0.371 0.346 0.376 0.394
Avg. Rank. 2.750 2.821 3.571 2.929 2.929
Stat. Comp. no differences among all methods

Large Avg. Val. 0.323 0.351 0.327 0.354 0.358
Avg. Rank. 2.857 2.821 3.714 3.179 2.429
Stat. Comp. no differences among all methods

5 hours Small Avg. Val. 0.343 0.349 0.334 0.339 0.343
Avg. Rank. 2.929 1.964 3.500 3.679 2.929
Stat. Comp. {GGP} ≻ {RS}, no differences among the others

Medium Avg. Val. 0.390 0.379 0.337 0.361 0.397
Avg. Rank. 3.571 2.429 3.464 2.821 2.714
Stat. Comp. no differences among all methods

Large Avg. Val. 0.349 0.335 0.355 0.348 0.347
Avg. Rank. 2.607 2.429 2.571 4.286 3.107
Stat. Comp. {spGGP, GGP, BO} ≻ {RS}, no differences among the others

MEKAGGP based on the average value and rank, respectively. In addition, on this search

space, we have statistical evidence that Auto-MEKAspGGP , Auto-MEKAGGP and Auto-

MEKABO are better methods than a pure random search (i.e., than Auto-MEKARS).

These results for the EM measure indicate indeed what we expected, i.e., the size of

the search space affects the performance of the search methods. This is not so clear when

we give a small amount of time for the search methods (e.g., one hour) to cover the search

spaces, but it is more evident when we give an appropriate time budget (e.g., five hours)

for them. Note in Table 6.13 that from five hours of time budget, all proposed search

methods could deal better with the trade-off between exploration and exploitation, whilst

the search space increases exponentially, beating the random search method. In other

words, by giving enough time budget to the search methods, those with a more robust

AutoML approach can better handle the trade-off between exploration and exploitation.

As a consequence, their results become better in the comparison.

It is worth noting that we identified some cases of overfitting on the proposed

and comparison search methods. In order to perform this analysis, we only looked at the

average values of the EM measure, which partially encompasses the results of 14 datasets

(see Table 6.1). In special, we observe overfitting on: Auto-MEKAGGP in the search

space Large; Auto-MEKABO in the search space Small and Medium; Auto-MEKARS in

all search spaces ; and Auto-MEKABS in the search spaces Large. We believe that Auto-

MEKAspGGP was not so affected by overfitting due to our tuning procedure on its more

important parameters.

For the results of the HL measure in Table 6.14, Auto-MEKAGGP showed the best

average rank and also the best average value in all search spaces within one hour of run-

6.4. Experimental Results 113

ning. Although there was no statistical significance among the search methods for the

search spaces Small and Medium, we detected statistical difference in the search space

Large, where Auto-MEKAGGP showed to have a better score than Auto-MEKAspGGP .

This result was slightly expected in some cases as we employed a specific multi-fidelity

approach on Auto-MEKAspGGP . Even with tuning, Auto-MEKAspGGP might lose predic-

tive performance in some scenarios, such as the one described here.

Table 6.14: Comparison of the hamming loss (to be minimized) obtained by the proposed
methods and the baseline methods in the test set for the three designed search spaces
within one and five hours of execution.

Time
Budget

Search
Space

Evaluated
Result

spGGP GGP BO RS BS

1 hour Small Avg. Val. 0.139 0.134 0.140 0.135 0.134
Avg. Rank. 3.500 2.214 3.821 2.607 2.857
Stat. Comp. no differences among all methods

Medium Avg. Val. 0.162 0.135 0.139 0.139 0.140
Avg. Rank. 3.464 2.500 3.107 2.890 3.036
Stat. Comp. no differences among all methods

Large Avg. Val. 0.148 0.134 0.208 0.139 0.137
Avg. Rank. 4.036 2.286 3.107 3.000 2.571
Stat. Comp. {GGP} ≻ {spGGP}, no differences among the others

5 hours Small Avg. Val. 0.135 0.134 0.208 0.137 0.135
Avg. Rank. 3.143 2.250 3.714 3.107 2.786
Stat. Comp. no differences among all methods

Medium Avg. Val. 0.157 0.136 0.134 0.139 0.142
Avg. Rank. 4.036 2.251 2.607 3.00 3.107
Stat. Comp. {GGP} ≻ {spGGP}, no differences among the others

Large Avg. Val. 0.137 0.134 0.130 0.143 0.139
Avg. Rank. 3.214 2.571 2.07 4.00 3.142
Stat. Comp. {BO} ≻ {RS}, no differences among the others

The results for the HL measure within five hours, in Table 6.14, differs from those

for the time budget of one hour. In that case, Auto-MEKAGGP continued having the best

average values and ranks in the search space Small, but it had only the best average rank

in the search space Medium. Furthermore, Auto-MEKAGGP indicated to be statistically

better than Auto-MEKAspGGP in the search space Medium. Nonetheless, there is no

indication of statistical difference for the other cases of search space Medium, neither for

all cases of the search space Small.

Auto-MEKABO, in turn, had the best average result in the search space Medium

and the best average result and rank in the search space Large for five hours of time

budget. In fact, Auto-MEKABO was the only proposed method to present statistically

better results when compared to Auto-MEKARS. This was quite a surprise based on the

tuning experiments, where Auto-MEKABO resulted in one of the methods with the lowest

predictive performance in its selection and configuration of MLC algorithms. On behalf of

overfitting, Auto-MEKABO was the only case to suffer from it in the search space Small.

We suppose this was why this method was not the best one in all search spaces.

Furthermore, we evaluated the results of the search methods in the search spaces

on a measure that is commonly used in the single-label scenario and adapted for the multi-

6.4. Experimental Results 114

label context, i.e., the FM measure. Table 6.15 shows the results for FM, indicating that

the best average value for the search space Small – within one hour – was produced by

Auto-MEKARS, whereas the best average rank was processed by Auto-MEKAGGP within

five hours of execution, the best average rank and value was achieved by Auto-MEKAGGP

for the same search space, instead.

Table 6.15: Comparison of the F1 macro-averaged by label (to be maximized) obtained
by the proposed methods and the baseline methods in the test set for the three designed
search spaces within one and five hours of execution.

Time
Budget

Search
Space

Evaluated
Result

spGGP GGP BO RS BS

1 hour Small Avg. Val. 0.444 0.457 0.444 0.460 0.457
Avg. Rank. 3.571 2.571 3.571 2.714 2.571
Stat. Comp. no differences among all methods

Medium Avg. Val. 0.441 0.471 0.454 0.448 0.467
Avg. Rank. 3.571 2.464 3.393 2.750 2.821
Stat. Comp. no differences among all methods

Large Avg. Val. 0.444 0.467 0.437 0.450 0.452
Avg. Rank. 3.643 2.607 2.750 3.286 2.714
Stat. Comp. no differences among all methods

5 hours Small Avg. Val. 0.451 0.468 0.442 0.461 0.462
Avg. Rank. 2.929 2.250 3.571 3.250 3.000
Stat. Comp. no differences among all methods

Medium Avg. Val. 0.449 0.464 0.453 0.452 0.472
Avg. Rank. 3.179 3.143 2.571 3.571 2.536
Stat. Comp. no differences among all methods

Large Avg. Val. 0.461 0.476 0.463 0.456 0.459
Avg. Rank. 2.964 2.464 2.571 3.643 3.357
Stat. Comp. no differences among all methods

In the case of the search space Medium Auto-MEKAGGP and Auto-MEKABS pre-

sented the best average values and ranks in terms of the FM measure for one and five

hours of searching, respectively. In this search space, we found signs of overfitting for

Auto-MEKAGGP . This caused this particular method not to present a good final predic-

tive performance. The search space Large, on the other hand, had the best average found

by Auto-MEKAGGP .

Besides the results regarding the average values and the average ranks, we also

statistically evaluated the search methods. Nevertheless, we have not found any evidence of

statistical differences (based on the 14 datasets) among the methods for both time budgets

and three search spaces. One possible explanation for this statistical behavior is that this

measure was not specifically built for multi-label classification – as it is adapted from the

single-label classification perspective. Hence, finding flatter results for this measure is

comprehensible.

Considering another evaluation context, the ranking produced by multi-label meth-

ods for each example was also used in the comparisons. The RL measure summarizes this

distinct evaluation criteria, and the results regarding this measure are presented in Ta-

ble 6.16.

6.4. Experimental Results 115

Table 6.16: Comparison of the ranking loss (to be minimized) obtained by the proposed
methods and the baseline methods in the test set for the three designed search spaces
within one and five hours of execution.

Time
Budget

Search
Space

Evaluated
Result

spGGP GGP BO RS BS

1 hour Small Avg. Val. 0.157 0.164 0.178 0.166 0.167
Avg. Rank. 3.000 2.393 3.500 3.107 3.000
Stat. Comp. no differences among all methods

Medium Avg. Val. 0.140 0.155 0.179 0.162 0.150
Avg. Rank. 2.071 3.107 3.786 3.179 2.857
Stat. Comp. no differences among all methods

Large Avg. Val. 0.158 0.144 0.140 0.155 0.148
Avg. Rank. 3.321 2.392 2.536 3.929 2.821
Stat. Comp. no differences among all methods

5 hours Small Avg. Val. 0.153 0.161 0.210 0.167 0.167
Avg. Rank. 2.321 2.214 3.750 3.429 3.286
Stat. Comp. no differences among all methods

Medium Avg. Val. 0.146 0.150 0.152 0.156 0.148
Avg. Rank. 2.679 2.821 3.250 3.321 2.929
Stat. Comp. no differences among all methods

Large Avg. Val. 0.147 0.135 0.149 0.157 0.140
Avg. Rank. 2.821 2.536 2.786 4.071 2.786
Stat. Comp. no differences among all methods

Whilst Auto-MEKAspGGP was the proposed method with the best average value

within one hour in the search space Small, Auto-MEKAGGP achieved the best average

rank in this scenario. Distinctly, Auto-MEKAspGGP selected and configured MLC algo-

rithms in such a way they produced the best average value and rank in the search space

Medium considering the same time budget and measure. For the search space Large,

Auto-MEKABO and Auto-MEKAGGP turned into the search methods with the best aver-

age value and the best average rank, respectively. The quality behavior of the proposed

and baseline methods was basically the same within five hours, except for search space

Large, where Auto-MEKAGGP achieved the best average value and rank.

Similarly to the results of FM, the results of RL did not present any evidence

of statistical significance. Therefore, based on the average RL for the 14 datasets, one

and five hours of execution, and three search spaces, the proposed and comparison search

methods did not differ from each other. As this metric comes from another context,

we would like to understand why it presented such a flat result for all search spaces and

search methods. Our claim stands for the RL measure being also way conservative and

not showing the sensibility of different multi-label classifiers. As it only penalizes reversed

pairs of labels into the ranking and does not take into account the label-pair depth in the

ranking to penalize, this can make this measure not good enough to be used in isolation

to evaluate MLC algorithms. In future work, it might be interesting to evaluate whether

this measure is appropriate to be part of our study and/or whether we should consider

another rank-based measure (e.g., coverage and average precision).

Apart from the flat results, we note three signs of overfitting in the RL results,

which are important to finally decide which method to use. Auto-MEKAspGGP , for in-

6.4. Experimental Results 116

stance, showed a small increase of RL in the search space Medium. This is not a particular

case of overfitting, as this difference is in the standard deviation of these results. The case

of Auto-MEKABO is more complicated for the search space Small. As this happened in

the tuning experiments as well for the search space Large, we believe this method should

be augmented with overfitting avoidance approaches before we run it again.

From Table 6.13 to Table 6.16, we ultimately analyzed the results of the measures

that compose the fitness/quality function (see Equation 5.1 for more details), which is a

combination of the previously analyzed measures. We should then examine the results

corresponding to the fitness measure for a general assessment of the proposed and baseline

methods. In respect of the search space Small, the search method with the overall best

result is Auto-MEKAGGP , which presented the best average value rank for one hour of

running and the best average value and rank within five hours. Auto-MEKARS completed

this search space by showing the best average value within one hour. Besides, for one

and five hours of running, we found statistical evidence that Auto-MEKAGGP has better

results than Auto-MEKABO in this search space.

Table 6.17: Comparison of the fitness (to be maximized) obtained by the proposed meth-
ods and the baseline methods in the test set for the three designed search spaces within
one and five hours of execution.

Time
Budget

Search
Space

Evaluated
Result

spGGP GGP BO RS BS

1h Small Avg. Val. 0.623 0.626 0.617 0.628 0.626
Avg. Rank. 3.321 2.25 4.071 2.536 2.821
Stat. Comp. {GGP} ≻ {BO}, no differences among the others

Medium Avg. Val. 0.632 0.638 0.621 0.631 0.643
Avg. Rank. 2.75 2.607 4.143 2.643 2.857
Stat. Comp. {GGP} ≻ {BO}, no differences among the others

Large Avg. Val. 0.616 0.635 0.586 0.628 0.632
Avg. Rank. 3.607 2.214 3.357 3.286 2.536
Stat. Comp. no differences among all methods

5hs Small Avg. Val. 0.626 0.631 0.590 0.624 0.626
Avg. Rank. 2.679 1.964 3.857 3.535 2.964
Stat. Comp. {GGP} ≻ {BO}, no differences among the others

Medium Avg. Val. 0.634 0.639 0.626 0.629 0.645
Avg. Rank. 3.107 2.643 2.929 3.429 2.893
Stat. Comp. no differences for all methods

Large Avg. Val. 0.632 0.635 0.635 0.626 0.632
Avg. Rank. 2.607 2.429 2.571 4.286 3.107
Stat. Comp. {spGGP, GGP, BO} ≻ {RS}, no differences among the others

Next, we analyze the results of the search space Medium. We observe similar results

for one hour of running in this particular search space. I.e., Auto-MEKAGGP produced

the best average ranking, one of the baseline methods showed the best average value (in

this case, Auto-MEKABS), and we found statistical evidence that Auto-MEKAGGP is

better than Auto-MEKABO based on this particular measure. Nevertheless, the results of

Auto-MEKABO become better within five hours of run. This is proved by the statistical

results of Table 6.17, where we have not found evidence of statistical differences among

all the proposed and baseline methods.

6.4. Experimental Results 117

The results regarding the search space Large for the fitness measure are similar

to those found for the EM measure. Within one hour of the time budget, we have not

found evidence of statistical differences among the methods. However, after continuing the

search for five hours, the results of the proposed methods improved. In this case, Auto-

MEKAspGGP , Auto-MEKAGGP and Auto-MEKABO achieved better results than Auto-

MEKARS, showing their capabilities to handle enormous search spaces – when giving

enough time for them to proceed with their searches. Apart from the statistical results,

we can observe in Table 6.17 that Auto-MEKAGGP also reached the best average value

and rank within one and five hours. Furthermore, Auto-MEKABO had even results to

Auto-MEKAGGP in terms of the average value.

Signs of overfitting were also identified for the fitness measure for one particular

case: Auto-MEKABO in the search space Medium. We have already pointed out that this

search method needs to be improved with overfitting avoidance approaches because its

results have shown signs of overfitting on several occasions. However, we believe that this

method is capable of improving through time in larger search spaces. We can see that

in the search space Large, in particular, where the results of Auto-MEKABO improved in

several metrics from one hour to five hours.

6.4.1 Final Remarks

We can now provide overall conclusions with these results. First, the competi-

tiveness of Auto-MEKAGGP is outstanding, given the differences across the evaluation

measures and the increasing complexity of the analyzed search spaces

Second, we need to highlight the competitive results achieved by Auto-MEKAGGP ,

which is a search method that relied on a multi-fidelity optimization approach [109] in our

final experiments. When we reduce the fidelity of the input dataset during training time,

we expect to lose performance. However, Auto-MEKAspGGP showed to be competent

in terms of the selection and configuration of MLC algorithms, showing results that are

mostly equal to or better than the baseline methods.

Third, the Research Question 1 (RQ1) of Chapter 1, which is associated with

Issue 1, wonders whether AutoML methods can properly work for MLC problems as well

as for SLC and regression problems. This is mainly due to the complex hierarchical

complexity of MLC search spaces. The competitive results achieved by the proposed

AutoML search methods in different evaluation measures (against the baseline methods)

indicate that it is possible to perform automated multi-label classification. Therefore,

these achieved results in this section answer RQ1.

6.4. Experimental Results 118

Fourth, recall that the Research Question 2 (RQ2) of Chapter 1, which is related to

Issue 2, concerns about the influence of search spaces of different sizes on the performance

of AutoML methods and the inherent hardness of searching over enormous search spaces.

By looking at the results of this section, we believe that the size of the search spaces

explored/exploited by the proposed search methods influenced in the multi-label classifi-

cation. This was more evident for three of the five evaluated measures (i.e., EM, HL, and

fitness). Given the results for these three measures, we understand that for smaller search

spaces (e.g., Small and Medium), the proposed search methods have more facilities to

proceed with their searches and, as a result of that, their results become broadly similar

among each other and among one of the baseline methods (i.e., random search, which is

a pure exploration search method). When we increase the search space to Large, only the

proposed search methods were robust enough to beat Auto-MEKARS, the evaluated pure

exploration baseline method. With this analysis, we partially answer RQ2.

However, based on the results, we believe we can still improve the proposed search

methods. Even with their improvement (on three out of five evaluated measures), when

we relax the constraint of time, the proposed search methods could not beat the beam

search method, a pure-exploitation method. This happened only against the random

search method in some cases. Thus, the proposed search methods could not satisfactorily

balance between exploration and exploitation. In our perspective, this would occur if they

could beat both baseline methods. For the search spaces Small and Medium, this result is

more understandable. The smaller the search space, the easier it is to perform the search

on them. This yields better results for the comparison search methods in such a way the

proposed search methods could not be statistically different from them.

Finally, with respect the Research Question 3 (RQ3) of Chapter 1, we believe with

measure and overfitting results, we are able to partially answer this research question.

Overall, the improvement of three measures (EM, HL, and fitness) from one to five hours

for the search space Large – making them beat the random search method – was noted, and

it is one proof that the time budget applied to the search and optimization of the AutoML

methods. Nevertheless, we also identify a few cases (especially for Auto-MEKABO) where

giving more time led to poorer predictive performances. Basically, this is a clear sign

of overfitting and is likely to happen in smaller search spaces. One possible way to

avoid overfitting is to always look at the convergence of the search method and stop the

search process when its search process stabilizes. This would make the search method not

expending time in a “dead” process. Another way is to continue with the search process

but in an unexplored area of the search space. Furthermore, it is also possible to try other

data (re)sampling techniques [144].

With this conclusion, we partially answer RQ3 as we demonstrated how the budget

constraints affect the predictive performance of the selected MLC algorithm. We complete

this research question in Section 6.6, where the convergence of the methods is analyzed

6.5. Analysis of the Diversity of the Selected Algorithms 119

through time.

6.5 Analysis of the Diversity of the Selected

Algorithms

This section analyzes the diversity of the MLC algorithms and meta-algorithms

selected by the five AutoML search methods – i.e., Auto-MEKAspGGP, Auto-MEKAGGP,

Auto-MEKABO, Auto-MEKARS and Auto-MEKABS. Besides, we also examine the se-

lected SLC algorithms and meta-algorithms by these five evaluated search methods. We

focus only on the selected MLC and SLC algorithms and meta-algorithms (which are the

“macro-components”), and not on their selected hyper-parameter settings (the “micro-

components”), to simplify the analysis.

It is important to emphasize that, by analyzing the MLC and SLC algorithms

and meta-algorithms selected by all search methods in each search space, we can better

understand the results from Table 6.13 to Table 6.17. This would give an idea of how

the choice of an MLC algorithm and an SLC algorithm influences the performance of the

proposed and the baseline methods. However, for the sake of simplicity, we perform this

analysis only for the search space Large within five hours of the time budget. This choice

is purely related to the fact that, after five hours, the proposed search methods presented

results that were statistically better than the random search method in this search method.

We would like to understand why this happened against random search but not against

beam search.

We present from Figure 6.1a to Figure 6.1e the bar plots to analyze the percentage

of selection of MLC algorithms for the proposed and AutoML search methods. For more

details about each MLC algorithm, see Appendix A. In these figures, we have, for each

MLC algorithm, a (gray/white) bar representing the average percentage of selection of

an algorithm type over all runs. These percentages rely on two cases: (i) when the

traditional MLC algorithm is solely selected; and (ii) when the traditional MLC algorithm

is selected together with an MLC meta-algorithm. To emphasize these two cases, the bar

for each traditional MLC algorithm is divided into two parts, with sizes proportional to

the percentage of selection as a standalone algorithm (in gray color) and the percentage

of selection as part of a meta-algorithm (in white color).

Considering this information, BR, PSt, and RT were the traditional MLC algo-

rithms most frequently selected by all AutoML search methods in the search space Large.

BR was chosen, on average, in 21.43% of all runs for all methods. PSt and RT, in turn,

6.5. Analysis of the Diversity of the Selected Algorithms 120

Figure 6.1: Bar plots for the algorithms’ selection at the MLC level over all runs.

(a) Auto-MEKAGGP .

B
R

R
T

P
S

t

C
C

q

P
C

C

O
th

er
s

Non−meta
Meta

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 S

el
ec

tio
n

0

10

20

30

40

50

37.14 %

12.86 %

8.57 %
7.14 % 7.14 %

27.15 %

(b) Auto-MEKAspGGP .

P
S

t

B
R

R
T

R
A

kE
L

P
S

O
th

er
s

Non−meta
Meta

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 S

el
ec

tio
n

0

10

20

30

40

50

32.86 %

10 %
8.57 % 8.57 %

7.13 %

32.87 %

(c) Auto-MEKABO.

R
T

P
S

t

B
C

C

C
C

F
W

O
th

er
s

Non−meta
Meta

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 S

el
ec

tio
n

0

10

20

30

40

50

24.29 %

20 %

7.14 % 7.14 % 7.13 %

34.3 %

(d) Auto-MEKARS .

P
S

t

B
R

C
C

q

F
W P
S

O
th

er
s

Non−meta
Meta

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 S

el
ec

tio
n

0

10

20

30

40

50

28.57 %

20 %

10 % 10 %
8.57 %

22.86 %

(e) Auto-MEKABS .

B
R

R
T

P
S

t

LP

C
C

q

O
th

er
s

Non−meta
Meta

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 S

el
ec

tio
n

0

10

20

30

40

50

35.71 %

15.71 %
14.29 %

8.57 %
7.14 %

18.58 %

appeared, on average, in 20.66% and 13.43% of all runs for the five evaluated search meth-

ods, respectively. Nevertheless, some of these MLC algorithms were not so present in the

selections performed by the search methods. For instance, BR and RT were not frequently

chosen by Auto-MEKABO and Auto-MEKARS. This partially shows the differences in

the selection and configuration of the AutoML search methods, although most of them

had similar algorithms at the top five regarding the ranking of selection.

Together with Figures 6.2a, 6.2b, 6.2c, 6.2d, and 6.2e, we can also justify the

performance of the proposed and baseline methods in accordance with their selection

6.5. Analysis of the Diversity of the Selected Algorithms 121

Figure 6.2: Bar plots for the algorithms’ selection at the Meta-MLC level over all runs.

(a) Auto-MEKAGGP .

R
S

M
L

B
ag

gi
ng

M
L

B
ag

gi
ng

M
LD

up

E
ns

em
bl

eM
L

O
th

er
s

N
on

e

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 S

el
ec

tio
n

0

20

40

60

80

7.14 % 5.71 % 5.71 %
2.86 % 1.44 %

77.14 %

(b) Auto-MEKAspGGP .

S
M

B
ag

gi
ng

M
LD

up

E
ns

em
bl

eM
L

R
S

M
L

O
th

er
s

N
on

e

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 S

el
ec

tio
n

0

20

40

60

80

7.14 % 7.14 % 5.71 %
1.43 % 1.44 %

77.14 %

(c) Auto-MEKABO.

B
ag

gi
ng

M
L

E
ns

em
bl

eM
L

R
S

M
L

S
M

O
th

er
s

N
on

e

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 S

el
ec

tio
n

0

10

20

30

40

50

27.14 %

11.43 %
8.57 %

2.86 %
0 %

50 %

(d) Auto-MEKARS .

B
ag

gi
ng

M
L

B
ag

gi
ng

M
LD

uo

E
ns

em
bl

eM
L

R
S

M
L

O
th

er
s

N
on

e

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 S

el
ec

tio
n

0

20

40

60

80

100

2.86 % 2.86 % 2.86 % 1.42 % 0 %

90 %

(e) Auto-MEKABS .

R
S

M
L

E
ns

em
bl

eM
L

B
ag

gi
ng

M
L

E
M

ax

O
th

er
s

N
on

e

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 S

el
ec

tio
n

0

20

40

60

80

100

4.29 % 2.86 % 1.43 % 1.42 % 0 %

90 %

at the MLC level and at the MLC meta-level. For example, Auto-MEKAGGP achieved

the best results for the search space Large in terms of the average value and rank on

the fitness, which are the measures we use to decide (in all methods) what algorithm

is the most appropriate. We can understand why this happened by looking at Auto-

MEKAGGP ’s selection at the MLC meta-level. Auto-MEKAGGP and Auto-MEKAspGGP

were the proposed search methods with the lowest percentage of selection of MLC meta-

algorithms. Therefore, the complexity of the final solution made them turn into better

options for AutoML in the MLC context when contrasted to Auto-MEKABO. However,

6.5. Analysis of the Diversity of the Selected Algorithms 122

their level of selection of MLC meta-algorithms is still high. This might be a reason why

Auto-MEKARS and Auto-MEKABS have close results to both proposed methods.

One test that might be interesting is to remove the MLC meta-algorithms from the

search space and re-execute the proposed search methods. This could show us whether,

when we select very complex combinations of base and meta-algorithms, the produced

model can have or not more chances to overfit on the test set. We did that in the search

spaces Small and Medium, but they do not comprehend all traditional MLC algorithms

as the search space Large does.

Now, we look at the algorithms selected at the SLC level (see Appendix A for

more details). Observing Figures 6.3a, 6.3b, 6.3c, 6.3d and 6.3e, it is clear that the

most selected algorithm was the Random Forest (RF), which appeared, on average, in

23.66% of the cases for all methods. Simple Logistic (SL), in turn, became evident in

the selection of Auto-MEKAspGGP , Auto-MEKABO, Auto-MEKARS and Auto-MEKABS.

Actually, even though it is not evident in Auto-MEKAGGP at the top five of the selec-

tion ranking, SL was chosen on an average of 10.7% of the cases by the five methods.

Differently, Näıve Bayes Multinomial (NBM) was regularly selected by Auto-MEKAGGP ,

Auto-MEKAspGGP , Auto-MEKARS and Auto-MEKABS. In fact, NBM was selected on

an average of 11.66% by these four methods. On the other hand, Auto-MEKABO focused

on other SLC algorithms when performing its search, such as C4.5 and support vector

machine (i.e., SMO).

Concerning the meta and preprocessing algorithms selected at the SLC level, the

first thing we observe when looking at Figures 6.3a, 6.3b, 6.3c, 6.3d, and 6.3e is that

these methods differ on how they choose the meta-algorithms. Figures 6.4a, 6.4b, 6.4c,

6.4d, and 6.4e complement this information by showing that the percentage of selection

of meta or preprocessing algorithms. Taking it into account, we can observe that Auto-

MEKAspGGP , Auto-MEKARS and Auto-MEKAGGP selected and configured more meta

and preprocessing algorithms at the SLC level (percentages of 62.86%, 55.71% and 42.86%,

respectively), whilst Auto-MEKABS and Auto-MEKABO had a smaller percentage of

selection of such meta-learning algorithms (40% and 25.71%, respectively).

An interesting observation is that the preprocessing algorithm, namely Attribute

Selection Classifier (ASC), was the most selected algorithm for the five analyzed methods,

appearing on an average of 20.28% of the cases. The other meta-algorithms were not

frequently selected by any of the proposed or baseline methods. For the other meta-

algorithms, the selection percentages varied very much in such a way that it is difficult to

identify an algorithm regularly chosen by the search methods.

For instance, we analyze that Locally Weighted Learning (LWL) was frequently

chosen by Auto-MEKAGGP and Auto-MEKABS. Random Committee (RC), in turn,

appeared in the top two of the selections of Auto-MEKAspGGP and Auto-MEKARS. Dis-

tinctly, Bagging is more present in Auto-MEKABO’s choices. Finally, Random Subspace

6.5. Analysis of the Diversity of the Selected Algorithms 123

Figure 6.3: Barplots for the algorithms’ selection at the SLC level over all runs.

(a) Auto-MEKAGGP .

R
F

S
M

O

N
B

M

B
N

C

R
Tr

ee

O
th

er
s

Non−meta
Meta

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 S

el
ec

tio
n

0

10

20

30

40

50

26.09 %

14.49 %
13.04 %

11.59 %

7.25 %

27.55 %

(b) Auto-MEKAspGGP .

R
F

LM
T

N
B

M

K
N

N S
L

O
th

er
s

Non−meta
Meta

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 S

el
ec

tio
n

0

10

20

30

40

50

33.33 %

13.64 %

10.61 %
9.09 %

6.06 %

27.27 %

(c) Auto-MEKABO.

S
L

R
F

C
4.

5

S
M

O

R
Tr

ee

O
th

er
s

Non−meta
Meta

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 S

el
ec

tio
n

0

10

20

30

40

50

14.29 % 14.29 %

11.43 %
10 %

7.14 %

42.85 %

(d) Auto-MEKARS .

R
F

N
B

M S
L

K
N

N

M
LP

O
th

er
s

Non−meta
Meta

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 S

el
ec

tio
n

0

10

20

30

40

50

22.86 %

14.29 %
12.86 %

11.43 %

7.14 %

31.42 %

(e) Auto-MEKABS .

R
F

S
L

N
B

M

Lo
gR

M
LP

O
th

er
s

Non−meta
Meta

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 S

el
ec

tio
n

0

10

20

30

40

50

21.74 %

15.94 %

8.7 %
7.25 % 7.25 %

39.12 %

(RSS) was also one of the most selected methods of Auto-MEKAspGGP , Auto-MEKABO,

and Auto-MEKABS.

6.5. Analysis of the Diversity of the Selected Algorithms 124

Figure 6.4: Bar plots for the algorithms’ selection at the Meta-SLC level selection over
all runs.

(a) Auto-MEKAGGP .

A
S

C

LW
L

B
ag

gi
ng

R
S

S

O
th

er
s

N
on

e

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 S

el
ec

tio
n

0

10

20

30

40

50

60

22.86 %

8.57 %

4.29 %
2.86 %

4.28 %

57.14 %

(b) Auto-MEKAspGGP .

R
C

A
S

C

R
S

S

A
da

M
1

O
th

er
s

N
on

e

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 S

el
ec

tio
n

0

10

20

30

40

21.43 %

15.71 %
14.29 %

5.71 % 5.72 %

37.14 %

(c) Auto-MEKABO.

A
S

C

B
ag

gi
ng

R
S

S

A
da

M
1

O
th

er
s

N
on

e

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 S

el
ec

tio
n

0

20

40

60

80

10 %
7.14 % 5.71 %

2.86 %
0 %

74.29 %

(d) Auto-MEKARS .

A
S

C

R
C

LW
L

B
ag

gi
ng

O
th

er
s

N
on

e

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 S

el
ec

tio
n

0

10

20

30

40

50

30 %

11.43 %

5.71 % 5.71 %

2.86 %

44.29 %

(e) Auto-MEKABS .

A
S

C

LW
L

R
S

S

B
ag

gi
ng

O
th

er
s

N
on

e

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 S

el
ec

tio
n

0

10

20

30

40

50

60

70

22.86 %

5.71 % 5.71 %
2.86 % 2.86 %

60 %

6.5.1 Final Remarks

Based on these results, we can conclude that the search methods have different

biases on the selection of learning algorithms at the SLC meta-level. One possible way to

better understand this case is to isolate these types of algorithms to run the experiments

and check if they are really needed to improve the classification performance of the search

6.6. Analysis of Convergence 125

methods. By comparing to the results of the search spaces Small and Medium, it seems

they do not influence so much on the final predictive performance of the selected MLC

algorithms. This is associated with the complexity of the search because, when we include

these meta-algorithms into the search space, we actually make the search more and more

difficult. This occurs as a consequence of adding other hierarchical levels (e.g., the meta

SLC level) to the search space (see Chapter 5 for more details). This is out of the scope

of this thesis. We intend to deal with it in future work.

By considering and noting the biases of the proposed search methods on the final

selection of SLC and MLC algorithms and meta-algorithms, we can actually have a better

comprehension of the performances of these methods and complement the answers of RQ1.

Besides, this analysis of the diversity assists us in improving the way the search methods

behave in future work.

6.6 Analysis of Convergence

This section compares the convergence behaviors of the proposed AutoML meth-

ods, aiming to understand (even more) how they work. We did not include the baseline

methods in this analysis because we primarily would like to understand the behavior of

the proposed methods. Besides, random search (i.e., Auto-MEKARS) does not have con-

vergence because it is a pure-exploration search method. In contrast, beam search (i.e.,

Auto-MEKABS) is too simple as it only changes the best solution found so far if and

only if it discovers a solution in the neighborhood that has a higher fitness score than

the current best solution. This makes Auto-MEKABS to converge quickly – due to its

pure-exploitation way to look at the search space. Finally, to understand the convergence

behavior of Auto-MEKAspGGP , we examine only Species 7 to be fair in the comparisons

to the other search methods. This species fully encompasses all the features (components

and hyper-parameters) of the search spaces (for more details, see Chapter 5).

To analyze the convergence of the proposed search methods, we explore the search

spaces Small and Large. This decision was made due to the clear difference in the size

of these search spaces. In addition, we choose only two (2) out of the 14 datasets, i.e.,

GPP and CAL. This was done to simplify the assessment of the methods. Because of this

simplification, we selected the datasets based on their differences in the basic features,

such as domain, number of attributes, number of labels, and number of labels.

Figures 6.5a to 6.5d illustrate the fitness evolution of the best individuals of the

population and the average fitness of the population of individuals of the evolutionary

AutoML methods for the dataset GPP (in just one run) for the search spaces Small and

6.6. Analysis of Convergence 126

Large. Figure 6.5e and 6.5f, in contrast, show the convergence of the configurations’

quality for the Bayesian optimization method through time for the same dataset for the

search space Small and Large, respectively.

Observe in these figures that, as the search space Small has less complex learning

algorithms, it evaluates way more MLC hyper-parameterized algorithms than the search

space Large. For this reason, as well, we can analyze that all methods suffer from pre-

mature convergence, but the methods that perform in the search space Small seem to be

more stable and, as a consequence, converge faster in all cases. On the other side (i.e., in

the search space Large), Auto-MEKAGGP and Auto-MEKAGGP seem to struggle during

the convergence process. Although there is a faster convergence after a few minutes (less

than 30 minutes in most cases) of time budget (see the best fitness curves), the fitness

average curve for these evolutionary methods does not stabilize. Mainly, this happens

due to data resampling and reinitialization of the population after convergence. Never-

theless, we expected flatter curves instead. Perhaps, the proposed search methods are

exploring/exploiting so many complex algorithms that, when they reach the algorithm

time limit (of three minutes), having fitness values equal to zero, they push the average

curve to lower values. As we identified in the last section, this can happen in a great

amount of time, and it is something to be studied in future work (i.e., to remove the

meta-algorithms from the search space and run the experiments again).

Regarding Auto-MEKABO, we can say that this proposed Bayesian optimization

method also converges much earlier than expected for both search spaces. The difference

is the stability of the configuration’s quality curve. In this case, we see a flatter curve.

The change of the search space just added more points being evaluated. One possible

test is to check the performance of the selected and configured MLC algorithms after 30

minutes of running and compare them to one and five hours of time budget. Given Auto-

MEKABO’s quality curve, we have a hypothesis that the final predictive result would be

the same within 30 minutes, saving computational time. We can also conclude the same

for the other search methods.

We also draw the same curves for the dataset CAL, which we consider harder than

the previous one (i.e., GPP). These curves are presented in Figures 6.6a to 6.6f. Even

though it is computationally harder to be evaluated (based on its characteristics), the

results are broadly similar to the ones reached for the dataset GPP. For example, after

about 15 minutes, Auto-MEKABO could not find any solution better than the current

one. In accordance with these results, the evolutionary-based methods needed only a few

generations to stabilize the best fitness curve.

6.6. Analysis of Convergence 127

Figure 6.5: Convergence of fitness/quality values for the dataset GPP.

(a) Auto-MEKAGGP : Small.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time Stamp (in Hours)

F
itn

es
s

●

●

●●
●

●
●●

●●

●
●●

●●
●
●●

●
●

●●
●

●●

●●
●●●

● ●●●●

●
●
●
●●

●●●
●●●●

●● ●

●
●●●

●
●

●●● ●

●

●

●

●

●

●●●● ●

● ●●●
●

●

● Average
Best

(b) Auto-MEKAGGP : Large.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time Stamp (in Hours)
F

itn
es

s

●

●

●

● ●
●

●
● ●

●
●●

●●
●

●●
●

●●●
●
●
●

●●

●●●
●

●●●●●

●

●

●

●

●

●

● ●
●

●

●

●
● ●

●

●

●
● ●

● Average
Best

(c) Auto-MEKAspGGP : Small.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time Stamp (in Hours)

F
itn

es
s

●

●

●
●●●●
●
●
●●●●●

●
●
●

●●

●

●●●●●
●●●●●●●
●

●●
●●

●●●
●●
●●●●●●●●
●
●●

●

●●●●●●●

●

●
●●
●●●●
●●●

●

●
●
●●●
●●
●●●●●●
●
●●
●
●
●●
●●

●
●
●

●
●
●
●●●
●
●●
●●●

●
●
●
●
●
●●●●●
●●●●●●
●●●●

●●

●

●●
●●●
●

●

●

●
●

●

●
●●
●
●●●●
●

●

●●●

●●●

●
●●
●●

●
●●●●●●●●●
●
●●●●●●●●●
●●
●●●

●

●

●

●●
●●●
●●
●●

●

●●
●●●●
●●●●●●●●●

●●

●

●●●●
●●●●●

●●
●●●●
●●●●

●
●●●●●●●●●

●●

●

●

●
●●●●
●

●

●●
●
●
●

●●
●

●
●
●●●
●
●●●●●●●●●

●●●
●●●

●●

●●●
●
●●●●

●
●●●●
●●●●●

●

●
●●

●

●
●●●●●●

●●●
●●
●●●
●●●●●

●
●●●●

●●●
●●
●●●
●●

●●●
●●

●

●●
●●

●●
●●

●

●●●●●

●●●●●
●
●

●
●
●
●●●●●

●●●●●
●

●

●
●

●

●

●●
●●

●●●

●

●

● Average
Best

(d) Auto-MEKAspGGP : Large.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time Stamp (in Hours)

F
itn

es
s

●

●●

●●
●
●

●

●

●

●●

●

●●

●

●
●
●

●●
●●●●●●●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●●
●●

●
●
●

●

●

●

●

●

●
●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● Average
Best

(e) Auto-MEKABO: Small.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time Stamp (in Hours)

F
itn

es
s

●●

●

●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●●

● Configuration's Quality

(f) Auto-MEKABO: Large.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time Stamp (in Hours)

F
itn

es
s

●●●●●●

●

●●●●●●●●●●●●●

●
●●●

●●

● Configuration's Quality

6.6. Analysis of Convergence 128

Figure 6.6: Convergence of fitness/quality values for the dataset CAL.

(a) Auto-MEKAGGP : Small.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time Stamp (in Hours)

F
itn

es
s

●

●
● ● ●

● ●
● ● ● ● ● ●

●
● ●●●●●

●

● ● ● ●
● ● ●

●● ● ● ● ● ●
●

● Average
Best

(b) Auto-MEKAGGP : Large.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time Stamp (in Hours)
F

itn
es

s

●

●

●

●

● ● ●
● ● ●

●

● ● ●

●
●●

●
●●

●
●● ●●

●

●

●

● Average
Best

(c) Auto-MEKAspGGP : Small.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time Stamp (in Hours)

F
itn

es
s

●●●
●●●
●●●●●

●
●●
●
●●
●●●●●●●

●●●●●●●●
●●●●●●●●●●●●

●●
●●●●●●●●●

●●
●●●●

●
●●

●

●
●●
●●●

●
●
●●
●●●
●
●●●●

●

●●●

●●●
●●●●●●●

●
●●●●●●

●

●●●●●●●

●
●●●

●
●●●

●
●
●●●
●●

●●
●●

●

●

●●●●●
●●●

●●●
●●

●
●●●●●●●● ●●●●●●

●

●
●

●

●

●●●●

● Average
Best

(d) Auto-MEKAspGGP : Large.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time Stamp (in Hours)

F
itn

es
s

●

●

●

●

●

●

● ●●● ●●●●● ●●●●●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●●

●

●●●●●●●●●

●

●

●

●

●

●●

●

● Average
Best

(e) Auto-MEKABO: Small.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time Stamp (in Hours)

F
itn

es
s

●●

●●

●●●●●●●
●

●●

● Configuration's Quality

(f) Auto-MEKABO: Large.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time Stamp (in Hours)

F
itn

es
s

●●●●●●

●●●

● Configuration's Quality

6.6. Analysis of Convergence 129

6.6.1 Final Remarks

As an overall conclusion, we understand that the sizes of the explored search spaces

can indeed justify the premature convergence. When this size is enormous, the proposed

AutoML methods could fall into local optima, possibly indicating that exploitation pre-

vails over exploration. When this size is small, we can basically cover its limits quickly,

and the convergence happens naturally. This subject is also related to RQ2. Complement-

ing the results of Section 6.4, we show in this section that the methods are not actually

balancing very well between exploration and exploitation. To fix this issue of their con-

vergence behavior, we could try to change the way the methods work to provide a better

trade-off between exploitation and exploration. For instance, learning more about the

search spaces in execution time would give us a better chance to discover more successful

MLC algorithms. In particular, we could have at the core of the evolutionary-based meth-

ods a model to help them to perform basic selection decisions. As the AutoML search

spaces are usually enormous, this might help to find MLC algorithms with competitive

predictive performance.

Furthermore, we varied time budges applied to the AutoML methods. Distinct

time budges naturally influence how the methods search/optimize the algorithms. For

specific search spaces, some of the proposed methods (especially Auto-MEKABO) suffered

from overfitting. Therefore, depending on the features of the search method, it is an alter-

native to stop (and restart) the search/optimization process after reaching convergence.

This mechanism might help the methods to control their overfitting. However, in the

same way, the time we give for the AutoML method to run may impact how much of the

search space will be covered. Therefore, it might be good to restart the search process

after convergence (as we are doing for the evolutionary methods now), but it might be in-

teresting to use the information from other starts (e.g., we can encompass this information

into a predictive model) and continue the search process without being completely blind

from the beginning. This might be a challenging task for future work, i.e., to understand

the search spaces in execution time and use it to improve the AutoML final predictive

performance.

Finally, another alternative is to include other mechanisms to avoid overfitting,

such as the one recommended in Mohr et al. [144], which is based on a two-phased

model to control the error rates on the test set. These assessments and analyses are

connected to the answers to Research Question 3 (RQ3) of Chapter 1 and, consequently

and complementarily, address Issue 3.

130

Chapter 7

Conclusions and Future Work

This chapter draws the main conclusions about the results and analysis performed to

tackle the open issues defined in Chapter 1 and our progress in the field. We organize our

results and conclusions according to these issues.

7.1 Issue 1: Proposing AutoML Methods for the

Multi-label Classification Context

In Chapter 5, we propose four search methods that tackle the AutoML task in the

MLC context: (i) GA-Auto-MLC; (ii) Auto-MEKAGGP ; (ii) Auto-MEKAspGGP ; and (iv)

Auto-MEKABO. We show their flexibility by running them on top of three designed search

spaces (Small, Medium, and Large). As a result, we show that these proposed AutoML

methods can handle the complex search spaces of MLC algorithms and return configured

MLC algorithms that present competitive predictive results – except for GA-Auto-MLC,

which was not included in the main analysis of this thesis due to the complexity of the

selected and configured MLC algorithms it produced (see Section 6.2 for more details

about this topic).

Observing the results of Section 6.4, we conclude that the proposed AutoML meth-

ods mostly had similar multi-label classification performances across the 14 datasets.

However, we noted some cases of statistical differences among the proposed methods

themselves. For instance, Auto-MEKAGGP presented statistically better results than

Auto-MEKAspGGP twice. When compared to Auto-MEKABO in three scenarios (i.e.,

a combination of evaluation measure, time budget, and search space), Auto-MEKAGGP

showed a statistically higher performance. Because of that, we found this method – Auto-

MEKAGGP – the most prominent. Auto-MEKAGGP has also shown its competitiveness

when it performed statistically better than Auto-MEKARS in three scenarios.

In our perspective, by having equivalent predictive performances in most cases,

7.2. Issue 2: Presence of an Exploration-Exploitation Trade-off in AutoML Methods131

Auto-MEKAspGGP has also shown its competitiveness. As we explained in Chapter 6, this

search method employs a multi-fidelity optimization approach during its search process.

Therefore, we expected it not to reach the top performance in all cases. However, its

equivalence to the other proposed search method (except for two cases) showed that

Auto-MEKAspGGP is indeed a reliable AutoML search method. We intend in future work

to run the other proposed methods with the specified multi-fidelity approaches as well

(see Section 5.4 for more details) in order to give a better evaluation of these methods

when compared to Auto-MEKAspGGP .

With respect to Auto-MEKABO, given the predictive results obtained by the algo-

rithms selected by this method, we believe it still needs to be enhanced with strategies to

prevent overfitting before being applied to real-world MLC problems. We could incorpo-

rate into this method the same strategy used in Auto-MEKAGGP and Auto-MEKAspGGP ,

i.e., resampling the learning and validation set every g generations, where g in our thesis

took the value of five. Besides, this method needs a mechanism of convergence analysis

during its execution time. By looking at Auto-MEKABO’s convergence, we understand

that this method is wasting time in its search as it could stop the optimization process

and restart it in an unexplored part of the search space. Nevertheless, Auto-MEKABO

has achieved robustness in its results, evolving through time and presenting statistically

better results than Auto-MEKARS in three cases for the search space Large. This was

not even achieved by Auto-MEKAGGP .

Overall, these results and conclusions indicate that AutoML can work for MLC

problems as well as for SLC and regression problems, as pointed out in Issue 1 of Sec-

tion 1.1, particularly for more complex search spaces. If we had to recommend the user one

method to start AutoML for MLC problems, it would be Auto-MEKAGGP because of its

inherent performance and consistency in recommending and configuring MLC algorithms.

As future work, we understand it is worth testing other ways of defining species for

Auto-MEKAspGGP . Furthermore, adding a local operator to these global search methods

could help improve exploitation.

7.2 Issue 2: Presence of an Exploration-Exploitation

Trade-off in AutoML Methods

By looking at the results in Section 6.4, we observe that there is a high correlation

between the size (and definition) of the search space and the effectiveness of AutoML

methods to select and configure algorithms. With these results, we have a pure indication

7.2. Issue 2: Presence of an Exploration-Exploitation Trade-off in AutoML Methods132

that as the AutoML’s search space decreases, pure-exploration and/or pure-exploitation

AutoML search methods tend to have similar results than robust AutoML methods (such

as the ones proposed in this thesis).

However, we found that currently, the proposed search methods can not satisfac-

torily settle a trade-off between exploration and exploitation. As discussed earlier, we

claim that this would only happen if the proposed search methods had beaten the base-

line methods, which represent the two extremes: one favors exploration all the time while

the second favors exploitation.

Although the three proposed search methods could improve when given more time

to them (i.e., five hours) and beat random search (a.k.a., Auto-MEKARS) in two measures

(EM and fitness) in the search space Large, we believe this is still not enough. For future

work, we expect to improve the proposed methods in order to reach a better balance

between exploration and exploitation, consequently improving predictive results.

One way to do it is to focus on the coverage of the search space. As shown in

Section 6.5, the proposed methods that performed better were those that selected simpler

but effective MLC algorithms. For instance, Auto-MEKARS and Auto-MEKABS did not

select meta algorithms at the MLC level so often. The opposite happened with Auto-

MEKABO, which is the method (among the proposed ones) with the highest percentage

of selection of meta-algorithms. These results indicate that the combination of search

method and search space is crucial to solving an AutoML problem, particularly in the

MLC scenario. Therefore, it is not only novel search methods that matter in AutoML

research, but also the search space that is explored (and exploited) by them. A fine-

grained comprehension of the definition of the search spaces is a topic for future work in

this thesis.

Recall that this further analysis is associated with the sufficiency and parsimony of

the search spaces [11], as defined in Chapter 1. Whereas we want a powerful search space

that has the most promising MLC algorithm configurations (sufficiency), we also want to

keep only the necessary configurations not to enlarge the search space so much and made

the search harder (parsimony). In Section 6.5, we discussed about this trade-off between

sufficiency and parsimony. The idea is to test whether the SLC and MLC meta-algorithms

are really necessary to the search.

This further study is also important to GA-Auto-MLC, which is a method that

suffers from the complexity in the solution space. I.e., it tends to select very complex

MLC algorithms (and meta-algorithms) for the MLC problems. In this regard, we would

like to properly understand this issue on GA-Auto-MLC as well in future analysis.

Finally, we also want to analyze in depth the characteristics of the search spaces

of AutoML problems, understanding the shape of their fitness landscape [164, 138].

7.3. Issue 3: The Impact of Constrained Time Budgets on the Performance of AutoML
Methods 133

7.3 Issue 3: The Impact of Constrained Time

Budgets on the Performance of AutoML

Methods

In the experiments reported in Chapter 6, the proposed AutoML methods were

evaluated considering two contrasting time budgets for the whole search process (i.e., one

and five hours).

We showed that when we increase the time budget from one hour to five hours,

two behaviors appear in the search methods. First, for some search spaces, the proposed

search methods improved their performance. A clear example of this behavior can be

found in the execution of the methods in the search space Large when the measures EM,

HL, and fitness were analyzed.

Second, we understand that giving the search methods more time to run increased

their chances of overfitting. By analyzing the results of Section 6.6, we conclude that

the chances of overfitting increase as the methods converge faster than expected. This

is a serious issue for Auto-MEKABO, which does not have specific mechanisms to avoid

overfitting. Based on the predictive results, we identify that overfitting is likely to happen

in smaller search spaces. For the proposed search methods, overfitting occurred only once

for the search space Large. We believe this is strictly associated with the convergence of

the methods, as convergence generally happened faster for smaller search spaces.

In future work, we aim to include specific mechanisms into Auto-MEKABO to

control convergence and overfitting. Besides, we would like to investigate novel ways

to control overfitting, which can also be included in the search mechanisms of Auto-

MEKAGGP and Auto-MEKAspGGP .

7.4 Final Remarks

This chapter discussed how the results presented in this thesis match the expected

contributions defined in Chapter 1. Considering our formalization of the AutoML problem

in Chapters 4 and 5, we claim we completed the first expected contribution of this thesis.

In addition, given the four proposed search methods and the three designed search

spaces, we understand that the second and third expected contributions were achieved: the

proposal of novel AutoML methods for the multi-label classification context and the mod-

7.5. Publications 134

eling of specific search spaces for this scenario. Furthermore, by showing the competitive

predictive performances of the proposed AutoML methods in Chapter 6, we demonstrated

that this thesis reached satisfactory results regarding the fourth contribution.

The fifth and sixth expected contributions are basically topics of Sections 6.4, 6.5

and 6.6 of Chapter 6, i.e., the analysis of the influence of the size of the search spaces

and time budgets on the proposed search methods. As a consequence, these contributions

were naturally covered.

It is important to emphasize that, as far as we know, no study in the litera-

ture tries to understand the predictive performance of AutoML methods in terms of the

defined search spaces, selected algorithms, and achieved convergence. Therefore, the anal-

ysis made in Chapter 6 turns this thesis into an important contribution to the AutoML

community. We agree that novel methods should be proposed, but we perceive a lack of

studies trying to understand the whys in AutoML, i.e., to give an assessment of the search

or optimization processes before going ahead into novel methods. We believe we made

a first step towards this more in-depth understanding of what works or not and why in

AutoML, particularly for multi-label classification problems.

7.5 Publications

Given our achieved results, this thesis has generated so far the following publica-

tions:

• Alex G. C. de Sá, Cristiano G. Pimenta, Alex A. Freitas, and Gisele L. Pappa. A

robust experimental evaluation of automated multi-label classification methods. In

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO),

175–183, ACM, 2020.

• Alex G. C. de Sá, Alex A. Freitas, and Gisele L. Pappa. Automated selection and

configuration of multi-label classification algorithms with grammar-based genetic

programming. In Proceedings of the International Conference on Parallel Problem

Solving from Nature (PPSN), 308-320, Springer, 2018.

• Alex G. C. de Sá, Alex A. Freitas, and Gisele L. Pappa. Multi-label classification

search space in the MEKA software. arXiv preprint, arXiv:1811.11353v2, 2019.

• Alex G. C. de Sá, Gisele L. Pappa, and Alex A. Freitas. Towards a method

for automatically selecting and configuring multi-label classification algorithms. In

https://dl.acm.org/doi/10.1145/3377930.3390231
https://dl.acm.org/doi/10.1145/3377930.3390231
https://link.springer.com/chapter/10.1007/978-3-319-99259-4_25
https://link.springer.com/chapter/10.1007/978-3-319-99259-4_25
https://link.springer.com/chapter/10.1007/978-3-319-99259-4_25
https://arxiv.org/abs/1811.11353
https://arxiv.org/abs/1811.11353
https://dl.acm.org/citation.cfm?id=3067695.3082053
https://dl.acm.org/citation.cfm?id=3067695.3082053

7.5. Publications 135

Proceedings of the Genetic and Evolutionary Computation Conference Companion

(GECCO Companion), 1125-1132, ACM, 2017.

During the PhD, we also collaborated with other professors and students, gener-

ating the following publications that are related to the field of AutoML:

• Márcio P. Basgalupp, Rodrigo C. Barros, Alex G. C. de Sá, Gisele L. Pappa,

Rafael G. Mantovani, André C. P. L. F. de Carvalho, Alex A. Freitas. An extensive

experimental evaluation of automated machine learning methods for recommending

classification algorithms. arXiv, 2020.

• Cristiano G. Pimenta, Alex G. C. de Sá, Gabriela Ochoa, and Gisele L. Pappa.

Fitness landscape analysis of automated machine learning search spaces. In Proceed-

ings of the European Conference on Evolutionary Computation in Combinatorial

Optimisation (EvoCOP), 114–130, Springer, 2019.

• Alex G. C. de Sá, Adriano César M. Pereira, and Gisele L. Pappa. A customized

classification algorithm for credit card fraud detection. Engineering Applications of

Artificial Intelligence, 72 C, 21-29, Elsevier, 2018.

• Alex G. C. de Sá, Walter José G. S. Pinto, Luiz Otávio V. B. Oliveira, and

Gisele L. Pappa. RECIPE: a grammar-based framework for automatically evolving

classification pipelines. In Proceedings of the European Conference on Genetic

Programming (EuroGP), 246-261, Springer, 2017.

• Alex G. C. de Sá, Gisele L. Pappa, and Adriano César M. Pereira. Generating

personalized algorithms to learn Bayesian network classifiers for fraud detection in

Web transactions. In Proceedings of the Brazilian Symposium on Multimedia and

the Web (WebMedia), 179-186, ACM, 2014.

• Alex G. C. de Sá, and Gisele L. Pappa. A hyper-heuristic evolutionary algorithm

for learning Bayesian network classifiers. In Proceedings of the Ibero-American

Conference on Artificial Intelligence (IBERAMIA), Santiago, Chile, 2014.

We still intend to submit our enhancements on the proposed methods and their

respective results and analyses to high-level journals directly related to the field of artificial

intelligence, evolutionary computation, and machine learning.

https://arxiv.org/abs/2009.07430
https://arxiv.org/abs/2009.07430
https://arxiv.org/abs/2009.07430
https://link.springer.com/chapter/10.1007/978-3-030-43680-3_8
https://www.sciencedirect.com/science/article/abs/pii/S0952197618300605
https://www.sciencedirect.com/science/article/abs/pii/S0952197618300605
https://link.springer.com/chapter/10.1007/978-3-319-55696-3_16
https://link.springer.com/chapter/10.1007/978-3-319-55696-3_16
https://dl.acm.org/citation.cfm?id=2664551.2664568
https://dl.acm.org/citation.cfm?id=2664551.2664568
https://dl.acm.org/citation.cfm?id=2664551.2664568
https://link.springer.com/chapter/10.1007/978-3-319-12027-0_35
https://link.springer.com/chapter/10.1007/978-3-319-12027-0_35

136

Bibliography

[1] Michael Abramovici, Manuel Neubach, Madjid Fathi, and Alexander Holland. Com-

peting fusion for Bayesian applications. In Proceedings of Information Process-

ing and Management of Uncertainty in Knowledge-Based Systems, IPMU’08, pages

378–385, Málaga, Spain, 2008. Department of Applied Mathematics, University of

Málaga.

[2] Charu Aggarwal and ChengXiang Zhai. A survey of text classification algorithms.

In Mining text data, pages 163–222. Springer, New York, NY, USA, 2012.

[3] David Aha, Dennis Kibler, and Marc Albert. Instance-based learning algorithms.

Machine Learning, 6(1):37–66, 1991.

[4] Reem Al-Otaibi, Peter Flach, and Meelis Kull. Multi-label classification: A com-

parative study on threshold selection methods. In Proceedings of the International

Workshop on Learning over Multiple Contexts, LMCE/ECML-PKDD’14, 2014.

[5] Ahmed Alaa and Mihaela van der Schaar. AutoPrognosis: Automated clinical

prognostic modeling via Bayesian optimization with structured kernel learning. In

Proceedings of the International Conference on Machine Learning, volume 80 of

ICML’18, pages 139–148. Proceedings of Machine Learning Research (PMLR), 2018.

[6] Ahmed Alaa and Mihaela van der Schaar. Prognostication and risk factors for cystic

fibrosis via automated machine learning. Scientific Reports, 8(1):11242, 2018.

[7] Filipe Assunção, Nuno Lourenço, Penousal Machado, and Bernardete Ribeiro.

DENSER: Deep evolutionary network structured representation. Genetic Program-

ming and Evolvable Machines, 20(1):5–35, 2019.

[8] Christopher Atkeson, Andrew Moore, and Stefan Schaal. Locally weighted learning.

Artificial Intelligence Review, 11(1):11–73, 1997.

[9] Thomas Back, David Fogel, and Zbigniew Michalewicz. Evolutionary computation 2:

Advanced algorithms and operators. IOP Publishing Ltd., Bristol, UK, 1st edition,

1999.

[10] Thomas Back and Hans-Paul Schwefel. Evolutionary computation: An overview.

In Proceedings of International Conference on Evolutionary Computation, CEC’96,

pages 20–29, New York, NY, USA, 1996. IEEE.

Bibliography 137

[11] Wolfgang Banzhaf, Frank Francone, Robert Keller, and Peter Nordin. Genetic

programming: An introduction. Morgan Kaufmann Publishers, Inc., San Francisco,

CA, USA, 1998.

[12] Rodrigo Barros, André de Carvalho, and Alex Freitas. Automatic design of decision-

tree induction algorithms. Springer, AG, Switzerland, 2015.

[13] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for

hyper-parameter optimization. In Proceedings of the International Conference on

Neural Information Processing Systems, NIPS’11, pages 2546–2554, Red Hook, NY,

USA, 2011. Curran Associates, Inc.

[14] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimiza-

tion. Journal of Machine Learning Research, 13:281–305, 2012.

[15] Concha Bielza and Pedro Larrañaga. Discrete Bayesian network classifiers: A sur-

vey. ACM Computing Surveys, 47(1):5, 2014.

[16] Hendrik Blockeel, Luc De Raedt, and Jan Ramon. Top-down induction of clus-

tering trees. In Proceedings of the International Conference on Machine Learning,

ICML’98, pages 55–63, San Francisco, CA, USA, 1998. Morgan Kaufmann Publish-

ers, Inc.

[17] Jasmin Bogatinovski. Automating machine learning for structured output predic-

tion. Technical report, Department of Knowledge Technologies, Jozef Stefan Insti-

tute, Ljubljana, Slovenia, 2018.

[18] Stéphane Boucheron, Olivier Bousquet, and Gábor Lugosi. Theory of classification:

A survey of some recent advances. ESAIM: Probability and Statistics, 9:323–375,

2005.

[19] Remco Bouckaert. Bayesian belief networks: From construction to inference. PhD

thesis, The University of Utrecht, Utrecht, Netherlands, 1995.

[20] Remco Bouckaert. Bayesian network classifiers in WEKA. Technical report, De-

partment of Computer Science, University of Waikato, Hamilton, New Zealand,

2007.

[21] Matthew Boutell, Jiebo Luo, Xipeng Shen, and Christopher Brown. Learning multi-

label scene classification. Pattern recognition, 37(9):1757–1771, 2004.

[22] Jeffrey Bradford, Clayton Kunz, Ron Kohavi, Clifford Brunk, and Carla Brodley.

Pruning decision trees with misclassification costs. In Proceedings of the European

Conference on Machine Learning, ECML’98, pages 131–136, Berlin/Heidelberg,

Germany, 1998. Springer-Verlag.

Bibliography 138

[23] Pavel Brazdil, Christophe Giraud Carrier, Carlos Soares, and Ricardo Vilalta. Met-

alearning: Applications to data mining. Springer-Verlag, Berlin/Heidelberg, Ger-

many, 2008.

[24] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[25] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[26] Klaus Brinker, Johannes Fürnkranz, and Eyke Hüllermeier. A unified model for

multilabel classification and ranking. In Proceedings of European Conference on

Artificial Intelligence, ECAI’06, pages 489–493, Amsterdam, The Netherlands, 2006.

IOS Press.

[27] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in multi-armed

bandits problems. In Proceedings of the International Conference on Algorith-

mic Learning Theory, ALT’09, pages 23–37, Berlin/Heidelberg, Germany, 2009.

Springer-Verlag.

[28] Alberto Cano, Amelia Zafra, Eva Gibaja, and Sebastián Ventura. A grammar-

guided genetic programming algorithm for multi-label classification. In Proceedings

of the European Conference on Genetic Programming, EuroGP’13, pages 217–228,

Berlin/Heidelberg, Germany, 2013. Springer-Verlag.

[29] Alexandra Carpentier and Michal Valko. Simple regret for infinitely many armed

bandits. In Proceedings of the International Conference on Machine Learning,

ICML’15. Proceedings of Machine Learning Research (PMLR), 2015.

[30] Rich Caruana, Art Munson, and Alexandru Niculescu-Mizil. Getting the most out of

ensemble selection. In Proceedings of the International Conference on Data Mining,

ICDM’06, pages 828–833, New York, NY, USA, 2006. IEEE.

[31] Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes. Ensemble

selection from libraries of models. In Proceedings of the International Conference

on Machine Learning, ICML’04, New York, NY, USA, 2004. ACM.

[32] Saskia Cessie and Johannes van Houwelingen. Ridge estimators in logistic regression.

Applied Statistics, 41(1):191–201, 1992.

[33] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A

survey. ACM Computing Surveys, 41(3):15:1–15:58, 2009.

[34] Francisco Charte, Antonio Rivera, Mará del Jesus, and Francisco Herrera. Ad-

dressing imbalance in multilabel classification: measures and random resampling

algorithms. Neurocomputing, 2015.

Bibliography 139

[35] Lena Chekina, Lior Rokach, and Bracha Shapira. Meta-learning for selecting a

multi-label classification algorithm. In Proceedings of the International Conference

on Data Mining Workshops, ICDMW’11, pages 220–227, New York, NY, USA,

2011. IEEE.

[36] Boyuan Chen, Harvey Wu, Warren Mo, Ishanu Chattopadhyay, and Hod Lipson.

Autostacker: A compositional evolutionary learning system. In Proceedings of the

Genetic and Evolutionary Computation Conference, GECCO’18, pages 402–409,

New York, NY, USA, 2018. ACM.

[37] Linlin Chen, Degang Chen, and Hui Wang. Alignment based kernel selection for

multi-label learning. Neural Processing Letters, pages 1–21, 2018.

[38] Weizhu Chen, Jun Yan, Benyu Zhang, Zheng Chen, and Qiang Yang. Document

transformation for multi-label feature selection in text categorization. In Proceedings

of the International Conference on Data Mining, ICDM’07, pages 451–456, New

York, NY, USA, 2007. IEEE.

[39] François Chollet. Keras: Deep learning library for Theano and Tensorflow.

https://keras.io, 2016.

[40] Amanda Clare and Ross King. Knowledge discovery in multi-label phenotype

data. In Proceedings of the European Conference on Principles of Data Mining

and Knowledge Discovery, PKDD’01, pages 42–53, Berlin/Heidelberg, Germany,

2001. Springer-Verlag.

[41] John Cleary and Leonard Trigg. K*: An instance-based learner using an entropic

distance measure. In Proceedings of the International Conference on Machine Learn-

ing, ICML’95, pages 108–114, San Francisco, CA, USA, 1995. Morgan Kaufmann

Publishers, Inc.

[42] William Cohen. Fast effective rule induction. In Proceedings of the International

Conference on Machine Learning, ICML’95, pages 115–123, San Francisco, CA,

USA, 1995. Morgan Kaufmann Publishers, Inc.

[43] Gregory Cooper and Edward Herskovits. A Bayesian method for the induction of

probabilistic networks from data. Machine Learning, 9(4):309–347, 1992.

[44] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,

20(3):273–297, 1995.

[45] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE Trans-

actions on Information Theory, 13(1):21–27, 2006.

Bibliography 140

[46] Joseph Cruz and David Wishart. Applications of machine learning in cancer pre-

diction and prognosis. Cancer Informatics, 2:59–77, 2006.

[47] Silvia das Dôres, Carlos Soares, and Duncan Ruiz. Bandit-based automated ma-

chine learning. In Proceedings of the Brazilian Conference on Intelligent Systems,

BRACIS’18, pages 121–126, New York, NY, USA, 2018. IEEE.

[48] Alex de Sá and Gisele Pappa. Towards a method for automatically evolving bayesian

network classifiers. In Proceedings of the Annual Conference Companion on Ge-

netic and Evolutionary Computation, GECCO’13 Companion, page 1505–1512, New

York, NY, USA, 2013. ACM.

[49] Alex de Sá and Gisele Pappa. A hyper-heuristic evolutionary algorithm for learning

Bayesian network classifiers. In Proceedings of the Ibero-American Conference on

Artificial Intelligence, IBERAMIA’14, pages 430–442, Cham, Switzerland, 2014.

Springer.

[50] Alex de Sá, Walter José Pinto, Luiz Otávio Oliveira, and Gisele Pappa. RECIPE:

A grammar-based framework for automatically evolving classification pipelines.

In Proceedings of the European Conference on Genetic Programming, EuroGP’17,

pages 246–261, Cham, Switzerland, 2017. Springer.

[51] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast

and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evo-

lutionary Computation, 6(2):182–197, 2002.

[52] Krzysztof Dembczyśki, Weiwei Cheng, and Eyke Hüllermeier. Bayes optimal mul-

tilabel classification via probabilistic classifier chains. In Proceedings of the Inter-

national Conference on Machine Learning, ICML’10, pages 279–287, Madison, WI,

USA, 2010. Omnipress.

[53] Arthur Dempster, Nan Laird, and Donald Rubin. Maximum likelihood from incom-

plete data via the EM algorithm. Journal of the Royal Statistical Society, Series B,

39(1):1–38, 1977.

[54] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal

of Machine Learning Research, 7:1–30, 2006.

[55] Thomas Desautels, Andreas Krause, and Joel Burdick. Parallelizing exploration-

exploitation tradeoffs in Gaussian process bandit optimization. Journal of Machine

Learning Research, 15(1):3873–3923, 2014.

[56] Bernard Dickman and Michael Gilman. Monte Carlo optimization. Journal of

Optimization Theory and Applications, 60(1):149–157, 1989.

Bibliography 141

[57] Laura Dioşan, Alexandrina Rogozan, and Jean-Pierre Pecuchet. Improving clas-

sification performance of support vector machine by genetically optimising kernel

shape and hyper-parameters. Applied Intelligence, 36(2):280–294, 2012.

[58] Pedro Domingos. A few useful things to know about machine learning. Communi-

cations of the ACM, 55(10):78–87, 2012.

[59] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization.

IEEE Computational Intelligence Magazine, 1(4):28–39, 2006.

[60] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and unsupervised

discretization of continuous features. In Machine Learning Proceedings 1995, pages

194–202. Elsevier, Amsterdam, The Netherlands, 1995.

[61] Agoston Eiben and Cornelis Schippers. On evolutionary exploration and exploita-

tion. Fundamenta Informaticae, 35(1-4):35–50, 1998.

[62] Agoston Eiben and James Smith. Introduction to evolutionary computing, vol-

ume 53. Springer-Verlag, Berlin/Heidelberg, Germany, 2003.

[63] André Elisseeff and Jason Weston. A kernel method for multi-labelled classification.

In Proceedings of the International Conference on Neural Information Processing

Systems, NIPS’01, pages 681–687, Cambridge, MA, USA, 2001. MIT Press.

[64] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search.

In Hutter et al. [109], pages 69–86. Available at http://automl.org/book.

[65] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search:

A survey. Journal of Machine Learning Research, 20(55):1–21, 2019.

[66] Kutluhan Erol, James Hendler, and Dana Nau. UMCP: A sound and complete

procedure for hierarchical task-network planning. In Proceedings of the International

Conference on Artificial Intelligence Planning Systems, AIPS’94, pages 249–254,

Palo Alto, CA, USA, 1994. AAAI Press.

[67] Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action elimination and stopping

conditions for the multi-armed bandit and reinforcement learning problems. Journal

of Machine Learning Research, 7:1079–1105, 2006.

[68] Scott Fahlman and Christian Lebiere. The cascade-correlation learning architecture.

In Proceedings of the International Conference on Neural Information Processing

Systems - Volume 2, NIPS’90, pages 524–532, Cambridge, MA, USA, 1990. MIT

Press.

http://automl.org/book

Bibliography 142

[69] Rong-En Fan and Chih-Jen Lin. A study on threshold selection for multi-label

classification. Technical report, Department of Computer Science, National Taiwan

University, Taipei City, Taiwan, 2007.

[70] Usama Fayyad and Keki Irani. Multi-interval discretization of continuous-valued

attributes for classification learning. In Proceedings of the International Joint Con-

ference on Artificial Intelligence, IJCAI’93, pages 1022–1027, San Francisco, CA,

USA, 1993. Morgan Kaufmann publishers.

[71] Alan Ferrenberg and Robert Swendsen. Optimized Monte Carlo data analysis.

Computers in Physics, 3(5):101–104, 1989.

[72] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and

Frank Hutter. Practical automated machine learning for the AutoML challenge

2018. In Proceedings of the International Workshop on Automatic Machine Learn-

ing, AutoML’18, 2018.

[73] Matthias Feurer and Frank Hutter. Hyperparameter optimization. In Hutter et al.

[109], pages 3–38. Available at http://automl.org/book.

[74] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Manuel Blum, and Frank

Hutter. Methods for improving Bayesian optimization for AutoML. In Proceedings

of the International Workshop on Automatic Machine Learning, AutoML’15, 2015.

[75] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg,

Manuel Blum, and Frank Hutter. Efficient and robust automated machine learning.

In Proceedings of the International Conference on Neural Information Processing

Systems - Volume 2, NIPS’15, pages 2755–2763, Red Hook, NY, USA, 2015. Curran

Associates, Inc.

[76] Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. Initializing Bayesian

hyperparameter optimization via meta-learning. In Proceedings of the AAAI Con-

ference on Artificial Intelligence, AAAI’15, pages 1128–1135, Palo Alto, CA, USA,

2015. AAAI Press.

[77] Ronald Fisher. Statistical methods and scientific inference. Hafner Publishing Co.

Limited, UK, 2nd edition, 1956.

[78] Eibe Frank and Remco Bouckaert. Näıve Bayes for text classification with unbal-

anced classes. In Proceedings of the European Conference on Machine Learning and

Principles and Practice of Knowledge Discovery in Databases, ECML-PKDD’06,

pages 503–510, Berlin/Heidelberg, Germany, 2006. Springer-Verlag.

http://automl.org/book

Bibliography 143

[79] Eibe Frank, Mark Hall, and Bernhard Pfahringer. Locally weighted näıve Bayes.

In Proceedings of the Conference on Uncertainty in Artificial Intelligence, UAI’03,

pages 249–256, San Francisco, CA, USA, 2003. Morgan Kaufmann Publishers, Inc.

[80] Eibe Frank and Ian Witten. Generating accurate rule sets without global optimiza-

tion. In Proceedings of the International Conference on Machine Learning, ICML’98,

pages 144–151, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers, Inc.

[81] Alex Freitas. A review of evolutionary algorithms for data mining. In Data Mining

and Knowledge Discovery Handbook, pages 371–400. Springer, Boston, MA, USA,

2009.

[82] Yoav Freund and Robert Schapire. Experiments with a new boosting algorithm. In

Proceedings of the International Conference on Machine Learning, ICML’96, pages

148–156, San Francisco, CA, USA, 1996. Morgan Kaufmann Publishers, Inc.

[83] Yoav Freund and Robert Schapire. Large margin classification using the perceptron

algorithm. Machine Learning, 37(3):277–296, 1999.

[84] Milton Friedman. The use of ranks to avoid the assumption of normality im-

plicit in the analysis of variance. Journal of the American Statistical Association,

32(200):675–701, 1937.

[85] Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network classifiers.

Machine Learning, 29(2-3):131–163, 1997.

[86] Nicolo Fusi, Rishit Sheth, and Huseyn Melih Elibol. Probabilistic matrix factoriza-

tion for automated machine learning. In Proceedings of the International Conference

on Neural Information Processing Systems, NIPS’18, pages 3348–3357, Red Hook,

NY, USA, 2018. Curran Associates, Inc.

[87] Eva Gibaja and Sebastián Ventura. A tutorial on multilabel learning. ACM Com-

puting Surveys, 47(3):52:1–52:38, 2015.

[88] Pieter Gijsbers, Joaquin Vanschoren, and Randal Olson. Layered TPOT: Speeding

up tree-based pipeline optimization. In Proceedings of the International Workshop

on Automatic Selection, Configuration and Composition of Machine Learning Algo-

rithms, AutoML’17, pages 49–68. CEUR-WS.org, 2017.

[89] Walter Gilks, Sylvia Richardson, and David Spiegelhalter. Markov chain Monte

Carlo in practice. CRC Press, Boca Raton, FL, USA, 1995.

[90] Christophe Giraud-Carrier and Foster Provost. Toward a justification of meta-

learning: Is the no free lunch theorem a show-stopper? In Proceedings of the ICML

Workshop on Meta-Learning, pages 9–16, 2005.

Bibliography 144

[91] Shantanu Godbole and Sunita Sarawagi. Discriminative methods for multi-labeled

classification. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery

and Data Mining, PAKDD’04, pages 22–30, Berlin/Heidelberg, Germany, 2004.

Springer-Verlag.

[92] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro,

and David Sculley. Google Vizier: A service for black-box optimization. In Proceed-

ings of the ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD’17, pages 1487–1495, New York, NY, USA, 2017. ACM.

[93] Taciana Gomes, Ricardo Prudêncio, Carlos Soares, André Rossi, and André de Car-

valho. Combining meta-learning and search techniques to select parameters for

support vector machines. Neurocomputing, 75(1):3–13, 2012.

[94] Joshua Griffin and Tamara Kolda. Nonlinearly constrained optimization using

heuristic penalty methods and asynchronous parallel generating set search. Ap-

plied Mathematics Research eXpress, 2010(1):36–62, 2010.

[95] Yuhong Guo and Suicheng Gu. Multi-label classification using conditional depen-

dency networks. In Proceedings of the International Joint Conference on Artificial

Intelligence, volume 2 of IJCAI’11, pages 1300–1305, Palo Alto, CA, USA, 2011.

AAAI Press.

[96] Isabelle Guyon, Lisheng Sun-Hosoya, Marc Boullé, Hugo Escalante, Sergio Es-

calera, Zhengying Liu, Damir Jajetic, Bisakha Ray, Mehreen Saeed, Michèle Sebag,

Alexander Statnikov, Wei-Wei Tu, and Evelyne Viegas. Analysis of the AutoML

challenge series 2015-2018. In Hutter et al. [109], pages 191–236. Available at

http://automl.org/book.

[97] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,

and Ian Witten. The WEKA data mining software: An update. ACM SIGKDD

Explorations Newsletter, 11:10–18, 2009.

[98] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-

adaptation in evolution strategies. Evolutionary Computation, 9(2):159–195, 2001.

[99] Trevor Hastie and Robert Tibshirani. Classification by pairwise coupling. In Pro-

ceedings of the Conference on Advances in Neural Information Processing Systems,

NIPS’97, pages 507–513, Cambridge, MA, USA, 1998. MIT Press.

[100] David Heckerman, Dan Geiger, and David Chickering. Learning Bayesian networks:

The combination of knowledge and statistical data. In Proceedings of the Interna-

tional Conference on Knowledge Discovery and Data Mining, pages 85–96, Palo

Alto, CA, USA, 1994. AAAI Press.

http://automl.org/book

Bibliography 145

[101] Francisco Herrera, Francisco Charte, Antonio Rivera, and Mará del Jesus. Multilabel

classification: Problem analysis, metrics and techniques. Springer, AG, Switzerland,

1st edition, 2016.

[102] Alireza Hesar, Hamid Tabatabaee, and Mehrdad Jalali. Structure learning of

Bayesian networks using heuristic methods. In Proceedings of International Con-

ference on Information and Knowledge Management, ICIKM’12, pages 246–250,

Singapore, Singapore, 2012. IACSIT Press.

[103] Geoffrey Hinton and Russ Salakhutdinov. Reducing the dimensionality of data with

neural networks. Science, 313(5786):504–507, 2006.

[104] Tin Kam Ho. The random subspace method for constructing decision forests. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.

[105] John Holland. Adaptation in natural and artificial systems: An introductory analysis

with applications to biology, control, and artificial intelligence. The University of

Michigan, Ann Arbor, MI, USA, 1975.

[106] Robert Holte. Very simple classification rules perform well on most commonly used

datasets. Machine learning, 11(1):63–90, 1993.

[107] Holger Hoos and Frank Hutter. Programming by optimization: A practical

paradigm for computer-aided algorithm design, 2017. Tutorial at the International

Joint Conference on Artificial Intelligence.

[108] Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. Sequential model-based

optimization for general algorithm configuration. In Proceedings of the Interna-

tional Conference on Learning and Intelligent Optimization, LION’11, pages 507–

523, Berlin/Heidelberg, Germany, 2011. Springer-Verlag.

[109] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, editors. Automated ma-

chine learning: Methods, systems, challenges. Springer, New York, NY, USA, 2019.

Available at http://automl.org/book.

[110] Frank Hutter and Steve Ramage. Manual for SMAC version v2.10.03-master. De-

partment of Computer Science, University of British Columbia, Vancouver, BC,

Canada, 2015.

[111] Ronald Iman and James Davenport. Approximations of the critical region of the

Friedman statistic. Communications in Statistics, 9(6):571–595, 1980.

[112] Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and

hyperparameter optimization. In Proceedings of the International Conference on

http://automl.org/book

Bibliography 146

Artificial Intelligence and Statistics, AISTATS’16, pages 240–248. Proceedings of

Machine Learning Research (PMLR), 2016.

[113] Rodolphe Jenatton, Cedric Archambeau, Javier González, and Matthias Seeger.

Bayesian optimization with tree-structured dependencies. In Proceedings of the

International Conference on Machine Learning, ICML’17, pages 1655–1664. Pro-

ceedings of Machine Learning Research (PMLR), 2017.

[114] Thorsten Joachims. Learning to classify text using support vector machines: Meth-

ods, theory and algorithms. Kluwer Academic publishers, Hingham, MA, USA,

2002.

[115] George John and Pat Langley. Estimating continuous distributions in Bayesian

classifiers. In Proceedings of the Conference on Uncertainty in Artificial Intelli-

gence, UAI’95, pages 338–345, San Francisco, CA, USA, 1995. Morgan Kaufmann

Publishers, Inc.

[116] Donald Jones. A taxonomy of global optimization methods based on response sur-

faces. Journal of Global Optimization, 21(4):345–383, 2001.

[117] Donald Jones, Cary Perttunen, and Bruce Stuckman. Lipschitzian optimization

without the Lipschitz constant. Journal of Optimization Theory and Applications,

79(1):157–181, 1993.

[118] Donald Jones, Matthias Schonlau, and William Welch. Efficient global optimization

of expensive black-box functions. Journal of Global optimization, 13(4):455–492,

1998.

[119] Ioannis Katakis, Grigorios Tsoumakas, and Ioannis Vlahavas. Multilabel text clas-

sification for automated tag suggestion. In Proceedings of the European Confer-

ence on Machine Learning and Principles and Practice of Knowledge Discovery in

Databases: Discovery Challenge, ECML-PKDD Discovery Challenge 2008, pages

75–83, 2008.

[120] Sathiya Keerthi, Shirish Shevade, Chiranjib Bhattacharyya, and Krishna Murthy.

Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput-

ing, 13(3):637–649, 2001.

[121] Scott Kirkpatrick, Daniel Gelatt, and Mario Vecchi. Optimization by simulated

annealing. Science, 220(4598):671–680, 1983.

[122] Dragi Kocev. Ensembles for predicting structured outputs. PhD thesis, Department

of Knowledge Technologies, Jozef Stefan Institute, Ljubljana, Slovenia, 2011.

Bibliography 147

[123] Dragi Kocev, Celine Vens, Jan Struyf, and Sašo Džeroski. Ensembles of multi-

objective decision trees. In Proceedings of the European Conference on Machine

Learning, ECML’07, pages 624–631, Berlin/Heidelberg, Germany, 2007. Springer-

Verlag.

[124] Patrick Koch, Oleg Golovidov, Steven Gardner, Brett Wujek, Joshua Griffin, and

Yan Xu. Autotune: A derivative-free optimization framework for hyperparameter

tuning. In Proceedings of the ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, KDD’18, pages 443–452, New York, NY, USA,

2018. ACM.

[125] Ron Kohavi. The power of decision tables. In Proceedings of the European Confer-

ence on Machine Learning, ECML’95, pages 174–189, Berlin/Heidelberg, Germany,

1995. Springer-Verlag.

[126] Sotiris Kotsiantis. Supervised machine learning: A review of classification tech-

niques. In Proceedings of the Conference on Emerging Artificial Intelligence Ap-

plications in Computer Engineering: Real Word AI Systems with Applications in

eHealth, HCI, Information Retrieval and Pervasive Technologies, pages 3–24, Am-

sterdam, The Netherlands, 2007. IOS Press.

[127] Lars Kotthoff, Chris Thornton, Holger Hoos, Frank Hutter, and Kevin Leyton-

Brown. Auto-WEKA 2.0: Automatic model selection and hyperparameter opti-

mization in WEKA. Journal of Machine Learning Research, 18(1):826–830, 2017.

[128] Lars Kotthoff, Chris Thornton, and Frank Hutter. User guide for Auto-WEKA

(version 2.6). Technical report, Computer Science Department at University British

Columbia, Vancouver, BC, Canada, 2017.

[129] Konstantina Kourou, Themis Exarchos, Konstantinos Exarchos, Michalis

Karamouzis, and Dimitrios Fotiadis. Machine learning applications in cancer prog-

nosis and prediction. Computational and Structural Biotechnology Journal, 13:8–17,

2015.

[130] John Koza. Genetic programming: On the programming of computers by means of

natural selection. MIT Press, Cambridge, MA, USA, 1992.

[131] Tomáš Křen, Martin Pilát, and Roman Neruda. Automatic creation of machine

learning workflows with strongly typed genetic programming. International Journal

on Artificial Intelligence Tools, 26(05):1760020:1–1760020:24, 2017.

[132] Tomáš Křen, Martin Pilát, and Roman Neruda. Multi-objective evolution of ma-

chine learning workflows. In Proceedings of the IEEE Symposium Series on Com-

putational Intelligence, SSCI’17, pages 1–8, New York, NY, USA, 2017. IEEE.

Bibliography 148

[133] Niels Landwehr, Mark Hall, and Eibe Frank. Logistic model trees. Machine Learn-

ing, 59(1):161–205, 2005.

[134] David Lewis. Naive (Bayes) at forty: The independence assumption in informa-

tion retrieval. In Proceedings of the European Conference on Machine Learning,

ECML’1998, pages 4–15, Berlin/Heidelberg, German, 1998. Springer-Verlag.

[135] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Tal-

walkar. Hyperband: A novel bandit-based approach to hyperparameter optimiza-

tion. Journal of Machine Learning Research, 18(1):6765–6816, 2017.

[136] Gjorgji Madjarov, Dragi Kocev, Dejan Gjorgjevikj, and Sašo Džeroski. An extensive

experimental comparison of methods for multi-label learning. Pattern Recognition,

45(9):3084–3104, 2012.

[137] Samir Mahfoud. Niching methods for genetic algorithms. PhD thesis, The University

of Illinois at Urbana-Champaign, Champaign, IL, USA, 1995.

[138] Katherine Malan and Andries Engelbrecht. A survey of techniques for characterising

fitness landscapes and some possible ways forward. Information Sciences, 241:148–

163, 2013.

[139] Andrew McCallum and Kamal Nigam. A comparison of event models for näıve

Bayes text classification. In Proceedings of the Workshop on Learning for Text

Categorization, pages 41–48, Palo Alto, CA, USA, 1998. AAAI Press.

[140] Michael McKay. Latin hypercube sampling as a tool in uncertainty analysis of

computer models. In Proceedings of the Conference on Winter Simulation, WSC’92,

pages 557–564, New York, NY, USA, 1992. ACM.

[141] Robert McKay, Nguyen Hoai, Peter Whigham, Yin Shan, and Michael O’Neill.

Grammar-based genetic programming: A survey. Genetic Programming and Evolv-

able Machines, 11(3):365–396, 2010.

[142] Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg, and

Frank Hutter. Towards automatically-tuned neural networks. In Proceedings of the

International Workshop on Automatic Machine Learning, AutoML’16, pages 58–65,

2016.

[143] Patricia Miquilini, Rafael Rossi, Marcos Quiles, Vińıcius de Melo, and Márcio Bas-

galupp. Automatically design distance functions for graph-based semi-supervised

learning. In Proceedings of the IEEE International Conference on Big Data Science

and Engineering, BigDataSE’17, pages 933–940, New York, NY, USA, 2017. IEEE.

Bibliography 149

[144] Felix Mohr, Marcel Wever, and Eyke Hüllermeier. ML-Plan: Automated machine

learning via hierarchical planning. Machine Learning, 107:1495–1515, 2018.

[145] David Montana. Strongly typed genetic programming. Evolutionary Computation,

3(2):199–230, 1995.

[146] Jose Moyano, Eva Gibaja, Krzysztof Cios, and Sebastián Ventura. Review of en-

sembles of multi-label classifiers: Models, experimental study and prospects. Infor-

mation Fusion, 44:33–45, 2018.

[147] Jose Moyano, Eva Gibaja, Krzysztof Cios, and Sebastián Ventura. An evolutionary

approach to build ensembles of multi-label classifiers. Information Fusion, 50:168–

180, 2019.

[148] Andreas Müller and Sarah Guido. Introduction to machine learning with Python:

A guide for data scientists. O’Reilly Media, Inc., Sebastopol, CA, USA, 1st edition,

2017.

[149] Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, William Murdock, Dan

Wu, and Fusun Yaman. SHOP2: An HTN planning system. Journal of Artificial

Intelligence Research, 20:379–404, 2003.

[150] John Nelder and Roger Mead. A simplex method for function minimization. The

Computer Journal, 7(4):308–313, 1965.

[151] Vlad Niculae. polylearn: A library for factorization machines and polynomial net-

works for classification and regression in Python. https://github.com/scikit-learn-

contrib/polylearn, 2016.

[152] Peter Norvig. Paradigms of artificial intelligence programming: Case studies in

common LISP. Morgan Kaufmann Publishers, Inc., San Francisco, CA, USA, 1992.

[153] Randal Olson, Nathan Bartley, Ryan Urbanowicz, and Jason Moore. Evaluation of a

tree-based pipeline optimization tool for automating data science. In Proceedings of

the Genetic and Evolutionary Computation Conference, GECCO’16, pages 485–492,

New York, NY, USA, 2016. ACM.

[154] Randal Olson and Jason Moore. TPOT: A tree-based pipeline optimization tool

for automating machine learning. In Proceedings of the International Workshop on

Automatic Machine Learning, AutoML’16, pages 66–74, 2016.

[155] Randal Olson, Ryan Urbanowicz, Peter Andrews, Nicole Lavender, La Creis Kidd,

and Jason Moore. Automating biomedical data science through tree-based pipeline

optimization. In Proceedings of the European Conference on the Applications of

Bibliography 150

Evolutionary Computation, EvoApplications’16, pages 123–137, AG, Switzerland,

2016. Springer.

[156] Michael O’Neill and Conor Ryan. Grammatical evolution. IEEE Transactions on

Evolutionary Computation, 5(4):349–358, 2001.

[157] Fernando Otero, Tom Castle, and Colin Johnson. EpochX: genetic programming

in Java with statistics and event monitoring. In Proceedings of the Genetic and

Evolutionary Computation Conference Companion, GECCO Companion’12, pages

93–100, New York, NY, USA, 2012. ACM.

[158] Arjun Pakrashi and Brian Mac Namee. CascadeML: An automatic neural network

architecture evolution and training algorithm for multi-label classification. arXiv,

arXiv:1904.10551:1–16, 2019.

[159] Gisele Pappa and Alex Freitas. Automating the design of data mining algorithms:

An evolutionary computation approach. Springer-Verlag, Berlin/Heidelberg, Ger-

many, 2009.

[160] Gisele Pappa, Gabriela Ochoa, Matthew Hyde, Alex Freitas, John Woodward, and

Jerry Swan. Contrasting meta-learning and hyper-heuristic research: The role of

evolutionary algorithms. Genetic Programming and Evolvable Machines, 15(1):3–35,

2014.

[161] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-

cent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu

Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine learning

in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[162] Rafael Pereira, Alexandre Plastino, Bianca Zadrozny, and Luiz Merschmann. Cor-

relation analysis of performance measures for multi-label classification. Information

Processing and Management, 54(3):359–369, 2018.

[163] John Pestian, Chris Brew, Pawel Matykiewicz, Dj Hovermale, Neil Johnson, Kevin

Cohen, and Wlodzislaw Duch. A shared task involving multi-label classification of

clinical free text. In Proceedings of the Workshop on BioNLP: Biological, Transla-

tional, and Clinical Language Processing, BioNLP’07, pages 97–104, Stroudsburg,

PA, USA, 2007. Association for Computational Linguistics.

[164] Erik Pitzer and Michael Affenzeller. A comprehensive survey on fitness landscape

analysis. In Recent Advances in Intelligent Engineering Systems, pages 161–191.

Springer-Verlag, Berlin/Heidelberg, Germany, 2012.

Bibliography 151

[165] John Platt. Advances in kernel methods. In Bernhard Schölkopf, Christopher

Burges, and Alexander Smola, editors, Advances in Kernel Methods, chapter Fast

training of support vector machines using sequential minimal optimization, pages

185–208. MIT Press, Cambridge, MA, USA, 1999.

[166] John Quinlan. C4.5: Programs for machine learning. Morgan Kaufmann Publishers,

Inc., San Francisco, CA, USA, 1993.

[167] Carl Edward Rasmussen and Christopher Williams. Gaussian processes for machine

learning. MIT Press, Cambridge, MA, USA, 2006.

[168] Jesse Read. A pruned problem transformation method for multi-label classification.

In Proceedings of the New Zealand Computer Science Research Student Conference,

NZCSRS’08, pages 143–150, Christchurch, Canterbury, New Zealand, 2008. The

University of Canterbury.

[169] Jesse Read. Scalable multi-label classification. PhD thesis, The University of

Waikato, Hamilton, New Zealand, 2010.

[170] Jesse Read, Luca Martino, and David Luengo. Efficient Monte Carlo optimization

for multi-label classifier chains. In Proceedings of the International Conference on

Acoustics, Speech, and Signal Processing, ICASSP’13, pages 3457–3461, New York,

NY, USA, 2013. IEEE.

[171] Jesse Read, Luca Martino, and David Luengo. Efficient Monte Carlo methods for

multi-dimensional learning with classifier chains. Pattern Recognition, 47(3):1535–

1546, 2014.

[172] Jesse Read, Luca Martino, Pablo Olmos, and David Luengo. Scalable multi-output

label prediction: From classifier chains to classifier trellises. Pattern Recognition,

48(6):2096–2109, 2015.

[173] Jesse Read and Fernando Perez-Cruz. Deep learning for multi-label classification.

ArXiv, arXiv:1502.05988:1–8, 2014.

[174] Jesse Read, Bernhard Pfahringer, and Geoff Holmes. Multi-label classification using

ensembles of pruned sets. In Proceedings of the International Conference on Data

Mining, pages 995–1000, New York, NY, USA, 2008. IEEE.

[175] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier chains

for multi-label classification. Machine Learning, 85(3):333–359, 2011.

[176] Jesse Read, Peter Reutemann, Bernhard Pfahringer, and Geoff Holmes. MEKA:

A multi-label/multi-target extension to WEKA. Journal of Machine Learning Re-

search, 17(21):1–5, 2016.

Bibliography 152

[177] Elaine Rich. Artificial intelligence. McGraw-Hill, Inc., New York, NY, USA, 1st

edition, 1983.

[178] Elaine Rich and Kevin Knight. Artificial intelligence. McGraw-Hill, Inc., New York,

NY, USA, 2nd edition, 1990.

[179] Adriano Rivolli and André de Carvalho. O uso seletivo de classificadores binários

na solução de problemas multirrótulos. In Proceedings of the National Meeting

on Artificial and Computational Intelligence, ENIAC’15, pages 1–9, Porto Alegre,

Brazil, 2015. Brazilian Computer Society.

[180] Adriano Rivolli and Andre de Carvalho. The utiml package: Multi-label classifica-

tion in R. The R Journal, 10(2):24–37, 2018.

[181] David Rumelhart, Geoffrey Hinton, and Ronald Williams. Learning representations

by back-propagating errors. Nature, 323(6088):533–536, 1986.

[182] Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factorization

using markov chain monte carlo. In Proceedings of the International Conference on

Machine Learning, ICML’08, pages 880–887, New York, NY, USA, 2008. ACM.

[183] Steven Salzberg. Book Review: C4.5: Programs for machine learning by J. Ross

Quinlan, Morgan Kaufmann Publishers, Inc., 1993. Machine Learning, 16(3):235–

240, 1994.

[184] Aécio Santos, Sonia Castelo, Cristian Felix, Jorge Piazentin Ono, Bowen Yu, Sung-

soo Ray Hong, Cláudio Silva, Enrico Bertini, and Juliana Freire. Visus: An in-

teractive system for automatic machine learning model building and curation. In

Proceedings of the Workshop on Human-In-the-Loop Data Analytics, HILDA’19,

pages 6:1–6:7, New York, NY, USA, 2019. ACM.

[185] Cullen Schaffer. A conservation law for generalization performance. In Proceedings

of the International Conference on International Conference on Machine Learn-

ing, ICML’94, pages 259–265, San Francisco, CA, USA, 1994. Morgan Kaufmann

Publishers, Inc.

[186] Robert Schapire and Yoram Singer. Improved boosting algorithms using confidence-

rated predictions. Machine Learning, 37(3):297–336, 1999.

[187] Matthias Schonlau, William Welch, and Donald Jones. Global versus local search

in constrained optimization of computer models. Lecture Notes-Monograph Series,

New Developments and Applications in Experimental Design, 34:11–25, 1998.

Bibliography 153

[188] Eric Scott and Kenneth De Jong. Evaluation-time bias in quasi-generational and

steady-state asynchronous evolutionary algorithms. In Proceedings of the Genetic

and Evolutionary Computation Conference, GECCO’16, pages 845–852, New York,

NY, USA, 2016. ACM.

[189] Konstantinos Sechidis, Grigorios Tsoumakas, and Ioannis Vlahavas. On the strati-

fication of multi-label data. In Proceedings of the European Conference on Machine

Learning and Principles and Practice of Knowledge Discovery, ECML-PKDD’11,

pages 145–158, Berlin/Heidelberg, Germany, 2011. Springer-Verlag.

[190] Huan Shao, GuoZheng Li, GuoPing Liu, and YiQin Wang. Symptom selection for

multi-label data of inquiry diagnosis in traditional Chinese medicine. Science China

Information Sciences, 56(5):1–13, 2013.

[191] Eric Siegel. Predictive analytics: The power to predict who will click, buy, lie, or

die. John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2nd edition, 2016.

[192] Michael Sipser. Introduction to the theory of computation. Cengage Learning, Inc.,

Boston, MA, USA, 3rd edition, 2012.

[193] Jasper Snoek, Hugo Larochelle, and Ryan Adams. Practical Bayesian optimization

of machine learning algorithms. In Proceedings of the International Conference on

Neural Information Processing Systems - Volume 2, NIPS’12, pages 2951–2959, Red

Hook, NY, USA, 2012. Curran Associates, Inc.

[194] Andrew Sohn, Randal Olson, and Jason Moore. Toward the automated analysis of

complex diseases in genome-wide association studies using genetic programming. In

Proceedings of the Genetic and Evolutionary Computation Conference, GECCO’17,

pages 489–496, New York, NY, USA, 2017. ACM.

[195] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian

process optimization in the bandit setting: No regret and experimental design. In

Proceedings of the International Conference on Machine Learning, ICML’10, pages

1015–1022, Madison, WI, USA, 2010. Omnipress.

[196] Marc Sumner, Eibe Frank, and Mark Hall. Speeding up logistic model tree induc-

tion. In Proceedings of the European Conference on Machine Learning and Prin-

ciples and Practice of Knowledge Discovery in Databases, ECML-PKDD’05, pages

675–683, Berlin/Heidelberg, Germany, 2005. Springer-Verlag.

[197] Thomas Swearingen, Will Drevo, Bennett Cyphers, Alfredo Cuesta-Infante, Arun

Ross, and Kalyan Veeramachaneni. ATM: A distributed, collaborative, scalable sys-

tem for automated machine learning. In Proceedings of the International Conference

on Big Data, Big Data’17, pages 151–162, New York, NY, USA, 2017. IEEE.

Bibliography 154

[198] Kevin Swersky, David Duvenaud, Jasper Snoek, Frank Hutter, and Michael Os-

borne. Raiders of the lost architecture: Kernels for Bayesian optimization in condi-

tional parameter spaces. arXiv, arXiv:1409.4011:1–6, 2014.

[199] Gilbert Syswerda. Uniform crossover in genetic algorithms. In Proceedings of the

International Conference on Genetic Algorithms, pages 2–9, San Francisco, CA,

USA, 1989. Morgan Kaufmann Publishers, Inc.

[200] Chris Thornton, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. Auto-

WEKA: Combined selection and hyperparameter optimization of classification al-

gorithms. In Proceedings of the ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, KDD’13, pages 847–855, New York, NY, USA,

2013. ACM.

[201] Konstantinos Trohidis, Grigorios Tsoumakas, George Kalliris, and Ioannis Vlahavas.

Multi-label classification of music into emotions. In International Conference on

Music Information Retrieval, volume 8 of ISMIR’08, pages 325–330, 2008.

[202] Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An overview.

International Journal on Data Warehousing and Mining, 3(3):1–13, 2007.

[203] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Effective and efficient

multilabel classification in domains with large number of labels. In Proceedings of

the ECML-PKDD Workshop on Mining Multidimensional Data, MMD’08, pages

30–44, 2008.

[204] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Mining multi-label

data, pages 667–685. Springer, Boston, MA, USA, 2010.

[205] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Random k-labelsets

for multilabel classification. IEEE Transactions on Knowledge and Data Engineer-

ing, 23(7):1079–1089, 2011.

[206] Grigorios Tsoumakas and Ioannis Vlahavas. Random k-labelsets: An ensemble

method for multilabel classification. In Proceedings of the European Conference on

Machine Learning, ECML’07, pages 406–417, Berlin/Heidelberg, Germany, 2007.

Springer-Verlag.

[207] Bülent Üstün, Willem Melssen, and Lutgarde Buydens. Facilitating the application

of support vector regression by using a universal Pearson VII function based kernel.

Chemometrics and Intelligent Laboratory Systems, 81(1):29–40, 2006.

[208] Joaquin Vanschoren. Meta-learning. In Hutter et al. [109], pages 39–68. Available

at http://automl.org/book.

http://automl.org/book

Bibliography 155

[209] Hua Wang, Heng Huang, and Chris Ding. Function-function correlated multi-label

protein function prediction over interaction networks. In Proceedings of the An-

nual International Conference on Research in Computational Molecular Biology,

RECOMB’12, pages 302–313, Berlin/Heidelberg, Germany, 2012. Springer-Verlag.

[210] Tinghua Wang, Dongyan Zhao, and Shengfeng Tian. An overview of kernel align-

ment and its applications. Artificial Intelligence Review, 43(2):179–192, 2015.

[211] Marcel Wever, Felix Mohr, Alexander Hetzer, and Eyke Hüllermeier. Automating

multi-label classification extending ML-Plan. In Proceedings of the International

Workshop on Automatic Machine Learning, AutoML’19, 2019.

[212] Marcel Wever, Felix Mohr, and Eyke Hüllermeier. ML-Plan for unlimited-length

machine learning pipelines. In Proceedings of the International Workshop on Auto-

matic Machine Learning, AutoML’18, 2018.

[213] Jonathan Wexler, Susan Haller, and Radhikha Myneni. An overview of SAS® visual

data mining and machine learning on SAS® Viya. In SAS Global Forum Conference,

Cary, NC, USA, 2017. SAS Institute, Inc.

[214] Peter Whigham. Grammatically-based genetic programming. In Proceedings of

the Workshop on Genetic Programming: From Theory to Real-World Applications,

pages 33–41, Rochester, NY, USA, 1995. The University of Rochester.

[215] Peter Whittle. Multi-armed bandits and the Gittins index. Journal of the Royal

Statistical Society: Series B (Methodological), 42(2):143–149, 1980.

[216] Ian Witten, Eibe Frank, Mark Hall, and Christopher Pal. Data mining: Practical

machine learning tools and techniques. Morgan Kaufmann Publishers, Inc., San

Francisco, CA, USA, 4th edition, 2016.

[217] David Wolpert and William Macready. No free lunch theorems for optimization.

IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997.

[218] David Wolpert and William Macready. Coevolutionary free lunches. IEEE Trans-

actions on Evolutionary Computation, 9(6):721–735, 2005.

[219] Xin Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–

1447, 1999.

[220] Mohammed Zaki and Wagner Meira Jr. Data mining and analysis: Fundamental

concepts and algorithms. Cambridge University Press, Cambridge, UK, 2nd edition,

2020.

Bibliography 156

[221] Julio Zaragoza, Luis Sucar, Eduardo Morales, Concha Bielza, and Pedro Larrañaga.

Bayesian chain classifiers for multidimensional classification. In Proceedings of the

International Joint Conference on Artificial Intelligence, IJCAI’11, pages 2192–

2197, Palo Alto, CA, USA, 2011. AAAI Press.

[222] Arber Zela, Aaron Klein, Stefan Falkner, and Frank Hutter. Towards automated

deep learning: Efficient joint neural architecture and hyperparameter search. arXiv,

arXiv:1807.06906:1–11, 2018.

[223] Min-Ling Zhang, Yu-Kun Li, Xu-Ying Liu, and Xin Geng. Binary relevance for

multi-label learning: An overview. Frontiers of Computer Science: Selected Publi-

cations from Chinese Universities, 12(2):191–202, 2018.

[224] Min-Ling Zhang and Zhi-Hua Zhou. A k-nearest neighbor based algorithm for

multi-label classification. In Proceedings of the IEEE International Conference on

Granular Computing, pages 718–721, New York, NY, USA, 2005. IEEE.

[225] Min-Ling Zhang and Zhi-Hua Zhou. Multilabel neural networks with applications

to functional genomics and text categorization. IEEE Transactions on Knowledge

and Data Engineering, 18(10):1338–1351, 2006.

[226] Min-Ling Zhang and Zhi-Hua Zhou. ML-KNN: A lazy learning approach to multi-

label learning. Pattern Recognition, 40(7):2038–2048, 2007.

[227] Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-label learning algorithms.

IEEE Transactions on Knowledge and Data Engineering, 26(8):1819–1837, 2014.

157

Appendix A

Multi-Label Classification Search

Space in the MEKA Software

This appendix describes the Multi-Label Classification (MLC) search space in the MEKA

software, including the traditional and meta MLC algorithms and the traditional, meta,

and preprocessing Single-Label Classification (SLC) algorithms. The SLC search space is

also studied because it is part of the MLC search space, as several methods use problem

transformation methods to create a solution (i.e., a classifier) for an MLC problem. This

was done to understand better the MLC algorithms.

A.1 Search Space – Algorithms from WEKA

In this section, we study 22 traditional (single label) classification algorithms from

the WEKA software [97]. This is done in order to understand the whole search space of

multi-label methods. All parameters in this section were set in accordance with the search

space definition from Auto-WEKA [127, 128, 200]. The methods and their respective

(hyper-)parameters were defined after studying the code, logs, and configuration files of

Auto-WEKA, which is considered a stable and robust approach for automatically selecting

and configuring machine learning algorithms.

A.1.1 C4.5

The method for generating a C4.5 decision tree [166]. This algorithm can decide

whether it will use the default C4.5’s error-based pruning method [22, 183, 216] or not.

If the algorithm decides to use pruning, the C4.5’s pruning method is applied to the tree,

A.1. Search Space – Algorithms from WEKA 158

and an estimation of the error rate of every subtree is done. After that, the pruning

method will replace the subtree with a leaf node if the estimated error of the leaf is lower

than a threshold [183]. Parameters:

• Confidence factor (cf)[-C]: It is used for C4.5’s error-based pruning method (smaller

values incur more pruning) and is defined by the interval:

{cf ∈ R | 0.0 ≤ cf ≤ 1.0}.
Default value: 0.25.

• Minimum number of objects (mno)[-M]: The minimum number of instances per

leaf. It can take values in the interval:

{mno ∈ Z | 1 ≤ mno ≤ 64}.
Default value: 2.

• Collapse tree (ct)[-O]: It is used to decide if internal nodes will be collapsed to

avoid overfitting. This parameter is used with C4.5’s error-based pruning method

to enhance the final decision tree. It collapses a subtree to a node only if the training

error of the subtree does not increase when compared to the entire tree. It is applied

to every subtree in the tree, where subtrees are collapsed (pruned) if pruning does

not increase its classification error. For example, if there is a subtree with two

leaf nodes having the same classification on the training data, this subtree will be

replaced by a single leaf. It can take Boolean values (true or false).

Default value: true.

• Unpruned (u)[-U]: It decides whether pruning is performed or not. It can take

Boolean values (true or false).

Default value: false.

• Binary splits (bs)[-B]: It decides whether C4.5 will use binary splits on nominal

attributes when building the trees. It can take Boolean values (true or false).

Default value: false.

• Use MDL correction (umc)[-J]: It decides whether the MDL correction is used when

finding splits on numeric attributes. It can take Boolean values (true or false).

Default value: true.

• Use Laplace (ul)[-A]: It decides if the counts of instances at leaves are smoothed

based on the Laplace correction. It can take Boolean values (true or false).

Default value: false.

• Subtree raising (sr)[-S]: It is used for C4.5’s error-based pruning and decides whether

the algorithm will consider the subtree raising operation when pruning. It can take

A.1. Search Space – Algorithms from WEKA 159

Boolean values (true or false).

Default value: true.

Dependencies/Constraints:

1. If the parameter unpruned is set to “true”, the parameters “confidence factor”,

“collapse tree” and “subset raising” are not used (omitted).

A.1.2 Logistic Model Trees

The method for building Logistic Model Trees (LMT) [133, 196], which are clas-

sification trees with logistic regression functions at the leaves. This is done by using the

LogitBoost algorithm. In this case, boosting is used (aiming) to build very effective de-

cision trees. The idea of LMT is to use LogitBoost to induce trees with linear-logistic

regression models at the leaves. LogitBoost performs additive logistic regression. Thus,

at each iteration of the boosting algorithm, it creates a simple regression model by go-

ing through all the attributes, finding the simple regression function with the smallest

error, and adding it into the additive model [216]. The algorithm can deal with binary

and multi-class target variables, numeric and nominal attributes, and missing values.

Parameters:

• Minimum number of objects (mno)[-M]: The minimum number of instances per

leaf. It can take values in the interval:

{mno ∈ Z | 1 ≤ mno ≤ 64}.
Default value: 15.

• Convert Nominal (cn)[-B]: It decides if the method will convert all nominal at-

tributes to binary ones before building the tree. This means that all splits in the

final tree will be binary. It can take Boolean values (true or false).

Default value: false.

• Split on residuals (sor)[-R]: It decides whether the method will set the splitting cri-

terion based on the residuals of LogitBoost. There are two possible splitting criteria

for LMT: the default is to use the C4.5 splitting criterion that uses information

gain on the class variable. The other splitting criterion tries to improve the purity

in the residuals produced when fitting the logistic regression functions. It can take

Boolean values (true or false).

Default value: false.

A.1. Search Space – Algorithms from WEKA 160

• Fast Regression (fr)[-C]: It decides whether the method will use a heuristic that

avoids the use of cross-validation to optimize the number of Logit-Boost iterations

at every node. In the case of using this heuristic, LMT will fit the logistic regression

functions at a leaf node using the LogitBoost algorithm, applying a 5-fold cross-

validation procedure to determine how many iterations to run just once. Then,

it employs the same number of iterations throughout the tree, instead of cross-

validating at every node. This heuristic reduces the running time considerably,

with little effect on accuracy [216]. It can take Boolean values (true or false).

Default value: true.

• Error on probabilities (eop)[-P]: It decides if the method will minimize the error on

classification probabilities instead of the misclassification error when cross-validating

the number of LogitBoost iterations. When this parameter is set to ‘true’, the num-

ber of LogitBoost iterations that minimizes the error on classification probabilities

instead of the misclassification error is chosen. It can take Boolean values (true or

false).

Default value: false.

• Weight trim beta(wtb)[-W]: It sets the beta value used for weight trimming in

LogitBoost. Only instances carrying (1 - beta)% of the weight from the previ-

ous iteration are used in the next iteration. The value zero (0) means no weight

trimming, which is the default value. The values are restricted to the interval :

{wtb ∈ R | 0.0 ≤ wtb ≤ 1.0}.
Default value: 0.0.

• Use AIC (uaic)[-A]: It decides if the method will use the AIC (Akaike’s Information

Criterion) measure to determine when to stop LogitBoost’s iterative process. More

precisely, if uaic takes the value ‘true’, the best number of iterations will be defined

by an information criterion measure (currently, AIC). If false, the stopping criterion

will be determined by the best number of iterations in a 5-fold cross-validation

procedure. It can take Boolean values (true or false).

Default value: false.

There are no dependencies/constraints between the parameters of LMT.

A.1. Search Space – Algorithms from WEKA 161

A.1.3 Decision Stump

The method for building and applying a Decision Stump (DS) model [216], which

is considered a weak learner. Because of that, it is usually used in conjunction with a

boosting algorithm.

The DS’s classification is based on the entropy measure, and a missing value is

treated as a separate value. The DS algorithm constructs a simple decision tree that has

only one level, i.e., a decision tree that has only one internal (root) node, which is directly

linked to the leaves. It also creates an extra branch for missing values.

In the case of nominal attributes at the root node, there are two possibilities. The

first possibility is to build a stump that contains a leaf for each possible feature value.

The second possibility is to consider a stump with two leaves; one of them is mapped to

some category, and the other to all other categories. The DS from WEKA employs the

latter approach. This method has no explicit parameters.

A.1.4 Random Forest

The Random Forest (RF) method for constructing a forest of random trees [25].

Parameters:

• Number of trees (nt)[-I]: The number of trees to be generated by the algorithm. It

is an integer value bounded by the interval: {nt ∈ Z | 2 ≤ nt ≤ 256}.
Default value: 100.

• Number of features (nf)[-K]: It sets the number of randomly sampled attributes

used as candidate attributes at each tree node. It is an integer value bounded by

the interval: {nf ∈ Z | 2 ≤ nf ≤ 32}. However, it may also take the value zero (0),

which means nf will be just used as a flag to indicate that the real value produced

by the equation log2(number of attributes + 1) rounded to the nearest integer is

automatically used for this parameter.

Default value: 0.

• Maximum depth (md)[-depth]: The maximum depth of the tree. It is bounded by

the interval: {md ∈ Z | 2 ≤ md ≤ 20}. However, it may also take the value zero

(0) as a flag, and, in this case, the depth of the tree can be unlimited.

Default value: 0.

A.1. Search Space – Algorithms from WEKA 162

There are no dependencies/constraints between the parameters of RF.

A.1.5 Random Tree

The method for constructing a tree that considers K randomly sampled attributes

as candidate attributes at each node, i.e., a Random Tree (RTree) [216]. It is important

to mention that this version of RT performs no pruning. Parameters:

• Minimum weight (mw)[-M]: The minimum total weight of the instances in a leaf.

It is restricted by the interval:

{mw ∈ Z | 1 ≤ mw ≤ 64}.
Default value: 1.

• Number of features (nf)[-K]: It sets the number of randomly sampled attributes

used as candidate attributes at each tree node. It is an integer value bounded by

the interval: {nf ∈ Z | 2 ≤ nf ≤ 32}. However, it may also take the value zero (0),

which means nf will be just used as a flag to indicate that the real value produced

by the equation log2(number of attributes + 1) rounded to the nearest integer is

automatically used for this parameter.

Default value: 0.

• Maximum depth (md)[-depth]: The maximum depth of the tree. It is bounded by

the interval: {md ∈ Z | 2 ≤ md ≤ 20}. However, it may also take the value zero

(0) as a flag, and, in this case, the depth of the tree can be unlimited.

Default value: 0.

• Number of folds for back-fitting and for growing the tree (nfbgt)[-N]: It determines

the amount of data used for back-fitting and for growing the tree. One fold is used

for back-fitting, i.e., for making a preliminary estimation of class probabilities based

on a hold-out set. The other (nf - 1) folds are used for growing the tree. It is

bounded by the interval: {nfbf ∈ Z | 2 ≤ nfbf ≤ 5}. It can also use the value

zero (0), which means no back-fitting will be performed in this case. It can not

take the value one (1) because we would have zero folds for growing the tree. In

the case of taking the value one, the algorithm returns an error and does not run.

It is important to mention that Auto-WEKA allows this error, ignoring the RT

algorithm with this configuration (when it occurs) and continuing the search from

this point.

Default value: 0.

A.1. Search Space – Algorithms from WEKA 163

There are no constraints/dependencies between the parameters of RT.

A.1.6 REPTree

The method for the fast decision tree learner, which is well-known as REPTree [216].

It builds a decision tree using information gain and prunes it using reduced-error pruning

(with back-fitting). It only sorts values for numeric attributes once at the start of the

algorithm. Missing values are dealt with by splitting the corresponding instances into

pieces (i.e., as in C4.5). Parameters:

• Minimum weight (mw)[-M]: The minimum total weight of the instances in a leaf.

It is restricted by the interval:

{mw ∈ Z | 1 ≤ mw ≤ 64}.
Default value: 2.

• Maximum depth (md)[-L]: The maximum tree depth. It can take integer values

considering the interval: {md ∈ Z | 2 ≤ md ≤ 20}. However, it may also take the

value −1 as a flag, and, in this case, the depth of the tree the depth will not be

restricted.

Default value: -1.

• Use pruning (up)[-P]: It decides whether REPTree will use reduced-error pruning or

not. In the case of using this pruning method, a simple hold-out set (1
3
of the training

data) is used to estimate the error of a node, instead of using cross-validation. It

can take Boolean values (true or false).

Default value: false.

There are no dependencies/constraints between the parameters of REPTree.

A.1.7 Decision Table

The method for building and using a simple Decision Table (DT) classifier [125].

Parameters:

• Evaluation Measure (em)[-E]: The measure used to evaluate the performance of

attribute combinations used in the decision table. It can take one of the four cat-

A.1. Search Space – Algorithms from WEKA 164

egorical values: 1. accuracy (acc); 2. root mean squared error (rmse) of the class

probabilities; 3. mean absolute error (mae) of the class probabilities; 4. area under

the ROC curve (auc). The two measures rmse and mae are adapted to be used in

the classification context.

Default value: acc.

• Use IBk (uibk)[-I]: It sets whether a k-nearest neighbor (k=1) classifier should be

used instead of the majority class in order to classify non-matching instances. It

can take Boolean values (true or false).

Default value: false.

• Search method (sm)[-S]: It sets the search method that will be used to find good

attribute combinations for the decision table. It can take the values Greedy Stepwise

or Best First.

Default value: Best First.

• Cross-Validation (crv)[-X]: It sets the number of folds for the internal cross-validation

procedure to evaluate the attribute sets. It may take the values one (1), two (2),

three (3), or four (4). If the value one (1) is set for this hyper-parameter, a leave-

one-out procedure is applied.

Default value: 1.

There are no dependencies/constraints between the parameters of DT.

A.1.8 JRip

The method that implements a propositional rule learner algorithm, namely Re-

peated Incremental Pruning to Produce Error Reduction (RIPPER) [42]. Parameters:

• Minimum total weight (mtw)[-N]: This parameter determines the minimum total

weight of the instances in a rule. It can take values considering the interval: {mtw ∈
R | 1.0 ≤ mtw ≤ 5.0}.
Default value: 2.0.

• Check error rate (cer)[-E]: It decides whether JRip will consider the “error rate

greater or equal than 0.5” as a stopping criterion. It can take Boolean values (true

or false).

Default value: true.

A.1. Search Space – Algorithms from WEKA 165

• Use pruning (up)[-P]: It decides whether JRip will use reduced error pruning or

not. In the case of using this pruning method, a 3-fold cross-validation procedure

is applied to prune the rules. Otherwise, no pruning method is used. It can take

Boolean values (true or false).

Default value: false.

• Optimizations (o)[-O]: The number of optimization runs. It can take integer values

considering the interval: {o ∈ Z | 1 ≤ o ≤ 5}.
Default value: 2.

There are no dependencies/constraints between the parameters of JRip.

A.1.9 One Rule

The method for building and using a One Rule (OneR) classifier [106]. In other

words, it uses the minimum-error attribute for prediction, discretizing numeric attributes.

Parameters:

• Minimum bucket size (mbs)[-B]: It is used for discretizing numeric attributes. It is

limited by the interval: {mbz ∈ Z | 1 ≤ mbz ≤ 32}.
Default value: 6.

OneR has only one parameter, and consequently, it has no dependencies/constraints.

A.1.10 PART

The method for generating a PART decision list [80]. PART uses the separate-

and-conquer paradigm: It builds a partial C4.5 decision tree in each iteration and makes

the “best” leaf into a rule. Parameters:

• Minimum number of objects (mno)[-M]: The minimum number of instances per

leaf. It can take values in the interval:

{mno ∈ Z | 1 ≤ mno ≤ 64}.
Default value: 2.

A.1. Search Space – Algorithms from WEKA 166

• Binary splits (bs)[-B]: It decides whether C4.5 will use binary splits on nominal

attributes when building the trees. It can take Boolean values (true or false).

Default value: false.

• Reduced-error pruning(rep)[-R]: It is used to decide whether reduced-error pruning

is used instead of C4.5’s default pruning (error-based pruning). If C4.5’s error-based

pruning is chosen, a (default) confidence factor of 0.25 is used to prune the tree.

If not (i.e., the reduced-error pruning is chosen), the method will consider each

node for pruning, and the removal of a subtree at a node is done if the resulting

tree performs no worse than the original one on the validation set. The size of the

validation set is determined by the next parameter (nr). It can take Boolean values

(true or false).

Default value: true.

• Number of folds (nr)[-N]: It determines the amount of data used for reduced-error

pruning. One fold is used for pruning, and the rest for growing the tree. It can take

the values two (2), three (3), four (4) or five (5).

Default value: not used.

Dependencies/Constraints:

1. If the reduced-error pruning method is not set to “true”, the parameter “number of

folds” is not used.

A.1.11 Zero Rule

The method for building and using a Zero Rule (ZeroR) classifier [216]. The ZeroR

classifier simply predicts the majority category (class), ignoring the predictor attributes.

This method has no explicit parameters.

A.1.12 K-Nearest Neighbors

The method for K-Nearest Neighbors (KNN) classifier [3]. KNN can select an

appropriate value of K based on internal leave-one-out evaluation and can also compute

distances based on instance weighting. Parameters:

A.1. Search Space – Algorithms from WEKA 167

• Number of neighbors (k)[-K]: The number of neighbors to use. The value of k is

bounded by the interval: {k ∈ Z | 1 ≤ k ≤ 64}.
Default value: 1.

• Leave-one-out (loo)[-X]: It decides whether leave-one-out evaluation on the training

data will be used or not to select the best k value between 1 and the value specified

as the KNN parameter. If set as false, the selected k value is used. It can take only

Boolean values (true or false).

Default value: false.

• Distance weighting (dw): It sets the used distance weighting method. It may take

the unique following values:

– -I: Weight neighbors by the inverse of their distance.

– -F: Weight neighbors by one minus their distance.

– None: No distance weighting method is applied.

Default value: None.

There are no dependencies/constraints between the parameters of KNN.

A.1.13 K*

The method K* is an instance-based classification algorithm [41]. Thus, in order

to classify a test instance, K* considers the class of those training instances similar to it,

as determined by some similarity function. It differs from other instance-based learners

by using an entropy-based distance function. Parameters:

• Global blending (gb)[-B]: The parameter is a percentage for global blending. This

parameter controls the “sphere of influence” by specifying how many of the neighbors

of the instance i should be considered important (although there is no hard cut-off

at the edge of the sphere – it is more related to a gradual decreasing of importance).

The values are restricted to the interval {gb ∈ Z | 1 ≤ gb ≤ 100}. Thus, selecting

zero (0) for this parameter gives the nearest neighbor algorithm (this is why Auto-

WEKA does not allow one to choose it), and choosing 100 gives equally weighted

instances. Intermediate values are interpolated linearly.

Default value: 20.

A.1. Search Space – Algorithms from WEKA 168

• Entropic auto-blending (eab)[-E]: It decides whether entropy-based blending will be

used or not. It can take Boolean values (true or false).

Default value: false.

• Missing Mode (mm)[-M]: It determines how missing attribute values are treated. It

can take one of the four categorical values: 1. average column entropy curves (a); 2.

ignore the instances with missing values (d); 3. treat missing values as maximally

different (m); 4. normalize over the attributes (n).

Default value: a.

There are no dependencies/constraints between the parameters of K*.

A.1.14 Voted Perceptron

The Voted Perceptron (VP) algorithm was created by Freund and Schapire [83]. It

globally replaces all missing values with their default values. More precisely, VP replaces

all missing values for nominal and numeric attributes by the modes and the means from

the training data, respectively. Additionally, it transforms nominal attributes into binary

ones. Parameters:

• Number of iterations (i)[-I]: The number of iterations to be performed by VP. This

parameter varies in accordance to the interval:

{i ∈ Z | 1 ≤ i ≤ 10}.
Default value: 1.

• Max K(mk)[-M]: The maximum number of alterations to the perceptron, i.e., the

maximum number of perceptrons used in the iterative process. It can take values

of the interval:

{mk ∈ Z | 5, 000 ≤ mk ≤ 50, 000}
Default value: 1,000.

• Exponent (e)[-E]: The exponent for the polynomial kernel. It can take values of

the interval: {e ∈ R | 0.2 ≤ e ≤ 5.0}
Default value: 1.0.

There are no dependencies/constraints between the parameters of VP.

A.1. Search Space – Algorithms from WEKA 169

A.1.15 Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) uses the traditional and well-known back-propaga-

tion algorithm [181] to create a neural model to classify the instances. MLP creates just

one hidden layer (for now), and all its nodes use sigmoid activation functions (except for

when the class is numeric, in which case the output nodes become unthresholded linear

units). Parameters:

• Learning rate (lrt)[-L]: The amount by which the weights are updated during train-

ing. It is restricted by the interval:

{lr ∈ R | 0.1 ≤ lr ≤ 1.0}.
Default value: 0.3.

• Momentum (m)[-M]: It is applied to the weights during updating. It is restricted

by the interval: {m ∈ R | 0.0 ≤ m ≤ 1.0}.
Default value: 0.2.

• Number of hidden nodes (nhn)[-H]: It defines the number of hidden nodes in the

hidden layer of the neural network. This parameter may take four predefined nom-

inal values (a, i, o, and t), which represent the following integer values:

– a = (number of attributes+number of classes)
2

, always using the default floor function

to convert it to an integer value.

– i = number of attributes.

– o = number of classes.

– t = (number of attributes+ number of classes).
Default value: a.

• Nominal to binary filter (n2b)[-B]: It decides whether the algorithm will transform

nominal attributes to binary ones or not. This could help improve performance if

there are nominal attributes in the data. It can take Boolean values (true or false).

Default value: true.

• Reset (r)[-R]: It decides whether the algorithm will use the reset approach. In this

case, the algorithm will allow the network to reset with a lower learning rate. If the

network diverges from the answer, this will automatically reset the network with a

lower learning rate and begin training again. It can take Boolean values (true or

false).

Default value: true.

A.1. Search Space – Algorithms from WEKA 170

• Decay (d)[-D]: It decides whether the algorithm will cause the learning rate to

decrease. This will divide the starting value of the learning rate by the sequential

number of the current epoch in order to determine what the current learning rate

should be. This may help to stop the network from diverging from the target output,

as well as improving general performance. It can take Boolean values (true or false).

Default value: false.

There are no dependencies/constraints between the parameters of MLP.

A.1.16 Stochastic Gradient Descent

The method that implements the well-known Stochastic Gradient Descent (SGD)

approach [216] for learning various linear models (binary class SVM, binary class logis-

tic regression, squared loss, Huber loss, and epsilon-insensitive loss linear regression).

Parameters:

• Loss function (lf)[-F]: It sets the loss function to be minimized. It can take the

following integer values associated with three approaches:

– (0): hinge loss (SVM).

– (1): log loss (logistic regression).

– (2): squared loss (regression).
Default value: 0.

• Learning rate (lrt)[-L]: The learning rate. If normalization is turned off, then the

default learning rate will need to be reduced. It is restricted by the interval: {lr ∈
R | 0.00001 ≤ lr ≤ 1.0}.
Default value: 0.01.

• Ridge (r)[-R]: It sets the Ridge value in the log-likelihood. This parameter can take

any value of the given set:

{r ∈ R | 10−12 ≤ r ≤ 10.0}
Default value: 0.0001

• Do not normalize (nn)[-N]: It decides whether normalization will be turned off or

not. It can take Boolean values (true or false).

Default value: false.

A.1. Search Space – Algorithms from WEKA 171

• Do not replace missing values (nrmv)[-M]: It decides whether the global replace-

ment of missing values will be turned off or not. In the case of being turned off,

the missing values will be ignored. Otherwise, SGD will replace all missing values

for nominal and numeric attributes by the modes and the means from the training

data, respectively. It can take Boolean values (true or false).

Default value: false.

There are no dependencies/constraints between the parameters of SGD.

A.1.17 Sequential Minimal Optimization

This method implements John Platt’s Sequential Minimal Optimization (SMO)

algorithm for training a support vector classifier (SVC) [99, 120, 165]. It globally replaces

all missing values with their default values. More precisely, SMO (like VP) replaces all

missing values for nominal and numeric attributes by the modes and the means from

the training data, respectively. Additionally, it transforms nominal attributes into binary

ones. Parameters:

• Cost (c)[-C]: It defines the complexity parameter, which is the penalty parameter

of the error term and is defined by the interval: {c ∈ R | 0.5 ≤ c ≤ 1.5}. This is a

parameter that controls the trade-off between training error and model complexity.

It is important to mention that a low value of c will increase the number of training

errors, whereas a high value of c will lead to a behavior similar to that of a hard-

margin SVM [114].

Default value: 1.0.

• Filter type (ft)[-N]: It determines how/if the data will be transformed. It may take

the values zero (0, i.e., normalize the training data – it sets all the numeric attributes

in the given dataset into the interval [0,1]), one (1, i.e., standardize the training data

– it standardizes all numeric attributes in the given dataset to have zero mean and

unit variance) or two (2, i.e., no normalization/standardization is applied to the

data).

Default value: 0.

• Build Calibration Models (bcm)[-M]: It decides whether the model will fit cali-

bration models to SVM’s outputs (for proper probability estimates). It can take

Boolean values (true or false).

Default value: false.

A.1. Search Space – Algorithms from WEKA 172

• Kernel(k)[-K]: The kernel to use. It can take one of the following possible kernels

(and associated constrained parameters):

– PolyKernel: The standard polynomial kernel. Parameters:

1. Exponent (exp)[-E]: It determines the exponent value and is defined by

the interval: {exp ∈ R | 0.2 ≤ exp ≤ 5.0}.
2. Use Lower-Order (ulo)[-L]: It decides whether the method will use lower-

order terms or not. It can take Boolean values (true or false).

– NormalizedPolyKernel: The normalized polynomial kernel. Parameters:

1. Exponent (exp)[-E]: It determines the exponent value and is defined by

the interval: {exp ∈ R | 0.2 ≤ exp ≤ 5.0}.
2. Use Lower-Order (ulo)[-L]: It decides whether the method will use lower-

order terms or not. It can take Boolean values (true or false).

– Puk: The Pearson VII function-based universal kernel [207]. Parameters:

1. Omega (om)[-O]: The omega value. It is defined by the interval: {om ∈
R | 0.1 ≤ om ≤ 1.0}.

2. Sigma (sig)[-S]: The sigma value. It is defined by the interval: {sig ∈
R | 0.1 ≤ sig ≤ 10.0}.

– RBF:The RBF kernel. Parameters:

1. Gamma (g)[-G]: The gamma value. It is defined by the interval: {g ∈
R | 0.0001 ≤ g ≤ 1.0}.

Default value: PolyKernel with ‘Exponent’ equals to 1.0 and ‘Use Lower-Order’

equals to true.

The constraints/dependencies for SMO are only in the selection of the kernel and

its respective parameters.

A.1.18 Logistic Regression

Method for building and using a multinomial Logistic Regression (LogR) model

with a ridge estimator [32]. Parameters:

• Ridge (r)[-R]: It sets the Ridge value in the log-likelihood. This parameter can take

any value of the given set:

{r ∈ R | 10−12 ≤ r ≤ 10.0}
Default value: 0.00000001

A.1. Search Space – Algorithms from WEKA 173

LogR has one parameter, and consequently, it has no dependencies/constraints.

A.1.19 Simple Logistic

The method for constructing Simple Logistic (SL) regression models [133, 196].

LogitBoost, with simple regression functions as base learners, is used for fitting the logistic

models. Parameters:

• Weight trim beta (wtb)[-W]: It sets the beta value used for weight trimming in

LogitBoost. Only instances carrying (1 - beta)% of the weight from the previ-

ous iteration are used in the next iteration. The value zero (0) means no weight

trimming, which is the default value. The values are restricted to the interval :

{wtb ∈ R | 0.0 ≤ wtb ≤ 1.0}. It also can be omitted and take the default value of

zero.

Default value: 0.0.

• Use Cross-Validation (ucv)[-S]: It decides if SL will try to find the best number of

LogitBoost iterations using an internal 5-fold cross-validation procedure or simply

using the number of iterations that minimizes error on the training set. Thus, if

not set to ‘true’, the number of LogitBoost iterations which is used is the one that

minimizes the error on the training set (misclassification error). It can take Boolean

values (true or false).

Default value: true.

• Use AIC (uaic)[-A]: It decides if the method will use the AIC (Akaike’s Information

Criterion) measure to determine when to stop the LogitBoost iterative process.

More precisely, if uaic takes the value ’true’, the best number of iterations will be

defined by an information criterion measure (currently, AIC). If false, the stopping

criterion will be determined by the best number of iterations in an internal 5-fold

cross-validation procedure or simply in accordance to the error on the training set,

as explained in the previous item. It can take Boolean values (true or false).

Default value: false.

There are no dependencies/constraints between the parameters of SL.

A.1. Search Space – Algorithms from WEKA 174

A.1.20 Näıve Bayes

The Näıve Bayes (NB) classifier using estimator classes [115]. This algorithm builds

a fixed structure (model) given the attributes of the dataset. Parameters:

• Use kernel estimator (uke)[-K]: It decides whether NB will use a kernel estimator

for numeric attributes rather than a (single) Gaussian distribution. In the case of

using the kernel estimator, NB will apply one Gaussian kernel per observed data

value (for more details, see Flexible Näıve Bayes’ section in [115]). It can take

Boolean values (true or false). It is important to mention that a discrete estimator

is automatically used for nominal attributes, which is a simple discrete probability

estimator based on nominal values’ counts. This also means the Laplace correction

is applied in order to perform the estimation.

Default value: false.

• Use supervised distribution (usd)[-D]: It decides whether NB will use supervised

discretization to convert numeric attributes to nominal ones. Discretization is per-

formed by [70]’s method. This method uses a criterion based on the Minimum

Description Length (MDL) principle to define the number of intervals produced

over the continuous space [60]. It can take Boolean values (true or false).

Default value: false.

Dependencies/Constraints:

1. If the parameter “use kernel estimator” is activated, the parameter “use super-

vised distribution” must not be activated, and vice-versa. This constraint must be

enforced in the grammar.

A.1.21 Bayesian Network Classifier

This method is used to learn a Bayesian Network Classifier (BNC) [20] based on

various search algorithms and a local Bayesian scoring metric [43, 100]. Parameters:

• Search Method (sm)[-Q]: For BNC algorithms, the optimization occurs just on the

method used for searching network structures. Thus, the search method can be

one of the following: 1. Tree Augmented Näıve Bayes (TAN) [85]; 2. K2 [43]; 3.

Hill Climbing (HC) [19, 102]; 4. Look Ahead in Good Directions Hill Climbing

A.2. Search Space – Meta Classification Algorithms from WEKA 175

(LAGDHC) [1]; 5. Simulated Annealing (SA) [19]; 6. Tabu Search (TS) [19]. All

the search methods use the parameter “maximum number of parents” set to two

(including the class node), except for TAN and SA, which do not use the “maximum

number of parents” as a parameter. In addition, the methods use the (default)

Bayesian scoring metric to search for appropriate Bayesian networks for data.

Default value: there is no default value for this hyper-parameter because all these

search methods are important algorithms in the literature. Therefore, we use all

search methods in our space.

BNC has one parameter, and consequently, it has no dependencies/constraints.

A.1.22 Näıve Bayes Multinomial

The method for building and using Näıve Bayes Multinomial (NBM) [2, 78, 134,

139, 216]. This algorithm was particularly designed for text classification, and for this

reason, it changes how the traditional Näıve Bayes calculates the probabilities. This is

done to take into account the number of times a word appears in the document.

This method has no explicit parameters, and consequently, it has no dependen-

cies/constraints.

A.2 Search Space – Meta Classification Algorithms

from WEKA

In this section, the search space of 5 traditional (single label) meta-classification

algorithms from WEKA [97] is studied. This is also done in order to extend and improve

the search space of multi-label methods. All parameters in this section were also set

in accordance with the search space definition from Auto-WEKA [200, 127, 128]. The

methods and their respective (hyper-)parameters were defined after studying the code,

logs, and configuration files of Auto-WEKA, which is considered a stable and robust

approach for automatically selecting and configuring machine learning algorithms.

A.2. Search Space – Meta Classification Algorithms from WEKA 176

A.2.1 Locally Weighted Learning

The Locally Weighted Learning (LWL) method [8, 79]. It uses an instance-based

algorithm to assign instance weights, which are then used by a specified Weighted In-

stances Handler. In other words, LWL assigns weights using an instance-based method,

and after this step, another classification algorithm is used to build a classifier from the

weighted instances. For example, it can do the classification by using a näıve Bayes

classifier or a decision stump (default) from these weighted instances. Parameters:

• Classifier (c)[-W]: The classifier to be used. It can be one classification algorithm

from Section A.1, except for the algorithms LMT, OneR, K*, SGD, and VP, as the

classifiers produced by these algorithms do not handle weighted instances.

• Number of neighbors (k)[-K]: It sets how many neighbors are used to determine the

width of the weighting function. It may take the following values: {−1, 10, 30, 60, 90, 120}.
A negative value means that all neighbors will be considered.

Default value: -1.

• Weighting kernel (wk)[-U]: It determines the weighting function and may take the

five following integer values:

– (0) Linear.

– (1) Epnechnikov.

– (2) Tricube.

– (3) Inverse.

– (4) Gaussian.

It can be omitted with 50% of probability, and then LWL will use the default value

zero for this parameter, i.e., the linear function. The five (5) not omitted values

jointly take the other 50% of probability, which represents at the end that the value

0 has 60% of probability to be chosen.

Default value: 0.

There are no dependencies/constraints between the parameters of LWL.

A.2. Search Space – Meta Classification Algorithms from WEKA 177

A.2.2 Random Subspace

This method constructs an ensemble classifier that consists of multiple models

systematically constructed by randomly selecting subsets of components of the feature

vector, i.e., the classification models are constructed according to Random Subspaces

(RSS) [104]. More precisely, for each classifier, a certain percentage of the number of

attributes is randomly sampled and then used to build the classifier. Parameters:

• Classifier (c)[-W]: The classifier to be used. It can be any classification algorithm

from Section A.1.

• Subspace size (sss)[-P]: It defines the size of each sub-space as a percentage of the

number of attributes. It could take values in the range: {sss ∈ R | 0.1 ≤ sss ≤ 1.0}.
Default value: 0.5.

• Number of iterations (ni)[-I]: It defines the number of iterations to be performed,

i.e., the number of classifiers in the ensemble. It may take values in the range:

{ni ∈ Z | 2 ≤ ni ≤ 64}.
Default value: 10.

There are no dependencies/constraints between the parameters of RSS.

A.2.3 Bagging of Single-Label Classifiers

The method for bagging a classifier in order to reduce variance [24]. Parameters:

• Classifier (c)[-W]: The classifier to be used for each member of the ensemble. It can

be any classification algorithm from Section A.1.

• Bag size percent (bsp)[-P]: It defines the size of each bag, as a percentage of the

training set size. It may take values in the range: {bsp ∈ Z | 10 ≤ bsp ≤ 100}. It

makes sampling with replacement. Thus, even if the bag size percent is 100%, it

will sample different sets with the same size of the training set.

Default value: 100.

• Number of iterations (ni)[-I]: It defines the number of iterations to be performed,

i.e., the number of classifiers in the ensemble. It may take values in the range:

{ni ∈ Z | 2 ≤ ni ≤ 128}.
Default value: 10.

A.2. Search Space – Meta Classification Algorithms from WEKA 178

• Calculate out-of-bag (coob)[-O]: It decides whether the out-of-bag error is calcu-

lated. It can take Boolean values (true or false).

Default value: false.

Dependencies/Constraints:

1. If the parameter “calculate out-of-bag” is activated (set to true), the parameter

“bag size percent” must be equal to 100. This is a constraint of WEKA, and only

an internal modification in the WEKA code could suppress it. This can happen

with 50% of probability. I.e., in half of the cases, the parameter “bag size percent”

is set to 100. In the other part of the cases, “bag size percent” may take values

between 10 and 100, because the parameter “calculate out-of-bag” is not activated

(set to false).

A.2.4 Random Committee

The method for building an ensemble of randomizable base classifiers from the

WEKA software [216], creating a Random Committee (RC) of classifiers. For this reason,

the only classifiers (at the base level) that can be used in this meta-algorithm are Random

Forest (RF), Random Tree (RT), REP Tree (REPTree), Stochastic Gradient Descent

(SGD) and Multilayer Perceptron (MLP). The creation of a randomizable classifier is done

by using an input (pseudo-random) seed. It is important to mention that the classifiers in

the ensemble differ in terms of the structure of their models. For instance, a random seed

can define how the random trees are constructed in RF, RT, and REPTree, how the linear

models are defined in SGD, and how the network connection weights are first defined in

MLP. Nevertheless, all classifiers are constructed using the same data, differently from

Bagging and RSS. Thus, in the end, the final prediction is based on the average of the

class probabilities generated by the base classifiers. Parameters:

• Classifier (c)[-W]: The classifier to be used for each member of the ensemble. It is

restricted to one of the five (5) aforementioned algorithms, i.e., RF, RT, REPTree,

SGD, and MLP.

• Number of iterations (ni)[-I]: It defines the number of iterations to be performed,

i.e., the number of classifiers in the ensemble. It may take values in the range:

{ni ∈ Z | 2 ≤ ni ≤ 64}.
Default value: 10.

There are no dependencies/constraints between the parameters of RC.

A.2. Search Space – Meta Classification Algorithms from WEKA 179

A.2.5 Ada Boost M1

The method for boosting a nominal class classifier using the Adaboost M1 (AdaM1)

approach [82]. Parameters:

• Classifier (c)[-W]: The classifier to be used. It can be one classification algorithm

from Section A.1, except for the algorithms LMT, OneR, K*, SGD, and VP, as

the classifiers produced by these algorithms do not handle weighted instances. It

is important to mention that Auto-WEKA allows any classifier at the base level of

AdaM1, including those that can not handle weights in the instances. In this case,

Auto-WEKA ignores that algorithm (with its configuration) and proceeds with the

search.

• Weight threshold (wt)[-P]: It defines the weight threshold for weighted pruning, i.e.,

it only selects instances with weights that contribute to the specified quantile of the

weight distribution. It may take values in the range:

{wt ∈ Z | 50 ≤ wt ≤ 100}.
Default value: 100.

• Number of iterations (ni)[-I]: It defines the number of iterations to be performed,

i.e., the number of classifiers in the ensemble. It may take the values in the range:

{ni ∈ Z | 2 ≤ ni ≤ 128}.
Default value: 10.

• Use resampling (ur)[-Q]: It decides whether AdaM1 will use resampling instead

of reweighting. Thus, it is possible to generate an unweighted dataset from the

weighted data by resampling. In this case, instances are chosen with probability

proportional to their weight. As a result, instances with high weight are replicated

frequently, and the ones with low weight may never be selected. Once the new

dataset becomes as large as the original one, it is fed into the learning approach

instead of the weighted data [216]. It can take Boolean values (true or false).

Default value: false.

There are no dependencies/constraints between the parameters of AdaM1.

A.3. Search Space – Preprocessing Algorithms from WEKA 180

A.3 Search Space – Preprocessing Algorithms from

WEKA

In this section, the search space of (single label) preprocessing classification algo-

rithms from WEKA [97] is studied. This is also done in order to extend and improve

the search space of multi-label methods. Instead of using just a single-label classification

(SLC) algorithm at the SLC base level, a wrapper containing preprocessing methods is

first used and, just after that, SLC is performed.

A.3.1 Attribute Selection Classifier

The method reduces the dimensionality of training and test data by performing

attribute selection (using the training set only) before the data is set as input to a classifier

[216], constructing an Attribute Selection Classifier (ASC). Parameters:

• Classifier (c)[-W]: The classifier to be used. It can be any classification algorithm

from Section A.1.

• Search method (sm)[-S]: The search method for selecting the attribute subset to be

used as input by the classifier. It may take two values:

1. Best First: It searches the space of attribute subsets by greedy hill-climbing

augmented with a backtracking facility.

2. Greedy Stepwise: It performs a greedy forward search through the space of

attribute subsets.

Both methods use the evaluator “CfsSubsetEval”, which evaluates the worth of a

subset of attributes by considering the individual predictive ability of each attribute,

along with the degree of redundancy between them. Hence, ASC is conceptually

equivalent to using the CFS (Correlation-based Feature Selection) attribute selection

method followed by the use of the chosen classifier with the attributes selected by

CFS.

Default value: Best First.

There are no dependencies/constraints between the parameters of ASC.

A.4. Studying the Search Space of Multi-Label Classification Algorithms 181

A.4 Studying the Search Space of Multi-Label

Classification Algorithms

We studied 26 multi-label and meta multi-label classification algorithms from the

MEKA software [176], which are described in the following two sections. It is important

to mention that most algorithms in (this version of) MEKA could define a threshold to

perform the classification using the model’s confidence outputs (typically, class probabili-

ties). For the general multi-label context, it is in general better to optimize the threshold

than simply using an arbitrary threshold of 0.5 [69, 175]. This parameter (pred tshd)

[-threshold] could take the following values:

• Proportional Cut method by Instance (PCut1) [169]: It takes into account the

label cardinality of the dataset, which is simply the average number of labels as-

sociated with each instance of this dataset. Thus, PCcut1 automatically calibrates

the prediction confidence threshold, by minimizing the difference between the label

cardinality of the training set and the label cardinality obtained with a given set of

predicted labels – where the latter set is determined by the threshold value. This

does not require access to the true predictions in the test set.

• Proportional Cut method by Label (PCutL): It is used to calibrate the prediction

confidence threshold the same way as PCut1, but for each label individually.

• The threshold could also take a unique real value between zero (0.0) and one (1.0)

for all instances being classified. Formally, the threshold can also be defined by the

following interval: {threshold ∈ R | 0.0 < threshold < 1.0}.

Default value: PCut1.

A.5. Search Space – Multi-Label Classification Algorithms 182

A.5 Search Space – Multi-Label Classification

Algorithms

A.5.1 Binary Relevance

The standard Binary Relevance (BR) method [204]. It creates a binary classifica-

tion problem for each label and learns a model for each label individually. Parameters:

• Base classifier (bc)[-W] : It can be any classifier from WEKA.

There are no dependencies/constraints in BR.

A.5.2 The ‘Quick’ Version of Binary Relevance

The Quick BR (BRq) [175] is a version of BR that is able to downsample the

number of training instances across the binary models. It is intended for use in an ensemble

(but it also works in a standalone fashion).

Parameters:

• Base classifier (bc)[-W] : It can be any classifier from WEKA.

• Down-sample ratio (dsr)[-P]: It is a ratio used to reduce the number of instances

across the binary models. Low values mean more removals and high values mean

fewer removals, as BRq uses the following formula (1− dsr) ∗number of instances

to calculate the number of instances to remove. This parameter is constrained by

the interval:

{dsr ∈ R | 0.2 ≤ dsr ≤ 0.8}.
There is no explanation about this parameter in the original paper and in other

papers in the multi-label classification literature. The justification – for the used

interval – is that we would like to have (at least) 20% of the instances from the

original data to construct the model (otherwise, the method may not have sufficient

instances to build the model). Additionally, we would like to have (at most) 80% of

the instances from the original data in order to learn the classifier (otherwise, the

method would be very similar to BR).

Default value: 0.75.

A.5. Search Space – Multi-Label Classification Algorithms 183

There are no dependencies/constraints between the parameters of BRq.

A.5.3 Classifier Chain

The Classifier Chain (CC) method [175] is also similar to BR, but the label outputs

predicted by a classifier become new inputs for the next classifiers in the chain. It uses a

single random order of labels in the chain.

Parameters:

• Base classifier (bc)[-W] : It can be any classifier from WEKA.

There are no dependencies/constraints in CC.

A.5.4 The ‘Quick’ Version of Classifier Chains

The Quick CC (CCq) [175] is a version of CC that is able to down-sample the

number of training instances across the binary models. It is also intended for use in an

ensemble (but it also works in a standalone fashion). Parameters:

• Base classifier (bc)[-W] : It can be any classifier from WEKA.

• Down-sample ratio (dsr)[-P]: It is a ratio used to reduce the number of instances

across the binary models. Low values mean more removals, and high values mean

fewer removals, as CCq uses the following formula (1− dsr) ∗number of instances

to calculate the number of instances to remove. This parameter is constrained by

the interval:

{dsr ∈ R | 0.2 ≤ dsr ≤ 0.8}.
There is no explanation about this parameter in the original paper and in other

papers in the multi-label classification literature. The justification – for the used

interval – is that we would like to have (at least) 20% of the instances from the

original data to construct the model (otherwise, the method may not have sufficient

instances to build the model). Additionally, we would like to have (at most) 80% of

the instances from the original data in order to learn the classifier (otherwise, the

method would be very similar to CC).

Default value: 0.75.

A.5. Search Space – Multi-Label Classification Algorithms 184

There are no dependencies/constraints between the parameters of CCq.

A.5.5 Bayesian Classifier Chain

The Bayesian classifier chain (BCC) method [221] creates a maximum spanning tree

based on marginal dependencies, defines a Bayesian network from it, and then employs a

classifier chain (CC) using the order of the labels found in the Bayesian network model.

The original paper used Näıve Bayes as a base classifier, but other types of classifiers can

be used. Parameters:

• Base classifier (bc)[-W] : It can be any classifier from WEKA.

• Dependency type (dp)[-X]: The way to measure and find the dependencies. It may

take ten categorical values: 1. C (co-occurrence counts); 2. I (mutual information);

3. Ib (mutual information using binary approximation); 4. Ibf (Mutual informa-

tion using fast binary approximation); 5. H (Conditional information); 6. Hbf (

Conditional information using fast binary approximation); 7. X (Chi-squared); 8.

F (Frequencies); 9. No label dependence; 10. L (The “LEAD” method for finding

conditional dependence).

Default value: Ibf.

There are no dependencies/constraints between the parameters of BCC.

A.5.6 (Bayes Optimal) Probabilistic Classifier Chain

The Probabilistic Classifier Chain (PCC) method [52] acts exactly like CC at

training time, but explores all possible paths as inference at test time (hence, “Bayes

optimal”). Parameters:

• Base classifier (bc)[-W]: It can be any classifier from WEKA.

Dependencies/Constraints:

1. PCC has poor scalability, i.e., it is very slow when the number of labels is greater

than a certain threshold. In the PCC’s original paper [52], it is said that this

threshold should be 15 labels. In the future, we might consider it to scale the

A.5. Search Space – Multi-Label Classification Algorithms 185

proposed solution to evolve a multi-label learning algorithm. For instance, we must

impose a constraint in the grammar that specifies the use of PCC only if the number

of labels is less than 15. We can also specify a time budget for all MLC algorithms,

depending on the size of the dataset. This will consequently limit the effectiveness

of the PCC algorithm in more complex types of data.

A.5.7 Monte-Carlo Classifier Chains

The methods based on Monte-Carlo Classifier Chains (MCC and M2CC) [170,

171], apply classifier chains with Monte Carlo optimization, using a maximum number

of inference and chain-order trials. MCC has a tractable label prediction scheme only at

the test time (MCC), whereas M2CC performs an additional search for the optimal chain

sequence at the training time. Parameters:

• Base classifier (bc)[-W] : It can be any classifier from WEKA.

• Inference Iterations (ii)[-Iy]: The number of iterations to search the output space

at test time. This parameter is bounded by the values in the interval: {ii ∈ Z | 1 <

ii ≤ 100}.
Default value: 10.

• Chain Iterations (chi)[-Is]: The number of iterations to search the chain space at

training time. This parameter is bounded by the values in the interval: {chi ∈
Z | 1 < chi ≤ 1500}. It can also take the value zero and the MCC algorithm is used

instead of M2CC. This will happen with 50% of probability, i.e., MCC and M2CC

have the same chances of being selected.

Default value: 0.

• Payoff function (pof)[-P]): It sets the payoff function to evaluate the chains when

performing the search. It can take 23 values: 1. Accuracy; 2. Jaccard index; 3.

Hamming score; 4. Exact match; 5. Jaccard distance; 6. Hamming loss; 7. Zero

One loss; 8. Harmonic score; 9. One error; 10. Rank loss; 11. Average precisio; 12.

Log Loss, limited by the number of labels; 13. Log loss limited by the number of

instances; 14. Micro Precision; 15. Micro Recall; 16. Macro Precision; 17. Macro

Recall; 18. F1 micro averaged; 19. F1 macro averaged by example; 20. F1 macro

averaged by label; 21. AUPRC macro averaged; 22. AUROC macro averaged; 23.

Levenshtein distance.

Default value: Exact match.

A.5. Search Space – Multi-Label Classification Algorithms 186

There are no dependencies/constraints between the parameters in MCC andM2CC.

Additionally, we studied the range of the parameters in the works of Read et al. [170, 171].

However, the authors did not employ proper parameter tuning at the single-label level

nor at the multi-label level. In the work of Read et al. [171], a search is performed to

find the proper number of chain iterations in accordance with the payoff function. We are

using part of this study to define the range of the parameters.

A.5.8 Population of Monte-Carlo Classifier Chains

The Population of Monte-Carlo Classifier Chains (PMCC) [170, 171] is a method

that has similar properties when compared to MCC and M2CC. However, it is considered

an extension of both methods. The difference is that PMCC creates a population of

M chains at training time (from Is candidate chains, using Monte Carlo sampling) and

uses all of them at test time. This is not a typical majority-vote ensemble method. The

simulated annealing search [121] can also be applied to the chain structures (produced by

MCC or M2CC) in order to find the best one.

Parameters:

• Base classifier (bc)[-W] : It can be any classifier from WEKA.

• Inference Iterations (ii)[-Iy]: The number of iterations to search the output space

at test time. This parameter is bounded by the values in the interval: {ii ∈ Z | 1 <

ii ≤ 100}.
Default value: 10.

• Chain Iterations (chi)[-Is]: The number of iterations to search the chain space at

training time. This parameter is bounded by the values in the interval: {chi ∈
Z | 50 < chi ≤ 1500}.
Default value: 50.

• Beta (β)[-B]: It sets the factor with which the temperature (and thus the acceptance

probability of steps in the wrong direction in the search space) is decreased in each

iteration of the simulated annealing search. This parameter is bounded by the

interval: {β ∈ Z | 0.01 ≤ β ≤ 0.99}.
Default value: 0.03.

• Temperature switch (ts)[-O]: It sets the use of simulated annealing search and,

when it is activated, it cools the chain down over time (from the beginning of the

chain). It may take the values zero (0) or one (1). The value zero (0) means that no

A.5. Search Space – Multi-Label Classification Algorithms 187

temperature is used, i.e., the parameter β is ignored internally by PMCC. If using

ts = 1, this sets the use of the β constant.

Default value: 0.

• Population size (ps)[-M]: It sets the population size. It should be always smaller

than the total number of chains evaluated (Is). This parameter takes one of the

values defined by the following interval:

{ps ∈ Z | 1 ≤ ps ≤ 50}.
Default value: 10.

• Payoff function (pof)[-P]): It sets the payoff function to evaluate the chains when

performing the search. It can take 23 values: 1. Accuracy; 2. Jaccard index; 3.

Hamming score; 4. Exact match; 5. Jaccard distance; 6. Hamming loss; 7. Zero

One loss; 8. Harmonic score; 9. One error; 10. Rank loss; 11. Average precisio; 12.

Log Loss limited by the number of labels; 13. Log loss, limited by the number of

instances; 14. Micro Precision; 15. Micro Recall; 16. Macro Precision; 17. Macro

Recall; 18. F1 micro averaged; 19. F1 macro averaged by example; 20. F1 macro

averaged by label; 21. AUPRC macro averaged; 22. AUROC macro averaged; 23.

Levenshtein distance.

Default value: Exact match.

Dependencies/Constraints:

1. The parameter “population size” must be smaller than the parameter “chain itera-

tions”.

Again, we studied the range of the parameters in the works of Read et al. [171].

However, the authors did not employ proper parameter tuning at the single-label level

nor at the multi-label level. During the work of Read et al. [171], a search is performed to

find the proper number of chain iterations in accordance with the payoff function. We are

using part of this study to define the range of the parameters. Nevertheless, parameters

β, temperature, and population size are not properly studied for the multi-label scenario.

A.5.9 Classifier Trellis

The Classifier Trellis (CT) method [172] builds classifier chains in a trellis structure

(rather than a cascaded chain). It is possible to set the width and type/connectivity of

the trellis and optionally to change the payoff function, which guides the placement of

nodes (labels) within the trellis. Parameters:

A.5. Search Space – Multi-Label Classification Algorithms 188

• Base classifier (bc)[-W] : It can be any classifier from WEKA.

• Width (w)[-H]: it determines the width of the trellis (0 for chain, i.e., w = L; -1

for a square trellis, i.e., w =
√
L, always using the default floor function to convert

it to an integer value). Thus, the trellis structure will always have w rows and L

nodes, in total, connected using directed edges.

Default value: -1.

• Dependency type (dp)[-X]: The way to measure and find the label dependencies. It

may take nine categorical values: 1. C (co-occurrence counts); 2. I (mutual infor-

mation); 3. Ib (mutual information using binary approximation); 4. Ibf (Mutual

information using fast binary approximation); 5. H (Conditional information); 6.

Hbf (Conditional information using fast binary approximation); 7. X (Chi-squared);

8. F (Frequencies); 9. No label dependence.

Default value: Ibf.

• Inference Iterations (ii)[-Iy]: The number of iterations to search the output space

at test time. This parameter is bounded by the values in the interval: {ii ∈ Z | 1 ≤
ii ≤ 100}.
Default value: 10.

• Chain Iterations (chi)[-Is]: The number of iterations to search the chain space at

train time. This parameter is bounded by the values in the interval: {chi ∈ Z | 1 <

chi ≤ 1500}.
Default value: 0.

• Density (d)[-L]: It determines the neighborhood density (the number of neighbors

for each node in the trellis). The default value for the density parameter is one (1),

and zero (0) indicates a BR classifier. Thus, this parameter is not allowed to take

the value zero, being restricted by the interval: {d ∈ Z | 1 ≤ d ≤
√
L+1}, where L

is the total number of labels.

Default value: 1.

• Payoff function (pof)[-P]): It sets the payoff function to evaluate the chains when

performing the search. It can take 23 values: 1. Accuracy; 2. Jaccard index; 3.

Hamming score; 4. Exact match; 5. Jaccard distance; 6. Hamming loss; 7. Zero

One loss; 8. Harmonic score; 9. One error; 10. Rank loss; 11. Average precisio; 12.

Log Loss limited by the number of labels; 13. Log loss, limited by the number of

instances; 14. Micro Precision; 15. Micro Recall; 16. Macro Precision; 17. Macro

Recall; 18. F1 micro averaged; 19. F1 macro averaged by example; 20. F1 macro

averaged by label; 21. AUPRC macro averaged; 22. AUROC macro averaged; 23.

A.5. Search Space – Multi-Label Classification Algorithms 189

Levenshtein distance.

Default value: Exact match.

Dependencies/Constraints:

1. If the width w = L (w = 0), the density d = 1. Otherwise, if w =
√
L (w = -1), the

density d should be
√
L+ 1, at most, i.e., d ≤

√
L+ 1.

A.5.10 Conditional Dependency Networks

The Conditional Dependency Networks (CDN) method [95] builds a fully connected

undirected network, where each node (label) is connected to each other node (label). Each

node is a binary classifier that predicts p(yj|x, y1, ..., yj−1, ..., yL). Then, inference is done

using the Gibbs Sampling method over I iterations. Additionally, the final Ic iterations

are used to collect the marginal probabilities, which become the prediction (y[]).

Parameters:

• Base classifier (bc)[-W] : It can be any classifier from WEKA.

• Iterations (i)[-I]: The total number of iterations to perform in CDT. This parameter

is restricted by the interval: {i ∈ Z | 100 < i ≤ 1000}.
Default value: 1000.

• Collection iterations (ci)[-Ic] The number of collection iterations used to compute

the output class probabilities in the Gibbs Sampling method. The parameter ci is

restricted by the interval: {ci ∈ Z | 1 ≤ ci ≤ 100}.
Default value: 100.

Dependencies/Constraints:

1. The collections will happen just after (i−ci) iterations. So, i should be substantially

greater than ci in order to make the algorithm work properly.

A.5.11 Conditional Dependency Trellis

The Conditional Dependency Trellis (CDT) method [95, 172] is similar to the CDN

approach. However, it constructs a trellis structure (like CT) instead of a fully connected

A.5. Search Space – Multi-Label Classification Algorithms 190

network. Parameters:

• Base classifier (bc)[-W] : It can be any classifier from WEKA.

• Width (w)[-H]: it determines the width of the trellis (0 for chain, i.e., w = L; -1

for a square trellis, i.e., w =
√
L, always using the default floor function to convert

it to an integer value). Thus, the trellis structure will always have w rows and L

nodes, in total, connected using directed edges.

Default value: -1.

• Dependency type (dp)[-X]: The way to measure and find the label dependencies. It

may take nine categorical values: 1. C (co-occurrence counts); 2. I (mutual infor-

mation); 3. Ib (mutual information using binary approximation); 4. Ibf (Mutual

information using fast binary approximation); 5. H (Conditional information); 6.

Hbf (Conditional information using fast binary approximation); 7. X (Chi-squared);

8. F (Frequencies); 9. None (Using empty).

Default value: None.

• Density (d)[-L]: It determines the neighborhood density (the number of neighbors

for each node in the trellis). The default value for the density parameter is one (1),

and zero (0) indicates a BR classifier. Thus, this parameter is not allowed to take

the value zero, being restricted by the interval: {d ∈ Z | 1 ≤ d ≤
√
L+1}, where L

is the total number of labels.

Default value: 1.

• Iterations (i)[-I]: The total number of iterations to perform in CDT. This parameter

is restricted by the interval: {i ∈ Z | 100 < i ≤ 1000}.
Default value: 1000.

• Collection iterations (ci)[-Ic] The number of collection iterations used to compute

the output class probabilities in the Gibbs Sampling method. The parameter ci is

restricted by the interval: {ci ∈ Z | 1 ≤ ci ≤ 100}.
Default value: 100.

Dependencies/Constraints:

1. If the width w = L (w = 0), the density d = 1. Otherwise, if w =
√
L (w = -1), the

density d should be
√
L+ 1, at most, i.e., d ≤

√
L+ 1.

2. The collections will happen just after (i−ci) iterations. So, i should be substantially

greater than ci in order to make the algorithm work properly.

A.5. Search Space – Multi-Label Classification Algorithms 191

A.5.12 Four-Class Pairwise Classification

The Four-class PairWise Classification (FW) method [176] trains a multi-class

base classifier for each pair of labels. Thus, the number of classifiers is (L∗(L−1))
2

in total

(where L is the number of labels), each one with four possible class values (00,01,10,11)

representing the possible combinations of relevant (1)/irrelevant (0) values for each label

in the label pair. It uses a voting and a threshold scheme at testing time where, e.g., 01

from pair jk gives one vote to label k, and any label with a number of votes above the

threshold is considered relevant. It uses the same threshold specified in Section A.4 to

define the relevance of a label. Parameters:

• Base classifier (bc)[-W] : It can be any classifier from WEKA.

There are no dependencies/constraints in FW.

A.5.13 Ranking and Threshold

The Ranking and Threshold (RT) method [169] duplicates each multi-labeled ex-

ample and assigns one of the labels (only) to each copy. After that, it trains a regular

multi-class base classifier. At test time, a threshold separates relevant from irrelevant

labels using the posterior probability for each class value (i.e., label). It uses the same

threshold specified in Section A.4 to define the relevance of a label. Parameters:

• Base classifier (bc)[-W] : It can be any classifier from WEKA.

There are no dependencies/constraints in RT.

A.5.14 Label Combination

The Label Combination (LC) method [204], also known as Label Powerset (LP),

treats each label combination as a single class in a multi-class learning scheme. The set

of possible values of each class is the powerset of the set of labels.

• Base classifier (bc)[-W] : It can be any classifier from WEKA.

A.5. Search Space – Multi-Label Classification Algorithms 192

There are no dependencies/constraints in LC.

A.5.15 Pruned Sets

The Pruned Sets (PS) method [168, 169] was created to use the power of LC’s

labelset-based paradigm without the disadvantages of such method. In order to do this,

this algorithm has two important steps: a pruning step and a label-set subsampling step.

The pruning step removes infrequently occurring label sets from the training data. This

removes unnecessary complexity from the LC-transformed data by reducing the number

of labelsets. Nevertheless, PS does not simply discard the pruned examples. Instead of

doing that, PS subsamples the labelsets of these examples for label subsets, which occur

more frequently in the training data. It then attaches these label sets to the example,

creating new examples and reintroducing them into the training. It subsamples these

labelsets pv times to produce pv new examples, where pv is the pruning value (defined in

the following items).

After these steps, it trains a standard LC classifier. The idea of the method is

to reduce the number of unique class values that would otherwise need to be learned by

LC. PS achieves its best performance when used in an Ensemble (e.g., EnsembleML).

Parameters:

• Base classifier (bc)[-W] : It can be any classifier from WEKA.

• Pruning value (pv)[-P]: It defines an infrequent labelset as one which occurs less

than p times in the data. p = 0 would mean that the LC classifier is learned. Thus,

this parameter is bounded by the following interval: {pv ∈ Z | 1 ≤ pv ≤ 5}.
Default value: 0.

• Subsampling value (sv)[-N]: The label set of each pruned example (in accordance

with the examples pruned by the use of the previous parameter, i.e., the pruning

value) becomes a candidate for label-set subsampling. The PS method subsamples

the label sets of pruned examples to create examples that do meet the pruning crite-

rion. So, the subsample value defines the (maximum) number of frequent labelsets

to subsample from the infrequent labelsets. This parameter is bounded by the fol-

lowing interval: {sv ∈ Z | 0 ≤ sv ≤ 5}.
Default value: 0.

There are no dependencies/constraints between the parameters of PS. Additionally,

there is a proper study in the work of Read [169] about the range of these two parameters.

A.5. Search Space – Multi-Label Classification Algorithms 193

A.5.16 Pruned Sets with Threshold

The Pruned Sets method with a Threshold (PSt) [168, 169, 174], which is a mod-

ification of PS that can form new label sets at classification (i.e., test) time by using

a threshold function. Given the posterior of the label classes (combinations) and the

number of labels, it returns the distribution across labels. Using the threshold (defined

in Section A.4) could make the method to predict labelsets not seen in the training set,

differently from PS. Parameters:

• Base classifier (bc)[-W] : It can be any classifier from WEKA.

• Pruning value (pv)[-P]: It defines an infrequent labelset as one which occurs less

than p times in the data. p = 0 would mean that the LC classifier is learned. Thus,

this parameter is bounded by the following interval: {pv ∈ Z | 1 ≤ pv ≤ 5}.
Default value: 0.

• Subsampling value (sv)[-N]: The label set of each pruned example (in accordance

with the examples pruned by the use of the previous parameter, i.e., the pruning

value) becomes a candidate for label-set subsampling. The PSt method subsam-

ples the label sets of pruned examples to create examples that do meet the pruning

criterion. So, the subsample value defines the (maximum) number of frequent la-

belsets to subsample from the infrequent labelsets. This parameter is bounded by

the following interval: {sv ∈ Z | 0 ≤ sv ≤ 5}.
Default value: 0.

There are no dependencies/constraints between the parameters of PSt. Addition-

ally, there is a proper study in the work of Read [169] about the range of these two

parameters (pv and sv). The parameters are the same as PS. The main thing that is

changed in PSt when compared to PS occurs at the test time.

A.5.17 Random k-Label Pruned Sets

The RAndom k-labEL Pruned Sets (RAkEL) method [169, 206, 205] randomly

draws M subsets of labels, each with k labels, from the set of labels, and trains PS upon

each one. Finally, it combines label votes from the PS classifiers to get a label-vector

prediction. Parameters:

A.5. Search Space – Multi-Label Classification Algorithms 194

• Base classifier (bc)[-W] : It can be any classifier from WEKA.

• Pruning value (pv)[-P]: It prunes an infrequent labelset when it occurs less than pv

times in the data. pv = 0 means that the LC classifier is learned. Thus, this value

is not allowed for RAkEL, which makes this parameter bounded by the following

interval:

{pv ∈ Z | 1 ≤ pv ≤ 5}.
Default value: 0.

• Subsampling value (sv)[-N]: The label set of each pruned example (in accordance

with the examples pruned by the use of the previous parameter, i.e., the pruning

value) becomes a candidate for label-set subsampling. This version of RAKEL in

MEKA subsamples the label sets of pruned examples to create examples which do

meet the pruning criterion. So, the subsample value defines the (maximum) number

of frequent labelsets to subsample from the infrequent labelsets. This parameter is

bounded by the following interval: {sv ∈ Z | 0 ≤ sv ≤ 5}.
Default value: 0.

• Number of labels for each subset (les)[-k]: It defines the number of labels in each

label subset. This parameter should be bounded by the interval [136]:

{les ∈ Z | 1 ≤ les ≤ L
2
}, where L is the number of labels.

Default value: 3.

• Number of subsets to run in an ensemble (sre)[-M]): This parameter controls the

number of models to build in an ensemble and take values in accordance to the

following interval [136]:

{sre ∈ Z | 2 ≤ sre ≤ min(2 · L, 100)}, where L is the number of labels.

Default value: 10.

There are no dependencies/constraints between the parameters of RAkEL. Ad-

ditionally, we followed the work of Read [169] about the range of the subsampling and

pruning values. The other two parameters (number of labels in each subset and number

of models to build in an ensemble) were defined in accordance with the work of Madjarov

et al. [136].

A.5.18 Random k-Label Disjoint Pruned Sets

The RAndom k-labEL Disjoint Pruned Sets (RAkELd) method [169, 206, 205]

takes a random partition of labels, but unlike RAkEL, the labelsets are disjoint/non-

A.5. Search Space – Multi-Label Classification Algorithms 195

overlapping subsets. Parameters:

• Base classifier (bc)[-W] : It can be any classifier from WEKA.

• Pruning value (pv)[-P]: It prunes an infrequent labelset when it occurs less than p

times in the data. pv = 0 means that the LC classifier is learned. Thus, this value

is not allowed for RAkEL, which makes this parameter bounded by the following

interval:

{pv ∈ Z | 1 ≤ pv ≤ 5}.
Default value: 0.

• Subsampling value (sv)[-N]: The label set of each pruned example (in accordance

with the examples pruned by the use of the previous parameter, i.e., the pruning

value) becomes a candidate for label-set subsampling. The version of RAKEd in

MEKA subsamples the label sets of pruned examples to create examples that do

meet the pruning criterion. So, the subsample value defines the (maximum) number

of frequent labelsets to subsample from the infrequent labelsets. This parameter is

bounded by the following interval: {sv ∈ Z | 0 ≤ sv ≤ 5}.
Default value: 0.

• Number of subsets to run in an ensemble (sre)[-M]): This parameter controls the

number of models to build in an ensemble and take values in accordance to the

following interval [136]:

{sre ∈ Z | 2 ≤ sre ≤ min(2 · L, 100)}, where L is the number of labels.

Default value: 10.

There are no dependencies/constraints between the parameters of RAkELd. Addi-

tionally, we followed the work of Read [169] again to set the range of the subsampling and

pruning values. The other two parameters (number of labels in each subset and number

of models to build in an ensemble) were defined in accordance with the work of Madjarov

et al. [136].

A.5.19 Multi-Label Back-Propagation Neural Network

The Multi-Label Back-Propagation Neural Network (ML-BPNN) method [173,

225] is a standard Back-Propagation Neural Network [181] with multiple outputs that

correspond to multiple labels. That is, each node in the output layer corresponds to a

different class label. Parameters:

A.6. Search Space – Multi-Label Meta Classification Algorithms 196

• Number of epochs (ne)[-E]: It is the number of iterations to train the neural net-

work. It is restricted by the interval: {ne ∈ Z | 10 ≤ ne ≤ 1000}.
Default value: 100.

• Number of hidden units (nhu)[-H]: It defines the number of hidden units in the neu-

ral network. It is important to mention that the version of ML-BPNN in MEKA

is limited to one hidden layer with nhu hidden units. This parameter takes values

in proportion to the number of attributes (received as input). Thus, the number of

hidden units of the network can vary from 20% to 100% of the number of attributes:

{nhu ∈ Z | 0.2 · number of attributes ≤ nhu ≤ number of attributes}. The pro-

portion will always be rounded to the nearest integer.

Default value: 10.

• Learning rate (lrt)[-r]: The amount by which the weights are updated during train-

ing. It is restricted by the interval:

{lr ∈ R | 0.001 ≤ lr ≤ 0.1}.
Default value: 0.1.

• Momentum (m)[-m]: It is applied to the weights during updating. It is restricted

by the interval: {m ∈ R | 0.1 ≤ m ≤ 0.8}.
Default value: 0.1.

There are no dependencies/constraints between the parameters of ML-BPNN. Ad-

ditionally, the range of values for the parameters number of epochs, momentum, and

learning rate were set following the work of Read and Perez-Cruz [173]. The only param-

eter that was defined based on a different work [225] was the number of hidden units,

nhu.

A.6 Search Space – Multi-Label Meta Classification

Algorithms

In this section, we describe the search space of multi-label meta-algorithms in

MEKA. It is important to say that some of the multi-label classifiers (presented in the

last section) do not perform very well when used as the multi-label base classifier in a

meta classifier. This is due to the poor scalability of such combination (meta multi-label

and base multi-label). Examples of methods that would not scale up well are: MCC,

PCC, PMCC, CDN, and CDT (these two methods involve Gibbs sampling, which may be

A.6. Search Space – Multi-Label Meta Classification Algorithms 197

too expensive in an ensemble), RAkEL and RAkELd (these two methods are ensembles

by themselves, and using an ensemble as base classifier would lead to a very slow ensemble

of ensembles). This must be considered in the grammar or directly in the execution of

the algorithm (i.e., setting a time budget for such algorithms when they are used at the

multi-label base level).

A.6.1 Subset Mapper

The Subset Mapper (SM) method [186] maps the output of a multi-label classi-

fier to a known label combination using the Hamming distance, i.e., it checks what label

combination (label subsets) from the training set has the closest distance to the predicted

label combination on the test instance using the probability distribution of the label sub-

set for this instance. In order to do that, SM transforms the probability distribution array

of the label subset into a binary array. For each label subset in the training set (also rep-

resented by a binary array), it calculates the Hamming distance to the binary probability

distribution array, outputting the closest label subset to the predicted distribution array.

SM will map this label subset to this particular test instance. Parameters:

• Multi-label classifier(mlc)[-W]: The multi-label method that creates a model at the

multi-label classification level.

Dependencies/Constraints:

1. The multi-label classification method can be any one described in Section A.5.

A.6.2 Bagging of Multi-Label Classifiers

The Bagging of Multi-Label Classifiers (BaggingML) [169] is a method that com-

bines several multi-label classifiers using Bootstrap AGGregatING (Bagging) [24]. It

randomly sets weights higher than zero to certain instances, on only those instances are

chosen for the bag. The parameter “bag percent size” is then not used as the number of

instances in the bag is just based on the weight values. Thus, the members of the ensemble

could have 100% of the instances if all of them have a weight assigned. Parameters:

A.6. Search Space – Multi-Label Meta Classification Algorithms 198

• Multi-label classifier(mlc)[-W]: The multi-label method that creates a model at the

base multi-label classification level.

• Number of iterations (i)[-I]: The number of iterations to perform, i.e., the number

of members in the ensemble. This parameter is restricted by the interval: {i ∈
Z | 10 ≤ i ≤ 50}. The range of the number of iterations for this ensemble method

was defined by Read’s thesis [169].

Default value: 10.

Dependencies/Constraints:

1. The multi-label classification method can be any one described in Section A.5, except

for BCC, which is not suitable for this meta-learner.

A.6.3 Bagging of Multi-Label Classifiers with Duplicates

BaggingML with Duplicates (BaggingMLDup) [169] is a method that also com-

bines several multi-label classifiers using Bootstrap AGGregatING. However, it uses the

parameter “bag size percent” to define a specific number of instances for each member

(classifier) of the ensemble. After that, it randomly samples instances, being able to sam-

ple the same instance (duplicates) for the bag. This method does not use any weight to

select the instances for the members of the ensemble. Parameters:

• Multi-label classifier (mlc)[-W]: The multi-label method that creates a model at the

multi-label classification level.

• Bag size percent (bsp)[-P]: The size of the bag in the percentage of the training set

size (number of training instances) and it is defined by the interval: {bsp ∈ Z | 10 ≤
bsp ≤ 100}.
Default value: 67.

• Number of iterations (i)[-I]: The number of iterations to perform, i.e., the number

of members in the ensemble. This parameter is restricted by the interval: {i ∈
Z | 10 ≤ i ≤ 50}.
Default value: 10.

Dependencies/Constraints:

1. The multi-label classification method can be any one described in Section A.5, except

for BCC, which is not suitable for this meta-learner.

A.6. Search Space – Multi-Label Meta Classification Algorithms 199

The range of the number of iterations for this ensemble method was defined by

Read’s thesis [169]. The parameter “bag size percent” is defined in the MEKA documen-

tation.

A.6.4 Ensemble of Multi-Label Classifiers

The Ensemble of Multi-Label Classifiers (EnsembleML) [169] is a method that

combines several multi-label classifiers in a simple-subset ensemble. This method is very

similar to BaggingMLDup. The only difference is that BaggingMLDup allows sampling

with replacement for each model, whereas EnsembleML uses sampling without replace-

ment.

Parameters:

• Multi-label classifier (mlc)[-W]: The multi-label method that creates a model at the

base multi-label classification level.

• Bag size percent (bsp)[-P]: The size of the bag in the percentage of the training size

(number of training instances) and it is defined by the interval: {bsp ∈ Z | 52 ≤
bsp ≤ 72}.
Default value: 67.

• Number of iterations (i)[-I]: The number of iterations to perform, i.e., the number

of members in the ensemble. This parameter is restricted by the interval: {i ∈
Z | 10 ≤ i ≤ 50}.
Default value: 10.

Dependencies/Constraints:

1. The multi-label classification method can be any one described in Section A.5, except

for BCC, which is not suitable for this meta-learner.

The range of the number of iterations for this ensemble method was defined by

Read’s thesis [169]. Additionally, in his thesis, the author mentioned that they found that

values around 62% are the best ones for the parameter “bag size percent” in an ensemble

without replacement, which is the case. Thus, we are trying to set the range for this

parameter introducing lower and upper bounds close to this value (10% smaller and 10%

greater).

A.6. Search Space – Multi-Label Meta Classification Algorithms 200

A.6.5 Random Subspace Multi-Label

The Random Subspace Multi-Label (RSML) method [25] combines several multi-

label classifiers in an ensemble where the attribute space and the instance space used for

building each model are random subsets from the original space. In other words, RSML

subsamples the attribute space and instance space randomly for each ensemble member.

Basically, it is a generalized version of Random Forests. Additionally, it is computationally

cheaper than EnsembleML for the same number of models in the ensemble and the same

value of bag size percent.

Parameters:

• Multi-label classifier (mlc)[-W]: The multi-label method that creates a model at the

base multi-label classification level.

• Bag size percent (bsp)[-P]: The size of the bag in the percentage of the training

set size (number of training instances), and it is defined by the interval: {bsp ∈
Z | 10 ≤ bsp ≤ 100}.
Default value: 67.

• Number of iterations (i)[-I]: The number of iterations to perform, i.e., the number

of members in the ensemble. This parameter is restricted by the interval: {i ∈
Z | 10 ≤ i ≤ 50}.
Default value: 10.

• Attribute percent (ap)[-A]: The size of the attribute space, as a percentage of total

attribute space size (number of attributes). This parameter is bounded by the

following interval: {ap ∈ Z | 10 ≤ ap ≤ 100}.
Default value: 50.

Dependencies/Constraints:

1. The multi-label classification method can be any one described in Section A.5.

The range of the number of iterations for this ensemble method was defined based

on Read’s thesis [169]. The range of values for this parameter also considers scalability

issues, as we need to run a multi-label algorithm many times in an ensemble. The param-

eter “bag size percent” is defined in the MEKA documentation. The attribute percentage

was set in accordance with the single-label version for the same method. This was done

because there is not any work that studies this algorithm for multi-label classification.

A.6. Search Space – Multi-Label Meta Classification Algorithms 201

A.6.6 Expectation Maximization

In the Expectation Maximization (EMax) method [53], a specified multi-label clas-

sifier is built on the training data. This model is then used to classify the training data.

The confidence with which instances are classified is used to reweight them. This data is

then used to retrain the classifier. This cycle continues (‘EM’-style) for I iterations. The

final model is used to classify the test data. Because of the weighting, it is advised to use

a classifier that gives good confidence (probabilistic) outputs. Parameters:

• Multi-label classifier (mlc)[-W]: The multi-label method that creates a model at the

multi-label classification level.

• Number of iterations (i)[-I]: The number of iterations to perform. This parameter

is restricted by the interval: {i ∈ Z | 10 ≤ i ≤ 50}.
Default value: 10.

Dependencies/Constraints:

1. The classifier at the base multi-label classification level should be capable of produc-

ing probabilistic predictions. However, in our preliminary tests, most multi-label

classification methods described in Section A.5 were suitable for this meta-learner,

except for PMCC. Thus, we will use all the suitable methods in accordance with

these experiments at the base multi-label classification level.

The range of the number of iterations for this ensemble method was defined based

on Read’s thesis [169]. The range of values for this parameter also considers scalability

issues, as we need to run a multi-label algorithm many times in an ensemble. This was

done because there is no appropriate work that studies this algorithm for multi-label

classification.

A.6.7 Classification Maximization

The Classification Maximization (CMax) method [53, 176] trains a classifier with

labeled and unlabeled data (semi-supervised) learning using the Classification Expectation

algorithm, which is a hard version of the EM algorithm, as it does not update the instance

weights using (a product factor of) the probability distribution produced by the classifier.

Instead, it sets to zero (0.0) or one (1.0) the weight of any instance in the dataset. Unlike

A.6. Search Space – Multi-Label Meta Classification Algorithms 202

EM, it can use any classifier, not necessarily one that gives good probabilistic outputs.

Parameters:

• Multi-label classifier (mlc)[-W]: The multi-label method that creates a model at the

base multi-label classification level.

• Number of iterations (i)[-I]: The number of iterations to perform. This parameter

is restricted by the interval: {i ∈ Z | 10 ≤ i ≤ 50}.
Default value: 10.

Dependencies/Constraints:

1. The multi-label classification method can be any one described in Section A.5, except

for PMCC, which is not suitable for this meta-learner.

The range of the number of iterations for this ensemble method was defined based

on Read’s thesis [169]. The range of values for this parameter also considers scalability

issues, as we need to run a multi-label algorithm many times in an ensemble. This was

done because there is no appropriate work that studies this algorithm for multi-label

classification.

203

List of Abbreviations and Acronyms

|L| Number of Labels.

3SR 3sources reuters1000.

AA Algorithm Adaptation.

AdaM1 Ada Boost M1.

AI Artificial Intelligence.

ASC Attribute Selection Classifier.

ATM Auto-Tuned Models.

AutoML Automated Machine Learning.

Auto-sklearn Automated Scikit-Learn.

Auto-WEKA Automated WEKA.

Avg. Rank. Average Ranking.

Avg. Val. Average Values.

AvgPrec Average Precision.

BaggingML Bagging of Multi-Label Classifiers.

BaggingMLDup Bagging of Multi-Label Classifiers with Duplicates.

BCC Bayesian Classifier Chain.

BNC Bayesian Network Classifier.

BNF Backus Naur Form.

BO Bayesian Optimization.

BR Binary Relevance.

BRD Birds.

BRq Quick Version of Binary Relevance.

List of Abbreviations and Acronyms 204

BS Beam Search.

BTX Bibtex.

CAL CAL500.

Card. Cardinality.

CASH Combined Algorithm Selection and Hyper-parameter.

CC Classifier Chain.

CCq Quick Version of Classifier Chain.

CD Critical Difference.

CDN Conditional Dependency Networks.

CDT Conditional Dependency Trellis.

CFG Context-Free Grammar.

CG Current Number of Generations.

CHD CHD 49.

CMax Classification Maximization.

Cov Coverage.

CT Classifier Trellis.

DBM Stacked Boltzmann Machine.

Dens. Density.

Div. Diversity.

DS Decision Stump.

DT Decision Table.

DTree Decision Tree.

EA Evolutionary Algorithm.

EAS-NIS Exponential Attribute Selection, No Instance Selection.

EAS-PIS Exponential Attribute Selection, Polynomial Instance Selection.

List of Abbreviations and Acronyms 205

EBR Ensemble of Binary Relevance.

ECC Ensemble of Classifier Chains.

EI Expected Improvement.

EKF Expert Knowledge Filter.

ELP Ensemble of Label Powersets.

EM Exact Match.

EMax Expectation Maximization.

EME Evolutionary Multi-Label Ensemble.

EMT Emotions.

ENR Enron.

Ens. Ensemble.

EnsembleML Ensemble of Multi-Label Classifiers.

EPS Ensemble of Pruned Sets.

F1 F1-measure.

FLG Flags.

FM F1 Macro Averaged by Label.

FN False Negatives.

FP False Positives.

FW Four-Class Pairwise Classification.

G3P-ML Grammar-Guided Genetic Programming Algorithm for Multi-Label Classifi-

cation.

GA Genetic Algorithm.

GA-Auto-MLC Genetic Algorithm for Automated Multi-Label Classification.

GBS Genbase.

GGP Grammar-based Genetic Programming.

GP Genetic Programming.

List of Abbreviations and Acronyms 206

GPC Number of Generations to Population’s Convergence.

GPG GpositiveGO.

GP-ML Genetic Programming for Machine Learning.

GPP GpositivePseAAC.

GSS Generating Set Search.

HL Hamming Loss.

HOMER Hierarchy of Multi-Label Classifiers.

HP Hyper-Parameters.

HPA HumanPseAAC.

HTN Hierarchical Task Networks.

JRip Java Version for RIPPER.

K Number of Cross-validation folds.

K* K Star.

KNN K-Nearest Neighbors.

L Labels.

LF Loss Function.

LGL Langlog.

LHS Latin Hypercube Sample.

LMT Logistic Model Trees.

LogR Logistic Regression.

LP Label Powerset.

LR Label Ranking.

Lr Learning Set.

LTPOT Layered TPOT.

LWL Locally Weighted Learning.

List of Abbreviations and Acronyms 207

m Number of Attributes/Features.

M2CC Monte-Carlo Classifier Chain (Second Version).

MBR Meta Binary Relevance.

MCC Monte-Carlo Classifier Chain (First Version).

MDR Multifactor Dimensionality Reduction.

MED Medical.

Meta-MLC Meta-Algorithms for Multi-Label Classification.

Meta-SLC Meta-Algorithms for Single-Label Classification.

mGP-ML Multi-objective Version of GP-ML.

ML Machine Learning.

ML2-Plan Multi-Label ML-Plan.

ML-BPNN Multi-Label Back Propagation Neural Network.

MLC Multi-Label Classification.

ML-C4.5 Multi-Label Version of C4.5 Decision Tree Algorithm.

ML-DBPNN Multi-Label Deep Back Propagation Neural Network.

ML-KNN Multi-Label K-Nearest Neighbors.

MLP Multi-Layer Perceptron.

MLR Multi-Label Ranking.

n Number of Instances/Examples.

NAS-NIS No Attribute Selection, No Instance Selection.

NAS-PIS No Attribute Selection, Polynomial Instance Selection.

NB Näıve Bayes.

NBM Näıve Bayes Multinomial.

NFL No Free Lunch.

NSGA-II Non-dominated Sorting Genetic Algorithm II.

OneR One Rule.

List of Abbreviations and Acronyms 208

PAS-NIS Polynomial Attribute Selection, No Instance Selection.

PAS-PIS Polynomial Attribute Selection, Polynomial Instance Selection.

PCC Probabilistic Classifier Chains.

PCT Prediction Clustering Tree.

PMCC Population of MCC.

PMF-AutoML Probabilistic Matrix Factorization for AutoML.

PPA PlantPseAAC.

PS Pruned Sets.

PSt Pruned Set with Threshold.

PT Problem Transformation.

q Number of Labels.

RAkEL Random k-Label Pruned Sets.

RAkELd Random k-Label Disjoint Pruned Sets.

Rank-SVM Ranking-based Support Vector Machines.

RBM Restricted Boltzmann Machine.

RC Random Committee.

RECIPE Resilient Classification Pipeline Evolution.

RF Random Forest.

RF-PCT Random Forest of Predictive Clustering Trees.

RIPPER Repeated Incremental Pruning to Produce Error Reduction.

RL Ranking Loss.

ROC Receiver Operating Characteristic.

RQ Research Question.

RS Random Search.

RSML Random Subspace Multi-Label.

List of Abbreviations and Acronyms 209

RSS Random Subspace.

RT Ranking and Threshold.

RTree Random Tree.

SC Stopping Criteria.

SCN Scene.

SGD Stochastic Gradient Descent.

sklearn Scikit-Learn.

SL Simple Logistic.

SLC Single-Label Classification.

SM Subset Mapper.

SMAC Sequential Model-based Algorithm Configuration.

SMBO Sequential Model-Based Optimization.

SMO Sequential Minimal Optimization.

Stat. Comp. Statistical Comparison.

STGP Strongly Typed Genetic Programming.

SVM Support Vector Machines.

TN True Negatives.

TP True Positives.

TPE Tree-structured Parzen Estimator.

TPOT Tree-based Pipeline Optimization Tool.

Ts Test Set.

Val Validation Set.

VP Voted Perceptron.

VPA VirusPseAAC.

WEKA Waikato Environment for Knowledge Analysis.

List of Abbreviations and Acronyms 210

WQT Water-quality.

XML Extensible Markup Language.

YST Yeast.

ZeroR Zero Rules.

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Thesis Organization

	2 Search and Optimization Methods
	2.1 Evolutionary Algorithms
	2.1.1 Genetic Algorithm
	2.1.2 Genetic Programming
	2.1.3 Grammar-Based Genetic Programming

	2.2 Bayesian Optimization Algorithms
	2.2.1 Tree-Structured Parzen Estimator
	2.2.2 Sequential Model-based Algorithm Configuration

	2.3 Final Remarks

	3 Multi-Label Classification
	3.1 Categorization of MLC Methods
	3.1.1 Problem Transformation Methods
	3.1.2 Algorithm Adaptation Methods
	3.1.3 Ensembles Methods
	3.1.4 Overview of the MLC Algorithms

	3.2 Evaluation in MLC
	3.2.1 Bipartition Measures
	3.2.1.1 Example-based Bipartition Measures
	3.2.1.2 Label-based Bipartition Measures

	3.2.2 Ranking Measures

	3.3 Final Remarks

	4 Automated Machine Learning
	4.1 A Categorization of the AutoML Methods
	4.2 Related Work on AutoML Methods for Selecting and Configuring ML Pipelines
	4.3 Related Work on Automated Multi-Label Classification
	4.4 Final Remarks

	5 AutoML Methods for Multi-label Classification
	5.1 General Framework
	5.2 Search Spaces for Automated Multi-Label Classification
	5.2.1 Components of the Search Spaces
	5.2.1.1 Multi-label Classification Algorithms
	5.2.1.2 Single-label Classification Algorithms

	5.2.2 Search Space Structure and Size
	5.2.3 A Detailed Description of the MLC Search Space

	5.3 Search Methods for Automated Multi-Label Classification
	5.3.1 Evolutionary-based Methods
	5.3.1.1 MLC Fitness Evaluation Process
	5.3.1.2 Genetic Algorithm for Automated Multi-Label Classification
	5.3.1.3 Automated Multi-Label Classification using Grammar-based Genetic Programming
	5.3.1.4 Automated Multi-Label Classification using Specialized Grammar-Based Genetic Programming

	5.3.2 Automated Multi-Label Classification using Bayesian Optimization
	5.3.2.1 Quality Function

	5.4 Multi-fidelity Methods for MLC
	5.5 Final Remarks

	6 Experimental Analysis
	6.1 Experimental Setup
	6.1.1 Datasets
	6.1.2 Parameter Setting
	6.1.3 Baseline Methods
	6.1.4 Statistical Comparisons

	6.2 Preliminary Comparison of the Proposed Methods
	6.3 Auto-MEKAspGGP's Hyper-Parameter Tuning
	6.3.1 Resampling the Training Set
	6.3.2 The Multi-Fidelity Approach
	6.3.3 Tuning the Inter/Intra-Species Crossover Probability

	6.4 Experimental Results
	6.4.1 Final Remarks

	6.5 Analysis of the Diversity of the Selected Algorithms
	6.5.1 Final Remarks

	6.6 Analysis of Convergence
	6.6.1 Final Remarks

	7 Conclusions and Future Work
	7.1 Issue 1: Proposing AutoML Methods for the Multi-label Classification Context
	7.2 Issue 2: Presence of an Exploration-Exploitation Trade-off in AutoML Methods
	7.3 Issue 3: The Impact of Constrained Time Budgets on the Performance of AutoML Methods
	7.4 Final Remarks
	7.5 Publications

	Bibliography
	A Multi-Label Classification Search Space in the MEKA Software
	A.1 Search Space – Algorithms from WEKA
	A.1.1 C4.5
	A.1.2 Logistic Model Trees
	A.1.3 Decision Stump
	A.1.4 Random Forest
	A.1.5 Random Tree
	A.1.6 REPTree
	A.1.7 Decision Table
	A.1.8 JRip
	A.1.9 One Rule
	A.1.10 PART
	A.1.11 Zero Rule
	A.1.12 K-Nearest Neighbors
	A.1.13 K*
	A.1.14 Voted Perceptron
	A.1.15 Multi-Layer Perceptron
	A.1.16 Stochastic Gradient Descent
	A.1.17 Sequential Minimal Optimization
	A.1.18 Logistic Regression
	A.1.19 Simple Logistic
	A.1.20 Naïve Bayes
	A.1.21 Bayesian Network Classifier
	A.1.22 Naïve Bayes Multinomial

	A.2 Search Space – Meta Classification Algorithms from WEKA
	A.2.1 Locally Weighted Learning
	A.2.2 Random Subspace
	A.2.3 Bagging of Single-Label Classifiers
	A.2.4 Random Committee
	A.2.5 Ada Boost M1

	A.3 Search Space – Preprocessing Algorithms from WEKA
	A.3.1 Attribute Selection Classifier

	A.4 Studying the Search Space of Multi-Label Classification Algorithms
	A.5 Search Space – Multi-Label Classification Algorithms
	A.5.1 Binary Relevance
	A.5.2 The `Quick' Version of Binary Relevance
	A.5.3 Classifier Chain
	A.5.4 The `Quick' Version of Classifier Chains
	A.5.5 Bayesian Classifier Chain
	A.5.6 (Bayes Optimal) Probabilistic Classifier Chain
	A.5.7 Monte-Carlo Classifier Chains
	A.5.8 Population of Monte-Carlo Classifier Chains
	A.5.9 Classifier Trellis
	A.5.10 Conditional Dependency Networks
	A.5.11 Conditional Dependency Trellis
	A.5.12 Four-Class Pairwise Classification
	A.5.13 Ranking and Threshold
	A.5.14 Label Combination
	A.5.15 Pruned Sets
	A.5.16 Pruned Sets with Threshold
	A.5.17 Random k-Label Pruned Sets
	A.5.18 Random k-Label Disjoint Pruned Sets
	A.5.19 Multi-Label Back-Propagation Neural Network

	A.6 Search Space – Multi-Label Meta Classification Algorithms
	A.6.1 Subset Mapper
	A.6.2 Bagging of Multi-Label Classifiers
	A.6.3 Bagging of Multi-Label Classifiers with Duplicates
	A.6.4 Ensemble of Multi-Label Classifiers
	A.6.5 Random Subspace Multi-Label
	A.6.6 Expectation Maximization
	A.6.7 Classification Maximization

	List of Abbreviations and Acronyms

