UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciéncias Exatas
Programa de Pé6s-Graduagao em Ciéncia da Computacao

Saffran de Rezende, Joao

Reactive Methodologies to Infinite Text Processing

Belo Horizonte
2021

Saffran de Rezende, Joao

Reactive Methodologies to Infinite Text Processing

Final Version

Thesis presented to the Graduate Program in Computer Sci-
ence of the Federal University of Minas Gerais in partial ful-
fillment of the requirements for the degree of Master in Com-
puter Science.

Advisor: Haniel Barbosa
Co-Advisor: Fernando Magno Quintao Pereira

Belo Horizonte
2021

© 2021, Joao Saffran de Rezende.
Todos os direitos reservados

Rezende, Joado Saffran de.

R467m Metodologias reativas para processamento de textos
infinitos [manuscrito] / Jodo Saffran de Rezende — 2021.
xxvi, 76 f. il.

Orientador: Haniel Moreira Barbosa.

Coorientador: Fernando Magno Quintao Pereira.
Dissertacdo (mestrado) - Universidade Federal de Minas
Gerais, Instituto de Ciéncias Exatas, Departamento de Ciéncia

da Computacao.
Referéncias: f.67-72

1. Computagéo — Teses. 2. Linguagem de programacao
(Computadores) — Teses. 3. Programacéao reativa — Teses. 4.
Analise (Gramatica de computador) — Teses. |. Barbosa, Haniel
Moreira. Il. Pereira, Fernando Magno Quintdo. Ill. Universidade
Federal de Minas Gerais, Instituto de Ciéncias Exatas,
Departamento de Ciéncia da Computacao. IV.Titulo.

CDU 519.6*33(043)

Ficha catalogréfica elaborada pela bibliotecéria Belkiz Inez Rezende Costa
CRB 62 Regido n° 1510

UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIENCIAS EXATAS _
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

FOLHA DE APROVACAO

METODOLOGIAS REATIVAS PARA PROCESSAMENTO DE TEXTOS
INFINITOS

JOAO SAFFRAN DE REZENDE

Dissertacio defendida e aprovada pela banca examinadora constituida pelos Senhores:

S [Pl

EL MOREIRA BARBOSA - Orientador
Departamento de Ciéncia da Computa¢io - UFMG

Pror. FERNANDO MAGNO QUINTAO PEREIRA - Coorientador

Departamento de Ciéncia da Computagio - UFMG

n'l ‘I
PROF. M&RI10 SERGIO FERREIRA ALVIM JUNIOR
Departamento de Ciéncia da Computagao - UFMG

Pror. RODRIGO %ERALDO RIBEIRO

Departamento/de Computagao - UFOP

Belo Horizonte, 23 de Marco de 2021.

“If I have seen further it is by standing on the shoulders of Giants.”
(Isaac Newton (1675))

Resumo

Um evento de string é a ocorréncia de um padrao especifico na saida textual de um pro-
grama. A captura e tratamento de eventos de string tem varias aplica¢bes, como anon-
imizacao de logs, tratamento de erros e notificagao de usuario, implementacao de web
crawlers e refatoracao de codigo. No entanto, nao ha hoje uma abordagem sistematica
para identificar e tratar eventos de string. Este trabalho define formalmente eventos de
string e apresenta a teoria e pratica de um framework para trata-los. Demonstramos a
eficacia deste framework propondo duas implementagoes. Primeiro, apresentamos ZHE-
FUSCATOR, um sistema que edita ocorréncias de informagoes confidenciais em logs de
banco de dados. ZHEFUSCATOR ¢ implementado como uma extensao da Java Virtual Ma-
chine (JVM). Ele intercepta padroes de interesse em tempo real e nao requer intervengoes
no codigo-fonte do programa a ser protegido. Demonstramos que o ZHEFUSCATOR ¢ até
14x mais rapido do que uma abordagem forca bruta, convergindo para uma gramatica
que descreve o formato do log de um banco de dados mysql depois de observar menos
de 10 exemplos deste logs. Demonstramos também que este processo de inferir formatos
de log e capturar eventos de string pode ser implementado com minimo overhead. Em
segundo lugar, apresentamos uma notagao geral para o tratamento de texto infinito. Essa
notacao destaca semelhancas em tarefas que, embora em principio diferentes, codificam
os mesmos desafios essenciais. Nos combinamos essa notacao propondo ZHELANG, uma
linguagem reativa que permite os usuarios combinarem operacoes basicas para identificar
e tratar eventos de string. Como prova de conceito, demonstramos como os operadores
de ZHELANG podem ser combinados para implementar aplicativos como: ofuscadores de

log e maquinas de busca.

Palavras-chave: Linguagens de Programacao, Programacao Reativa, Parsing, Sintese

de Graméticas

Abstract

A string event is the occurrence of a specific pattern in the textual output of a pro-
gram. The capture and treatment of string events has several applications, such as log
anonymization, error handling and user notification, implementing web crawler and per-
forming code refactoring. However, there is no systematic approach to identify and treat
string events today. This work formally defines string events and brings forward the the-
ory and practice of a general framework to handle them. We demonstrate the effectiveness
of this framework by presenting two implementations that use it.

First we introduce ZHEFUSCATOR, a system that redacts occurrences of sensitive
information in database logs. ZHEFUSCATOR is implemented as an extension to the Java
Virtual Machine (JVM). It intercepts patterns of interest on-the-fly and does not require
interventions in the source code of the protected program. It can infer log formats and
capture string events with minimal performance overhead. As an illustration, it is up to
14x faster than an equivalent brute-force approach, converging to a definitive grammar
after observing less than 10 examples from typical logs.

Second we introduce a general notation to the handling of infinite text process-
ing. This notation highlights commonalities in tasks that, although in principle different,
encode the same essential challenges. We have concretized this notation into ZHELANG,
a reactive language that lets users combine basic operations to identify and treat string
events. As a proof of concept, we demonstrate how ZHELANG operators can be combined

to implement applications as disparate as log obfuscators and search engines.

Keywords: Programming Languages, Reactive Programming, Parsing, Grammar Syn-

tesis

Contents

(I _Introduction|

[2° Background|

[2.1 Event Recognition: Challenges|.
B ZHEFUSCATORI

[3.1 Grammar Synthesis|
[3.1.1 Synthesizing the Grammar for the Host Language|
[3.1.2 On-Line Grammar Synthesis|
[3.1.3 Grammar Synthesis from Examples|
[3.1.3.1 Merging grammars|

3.1.3.2 [imitations: False Positivesl

[3.2 Case Study: the ZHEFUSCATOR|
3.2.1 User Interfacel
[3.2.2 Engineering|
323 Discussionl
[3.2.3.1 Lack of Negative Examples|

[3.2.3.2 Expressiveness|

3.3 FEvaluation|.
[3.3.1 RQI—Convergence|
[3.3.1.1 Logs from Database|

[3.3.1.2 Logs from the Operating System|

[3.3.2 RQ2—Eftectiveness| o o
[3.3.2.1 Parsing Eftectiveness|

[3.3.2.2 Effectiveness on an Actual Log File|

3.3.2.3 Increased Effectiveness via Amortized Costl

[3.3.2.4 Impact of the Tokenizer on Runtime|

[3.3.3 RQ3—Practicalityl00
[3.3.3.1 Overhead of Ireating one String Event|

[3.3.3.2 Deploying on Java Dacapol.

10
11

13
13

4 ZHELANGI
[4.1 Language Specification| L
[4.1.1 Core Operators|
[4.1.2 Syntax|
[4.1.2.1 Visual Representation|
MI3 Semantics
[4.1.4 Asymptotic Complexity|
[4.2 Implementation|
[4.2.1 Overview of the Implementation|.
[4.2.1.1 'The Implementation of Observers|
4212 The ZHESTREAM o o v v v vt v
4.2.1.3 The ZHEPANEL.
[4.2.2 Core Property: Isolation|
43 Use Cases
[4.3.1 Log Obfuscation|
[4.3.2 Web Crawling
[4.3.3 Program Refactoring|
[4.3.4 Analysis of the Runtime Behavior of ZHELANG|
b _Literature Review
b.1 Parsing|.
[5.2 Inductive Grammar Synthesis
[5.3 Program Fuzzing|
.4 Interactive Grammar Inferencef.o o000 o000
[5.5 String Events| oo
6 _Conclusion|

[Appendix A Proofs of Lemmas and Theorems|

43
43
43
45
45
46
49
50
51
51
53
b4
54
95
56
29
61
64

66
66
67
68
69
69

70

72

Chapter 1

Introduction

We define a string event as the occurrence of some pattern of interest in the output of
a program. Events can be produced automatically, for instance, as part of a log, or due
to interactions between programs and users, as in a chat system. Examples of events of
interest include the output of sensitive information that must be redacted or occurrences
of notifications requiring immediate attention. Since there is no unified framework for
capturing and treating string events, each software application handles them in specific
ways. Nevertheless, the building blocks to construct such infrastructure are already in
place: grammar synthesis [?, 7, ?|, function interception |?, ?|, parsing [?, ?] and reactive
programming |?]|. This work uses this body of knowledge to propose two approaches that
handle string events. First we define ZHEFUSCATOR, a framework that handles string
events for applications running in the Java Virtual Machine, as a way to anonymize
sensitive data in logs. Second, we propose a domain specific language, called ZHELANG,

to handle string events on infinite text streams.

1.1 String Events in the Context of Data Protection

In this work, we call a generator a computer program that produces a string ¢; at
each time slot i. Software that produces logs, like database servers and operating systems,
or content providers, such as e-mail and news services, can be understood as generators.
Usually, when part of the output of a generator is analyzed, this analysis is performed
off-line, i.e., after such text has been produced and stored. However, there are situations
in which such analysis must be carried out on-line, i.e., while it is being produced.

Data protection laws are one of the forces driving the need for on-line analyses.
As an example, the General Data Protection Regulation (GDPR)E], valid in the European
Economic Area since 2016, requires companies to anonymize personal data, whenever

this data is amenable to be used in ways not foreseen by the company’s terms of use [?].

"https://eugdpr.org/

https://eugdpr.org/

1.2. ZHEFUSCATOR Contributions 10

Discussions involving the European GDPR have inspired similar laws in other regions,
such as the California Consumer Privacy Acﬂ, effective since January of 2020 in the
American state of California, and the General Law of Personal Data Protection |?], taking
effect since August of 2020 in Brazil.

Data protection laws bear an impact on log generation, since logs should not leak
personal data. However, many software systems have been designed and implemented
before the advent of these laws. Adapting these systems to accommodate privacy is an
expensive endeavor inasmuch as such adaptation entails modifications in legacy code.
However, in this work, we demonstrate that it is possible to filter logs while they are
produced, by projecting this problem onto the general framework of string events. The
appearance of sensitive information in a log is a string event. Given the right framework,
this event can be detected and treated on-the-fly. Nevertheless, the creation and deploy-
ment of this framework involves theoretical and practical challenges, which we discuss in

the next sections.

1.2 ZHEFUSCATOR Contributions

We describe in Chapter |3 an on-line grammar synthesis algorithm that incremen-
tally over-approximates a grammar for any language (Section . Our grammars fit into
a format henceforth called Heap-Chomsky Normal Form (Section [3.1.1), a restriction of
Chomsky Normal Form. Heap-CNF grammars recognize a regular language; hence, they
can be represented as regular automata. Therefore, these grammars are never ambiguous
and admit LL(1) parsers. LL(1) parsers can run in linear time on the input size [?], and
admit formal proofs of correctness, as recently shown by Edelmann et al [?]. We have
implemented a system that uses our theory to anonymize sensitive information in logs
while treating the log generator as a black-box (Section .

Summary of Results. We implemented the above techniques in a tool, the ZHEFUS-
CATOR, that redacts sensitive data in SQL queries found in logs created by Java-based
systems. ZHEFUSCATOR implements a form of reactive programming, which, in the words
of Ramson and Hirschfeld [?, p12-2|, “consist of two parts: detection of change and re-
action to change." Detection is the topic of Section [3.1], whereas reaction is discussed in
Section [3.2] In Section we evaluate properties of this tool. We summarize the results

of this evaluation as follows:

e Section [3.3.1] shows that we can construct a grammar for typical database logs

2AB-375 Privacy: personal information: businesses.(2017-2018)

1.3. ZHELANG Contributions 11

(MySQL and PostgreSQL) after observing less than 10 examples of outputs. Ex-
ercising ZHEFUSCATOR on more complex logs, e.g., files in the /var/log directory
of MacOS, then convergence requires more examples, but still a small proportion
compared to the size of the log. Our worst case performance required 170 examples

in a log containing 6,579 entries.

e Section demonstrates that our on-line approach can be up to 14x faster than a
brute-force event detection system that does not synthesize grammars. Performance
is important because our techniques are meant to be used in tandem with a running
application. If its overhead is prohibitive, then chances are that users would not
employ it. Furthermore, the more complex is the language that generates the logs,

the larger is the improvement of ZHEFUSCATOR over its trivial counterpart.

e Section [3.3.3] shows that our event handler does not add statistically significant
overhead onto 11 out of 15 benchmarks from DaCapo [?] when building a grammar
for the entire output of each benchmark. Furthermore, in the four benchmarks

where overhead is noticeable, in only one case (luindex) it reaches 50%.

Software ZHEFUSCATOR is open software, distributed through the GPLv3 license, and
publicly available at https://github.com/lac-dcc/Zhe. As of today, it is embedded in
products of at least one data-protection company: Cyral Inc. (https://www.cyral.

com/)). And has been published at the Journal of Computer Languages [?]

1.3 ZHELANG Contributions

We propose a new methodology to process infinite text streams, which will be
further discussed in Chapter [l This methodology is centered around a minimal set
of operators. These operators—six in total—define a reactive domain specific language,
henceforth called ZHELANG. In our vision, the reactive paradigm is an essential metaphor
to process infinite text. In the words of Ramson and Hirschfeld [?, p12-2|, Reactive
Programming “consists of two parts: detection of change and reaction to change." In our
context, events are triggered by the occurrence of particular patterns in the text stream.
Detection is, thus, the act of recognizing such patterns. Reaction, in turn, is the invocation
of predetermined actions over said patterns.

ZHELANG is a scripting language. Programs written as combinations of its six
operators must be linked against an action language. This language will let programmers

specify the right reaction to the occurrence of each event. In this thesis, we evaluate an

https://github.com/lac-dcc/Zhe
https://www.cyral.com/
https://www.cyral.com/

1.3. ZHELANG Contributions 12

implementation of ZHELANG that runs on the Java Virtual Machine and hosts actions
written in the Kotlin programming language (https://kotlinlang.org/)). Additionally,
we have an implementation of ZHELANG in Haskell, which we use to specify its semantics.
The theory behind ZHELANG, together with its different implementations, yield a number

of contributions, which we summarize as follows:

e Language: Section describes the syntax and the semantics of ZHELANG. ZHE-
LANG is a reactive language, formed by an ensemble of operators. Each operator
specifies a particular text pattern, and the action triggered, once such pattern is rec-
ognized in the text. Operators can be chained in a way that permits the emergence

of complex text processing applications out of simple rules.

e Implementation: Section describes the implementation of ZHELANG. Cur-
rently, we have two prototypes of it: one in Haskell, the other in Kotlin. The former
is used for reference purposes: it encodes literally the semantics introduced in Sec-
tion [£.1.3. The latter is a more mature implementation that supports the craft of

high-performance applications.

e Applications: Section describes three use cases of ZHELANG. In Section [4.3.1]
we show how this language implements a system to obfuscate sensitive information
in logs; in Section we use it to implement a web crawler; and in Section
we show how ZHELANG supports the creation of static program analyses. In each
application we compare ZHELANG’s implementation with a state-of-the-art tool for

the respective application.

https://kotlinlang.org/

13

Chapter 2

Background

In Section it is discusses the challenges related to the automatic treatment of string

events.

2.1 Event Recognition: Challenges

Handling string events while treating the event generator as a black box is chal-
lenging for three reasons, which we discuss in this section. To make this presentation

more concrete, we relate the challenges to the following real-world problem:

Example 1 (Concrete Problem) Consider a log-producing database server running on
the Java Virtual Machine. The grammar that describes the log syntax is unknown. Logs
might contain SQL queries. Some queries contain sensitive information. Design a system
that intercepts strings in the log, before they are printed, and anonymizes particular literals
embedded in the SQL queries. A literal is any constant in the SQL query, e.g., integer
values, quoted strings, and so on. The users specifying which data must be elided are not

necessarily programmers.

Challenge 1 (Grammar Synthesis) How to efficiently identify SQL queries within the

log, when the log grammar is not known?

Each generator has its own log format. Part of this log uses the SQL syntax. If we
call L the language of log strings, then each string ¢ € L might contain SQL and noSQL
substrings, as Example [2] shows. In this combination of two languages, we call L the host

language and SQL the event language.

Example 2 Figure shows part of a log taken from an actual application (literals have
been replaced with fake surrogates). Strings in the target language, SQL, are shown in red.

This log contains five examples, one per line. Fach example is produced by the generator in

2.1. Event Recognition: Challenges 14

82 Query SELECT * FROM Clts WHERE SSN='078-05-1120' 0
83 Init DB grossi

11 8:02 84 Query SELECT * FROM Byrs WHERE name='J.Generics' 1
85 Connect mysqldumpuser@localhost on

12 8:11 86 Query DELETE * FROM Clts WHERE name='J.Generics'

Figure 2.1: Snippet of log with five examples.

successive moments in time. A solution to Challenge[1] amounts to synthesizing a parser

for this log.

Requiring a parser for the host language L would complicate the deployment of
the obfuscator, as this requirement forces users to be aware of L’s format. It is possible
to separate host and event languages via a brute-force approach considering every token
of the host language as the potential starting point of a sentence in the event language.
However, as we show in Section [3.3.2.1] this approach does not scale well with the number
of tokens in the string t € L. The generator produces an infinite stream of strings; hence,
Challenge [I] involves inferring a grammar in the limit, that is, from an infinite number of
examples. Even though this problem is undecidable even for regular or superfinite lan-
guages, as shown by Edward Gold [?], ZHEFUSCATOR can efficiently build unambiguous
grammars that recognize, in a scalable manner, the subset of the host language defined

by all examples seen up to a point. We detail this process in Section [3.1

Challenge 2 (Interface) Which interface should users who are not programmers use to

specify sensitive patterns?

Obfuscating the log in Figure requires knowing which SQL literals must be
redacted. It is up to users of the obfuscator to specify such literals. However, information
can be sensitive when used in some types of queries, and innocuous when used in others,

as Example [3] illustrates.

Example 3 Consider an instance of the concrete problem (Ez.|1]) that requires redacting
occurrences of SSN in the pattern: SELECT * FROM Clts WHERE SSN=’?2’. QOccurrences
of SSN in other patterns, such as DELETE FROM Clts WHERE SSN=’000-00-0000’, must

be preserved.

One problem of defining a domain specific language (DSL) to let users specify
patterns to obfuscate, such as ZHELANG, is that it prevents users of the log-producing
system—usually non-programmers—from using our tool. In Section we describe a
programming-by-examples approach, inspired by the Parsimony IDE [?]|, which provides
users a simple but effective interface for specifying sensitive data. From this interface, we
derive an event grammar that specifies which queries should have their literals redacted.

This grammar feeds ZHEFUSCATOR with knowledge to distinguish sensitive and innocuous

2.1. Event Recognition: Challenges 15

queries. It will redact every literal within the former group, while preserving occurrences
of the same literal in the latter. What distinguishes one type of query from the other?
Syntax! And this syntax is specified by the user, when building the event grammar
(following steps yet to be introduced in Section . Notice that the user will never
have to deal with the format of the tokens, e.g., the SSN format in Example [3] All that

she must do is to highlight examples of sensitive queries.

Challenge 3 (Engineering) How to intercept the generator’s output without changing

its implementation?

Challenge [3]is an engineering problem specific to the log-generation application. In
Section we describe ZHEFUSCATOR solution for systems running on the Java Virtual
Machine. In contrast to our solutions to the other challenges, the approach adopted
in Section [3.2.2] is not general—a natural consequence of the fact that Challenge [3] is
technology specific. In Section 4.2.1| we will describe ZHELANG approach to handle user
defined actions, this makes Challenge [3| simpler to solve.

16

Chapter 3

/ZHEFUSCATOR

3.1 Grammar Synthesis

Context-free grammars. Let G = (S, N, T, P) be a context-free grammar, with non-
terminals N, terminals T, a start symbol S € N and production rules P C N x (NUT)*.
The set V.= N UT is G’s vocabulary. A sentence is a string of terminals. A sentence t
is generated from a grammar G if there is a sequence of applications of production rules
that transforms S in ¢. This sequence of applications is called a deriwvation. In a leftmost
derivation the leftmost non-terminal is always reduced first. The concatenation of strings
pand ¢ is peq. If t and ¢ are strings, and ¢ is a substring of ¢, we write t € subs(t').
A context-free grammar G is in Chomsky normal form if all of its production rules are
of the form A ::= BC, A ::= a, or S ::= ¢, where ¢ is the empty string, in which A, B
and C are non-terminals, a is a terminal and S is the start symbol. The language that
G recognizes, denoted lang(G), is the set of all strings generated from G. Given a string
t, it can be generated ambiguously by a grammar G if G allows two different derivations

that generate t. If G generates any string ambiguously, then G is ambiguous.

String events. Let L be a language. A text over L is a sequence of strings tg, 1y, ...,
such that t; € L. A generator for L is a Turing Machine that generates this text. We
say that ¢; is the text generated at time i. We allow t; = t;,7 # j. No function from time
to strings is assumed; however, we assume that on the limit the text covers L. Notice
that the existence of a generator, coupled with this last assumption, implies that L is

recursively enumerable. From these notions, we define string events as follows:

Definition 1 (String Event) A string event (s, G.,t;, L), parameterized by a context-
free grammar G., which we call the event grammar, occurs at time i,1 > 0, on the text t;
produced by a language L, which we call the host language, if there exists s € lang(G.),
such that s € subs(t;).

Example 4 (String Event) Let the host language L be the language that contains the

string representations of every natural number, and only these strings. Let the event

3.1. Grammar Synthesis 17

grammar G, be a grammar that recognizes palindromes with more than one digit on the
language of positive decimal numbers. Tokens, in this case, are single digits. Consider the
text over L in which t; = “i”, for i € NT, i.e., the text is “17,%2", ..., “107,“11",.... A
string event occurs on tig93 = “1223”, because “22" € subs(“1223”) is a palindrome with

more than one digit.

3.1.1 Synthesizing the Grammar for the Host Language

As seen in Definition [1) capturing string events involves detecting occurrences of
substrings produced by a context-free grammar G, within text pertaining to a recursively
enumerable language L. We call a grammar G that recognizes L, i.e., L = lang(G), the
host grammar. In the context of handling string events from a black-box event generator,
as explained in Section we cannot assume that the host grammar is known. Thus,
it is necessary for L to be discovered while string events are being captured. Moreover,
only examples of strings that are part of the language, denoted “positive examples”, are
available to do so. As demonstrated by Gold [?|, this problem is undecidable for most

classes of languages, including context-free.

3.1.2 On-Line Grammar Synthesis

The intuition behind Gold’s result is simple: since L is being determined by positive
examples, whichever grammar has been synthesized up to time m can fail to parse an
example t,,n > m. However, up to time m, it is always possible to build a grammar
G,, that recognizes tq, ..., t,,: in the worst case, G,, contains m production rules, one
for each string ¢;,1 < ¢ < m. Therefore, Gold’s conclusions indicate that a grammar
for L should be recognized by an on-line algorithm, which builds successive grammars
G1, ..., Gy up to time m, such that {t1, ..., t,,} C lang(Gpn),1 <i < m.

The Language Separation Problem. In this work, we assume that the event gram-
mar G, that encodes string events is known, ZHEFUSCATOR requires it as a parametelﬂ

and ZHELANG provides operators to define it. Therefore, to capture string events we

1Section discusses the approach that we have chosen to let users specify events. Notice that
users do not need to provide G, explicitly: they specify events through examples valid in G, which is
assumed to be already known by the language synthesis system.

3.1. Grammar Synthesis 18

1 16

2 val text: String stream 17 fun build_grammar((example::text): String stream, grammar: Grammar) =
3 18 let
4 19 val new_grammar = add_example(TOKENIZE example, grammar)
5 val TOKENIZE: String -> Token list 20 in
6 21 build_grammar(text, new_grammar)
7 fun add_example 22 end
(tokens: Token list, current_grmr: Grammar) = 23
g if successfull_parse(current_grmr, tokens) 24
9 then current_grmr 25 val grammar:Grammar = build_grammar(text, R, ::=€)
10 else
11 let
12 val new_grammar = fill_holes(tokens)
13 in
14 merge(current_grmr, new_grammar)
15 end

Figure 3.1: The language separation procedure.

must be able to distinguish occurrences of strings from lang(G.) within the input text.

From these observations, we define the language separation problem as follows:

Definition 2 (Language Separation Problem) LetT = {t1, ..., t;,} be a set of strings
pertaining to an unknown host language L. Given G, = (Se, N, T, P.), find grammars
Gm = (S, N UN,, T,, UT,, P, UP.), such that {t1, ..., t,,} C lang(Gp),1 <i < m.

ZHEFUSCATOR language separation algorithm is outlined in Figure [3.1] as a pro-
gram written in ML syntax. The entry point of this program is function build_grammar,
which receives text, the infinite sequence of strings t1, t9, t3, ... corresponding to the lan-
guage to be recognized. The function build_grammar operates in a classic counterezample-
guided inductive synthesis (CEGIS) [?, ?] loop, in which a learner proposes solutions and
a verifier checks them, providing counterexamples for failures. In our context the learner
produces grammars that recognize the examples seen so far and the verifier checks whether
they can generate the subsequent examples.

For each string example in the text stream, build_grammar refines a grammar
that recognizes example. Thus, the grammar variable at line 25 of Figure refers to the
grammar that recognizes text on the limit, that is, after an infinite number of examples
have been produced. Notice, nevertheless, that even though build_grammar never halts, it
produces a new grammar each time it is recursively invoked (Line 21). Function build_
grammar uses an auxiliary routine add_example. This procedure checks if the current
grammar can parse a string in text (Line 8). If it can, nothing else happens (Line 9).
However, if parsing fails, then add_example refines the current grammar (Lines 10-15).

The next section describes this refinement.

On the TOKENIZE Function ZHEFUSCATOR does not focus on synthesis of lexers.
Instead, it relies on a predefined lexer, the TOKENIZE function, which transforms examples

into sequences of tokens. Said function is invoked at Line 19 of Figure 3.1} Examples of

3.1. Grammar Synthesis 19

tokens are int = {...,—2,—1,0,1,2,...} and time = int : int. Our solution to language
separation (Fig. is parameterized by this function. The tokenizer might bear an
impact on the number of examples necessary to synthesize a definitive grammar for the
host language. It can also modify the speed of the algorithms that we shall discuss in the
next section. In Section we analyze these two facts empirically.

3.1.3 Grammar Synthesis from Examples

Whenever build_grammar fails for a new example ¢;, ZHEFUSCATOR uses the func-
tion £i11_holes to produce a grammar G; that recognizes it. This function is invoked at
Line 12 of Figure 3.1}, and its implementation is given in Figure 3.2l We shall be explain-
ing this code in the rest of this section. Notice that the auxiliary function build_hcnf

contains comments mentioning two “Rules". These rules will be the explained shortly.

fun build_hcnf(n:int, [token]: Token list): Grammar =
R, = token
| build_hcnf(n:int, token::Rest: Token list): Grammar =
Rn H= R2nR2n+1
Ry, ::=token
build_hcnf(2xn+1, Rest)

© 00 NO Ok WN =

fun fill_holes(tokens: Token list): Grammar = build_hcnf(1, tokens)

Figure 3.2: The grammar synthesizer.

To build a parser for the host language L, thus solving the Language Separation
Problem, ZHEFUSCATOR applies a programming-by-examples [?] approach. For each ex-
ample t; ZHEFUSCATOR synthesizes a grammar G; that generates it. Then we merge this
grammar into a previously synthesized grammar G that generates the previous examples,
thus obtaining a new grammar G such that {t1, ..., t;} € G. Each grammar G; syn-
thesized for generating the given example ¢; is in Heap-CNF, a restrictive form of CNF

defined as follows:

Definition 3 (Heap-CNF) A Heap-CNF grammar has restrictions on the non-terminals
and the production rules. Non-terminals are Ry, Ry, Rs3,..., Ron_o, Ron_1, for some ar-

bitrary n. The allowed production rules are
L4 R2k+1,2 =4,

(4 Rzk_l = R2k+1_2R2k+1_1, (I’n,d

3.1. Grammar Synthesis 20

o Ror_;i=a

in which a is a terminal and k € {1,..., n}. Since non-terminals are numbered in the
same way as data in the heap data structure, we call this restricted version of Chomsky
Normal Form, Heap-CNF.

ZHEFUSCATOR. restrict itself to Heap-CNF grammars for three reasons. First,
given two grammars in this format, it is possible to merge them in linear time on the
number of non-terminals, thus producing a new Heap-CNF grammar, as we will see in
Section [3.1.3.1] Second, they are not ambiguous (Theorem [5)). Finally, they admit LL(1)
parsing (Theorem . We shall leverage the two latter properties to demonstrate that
ZHEFUSCATOR’s solution to the language separation problem is correct. The two latter
properties are a consequence of Heap-CNF grammars encoding regular languages. Indeed,
a Heap-CNF language can be described by a regular automaton. Nevertheless, we shall
call them grammars, as ZHEFUSCATOR is using them to synthesize parsers.

The grammar G; is built by successively increasing its vocabulary and by “filling
holes”, i.e. adding production rules to a partial grammar while ¢; = t17 - - - 7 is traversed.
Initially the partial grammar contains only the starting non-terminal R; and no terminals
or production rules. At each iteration, the grammar is augmented to generate the first
token in the sequence, which is then removed from it. The grammar is also expanded so
that it can be further augmented to generate the remaining tokens. This is represented

by the application of the following two expansions, which add production rules to G;:

Rule 1 Co
Ry =" (=) Ry ::=t!, if ¢] is the last token of ¢;
or GG; contains Ry
(Rule 2)
Rk n=7 g) Rk L= RQkR2k+1, ng L= ?, R2k+1 n="7

otherwise

in which Ry is a non-terminal not yet associated with a production rule.

The first rule allows the consumption of the first remaining token in ¢;. It can be
applied when the respective non-terminal is not the last one in G, except if there is only
one token left to be consumed. Otherwise, the second rule is applied, which introduces
two new non-terminals in the grammar: one for consuming the first remaining token,
via Rule 1, and another to continue the process for generating the subsequent tokens in
t;. This process continues until the grammar that parses t; is obtained. Function £i11_
holes (Figure , which implements this procedure, takes as input a sequence of tokens

t; and yields a grammar G; in Heap-CNF that consumes said sequence, as stated below.

Theorem 1 (Correctness) Function fill_holes (Fig. produces a grammar G;

that recognizes an example t; =t} ---t? in n steps with 2n — 1 non-terminals.

3.1. Grammar Synthesis 21

Proof Sketch 1 The proof is by induction on the size |t;| of the example.

PN - VAo WS9'All SELECT * ... WHERE SSN='078-05-1120"' Jii}

MR, =7 IGMR, =R, R, BlR =R R, IBER =R, R, BMR =R, R, Y R, = R, Ry
(=] =] _ I . o . (= s . .
8 YR, =7 2N R, = int(32) RSP R, = int PN R, = int oy R, = int
w2 w 7] w wa ‘r;;
Ry =7 Ry =7 R, = Ry R, Ry = R, R, Ry = Ry R,
Ry =7 Ry = Query Ry = Query
R, =7 R, ==7? Ry = Ry, Rys
Ry = s,
R 5= int(0)

Figure 3.3: Grammar inference via £ill_holes.

Example 5 Figure[3.3 illustrates fill_holes “stepwisely” building a grammar that gen-
erates the first example from Figure [2.1. Note that the characters ‘82° and ‘0’ were
tokenized to int and the SQL query to s.. At Step 1 the partial grammar consists only
of the starting non-terminal Ry. Given that the list of tokens to generate contains more
than one element, fill_holes applies rule 2 (line 5 of Figure , producing the par-
tial grammar in Step 2 with two new undefined non-terminals. Rule 1 is then applied to
generate the first token in the list (line 6), producing the grammar in Step 3. The fill_
holes algorithm proceeds to recursively build a grammar to generate the remaining tokens,
applying rules 2 and 1 in sequence, until it reaches the case when there is only one token

to be generated. This triggers a final application of rule 1 (line 3), yielding the grammar
in Step 8.

The grammar synthesis has the following properties:

Lemma 1 (fill_holes yields Heap-CNF) Given an example t;, the resulting gram-
mar G; produced by fill_holes that generates t; is in Heap-CNF.

Theorem 2 Given an example t; = t}1?---t*, the resulting grammar G; produced by
fill_holes is such that Ron_; ::=t}.

Theorem [2| and Lemma (1| perfectly define the structure of grammars produced by
fill_holes, as stated below:

Corollary 1 Given an example t; = t}t?---t?, the resulting grammar G; produced by
fill_holes is such that

R2k+172 = tf, kG {1,..., n—l}

Rorv1_9Roki_y k€ {1, e, n— 1}
Rok_o =

i k=n

Figure [3.4] illustrates the structure of a derivation of a string of 5 tokens from the Heap-

CNF grammar that would be produced by £i11_holes.

3.1. Grammar Synthesis 22

4 4
;o= token
ol
4

;1= token Y

2
? /
SI= R2R3 “ 1 1

Figure 3.4: The format of the leftmost derivation tree of a Heap-CNF grammar to produce
a string with 5 tokens.

NS}

Ry,

R30 1= token Vi

R,.::=R,\R

Ry = token y A

Ry = RuR s n ﬁ/ 3 7
Ry o= token A

Ry = RGR, # . 5
R

R

—_

The s, Token. Throughout this work, ZHEFUSCATOR will treat the string event as a
single token. As an example, in Figure [3.3] we represent it as s., the starting symbol of
the event grammar G.. However, the string event is not a single token; rather, it is a
complex sentence pertaining to lang(G.). Consequently, the sentence represented by s,
does not even need to be formed by the same tokens as the host language. In other words,
the tokens in s, do not, necessarily, need to be recognizable by the TOKENIZE function
adopted in our implementation of build_grammar. That function recognizes tokens from
the host language, not from the event language.

Recognizing s, is necessary when augmenting the current grammar via the £i11_holes
routine. To perform this task, we resort to a brute-force approach: it tries to recognize
the largest subsentence s € subs(t;) within the active example ¢; so that s € lang(G.) (See
Definition [I)). This heuristic is O(|G.]|t;|), because we can imagine a scenario in which
every prefix of ¢; is also a prefix of some—incomplete—sentence in lang(G.).

Nevertheless, the brute-force search tends to fail already in the first token, at least
in the setting in which ZHEFUSCATOR was built for: redaction of SQL queries embedded
in an unknown language. For instance, consider that the event language is a subset of
SQL performing the so called CRUD operations, i.e., SELECT, UPDATE, CREATE and
DELETE. Only sentences that start with one of these four tokens can be part of the event
language. Therefore, as soon as the brute-force algorithm stumbles on a different token, it
can stop searching immediately. Typical data-representation languages, such as YAML,
XML or JSON bear similar properties, meaning that valid sentences in these languages
start with a limited number of token combinations.

Furthermore, it is important to consider that the brute force approach is only
necessary to augment the current grammar. Whenever line 8 of Figure [3.1] succeeds, no
brute-force heuristics are used. As we shall see in Section [3.3.1] in a typical SQL or

PostgreSQL log, four to nine samples—among an unbounded number of examples—are

3.1. Grammar Synthesis 23

enough to give us a definitive grammar to solve the language separation problem.

3.1.3.1 Merging grammars

Once £ill_holes produces a grammar G; for a new example t;, this grammar is
merged into the current grammar G, as it can be seen at Line 26 of Figure [3.I We define

the merging of two Heap-CNF grammars as follows:

Definition 4 (Grammar Merging) Let G = (R, N,T, P) and G; = (R, N',T", P")
be two Heap-CNF grammars. G' = (R, N UN' T UT! PU P') is the grammar that
merges G and G;.

Our goal is that G’ be also in Heap-CNF and still generates lang(G) and lang(G;).
This is achieved by combining the production rules of G and G, i.e. by defining the
production rules of G’ as P U P!. Since G and G, are in Heap-CNF they have the same
non-terminals up to Ror_;, in which Ryx_; is the maximum non-terminal in either G or
G;. So each non-terminal in G’ up to Ryr_; will generate the combined tokens of G and
(', while every non-terminal beyond Ryx_; has the same production rules of the grammars

it comes from, thus generating the same strings that grammar generates.

Example 6 Figure shows the grammars produced for the first, third and fifth lines
of Figure 2.1l The tokenization applied to the characters is illustrated in the derivation
trees. Fach grammar but the first is formed by the merging of a current grammar plus
the grammar newly built to match the latest example in the log. Since grammars share
non-terminals up to a giwen index, the union of the production rules has the effect of
adding tokens as alternatives to a given non-terminal. For example, in the grammar that
generates the first ezample, Ri5 generates the terminal int, while in the second grammar it
generates the non terminals R3gR31, so merging these two grammars results in a grammar
in which Rys ::= RsgR3; | int. This observation ensures that the merged grammar will be

able to generate both the examples generated by the two original grammars.

Notice that the final grammar that results from merging multiple grammars rec-
ognizes a language that is larger than the union of all the examples seen thus far. For
instance, the final grammar in Example [f] recognizes the string “int Query s. Query s.",

which encodes two SQL queries.

Lemma 2 (Merging) If G is the grammar that results from merging two Heap-CNF
grammars G' and G”, then G is Heap-CNF, and lang(G') U lang(G”) C lang(G)

3.1. Grammar Synthesis

24

Ry u= RyRy D>

R, = int

Ry = Ry R,

R¢ = Query

Ry = Ry Rys

Ry, == s,

R5 = int

it it

82||Query % 0
R4 Ris

Ré/R7
R, Ry
R1/

= R, R,

= int

= R R,

= Query | time
5T Ry Rys

n= s, | int

i= Ry Ry | int

=>

~N W N =

W

;= Query
= Rg, Rg;

=S

AN W W
N o= O

€

M ™ N R™ RN ™M™ N DR
S
Il

= int

(o
w

b Gl gt pn

11/8:02) 84 Query%l

R62 R63

Y/
R30 R31
v
R14 RIS

4

R7/

= R, R,

= int

= R R,

= Query | time
5= Ry Rys

n= s, | int

= Ry Ry, | int

RN
|

~N

—_
w

1= Query

w2
(=}

= R, Ry | s,

W
—_

=8

(=)
N

(S

I
N
|

= int

D
w

b et

12//8:11/86 Query%

R30 R31
R14 R15
A
R6 R7/
4 /
R2 3

Figure 3.5: Grammars produced from the examples in Figure .

Proof Sketch 2 We demonstrate the lemma analyzing each one of the four cases involved in

the process of merging two Heap-CNF grammars.

Theorem 3 The procedure build_grammar (Fig. constructs grammars in Heap-

CNF.

Proof Sketch 3 The proof of Theorem@ is the junction of two facts: (i) function fill_holes
(Fig. builds only grammars in Heap-CNF; and (ii) the merging of grammars (Def.|4) yields

Heap-CNF grammars.

Theorem 4 (Semantics) Let G, Go, ..
build_grammar (Fig. for input strings tq,ts, ...

nizes every mput t;, 1 < i < n.

., Gy be the grammars constructed by function

Jtn. Grammar G;, 1 < i < n recog-

Proof Sketch 4 The proof works by induction on the number of examples t;.

3.1. Grammar Synthesis 25

Lemma 3 (Size Complexity) Let G, be the grammar constructed by function build_
grammar (F'ig. after observing inputs t1,ta, ..., t,. The size of G, is O(N), where N

18 the number of tokens in ti,ts,... t,.

Proof Sketch 5 The fill_holes procedure only augments the rightmost node of a derivation

tree.

Theorem 5 (Determinacy) Let G, be the grammar constructed by function build_

grammar (Fig. after observing inputs ty,ts, ..., t,. G, is not ambiguous.

Proof Sketch 6 As a consequence of Lemmal[3, the rightmost derivation tree of a Heap-CNF
grammar always has height n — 1 and O(N) nodes.

Corollary 2 (Time Complexity) Let G, be the grammar constructed by function build_
grammar (Fig. after observing inputs ti,ta, ..., t,. G, recognizes t;;1 < 1 < n with

O(N) derivations, where N is the number of tokens in t;.

Proof Sketch 7 This corollary follows from Lemmal3, plus the fact, already mentioned in the

proof of Theorem [, that only one rightmost derivation tree is possible.

3.1.3.2 Limitations: False Positives

The procedure build_grammar synthesizes a grammar G that over-approximates
the host language L. By over-approximation, we mean that there might exist strings that
belong to lang(G), but that do not belong to L. This observation leads to the notion of

false positives, which we define as follows:

Definition 5 (False Positive) Let G, be the grammar synthesized by build_grammar
after observing n examples from the host language L. We call a false positive an example
tp such that ty, & L, ty, € lang(G,) and tyg, contains a string event (Definition[])).

Example 7 (False Positive) Consider the third grammar seen in Figure 3.5 — This
grammar recognizes four strings with four tokens: (i) int query s. int; (i) int time
Se int; (411) int query int int; (4v) int time int int. Only sentences in the format (i) fit
the examples seen in Figure . Sentence (ii) does not correspond to any example and

contains a string event (marked by s.).

A false positive will lead to the treatment of a string event that, in principle,
should be ignored. In the context of this work, ZHEFUSCATOR that will be described in

3.2. Case Study: the ZHEFUSCATOR 26

the next sections, will redact information that is not sensitive. Such action is innocuous
in the settings where said system is deployed. Furthermore, the logs that we evaluate in
Section [3.3| never lead to false positives. Therefore, we have decided to take no account
of false positives in this work. There are two more reasons that led us to ignore them.
First, the number of events is unbounded; hence, strings that are false positives up to a
certain instant in time might become true positives later. Second, we follow Parsimony’s
approach [?] when specifying the event grammar, as we discuss in Section Parsimony

does not support negative examples—a potential way to avoid some false positives.

3.2 Case Study: the ZHEFUSCATOR

We have used the grammar inference techniques discussed in Section to imple-
ment a system that redacts sensitive information present in program logs. This system is
called the ZHEFUSCATOR. ZHEFUSCATOR receives as input an event language, given as
a grammar G., and a running instance of the Java Virtual Machine (JVM). Notice that
the ZHEFUSCATOR does not need the source code of the program under execution in the
JVM-—this program is treated as a black box. Figure provides an overview of this

tool. In the rest of this section, we discuss particular details of its implementation.

J Static (off-line) processingL

: User selects Zhefuscator builds a

i examples of grammar G, that

i R queries that 3 recognizes string events. 2
| L |:'|> |:|'> Exs |:|'> . |:|'> G

i o8 must be o G, starts with s, the G

i redacted starting symbol of the

: (Sec. 4.1) event language (Sec. 4.1)

<| Dynamic (on-line) processing! -\[/
i Events are captured and Function

: treated during the execution build grammar
S of the program. Treatment . (Fig. 2) uses G, to
T < ,':I)) o < ,':I G | < ,':I

H involves redacting sensitive . infer the grammar
: information in the output 7 G of the host

i of the program (Sec. 4.2). language L (Sec. 3)

Figure 3.6: ZHEFUSCATOR: event handler for the JVM.

3.2. Case Study: the ZHEFUSCATOR 27

3.2.1 User Interface

ZHEFUSCATOR is meant to be used by professionals who are not necessarily pro-
grammers. Therefore, to simplify the task of specifying string events, we provide users
with an example-based interface, in which users select substrings from log entries, and a
base grammar, Gy, which will be used as a basis for building the event grammar G.. As
a helper to the user, once a substring [is marked for being redacted, all other substrings
in the log entries that are recognized by the same rule from G, which recognizes [are
highlighted. That rule is then added to GG.. Through this iterative procedure, the event
grammar G, is built from the basic grammar G} according to the example substrings
selected by the user. Note that users do not deal directly neither with the basic nor with
the event grammar: they only deal with textual examples, from which they must choose
samples. Currently, we use the SQL grammar as the base grammar, but our implemen-
tation is not specific to any grammar. Just keep in mind that if the base grammar does
not recognize the example substring selected to be redacted, this example will be ignored
in the final event grammar. To determine which data must be redacted, users follow the
procedure markup, in Figure

Procedure markup(Gy, : Base Grammar, Ly : Log Example)
1. Let G, be an empty grammar.
2. The user selects a literal [to be redacted, which occurs in a given example from L.

3. ZHEFUSCATOR uses the event grammar to extract the largest string s € lang(Gy)
that contains [.

4. A grammar G, formed with the production rules of GG, necessary to recognize s is
constructed.

5. The terminal symbol T" that recognizes [is marked to be redacted, 7" must occur
within the rule that recognizes s.

6. G is augmented with the rules in G..
7. Every sentence s’ € Ly that G, recognizes is highlighted.

8. If there are more literals in L; that must still be obfuscated, the user goes back to
step 2.

Figure 3.7: The markup procedure that determines which literals must be redacted.

Theorem 6 (Markup) Grammar G, produced by markup (Fig. recognizes a subset
of lang(Gy) or the empty language.

3.2. Case Study: the ZHEFUSCATOR 28

Proof Sketch 8 The proof works by induction on the number of times Step 2 in Procedure

markup runs.

As seen in the proof of Theorem [0, grammars G, and G, start with the same
initial symbol s.. This symbol is used to compose the instance of the language separation

problem (Definition [2)) that routine build_grammar solves.

3.2.2 Engineering

This section describes details concerning the engineering of the ZHEFUSCATOR—a
language-specific problem. For reasons related to the business model in which the authors
of this work are involved, ZHEFUSCATOR has been implemented in Java, and deployed
onto the Java Virtual Machine. Therefore, it intercepts and treats string events produced
by programs written in any programming language that runs on the JVM, including Java,
Scala, Kotlin, Clojure and many others. In what follows, we discuss particular aspects of

the implementation of this tool.

Parsing ZHEFUSCATOR uses the theory seen in Section to build parsers incremen-
tally. These parsers are constructed via the ANTLR [?] parser generation tool. This
tool takes as input a grammar that specifies a language and generates as output source
code for a recognizer of that language. Procedure build_grammar gives ANTLR a new
grammar whenever it fails to parse the current text example. ANTLR produces LL(*)
parsers, which suits the needs of build_grammar, because Heap-CNF grammars are al-
ways Left-to-right, Leftmost derivation and can be parsed with one token of lookahead,
as the Theorem [7] states. In terms of implementation, we update the grammar by relying
on the JVM’s ability to load classes dynamically. The JVM does not need to be restarted
in this process. The new grammar is compiled into Java bytecodes by a separate thread,

and, as we will see in Section such updates take negligible time.
Theorem 7 (LL) Any Heap-CNF grammar is LL(1).

Proof Sketch 9 This fact follows from the observation that Heap-CNF grammars are not re-

cursive.

Corollary 3 There are languages whose grammars cannot be synthesized by ZHEFUSCA-
TOR.

Proof Sketch 10 This fact follows from the observation that Heap-CNF grammars are not re-

cursive.

3.2. Case Study: the ZHEFUSCATOR 29

Proof Sketch 11 A formal language is called an LL(k) language if it has an LL(k) grammar.
The set of LL(k) languages is properly contained in that of LL(k+1) languages, for each k greater

than or equal to zero [?]. Therefore, there exist context-free languages that are not LL(1).

The proof of Theorem [7] mentions that Heap-CNF grammars recognize languages with a
finite number of possible derivation trees. In fact, strictly speaking, a Heap-CNF language
is finite, as the grammar is not recursive. However, in practice, ZHEFUSCATOR deals with
infinite languages. Infiniteness comes from the lexer. The procedure build_grammar is
parameterized by a string tokenizer. In the context of ZHEFUSCATOR’s implementation,
this tokenizer is given by ANTLR. The regular language used to recognize tokens can
accept an unbounded number of strings. In Section we evaluate the impact of the
tokenizer on the performance of ZHEFUSCATOR.

Method interception. ZHEFUSCATOR uses Java Agents to intercept calls to the Sys-
tem.out.* singleton object. The Java Agent API [?] provides support to the dynamic
instrumentation of JVM applications. Intercepted strings are first fed to build_grammar,
and then redacted. The first action might result in an expansion of the host language’s
grammar. The second might lead to modifications in the output of the program. Literals

that must be redacted are specified using the technique discussed in Section [3.2.1]

String Obfuscation. ZHEFUSCATOR performs the redaction of sensitive information
via asymmetric cryptography. A sensitive literal [is replaced with a new string /,, which
can be later used as a key to retrieve the true value of [from a classified table. Currently,

we use Advanced Encryption Standard (AES) to ensure safe redaction of values.

3.2.3 Discussion

The developments explained in this section are necessary to make the ideas intro-
duced in Section practical. We do not claim them as contributions, given that the
interface and implementation that we adopted have been already discussed in previous
work. Our choice for these aspects of our work are pragmatical. On the one hand, the
interface discussed in Section and the implementation discussed in Section were
effective enough to realize the ideas discussed in this work. However, this choice comes

with limitations, which we discuss in the rest of this section.

3.3. Evaluation 30

3.2.3.1 Lack of Negative Examples

The main limitation of our example-based approach is a lack of negative exam-
ples. This limitation is also present in Parsimony [?]; hence, it has naturally persisted in
our implementation of it. We opted to avoid negative examples because it is our under-
standing that in most of the cases where ZHEFUSCATOR is useful, negative examples are
unnecessary. In other words, database logs tend to follow simple formats, with a small set
of sentences of interest. Nevertheless, if necessary to handle more complex formats, then
ZHEFUSCATOR might produce false positives. In the context of this work, as explained in
Section [3.1.3.2] false positives might cause the redaction of sentences that do not contain

sensitive information.

3.2.3.2 Expressiveness

Additionally, an example-based interface lacks resources that would be promptly
available in a domain-specific language, such as the ability to specify logical combinations
of events. For instance, users could be interested in enabling certain events only after par-
ticular events of interest have been detected. ZHEFUSCATOR current interface lacks such
sequencing operations. Users interested in such ability are encouraged to use ZHELANG,
which a DSL that we have defined for the treatment of string events. ZHELANG will be
discussed in Chapter [4]

3.3 Evaluation

We have implemented the techniques discussed in this work onto an actual on-line
obfuscator, which we call the ZHEFUSCATOR. ZHEFUSCATOR is open source and can be
used to redact queries produced by database logs. This section investigates the following
research questions related to this implementation, as well as the techniques that support
it:

¢ RQ1—Convergence: how many examples are necessary to produce grammars for

languages typically used by SQL logging systems?

3.3. Evaluation 31

e RQ2—Effectiveness: are the parsers derived from the synthesized grammars ef-

fective?

e RQ3—Practicality: what is the runtime overhead of ZHEFUSCATOR when de-

ployed onto a database system dealing with a heavy workload?

We chose these three particular questions to demonstrate that the theory developed
in Section [3.I and its implementation described in Section [3.2] once combined into a
concrete tool, lead to a system that is not only novel, but also practical.
Runtime Setup. Every result reported in this section has been produced on an 8-core

Intel(R) Core(TM) i7-3770 at 3.40GHz, with 16GB of RAM running Ubuntu 16.04.

3.3.1 RQ1—Convergence

Methodology. To answer RQ1 we measure how many times the predicate successfull_parse,
invoked at Line 8 of Figure [3.1], fails before we produce a definitive grammar for a certain
log generator. We perform this analysis on logs from two database systems and from the
OSX operating system. Logs are given as a text of examples t;, as defined in Section [3.1].
Each t; is the entire output produced by the generator, be it a database, be it the operat-
ing system, at time unit z. To determine the parts of the log that should be obfuscated,
we chose, from each one, four examples, following the steps enumerated in Figure We
chose the first four sentences that did not fit into the same SQL production rule. However,
this choice bears no impact on the results reported in this work. Convergence does not
depend on it, and the time to redact strings (running time will be evaluated in the next

section) is the same for the different approaches that we compare.

3.3.1.1 Logs from Database

On this experiment, we have generated logs from two different SQL Databases:
MySQL version 14.14 Distribution 5.7.27 and PostgreSQL version 9.2.24. Workloads
for these two databases were produced by the 9 real-world web applications emulated by
OLTP-Bench |?], which include systems such as Wikipedia, Twitter and an ordinary seats

system.

3.3. Evaluation 32

Discussion. Figure [3.8) shows the average prefix necessary to synthesize a grammar
in different database systems. ZHEFUSCATOR requires approximately eight examples
to infer a grammar for the logs produced by MySQL, and five for those produced by
PostgreSQL. In the former collection, logs contain an average of 662K lines; in the latter,
1,867K. This experiment indicates that, for typical database logs, the grammar inference
procedure of Section[3.1]tends to converge to a definitive parser after five to eight examples.
Furthermore, these examples are a very small portion of the entire log: in every case, we

had a definitive grammar after observing less than 0.01% of the whole log file.

Number of Examples to Synthesize a Definitive Grammar Number of lines (same as number of texts ¢;) per log file

) > @ G ' &@ O
(\‘(\'b‘ \(‘\\00 @56?‘ e‘e’b\ & & @{{\e \86\ < " &S L \\‘&{{\e \Qeé\ &
g K& o &9 S &F
M vysaL Postgre > B mysaL Postgre

Figure 3.8: Average prefix size necessary to synthesize a grammar for different log files
produced by either MySQL or PostgreSQL.

3.3.1.2 Logs from the Operating System

This experiment uses the logs produced by default by MacOS version 10.14.6 in the
/var/log directory. Contrary to the examples that use the databases, these logs are very
different one from the other (the format of sentences is not shared across them). This fact
will be made clear once we analyze how many examples are necessary for synthesizing
a definitive grammar—this number varies substantially across the logs. We gathered
four logs from five distinct OS users, whose usage pattern corresponds to the profile of

professional programmers. The logs used in this experiment are:

e corecaptured.log: logs operations of the network hardware. On average, these
logs have 174K lines.

e wifi.log: logs network traffic. On average, they contain 9K lines.

e system.log: logs the operations executed in the whole system. On average, they

contain 4K lines.

e fsck_apfs.log: logs file system operations, and contain 4K lines on average.

3.3. Evaluation 33

Discussion. Figure[3.9shows the average prefix necessary to synthesize grammars for the
OSX logs. The number of required examples is higher than what has been observed in Sec-
tion The ratio of examples per log size is also higher. In one case (user3:system)
we had a log with only five lines, whose grammar demanded three examples. This case is
an anomaly, due to the small log size. The largest prefix consisted in 170 examples, for a
log with 6,579 samples (userl:system). In general, the ratio of examples per sample is
still very low. For instance, our largest logs (corecap tured) have almost 200K lines on
average, and yet our on-line grammar inference engine finds a grammar that recognizes

all these samples after observing 57 to 64 examples.

Y-axis: Number of Examples to Synthesize a Definitive Grammar Y-axis: Number of lines (same as number of texts ¢,) per log file
249862 210497 181500 132500
170 LE405 94817
140 16320
1.E404
13515
1.E+03 5
1.E402 26348 &
38
1.E401
1.E400
useri user2 user3 user4 user5 useri user2 user3 user4 user5
. corecapture B fsck_apfs system wifi

Figure 3.9: Average prefix size necessary to synthesize a grammar for different MacOS
logs.

3.3.2 RQ2—Effectiveness

This section evaluates the practicality of the grammars synthesized by ZHEFUS-
CATOR. To this effect, we shall answer the five questions below. BF refers to the Brute

Force approach, which searches event patterns exhaustively within text examples:

1. Section [3.3.2.1} how does ZHEFUSCATOR compare to BF to parse one individual

example for which a parser has not already been synthesized.

2. Section [3.3.2.2 how does ZHEFUSCATOR compare to BF to parse 1,000 examples
in an actual log file produced by a MySQL database.

3. Section [3.3.2.3f how does ZHEFUSCATOR compare to BF to parse 1,000 examples

in artificially generated logs of different sizes.

4. Section [3.3.2.4t how does the tokenizer change the runtime of ZHEFUSCATOR.

3.3. Evaluation 34

3.3.2.1 Parsing Effectiveness

There exists a trivial approach to solve the Language Separation Problem intro-
duced in Definition [2} given an example ¢; in the host language, we start a search for an
event s, an SQL query in our context, at every token of ¢;. If two events can start at the
same token, we choose the longest one. This solution is called the brute-force approach.
The developments in Section are attractive inasmuch as they lead to a faster solution
to language separation than the brute-force technique. In this section, we compare the
parsing speed of both approaches.

Before we discuss our methodology, two observations are in order. First, when
ZHEFUSCATOR’s current grammar is not able to recognize the active example, it behaves
in a similar manner as the brute force approach: it must scan the SQL query, assuming
that it can start at any token. In addition to this, it must augment the current grammar
using the techniques discussed in Section 3.1} Second, when ZHEFUSCATOR’s parser is
able to recognize the active example, parsing happens via O(N) productions, where N
is the number of tokens. Yet, the number of characters per token varies, and the lexer’s
runtime must be taken into consideration. Thus, the overall runtime is O(M), where
M is the number of characters in the active example. The brute force approach might
expand O(N?) productions; however, such worst case seldom happens. Most of the tokens
in a valid example cannot be the prefix of any SQL query. Therefore, although naive,
the brute force approach is still likely to outperform Zhefusctor for examples with few
characters.

Methodology. The brute-force approach becomes less practical as the number of charac-
ters in the examples t; of the host language L increases. To investigate at which point the
grammars synthesized by build_grammar become more efficient, we have used the logs
seen in Section To obtain examples of varying sizes, we either split or concatenate
lines from these logs; hence, producing strings of different lengths.

Discussion. Figure compares the brute-force with our synthetic grammars. Our
grammars are more asymptotically efficient than the brute-force approach. After multiple
merging operations, a Heap-CNF grammar still recognizes a sentence in O(N) derivation
steps, where N is the size of the sentence. The brute force approach, in turn, will always
require O(N?) steps. Figure shows that for examples between 128 and 256 characters
(about 16 tokens) our approach becomes consistently better than the trivial brute-force
parsing. In Section we observe the effect of this improvement when applied onto

an actual log.

3.3. Evaluation 35

method = Antlr Parsing = Brute Force

214 auctionmark eplnlons resourcestresser
211 / /
8
2 g p—
5
2 ,
seats tatp tpcc
22 |
8 . ¥ .
L 2 : azammnl S
_E 25 =— -
14 twitter wikipedia ycsh
2 =
211 / / /
8
2 —
2° == =
27 28 29 210 211 11 27 28 29 210 211

Number of characteres in a line

Figure 3.10: Time comparison of brute force approach and the ANTLR parser.

3.3.2.2 Effectiveness on an Actual Log File

In Section [3.3.2.1] we compared the average time taken by the ZHEFUSCATOR
and the brute force approach to parse one example. However, the benefit of our parser
synthesizer becomes more evident once we analyze its effect when amortized onto a long
chain of examples. In this section, we analyze this effect via skyline charts. These charts
show the time taken per individual example in the log. For this experiment, we chose
the log produced by the MySQL implementation for the AUCTIONMARK application. We
emphasize that the choice of log, for this experiment, is immaterial: all the logs produced
by MySQL follow the same format, and ZHEFUSCATOR’s parser needs to be augmented
only 8 times for all of them. AUCTIONMARK has been chosen simply because it is the
first benchmark in OLTPBench.

Methodology. We compare both the approaches, ZHEFUSCATOR and the brute force,
when given the first 1,000 examples in the log that MySQL produces for AUCTIONMARK.
For each example, we count only the time to recognize strings—redaction is not accounted
for, because it applies the same algorithm, the same number of times, in both the ap-
proaches. Notice that choosing more than 1,000 examples will not change the results
reported in this section, because ZHEFUSCATOR builds a definitive parser after observing
19 entries in the log file.

Discussion. Figure [3.11| shows the result of this experiment, juxtaposing the skyline
produced by the brute force approach and by ZHEFUSCATOR. The log file contains two
distinct parts. The first 250 examples are system configuration commands, and have 1,021
characters, on average. The last 750 examples are various SQL queries, and contain 106

characters on the average. Using the C tokenizer, we obtain 105 tokens, on the average,

3.3. Evaluation 36

- timezZhe - timeBf

212
m
£
o 2°
£
= MWWWWWWWWMMWW
:)MMWUMWWMMWWWMMMWMWWMWMW
0 250 500 750 1000
Example ID

Figure 3.11: Skiline comparison between ZHEFUSCATOR and the brute force approach to
parse 1,000 examples from the AUCTIONMARK log.

considering the 1,000 examples in the log file. Under this circumstance, the performance
gap between ZHEFUSCATOR and the brute force approach is noticeable.

ZHEFUSCATOR spends, on the average, 26.15 milliseconds per example, with a
standard deviation of 17.86 ms. This number includes the extra time ZHEFUSCATOR
needs to augment the current parser—an action that happened 8 times in this experi-
ment. The brute force approach spends 586.63 milliseconds per example, with a standard
deviation of 1,830.33 ms. ZHEFUSCATOR is 22.5x faster, per example, than the brute
force approach. However, this experiment uses an ideal scenario for ZHEFUSCATOR: a
long stream of homogeneous textual examples. In the next section, we shall analyze the

behavior of ZHEFUSCATOR under more unfavorable conditions.

3.3.2.3 Increased Effectiveness via Amortized Cost

The logs produced by MySQL and PostgreSQL are formed by long individual ex-
amples (more than 100 tokens on average). However, these examples are all similar; hence,
as already observed in Figure[3.8, ZHEFUSCATOR synthesizes a definitive parser after ob-
serving a very short subset of them. To stress out the performance of ZHEFUSCATOR, in
this section we analyze its behavior when dealing with more complex logs, which we have
produced artificially.

Methodology. To produce the logs, we use six different types of tokens: booleans, inte-
gers, doubles, strings, dates and sets of comma-separated integers within curly brackets,
e.g., {2,3,5,7}. We generate four types of logs. Each log contains a random number
of tokens between 0 and R € {4,8,16,40}, before and after an SQL query. We use al-
ways the query “SELECT string FROM string WHERE id = int". With R = 4, we have

3.3. Evaluation 37

46 4 45 = 8,192 possible example formats; with R = 8, we have 8¢ + 86 = 524,288, and
so on. Therefore, £i11_holes will be invoked a much larger number of times than in the
setup used in the previous section.
Discussion. Figure[3.12shows the result of this experiment. Whereas BF shows homoge-
neous behavior—its runtime per example varying only slightly—ZHEFUSCATOR has two
types of responses. Such responses depend on the current parser recognizing or not the
active example. When recognition is possible, parsing is fast; otherwise, the parser must
be augmented with new productions, and we observe a runtime spike, which is marked
in Figure [3.12] with a black dot. Said spikes are compulsory for the initial examples.
However, as the current grammar increases, sentence recognition becomes more common,
and spikes tend to disappear. As a consequence, the more events are observed, the larger
is the performance improvement of ZHEFUSCATOR over the brute force approach.
Figure [3.13] shows average time per example, plus standard deviations observed
for ZHEFUSCATOR and for the brute force approach. The figure shows two results for
ZHEFUSCATOR: the first considers only the time when parsing succeeds; the second con-
siders, in addition, the time taken by fill_holes, when ZHEFUSCATOR fails. In the
former scenario, ZHEFUSCATOR always outperforms the brute force approach. In the
latter, it always loses. The conclusion is that, once it reaches a steady state, ZHEFUSCA-
TOR’s O(N) parser is consistently a better option than BF’s O(N?) algorithm. However,
if necessary to augment the current parser too often, our technique loses its attractive-
ness. In this particular experiment, £i11_holes performs worse than in Section [3.3.2.2]

because the host language is much more complex.

3.3.2.4 TImpact of the Tokenizer on Runtime

The add_example routine, which is invoked by build_grammar (Figure Lines
7-15) is parameterized by a tokenizer. The tokenizer is a function that converts the
input text into tokens. The tokenizer is just an artifact of our implementation: users
of our system will never have to deal with it. The implementation of ZHEFUSCATOR
can use any tokenizer that ANTLR supports. As we have hinted in Section [3.1.2] the
tokenizer impacts both the number of examples as well as the runtime of ZHEFUSCATOR.
In this section, we analyze this impact by verifying the behavior of ZHEFUSCATOR when
parameterized by two different lexers.
Methodology. We have tried ZHEFUSCATOR with two different lexers. Both were taken
from public projects that use ANTLR—they have not been implemented as part of this

research.

38

3.3. Evaluation
* timeZhe = timeBf e timeZhe < timeBf
28 29
. 27
7 2° - . . . @ o
E . . £ c c .
= 5 [% *
< %
P .
PR
2% .
0 250 500 750 1000 0 250 500 750 1000
[0, 4] Tokens + SQL query + [0, 4] Tokens [0, 8] Tokens + SQL query + [0, 8] Tokens
* timeZhe < timeBf * timeZhe < timeBf
213 <
. = ~“ - s wO o
L) O .‘.- ﬂ
297 § .‘_..'_,v-'
~«_____Dots mark examples that could not
o' ~~"" | be recognized by the active parser
synthesized by Zhefuscator. Thus,
. * L. its grammar had to be augmented.
@ v, ' T | =
£ f g2 1
'_ .. '_ L]
i 8
: H
H o7
25,
0 250 500 750 1000 0 250 500 750 1000
[0, 40] Tokens + SQL query + [0, 40] Tokens

[0, 16] Tokens + SQL query + [0, 16] Tokens

Figure 3.12: Runtime comparison between ZHEFUSCATOR and the brute force approach
to parse 1,000 examples of artificially generated logs. Black dots mark invocations of
fill_holes.
Discussion. Although the choice of tokenizer might modify the number of examples
necessary to reach a definitive grammar, the two tokenizers that we have used led to
the same prefix size in Figures [3.8] and This happens because C and SQL have
many similar tokens, including identifiers—the most common in the examples. However,
the impact on runtime is different. Using the C tokenizer, ZHEFUSCATOR takes 26.15
milliseconds, on average (STD = 17.85ms), per example from the AUCTIONMARK log
(Figure , including the eventual time taken to augment the grammar. Using the
SQL version, this time drops down to 18.81 milliseconds, with a standard deviation of

3.33ms. The latter is faster because the SQL lexer uses a smaller automaton than the C

lexer.

3.3. Evaluation 39

Format [0,4]+5QL+[0,4] [0,8]+SQL+[0,8] [0,16]+SQL+[0,16] [0,40]+SQL+[0,40]
Tk/Ex 29.99 38.26 54.10 298.43
parsing only |[fill_holes: 35 [parsing only [fill_holes: 39 [parsing only [fill_holes: 51 [parsing only [fill_holes: 264
avg (Zhe) 17.53 18.40 22.08 23.67 29.47 34.05 88.88 1,085.01
std (Zhe) 3.45 6.32 4.51 10.09 5.00 23.70 21.15 2,004.49
avg (BF) 137.15 232.14 464.65 347.20
std (BF) 31.41 55.38 103.24 60.48

Figure 3.13: Average time and standard deviation (per example, in milliseconds) that
ZHEFUSCATOR (Zhe) and the brute force approach (BF) take to analyze the artificial logs.
“Parsing only" reports runtimes for examples in which ZHEFUSCATOR’s current parser
succeeds without having to synthesize a new grammar. “fill_holes: XX" includes the
time of “parsing only", plus the time to augment the current parser. XX reports the
number of times ZHEFUSCATOR had to augment the current parser (via the £ill_holes
routine).

3.3.3 RQ3—Practicality

The techniques described in Section have a computational cost. The goal of
this section is to measure such cost. This empirical evaluation shall allow us to claim
that the overhead of ZHEFUSCATOR, when deployed onto typical Java applications, is
low enough to be practical.

Methodology. It is difficult to measure the overhead of ZHEFUSCATOR in our exper-
imental setup involving actual deployments of MySQL and PostgreSQL. This difficulty
comes from the fact that logging, at least in that particular setting, is a rare event. Log
entries are produced only when users enter queries in the database. In this scenario,
the overhead of ZHEFUSCATOR is negligible. Thus, to probe this overhead in a more
heavily loaded scenario, we shall proceed with two experiments. In Section we
measure the runtime overhead that event handling imposes onto a single invocation of
the System.out.printin routine used to output log information in a database server. This
evaluation provides some insight into the absolute overhead of event handling; however,
it does not give us much information about how ZHEFUSCATOR would impact user ex-
perience, for the time of handling one single string event is very fast. To circumvent this
limitation, in Section we measure the overhead that ZHEFUSCATOR imposes onto
batch computations, i.e., that perform a fixed number of steps. In this case, we focus on

the Java Dacapo benchmark suite [?].

3.3. Evaluation 40

3.3.3.1 Overhead of Treating one String Event

To measure the overhead of treating one string event, we have built a system that
reads a log file and outputs it line by line using the System.out.println method from the
Java Standard Library. For maximum stress, we assume that every SQL literal must be
redacted. In this experiment, we adopt the same logs from the MySQL databases used in
Section [3.3.1.11
Discussion. Figure presents the results of this evaluation. Each log was evaluated
ten times; hence, each box plot contains ten samples. The figure makes it clear that
ZHEFUSCATOR’s event handler has an overhead over individual method invocations. This
overhead can be as high as two orders of magnitude, as observed in resourcestresser.
However, this cost accounts for a very small proportion of the runtime of a typical database
system. In the case of resourcestresser, the average time to redact every literal in the
log is 0.03sec per invocation of System.out.printin. This time includes the invocation of
build_grammar (Fig. and the obfuscation of literals. Obfuscation includes the time
to encrypt literals using AES.

60 auctionmark epinions resourcestresser
9 i
40
40 ——
20
20 é ;

»

100 seats tatp 40 tpcc
B 75 — = A
L 5o 2
£ 40 0
— 25 20 10
0 twitter 7 wikipedia ycsb
50 —_— —
40 5 ==
30 4
20 3 10
10 ‘ 2 ,
NO YES NO YES 0 NO YES

Using Zhefuscator?

Figure 3.14: Overhead of ZHEFUSCATOR on an extreme case: a system that only outputs
different database logs.

3.3. Evaluation 41

3.3.3.2 Deploying on Java Dacapo

In this experiment, we measure the overhead of building a grammar for every
output produced by the programs in the DaCapo Benchmark Suite. DaCapo’s logs do
not contain SQL queries; hence, in this section, we are measuring the time to build
grammars, but not the time to redact queries.

Discussion. Figure[3.15|compares the runtime of DaCapo without and with interventions
from ZHEFUSCATOR. Figure [3.16| shows accompanying data: p-values, number of log
events and number of production rules in the final grammar that we synthesize. The p-
value provides us with some notion of statistically significant runtime difference: the lower
the p-value, the more noticeable is the gap in runtime between the two versions of each
DaCapo program. Typically, p-values below 0.05 are considered statistically significant.
These p-values have been obtained via a T-Test applied on the same data used to produce
Figure [3.15| The T-Test provides us with an idea on how different are a “control" and a
“test" groups. In our setting, the control group is formed (in Figure by applications
that do not run the ZHEFUSCATOR. The test group, in contrast, is formed by the same
applications using the ZHEFUSCATOR. The lower the p-value returned by the T-Test, the

more statistically significant is the different between these two groups.

~ avrora batik 350 eclipse _ fop o5 h2

80 19 | 1.2 | . |
330 I 90 !

70 17 310 El 09 ==l

60 El $ 16 290 06 | 80 El

15/ : | == 75

270 0.3

jython luindex lusearch lusearch—fix pmd
85.0 0.8 L L !
| ' 12 10.0
D 82.5 1 0.7 1 . 11 .
~80.0 0.6 $ | 9.5 ‘
2 10 1 10
€775 0.5 == 9.0 El
|_ il 9 T
75.0 i 0.4 ﬁ 9 8.5
[0.3 = T 8.0 |
sunflow tomcat tradebeans tradesoap ' xalan

I |
24.0 60 | 58 120 pray —
235 58 |

| _ 56 116 \—’—‘ "

23.0 i
NO YES NO YES NO YES NO YES NO YES
Using Zhefuscator?

25.0 62 128 i
245 ‘ Iél 62 — ’_—L‘ 60 | 124 46 —

Figure 3.15: The overhead of ZHEFUSCATOR on Dacapo.

The runtime overhead of ZHEFUSCATOR, even when deployed onto a batch system,
tends to be small. In 11, out of 15 cases, we could not perceive any statistically significant

runtime difference. The largest runtime gap that we have observed was in fop; however,

3.3. Evaluation 42

3 29
N

aet o d c Qo
O & ©°

. 0 ' KO XV
Q& N SR o? (O
Noia) 5o N\ '\\i«\ WP We Q«\

P-values 047 0.68 0.38 0 0.54 0.99 0 0.03 0.17 052 0.07 013 0.66 0.16 0

Qo

>
o‘
,bq(6\)0

Log Lines 13 22 25 13 24 94 13 45 45 13 13 19511 31 31 14

Productions 30 60 10 16 68 30 16 46 46 30 46 56 54 54 46

Figure 3.16: The overhead of ZHEFUSCATOR on Dacapo. The lower the p-value, the
more statistically significant the overhead.

this is the benchmark that runs for the shortest time. Thus, this overhead, due to the
initialization of ZHEFUSCATOR’s agent, tends to be amortized in systems that run for
more time. The largest absolute overhead was observed in xalan: 1.7 seconds on average,

over a system that runs for 44 seconds on average.

43

Chapter 4

/ZHELANG

4.1 Language Specification

This section defines the syntax (Sec}4.1.2)) and the semantics of ZHELANG (Sec{4.1.3)),
a reactive domain specific language to threat string events. However, before we dive into
any formalism, Section provides some rationale on the choice of operators that con-

stitute ZHELANG.

4.1.1 Core Operators

ZHELANG programs are made of the combination of five different operators: atomOp,
comb0Op, orOp, optOp and searchUntilOp. The first operator, atomOp, determines pat-
terns of interest, i.e., regular expressions that trigger events once they occur in the input
stream. The other operators are combinators, meaning that they let the user specify
combinations of events. The first four operators, atomOp, combOp, orOp and optOp, let

users specify context free grammars. The next example illustrates this possibility.

Example 8 Figure (a) shows a context-free grammar. Figure (b) shows a ZHE-
LANG program that recognizes the same grammar. We shall postpone the discussion of
the semantics of this program to Section[4.1.5

The fifth operator, searchUntilOp, exists for two reasons. First, to enable the
repetition of multiple patterns as triggers of events. Second, because ZHELANG programs
need a way to skip text that is not of interest. In other words, a ZHELANG program
encodes context-free grammars that recognize specific patterns within an infinite text
stream. The full language that generates this infinite text does not need to be recognized

by the program.

4.1. Language Specification 44

(@ A= wranye () A=orop B = optop
| B (combOp L (combOp
‘Agf(atomOp "{") ‘AAf(atomOp ")
B ::= "["B "] —— combOp —— combOp
€ — A —A
—— (atomOp "}")) — (atomOp "]"))

Figure 4.1: (a) A context-free grammar that recognizes balanced sequences of braces
and brackets. (b) The same grammar implemented as a combination of four ZHELANG
operators.

dollar = atomOp "~\$?[0-9]+\.?[@-9]*$" INPUT
names = orOp A\\v//
(atomOp "John") CcoMB
(orop
(atomOp "Alice") PP
(atomOp "Bob")) dollar SEARCH
find = combOp
dollar OR
(searchOp names) N
event find (\tokens -> John’ OR
putStrLn (tail tokens) -
)
‘Alice’ ‘Bob’
(a) (b)

Figure 4.2: (a) A ZHELANG program that detects all the occurrences of either one of three
particular names after observing a currency pattern. The action language, embedded in
the guard, is Kotlin. We have highlighted the only Kotlin command (print) used. (b)
The block representation of the program.

Example 9 Figure (a) shows an example of a ZHELANG program. This program
prints all the occurrences of any of three different names (John, Alice or Bob) after
having observed the occurrence of a pattern that represents an amount of dollars, e.q., §
2, §2.33, § 2.8333. Thus, the underlined strings in the sentences below would be printed:

e John owns § 2.30 to Alice Tokien and John Wayne.
e Amount: $ 2.30; Name: Alice Alba; Name: Alice Page.

How this semantics is produced by the syntax seen in Figure (a) is yet to be discussed in
Section[{.1.5. ZHELANG supports a graphic representation of programs, which Figure[{.9
(b) shows. Section|4.1.2.1| provides more detail about this visual program representation.

4.1. Language Specification 45

4.1.2 Syntax

A ZHELANG program is written according to the grammar in Figure [4.3] A pro-
gram is a sequence of guards and events. Guards represent bindings between names and
observers. Events represent bindings between observers and programs written in an action
language. The latter—any programming language that can be linked with ZHELANG—
lets users specify actions to be executed once an event is detected. As Figure {4.3| shows,
actions are invoked as lambda expressions. In this work, we assume, for simplicity, a

currified representation.

observer ::= atom0Op regex ; Atomic Operators

| combOp observer observer ; Combinator Operator

| orOp observer observer ; Optional Operators

| searchUntilOp observer observer ;Search Until Operator

| optOp observer ; Optional Operators

| Fail ; A pattern matcher that always fails
program = event observer action ; Event Definition

| cutEvent observer action ; Cut Operator
action = Av -> E(v) ; F/ is any expression in the action language

Figure 4.3: The syntax of ZHELANG.

Observers are operators to recognize patterns in the input stream. Currently,
ZHELANG provides users with five types of observers. Their semantics is explained in
Section [4.1.3] For now, it suffices to know that they can be combined, as a recursive data

type. Example [9 shows a program that results from this combination.

4.1.2.1 Visual Representation

To ease program understanding, we have equipped ZHELANG’s observers with a
visual representation. As previously mentioned, observers form a recursive data type.
Visualization relies heavily on this recursive nature. Figure (a) shows the five blocks
of observers used in ZHELANG. The horizontal length of two of these blocks, denoting
combOp and orQp, is variable. This length can be extended whenever necessary to accom-
modate multiple observers in a contiguous block, i.e., with successive applications of the

binary observers, simulating an n-ary application. The next example illustrates this fact.

4.1. Language Specification 46

Figure 4.4: (a) The seven observers currently defined in ZHELANG (we use a symbolic
representation for the input stream—input; however, this symbol does not denote an
observer). (b) Program that recognized the pattern (’John’|'Mary’)(’Alice’|’'Bob’) in the
input stream.

Example 10 Figure (b) shows a pictorial representation of the program earlier seen
in Example 9. Notice that this program, contrary to the one seen below in Example
recognizes multiple (indeed infinitely many) occurrences of the pattern (“John" | “Alice" |
“Bob"). This fact is due to the use of the LoopOp observer.

Example 11 F igure (b) shows a program that recognizes events formed by two tokens,
i sequence. The first token is either the string John or the string Mary. The second token

1s either Alice or Bob.

4.1.3 Semantics

Figure[4.5shows the semantics of the different observers that constitute ZHELANG.
Each observer returns a triple BL;Lg, in which B € {Satisfied, UnSatisfied}; L, is
a list of tokens that have been recognized by the observer; and L, is the rest of the
infinite input stream. We say “rest” because observers might modify the input stream
after processing it. For example, the atomOp observer removes the head token of the
input stream if a match happens.

Although the return type of each observer is the same, their input types might
differ. The operator optOp has two currified arguments: The first is another observer
and the second is the input stream. The operator searchUntil0Op takes three arguments:
another observer, a pattern that when matched ends the execution of the operator, and
the input stream. The operator atomOp also has two arguments. The second is also the

input stream, but the first is a pattern to be matched. The other two observers, combOp

4.1. Language Specification 47

match(t,h) = True
atomOp ¢t (h : s)— > Satisfied [t] s

match(t,h) = False
atomOp ¢ (h: s)— > UnSatisfied s

{At1} {At2}

¢ input— > UnSatisfied s
comb0p c; ¢g input— > UnSatisfied s

{Col}

c1 input— > Satisfied t; s1 c¢2 $S1— > UnSatisfied

: e R {Co2}
comb0p ¢; ¢ input— > UnSatisfied (tail input)

c1 input— > Satisfied t; s1 c¢2 s1— > Satisfied {s s9
comb0p ¢; ¢ input— > Satisfied (f; ++t2) S2

{Co3}

c1 input— > UnSatisfied
orOp ¢ co input— > ¢ input

{Oo1}

c1 input— > Satisfied ¢; 51
orOp ¢ co input— > Satisfied ¢; s

{002} {Fi1}

Fail input— > UnSatisfied (tail input)

c1 input— > Satisfied t1 51
searchUntilOp ¢ cp input— > Satisfied ?; s

{Sul}

c1 input— > UnSatisfied @ c¢p input— > Satisfied

: : — — {Su2}
searchUntilOp ¢; ¢z input— > UnSatisfied (tail input)

c1 input— > UnSatisfied s c¢9 input— > UnSatisfied s

searchUntilOp c¢; ¢z input— > searchUntilOp c; ¢2 s {Su3}
c1 input— > Satisfiedt s ¢1 input— > UnSatisfied _
L 1Pt el {Op1} : — : {Op2}
optOp ¢; input— > Satisfiedt s optOp ¢j input— > Satisfied [] input
searchUntil0Op observer Fail stream— > Satisfied? s
{Eg1}

event observer action stream— > action(t); event observer action s

searchUntilOp observer Fail stream— > Satisfied? s

{Cel}

cutEvent observer action stream— > action(t);

Figure 4.5: The semantics of ZHELANG. We use s to denote the input stream, and ¢ to
denote combinations of observers.

and or0Op receive three arguments. The first two are observers, and the third is the input
stream.
The atomOp observer is the simplest of the five: it matches a token, its first argu-

ment, with the head of the input stream. There are two operators that combine observers:

4.1. Language Specification 48

(b)
email = atomOp("\w+@\w+.\w+") T
phone = atomOp("[-\s\./0-9]")
target = combOp COMB
(optOp phone) -

(combOp ;\\v//k

(loopOp (atomop ","))

. OPT COMB
email)
event target (\tokens -> _\\v//F—\\V//F—\\V{/F
addUserDataToDB(tokens) P R

)

(2)

Figure 4.6: (a) A ZHELANG program that recognizes a phone and an email separated by
a comma. (b) The block representation of the program.

combOp and orOp. The former applies observers in sequence: it reports an event when
both its input observers return successful events. The latter, orOp reports an event in
case any of its input observers does it.

The searchUntil0p operator is used to implement iterations over the input stream.
The construction searchUntilOp c; ¢ s applies the observer ¢; on the stream s until ¢y
triggers an event for some token in s or until ¢ is successfully applied to s. Finally, the
optOp operator is present in ZHELANG to allow the existence of combinators that do not

modify the input stream.

Example 12 Figure [4.6 shows a program that extracts a phone number from the input
stream, 1n case one exists, plus an email. These tokens must have a comma between them,
as in a CSV file or as in a semi-structured address format. We use the optOp operator
to indicate that the phone number is optional. Thus, the program is able to recognize the
reqular expression formed by zero or one occurrences of a phone number, plus a comma

and then an email. The last two tokens are mandatory.

Figure [4.5| uses a special atom, Fail. This atom denotes a pattern that never
matches any other pattern. Fail is defined by Rule Fl1 and is used in rules FgI and Cel
to indicate that events are searched ad infinitum. While writing programs in ZHELANG,
we have found this pattern—consuming tokens until an event takes place—so common,
that the current language specification defines an operator for it. Figure [4.7] shows how

this new operator, searchOp, is defined. Example [13| explains its behavior.

Example 13 The program in Figure (b) searchers for an SQL query containing a
SELECT block plus a WHERE clause. Once search starts, the guard will be deactivated when
a line breaker is read. Figure (¢) shows a similar program; however, once this event

becomes active, it will only stop running if the query is found.

4.1. Language Specification 49

(@) (b)

searchOp ¢ input selWhere = atomOp "SELECT.*WHERE.*"

- endLine = atomOp "\n"
searchUntilOp ¢ Fail input

target = searchUntilOp

sellWhere
INPUT INPUT endLine
SEARCH — SEARCH UNTIL
. . . — ; (©)
N | \/_F/ selWhere = atomOp "SELECT.*WHERE.*"
s s ,FAIL target = searchOp sellWhere

Figure 4.7: (a) The definition of the operator searchOp. (b) Program that searches for
an SQL query until a line break is found. (c¢) Program that searchers for the same SQL
query, until one is found.

O(Fail O(1)
O(atom0Op ¢ O(t)
O(c)

O(comb0p ¢ ¢z
O(orQP ¢ ¢
O(searchUntilOp c¢; ¢

)
)
O(opt0p)
)
)
)

QXX u

Figure 4.8: The asymptotic complexity of the different operators of ZHELANG. We let n
be proportional to the size of the input stream observed until when the event takes place.

4.1.4 Asymptotic Complexity

Figure gives us the means to estimate the computational complexity of each
one of the six operators used in ZHELANG. This complexity is given in Figure £.8 The
estimates provided in Figure [£.§ can be inferred directly from the semantics of each

operator. This process is used in the proof of Theorem [§

Theorem 8 (Complexity) The asymptotic complexity of ZHELANG observers is given
by the relations in Figure[].§

The proof is by case analysis on the rules in Figure [4.5] We show a few cases:

At1: The cost of solving atomOp ¢ (h : s) is the cost of matching the regular expres-
sion ¢t with the token h.

At2: Same as the case for At1l. Therefore, that limits the complexity of atomOp ¢ (h :

s) into the cost of performing one pattern matching.

Col: The cost of solving comb0Op ¢; ¢ input is the cost of running ¢; input.

4.2. Implementation 50

Co2: The cost of solving combOp ¢; ¢z input is the cost of running c; input and
co s, where s is also an input stream. Therefore, the complexity of this case is

the sum of the complexity of the subcases.
Co3: Same as the case for Co2.
Sul: The cost of solving searchUntil0Op c; c2 input is the cost of running ¢; input.

Su2: The cost of solving searchUntilOp c¢; ¢ input is the cost of running ¢; input

mais the cost of running cs input.

Su3: The cost of solving searchUntilOp c; cp input is as in the case Co2, plus
the recurrent cost of invoking searchUntil0Op on the smaller input, which can
be reduced by one token. This case can be repeated n times, where n is the

number of tokens inspected until either case Su2 or Sul happen.

The other cases are similar, and we shall omit them. Notice that the only difference
between opOp and combOp, in what regards their computational complexity, is the
fact that the second observer in combOp runs only when the first observer fails.
Therefore, we replace the summation by the upper bound (max) on the asymptotic

costs of these operators. O

Most of the programs written in ZHELANG will run in time linear on the number of
tokens observed times the cost of matching these tokens against regular expressions. This
is the case, for instance, of the three case studies in Section [4.3] Linear complexity is the
most common behavior, because to go beyond this bound, observers must contain either
orQp or recursive combinations involving searchUntilOp. Nevertheless, the relations in
Figure indicate that it is possible to derive programs with exponential complexity
using a combination of orOp and searchUntilOp observers. This result holds even when

the input stream is bounded. Example [14]illustrates this possibility.

Example 14 Figure[.9 shows four different programs, and recurrence relations defining
their asymptotic complexities. The solution for each one of these four recurrence rela-
tions appears in Figure (c). Notice that the last observer, expnLoop, has exponential

complexity.

4.2 Implementation

The reference implementation of ZHELANG is written in Kotlin and runs on the
Java Virtual Machine. This section presents the reader with some details of this imple-

mentation.

4.2. Implementation o1

find1Dot = searchOp Teind,o0t() = O(atomOp ™. ") + Tejp4p0e(n-1) | O(Find1Dot) = O(n)
(atomop ".")
find2Dot = orOp Tting,pot(M) = O(find1Dot) + O(find1Dot) O(find2Dot) = O(n)
find1Dot
find1Dot
quadLoop = sear‘chOp TquadLoop(n) = O(-FlndZDOt) + TquadLoop(n'l) O(quadLoop) = O(n2)
find2Dot
expnLoop = searchOp TexpnLoop(™) = O(atomOp ".™) O(expnLoop) = O(2")
compOp +T n-1
(atomOp ".") +T”"”L°°"(1)
or‘Op exanoop(n')
expnLoop
expnLoop

(@) (b) (c)

Figure 4.9: (a) Examples of ZHELANG programs. (b) The recurrence relation that denotes
the complexity of each program. (¢) The solution of each recurrence relation, giving the
asymptotic complexity of the examples.

4.2.1 Overview of the Implementation

The implementation of ZHELANG follows closely the observer design pattern.
Thus, we have a number of objects representing observers registered onto a central noti-
fier, the subject. The latter encodes a text stream and a panel onto which observers can
be plugged. Therefore, the runtime environment of a ZHELANG program is composed by

the components listed below. Figure [£.10] shows the relation between them.

e Observers: objects that encode any of the six operators described in Section [4.1}

e ZHESTREAM: a facade representing the infinite text that must be processed by the

program;

e ZHEPANEL: the subject of the observer pattern, that is, the object in which ob-

servers are registered to wait for events.

4.2.1.1 The Implementation of Observers

Structurally, observers are parser combinators |?|. In other words, an observer is a

high-order function that takes parsers (other observers) as input and returns a parser (it-

4.2. Implementation 52

Code written in the [1..N] (1] 1] Stream
Action Language Events ZhePanel ZheStream Generator
read >
<¢—token
register—
read -
<¢—token
¢——notify
¢—execute

Figure 4.10: The relation between the core components of ZHELANG. The stream gener-
ator and the code that implements actions are not written in ZHELANG.

self). These parsers read tokens provided by the ZHEPANEL and output a parser tree. An
observer has the following type: String — (Boolean, [String|, String, Maybe Error).
If 0 is a ZHELANG observer, and (status, tokens, rest, error) its output, then we have the

following definitions:

status: This boolean tells if the matching was successful or not. This information needs
to be explicitly given, rather than otherwise inferred, because the optOp operator,

and any observer based on it, might be successful but recognize no tokens.

tokens: A list with the recognized tokens. Items are added to the list by a successful
application of the atomOp operator, or by combining the output of other observers.
For example, the combOp operator concatenates the lists of two successful observers

and the orQOp operator returns the list of tokens of the first successful observer.

rest: The third element of the tuple is the remaining input string to be parsed after the
application of the observer. When the observer fails, it consumes the first token from
the input, the only exception being again opt0Op, which returns the input unchanged
if it fails. When the observer succeeds, the remaining string will be the result of

removing the recognized tokens from the input string.

error: The optional error indicator is a tuple containing a number and a string. The
number is an error code and the string is an error message explaining why the
observer failed. An observer might fail for different reasons. A non-exhaustive list

includes:

4.2. Implementation 53

1. Atom0Op fails if the input string does not match the provided token;
2. SearchUntil0Op fails if the termination condition was matched;

3. combOp fails if any of the provided observers fail.

4.2.1.2 The ZHESTREAM

We use the expression “infinite string" throughout this text. However, this is
rather an abuse of language. In practice, an infinite string is represented by a generator.
Therefore, an infinite string is an unbounded set of finite strings produced at different
moments. The ZHEPANEL receives and records each element of this set. These elements
are received from a stream abstraction, the ZHESTREAM.

ZHESTREAM is a Stream of text that keeps track of the string chunks arriving at
different time intervals. This abstraction breaks the incoming strings into chunks of the
same size. Said chunks are broadcasted to any registered observer by the ZHEPANEL.
ZHESTREAM splits strings into equal-sized pieces for performance reasons. ZHELANG’s
implementation uses Java StringBuilder to manipulate strings. Tokenization of an im-
mutable string is linear on the size of the string. Thus, splitting happens to avoid having
to copy large chunks of data to separate them into tokens.

However, splitting can compromise ZHELANG’s correctness. An Error may happen
if an observer requires more than one chunk of string to match its pattern. To deal with
this problem, the ZHEPANEL relies on the error returned by the observer. If the observer
fails because it consumed all the string chunks, then the ZHEPANEL asks ZHESTREAM to
provide another chunk. This new piece is concatenated to the current chunk and matched
against the observer once again. This process loops until the match is successful or if it
fails due to a reason other than the length of the current buffer. Notice that this modus

operandi allows the creation of observers that never terminate, as Example (15| illustrates.

Example 15 Consider the event 0b = (atomOp ”. 7). 0b will consume all the string
chunks received thus far until failure ensues. If every chunk has N characters and M
chunks have been observed, then up to that point, 0b will have performed N x (MTQ + %)

matching operations.

4.2. Implementation 54

4.2.1.3 The ZHEPANEL

This data structure works as a bridge between data (the input stream) and the

events. It handles the following responsibilities:

e Tracks which parts of the input string were matched against each observer;
e Binds observers to actions, thus creating events;
e Activates events, spawning them into new threads;

e Broadcast string chunks to observers.

In terms of implementation, the ZHEPANEL contains a method addEvent (Observer,
Action). The first argument is defined in Section The second is an interface with
the action language. This interface is implemented in Kotlin, and links with a library
with hooks to invoke external processes. The implementation of ZHELANG discussed in
Section invokes actions implemented in either Java or Kotlin. Therefore, interfacing
is simple: actions are implemented as classes compiled into JVM bytecodes. The Action
interface contains a method execute([String]), which receives a list with the tokens

matched by the enclosing observer.

4.2.2 Core Property: Isolation

Each event in ZHELANG executes within a separate thread. Actions run as separate
processes. The observer does not block other actions while executing it’s own. Thus,
multiple actions might run concurrently, having been created by the same observer, albeit
to handle different string events. Events request string chunks independently from each
other, by invoking the proper method upon the ZHEPANEL.

Events run in isolation, meaning that they do not share state. The ZHESTREAM
is only read by the events; therefore, it is not replicated. However, different events, given
the nature of the observers that guard them, can read different parts of the input stream.
We emphasize that isolation is maintained for correctness, not performance reasons, as
Example [16] illustrates.

Example 16 Figure shows two events. The first waits for the pattern “AB"; the
second, for the event “BC". If these events do mot run independently, the string “ABC"

4.3. Use Cases 55

could be matched in two different ways. In both, an event would be missed. For instance,
if the program matches 0b1 before 0b2, then it will successfully match 0b1 consuming
tokens "AB". The string "C" will be returned to the shared state. After that, it will try to
match 0b2. Failure would ensue, as part of the necessary input had already been consumed.

This semantics would be in disaccord with the behavior expected in Figure [{.5

Obl = combOp Ob2 = combOp event Obl (\tokens -> event 0b2 (\tokens ->
(atomop "A™) (atomOp "B") callAction(tokens) callAction(tokens)
(atomop "B") (atomOp "C")))

Figure 4.11: Program that demonstrates the need of isolation for correctness.

4.3 Use Cases

This section presents three use cases of ZHELANG. Section shows how to
build a log obfuscator. Section [£.3.2] in turn, presents a crawler built on top of our DSL.
Finally, Section [4.3.3] shows how to run simple refactorings using ZHELANG. The goals
of these use cases are twofold. First, we want to provide the reader with examples of
useful programs that can be easily expressed in ZHELANG. Second, we want to compare
the efficiency of the implementation discussed in Section [4.2] with other, better-known

systems.

Hardware Experiments discussed in this section were performed on an Intel Core i5
with a clock of 1.8GHz, and 8 GB of RAM (DDR3) at 1,600MHz.

Software ZHELANG was implemented in Kotlin release 1.4.20. For comparison pur-
poses, we have also implemented every case study in Comby |[?], which is publicly avail-
able at https://github.com/comby-tools/comby. Comby is a parser-parser combina-

tor, that factors out commonalities among different programming languages into a single

abstract syntax tree. Additionally, Sections [4.3.1] and [4.3.2] compare ZHELANG with
tools that are specific to those case studies. In Section this tool is ZHEFUS-
CATOR, a log redaction system used by Cyral Inc., a data security company (https:
//github.com/lac-dcc/Zhe). Section uses BEAUTIFULSOUP4, version 4.9.3. This
is a python library for the analysis of HTML files. Every experiment runs on OSX 64-bits,
version 10.14.16.

https://github.com/comby-tools/comby
https://github.com/lac-dcc/Zhe
https://github.com/lac-dcc/Zhe

4.3. Use Cases 56

Methodology When reporting running times, we show the averages of five executions.
Samples for the same program are not collected in sequence. Instead, programs run in
random order. Differences in running time between averages collected for distinct systems
are considered statistically significant within a confidence interval of 99%. All the appli-
cations employed in this evaluation have a timeout of 600s. The timeout was necessary
to ensure a fair comparison between tools, as it is hardcoded in Comby. Incidentally, only

case studies implemented in this tool have reached the time barrier during our evaluation.

4.3.1 Log Obfuscation

Log obfuscation consists in the identification and redaction of sensitive sentences
produced by log generators. A core motivation for this kind of process are recent data
protection laws [?, ?, 7], such as the General Data Protection Regulation (GDPR)Y valid
in the European Economic Area since 2016. The log obfuscator is an online system that
intercepts the output of a log generator, e.g., a database server, an operating system, etc,
and recognizes string patterns denoting classified information. Once such patterns are

identified, it replaces them with encrypted text.

Experimental Setup. In this section, we compare log obfuscators implemented with
ZHELANG and with Comby against a tool that has been built with this purpose: Cyral
Inc.’s ZHEFUSCATOR. ZHEFUSCATOR is implemented in Java, and runs as an extension
of the Java Virtual Machine, analyzing any output recorded in file descriptors. In this
experiment, we have replaced ZHEFUSCATOR’s grammar synthesis tool with programs
written in COMBY and ZHELANG.

In this experiment, we have generated logs from MySQL SQL Database version
14.14 Distribution 5.7.27. Workloads were produced by the nine real-world web appli-
cations emulated by OLTP-Bench [?]. OLTP uses data from Wikipedia, Twitter and
other large databases. The three competing approaches employed in this experiment,
ZHELANG, COMBY and ZHEFUSCATOR were configured to redact every literal in every
SELECT query in the log. Figure shows the ZHELANG program that performs this
action. The three systems use the same action, namely, routine redactQuery, which has

been implemented in Kotlin, and compiled to Java bytecodes.

Discussion. Figures[4.13| 4.14] and [4.15|show the result of the comparison between the

running time of the three tools considered in this section. OLTP gives us nine workloads.

"https://eugdpr.org/

https://eugdpr.org/

4.3. Use Cases 57

target = combOp INPUT
(atomOp "SELECT")
(combOp
(atomOp ".*FROM") COMB
(atomOp " (\\w=\\w(\\s,\\s)?)+")) 4\\v//ﬁ
event target (\token -> P COMB
redactQuery(tokens) 2 —_— .
) Ww=\\w(\
FFROM | \s,\\s)?)+
(a) (b)

Figure 4.12: (a) A ZHELANG program that recognizes SELECT queries in SQL programs.
(b) The corresponding block representation of the program.

We have run each tool on each workload five times. Figure contains one point for
each one of these experiments (45 points per tool), except when considering COMBY.
This parser-parser combinator timed out in the majority of the experiments. The next
figure, [4.14] organizes these samples into boxplots, per workload, so that the reader can
check averages and outliers. Finally, Figure |4.15| summarizes this experiment presenting

boxplots per tool, for all the workloads together.

800 800 800

700 700 700

ob - .’

5 600 600 Fr 600 ®»& -
T > >
9 500 g 500 g 500
3 []
g 400 - S, 400 S, 400
N . (] ()]
o 300{:: £ 300 £ 300
E 0. L -
B 2001%¢ 200 200

100 100 100 /..

% 500 % 500 % 500
time zhelang time zhelang time zhefuscator

Figure 4.13: Time comparison between different log redaction tools. Each point represents
a workload. Axes show time, in seconds. The red line is the line that crosses the origin
and point (1.0, 1.0). The less points a tool has within its side of the diagonal, the faster
it it.

ZHELANG is the fastest player in this evaluation. However, the reader must un-
derstand that these tools do different things; hence, they cannot be compared directly.
Programmers must encode the same pattern of interest (SQL queries) in these three tech-
nologies. What distinguishes them is how they identify this pattern in the input stream,
which contains tokens that are not of any interest. ZHEFUSCATOR synthesizes a gram-

mar for an unknown language—in this case, the language that recognizes the log stream.

4.3. Use Cases 58

Therefore, it requires a few examples until converging to a definitive grammar. In this
experiment, ZHEFUSCATOR converged after eight to nine examples. The ZHELANG pro-
gram, in turn, does not need to synthesize a grammar to recognize the full log language.
It discards any token that cannot be used to build the pattern of interest, i.e., SELECT
queries. COMBY also does not need to recognize the full log language; however, it expects
the input string to be encodable in a Dyck-Extended language. Such is not the case of
SQL, and CoMBY falls back into a generic parser that performs declarative matching on

the input—a rather slow process.

auctionmark.log epinions.log resourcestresser.log
400-
200' e m— _— —
0- _— e — — —
seats.log tatp.log tpcc.log
E 600- —— — ——
o 400-
£ 200- S—— S—— T
0 e — ——
twitter.log wikipedia.log ycsb.log
600- —e— —3 .
400- —_—
200 o [—]
0 , , , SSS : ,
3 * O 3 N O) S O
() ¥ o,bé@ Q>,0(\ O(60 6,0’5@ Q>’OQ 0&\0 c,bf“)@ @ﬁo
C NS A8 C N A8 @) N N
A A5 A

Figure 4.14: Time distribution for ZHELANG, ZHEFUSCATOR and COMBY, when analyz-
ing the OLTP logs.

600-

400-

time(s)

200- f |

|
. (|

0- T
Comby Zhefuscator Zhelang

Figure 4.15: Summary of the running times observed in Figure m

4.3. Use Cases 59

4.3.2 Web Crawling

Web crawling is a scenario that can be naturally modeled as a problem of pro-
cessing an infinite stream of text. The set of webpages that form the World-Wide Web
is, obviously, finite. However, for any practical purpose, it can be treated as unbounded,
given that its sheer volume prevents typical string processing tools from storing its con-
tents before textual analysis starts. In this experiment, we use ZHELANG to build the
parsing component of a web crawler. This crawler builds a catalogue with the links found

in webpages.

Experimental Setup. The workload for this experiment consists in the 50 pages listed
in Alexa Top Sitaﬂ. The goal of this evaluation is to measure the time to parse these
pages. Thus, to avoid timing fluctuations due to the network latency, we have downloaded
all the pages using GNU wget Version 1.21. In this experiment, we compare ZHELANG
with BEAUTIFULSOUP4’s parser, which is implemented in Python, and is customized for
parsing webpages. We have also implemented this parser in COMBY. The goal of this
experiment is to extract every link tag from HTML files and rewrite them into a JSON
format. Figure [4.16] shows the ZHELANG implementation of this task.

(b)
urlObserver = combOp INPUT
(atomop "<a" R :
(loopOp (combOp
(atomOp "href=") comB
(combOp r A
(atomop II\S*\II'*\II?II LOOP
(loopOp (atomOp ">"))))) R .
event urlObserver (\tokens -> COMB
convertTokensToJson(tokens) . g—
) "
href= COMB
(a) <<
ek ayrg | LOOP
>

Figure 4.16: (a) A ZHELANG program that finds links in webpages. (b) The block
representation of the program.

Discussion. The parser built using ZHELANG outperforms the parsers built with COMBY
and with BEAUTIFULSOUP4. In the latter case, the difference is small, albeit non-

2 Available at https://www.alexa.com/topsites on February lIst, 2021

https://www.alexa.com/topsites

4.3. Use Cases 60

negligible. Figure shows absolute running times for every experiment (5 x 50 sam-
ples). This difference in running times is uniform across the 50 webpages that constitute
our workload. Figure provides absolute times per webpage. Each bar in Figure
is the average of five runs. That figures makes it clear that COMBY’s poor performance
is not due to outliers. Our experience shows that “declarative matching", the technique
used by this tool, although flexible, yields slow parsers when ported to environments that

lay outside the domain of Dyck-Extended languages.

3000 3000 3000
2500 2500 2500
_ 2000 _ 2000 © 2000~
]] IS
< c e
o ~11500 > 1500(8
o' 1500 ° 2 X
£ £ £ .
“ 1000 * 1000 S 1000
500 500 500,
o o o L] (]
o o o o
Sos ® & . ho- .
% 2000 % 2000 % 2000
comby_time time_python time_python

Figure 4.17: Time comparison between different web crawlers. Each point represents
a workload (one of five executions for each one of fifty webpages). We show the main
diagonal, to ease comparison. The less points a tool has on its side of the diagonal, the
faster it is.

Bl Zhelang
I Comby
Il BeautifulSoup4

103

102

time (ms)

10!

files

Figure 4.18: Running time necessary to process each webpage in the workload. Each tick
on the X-axis represents a different webpage. Bars show averages of five samples.

The running time difference observed between ZHELANG and BEAUTIFULSOUP4
is an artifact of the underlying programming language used to implement these two sys-

tems. ZHELANG is implemented in Kotlin, and runs on the JVM. The BEAUTIFULSOUP4

4.3. Use Cases 61

parser is implemented in Python, and runs on CPython. Visual inspection of both pro-
grams shows that the number of parsing actions (reductions and shifts) necessary in either
implementation is approximately the same. In this experiment, the bulk of the running
time of each web crawler is spent on text processing. The action triggered once a link is
found takes minimal time. This action consists in saving the link into persistent storage.
We shall provide data to back up this observation in Section m (Figure , Page .

40-

time(s)

20-

Beatifu'ISoup4 Corhby ZheLang

Figure 4.19: Summary of running times of the different web crawlers built using either
ZHELANG, COMBY or BEAUTIFULSOUP4.

4.3.3 Program Refactoring

Refactoring is a family of automatic program transformations that developers use
to improve the quality of the code that they write. Refactoring is not the main domain
for which ZHELANG has been conceived: the program text is finite. Nevertheless, we use
this case study to compare ZHELANG with COMBY in the scenario for which the latter

has been designed.

Experimental Setup. We have written a refactoring tool for C, that transforms “for"
loops into “while" loops. In terms of parsing, this is a trivial transformation: it consists
in recognizing terms in the format “for(x; % ;x)", where % is any number of characteres.
Figure shows the implementation of this tool in ZHELANG.

As benchmarks, we have used the 10,000 largest C programs available in the ANG-
HABENCH collection of benchmarks [ﬂﬂ We chose the “single-function" category of bench-
marks, meaning that each C file contains one single function, plus all the definitions (types,

external functions, macros) necessary to ensure its compilation.

3 Available at http://cuda.dcc.ufmg.br/angha/home on February 1st.

http://cuda.dcc.ufmg.br/angha/home

4.3. Use Cases 62

forObserver = combOp
(atomOp "for\s*\(")

(combOp
(atomop ".*; ?")
(combOp
(atomop ".*; ?")
(combOp

(atomOp ".*; \)")
(atomOp "\s*\{.*}?"))))

event forObserver (\tokens ->
WriteWhileLoopFromTokens (tokens)

)

(a)

Figure 4.20: (a) A ZHELANG program that recognizes for loops in programs. (b) The
block representation of the program.

Discussion Figures[f.21]and [4.22]indicate that the ZHELANG program is faster than its
counterpart implemented in COMBY. On the average, refactorization based on ZHELANG
takes 35 milliseconds per file. Using COMBY, this time jumps up to 68 milliseconds on
average. To give the reader some perspective on these numbers, notice that the C files
have 7853 characters on average. Furthermore, the output produced by both parsers is

identical.

900
800
700

(o))
o O
[==)

H U
o
o

time zhel
N w
o o
o o

100 Lt .

0 Y- PR L

0 100 200 300 400 500 600 700 800 bOO
comby_time

Figure 4.21: Time comparison between ZHELANG and COMBY with respect to the task
of transforming “for" loops into “while" loops. Each point represents a workload (5 x 10*)
samples. The red line is the main diagonal. The less points a tool has on its side of this
line, the faster it is.

Figure [£.23] plots the time that ZHELANG and COMBY take to process the 1024
largest files in our benchmark collection. The ZHELANG implementation has outper-
formed COMBY’s in every one of the 1024 samples in Figure The maximum time

4.3. Use Cases 63

70-

60-

50-

time(s)

40-

30- . ¥
Comby Zhelang

Figure 4.22: Summary of results presented in Figure m

taken by ZHELANG was 232 seconds, for a program with 6211 characters. The maximum
time taken by COMBY was 876 seconds. In this case, the input file has 11166 characters.
Nevertheless, there are programs, not among the 1024 largest files, in which COMBY’s
implementation has been able to outperform ZHELANG. Figure shows two occur-
rences (out of 10,000 experiments). Because the running time of both implementations
is so short, we believe that this result is caused more by standard fluctuations in time
measurement than to some inability of ZHELANG’s implementation to handle particular

inputs.

350

B Zhelang
300 Comby

250
~ 200
5150

100

50

file id

Figure 4.23: Running times collected for the 128 largest files in the ANGHABENCH col-
lection of benchmarks. Each bar is the arithmetic average of five executions. Programs
are sorted by size, measured as Kilobytes.

4.3. Use Cases 64

4.3.4 Analysis of the Runtime Behavior of ZHELANG

The running time of ZHELANG programs can roughly be divided into the three

parts below:

Tokenization: the separation of the visible part of the input stream into tokens. The
implementation of ZHELANG discussed in Section [4.2] uses a very conservative def-

inition of tokens: any single character read in the input is a token.

Matching: the verification of which atoms can be recognized in the input. To this end,
sequence of tokens are given to the atomOp combinators in the event guard. Each
one of these operators define a string pattern, i.e., a regular expression. Once a
sequence of tokens is successfully matched with a regular expression, a string event

takes place.

Actuation: the execution of an action, once an event is detected by an observer.

In this section we analyze how much time our different case studies spend on each
one of these parts. However, before we start this analysis, notice that the time spent
on actuation is not directly dependent on metric properties of the input stream (the
quantity and average length of tokens observed). In other words, actuation consists in the
invocation of an external process to handle the occurrence of an event—a pattern of text
on the input stream. The case studies in Sections[4.3.1 invoke very short actions, for
our goal when evaluating them was to compare the speed of different parsing techniques.
Therefore, the bulk of time reported in this section is spent in either the tokenization or

in the matching phases of a ZHELANG program.

Methodology In this section, we profile the time taken by two of our case studies: the
one in Section [4.3.2l and the one in Section 4.3.3l These two case studies have the benefit
of receiving individual inputs (web pages or C files), which can be profiled independently

from each other.

Discussion Figure [4.24] shows how the running time of the program in Figure |4.16) is
split into tokenization, matching and actuation. Figure [£.25 provides similar information
for the program in Figure [£.20] Time spent on parsing is proportionally higher in Fig-
ure than in Figure [4.24] One could believe, in principle, that this difference happens
because in the latter case, texts manipulated by ZHELANG are larger. This intuition
is motivated by the observation that time spent on tokenization varies approximately
linearly with program size, whereas parsing has higher complexity. However, this as-

sumption is false. Each C file contains, on average, 7853 tokens, whereas each webpage

4.3. Use Cases 65

contains 281621. Profiling reveals that the culprit for the difference between Figures [4.24]
and is the time necessary to evaluate regular expressions. The parser used for the
code refactoring tool (Figure , contains more regex operations than the parser used
for web crawling (Figure . As already observed in Figure , the computational cost
of running a regex-based guard is given by the cost of checking the regular expression

against every token in the input stream.

1001 Em Matching
I Actuation
801 I Tokenization
S
S 60
@©
b
C
9]
o 401
9]
o
201
0,

file id

Figure 4.24: Division of the time that the program in Figure takes to process the text
of different webpages. Fach tick on the X-axis represents one of the webpages analyzed

in Section @

I Matching
207l mmm Actuation

I Tokenization
0

10

o

8

o

6

o

4

o

percentage(%)

file id

Figure 4.25: Time that the program in Figure spends on different parts of its imple-
mentation. Notice that the time spent on actuation is present, although not visible, given
that it is short, compared to the other running times. Each tick on the X-axis represents
one of the 128 largest programs analyzed in Section m

66

Chapter 5

Literature Review

The treatment and processing of strings has been extensively discussed in the literature.
In Section we discuss the foundations and general concepts of parsing, providing some
perspective on the context in which this work is inserted. Section discusses this theory,
to give the reader some perspective on the foundations of the present work. We also
notice that much of the developments in this work bear resemblances to programming
fuzzing. Yet, whereas fuzzing is concerned with recognizing a language that describes
the input of a program, this dissertation deals with the inverse problem: we recognize a
language that describes the output of the program. Section discusses work related to
fuzzing. Additionally, there exists a vast body of literature concerned with the synthesis
of grammars from examples. This is the approach that we use in Section to equip
the ZHEFUSCATOR with a user interface. In Section (5.4l we discuss work related to the
synthesis of grammars from examples. Finally, as our theory, once implemented into an

actual tool, yields a reactive system, we cover those in Section [5.5

5.1 Parsing

ZHELANG solves a parsing problem. However, contrary to traditional parsers,
a ZHELANG program defines a grammar that does not necessarily recognize the whole
of the input it receives. Instead, ZHELANG grammars recognize patterns within this
input. In this sense, programs written in ZHELANG solve a language separation prob-
lem [?], i.e., how to recognize a target language within a host language. However, in our
context, we care only for the target language: tokens in the host language are skipped
through the searchUntilOp observer. Carrying this analogy further, we could say that
searchUntil0p observer “recognizes" the host language, whereas the other operators rec-
ognize the target language. Notice that this way of looking into the language separation
problem differs from its original conception, where grammars must be synthesized for the

host and for the target languages.

5.2. Inductive Grammar Synthesis 67

The orOp observer is analogous to the choice operator used in Parsing Expression
Grammars (PEGs) [?]. Therefore, except for the searchUntil0Op observer, the other oper-
ators used in ZHELANG could have been defined as PEG operations. Nevertheless, PEGs
and ZHELANG are concepts that fit into different categories: the former is a formalism to
define top-down parsers; whereas the latter is a domain specific programming language.
Although indeed many tools have been built as parsing expression grammars |7, 7, 7|, we
found it more natural to define ZHELANG’s observers as parser combinators [?].

There is much literature around the notion of parser combinators. For an overview,
we recommend the Related Work sections of okasakil998functional or brown2016build.
Nevertheless, we emphasize that while ZHELANG programs can be seen as ensembles of
parser combinators, its reactive nature does not appear in tandem with said literature—
inasmuch as our knowledge goes.

Still in what parsing is concerned, while carrying out our experiments, we real-
ized that several ZHELANG programs could be easily reimplemented as instances of the
CoMBY framework [?], as long as the input to be parsed was finite. Nevertheless, notice
that whereas COMBY is a tool, ZHELANG is a domain specific language that must be
linked with a general purpose programming language. COMBY is much more specific: it
searches and changes code structures. In this task, COMBY and ZHELANG share the same
declarative flavour. Yet, given how specific COMBY is, it differs from ZHELANG in two
important ways. First, none of ZHELANG’s reactive components is present in COMBY.
Second, COMBY’s actions are rewriting rules, whereas ZHELANG’s can be anything, for

they are invocations of separate processes.

5.2 Inductive Grammar Synthesis

The notion of language identification in the limit, which we have used as a mo-
tivation for our on-line grammar inference algorithm, was introduced by Edward Gold
in the mid sixties |?]. Much research evolved from Gold’s initial problem formulation.
The main developments in the field are due to Angluin and her collaborators [?, 7, 7, ?|.
Nevertheless, several research groups have formalized grammar inference for specific types
of languages [?, 7, 7, 7, ?]. Since the nineties, decidability for inference of grammars for
several classes of languages is already known [?|. Usually, the language thus produced
is deterministic, although Eman et al. have shown how to derive probabilistic automata
on the limit [?]. The identification of string events fits into the framework of language
inference in the limit; however, in this work, we do not try to guess the right host lan-

guage L that contains said events. Instead, we try to infer a grammar G that recognizes

5.3. Program Fuzzing 68

string events in any prefix of this language. Notice that G might also recognize strings
that do not belong into L. This possibility has no practical implications in the context of
this work: we are interested in finding string events, not in recognizing exactly the host
language that contains it.

Recent progress in the field of machine-learning has imbued Gold’s original program
with renewed attractiveness. For an overview of how machine-learning techniques are
used to solve language recognition in the limit, we recommend Bennaceur et al.’s [?]. The
literature contains several examples of how statistical inference techniques are used to
learn a language in the limit, such as the work of Li et al. |?|, who employ a genetic-based
algorithm to learn the structure of XML documents. Or, along a different direction, the
work of Graben et al. [?], who have developed an interactive system to gradually learn a
simple language of English numerals. We contend that such techniques, although effective
in their contexts, are not ideal fits to our problem—online language recognition—because

they require slow, exploratory-based algorithms, which would be too heavy for our needs.

5.3 Program Fuzzing

In this work, we are interested in approximating a grammar that characterizes the
output of a program. The inverse problem has received more attention in the programming
language community: to infer a grammar that describes the input of a program. This
kind of inference is useful in testing via software fuzzing, as demonstrated by Bastani
et al. |?] and Blazytko et al. [?], for instance. The many approaches described in the
literature [?, 7, 7, ?] differ from our work in many ways. First, there is the obvious
difference in direction: we infer grammars for program outputs, not inputs. Second, these
techniques typically rely on negative examples to refine the inferred grammar, whereas
negative examples play no role in our formulation. Finally, there is a difference in purpose:
we are not interested in testing a program; rather, our intention is to intervene in the

program already in production.

5.4. Interactive Grammar Inference 69

5.4 Interactive Grammar Inference

There exists prior work about the construction of parsers for programming lan-
guages based on examples [?, 7, 7, 7 ?|. Such systems synthesize and refine grammars,
one example at a time. Much of the inspiration behind our approach to select which literals
must be redacted (see Section came from Parsimony [?|, an IDE for example-guided
synthesis of lexers and parsers. This line of work is an instance of a much broader field
known as programming-by-examples (PBE) [?]. ZHEFUSCATOR is not a framework to
support programming by example. It infers grammars on-the-fly that recognize examples
produced automatically by a machine, not a person. Therefore, the speed to synthesize a
parser is an essential requirement of our work—more than clarity, or the efficiency of the
parser itself. That is the reason why we have opted to produce Heap-CNF grammars: it

is fast to generate and merge them.

5.5 String Events

This work is not the first work to deal with the on-line detection of string events.
Research along this direction was mostly concerned with security. String events have
been handled, for instance, in the context of intrusion detection [?, 7|, dynamic taint
analysis |?, ?|, recognize regular patterns on a stream of text [?| and on-the-fly spam
identification |?]. Nevertheless, if we do not claim primacy, we claim generality. All these
previous works would identify string events in very specific situations, e.g., as particular
patterns embedded in an SQL query, in the case of tainted flow analysis [?], or as a com-
bination of specific tokens within a network package, in the case of intrusion detection |?|.
This work is the first work to provide a general framework that, in a way, “learns” a

language, and recognizes string events embedded into it.

70

Chapter 6

Conclusion

This work has presented two reactive methodologies to detect string events. Said events
are described by a language whose grammar is known. They occur within a potentially
infinite text, defined by a host language, whose grammar is unknown.

ZHEFUSCATOR shows how to synthesize a grammar GG that recognizes any prefix of
the infinite text stream. By defining a specific restriction of Chomsky Normal Form, the
Heap-CNF, we guarantee that GG is non-ambiguous (Theorem and admits LL(1) parsing
(Theorem . We have shown, empirically, that this theory can be implemented into an
efficient log anonymization system, which redacts sensitive information from the output
of programs, while treating these programs as black-box software. We have tested the
ZHEFUSCATOR onto logs from databases (MySQL and PostgreSQL), operating systems
(OSX) and Java benchmarks (DaCapo). In every case, the performance overhead of this
system is very small.

With ZHELANG we have defined a general reactive methodology for handling infi-
nite text processing. ZHELANG expands on ZHEFUSCATOR solutions by giving the user
the ability to define the event grammar G. This can be done by using simple operators
to define observers, which can be further binded to an action to create an event. We also
have shown other applications for infinite text processing, such as implementing a web
crawler and performing automatic code refactoring.

Future work. We speculate that recent developments in the programming languages
community can be used to strengthen the theory and the practice discussed in this work.
First, concerning formalization, our theorems are not mechanically verified. This short-
coming is due to the lack of a general framework to reason about properties of LL(1)
parsers. However, Edelmann et al. [?] have showed how to build LL(1) parsers with
derivatives and zippers that are correct by construction. Second, ZHEFUSCATOR is pa-
rameterized by a tokenizer, which our current implementation borrows from ANTLR.
The fact that users have no way to specify a lexer in our system can be considered a
limitation of our current implementation. Thus, it would be desirable to give users the
possibility to define their own tokenizers without exposing them to minutia related to
automata theory. Recent work by Chen et al. [?] has provided a clear interface for this

purpose, which is based on examples supported by a natural language (NL) description

71

of regular expressions. We believe that NL-based specifications will be able to improve
purely example-based approaches that have recently been shown to be effective to specify
regular expressions |7, ?].

ZHELANG could also benefit on the usage of NL-based interfaces. In order to define
an event the users need to provide a grammar GG by writing an observer and need to define
an action using a general purpose programming language. This requirements make it hard
to non-programmers to use ZHELANG. The usage of template based matching, such as
the one used in COMBY [?], can allow non programmers to define observers using natural
language which enhances the usage of ZHELANG. However, in order to make it fully
accessible to users without a programming background it is also required to synthesize
actions. The programming-by-examples approach, such as the work done in flash fill
in [?], has already shown that it’s possible to use examples to synthesize simple string
processing algorithms. This research direction is even more promising once we consider
the availability of efficient string solvers such as CVC4Sy |?], which supports a wide range
of logical theories, including strings and regular expressions.

bibfile

72

Appendix A

Proofs of Lemmas and Theorems

This appendix contains proofs of Lemmas, Theorems and Corollaries present in the work
“REACTIVE METHODOLOGIES TO INFINITE TEXT PROCESSING”.

Theorem |1| Function £i11_holes (Fig.|3.2)) produces a grammar G; that recognizes an

example t; =t} -1 in n steps with 2n — 1 non-terminals.

Proof 1 The proof is by induction on the size |t;| of the example. On the Base Case, we have
that t; = token; hence, |t;| = 1. fill_holes produces Ry ::= token, which recognizes t; trivially.
On the Inductive Case, we assume that t; = token e Rest. By induction, we have that fill_
holes generates a grammar with starting symbol Ra;11 that recognizes Rest in n — 1 steps (Line
7 of Figure . The extended grammar recognizes t;:

R, i= RopRopt1
Ro, = token
Ropy1 =

By induction, we know that Roy+1 starts production rules with 2(n—1)—1 non-terminals. Adding

R, and Ro,, we have that the resulting grammar contains 2n — 1 non-terminals.

Lemma[2] If G is the grammar that results from merging two Heap-CNF grammars G’
and G”, then G is Heap-CNF, and lang(G") U lang(G”) C lang(Q)

Proof 2 We demonstrate the lemma analyzing each one of the four cases involved in the process
of merging two Heap-CNF grammars. We let R) ::= P’ be the production rule that corresponds
to R; in G;. Similarly, we let R;” ::= P” be the production rule that corresponds to R; in G;”.
We let tk be a token:

o P =tk | ... | tkl, and P" = thky” | ... | tky,”. In this case, we have that R; ::=
tky | ... |tk | tky” | ... | thy”, which is still Heap-CNF.

o P' = RoiRojp1 | tk} | ... | tk], and P” = tky” | ... | tky,”. In this case, we have that
R; = Ro;Roiyq | tky | ... |tk thy” | ... | tky”, which is still Heap-CNF.

o PP =tk | ... | tkl, and P = Ro;Roi+1 | thy” | ... | tky,”. In this case, we have that

Ri = RoiRoip1 | th) | ... | thl, thy” | ... | thn”, which is still Heap-CNF.

73

o P/ = RoiRojr1 | thy | ... | th!, and P” = Ro;Roiy1 | thy” | ... | thy”. In this case, we
have that R; ::= RojRoj1 | th)y | ... | th), | thy” ... | thy”, which is still Heap-CNF.
Notice that if we have a token tk, that appears in both lists: tky | ... | tk}, and thy” | ... | thy”,

then this token will appear only once—by definition—in the corresponding list of the merged

grammar.

Theorem . The procedure build_grammar (Fig. constructs grammars in Heap-
CNF.

Proof 3 The proof of Theorem@ is the junction of two facts: (i) function fill_holes (Fig.
builds only grammars in Heap-CNF; and (ii) the merging of grammars (Def. |4]) yields Heap-CNF
grammars. To demonstrate Fact-i, notice that fill_holes only produces rules in the format
R; == token, or R; ::= Ro;jRas;+1; hence, the grammar is in Heap-CNF. Fact-ii follows from
Lemma[2

Theorem [4 Let G1,Gs,...,G, be the grammars constructed by function build_
grammar (Fig. for input strings t1,ts,...,t,. Grammar G;,1 < ¢ < n recognizes
every input t;,1 <1 < n.

Proof 4 The proof works by induction on the number of examples t;. In the base case, build_
grammar fails compulsorily in the attempt to parse t1, because its current grammar recognizes only
the empty string, i.e.: Ry = €. Failure happens in the conditional at Line 8 of Figure[3.1] A
new grammar G1 will be constructed for t1 by routine expand_grammar, via function fill_holes.
By Theorem[1], G1 recognizes ti. In the inductive step, we have a grammar Gy, that recognizes
every example t1,...,tx. When build_grammar is given a new example tx41, two scenarios are

possible:
e Gy, recognizes tyy1; hence, the conditional at Line 19 of Figure[3.] is true.

e G, fails to recognize tgy 1. In this case, a new grammar G’ will be constructed by fill_holes,

and the resulting grammar G, = merge(Gy, G') recognizes t1, ..., tgr1, by Lemma @
We let merge(Gy, G') above be the grammar that results from merging Gy and G'.
Lemma Let G,, be the grammar constructed by function build_grammar (Fig. (3.1))

after observing inputs t1,ts,...,t,. The size of G, is O(N), where N is the number of

tokens in 1,19, ..., t,.

Proof 5 The fill_holes procedure only augments the rightmost node of a derivation tree. In

other words, given a sentence of n tokens, fill_holes produces a grammar witlﬂ'

e 2n — 1 non-terminal symbols;

'We treat s., the starting symbol of the event grammar, as a single token.

74

e 2n — 1 production rules;
e n terminal symbols;

The merge routine never adds new terminals or non-terminals to a grammar; hence, it maintains

its asymptotic size complexity.

Theorem Let G, be the grammar constructed by function build_grammar (Fig.3.1))

after observing inputs ty,ts,...,t,. G, is not ambiguous.

Proof 6 As a consequence of Lemmal[3, the rightmost derivation tree of a Heap-CNF grammar
always has height n — 1 and O(N) nodes. Only one rightmost derivation tree is possible, which
Figure[3.] illustrates. The rightmost token is always recognized by a production from non-terminal
Ron_4.

Corollary . Let G,, be the grammar constructed by function build_grammar (Fig.|3.1))
after observing inputs t1,ts,...,t,. G, recognizes t;,1 < i < n with O(N) derivations,

where N is the number of tokens in ¢;.

Proof 7 This corollary follows from Lemma [3, plus the fact, already mentioned in the proof
of Theorem [3, that only one rightmost derivation tree is possible. Thus, the grammar built by

fill_holes recognizes a sentence with n tokens with 2n — 1 derivations.

Theorem[6] Grammar G, produced by markup (Fig.[3.7) recognizes a subset of lang(G.)
or the empty language.

Proof 8 The proof works by induction on the number of times Step 2 in Procedure markup runs.
In the base case (Step 1), we have that G. recognizes the empty language. In the inductive
step, we assume that G, recognizes a subset of lang(G.) after n iterations of Step 2. In the next
iteration, Steps 8 and J ensure that G.” recognizes a subset of lang(G.). The junction of G, and
G.” uses only production rules of Ge; hence, it must recognize a subset of the language that G.
recognizes. Furthermore, because these two grammars start with s., the initial symbol of G, the

resulting grammar after the junction also starts with s..

Theorem [7, Any Heap-CNF grammar is LL(1).

Proof 9 This fact follows from the observation that Heap-CNF grammars are not recursive.
Therefore, no left recursion is possible, and the language that these grammars recognize has a
finite number of possible derivation trees. The one token of lookahead follows from Definition [3
and Corollary[1], because the position of a token in the derivation tree is uniquely determined by

the position of that token in the input string.

75

Corollary There are languages whose grammars cannot be synthesized by ZHEFUS-
CATOR.

Proof 10 A formal language is called an LL(k) language if it has an LL(k) grammar. The
set of LL(k) languages is properly contained in that of LL(k+1) languages, for each k greater
than or equal to zero [?]. Therefore, there exist context-free languages that are not LL(1). This
restriction mean that even on the limit, ZHEFUSCATOR would not be able to synthesize perfect
grammars for some languages. However, up to any number n of events, ZHEFUSCATOR will

synthesize a grammar Gy, that recognizes everyty, .. .t,, and potentially other strings, as discussed

in Section[3.1.5.9

	Introduction
	String Events in the Context of Data Protection
	ZheFuscator Contributions
	ZheLang Contributions

	Background
	Event Recognition: Challenges

	ZheFuscator
	Grammar Synthesis
	Synthesizing the Grammar for the Host Language
	On-Line Grammar Synthesis
	Grammar Synthesis from Examples
	Merging grammars
	Limitations: False Positives

	Case Study: the ZheFuscator
	User Interface
	Engineering
	Discussion
	Lack of Negative Examples
	Expressiveness

	Evaluation
	RQ1—Convergence
	Logs from Database
	Logs from the Operating System

	RQ2—Effectiveness
	Parsing Effectiveness
	Effectiveness on an Actual Log File
	Increased Effectiveness via Amortized Cost
	Impact of the Tokenizer on Runtime

	RQ3—Practicality
	Overhead of Treating one String Event
	Deploying on Java Dacapo

	ZheLang
	Language Specification
	Core Operators
	Syntax
	Visual Representation

	Semantics
	Asymptotic Complexity

	Implementation
	Overview of the Implementation
	The Implementation of Observers
	The ZheStream
	The ZhePanel

	Core Property: Isolation

	Use Cases
	Log Obfuscation
	Web Crawling
	Program Refactoring
	Analysis of the Runtime Behavior of ZheLang

	Literature Review
	Parsing
	Inductive Grammar Synthesis
	Program Fuzzing
	Interactive Grammar Inference
	String Events

	Conclusion
	Proofs of Lemmas and Theorems

