UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE QUÍMICA

NATÁLIA MACHADO PEREIRA DE OLIVEIRA TORRES

SÍNTESE DE NOVOS DERIVADOS DA CINETINA E DO TIDIAZURON

Belo Horizonte

2023

UFMG/ICEX/DQ. 1.564

T. 711

NATÁLIA MACHADO PEREIRA DE OLIVEIRA TORRES

SÍNTESE DE NOVOS DERIVADOS DA CINETINA E DO TIDIAZURON

Tese apresentada ao Departamento de Química do Instituto de Ciências Exatas da Universidade Federal de Minas Gerais como requisito parcial para a obtenção do grau de Doutor em Ciências - Química.

Orientadora: Rosemeire Brondi Alves

Coorientadora: Rossimiriam Pereira de Freitas

Belo Horizonte 2023

Ficha Catalográfica

T693s 2023 T	 TORRES, Natália Machado Pereira de Oliveira. Síntese de novos derivados da cinetina e do tidiazuron [manuscrito] / Natália Machado Pereira de Oliveira Torres. 2023. 232 f. : il., gráfs., tabs.
	Orientadora: Rosemeire Brondi Alves. Coorientadora: Rossimiriam Pereira de Freitas.
	Tese (doutorado) – Universidade Federal de Minas Gerais – Departamento de Química. Bibliografia: f. 130-145. Anexos: f. 146-232.
	1. Química orgânica – Teses. 2. Síntese orgânica – Teses. 3. Plantas – Reguladores – Teses. 4. Compostos heterocíclicos – Teses. 5. Agentes antineoplásicos – Teses. 6. Espectroscopia de ressonância nuclear – Teses. 7. Espectroscopia de infravermelho – Teses. 8. Espectrometria de massa – Teses. I. Alves, Rosimeire Brondi, Orientadora. II. Freitas, Rossimiriam Pereira de, Coorientadora. III. Título.
	CDU 043

SEI/UFMG - 2528474 - Folha

https://sei.ufmg.br/sei/controlador.php?acao=documento_imprimir_...

UNIVERSIDADE FEDERAL DE MINAS GERAIS

8/11/2023, 8:43 AM

coil	
Sel	9
assinatura	12
eletrônica	8

Documento assinado eletronicamente por **Luiz Claudio de Almeida Barbosa, Chefe de departamento**, em 10/08/2023, às 17:47, conforme horário oficial de Brasília, com fundamento no art. 5º do <u>Decreto nº 10.543</u>, <u>de 13 de novembro de 2020</u>.

seil assinatura eletrônica	Documento assinado eletronicamente por Amanda Silva de Miranda, Professora do Magistério Superior , em 10/08/2023, às 17:48, conforme horário oficial de Brasília, com fundamento no art. 5º do <u>Decreto nº 10.543,</u> de 13 de novembro de 2020.
seil assinatura eletrônica	Documento assinado eletronicamente por Elson Santiago de Alvarenga, Usuário Externo , em 10/08/2023, às 17:49, conforme horário oficial de Brasília, com fundamento no art. 5º do <u>Decreto nº 10.543, de 13 de</u> novembro de 2020.
seil assinatura eletrônica	Documento assinado eletronicamente por Gustavo Henrique Ribeiro Viana , Usuário Externo , em 10/08/2023, às 17:49, conforme horário oficial de Brasília, com fundamento no art. 5º do <u>Decreto nº 10.543, de 13 de</u> novembro de 2020.
seil assinatura eletrônica	Documento assinado eletronicamente por Rosemeire Brondi Alves , Professora do Magistério Superior , em 10/08/2023, às 18:11, conforme horário oficial de Brasília, com fundamento no art. 5º do <u>Decreto nº 10.543,</u> de 13 de novembro de 2020.
	A autenticidade deste documento pode ser conferida no site <u>https://sei.ufmg.br</u> / <u>sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0</u> , informando o código verificador 2528474 e o código CRC 1C237C67 .

Referência: Processo nº 23072.248015/2023-11

SEI nº 2528474

8/11/2023, 8:43 AM

Dedicado à memória do meu pai, João Camilo de Oliveira Torres Neto, amigo, professor, contador de história e engenheiro químico favorito. Desde sempre transmitiu sua profunda admiração e entusiasmo pela química. A ele, minha eterna gratidão pela dádiva da vida e pela orientação que moldou quem me tornei. Sempre estará comigo! ♥

AGRADECIMENTOS

Á minha orientadora Professora Doutora Rosemeire Brondi Alves, pela orientação e ensinamentos ao longo deste trabalho. Á minha coorientadora Professora Doutora Rossimiriam Pereira de Freitas, por todos os ensinamentos desde a época da iniciação científica.

À Professora Doutora Henriete da Silva Vieira por ter cedido a câmara de germinação para a realização dos testes biológicos em plantas. Á Professora Doutora Luzia Madolo, pela orientação e supervisão nos testes biológicos em plantas. As alunas Thamara e Clara do Laboratório da Fisiologia Vegetal do Instituto de Ciências Biológicas da UFMG, pela ajuda e orientação ao longo da realização do bioensaio. Á Professora Doutora Heveline Silva, pela orientação e realização dos testes biológicos em células tumorais. Á minha colega Gabi pela contribuição e ajuda na realização do bioensaio.

A todos funcionários do DQ que contribuem para o funcionamento do departamento e da central analítica.

Aos meus colegas de laboratório Ruth, Gabi e Dionathas, pelos bons momentos de conivência no laboratório. As minhas amigas de infância Ana, Camilinha, Dodô e Bebel, pelos momentos de distrações e por sempre me colocarem para cima ao longo desses vinte três anos de amizade.

À minha mãe, Maria Helena, e minha irmã gêmea, Ludmila, que estiveram presentes em todas as alegrias e frustações ao longo deste trabalho e sempre me deram forças para continuar. À minhas gatas, Ártemis, Ariadne e Gaia, ao meu gato Helius e ao meu cachorro Dionísio, pelos momentos de sossego, alegria e pela companhia ao longo da produção deste manuscrito.

À banca examinadora por aceitarem o convite.

Aos órgãos de fomento CAPES, CNPQ e FAPEMIG pela bolsa concedida e pelo financiamento da pesquisa.

"La vie n'est facile pour aucun de nous. Mais quoi, il faut avoir de la persévérance, et surtout de la confiance en soi."

Marie Curie

ⁱ Tradução: "A vida não é fácil para nenhum de nós. Temos que ter persistência e, acima de tudo, confiança em nós mesmos."

RESUMO

A cinetina e o tidiazuron são substâncias pertencentes a classe das citocininas, que são reguladores de crescimento vegetal (PGRs, sigla em inglês de Plant Growth Regulators). Os PGRs são uma importante classe de agroquímicos que apresentam a atividade de regular o crescimento e o desenvolvimento de plantas e frutas. As citocininas são divididas em compostos derivados da adenina (uma purina), como a cinetina, e compostos de ureia como o tidiazuron, que apresenta o anel 1,2,3-tiadiazol em sua estrutura. Os heterociclos purina e 1,2,3-tiadiazol apresentam uma gama de atividades biológicas e seus derivados estão presentes tanto em agroquímicos como em fármacos. Outro heterociclo muito importante na medicina e na agricultura é o núcleo 1,2,3-triazol. Assim, no Capítulo 1 deste trabalho são descritas a síntese dos derivados purínicos (cinetina e adenina) com o anel 1,2,3-triazólico e dos derivados tiadiazólico com o anel 1,2,3-triazólico. Na primeira parte foram sintetizados 22 derivados de purina-1,2,3-triazol, 11 derivados da cinetina (1a-k) e 11 derivados da adenina (2a-k), via cicloadição 1,3-dipolar entre azidas e alcinos terminais, com rendimentos globais que variaram de 18 a 91%. Na segunda parte foram sintetizados seis derivados tiadiazol-1,2,3-triazol com rendimentos globais que variaram de 4 a 17%. No Capítulo 2 são descritos os efeitos apresentados pelos derivados purina-triazol em plantas dicotiledôneas (pepino e alface). No estudo preliminar com a espécie Cucumis sativus (pepino), os compostos foram testados em duas concentrações (100 e 1 µM) e não apresentaram efeitos fitotóxicos para o pepino. A partir desse, um segundo estudo foi realizado com a espécie Lactuca sativa (alface) em duas concentrações (100 e 10 µM). Nesse estudo os compostos 2d e 2k apresentaram efeito fitotóxicos na alface, diferindo dos demais. No Capítulo 3 são descritos os efeitos apresentados pelos derivados purina-triazol no ensaio MTT frente a células tumorais (MCF-7 e MDA-MB-231) e normais (MCF-10A) de mama. Neste ensaio os derivados da cinetina 1a-e e 1h e o derivado de adenina 2a apresentaram efeito citotóxico nas células tumorais. Os compostos 1c [IC₅₀ = 22,3±2,9 µM (MCF-7) e IC₅₀ = 9,3±1,7 µM (MDA-MB-231)] e 1d [IC₅₀ = 22,9±1,6 μ M (MCF-7) e IC₅₀ = 16,7±1,8 μ M (MDA-MB-231)] foram os mais ativos.

Palavras-chave: citocininas; purina; tiadiazol; triazol; câncer de mama.

ABSTRACT

NEW DERIVATIVES OF KINETIN AND THIDIAZURON

Kinetin and thidiazuron are substances belonging to the cytokinins class, which are plant growth regulators (PGRs). PGRs are an important class of agrochemicals that present the activity of regulating the growth and development of plants and fruits. Cytokinins are divided into adenine-derived compounds (a purine), such as kinetin, and urea compounds such as thidiazuron, which features ring 1,2,3- thiadiazole in their structure. Purine and 1,2,3thiadiazole heterocycles have a range of biological activities and their derivatives are present in both agrochemicals and medicines. Another very important heterocycle in medicine and agriculture is the nucleus 1,2,3-triazole. Thus, in Chapter I, of this work is described the synthesis of purine (kinetin and adenine) derivatives with the 1,2,3-triazole ring and the synthesis of thiadiazole derivatives with the 1,2,3-triazole ring. In the first part, 22 purine-1,2,3triazole derivatives were synthesized, 11 kinetin derivatives (1a-k) and 11 adenine derivatives (2a-k), via cycle-addition 1.3-dipolar between azides and terminal alkynes, with global yields ranging from 18- 91%. In the second part, six thiadiazole-1,2,3-triazole derivatives were synthesized with global yields ranging from 4-17%. Chapter II are described the effects presented by the purine-triazole derivatives on dicotyledon plants (cucumber and lettuce). In the preliminary study with the species Cucumis sativus (cucumber), the compounds were tested in two concentrations (100 and 1 μ m) and had no phytotoxic effects for the cucumber. From this, a second study was conducted with the species Lactuca sativa (lettuce) in two concentrations (100 and 10 µm). In this study, compounds 2d and 2k had phytotoxic effect on lettuce, different from the others. Chapter III describes the effects presented by the purinetriazole derivatives on the MTT assay against tumor cells (MCF-7 and MDA-MB-231) and normal (MCF-10A) breasts. In this essay, the derivatives of kinetin **1a-e** and 1h, and adenine **2a** derivative had cytotoxic effect on tumor cells. Compounds **1c** $[IC_{50} = 22.3 \pm 2.9 \mu m (MCF-$ 7) and IC₅₀ = 9.3 \pm 1.7 μ m (MDA-MB-231)] and **1d** IC₅₀ = 22.9 \pm 1.6 μ m (MCF-7) and IC₅₀ = $16.7 \pm 1.8 \,\mu\text{m}$ (MDA-MB-231)] were the most active.

Keywords: kinetin; cytokinins; purine; thiadiazole; triazole; breast cancer.

LISTA DE FIGURAS

Figura 1. Estruturas de algumas citocininas	30
Figura 2. Derivados de citocininas com potencial uso na agricultura	32
Figura 3. Derivados de citocininas com potencial atividade antitumoral	33
Figura 4. Estratégia para o desenvolvimento de novos derivados de citocininas	34
Figura 5. Purina e as bases nitrogenadas adenina e guanina	35
Figura 6. Fármacos comercializados contendo o anel purínico em suas estruturas	37
Figura 7. Produtos naturais contendo o anel purínico em suas estruturas	37
Figura 8. Derivados da cinetina e suas respectivas atividades biológicas	38
Figura 9. Estrutura do heterociclo 1,2,3-tiadiazol.	39
Figura 10. Compostos contendo o anel 1,2,3-tiadiazólico em suas estruturas e a	is suas
respectivas atividades biológicas	41
Figura 11. Agroquímicos comerciais contendo o anel 1,2,3-tiadiazólico em suas estru	ituras e
suas respectivas classes	42
Figura 12. Estruturas do TDZ e de seus derivados	43
Figura 13. Estrutura do heterociclo 1,2,3-triazol	43
Figura 14. Compostos contendo o anel 1,2,3-triazólico em suas estruturas e a	s suas
respectivas atividades biológicas	48
Figura 15. Compostos contendo o anel 1,2,3-triazólico em suas estruturas e a	s suas
respectivas atividades biológicas na área da agroquímica	49
Figura 16. Estruturas dos novos derivados da cinetina-triazol e do TDZ-triazol planejad	dos. 50
Figura 17. Estrutura geral dos derivados purina-triazol planejados	51
Figura 18. Espectro na região do IV (KBr) do composto 6	55
Figura 19. Azidas benzílicas 8a-i sintetizadas a partir de álcoois benzílicos comerciais	e seus
respectivos rendimentos globais	57
Figura 20. Estruturas dos derivados triazólicos-benzílicos inéditos da cinetina 1a-i sinte	tizados
neste trabalho e seus respectivos rendimentos	58
Figura 21. Estruturas dos derivados triazólicos-benzílicos da adenina 2a (conhecido)) e 2b-i
(inéditos) sintetizados neste trabalho e seus respectivos rendimentos.	58
Figura 22. Espectro na região do IV (KBr) do composto 1h	60
Figura 23. Espectro de RMN de ¹ H do composto 1h (400 MHz, DMSO- <i>d</i> ₆)	62
Figura 24. Mapa de contornos HSQC do composto 1h (400 MHz, DMSO- <i>d</i> ₆)	62
Figura 25. Espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) do composto 1	l h (100
MHz, DMSO- <i>d</i> ₆)	63

Figura 26. Expansões do espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) do
composto 1h (100 MHz, DMSO- <i>d</i> ₆)64
Figura 27. Espectro de massas do composto 1h (ESI+)64
Figura 28. Estruturas gerais dos derivados tiadiazol-triazol planejados
Figura 29. Espectro na região do IV (KBr) da acil azida 26 69
Figura 30. Estruturas das aminas inéditas 20a-f sintetizadas neste trabalho e seus respectivos
rendimentos70
Figura 31. Espectro na região do IV (KBr) da amina 20c 70
Figura 32. Espectro de RMN de ¹ H da amina 20c (400 MHz, DMSO- d_6)
Figura 33. Mapa de contornos HSQC da amina 20c (400 MHz, DMSO- <i>d</i> ₆)
Figura 34. Espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) da amina 20c (100 MHz,
DMSO- <i>d</i> ₆)73
Figura 35. Expansão do espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) da amina
20c (100 MHz, DMSO- <i>d</i> ₆)73
Figura 36. Estruturas das ureias inéditas 4a-f sintetizadas neste trabalho e seus respectivos
rendimentos74
Figura 37. Espectro na região do IV (KBr) da ureia 4c 75
Figura 38. Espectro de RMN de ¹ H da ureia 4c (400 MHz, DMSO- d_6)
Figura 39. Mapa de contornos HSQC da ureia 4c (400 MHz, DMSO- d_6)
Figura 40. Espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) do composto 4c (100
MHz, DMSO- <i>d</i> ₆)
Figura 41. Expansões do espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) do
composto 4c (100 MHz, DMSO- <i>d</i> ₆)
Figura 42. Estruturas dos derivados purina-1,2,3-triazol sintetizados nesse trabalho79
Figura 43. Estruturas dos triazóis 20a-f e dos derivados tiadiazol-1,2,3-triazol 4a-f sintetizados
nesse trabalho79
Figura 44. O aumento da produção de alimento no decorrer da história
Figura 45. Estruturas de alguns reguladores de crescimento vegetal de origem natural83
Figura 46. Citocininas derivadas da adenina de origem natural
Figura 47. Compostos de origem sintética que apresentam efeitos similares aos das
citocininas
Figura 48. Efeito dos compostos 1d-e, 2d-e, da cinetina, da solução diluente (0,05 % v/v
DMSO, 0,05 % v/v etanol, 0,5 % v/v de propileno glicol, 1,4% v/v PEG-400 e 98% v/v de água)
e da água no comprimento (a) da raiz e (b) da parte aérea da espécie Lactuca sativa (alface),
na concentração de 100 µM. (c) Estruturas dos compostos 1d-e e 2d-e. Médias seguidas pela

mesma letra minúscula não apresentam diferenças significativas pelo teste de Scott-Knott.

Figura 49. Efeito dos compostos 6, 7, 1d, 1j-k, 2a, 2d, 2j-k, da cinetina, da solução diluente (0,05 % v/v DMSO, 0,05 % v/v etanol, 0,5 % v/v de propileno glicol, 1,4% v/v PEG-400 e 98% v/v de água) e da água no comprimento (a) da raiz e (b) da parte aérea da espécie Lactuca sativa (alface), na concentração de 10 µM. Médias seguidas pela mesma letra minúscula não Figura 51. Fármacos, contendo o anel purínico em sua estrutura, utilizados no tratamento de câncer......95 Figura 52. Compostos contendo o anel purínico em sua estrutura que estão em fase de testes Figura 53. Derivados triazólicos com produtos naturais, que apresentam atividade antiproliferativa para células tumorais......97 Figura 56. Derivados da adenina (2a, 2d e 2k) que apresentaram efeito fitotóxico no desenvolvimento da Lactuca sativa (alface)......128 Figura 57. Derivados da cinetina (1c e 1d) mais ativos no ensaio de citotoxicidade de células Figura 64. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) do composto 7 (100 MHz,

Figura 72. Espectro de RMN de ¹ H do composto 8g (200 MHz, CDCl ₃)	171
Figura 73. Espectro de RMN de ¹ H do composto 8h (400 MHz, CDCI ₃)	171
Figura 74. Espectro de RMN de ¹ H do composto 8i (400 MHz, CDCl ₃)	172
Figura 75. Espectro na região do IV (KBr) do composto 1a	172
Figura 76. Espectro de RMN de ¹ H do composto 1a (600 MHz, DMSO- <i>d</i> ₆)	173
Figura 77. Espectro de RMN de ¹³ C (a) e subespectro de DEPT-135 (b) do composte	o 1a (100
MHz, DMSO- <i>d</i> ₆)	173
Figura 78. Espectro de massas do composto 1a (ESI+)	174
Figura 79. Espectro na região do IV (KBr) do composto 1b.	174
Figura 80. Espectro de RMN de ¹ H do composto 1b (400 MHz, DMSO- d_6).	174
Figura 81. Espectro de RMN de ¹³ C (a) e subespectro de DEPT-135 (b) do composte	o 1b (100
MHz, DMSO-d ₆)	175
Figura 82. Espectro de massas do composto 1b (ESI+).	175
Figura 83. Espectro na região do IV (KBr) do composto 1c	176
Figura 84. Espectro de RMN de ¹ H do composto 1c (400 MHz, DMSO- d_6)	176
Figura 85. Espectro de RMN de ¹³ C (a) e subespectro de DEPT-135 (b) do composte	o 1c (100
MHz, DMSO-d ₆)	177
Figura 86. Espectro de massas do composto 1c (ESI+).	177
Figura 87. Espectro na região do IV (KBr) do composto 1d.	177
Figura 88. Espectro de RMN de ¹ H do composto 1d (400 MHz, DMSO- <i>d</i> ₆)	178
Figura 89. Espectro de RMN de ¹³ C (a) e subespectro de DEPT-135 (b) do composto	o 1d (100
MHz, DMSO-d6).	178
Figura 90. Mapa de contornos HSQC do composto 1d (400 MHz, DMSO- <i>d</i> ₆)	179
Figura 91. Expansão na região dos alifáticos no mapa de contornos HMBC do com	posto 1d
(600 MHz, DMSO- <i>d6</i>)	179
Figura 92. Expansão na região dos aromáticos no mapa de contornos HMBC do com	posto 1d
(600 MHz, DMSO- <i>d</i> ₆)	180
Figura 93. Espectro de massas do composto 1d (ESI+).	180
Figura 94. Espectro na região do IV (KBr) do composto 1e.	181
Figura 95. Espectro de RMN de ¹ H do composto 1e (400 MHz, DMSO- d_{δ})	181
Figura 96. Espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) do composto	• 1e (100
MHz, DMSO-d ₆)	181
Figura 97. Expansões do espectro de RMN de ¹³ C (a) e subespectro DEPT-13	5 (b) do
composto 1e (100 MHz, DMSO- <i>d</i> ₆)	182
Figura 98. Espectro de massas do composto 1e (ESI+).	182

Figura 99. Espectro na região do IV (KBr) do composto 1f	183
Figura 100. Espectro de RMN de ¹ H do composto 1f (400 MHz, DMSO- <i>d</i> ₆)	183
Figura 101. Espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) do composto	1f (100
MHz, DMSO- <i>d</i> ₆)	184
Figura 102. Espectro de massas do composto 1f (ESI+)	184
Figura 103. Espectro na região do IV (KBr) do composto 1g	184
Figura 104. Espectro de RMN de ¹ H do composto 1g (400 MHz, DMSO- <i>d</i> ₆)	185
Figura 105. Espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) do composto	1g (100
MHz, DMSO- <i>d</i> ₆)	185
Figura 106. Expansões do espectro de RMN de ¹³ C (a) e subespectro DEPT-13	5 (b) do
composto 1g (100 MHz, DMSO- <i>d</i> ₆)	186
Figura 107. Espectro de massas do composto 1g (ESI+)	186
Figura 108. Espectro na região do IV (KBr) do composto 1i	187
Figura 109. Espectro de RMN de ¹ H do composto 1i (400 MHz, DMSO- <i>d</i> ₆)	187
Figura 110. Espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) do composto	o 1i (100
MHz, DMSO- <i>d</i> ₆)	187
Figura 111. Espectro de massas do composto 1i (ESI+)	188
Figura 112. Espectro na região do IV (KBr) do composto 1j.	188
Figura 113. Espectro de RMN de ¹ H do composto 1 j (400 MHz, DMSO- <i>d</i> ₆)	189
Figura 114. Espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) do composto	o 1j (100
MHz, DMSO- <i>d</i> ₆)	189
Figura 115. Espectro de massas do composto 1j (ESI+)	189
Figura 116. Espectro na região do IV (KBr) do composto 1k	190
Figura 117. Espectro de RMN de ¹ H do composto 1k (400 MHz, DMSO- <i>d</i> ₆)	190
Figura 118. Espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) do composto) 1k (100
MHz, DMSO- <i>d</i> ₆)	191
Figura 119. Espectro de massas do composto 1k (ESI+)	191
Figura 120. Espectro na região do IV (KBr) do composto 2a.	191
Figura 121. Espectro de RMN de ¹ H do composto 2a (400 MHz, DMSO- <i>d</i> ₆)	192
Figura 122. Espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) do composto	2a (100
MHz, DMSO- <i>d</i> ₆)	192
Figura 123. Espectro de massas do composto 2a (ESI+)	193
Figura 124. Espectro na região do IV (KBr) do composto 2b	193
Figura 125. Espectro de RMN de ¹ H do composto 2b (400 MHz, DMSO- d_6)	193

Figura 126. Espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) do composto 2b (10)0
MHz, DMSO- <i>d</i> ₆)	} 4
Figura 127. Espectro de massas do composto 2b (ESI+)	} 4
Figura 128. Espectro na região do IV (KBr) do composto 2c.) 5
Figura 129. Espectro de RMN de ¹ H do composto 2c (400 MHz, DMSO- <i>d</i> ₆)19	95
Figura 130. Espectro de RMN de 13 C (a) e subespectro de DEPT-135 (b) do composto 2c (10)0
MHz, DMSO- <i>d</i> ₆)	96
Figura 131. Espectro de massas do composto 2c (ESI+)	96
Figura 132. Espectro na região do IV (KBr) do composto 2d	96
Figura 133. Espectro de RMN de ¹ H do composto 2d (400 MHz, DMSO- d_6) 19) 7
Figura 134. Espectro de RMN de 13 C (a) e subespectro DEPT-135 (b) do composto 2d (10)0
MHz, DMSO- <i>d</i> ₆)	97
Figura 135. Espectro de massas do compost 2d (ESI+)	98
Figura 136. Espectro na região do IV (KBr) do composto 2e 19	98
Figura 137. Espectro de RMN de ¹ H do composto 2e (400 MHz, DMSO- <i>d</i> ₆)19	98
Figura 138. Espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) do composto 2e (10)0
MHz, DMSO- <i>d</i> ₆)	99
Figura 139. Espectro de massas do composto 2e (ESI+)	99
Figura 140. Espectro na região do IV (KBr) do composto 2f 19	99
Figura 141. Espectro de RMN de ¹ H do composto 2f (400 MHz, DMSO- <i>d</i> ₆))0
Figura 142. Espectro de RMN de ¹³ C (a) e subespectro de DEPT-135 (b) do composto 2f (10)0
MHz, DMSO- <i>d</i> ₆))0
Figura 143. Espectro de massas do composto 2f (ESI+))1
Figura 144. Espectro na região do IV (KBr) do composto 2g 20)1
Figura 145. Espectro de RMN de ¹ H do composto 2g (400 MHz, DMSO- d_6))1
Figura 146. Espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) do composto 2g (10)0
MHz, DMSO- <i>d</i> ₆))2
Figura 147. Espectro de massas do composto 2g (ESI+) 20)2
Figura 148. Espectro na região do IV (KBr) do composto 2h.)2
Figura 149. Espectro de RMN de ¹ H do composto 2h (400 MHz, DMSO- d_6))3
Figura 150. Espectro de RMN de 13 C (a) e subespectro DEPT-135 (b)do composto 2h (10)0
MHz, DMSO- <i>d</i> ₆))3
Figura 151. Expansões do espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) o	ot
composto 2h (100 MHz, DMSO- <i>d</i> ₆))4
Figura 152. Espectro de massas do composto 2h (ESI+))4

Figura 153. Espectro na região do IV (KBr) do composto 2i	205
Figura 154. Espectro de RMN de ¹ H do composto 2i (400 MHz, DMSO- <i>d</i> ₆)	205
Figura 155. Espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) do composte	o 2i (100
MHz, DMSO- <i>d</i> ₆)	206
Figura 156. Espectro de massas do composto 2i (ESI+)	206
Figura 157. Espectro na região do IV (KBr) do composto 2j	206
Figura 158. Espectro de RMN de ¹ H do composto 2j (400 MHz, DMSO- <i>d</i> ₆)	207
Figura 159. Espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) do composte	o 2i (100
MHz, DMSO- <i>d</i> ₆)	207
Figura 160. Espectro de massas do composto 2j (ESI+)	208
Figura 161. Espectro na região do IV (KBr) do composto 2k	208
Figura 162. Espectro de RMN de ¹ H do composto 2k (400 MHz, DMSO- <i>d</i> ₆)	209
Figura 163. Espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) do composte	o 2i (100
MHz, DMSO- <i>d</i> ₆)	209
Figura 164. Espectro de massas do composto 2k (ESI+)	210
Figura 165. Espectro de RMN de ¹ H do composto 16 bruto (400 MHz, DMSO- <i>d</i> ₆)	210
Figura 166. Espectro de RMN de ¹ H do éster 1,2,3-tiadiazol-5-carboxilato de etila (4	00 MHz,
DMSO- <i>d</i> ₆)	211
Figura 167. Espectro de RMN de ¹ H do ácido 1,2,3-tiadiazol-5-carboxílico (400 MHz	, CDCl₃).
	211
Figura 168. Espectro de RMN de ¹ H do composto 21 (200 MHz, CDCl ₃)	212
Figura 169. Espectro de RMN de ¹ H do composto 23 (200 MHz, CDCl ₃)	212
Figura 170. Espectro de RMN de ¹ H do ácido 1,2,3-tiadiazol-4-carboxílico (400 MHz	, DMSO-
<i>d</i> ₆)	213
Figura 171. Espectro de RMN de ¹ H do composto 25 (400 MHz, DMSO-d ₆)	213
Figura 172. Espectro de RMN de ¹³ C do composto 26 (100 MHz, DMSO-d ₆)	214
Figura 173. Espectro na região do IV (KBr) do composto 27	214
Figura 174. Espectro de RMN de ¹ H do composto 27 (400 MHz, DMSO- <i>d</i> ₆)	215
Figura 175. Espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) do composto	28 (100
MHz, DMSO-d ₆)	215
Figura 176. Espectro na região do IV (KBr) da amina 20a	216
Figura 177. Espectro de RMN de ¹ H do composto 20a (400 MHz, DMSO- <i>d</i> ₆)	216
Figura 178. Espectro de RMN de 13 C (a) e subespectro DEPT-135 (b) da amina 20a (²	100 MHz,
DMSO- <i>d</i> ₆)	217
Figura 179. Espectro na região do IV (KBr) do composto 20b.	217

Figura 180. Espectro de RMN de ¹ H do composto 20b (400 MHz, DMSO- <i>d</i> ₆)	218
Figura 181. Espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) da amina 20b (100 M	IHz,
DMSO- <i>d</i> ₆)	218
Figura 182. Espectro na região do IV (KBr) do composto 20d.	219
Figura 183. Espectro de RMN de ¹ H do composto 20d (400 MHz, DMSO- <i>d</i> ₆)	219
Figura 184. Espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) da amina 20d (100 M	IHz,
DMSO- <i>d</i> ₆)	220
Figura 185. Espectro na região do IV (KBr) do composto 20e.	220
Figura 186. Espectro de RMN de ¹ H do composto 20e (400 MHz, DMSO- <i>d₆</i>)	221
Figura 187. Espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) da amina 20e (100 M	IHz,
DMSO- <i>d</i> ₆)	221
Figura 188. Espectro na região do IV (KBr) do composto 20f.	222
Figura 189. Espectro de RMN de ¹ H do composto 20f (400 MHz, DMSO- <i>d</i> ₆)	222
Figura 190. Espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) da amina 20f (100 M	IHz,
DMSO- <i>d</i> ₆)	223
Figura 191. Expansões do espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) da am	nina
20f (100 MHz, DMSO- <i>d</i> ₆)	223
Figura 192. Espectro na região do IV (KBr) do composto 4a.	224
Figura 193. Espectro de RMN de ¹ H do composto 4a (400 MHz, DMSO- <i>d</i> ₆)	224
Figura 194. Espectro de RMN de ¹³ C (a) e subespectro DEPT-135 (b) do composto 4a (100
MHz, DMSO- <i>d</i> ₆)	225
Figura 195. Espectro na região do IV (KBr) do composto 4b.	225
Figura 196. Espectro de RMN de ¹ H do composto 4b (400 MHz, DMSO- <i>d</i> ₆)	226
Figura 197. Espectro de RMN de 13 C (a) e subespectro DEPT-135 (b) do composto 4b (100
MHz, DMSO- <i>d</i> ₆)	226
Figura 198. Espectro na região do IV (KBr) do composto 4d.	227
Figura 199. Espectro de RMN de ¹ H do composto 4d (400 MHz, DMSO- <i>d</i> ₆)	227
Figura 200. Espectro de RMN de 13 C (a) e subespectro DEPT-135 (b) do composto 4d (100
MHz, DMSO- <i>d</i> ₆)	228
Figura 201. Espectro na região do IV (KBr) do composto 4e.	228
Figura 202. Espectro de RMN de ¹ H do composto 4e (400 MHz, DMSO- <i>d</i> ₆)	229
Figura 203. Espectro de RMN de 13 C (a) e subespectro DEPT-135 (b) do composto 4e (100
MHz, DMSO- <i>d</i> ₆)	229
Figura 204. Espectro na região do IV (KBr) do composto 4f.	230
Figura 205. Espectro de RMN de ¹ H do composto 4f (400 MHz, DMSO- <i>d</i> ₆).	230

LISTA DE ESQUEMAS

Esquema 1. Metodologias clássicas para a obtenção do anel 1,2,3-tiadiazólico
Esquema 2. Reações multicomponente para a obtenção do anel 1,2,3-tiadiazólico40
Esquema 3. Obtenção do anel 1,2,3-tiadiazólico a partir de outro heterociclo40
Esquema 4. Metodologias para a obtenção do anel 1,2,3-triazólico
Esquema 5. Ciclo catalítico da reação de cicloadição 1,3-dipolar proposta por Sharpless e
colaboradores em 2002. ⁹¹ 46
Esquema 6. Ciclo catalítico da reação de cicloadição 1,3-dipolar proposta por Fokin e
colaboradores em 201347
Esquema 7. Ciclo catalítico da reação de cicloadição 1,3-dipolar proposta por Jin e
colaboradores em 201547
Esquema 8. Análise retrossintética para a obtenção dos derivados purínicos
Esquema 9. Tautomerismo entre 9 <i>H</i> -purina e 7 <i>H</i> -purina52
Esquema 10 (a) Mecanismo proposto da reação de N9-alquilação. (b) Estruturas de
ressonâncias possíveis para o ânion do anel purínico55
Esquema 11. Rota sintética para a obtenção das azidas 8a-i
Esquema 12. Esquema geral da síntese dos derivados triazólicos benzílicos 1a-i e 2a-i57
Esquema 13 Esquema geral da síntese dos derivados triazólicos alquílicos 1j e 2j e seus
rendimentos59
Esquema 14. Análise retrossintética para a obtenção dos derivados tiadiazol-triazol
planejados65
Esquema 15. Rota sintética planejada a obtenção das ureias 3a-f 66
Esquema 16. Proposta mecanística para a reação de Hurd-Mori. ⁻
Esquema 17. Rota para a obtenção das ureias 4a-f 68
Esquema 18. Rota sintética para a obtenção das aminas inéditas 20a-f 69
Esquema 19. Proposta mecanística para o Rearranjo de Curtius e a adição nucleofílica ao
isocianato

LISTA DE TABELAS

Tabela 1. Experimentos realizados para a otimização da reação de obtenção dos alcinos 6 e **7**......54 Tabela 2. Experimentos realizados para a otimização da reação de obtenção dos triazóis 1k Tabela 3. Efeito dos compostos 1d-e e 2d-e, da cinetina, da solução diluente (0,05 % v/v DMSO, 0,05 % v/v etanol, 0,5 % v/v de propileno glicol, 1,4% v/v PEG-400 e 98% v/v de água) e da água na germinação das sementes da espécie Lactuca sativa (alface), na concentração de 100 µM. Expresso em porcentagem de germinação (%), IVG (sementes germinadas por dia) e TMG (dia). Médias seguidas pela mesma letra minúscula não apresentam diferenças significativas pelo teste de Scott-Knott......88 Tabela 4. Efeito dos compostos 6, 1d, 1j, 1k, 7, 2a, 2d, 2h, 2j e 2k, da cinetina, da solução diluente (0,05 % v/v DMSO, 0,05 % v/v etanol, 0,5 % v/v de propileno glicol, 1,4% v/v PEG-400 e 98% v/v de água) e da água na germinação das sementes da espécie Lactuca sativa (alface), na concentração de 10 µM. Expresso em porcentagem de germinação (%), IVG (sementes germinadas por dia) e TMG (dia). Médias seguidas pela mesma letra minúscula Tabela 5. Atividade citotóxica, expressa em IC_{50} (μ M \pm DP) e índice de seletividade (IS), da cinetina e de seus derivados 1 e 1a-k obtida pelo ensaio de MTT para as linhagens celulares MCF-7, MDA-MB-231 (tumorais) e MCF-10 (normais).....101 Tabela 6. Atividade citotóxica, expressa em IC₅₀ (µM± DP) e índice de seletividade, dos derivados da adenina 2 e 2a-k obtidas pelo ensaio de MTT para as linhagens celulares MCF-7, MDA-MB-231 (tumorais) e MCF-10 (normais).....104

LISTAS DE QUADROS

Quadro 1. Comparação dos dados de RMN de ¹H do composto 6, 7c e 1c.....61 Quadro 2. Comparação dos dados de RMN de ¹H dos compostos 27, 8e e 20c71 Quadro 3. Comparação dos dados de RMN de ¹H dos compostos 27c, 26 e 4c75 Quadro 4. Dados físico-químicos e espectrométricos referentes aos alcinos, 6,7 e 27....108 Quadro 5. Dados físico-químicos e espectrométricos relacionados aos compostos 15-17110 Quadro 6. Dados físico-químicos e espectrométricos referentes aos compostos 22-26...112 Quadro 8. Dados físico-químicos e espectrométricos relacionados aos derivados triazólicos Quadro 9. Dados físico-químicos e espectrométricos relacionados aos derivados triazólicos Quadro 10. Dados físico-químicos e espectrométricos relacionados aos triazóis 20a-f ... 122 Quadro 11. Dados físico-químicos e espectrométricos relacionados as ureias 4a-f......124 Quadro 13. Dados de RMN de ¹³C dos compostos 6, 1a, 1b e 1c (DMSO-d₆)......147 Quadro 14. Dados de RMN de ¹H dos compostos **1d**, **1e** e **1f** (DMSO-*d*₆)......148 Quadro 15. Dados de RMN de ¹³C dos compostos **1d**, **1e** e **1f** (100 MHz, DMSO-*d*₆).....149 Quadro 16. Dados de RMN de ¹H dos compostos **1g**, **1h** e **1i** (400 MHz, DMSO- d_6)......150 Quadro 17. Dados de RMN de ¹³C dos compostos **1g**, **1h** e **1i** (100 MHz, DMSO-*d*₆)......151 Quadro 20. Dados de RMN de ¹H (400 MHz) e de ¹³C (100 MHz) dos compostos 7, 2a, 2b e **2c** (DMSO-*d*₆)......154 Quadro 21. Dados de RMN de ¹H (400 MHz) e de ¹³C (100 MHz) dos compostos 2d, 2e e 2f Quadro 22. Dados de RMN de ¹H (400 MHz) e de ¹³C (100 MHz) dos compostos 2g, 2h e 2i Quadro 23. Dados de RMN de ¹H (400 MHz) e de ¹³C (100 MHz) dos compostos 2j e 2k Quadro 24. Dados de RMN de ¹H (400 MHz) e de ¹³C (100 MHz) dos compostos **28**, **20a**, **20b** e **20c** (DMSO-*d*₆)......158 Quadro 25. Dados de RMN de ¹H (400 MHz) e de ¹³C (100 MHz) dos compostos 20d, 20e e

Quadro 26. Dados de RMN de ¹H (400 MHz) dos compostos **26**, **4a**, **4b** e **4c** (DMSO- d_6)160 Quadro 27. Dados de RMN de ¹³C (100 MHz) dos compostos **26**, **4a**, **4b** e **4c** (DMSO- d_6)161 Quadro 28. Dados de RMN de ¹H (400 MHz) dos compostos **4d**, **4e** e **4f** (DMSO- d_6)162 Quadro 29. Dados de RMN de ¹³C (100 MHz) dos compostos **4d**, **4e** e **4f** (DMSO- d_6)163

LISTA DE ABREVIATURAS, SIGLAS E SÍMBOLOS

A549	Linhagem celular epiteliais basais alveolares de adenocarcinoma		
numano			
AHK4	Arabidopsis Histidine Kinase 4		
ARRs	Reguladores de resposta do tipo A		
BA	Benziladenina		
4-BFT	4-(4-Bromofenil)-[1,2,3]-tiadiazol		
BHT	Benzotiadiazol		
CA-4	Combretastatina A-4		
CCD	Cromatografia em camada delgada		
CDK	Quinases dependentes de ciclina (Cyclin-Dependent protein Kinase)		
CRE1	Cytokinin response 1		
CKi1	Cytokinin independente1		
CKs	Citocininas		
СКХ	Citocinina oxidase		
CPPU	Forclorfenuron		
CS	Clorsulfuron		
CuAAC	Reação de cicloadição entre alcino-azida catalisada por cobre (Copper-		
Catalyzed Azide/Alk	yne Cycloaddition reaction)		
cZ	<i>cis</i> -zeatina		
d	dupleto		
dd	dupleto duplo		
DCM	Diclorometano		
DEPT	Intensificação da distorção por transferência de polarização		
(Distortionless Enhancement by Polarization Transfer)			

DGN Esteroide diosgenina

DL₅₀ Dose letal 50 (dose necessária de uma substância para matar 50% da população em um teste)

DMF	Dimetilformamida
DMSO	Dimetilsulfóxido
DNA	Ácido desoxirribonucleico
DNA-PK	Quinase dependente do DNA (DNA-dependent protein kinase)
DOT1L	Enzima histona metiltransferase (Disrupter of Telomeric Silencing 1-like)
DP	Desvio padrão
DOXO	Doxorrubicina
EC ₅₀ resposta máxima)	Efeito máximo (concentração em que o fármaco produz 50% de sua
FDA	Federal Drug Administration
2FOTDZ	N-(3,5-difluorofenil)-N-(1,2,3-tiadiazol-5-II) ureia
3FTMZ	1-[1,2,3]tiadiazol-5-il-3-(3-trifluorometoxi-fenil) ureia
G%	Porcentagem de germinação
GTFs	Glicosiltransferases
HCT-116	Linhagem celular de carcinoma de colorretal humano
HBL-100	Linhagem celular de carcinoma de mama humano
HeLa	Linhagem celular de carcinoma cervical humano
HETDZ	1-[2-(2-hidroxietil)fenil]-3-(1,2,3-tiadiazol-5-il) ureia
HER2	Receptor do fator de crescimento epidérmico humano 2
HIV	Vírus da imunodeficiência humana.
HMBC B ond C orrelation	Correlação heteronuclear via múltiplas ligações (Heteronuclear Multiple-

HSQC	Coerência heteronuclear de simples quantum (Heteronuclear Single			
Quantum Coherence)				
Hsp90	Heat shock protein 90			
HT-29	Linhagem celular de adenocarcinoma colorretal humano			
AIA	Ácido indolilacético			
IC ₅₀ crescimento celular)	Concentração inibitória (concentração necessária para inibir em 50% o			
IMO	Irradiação de micro-ondas			
iP	Isopentenil-adenina			
IS	Índice de seletividade			
IV	Infravermelho			
IVG	Índice velocidade de germinação			
J	Constante de acoplamento			
JOA	Jiyuan Oridonin A			
LLA	Leucemia linfoblástica aguda			
m	multipleto			
MCF-7	Linhagem celular de câncer de mama estrogênio dependente			
MCF-10A	Células epiteliais da mama			
MDA-MB-231	Linhagem celular de câncer de mama triplo negativo			
3MeOBA9THP	6-(3-metoxibenzilamino)-9-(tetraidropiran-2-il) purina			
4-METDZ	N-(4-metil[1,2,3]tiadiazol-5-il)-N'-fenil ureia			
5-METDZ	N-(5-metil[1,2,3]tiadiazol-5-il)-N'-fenil ureia			
MHz	Mega-hertz			
MMB	Melampo magnolida B			
МТТ	Brometo de 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazólio			

NF1	Neurofibromatose do tipo 1
OMS	Organização mundial da saúde
p.	página
PABA	Ácido <i>p</i> -aminobenzóico
PC-3	Linhagem celular de câncer de próstata
PEG-400	Polietilenoglicol 400
PGRs,	Reguladores de crescimento vegetal (Plant Growth Regulators)
q	quarteto
RE	Receptor de estrogênio
RMN	Ressonância Magnética Nuclear
RMN de ¹³ C	Ressonância Magnética Nuclear de carbono
RMN de ¹ H	Ressonância Magnética Nuclear de hidrogênio
RNA	Ácido Ribonucleico (Ribonucleic acid)
RP	Receptor de progesterona
S	simpleto
SD	Solução diluente
sl	sinal largo
S _N 2	Substituição nucleofílica bimolecular
SPAAC Azide/Alkyne Cycload	Cicloadição entre alcino-azida promovida por tensão (Strain-Promoted ddition)
t	tripleto
TMG	Tempo médio de germinação
TMSN ₃	Azida de trimetilsilila
TNBC	Câncer de mama triplo negativo
ТТА	1,2,3-tiadiazol-tioacetanilida

THF	Tetraidrofurano
THP-1	Linhagem celular de leucemia monocítica aguda humana
TDZ	Tidiazuron
tZ	trans-zeatina livre
UFG	Universidade Federal de Goiás
UFMG	Universidade Federal de Minas Gerais
W2	P. falciparum cloroquina-resistente
δ	Deslocamento químico

SUMÁRIO

INTRODUÇÃO GERAL	
1 - Capítulo - Síntese de novos derivados da cinetina e do tidiazuron	
1.1 Introdução	
1.1.1 Purinas	
1.1.2 1,2,3-Tiadiazóis	
1.1.3 1,2,3-Triazóis	43
1.2 Objetivos e Estratégias	50
1.3 Resultados e Discussão	51
1.3.1 Parte 1: Síntese dos novos derivados purina-triazol	51
1.3.2 Parte 2: Síntese dos novos derivados 1,2,3-tiadiazol-triazol	65
1.4 Conclusões e Perspectivas	79
2 - Capítulo – Avaliação do efeito dos derivados da cinetina e da adenina no de da espécie Lactuca sativa (alface)	esenvolvimento 80
2.1 Introdução	80
2.1.1 Agroquímicos e a agricultura	
2.2 Objetivos e Estratégias	
2.3 Resultados e Discussão	
2.3.2 Avaliação do efeito dos compostos 1d-e e 2d-e na germinação de s desenvolvimento de <i>Lactuca sativa</i> (alface)	sementes e no 86
2.3.3 Avaliação do efeito dos compostos 6, 7, 1d, 1j-k, 2a, 2h e 2d e 2j-k de sementes e no desenvolvimento de <i>Lactuca sativa</i> (alface)	na germinação 89
2.4 Conclusões e Perspectivas	
3 - Capítulo - Avaliação da citotoxicidade dos derivados de cinetina e adenina de células tumorais e não tumorais de mama	a em linhagens 93
3 1 Introdução	
3 1 1 Câncer de Mama	
3.2 Objetivos e Estratégias	 QQ
3.3 Resultados e Discussão	

3.3.1 Ensaio de atividade antiproliferativa	100
3.4 Conclusões e Perspectivas	105
4 Parte Experimental	106
4.1 Equipamentos	106
4.2 Materiais	106
4.3 Síntese, purificação e caracterização	107
4.3.1 Síntese dos alcinos 6, 7 e 28	107
4.3.2 Síntese do ácido 1,2,3-tiadiazol-5-carboxílico	109
4.3.3 Síntese da 1,2,3-tiadiazolecarbonil azida	110
4.3.4 Síntese das benzilazidas 8a-i (Adaptado de Freitas et al., 2014)	112
4.3.4 Síntese dos derivados triazólicos	114
4.3.5 Síntese das ureias 4a-f (Adaptado de Abad et al., 2004)	123
4.4 Bioensaios	125
4.4.1 Ensaio em plantas	
4.4.2 Ensaio de atividade antiproliferativa (Mosmann, 1983)	127
CONCLUSÃO GERAL	128
REFERÊNCIAS	130
ANEXO A – Quadro de dados de RMN dos Compostos Obtidos	146
ANEXO B - Espectros dos Compostos Obtidos	164
ANEXO C – Ensaio de avaliação do efeito dos compostos 6, 7 1a-i e 2-i no des de <i>Cucumis sativus</i> (pepino)	envolvimento 232

INTRODUÇÃO GERAL

As plantas apresentam os seus próprios hormônios ou fitormônios, que são substâncias de origem natural que atuam no seu crescimento e desenvolvimento. Além dos fitormônios¹ há substâncias sintéticas que também atuam nos processos fisiológicos das plantas que são chamadas de reguladores de crescimento vegetal (PGRs, sigla em inglês de *Plant Growth Regulators*).² Os PGRs são agroquímicos muito importantes na agricultura por contribuírem com o aumento da produtividade e da qualidade dos frutos e grãos,³ uma característica importante devido ao aumento da população mundial nos próximos anos e consequentemente a necessidade de aumentar a produção de alimentos.⁴⁻⁵

Dentre os PGRs, as citocininas (CKs) são substâncias que atuam principalmente na divisão celular (citocinese).⁶ As CKs são divididas em dois grupos: as citocininas derivadas de adenina, como por exemplo a cinetina, a benziladenina (BA) e a *orto*-topolin; e a citocinina análoga à *N*,*N*'-difenilureia, o tidiazuron (Figura 1).^{2;6}

Figura 1. Estruturas de algumas citocininas

O mecanismo de ação das citocininas nas plantas ainda não foi totalmente elucidado. Até o momento, dois receptores foram identificados o CRE1 (*cytokinin response 1*) ou AHK4

¹ Fagan, E. B.; Ono, E. O.; Rodrigues, J. D.; Júnior, A. C.; Neto, D. D. *Fisiologia vegetal: Reguladores Vegetais*, São Paulo, Andrei, **2015**.

² Ware, W. G. *The Pesticide Book.* 5^a edição, Thomson Publications, **1993**.

³ Nickell, L. G. *Plant growth regulators. Agricultural Uses.* Springer-Verlag, **1982**.

⁴ Cobb, A. H.; Reade, J. P. Herbicides and plant physiology. 2ª edição, John Wiley & Sons, 2010.

⁵ United Nations (NU), *World Population Prospects 2022: Ten Key Messages*. Disponivel em <u>https://population.un.org/wpp/Publications/</u>. Acesso em: 24 abri de 2023.

⁶ Rademacher, W. Plant Growth Regulators: Backgrounds and Uses in Plant Production. *J. Plant Growth Regul.*, **2015**, 34, 845–872.

(*Arabidopsis Histidine Kinase* 4)⁷⁻⁸ e o CKI1 (*cytokinin independente* 1). O mecanismo de ação da CKs, resumidamente, se inicia com a ligação da citocinina ao CRE1, seguida por uma série de fosforilações que irá desencadear a ativação de reguladores de respostas (ARRs).¹ Esta ativação regulará os seguintes processos fisiológicos da planta: a divisão celular, a diferenciação celular, o retardo da senescência, a germinação de sementes, a dominância apical, a síntese da clorofila, a redução do estresse das plantas, a frutificação efetiva e o tamanho dos frutos entre outros.⁹ Além disso, as citocininas também atuam em enzimas envolvidas no ciclo celular, como as enzimas quinases dependentes de ciclinas (CDKs, do inglês *Cyclin-Dependent protein Kinase*).¹ Outras enzimas importantes para CKs são as responsáveis pelo seu processo de inativação e que regulam a concentração de citocininas no tecido vegetal. Tais como: a enzima citocinina oxidase (CKX) que cliva a cadeia lateral das citocininas ocorrendo assim a degradação e a inativação permanente da substância;¹⁰ e as enzimas glicosiltransferases (GTFs) que catalisam a reação de glicosilação.¹¹

Na agricultura as CKs são muito utilizadas para aumentar o tamanho dos frutos, a produtividade² e a conservação das hortaliças.⁶ As citocininas do grupo da difenilureia, também são utilizadas na agricultura como desfolhante de algodão.⁶ Devido à aplicabilidade das CKs na agricultura há um grande interesse na busca e no desenvolvimento de novas citocininas. A estratégia mais empregada para o planejamento de uma nova citocinina é a modificação de uma substância ativa, principalmente para aumentar-se a eficiência e superar algum efeito negativo presente em sua atividade.¹² Citocininas derivadas de adenina quando aplicadas de forma exógenas em plantas inibem o crescimento da raiz em concentrações maiores que 1 µM.¹² Na literatura há derivados de citocininas que não apresentam esse efeito indesejável como os derivados 3MeOBA9THP¹³ e cinetina-*N9*-dietilcloro (Figura 2, p.32).¹² Esses apresentam em sua estrutura um grupo ligado na posição N9 do anel purínico responsável pelo efeito não inibitório da raiz.¹² No grupo da difenilureia, o composto TDZ inibe a enzima CKX, impedindo a degradação das CKs e consequentemente apresenta uma maior

⁷ Patel, R.; Mehta, K.; Goswami, D.; Saraf, M. An Anecdote on Prospective Protein Targets for Developing Novel Plant Growth Regulator. *Mol. Biotec.*, **2022**, 109-129.

⁸ Lomin, S. N.; Krivosheev, D. M.; Steklov, M. Y.; Osolodkin, D. I.; Romanov, G. A. Receptor properties and features of cytokinin signaling. *Acta Nat.*, **2012**, 4, 31.

⁹ Pétri, J. L.; Haverroth, F. J.; Leite, G. B.; Sezerino, A. A.; Couto, M. *Reguladores de crescimento para frutíferas de clima temperado.* Florianópolis, Epagri, **2016.**

 ¹⁰ Kieber, J. J.; Schaller, G. E. *Cytokinins. The Arabidopsis Book.* American Society of Plant Biologists, **2014**, 12.
 ¹¹ Bajguz, A.; Piotrowska, A. Conjugates of auxin and cytokinin. *Phytochemistry*, **2009**, 70, 957-969.

¹² Mik, V.; Szucova, L.; Smehilova, M.; Zatloukal, M.; Dolez, K.; Nisler, J.; Gruz, J.; Galuszka, P.; Strnad, M.; Spichal, L. N9-substituted derivatives of kinetin: Effective anti-senescence agents. *Phytochemistry*, **2011**, 72, 821–831.

¹³ Podlešáková, K.; Zalabák, D.; Čudejková, M.; Plíhal, O.; Szüčová, L.; Doležal, K.; Spíchal, L.; Strnad, M.; Galuszka, P. Novel cytokinin derivatives do not show negative effects on root growth and proliferation in submicromolar range. *PloS one*, **2012**, 7, e39293-e39308.

atividade que os derivados de adenina.¹⁴ Modificações na estrutura do TDZ mostraram-se eficientes para produzir novos inibidores mais potentes da CKX, por exemplo, os compostos HETDZ¹⁵ e TD-K (Figura 2).¹⁶

Figura 2. Derivados de citocininas com potencial uso na agricultura.

Além do uso das citocininas e seus derivados na agricultura, destaca-se o potencial uso na química medicinal por apresentarem atividade anticâncer,¹⁷ antioxidante, antiinflamatória,¹⁸ antiviral,¹⁹ e neuroprotetora.²⁰ Os derivados de CKs do grupo da adenina destacam-se pela atividade anticâncer. Como por exemplo os derivados ribosídeos da cinetina e da *orto*-topolin apresentaram atividade citotóxica para linhagem de câncer de mama MCF-7 (Figura 3, p.33).¹⁷ Outro exemplo é a roscovitina (Figura 3, p.33) um derivado de BA, um inibidor da enzima CDK,²¹ que está em fase de teses clínicos para o tratamento de

 ¹⁴ Guo, B.; Abbasi, B. H.; Zeb, A.; Xu, L. L.; Wei, Y.H. Tidiazuron: A multi-dimensional plant growth regulator. *Afr. J. Biotechnol.*, **2011**,10, 8984-9000.
 ¹⁵ Nisler, J.; Kopečný, D.; Končitíková, R.; Zatloukal, M.; Bazgier, V.; Berka, K.; Zalabák, D.; Briozzo, P.; Strnad,

¹⁵ Nisler, J.; Kopečný, D.; Končitíková, R.; Zatloukal, M.; Bazgier, V.; Berka, K.; Zalabák, D.; Briozzo, P.; Strnad, M.; Spíchal, L. Novel tidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase. *Plant Mol. Biol.*, **2016**, 92, 235-248.

¹⁶ Nisler, J.; Zatloukal, M.; Spíchal, L.; Koprna, R.; Doležal, K.; Strnad, M. *1, 2, 3-thiadiazol-5yl-urea derivatives, use thereof for regulating plant senescence and preparations containing these derivatives*. US9993002, **2018**.

¹⁷ Voller, J.; Zatloukal, M.; Lenobel, R.; Doležal, K.; Béreš, T.; Kryštof, V.; Spíchal, L.; Niemann, P.; Džubák, P.; Hajdúch, M.; Strnad, M. Anticancer activity of natural cytokinins: A structure–activity relationship study, *Phytochemistry*, **2010**, *7*1, 1350-1359.

¹⁸ Hönig, M.; Plíhalová, L.; Spíchal, L.; Grúz, J.; Kadlecová, A.; Voller, J.; Svobodová, A. R.; Vostálová, J.; Ulrichová, J.; Doleža, K.; Strnad, M. New cytokinin derivatives possess UVA and UVB photoprotective effect on human skin cells and prevent oxidative stress. *Eur. J. Med. Chem.*, **2018**, 150, 946–957.

¹⁹ Hönig, M.; Plíhalová, L.; Spíchal, L.; Grúz, J.; Kadlecová, A.; Voller, J.; Svobodová, A. R.; Vostálová, J.; Ulrichová, J.; Doleža, K.; Strnad, M. New cytokinin derivatives possess UVA and UVB photoprotective effect on human skin cells and prevent oxidative stress. *Eur. J. Med. Chem.*, **2018**, 150, 946–957.

²⁰ Kadlecova, A.; Makova, B.; Artal-Sanz, M.; Strnad, M.; Voller, J. The plant hormone kinetin in disease therapy and healthy aging. *Ageing research reviews*, **2019**, 55, 100958-100970

²¹ Meijer, L.; Borgne, A.; Mulner, O.; Chong, J. P. J.; Blow, J. J.; Inagaki, N.; Inagaki, M.; Delcros, J. G.; Moulinoux, J. P. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. *Eur. J. Biochem.*, **1997**, 243, 527-536.

câncer²². Há também um derivado da BA com anel 1,2,3-triazólico (Figura 3, p.33), que apresentou alta citotoxicidade para células tumorais de câncer de pulmão.²³

Figura 3. Derivados de citocininas com potencial atividade antitumoral.

Considerando-se os grandes desafios da agricultura e a busca de novas substâncias capazes de aumentar a produtividade e a qualidade dos frutos, além do potencial uso dos derivados de citocininas no tratamento do câncer, este trabalho visa a modificação de duas citocininas, a cinetina e o TDZ, para potencial aplicação biológica como PGRs e agentes antitumorais. Para cumprir tal objetivos esse trabalho foi divido em três capítulos. O capítulo 1 abrange à síntese dos novos derivados da cinetina e do TDZ com o núcleo 1,2,3-triazólico, devido a diversidade de compostos contendo o anel 1,2,3-triazólico que apresentam potencial uso na agricultura e na medicina.²⁴ No planejamento dos novos derivados da cinetina (Figura 4, p.34) optou-se pela inserção do núcleo 1,2,3-triazólico na posição N9 do anel purínico, devido à importância de substituintes nesta posição para a atividade das citocininas no uso como PGRs e como agentes antitumorais. No planejamento dos novos derivados do TDZ (Figura 4, p.34) optou-se por inserir o núcleo 1,2,3-triazólico no anel fenila, devido as outras modificações realizadas nesse grupo presentes na literatura terem-se mostrado eficientes. Além disso, optou-se na inserção de diferentes substituintes no anel 1,2,3-triazólico para avaliação do efeito de substituinte na atividade biológica.

²² Taha, H.; Mohamed, S. H.; Al-Sawaf, H.; Hassan, Z. Evaluation of roscovitine anticancer agent as a reference compound for cancer and apoptosis studies. *J. Innov. Pharm. Biol. Sci.*, **2019**, 6, 53-56.

²³ Khazir, J.; Mir, B. A.; Chashoo, G.; Pilcher, L.; Riley, D. Synthesis and anticancer activity of N-9-and N-7-substituted 1, 2, 3 triazole analogues of 2, 6-di-substituted purine. *Med. Chem. Res.*, **2020**, 29, 33-45.

²⁴ Forezi, L. S. M.; Lima, C. G. S.; Amaral, A. A. P.; Ferreira, P. G.; de Souza, M. C. B. V.; Cunha, A. C.; da Silva, F. C.; Ferreira, V. F. Bioactive 1,2,3-Triazoles: An Account on their Synthesis, Structural Diversity and Biological Applications. *Chem. Rec.*, **2021**, 21, 2782–2807.

Figura 4. Estratégia para o desenvolvimento de novos derivados de citocininas.

Os demais capítulos tratarão dos ensaios biológicos dos derivados da cinetina. Neste trabalho os derivados do TDZ não chegaram a fase dos testes biológicos. O capítulo 2 tratará dos ensaios biológicos dos derivados da cinetina frente a duas espécies de plantas dicotiledôneas *Cucumis sativus* (pepino) e *Lactuca sativa* (alface). O capítulo 3 abrangerá os ensaios antiproliferativos dos derivados de cinetina frente a duas linhagens de câncer de mama (MCF-7 e MDA-MB-231) e uma linhagem não tumoral de mama (MCF-10A).

1 - Capítulo - Síntese de novos derivados da cinetina e do tidiazuron

1.1 Introdução

1.1.1 Purinas

A purina (Figura 5) é o heterociclo contendo nitrogênio mais amplamente distribuído na natureza,²⁵⁻²⁶ uma vez que na forma das bases nitrogenadas adenina e guanina está presente na estrutura dos ácidos nucléicos (RNA e DNA) e em algumas enzimas. Este heterociclo está também presente em numerosos compostos de origem natural encontrados em vários organismos marinhos, fungos e plantas.²⁵⁻²⁶

Figura 5. Purina e as bases nitrogenadas adenina e guanina.

Descoberta e sintetizada primeiramente por Emil Fischer, em 1899,²⁶ a purina desempenha um papel único no metabolismo dos seres vivos, por estar envolvida em muitos processos metabólicos como o ciclo celular e a sinalização celular.²⁵ Assim, a síntese de derivados purínicos com intuito de inibir enzimas e processos metabólicos é de grande interesse para o desenvolvimento de novos fármacos²⁷ e agroquímicos.²⁸ Na literatura encontra-se uma grande variedade de derivados purínicos, de origem sintética ou natural, com diversas atividades biológicas, como: antitumoral,²⁹ antifúngica; antibacteriana;³⁰

²⁵ Legraverend, M. Recent advances in the synthesis of purine derivatives and their precursors. *Tetrahedron*, **2008**, 64, 8585-8603.

²⁶ Rosemeyer, H. The chemodiversity of purine as a constituent of natural products. *Chem. & Biodiversity*, **2004**, 1, 361-401.

²⁷ Krasnov, V. P.; Levit, G. L.; Musiyak, V. V.; Gruzdev, D. A.; Charushin, V. N. Fragment-based approach to novel bioactive purine derivatives. *Pure and Applied Chem.*, **2020**, 92, 1277-1295.

²⁸ Márquez-López, R. E.; Quintana-Escobar, A. O.; Loyola-Vargas, V. M. Cytokinins, the Cinderella of plant growth regulators. *Phytochem. Rev.*, **2019**, 18, 1387-1408.

²⁹ Figueiredo, P.; Costa, M.; Pontes, O.; Baltazar, F.; Proença, F. Adenine Derivatives: Promising Candidates for Breast Cancer Treatment. *Eur. J. Org. Chem.*, **2018**, 29, 3943–3956.

³⁰ Tunçbilek, M.; Ateş-Alagöz, Z.; Altanlar, N.; Karayel, A.; Özbey, S. Synthesis and antimicrobial evaluation of some new substituted purine derivatives. *Bioorg. Med. Chem.*, **2009**, 17, 1693-1700.
antiviral,³¹ antituberculose,³² anti-inflamatória,³³ antidepressiva,³⁴ antioxidante³⁵ e antidiabética³⁶ dentre outras.³⁷ Como exemplos de derivados sintéticos comercializados, têmse os fármacos (Figura 6, p.37): a 6-mercaptopurina (*Purinethol®*) e a clofarabina (*Evoltra®*), antimetabólitos utilizados no tratamento de leucemia linfoblástica aguda (LLA);³⁸⁻³⁹ o aciclovir (*Zovirax®*), um antiviral prescrito para o tratamento de herpes;⁴⁰ a azatioprina, um imunossupressor, muito utilizado por prevenir a rejeição de órgãos em pacientes que passaram por uma cirurgia de transplante; e o alopurinol, um agente uricosúrico, utilizado no tratamento de gota. Alguns desses fármacos (6-mercaptopurina, aciclovir, azatioprina e o alopurinol) contribuíram para que os cientistas envolvidos na pesquisa, Gertrude B. Elion e George H. Hitchings, fossem agraciados com o prêmio Nobel de Fisiologia ou Medicina de 1988, devido à importância dos derivados purínicos na medicina.⁴¹

Além dos derivados sintéticos, têm-se como exemplos os seguintes derivados de origem natural (Figura 7, p.37): a cafeína, um alcaloide purínico bastante conhecido devido ao seu efeito estimulante, utilizado em medicamentos e em produtos alimentícios; as heterominas A, B e C, encontradas na planta *Heterostemma brownii*, muito utilizada na medicina popular de Taiwan para o tratamento de certos tumores;⁴² a agelasina F, isolada da esponja marinha *Agelas sp.*, e apresenta atividade antiturbeculosa;³² a eritadenina, encontrada no cogumelo shiitake (*Lentinus edodes*), responsável pelo efeito hipocolesterolêmico famoso desse

³¹ Wang, C.; Song, Z.; Yu, H.; Liu, K.; Ma, X. Adenine: an important drug scaffold for the design of antiviral agents. *Acta Pharmaceutica Sinica B*, **2015**, 5, 431-441.

³² Bakkestuen, A. K.; Gundersen, L. L.; Petersen, D.; Utenova, B. T.; Vik, A. Synthesis and antimycobacterial activity of agelasine E and analogs. *Org. Biomol. Chem.*, **2005**, 3, 1025-1033.

³³ Szucova, L.; Zatloukal, M.; Spichal, L.; Frohlich, L.; Dolezal, K.; Strnad, M.; Massino, F. J. *6,9-Disubstituted Purine Derivatives and Their Use for Treating Skin.* US2008009508, **2008**.

³⁴ Beck, J. P.; Arvanitis, A. G.; Curry, M. A.; Rescinito, J. T.; Fitzgerald, L. W.; Gilligan, P. J.; Zaczek, R.; Trainor, G. L. Purin-8-ones as corticotropin-releasing hormone (CRH-R1) receptor antagonists. *Bioorg. Med. Chem. Lett.*, **1999**, 9, 967-972.

³⁵ Hönig, M.; Plíhalová, L.; Spíchal, L.; Grúz, J.; Kadlecová, A.; Voller, J.; Svobodová, A. R.; Vostálová, J.; Ulrichová, J.; Doleža, K.; Strnad, M. New cytokinin derivatives possess UVA and UVB photoprotective effect on human skin cells and prevent oxidative stress. *Eur. J. Med. Chem.*, **2018**, 150, 946–957.

³⁶ Spasov, A. A.; Khaliullin, F. A.; Babkov, D. A.; Timirkhanova, G. A.; Kuznetsova, V. A.; Naumenko, L. V.; Sturova, E. A. Synthesis and antidiabetic activity of thiazolo [2, 3-f] purine derivatives and their analogs. *Pharmaceutical Chem. Journal*, **2017**, 51, 533-539.

³⁷ Legraverend, M.; Grierson, D. S. The purines: Potent and versatile small molecule inhibitors and modulators of key biological targets. *Bioorg. & Med. Chem.*, **2006**, 14, 3987-4006.

³⁸ Parker, W. B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. *Chem. Rev.*, **2009**, 109, 2880-2893.

³⁹ Qiu, X.; Huang, Y.; Wu, D.; Mao, F.; Zhu, J.; Yan, W.; Luo, H.; Li, J.; Discovery of novel purine nucleoside derivatives as phosphodiesterase 2 (PDE2) inhibitors: Structure-based virtual screening, optimization and biological evaluation. *Bioorg. Med. Chem.*, **2018**, *26*, 119-133.

⁴⁰ Barreiro, E. J.; Fraga, C. A. M. *Química Medicinal: as bases moleculares da ação dos fármacos*, 3ª edição, Porto Alegre, Artmed, **2015**.

⁴¹ Elion, G. B. The purine path to chemotherapy. *Bioscience Reports*, **1989**, 9, 509-529.

⁴² Lin, Y. L.; Huang, R. L.; Chang, C. M.; Kuo, Y. H. Two new puriniums and three new pyrimidines from *Heterostemma brownii. J. of Nat. Prod.*, 1997, 60, 982-985.

cogumelo; e a cinetina, um regulador de crescimento vegetal (PGR, sigla em inglês de *Plant Growth Regulator*), da classe das citocininas, muito utilizada na agricultura.²⁶

Figura 6. Fármacos comercializados contendo o anel purínico em suas estruturas.

Figura 7. Produtos naturais contendo o anel purínico em suas estruturas.

1.1.1.1 Cinetina

A cinetina ou 6-furfuriladenina (Figura 7), um PGR da classe das citocininas, foi sintetizada primeiramente, em 1955, por Miller, a partir do aquecimento do DNA de esperma de arenque.⁴³⁻⁴⁴ Mais tarde, em 1996, a cinetina de forma natural foi isolada de extratos de *Casuarina equisetifolia,* infectados por bactérias do gênero *Frankia.*⁴⁵ Sabe-se até o momento que a cinetina é produzida em plantas em condições especificas, como por exemplo, na infecção de bactérias e na presença de espécies reativas de oxigênio⁴⁵ (ROS, acrônimo em inglês para *Reactive Oxygen Species*).

⁴³ Miller, C. O.; Skoog, F.; Von Saltza, M. H.; Strong, F. Kinetin, a cell division factor from deoxyribonucleic acid. *J. Am. Chem. Soc.*, **1955**, 77, 1392-1392.

⁴⁴ Miller, C. O.; Skoog, F.; Okomura, F. S.; Von Saltza, M. H.; Strong, F. M. Isolation, structure and synthesis of kinetin, a substrance promoting cell division. *J. Am. Chem. Soc.*, **1956**, 78, 1345-1350.

⁴⁵ Kadlecova, A.; Makova, B.; Artal-Sanz, M.; Strnad, M.; Voller, J. The plant hormone kinetin in disease therapy and healthy aging. *Ageing research reviews*, **2019**, 55, 100958-100970.

A cinetina, como toda citocinina, induz a divisão celular,⁴³⁻⁴⁴ retarda a senescência foliar, promove a expansão dos cotilédones das dicotiledôneas⁴⁵ e induz a frutificação.⁴⁶ Além de seu uso na agricultura, a cinetina apresenta potencial uso na química medicinal, principalmente para o tratamento da COVID-19. Estudos pré-clínicos mostraram que a cinetina apresentou atividade antiviral contra o vírus SARS-CoV-2 e anti-inflamatória.⁴⁷ Além dessas, apresenta atividade antienvelhecimento,⁴⁸ cardioprotetora, anticoagulante,⁴⁵ antioxidante; antiglicante, antiglicosidante⁴⁹ e neuroprotetora.⁴⁵ Devido às diversas atividades apresentadas pela cinetina, a síntese de novos derivados da cinetina tem atraído o interesse da comunidade cientifica. Um exemplo notável é o derivado (6-furfurilamino-9-(tetra-hidropiran-2-il)-*9H*-purina, comercializado como Pyratine® (Figura 8), usado no tratamento de rosáceas.³³ Há também derivados relatados na literatura com atividade fotoprotetora, antioxidante,⁵⁰ neuroprotetora⁵¹ e para o uso como PGRs,⁵² como apresentado na Figura 8.

Figura 8. Derivados da cinetina e suas respectivas atividades biológicas.

⁴⁶ Zeiger, E. Taiz, L. Fisiologia Vegetal, 3ª edição, Porto Alegre, Artmed, 2003

⁴⁷ Souza, T. M. L.; Pinho, V. D.; Setim, C. F.; Sacramento, C. Q.; Marcon, R.; Fintelman-Rodrigues, N.; Chaves, O. A.; Heller, M.; Temerozo, J. R.; Ferreira, A. C.; Mattos, M.; Momo, P. B.; Dias, S. S. G.; Gesto, J. S. M.; Pereira-Dutra, F.; Viola, J. P. B.; Queiroz-Junior, C. M.; Guimarães, L. C.; Chaves, I. M.; Guimarães, P. P. G.; Costa, V. V.; Siqueira-Junior, J.; Macedo-Junior, S.; Andrade, E. L.; Fadanni, G. P.; Tolouei, S. E, L.; Potrich, F. B.; Santos, A. A.; Marques, N. F.; Calixto, J. B.; Rabi, J. A. Preclinical development of kinetin as a safe error-prone SARS-CoV-2 antiviral able to attenuate virus-induced inflammation, *Nat. Commun.*, **2023**, 14, 199.

⁴⁸ Wyszko, E.; Barciszewska, M. Z.; Markiewicz, M.; Szymański, M.; Markiewicz, W. T.; Clark, B. F.; Barciszewski, J. "Action-at-a distance" of a new DNA oxidative damage product 6-furfuryl-adenine (kinetin) on template properties of modified DNA. *Biochim. et Biophys. Acta*, **2003**, 1625, 239-245.

⁴⁹ Verbeke, P.; Siboska, G. E.; Clark, B. F.; Rattan, S. I. Kinetin inhibits protein oxidation and glycoxidation in vitro. *Biochem. and Biophys. Res. Comm.*, **2000**, *276*, 1265-1270.

⁵⁰ Hönig, M.; Plíhalová, L.; Spíchal, L.; Grúz, J.; Kadlecová, A.; Voller, J.; Svobodová, A. R.; Vostálová, J.; Ulrichová, J.; Doleža, K.; Strnad, M. New cytokinin derivatives possess UVA and UVB photoprotective effect on human skin cells and prevent oxidative stress. *Eur. J. Med. Chem.*, **2018**, 150, 946–957.

⁵¹ Yoshida, M.; Kataoka, N.; Miyauchi, K.; Ohe, K.; Iida, K.; Yoshida, S.; Nojima, T.; Okuno, Y.; Onogi, H.; Usui, T.; Takeuchi, A.; Hosoya, T.; Suzuki, T.; Hagiwara, M.; Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia. *Proc. Natl. Acad. Sci.*, **2015**, 112, 2764–2769.

⁵² Mik, V.; Szucova, L.; Smehilova, M.; Zatloukal, M.; Dolez, K.; Nisler, J.; Gruz, J.; Galuszka, P.; Strnad, M.; Spichal, J. No. substituted derivatives of kinetics. Effective anti-senescence agents. *Butachamistry*, **2011**, 72, 821

L. N9-substituted derivatives of kinetin: Effective anti-senescence agents. *Phytochemistry*, **2011**, 72, 821–831.

1.1.2 1,2,3-Tiadiazóis

O heterociclo 1,2,3-tiadiazol (Figura 9) é um padrão molecular de grande interesse para pesquisadores na construção de moléculas bioativas nos campos da medicina e da agricultura. Devido à presença de diferentes heteroátomos em sua estrutura e à possibilidade de diferentes substituições no anel 1,2,3-tiadiazólico, na literatura há derivados com atividades biológicas diversificadas.⁵³

Figura 9. Estrutura do heterociclo 1,2,3-tiadiazol.

Os derivados 1,2,3-tiadiazólicos podem ser obtidos a partir de várias metodologias sintéticas. ⁵⁴ A metodologia mais antiga é a Pechmann e Nold de 1896 (Esquema 1a), que envolve uma reação de cicloadição dipolar entre o diazometano e um aril isotiocianato.⁵⁵ Há também a metodologia de Wolff⁵⁶ (Esquema 1b), que envolve a reação entre α-diazo-1,3-dicarbonil e sulfeto de amônio.⁵⁴ A metodologia mais utilizada é a de Hurd-Mori (Esquema 1c),⁵⁴⁻⁵⁷ que envolve a ciclização de derivados de hidrazonas (substituídas em NHZ, com Z sendo um grupo retirador de elétrons) na presença de cloreto de tionila.⁵⁸

(a) Pechmann e Nold

Esquema 1. Metodologias clássicas para a obtenção do anel 1,2,3-tiadiazólico.54

⁵³ Irfan, A.; Ullah, S.; Anum, A.; Jabeen, N.; Zahoor, A. F.; Kanwal, H.; Kotwica-Mojzych, K.; Mojzych, M. Synthetic Transformations and Medicinal Significance of 1,2,3-Thiadiazoles Derivatives: An Update. *Appl. Sci.*, **2021**, 11, 5742-5771.

⁵⁴ Ram, V. J.; Sethi, A.; Nath, M.; Pratap, R. *The Chemistry of Heterocycles: Nomenclature and Chemistry of Three to Five Membered Heterocycles*, Elsevier, **2019**.

⁵⁵ Pechmann, H.; Nold, A. Reactions of 1, 2, 3-thiadiazoles. *Chem Ber.*, **1896**; 28, 2588.

⁵⁶ Wolff, L.; Kopitzsch, H.; Hall, A. Ann., **1904**, 333, 1.

⁵⁷ Hurd, C. D.; Mori, R. I. On acylhydrazones and 1,2,3-thiadiazoles. J. Am. Chem. Soc., **1955**, 77, 5359-5364.

⁵⁸ Dehaen, W.; Bakulev, V. A. *The Chemistry of 1, 2, 3-Thiadiazoles.* John Wiley & Sons, **2004**.

Uma metodologia mais moderna para a reação de Hurd-Mori é a obtenção do tiadiazol via reação multicomponente a partir de cetonas (ou enaminonas) e hidrazinas, na qual a hidrazona é formada *in situ* (Esquema 2). Essas reações são catalisadas por iodo (I₂)⁵⁹ e/ou por metais de transição como o cobre,⁶⁰ como mostrado no Esquema 2.

(a) Wang et al.

Esquema 2. Reações multicomponente para a obtenção do anel 1,2,3-tiadiazólico.

Outro método muito usual, para a obtenção do anel tiadiazólico, é a transformação de um anel heterocíclico no anel 1,2,3-tiadiazólico. Como exemplo têm-se a transformação do 1,2,3-oxadiazol em 1,2,3-tiadiazol a partir da reação do oxadiazol com hidrossulfeto de amônio e H₂S (Esquema 3a), e a oxidação do tiadiazinona com hipoclorito de *t*-butila (Esquema 3b).

Esquema 3. Obtenção do anel 1,2,3-tiadiazólico a partir de outro heterociclo.

⁵⁹ Yang, Z.; Liang, Y.; Li, A.; Liu, K.; Li, L.; Yang, T.; Zhou, C. One-pot synthesis of 5-acyl-1, 2, 3-thiadiazoles from enaminones, tosylhydrazine, and elemental sulfur under transition-metal-free conditions. *The J. of Org. Chem.*, **2019**, 84, 16262-16267.

⁶⁰ Wang, C.; Geng, X.; Zhao, P.; Zhou, Y.; Wu, Y. D.; Cui, Y. F.; Wu, A. X. I₂/CuCl₂ -promoted one-pot threecomponent synthesis of aliphatic or aromatic substituted 1,2,3-thiadiazoles. *Chem. Commun.*, **2019**, 55, 8134– 8137.

Na literatura são encontrados derivados do 1,2,3-tiadiazol com as seguintes atividades biológicas: antimicrobiana,⁶¹ antifúngica,⁶² bactericida,⁶³ inseticida,⁶⁴ antiviral,⁶⁵ anticâncer⁶⁶ e antiprotozoária⁶⁷ dentre outras.⁵³ Como exemplos têm-se os seguintes derivados (Figura 10): cefuzonam (*Cosmosin*®), um antibiótico das classes das cefalosporinas;⁵³ a série de derivados 1,2,3-tiadiazol-tioacetanilida (TTA), que exibiram alta atividade antiviral contra o vírus HIV, sendo TTA-CI o composto mais ativo (EC₅₀ = 0,059±0,02 µM e IS> 4883µM);⁶⁵ a série de derivados da combretastatina A-4 com o anel 1,2,3-tiadiazólico, com potencial atividade antitumoral frente a células tumorais de camundongos, sendo o composto CA-4T o mais ativo, obtendo 81% de inibição com uma dose de 40mg/kg durante 5 dias;⁶⁶ e o composto 4-(4-bromofenil)-[1,2,3]-tiadiazol (4-BFT), com potencial atividade antimicrobiana frente ao protozoário *Entamoeba histolytica*, ameba intestinal responsável pela doença amebíase, a segunda doença parasitaria que mais mata no mundo.⁶⁷

Figura 10. Compostos contendo o anel 1,2,3-tiadiazólico em suas estruturas e as suas respectivas atividades biológicas.

Além desses compostos, há agroquímicos comerciais que apresentam o anel 1,2,3tiadiazólico em sua estrutura como o Bion®, o BTH e o tiadinil (Figura 11, p.42), que são ativadores de plantas, substâncias que melhoram o sistema de defesa das plantas frente a diferentes patógenos, como fungos e bactérias.⁶⁷ Outro exemplo é o tidiazuron, um desfolhante de algodão e PGR da classe das citocininas, muito utilizado na agricultura.

⁶¹ Paruch, K.; Popiołek, Ł.; Biernasiuk, A.; Berecka-Rycerz, A.; Malm, A.; Gumieniczek, A.; Wujec, M. Novel derivatives of 4-methyl-1,2,3-thiadiazole-5-carboxylic acid hydrazide: Synthesis, lipophilicity, and in vitro antimicrobial activity screening. *Appl. Sci.*, **2021**, 11, 1180-1192.

⁶² Li, Z.; Wu, Z.; Luo, F. Synthesis and antifungal activities of alkyl N-(1, 2, 3-thiadiazole-4-carbonyl) carbamates and S-alkyl N-(1, 2, 3-thiadiazole-4-carbonyl) carbamothioates. *J. Agric. Food Chem.*, **2005**, 53, 3872-3876.

⁶³ Balasankar, T.; Gopalakrishnan, M.; Nagarajan, S. Synthesis and antibacterial activity of some 5-(4-biphenylyl)-7-aryl[3,4-d][1,2,3]-benzothiadiazoles. *Eur. J. Med. Chem.*, **2005**, 40, 728–731.

⁶⁴ Wang, H.; Yang, Z.; Fan, Z.; Wu, Q.; Zhang, Y.; Mi, N.; Wang, S.; Zhang, Z.; Song, H.; Liu, F. Synthesis and insecticidal activity of N-tert- 314 butyl-N,N0-diacylhydrazines containing 1,2,3-thiadiazoles. *J. Agric. Food Chem.*, **2011**, 59, 628–634.

⁶⁵ Zhan, P.; Liu, X.; Cao, Y.; Wang, Y.; Pannecouque, C.; Clercq, E. D. 1,2,3-thiadiazole thioacetanilides as a novel class of potent HIV-1 non-nucleoside reverse transcriptase inhibitors. *Bioorg. Med. Chem. Lett.*, **2008**, 18, 5368–5371.

⁶⁶ Wu, M.; Sun, Q.; Yang, C.; Chen, D.; Ding, J.; Chen, Y.; Lin, L.; Xie, Y. Synthesis and activity of Combretastatin A-4 analogues: 1,2,3-thiadiazoles as potent antitumor agents. *Bioorg. Med. Chem. Lett.*, **2007**, 17, 869–873.

⁶⁷ Hayat, F.; Salahuddin, A.; Zargan, J.; Azam, A. Synthesis, characterization, antiamoebic activity and cytotoxicity of novel 2-(quinolin-8-yloxy) acetohydrazones and their cyclized products (1,2,3-thiadiazole and 1,2,3-selenadiazole derivatives). *Eur. J. Med. Chem.*, **2010**, 45, 6127–6134.

Figura 11. Agroquímicos comerciais contendo o anel 1,2,3-tiadiazólico em suas estruturas e suas respectivas classes.

1.1.2.1 Tidiazuron

O tidiazuron (TDZ) ou 1-fenil-3-(1,2,3-tidiazol-5-il)-ureia (Figura 11) é uma citocinina sintética do tipo difenilureia, aplicado há décadas na agricultura, principalmente na fruticultura e como desfolhante de algodão (*Gossypium hirsutum*).⁶⁸ O TDZ foi sintetizado primeiramente, em 1967, pela indústria alemã Schering Corporation,⁶⁹ parte da Bayer desde 2002, ⁷⁰ e patenteado pela mesma indústria em 1981.⁷¹

O TDZ, quando aplicado em plantas, exibe os seguintes efeitos: induz a divisão celular, aumenta a frutificação, aumenta o tamanho dos frutos, altera a forma dos frutos, atrasa a maturação dos frutos, induz a brotação,⁷² retarda a senescência foliar⁶⁹ e possui ação desfolhante.⁷¹ Além de atuar como PGR e herbicida, o TDZ apresenta atividade anticâncer⁷³ e antifúngica.⁷⁴ Devido a todas essas propriedades, a busca por novos derivados e análogos que apresentem as mesmas atividades biológicas ou superiores ao TDZ é crescente.

Na literatura há muitos derivados ou análogos do TDZ, principalmente com diferentes substituições no anel fenila e na posição 4 do anel 1,2,3-tiadiazólico. Alguns exemplos são apresentados na Figura 12 (p.43). Os derivados HETDZ e 3FMTDZ desenvolvidos por Nisler e colaboradores⁷⁵ foram melhores inibidores da enzima citocinina oxidase (CKX), responsável pela degradação de citocininas nas plantas, com IC_{50} 3,9 ± 0,6 e 5,5 ± 0,6 µM, respectivamente, quando comparados ao próprio TDZ (IC_{50} 62 ± 6 µM)⁷⁵ O derivado 2FOTDZ,

⁶⁸ Guo, B.; Abbasi, B. H.; Zeb, A.; Xu, L. L.; Wei, Y.H. Tidiazuron: A multi-dimensional plant growth regulator. *Afr. J. Biotechnol.*, **2011**,10, 8984-9000.

⁶⁹ Ahmad, N.; Faisal, M. Tidiazuron: From urea derivative to plant growth regulator. Springer Singapore, 2018.

⁷⁰ Rademacher, W. Plant Growth Regulators: Backgrounds and Uses in Plant Production. *J. Plant Growth Regul.*, **2015**, 34, 845–872.

⁷¹ Arndt, F.; Rusch, R.; Schulz, H. Agents for the defoliation of plants. US4294605, **1981**.

⁷² Petri, J.L.; Haverroth, F.J.; Leite, G.B.; Sezerino, A.A.; Couto, M. *Reguladores de crescimento para frutíferas de clima temperado*. Florianópolis, Epagri, **2016**.

⁷³ Enkhtaivan, G.; Kim, D. H.; Pandurangan, M. Cytotoxic effect of TDZ on human cervical cancer cells. *J. of Photochem. and Photobio.*, **2017**, 173, 493–498.

⁷⁴ Zhang, X.; Dong, S.; Ding, Q.; Fan, X.; Zhang, G. Selenium-catalyzed oxidative carbonylation of 1, 2, 3-thiadiazol-5-amine with amines to 1, 2, 3-thiadiazol-5-ylureas. *Chinese Chem.I Letters*, **2019**, 30, 375-378.

⁷⁵ Nisler, J.; Kopečný, D.; Končitíková, R.; Žatloukal, M.; Bazgier, V.; Berka, K.; Zalabák, D.; Briozzo, P.; Strnad,

M.; Spíchal, L. Novel tidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase. *Plant Mol. Biol.*, **2016**, 92, 235-248.

desenvolvido por Abad e colaboradores,⁷⁶ quando aplicado em kiwi, fornece frutos aproximadamente 10 mm maiores que o tratamento com o TDZ.⁷⁶ Os derivados 4-METDZ e 5-METDZ foram desenvolvidos por Kalinina e colaboradores,⁷⁷ dentre esses dois o 4-METDZ apresentou os melhores resultados nos ensaios com pepino (*Cucumis sativus*), apresentando uma maior taxa de crescimento de cotilédones de pepino do que o TDZ e o 5-METDZ, em algumas concentrações.⁷⁷

Figura 12. Estruturas do TDZ e de seus derivados.

1.1.3 1,2,3-Triazóis

O heterociclo 1,2,3-triazol (Figura 13) é muito utilizado na hibridação molecular⁷⁸ como grupo conector de duas, ou mais, moléculas bioativas de interesse.⁷⁹ Este heterociclo possibilita a construção de moléculas com diversas aplicações em diferentes áreas de pesquisa, como: na química medicinal, na agroquímica, na química de materiais, dentre outras.⁸⁰

1,2,3-triazol

Figura 13. Estrutura do heterociclo 1,2,3-triazol.

⁷⁶ Abad, A.; Agulló, C.; Cuñat, A. C.; Jiménez, R.; Vilanova, C. Preparation and promotion of fruit growth in kiwifruit of fluorinated N-phenyl-N '-1, 2, 3-thiadiazol-5-yl ureas. J. of Agric. and Food Chem., **2004**, 52, 4675-4683.

⁷⁷ Kalinina, T. A.; Shakhmina, Y. S.; Glukhareva, T. V.; Morzherin, Y.; Fan, Z. J.; Borzenkova, R. A.; Skolobanova, E. S.; Kiseleva, I. S. 1, 2, 3-thiadiazolyl isocyanates in the synthesis of biologically active compounds. Study of the cytotoxic activity of N-(4-methyl-1, 2, 3-thiadi-azolyl-5-yl)-N'-(4-methylphenyl) Urea. *Chem. of Heterocyclic Compounds*, **2014**, 50, 1039-1046.

⁷⁸ Ivasiv, V.; Albertini, C.; Gonçalves, A. E.; Rossi, M.; Bolognesi, M. L. Molecular hybridization as a tool for designing multitarget drug candidates for complex diseases. *Curr. Top. Med. Chem.*, **2019**, 19, 1694-1711.

⁷⁹ Freitas, L. B. O.; Ruela, F. A.; Pereira, G. R.; Alves, R. B.; Freitas, R. P.; Santos, L. J. A reação "click" na síntese de 1,2,3-triazóis: aspectos químicos e aplicações. *Quím. Nova*, **2011**, 34, 1791-1804.

⁸⁰ Forezi, L. S. M.; Lima, C. G. S.; Amaral, A. A. P.; Ferreira, P. G.; de Souza, M. C. B. V.; Cunha, A. C.; da Silva, F. C.; Ferreira, V. F. Bioactive 1,2,3-Triazoles: An Account on their Synthesis, Structural Diversity and Biological Applications. *Chem. Rec.*, **2021**, 21, 2782–2807.

Além disso, o anel 1,2,3-triazólico é facilmente obtido via reação de cicloadição 1,3dipolar entre um alcino terminal e uma azida orgânica catalisada por Cu(I) (CuAAC),81-82 conhecida também como reação click.⁷⁹ O conceito da química click foi introduzido em 2001 por Sharpless e consiste em reações rápidas, com alto rendimento e geradoras de poucos subprodutos.83

A metodologia anterior utilizada para a síntese do anel 1,2,3-triazólico era a de Huisgen (Esquema 4a, p.45),⁸⁴ que apresentava vários empecilhos para a obtenção do heterociclo, como: a necessidade de longos tempos reacionais, altas temperaturas, baixos rendimentos, e formação de mistura de regioisômeros 1,4- e 1,5-dissubstituídos quando a reação envolvia alcinos assimétricos. Em 2002, estudos realizados pelos grupos de pesquisa de Meldal e de Sharpless mostraram que a utilização de Cu(I), como catalisador, diminuía o tempo reacional, além de levar à formação exclusiva do regioisômero 1,4-dissubstituído⁸¹⁻⁸⁵ (Esquema 4b, p.45). Devido à importância dessa reação na química, principalmente na área biológica, à facilidade e à simplicidade de construir moléculas, simples e complexas, Morten Meldal, Barry Sharpless e Carolyn Bertozzi, em 2022, foram laureados com o prêmio Nobel de química.86

Carolyn Bertozzi desenvolveu reações click que funcionam em organismos vivos sem a necessidade da utilização de Cu como catalisador, reações bioortogonais que não interrompem a química celular.⁸⁷ A reação desenvolvida por Bertozzi utiliza um alcino cíclico, um ciclooctino, que apresenta uma tensão no anel devido ao menor ângulo de ligação dos carbonos sp da ligação tripla de 160° invés de 180° (Esquema 4c, p.45). Devido a essa distorção da ligação há uma aceleração da reação de cicloadição, não necessitando de cobre.88 A reação de Bertozzi ficou conhecida como strain-promoted azide/alkyne cycloaddition⁸⁹ (SPAAC, cicloadição entre alcino azida promovida por tensão).

⁸⁶ Fernholm, A. The Nobel Prize In Chemistry 2022, The Royal Swedish Academy Of Science, **2022.** Disponível em https://www.nobelprize.org/prizes/chemistry/2022/press-release/. Acesso em: 21 de outubro de 2022.

⁸¹ Tornfe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1, 2, 3]-triazoles by regiospecific copper (I)-catalyzed 1, 3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67, 3057-3064. ⁸² Meldal, M.; Tornøe, C. W. Cu-catalyzed azide- alkyne cycloaddition. Chem. reviews, 2008, 108, 2952-3015. ⁸³ Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry: Diverse chemical function from a few good reactions.

Angew. Chem. Int. Ed., 2001, 40, 2004-2021.

⁸⁴ Huisgen, R.; Szeimies, G.; Möbius, L. 1.3-Dipolare Cycloadditionen, XXXII. Kinetik der Additionen organischer Azide an CC-Mehrfachbindungen. *Chem. Ber.*, **1967**, 100, 2494-2507. ⁸⁵ Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper

⁽I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew. Chemie., 2002; 114, 2708-2711.

⁸⁷ Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. A strain-promoted [3+ 2] azide- alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc., 2004, 126, 15046-15047.

⁸⁸ Jewett, J. C.; Bertozzi, C. R. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev., 2010, 39. 1272-1279.

⁸⁹ Johnson, J. A.; Baskin, J. M.; Bertozzi, C. R.; Koberstein, J. T.; Turro, N. J. Copper-free click chemistry for the in situ crosslinking of photodegradable star polymers. Chem. Commun., 2008, 26, 3064-3066.

(a) Cicloadição 1,3-dipolar de Huisgen

Esquema 4. Metodologias para a obtenção do anel 1,2,3-triazólico.

Neste trabalho o enfoque será na metodologia CuAAC. Apesar dessa metodologia ter sido bem desenvolvida ao longo desses anos, o mecanismo dessa reação ainda não foi totalmente compreendido. O mecanismo de reações envolvendo cobre como catalisador apresenta dificuldades de elucidação, devido a algumas características do cobre, como: formar agregados com frequência, possuir baixo potencial de redução e facilidade de troca de ligantes.⁹⁰

A primeira proposta mecanística para a reação *click* ocorreu em 2002, feita por Sharpless e colaboradores⁹¹ (Esquema 5, p.46). O mecanismo inicia-se com a coordenação do Cu(I), de forma σ, com o alcino, seguido da perda do próton do alcino terminal, formando o acetileto de cobre I. Na próxima etapa, a azida se complexa ao cobre, favorecendo o ataque do carbono do acetileto ao nitrogênio eletrofílico da azida e formando o intermediário III, um metalociclo de seis membros, que sofre um rearranjo formando um intermediário cíclico de cinco membros coordenado ao cobre, intermediário IV. Finalmente, ocorre uma eliminação redutiva, formando o composto triazólico livre e permitindo que o Cu(I) retorne ao ciclo catalítico.⁹¹

⁹⁰ Worrell, B. T.; Malik, J. A.; Fokin, V. V. Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions. *Science*, **2013**, 340, 457-460.

⁹¹ Rostovtsev, V. V.; Green, G. L.; Fokin, V. V.; Sharpless, K. B. A Stepwise HuisgenCycloaddition Process: Copper(I)-Catalyzed Regioselective Ligation of Azides and Terminal Alkynes. *Angew. Chem. Int. Ed.*, **2002**, 41, 2596-2599.

Esquema 5. Ciclo catalítico da reação de cicloadição 1,3-dipolar proposta por Sharpless e colaboradores em 2002.91

Ao longo dos anos novas propostas mecanísticas foram publicadas para essa reação.⁹²⁻⁹³ Em 2013, um nova proposta envolvendo intermediários polinucleares de Cu(I) foi sugerida por Fokin e colaboradores⁹⁰ (Esquema 6, p.47). Na qual, inicialmente o Cu(I) se coordena, de forma π , com o alcino, formando o intermediário I. Em seguida, o intermediário I se coordena, de forma σ , com um segundo átomo de Cu(I), formando o intermediário II. Na próxima etapa, a azida complexa com o Cu(I) π coordenado. Isto favorece o ataque nucleofílico do carbono β -do acetileto de cobre ao nitrogênio terminal do grupo azida, o que leva à formação do metalociclo de seis membros IV. Em seguida, ocorre a contração deste anel com a saída de Cu(I), formando o intermediário V. Finalmente, ocorre a transferência de próton no intermediário V com a formação do produto triazólico 1,4-dissubstituído VI.⁹⁰

⁹² Straub, B.F. μ-Acetylide and μ-alkenylidene ligands in "click" triazole synthesis. *Chem. Comm.*, **2007**, 37, 3868-3870.

⁹³ Rodionov, V. O.; Fokin, V. V.; Finn, M. G.; Mechanism of the ligand-Free Cul-catalyzed azide–alkyne cycloaddition reaction. *Angew. Chem. Int. Ed.*, **2010**, 44, 2210-2215.

Esquema 6. Ciclo catalítico da reação de cicloadição 1,3-dipolar proposta por Fokin e colaboradores em 2013.90

Em 2015, com novos estudos foi proposto outro mecanismo para a reação *click*, o qual envolve a união dos dois ciclos catalíticos, isto é, aquele proposto por Sharpless e colaboradores em 2002 e o de Fokin e colaboradores em 2013. Nessa proposta, a reação pode ocorrer pelos dois ciclos, um lento com formação do acetileto de cobre (mecanismo 2002), e o outro, rápido, com formação de uma espécie dinuclear de cobre, favorecida cineticamente (mecanismo 2013).⁹⁴ Nessa proposta o cobre coordenado no triazol é eliminado devido à interação com outro alcino, gerando um novo complexo dinuclear, no qual o cobre se coordena de forma $\sigma \in \pi$,⁹⁵ como mostrado no Esquema 7.

Esquema 7. Ciclo catalítico da reação de cicloadição 1,3-dipolar proposta por Jin e colaboradores⁹⁴ em 2015.

⁹⁴ Jin, L.; Tolentino, D. R.; Melaimi, M.; Bertrand, G. Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne "click reaction". *Sci. Adv.*, **2015**, 1,1-5.

⁹⁵ Schulze, B.; Schubert, U. S. Beyond click chemistry – supramolecular interactions of 1,2,3-triazoles. *Chem. Soc. Rev.*, **2014**, 43, 2522-2571.

A facilidade de obtenção dos anéis triazólicos 1,4-dissubstituidos possibilitou a construção de moléculas com diferentes aplicações biológicas na área da química medicinal. Na literatura encontram-se 1,2,3-triazóis-1,4-dissubstituidos com atividade anticâncer,⁹⁶ antiprotozoária,⁹⁷ antimicrobiana,⁹⁸ antifúngica e antiviral, dentre outras.⁹⁹ Como exemplos têm-se os seguintes derivados (Figura 14): o derivado 1,2,3-triazólico da quinina (alcaloide natural extraído da *Cinchona spp.*), com potencial atividade antiproliferativa em células cancerígenas de cólon (IC₅₀ = 1,21 µM para HT-29);⁹⁶ o composto indol-triazol, com potencial atividade leishmanicida (IC₅₀ = 4,01 ± 0,38 µM) para forma promastigota da *Leishmania amazonensis*);⁹⁷ e o derivado isocumarina-triazol, com potencial atividade antimalárica (IC₅₀ = 0,68 µM e IS > 147) para a cepa W2 do *Plasmodium falciparum.*¹⁰⁰

Figura 14. Compostos contendo o anel 1,2,3-triazólico em suas estruturas e as suas respectivas atividades biológicas.

⁹⁶ Boratyński, P. J.; Gałęzowska, J.; Turkowiak, K.; Anisiewicz, A.; Kowalczyk, R.; Wietrzyk, J. Triazole biheterocycles from cinchona alkaloids: coordination and antiproliferative properties. *Chem. Select.*, **2018**, 3, 9368–9373.

⁹⁷ Gontijo, V. S.; Espuri, P. F.; Alves, R. B.; de Camargos, L. F.; dos Santos, F. V.; Judice, W. A. D.; Marques, M. J.; Freitas, R. P. Leishmanicidal, antiproteolytic, and mutagenic evaluation of alkyltriazoles and alkylphosphocholines. *Eur. J. Med. Chem.*, **2015**, 101, 24-33.

⁹⁸ Danne, A. B.; Choudhari, A. S.; Chakraborty, S.; Sarkar, D.; Khedkar, V. M.; Shingate, B. B. Triazolediindolylmethane conjugates as new antitubercular agents: synthesis, bioevaluation, and molecular docking. *Med. Chem. Comm.*, **2018**, 9, 1114–1130.

⁹⁹ Bozorov, K.; Zhao, J.; Aisa, H. A. 1, 2, 3-Triazole-containing dfhybrids as leads in medicinal chemistry: A recent overview. *Bioorg. Med. Chem.*, **2019**, 27, 3511-3531.

¹⁰⁰ da Silva Santos, L.; de Carvalho, M. F.; de Souza Pinto, A. C.; da Fonseca, A. L.; Dias Lopes, J. C.; de Pilla Varotti, F.; de Freitas, R. P.; Alves, R. B. Synthesis of novel 1,2,3-triazole derivatives of isocoumarins and 3, 4dihydroisocoumarin with potential antiplasmodial activity in vitro. *Med. Chem.*, **2021**, 17, 820-833.

Além de derivados com aplicação medicinal, o núcleo 1,2,3-triazólico encontra-se em derivados com potencial aplicação na agricultura. Como por exemplo (Figura 15, p.49): o híbrido ácido maslínico-ftalimida com potencial herbicida, no qual o triazol é utilizado como espaçador para unir os dois compostos; o bistriazóis, com potencial atividade herbicida;¹⁰¹ o composto hidrazina-triazol, com potencial atividade antifúngica (EC₅₀ = 0,18±0,01 µM para o *Rhizoctonia solan,* fungo muito comum em cultura de soja);¹⁰² e o feniltriazol com potencial atividade inseticida (DL₅₀ = 1,86 nmol/inseto).¹⁰³

Figura 15. Compostos contendo o anel 1,2,3-triazólico em suas estruturas e as suas respectivas atividades biológicas na área da agroquímica.

¹⁰¹ Borgati, T. F.; Alves, R. B.; Teixeira, R. R.; Freitas, R. P; De Perdigão, T. G.; Silva, S. F.; Da Santos, A. A.; Dos Bastidas, A. J. O. Synthesis and Phytotoxic Activity of 1,2,3-Triazole Derivatives. *J. Braz. Chem. Soc.*, **2013**, 24, 953-805

¹⁰² Wang, X.; Dai, Z. C.; Chen, Y. F.; Cao, L. L.; Yan, W.; Li, S. K.; Wang, J. X.; Zhang, Z. G.; Ye, Y. H. Synthesis of 1, 2, 3-triazole hydrazide derivatives exhibiting anti-phytopathogenic activity. *Eur. J. Med. Chem.*, **2017**, 126, 171-182.

¹⁰³ Alam, M. S.; Kajiki, R.; Hanatani, H.; Kong, X.; Ozoe, F.; Matsui, Y.; Matsumura, F.; Ozoe, Y. Synthesis and Structure– Activity Relationships of 1-Phenyl-1 H-1, 2, 3-triazoles as Selective Insect GABA Receptor Antagonists. *J. of Agric. and Food Chem.*, **2006**, 54, 1361-1372.

1.2 Objetivos e Estratégias

Neste capítulo, pretende-se modificar estruturalmente duas citocininas, a cinetina e o TDZ, visando a aplicação dos novos derivados na agricultura, como PGRs, e na medicina, como agentes antitumorais. As citocininas serão modificadas a partir da inserção do núcleo 1,2,3-triazólico em suas estruturas. A metodologia escolhida para a obtenção dos derivados será a reação *click*, na qual serão variados os substituintes do anel 1,2,3-triazólico. Além disso, para verificar o efeito do substituinte na cinetina foram planejados derivados sem a presença do anel furânico (derivados da adenina). No caso do TDZ foram planejados derivados derivados variando a ligação do núcleo 1,2,3-tiadiazólico com o grupo ureia (posição 4- ou 5- do anel).

Figura 16. Estruturas dos novos derivados da cinetina-triazol e do TDZ-triazol planejados.

1.3 Resultados e Discussão

Esta seção foi dividida em duas partes. A primeira parte aborda a síntese dos novos derivados purina-triazol (cinetina-triazol e adenina-triazol) e a segunda a síntese de novos derivados tiadiazol-triazol (TDZ-triazol).

1.3.1 Parte 1: Síntese dos novos derivados purina-triazol

A cinetina é um derivado da adenina, que por sua vez é uma purina, como relatado anteriormente, e seus derivados apresentam uma gama de atividades biológicas da mesma forma que o anel 1,2,3-triazólico. Assim, nesse trabalho foram planejados derivados da cinetina e da adenina com o anel 1,2,3-triazólico para aplicação dos compostos como PGRs e agentes antitumorais. Na estrutura geral (Figura 17) estão destacadas as variações estruturais planejadas, que incluem a presença ou não do anel furânico, ligado ao grupo amina, que foi projetada para comparar as atividades dos derivados da cinetina com os da adenina. Planejaram-se compostos com diversos grupos R₂ (H, cadeia carbônica alifática ou benzílica com substituintes que apresentam diferentes demandas eletrônicas, isto é, grupos doadores ou retiradores de densidade eletrônica) no anel 1,2,3-triazólico para se avaliar o efeito dos substituintes. Dentre os substituintes do anel aromático, os halogenados foram escolhidos pois estudos mostram que a inserção de halogênios em moléculas orgânicas, em alguns casos, contribui para a melhoria de suas atividades biológicas.¹⁰⁴

Figura 17. Estrutura geral dos derivados purina-triazol planejados.

A síntese desses compostos foi planejada a partir de uma análise retrossintética como mostrado no Esquema 8 (p.52). Dessa forma, com uma desconexão no anel triazólico, foi proposta a síntese dos compostos alvo via uma reação de cicloadição 1,3-dipolar a partir de azidas orgânicas e alcinos terminais. A síntese dos alcinos foi sugerida de acordo com o observado na retrossíntese e a síntese das azidas diferiu um pouco dependendo do substituinte.

¹⁰⁴ Jeschke, P. The unique role of halogen substituents in design of modern agrochemicals. *Pest Manag. Sci.*, **2010**, 66, 10-27.

Esquema 8. Análise retrossintética para a obtenção dos derivados purínicos.

A primeira etapa para a síntese dos derivados foi a obtenção dos alcinos **6** (inédito) e **7** (conhecido),¹¹² a partir de uma reação de *N*-alquilação no nitrogênio 9 do anel purínico. A alquilação nessa posição (N9) é predominante em condições básicas¹⁰⁵ e na presença de solventes polares apróticos.¹⁰⁶⁻¹⁰⁷ A alquilação nas outras posições (N3 e N7) são favorecidas em outras condições reacionais. O produto alquilado em N3 é favorecido em condições neutras e ácidas¹⁰⁶ e na presença de solventes polares próticos.¹⁰⁷ Desse modo, há uma competição entre a formação do produto *N9*-alquilado e *N3*-alquilado e competição entre os mecanismos S_N2 e S_N1, respectivamente.¹⁰⁸ A posição N7 é pouco favorecida devido a efeito estéricos, apesar do tautomerismo entre a posição *N9-H··N7-H* (Esquema 9). Assim, a *N7*-alquilação ocorre somente em condições especificas, com o uso de agentes alquilantes contendo o grupo carbonila em sua estrutura, pois contribuem para a estabilização do estado de transição do mecanismo da reação.¹⁰⁵ A alquilação na posição N1 é pouco relatada na literatura, foi identificado apenas traços do produto N1-alquilado.¹⁰⁹

Esquema 9. Tautomerismo entre 9H-purina e 7H-purina.

¹⁰⁵ Rasmussen, M.; Hope, J. M. Heterocyclic ambident nucleophiles. III. The alkylation of sodium adenide. *Aust. J. Chem.*, **1982**, 35, 525-534.

¹⁰⁶ Rasmussen, M.; Hope, J. M. Heterocyclic ambident nucleophiles. IV. The alkylation of metal salts of adenine. *Aust. J. Chem.*, **1982**, 35, 535-542.

¹⁰⁷ Buyens, D. M.; Mangondo, P.; Cukrowski, I.; Pilcher, L. A. Solvent-directed Regioselective Benzylation of Adenine: Characterization of N9-benzyladenine and N3-benzyladenine. *J. of Heterocyclic Chem.*, **2017**, 54, 2946-2950.

¹⁰⁸ Joshi, R. V.; Zemlicka, J. Alkylation of adenine with t-propargyl chlorides: acetylene/allene ratio and N9/N7 regioselectivity. *Tetrahedron*, **1993**, 49, 2353-2360.

¹⁰⁹ Beasley, A. E.; Rasmussen, M. Heterocyclic ambident nucleophiles. II. The alkylation of adenine. *Aust. J. Chem.*, **1981**, 34, 1107-1116.

Apesar dessa reação ser bem conhecida na literatura não se obtiveram os produtos desejados na primeira tentativa. Assim, foram testadas algumas metodologias para a obtenção desses compostos e encontram-se na Tabela 1 (p.54). Em ambas as tentativas se optou pelo uso de carbonato de potássio como base, essa base favorece principalmente a *N9*-alquilação devido a coordenação do íon carbonato com o grupo -NH₂ e N7 da purina.

Inicialmente para a obtenção do alcino derivado da cinetina (**6**) foi testada duas metodologias. A primeira metodologia empregada foi a de Kapadiya e colaboradores,¹¹⁰ que consistiu no uso de brometo de propargila e cinetina como materiais de partida, K₂CO₃ anidro como base e DMF como solvente, sob temperatura de 80°C (reação I, Tabela 1, p.54). Nessa reação não se obteve o resultado esperado, formou-se uma mistura complexa de difícil purificação e de coloração escura. Assim, buscou por uma metodologia que empregava o mesmo substrato (cinetina). A segunda metodologia testada foi a de Mik e colaboradores¹¹¹ o qual realizou diversas modificações na posição N9-da cinetina. Assim, a reação foi realizada em temperatura ambiente e utilizou-se DMSO como solvente (reação II, Tabela 1, p.54). Obteve-se o produto com 47% de rendimento e observou-se por CCD a presença de material de partida (cinetina). Devido a esse excesso aumentou-se o número de equivalentes de brometo de propargila, o que conduziu ao produto com 91% de rendimento (reação III, Tabela 1, p.54).

Para a obtenção do alcino **7** foram testadas duas metodologias. A primeira metodologia testada foi a mesma utilizada na obtenção do alcino **6** (reação IV, Tabela 1, p.54). Não se obteve sucesso nesta primeira tentativa, observou-se a formação de uma mistura de difícil purificação e de coloração escura, possivelmente devido à degradação do material de partida ou do produto. Além disso, como o DMSO não foi previamente seco, a água residual favoreceu a reação na posição N3-do anel purínico. Solventes polares próticos, como a água, formam ligação de hidrogênio com os nitrogênios das posições N9/N7. Além disso, outra proposta sugerida por Rasmussen e colaboradores é que o ânion é neutralizado ao receber o próton pelo solvente favorecendo a alquilação em N3.¹⁰⁶ Assim, optou-se pelo uso de solvente anidro na próxima tentativa. Assim, seguiu-se para a segunda metodologia, a de Prajapati e colaboradores, ¹¹² a qual consistiu no uso de DMF seco como solvente e a reação foi realizada sob atmosfera de nitrogênio. Observou-se que a mistura reacional não é estável em

¹¹⁰ Kapadiya, K.; Jadeja, Y.; Khuntc, R. Synthesis of Purine-based Triazoles by Copper (I)-catalyzed Huisgen Azide–Alkyne Cycloaddition Reaction. *J. of Heterocyclic Chem.*, **2018**, 55, 109-208.

¹¹¹ Mik, V.; Szucova, L.; Smehilova, M.; Zatloukal, M.; Dolez, K.; Nisler, J.; Gruz, J.; Galuszka, P.; Strnad, M.; Spichal, L. N9-substituted derivatives of kinetin: Effective anti-senescence agents. *Phytochemistry*, **2011**, 72, 821–831.

¹¹² Prajapati, R. K.; Kumar, J.; Verma, S. Silver-catalyzed intramolecular cyclization of 9-propargyladenine via N3 alkylation. *Chem. Commun.*, **2010**, 46, 3312–331.

temperaturas superiores a 60 °C, consequentemente o DMF foi destilado no evaporador rotatório em uma temperatura inferior e sob pressão reduzida.¹¹² Assim, foi possível obter o alcino **7** com 89% de rendimento, em um tempo de reação de 16 horas (reação V, Tabela 1).

	NH N N N Ade Ci	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} \hline R_1 = \frac{1}{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{j=1}$	(Cin	etina - 6) enina - 7)	
Reação	R ₁	№ de equiv. purina/brometo/base	Sol.	Temp. (ºC)	Tempo (h)	Rend. (%)	OBS
I	in the second	1/1/2	DMF	80	24	-	Mistura complexa
II	in the	1/1/2	DMSO	t.a	20	47	-
ш	jur I	1/2/2	DMSO	t.a	20	91	-
IV	Н	1/2/2	DMSO	t.a	20	-	Mistura Complexa

Tabela 1. Experimentos realizados para a otimização da reação de obtenção dos alcinos 6 e 7

1/2/2

۷

Н

O mecanismo proposto para a reação de *N9*-alquilação do anel purínico, inicia-se com um mecanismo S_N2 entre o nitrogênio N9-da purina e o carbonato de potássio. Na qual o ânion carbonato abstrai o próton do N9-H (pKa 9,8)¹¹³ formando o ânion I. As estruturas de ressonâncias possíveis para (I) estão representas no Esquema 10b (p.55). Em seguida, o par de elétrons do ânion (I) ataca o carbono ligado ao bromo do brometo de propargila, acompanhado com a saída o íon brometo (Esquema 10a, p. 55).

DMF

seco

16

t.a

89

Sob

atmosfera

de N₂(g)

¹¹³ Rasmussen, M.; Hope, J. M. Heterocyclic ambident nucleophiles. III. The alkylation of sodium adenide. *Aust. J. Chem.*, **1982**, 35, 525-534.

Esquema 10 (a) Mecanismo proposto da reação de *N9*-alquilação. (b) Estruturas de ressonâncias possíveis para o ânion do anel purínico.

A caracterização dos alcinos **6-7** foi possível por espectroscopia na região do Infravermelho (IV), espectroscopia de Ressonância Magnética Nuclear (RMN) e espectrometria de massas; os espectros encontram-se no Anexo B (p.164). Como exemplo será discutido apenas o espectro na região do infravermelho do composto **6.** No espectro de **6** (Figura 18) foram observadas as bandas em 3270 cm⁻¹, característica do estiramento da ligação -C=C-H de alcino, e a banda referente ao estiramento da ligação C=C em 2122 cm⁻¹, ¹¹⁴⁻¹¹⁵ evidenciando que o produto foi formado.

Figura 18. Espectro na região do IV (KBr) do composto 6.

¹¹⁴ Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. R. *Introdução à espectroscopia,* 4^a edição, Cengage Learning, São Paulo, **2010**.

¹¹⁵ Barbosa, Luiz Cláudio A. *Espectroscopia no Infravermelho na caracterização de compostos orgânicos.* Viçosa, Editora UFV, **2007.**

Após a síntese dos alcinos **6** e **7**, a próxima etapa consistiu na obtenção das azidas. Neste trabalho foram utilizados três tipos de azidas: azidas benzílicas **8a-i** com diferentes substituintes no anel; azida alquílica **8j**, sintetiza *in situ*; e a azida de trimetilsilila **8k** comercial. Inicialmente foram sintetizadas as azidas benzílicas **8a-i**, essas foram obtidas em duas etapas a partir de álcoois benzílicos comerciais (Esquema 11).

Esquema 11. Rota sintética para a obtenção das azidas 8a-i.

A primeira etapa consistiu na substituição do grupo -OH por um melhor grupo abandonador, o bromo. Para isso, utilizou-se uma solução de ácido bromídrico 47% e a reação foi realizada em um reator de micro-ondas. As condições da reação foram adaptadas de Freitas e colaboradores¹¹⁶ sendo estabelecidos a temperatura, a potência do reator de micro-ondas e o tempo de reação. Assim, foi possível obter os produtos bromados **10a-i**, conhecidos, com um tempo reacional de 8 min no reator de micro-ondas. Estes foram utilizados diretamente na próxima etapa para a obtenção das azidas **8a-i**.

A metodologia empregada para a obtenção das azidas **8a-i** foi a de Alvarez e colaboradores,¹¹⁷ e consistiu no uso de uma solução de azida de sódio 0,5 mol L⁻¹ em DMSO.¹⁰⁰ Assim, foi possível obter as azidas **8a-i** a partir dos álcoois benzílicos **9a-i**, com rendimentos globais que variaram de 27 a 100% (Figura 19). Algumas azidas apresentaram baixo rendimento devido a sua alta volatilidade observada no evaporador rotatório sob vácuo, fato verificado pela presença destas no frasco coletor do equipamento. As azidas benzílicas sintetizadas neste trabalho não são inéditas e os seus espectros não serão detalhados nessa seção. Os espectros de RMN de ¹H das azidas benzílicas se encontram no Anexo B (p.168-172) e foram comparados com os dados da literatura.¹⁰¹

¹¹⁶ De Freitas, L. B. O.; Borgati, T. F.; De Freitas, R. P.; Ruiz, A. L. T. G.; Marchetti, G. M.; De Carvalho, J. E.; Da Cunha, E. F. F.; Ramalho, T. C.; Alves, R. B. Synthesis and antiproliferative activity of 8-hydroxyquinoline derivatives containing a 1,2,3-triazole moiety. *Eur. J. Med. Chem.*, **2014**, 84, 595-604.

¹¹⁷ Alvarez, S. G; Alvarez, M. T. A pratical procedure for the synthesis of alkyl azides at ambiente temperature in dimethyl sulfoxide in high purity and yield. *Synthesis*, **1997**, 4, 413-414.

Figura 19. Azidas benzílicas **8a-i** sintetizadas a partir de álcoois benzílicos comerciais e seus respectivos rendimentos globais.

Em seguida, foram obtidos os compostos triazólicos com as azidas benzílicas **8a-i** e os alcinos **6** e **7**, via reação de cicloadição 1,3-dipolar catalisada por Cu(I), conhecida como reação *click*. Inicialmente foram sintetizados os triazóis da série da cinetina **1a-i**, ou seja, a partir do alcino **6**. A metodologia utilizada para a síntese dos triazóis **1a-i**, com substituintes benzílicos, foi a de Kapadiya e colaboradores.¹¹⁰ Nesta metodologia utilizou-se: como fonte de cobre o sal CuSO₄.5H₂O; juntamente com ascorbato de sódio (agente redutor); como solvente a mistura de THF e água e um tempo reacional de 15 horas, reação apresentada no Esquema 12. Assim, obteve-se os triazóis derivados da cinetina **1a-i** com rendimentos que variaram de 51 a 100% (Figura 20, p.58). A mesma metodologia foi empregada para a obtenção dos triazóis da série da adenina **2a-i**, a partir do alcino **7**. Os produtos foram obtidos com rendimentos que variaram de 45 a 100% (Figura 21, p.58).

Esquema 12. Esquema geral da síntese dos derivados triazólicos benzílicos 1a-i e 2a-i.

Figura 20. Estruturas dos derivados triazólicos-benzílicos inéditos da cinetina **1a-i** sintetizados neste trabalho e seus respectivos rendimentos.

Figura 21. Estruturas dos derivados triazólicos-benzílicos da adenina **2a** (conhecido) e **2b-i** (inéditos) sintetizados neste trabalho e seus respectivos rendimentos.

Em seguida, foram obtidos os triazóis alquílicos **1**j e **2**j (Esquema 13). Neste caso a metodologia utilizada foi a de Paulino,¹¹⁸ que consiste na obtenção de triazóis com substituinte alquílico de cadeia curta em duas etapas, via reação *one pot* em tubo selado, devido à volatilidade da azida formada (Esquema 13). Assim, a primeira etapa consistiu na obtenção da azida **8**j, via reação S_N2, a partir do 1-bromobutano comercial e da azida de sódio em DMF. A mistura reacional foi mantida sob agitação em temperatura ambiente, por 24 horas. Em seguida foi realizada a reação *click*, como descrito anteriormente, com CuSO₄.5H₂O e ascorbato de sódio solubilizados em água e o alcino correspondente.¹¹⁸ Assim, o triazol **1**j foi obtido com 71% de rendimento. A mesma metodologia foi empregada para a obtenção do triazol **2**j com 85% de rendimento.

Esquema 13 Esquema geral da síntese dos derivados triazólicos alquílicos 1j e 2j e seus rendimentos.

A obtenção dos triazóis *N*-não substituídos, **1k** e **2k**, foi possível a partir de uma adaptação da metodologia de Wen e colaboradores¹¹⁹, que consiste na formação de 1,2,3-triazóis *N*-não substituídos empregando CuSO₄.5H₂O, ascorbato de sódio e azida de trimetilsilila na presença de DMF/MeOH ou DMF/H₂O. Essa metodologia envolve a formação de HN₃ *in situ* a partir da reação entre a TMSN₃ e metanol (ou água).¹²⁰ A formação do ácido hidrazóico *in situ* é uma estratégia importante por se tratar de um líquido volátil, tóxico e extremamente explosivo em temperatura ambiente.¹²⁰ Devido a essas características essa reação é realizada em tubo selado e em atmosfera inerte.

Inicialmente essa metodologia foi testada para a formação do triazol **1k** (reação I, Tabela 2, p.60) e foi possível obter o triazol com 95% de rendimento. A mesma metodologia foi empregada para a formação do composto **2k**, obtendo-se o produto com 49% de

¹¹⁸ Paulino, R. P. *Síntese de novos análogos triazólicos do fentanil.* Dissertação de Mestrado, Departamento de Química do Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, **2020**.

¹¹⁹ Wen, Z.; Tuttle, P. R.; Howlader, A. H.; Vasilyeva, A.; Gonzalez, L.; Tangar, A.; Lei, R.; Laverde, E. E.; Liu, Y.; Miksovska, J.; Wnuk, S. F. Fluorescent 5-Pyrimidine and 8-Purine Nucleosides Modified with an N-Unsubstituted 1,2,3-Triazol-4-yl Moiety. *J. of Org. Chem.*, **2019**, 84, 3624-3631.

¹²⁰ Jin, T.; Kamijo, S.; Yamamoto, Y. Copper-Catalyzed Synthesis of N-Unsubstituted 1,2,3-Triazoles from Nonactivated Terminal Alkynes. *Eur. J. Org. Chem.*, **2004**, 18, 3789-3791.

rendimento (reação II, Tabela 2). Devido a este baixo rendimento, optou-se por modificar o solvente para a mistura DMF/MeOH, desse modo, foi possível obter **2k** com 73% (reação III, Tabela 2).

Tabela 2. Experimentos realizados para a otimização da reação de obtenção dos triazóis 1k e 2k

Os compostos (**1a-k** e **2a-k**) foram caracterizados por espectroscopia na região do IV, RMN e espectrometria de massas. Como exemplo será discutida a caracterização do composto **1h**. Assim, no espectro na região do IV desse (Figura 22) não foram observadas as bandas referentes ao grupo propargila ($\overline{\nu} \cong 3340-3300 \text{ cm}^{-1}$) e a azida ($\overline{\nu} \cong 2170-2080 \text{ cm}^{-1}$),¹¹⁵ presentes nos materiais de partida, indicando a formação do anel triazólico. Além disso, foram observadas as bandas em 1622 cm⁻¹, estiramento das ligações C=C ou C=N, e 1330 cm⁻¹ referente ao estiramento da ligação C-F.

Figura 22. Espectro na região do IV (KBr) do composto 1h.

Na caracterização por espectroscopia de RMN de ¹H, os deslocamentos químicos observados no espectro do compostos **1h** (Figura 23, p.62) foram comparados com aqueles do alcino **6** (Anexo B, Figura 58, p.164) e da 4-(trifluorometil)benzilazida (Anexo B, Figura 73, p.171), como mostrado no Quadro 1. Assim, no espectro de RMN de ¹H de **1h** o simpleto em δ 8,23, integrado para um hidrogênio, foi atribuído ao H12 e o sinal largo centrado em δ 8,26, integrado para dois hidrogênios, foi atribuído ao H2 e H8 devido às correlações observadas no HSQC (Figura 24, p.62). No HSQC há três correlações, entre δ 8,23 e 124,1; δ 8,26 e 140,9 e em δ 8,26 e 152,4. A primeira correlação é referente ao C12, um indício que houve formação do anel triazólico. A segunda correlação é referente ao C8 e a terceira correlação é referente ao C2.

Quadro 1. Comparação dos dados de RMN de ¹H do composto 6, 7c e 1c

*atribuído segundo Pretsh et al., 2009121

Multi. = Multiplicidade; s= simpleto; sl = sinal largo; m = multipleto; d = dupleto

Figura 23. Espectro de RMN de ¹H do composto **1h** (400 MHz, DMSO-*d*₆).

Figura 24. Mapa de contornos HSQC do composto 1h (400 MHz, DMSO-*d*₆).

O composto **1h** apresenta átomos de flúor em sua estrutura, o que auxilia na identificação dos sinais dos carbonos do anel benzílico, pois o flúor acopla com os carbonos deste anel. Assim, no espectro de RMN de ¹³C (Figura 25) do composto **1h** é possível observar alguns sinais desdobrados. Por exemplo, os sinais referentes aos carbonos C16', C17' e C18' são observados na forma de quarteto, como mostrado na expansão do espectro na Figura 26 (p.64). Em 124,1 ppm observou-se um quarteto com $J_{C-F} = 270$ Hz, de acordo com Pretsh e colaboradores¹²¹ corresponde ao acoplamento ${}^{1}J_{C-F}$ de C18'. Em 128,7 ppm observou-se o quarteto com ${}^{2}J_{C-F} = 32$ Hz, referente ao C17' e em 125,6 ppm um quarteto referente ao C16' com ${}^{3}J_{C-F} = 4$ Hz. Além desses sinais, foi possível atribuir o sinal do C11 do anel triazólico em δ 143,0 ppm. Os demais sinais foram atribuídos por comparação com os materiais de partida como mostrado no Quadro 17 (Anexo A, p.151).

Figura 25. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) do composto **1h** (100 MHz, DMSO-*d*₆).

¹²¹ Pretsh, E.; Affolter, C.; Bühlmann, P. Structure determination of organic compounds: Tables of spectral data, 4^a edição, Berlin, Springer, **2009**.

Figura 26. Expansões do espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) do composto **1h** (100 MHz, DMSO- d_6).

No espectro de massas de **1h** (Figura 27) observa-se o pico com m/z de 455,15436 referente a massa do íon molecular protonado [M+H]⁺, experimento realizado no modo positivo, com erro relativo de 1,45006 ppm.

Figura 27. Espectro de massas do composto 1h (ESI+).

Os demais compostos triazólicos (**1a-k** e **2a-k**) foram caracterizados de forma análoga e os seus espectros encontram-se no Anexo A (p.173) deste trabalho, como seus respectivos quadros no Anexo B (p.146).

1.3.2 Parte 2: Síntese dos novos derivados 1,2,3-tiadiazoltriazol

O tidiazuron (TDZ) é uma ureia derivada do anel 1,2,3-tiadiazol, como relatado anteriormente, e apresenta uma gama de atividades biológicas. Neste trabalho foram planejados derivados do anel 1,2,3-tiadizólico com o anel 1,2,3-triazólico (Figura 28). A principal variação na estrutura desses compostos é a posição da ligação do anel 1,2,3-tiadiazol e o grupo ureia, para formação dos derivados 1,2,3-tiadiazol-5-substituido e 4-substituído, além da inserção de diferentes substituintes no anel aromático.

Figura 28. Estruturas gerais dos derivados tiadiazol-triazol planejados.

A síntese desses compostos foi planejada a partir da análise retrossintética mostrada no Esquema 14. Dessa forma, com uma desconexão na ureia, foi proposta a síntese dos compostos alvo via rearranjo de Curtius a partir da acil azida e do grupo amina do composto PABA-triazol. A síntese do composto PABA-triazol foi proposta via uma reação de cicloadição 1,3-dipolar a partir de um alcino terminal e azidas orgânicas, como mostrado na análise retrossintética. A síntese da acil azida foi proposta a partir de uma reação ciclização de Hurd-Mori de hidrazonas com cloreto de tionila, na qual inicialmente é obtido o ácido e nas próximas etapas obtém-se a acil azida.

Esquema 14. Análise retrossintética para a obtenção dos derivados tiadiazol-triazol planejados.

Assim, a rota sintética planejada para obtenção dos compostos **3a-f** é mostrada no Esquema 15.

Esquema 15. Rota sintética planejada a obtenção das ureias 3a-f.

A rota sintética para a obtenção das ureias **3a-f** inicia-se com a desproteção do éster 3,3-dietoxipropionato de etila **12** em meio ácido levando a obtenção do aldeído **13** com 100% rendimento, que se mostrou instável e seguiu para próxima etapa.¹²² A segunda etapa consistiu na obtenção da hidrazona **15** a partir da reação entre o aldeído **13** e a semicarbazida. Assim foi possível obter o produto desejado, um sólido branco, com 48% de rendimento em um tempo reacional de 30 min.¹²³ A terceira etapa consistiu na obtenção do éster 1,2,3-tiadiazol-5-carboxilato de etila (**16**), ou seja, a obtenção do anel 1,2,3-tiadiazólico. Na literatura há diferentes métodos para a síntese do anel 1,2,3-tiadiazol,¹²⁴como comentado anteriormente na introdução deste trabalho. O escolhido neste trabalho foi o método de Hurd-Mori, que consiste na formação do anel 1,2,3-tiadiazólico a partir da reação de ciclização de hidrazonas (ou semicarbazonas) com cloreto de tionila. Neste caso obteve-se o éster com 66%.¹²⁵

O mecanismo proposto para a reação de Hurd-Mori está apresentado no Esquema 16 (p.67). Inicialmente ocorre um ataque do par de elétrons livres da amina da semicarbazona ao enxofre do cloreto de tionila, levando a formação do intermediário I, que após a saída do íon cloreto leva a formação do intermediário II. O mesmo íon cloreto, ou alguma base presente no meio, abstrai um próton conduzindo ao intermediário III, que se encontra em equilíbrio com

¹²² Wang, S.; Kumpulainen, E.; Pystynen, J.; Pohjakallio, A.; Haikarainen, A. 2-(1-heteroarylpiperazin-4-yl)methyl-1,4-benzodioxane derivatives as alpha2c antagonists. WO 2016/193551, **2016.**

¹²³ Shirode, P.; Agrawal, R.; Jain, A.; Yeole, P. Synthesis and Structural Studies of Mixed Ligand Complexes of Transition Metals with Pyruvic Acid Semicarbazone and Acetone Semicarbazone. *Chem. Sci.*, **2015**, 4, 275-281. ¹²⁴ Shafran, Y.; Glukhareva, T.; Dehaen, W.; Bakulev, V. Recent Developments in the Chemistry of 1,2,3-

Thiadiazoles. *Adv. in Heterocyclic Chem.*, **2018**, 126, 109-172.

¹²⁵ Shafiee, A.; Lalezari, I.; Mirrashed, M.; Nercesian, D. 1,2,3-Selenadiazolyl-1,3,4-oxadiazole, 1,2,3-Thiadiazolyl-1,3,4-oxadiazole and 5-(1,2,3-Thiadiazolyl)-s-triazolo [3, 4-b]-1, 3, 4-thiadiazoles. *J. of Heterocyclic Chem.*, **1977**, 14, 567-571.

o seu tautômero, a enamina IV. Assim, a enamina sofre uma reação de ciclização a partir do ataque dos elétrons π da ligação dupla ao átomo do enxofre do grupo sulfóxido levando à formação de um anel de cinco membros, o intermediário V que tautomerizou para VI. Em seguida, ocorre a adição de outra molécula de cloreto de tionila ao anel formando o intermediário VII. Assim, o cloreto abstrai um próton do anel levando à saída de uma molécula de dióxido de enxofre, HCI e a formação do intermediário VIII. Em seguida ocorre a saída do grupo NH₂COCI, com auxílio do íon cloreto, e aromatização do anel conduzindo à formação do núcleo 1,2,3-tiadiazol.¹²⁶⁻¹²⁷

Com a formação do anel 1,2,3-tiadiazólico, fez-se a hidrólise do éster **16** e formação do ácido **17** (Esquema 15, p.66). Na literatura há diferentes metodologias para a hidrólise de ésteres, a que se mostrou mais eficaz foi a Schnatbaum e colaboradores,¹²⁸ que consiste em uma hidrólise básica com LiOH em acetonitrila, o produto desejado foi obtido com 63% de rendimento. A caracterização dos compostos desta rota foi feita por comparação direta com os dados da literatura e os respectivos espectros de RMN de ¹H encontram-se no Anexo B (p.210).

Após a obtenção do ácido 1,2,3-tiadiazol-5-carboxílico seguiu para preparação da acil azida **19.** Para a obtenção dessa empregou um ativador de carbonila, pois os ácidos

¹²⁶ Ram, V. J.; Sethi, A.; Nath, M.; Pratap, R. *The Chemistry of Heterocycles: Nomenclature and Chemistry of Three to Five Membered Heterocycles,* Elsevier, **2019**.

¹²⁷ Li, J. J. Name reactions in heterocyclic chemistry. John Wiley & Sons, 2005.

¹²⁸ Schnatbaum, K. Small molecule bradykinin b1 receptor antagonists, WO 2010/091876 A2, 2010.

carboxílicos apresentam baixa reatividade frente a reações de substituição nucleofílica. Ativadores de carbonila são reagentes que transformam a hidroxila em um bom grupo abandonador e aumentam a eletrofilia do carbono da carbonila.¹²⁹ Assim, a metodologia testada foi a de Ambade e colaboradores,¹³⁰ que consiste na formação inicial de um anidrido misto, a partir da reação do ácido com cloroformiato de etila e trietilamina, seguido da adição NaN₃. Neste caso o produto foi obtido, mas em uma mistura com o material de partida. Essa reação não foi otimizada devido ao percussor sintético dessa rota ter se esgotado, o que impossibilitou a obtenção das ureias **3a-f** (Esquema 15, p.66).

Assim, seguiu para a obtenção das ureias **4a-f** como mostrado no Esquema 17. As quatro primeiras etapas estão relacionadas à síntese da acil azida **26**, que como se trata de um produto conhecido sua rota sintética será descrita de forma resumida. A primeira etapa consistiu na síntese do carbazato **22**, a partir da reação de substituição nucleofílica da hidrazina à carbonila do carbonato **21** e o produto foi obtido com 71% de rendimento.¹³¹

Esquema 17. Rota para a obtenção das ureias 4a-f.

Em seguida, a hidrazona **24** foi obtida pela adição lenta de ácido pirúvico no carbazato **22** em tolueno e ao término da reação foi observado a precipitação da hidrazona.¹²³ Assim obteve-se a hidrazona **24** com 100% e seguiu-se para a preparação do anel 1,2,3-tiadiazólico, via reação de cicloadição de Hurd-Mori.¹³² O ácido 1,2,3-tiadiazol-4-carboxílico **25** foi obtido com 61% de rendimento, a partir da adição gota a gota, de cloreto de tionila à hidrazona **24**. Foi obtido como um sólido amarelo escuro que sublima a 190°C.

¹²⁹ Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic azides: an exploding diversity of a unique class of compounds. *Angew. Chem. Int. Ed.*, **2005**, 44, 5188-5240.

¹³⁰ Ambade, A. V.; Kumar, A. An efficient route for the synthesis of hyperbranched polymers and dendritic building blocks based on urea linkages. *Journal of Polymer Science Part A: Polymer Chem.*, **2001**, *39*, 1295-1304.

¹³¹ Liu, X. H.; Zhao, W. G.; Wang, B. L.; Li, Z. M. Synthesis, bioactivity and DFT structure–activity relationship study of novel 1, 2, 3-thiadiazole derivatives. *Res. on Chem. Intermed.*, **2012**, 38, 1999-2008.

¹³² Hurd, C. D.; Mori, R. I. On acylhydrazones and 1,2,3-thiadiazoles. J. Am. Chem. Soc., **1955**, 77, 5359-5364.

Na penúltima etapa dessa rota de síntese obteve-se a acil azida **26**. Foi empregada a metodologia de Ambade e colaboradores, que utiliza cloroformiato de etila, por ter se mostrado mais eficiente que o cloreto de tionila.¹³⁰ Dessa forma, foi possível obter o produto, um sólido amarelo claro, com 78% de rendimento e com rendimento global de 3% a partir de **21**. A obtenção da azida **26** foi confirmada pelas bandas em 2184 e 2154 cm⁻¹ no espectro na região do IV (Figura 29), que são referentes ao grupo azida. Os espectros relacionados aos produtos conhecidos dessa rota encontram-se no Anexo B (p.212).

Figura 29. Espectro na região do IV (KBr) da acil azida 26.

Na última etapa da rota sintética, as ureias **4a-f** foram obtidas via rearranjo de Curtius entre a azida **26** e as aminas **20a-f**. As aminas **20a-f** foram obtidas a partir do ácido *p*-aminobenzóico (PABA) em duas etapas como mostrado no Esquema 18. A primeira etapa desta rota consistiu na obtenção do alcino **27** por meio de uma reação de alquilação do PABA com o brometo de propargila¹³³ conduzindo ao alcino **27** com 93% de rendimento.

Esquema 18. Rota sintética para a obtenção das aminas inéditas 20a-f.

Na segunda etapa as aminas inéditas **20a-f** foram sintetizadas a partir de uma reação de cicloadição 1,3-dipolar entre o alcino terminal **27** e as azidas orgânicas **8a-f**. A metodologia

¹³³ Hradilová, L.; Poláková, M.; Dvořáková, B.; Hajdúch, M.; Petruš, L. Synthesis and cytotoxicity of some Dmannose click conjugates with aminobenzoic acid derivatives. *Carbohydrate Res.*, **2012**, 361, 1-6.

utilizada foi a mesma para a síntese dos triazóis **1a-i** e **2a-i** (descrita na p. 56)¹¹⁰ e como solvente utilizou-se a mistura CHCl₃/H₂O, devido à solubilidade do material de partida. Desse modo, foi possível obter as aminas **20a-f** inéditas com rendimentos que variaram de 53% a 74% e com um tempo reacional de 15 horas (Figura 30).

Figura 30. Estruturas das aminas inéditas 20a-f sintetizadas neste trabalho e seus respectivos rendimentos.

As aminas **20a-f** foram caracterizadas por espectroscopia na região do IV e por RMN de ¹H e ¹³C. Como exemplo, serão discutidos os espectros do composto **20c**. No espectro de IV do composto **20c** (Figura 31) não são observadas as bandas referentes aos estiramentos do grupo azida e do alcino, indício que o produto foi formado. Mas são observadas bandas em 3502 e 3402 cm⁻¹ referentes aos estiramentos assimétrico e simétrico do grupo NH₂. A banda em 1700 cm⁻¹ referente ao estiramento da carbonila e em 1606 cm⁻¹ a banda referente ao estiramento da ligação dupla C=C.

Figura 31. Espectro na região do IV (KBr) da amina 20c.

Na caracterização por RMN de ¹H os deslocamentos químicos observados no espectro do composto **26c** (Figura 32, p.71) foram comparados com aqueles do alcino **27** (Anexo B, Figura 174, p.215) e da 4-fluorobenzilazida (Anexo B, Figura 70, p.170), como mostrado no

Quadro 2. Assim, no espectro de RMN de ¹H (Figura 32), o simpleto em δ 8,26, integrado para um hidrogênio, foi atribuído a H8 do anel triazólico, indício da formação do anel. No mapa de correlação HSQC é possível verificar a correlação entre δ 8,26 e 124,7, acoplamento entre H8 e C8, referente ao anel triazólico. A partir desse experimento (Figura 32, p.72) foi possível atribuírem-se os sinais referentes aos carbonos hidrogenados no espectro de RMN de ¹³C do composto **20c** (Figura 34, p.73).

Quadro 2. Comparação dos dados de RMN de ¹H dos compostos 27, 8e e 20c

Figura 32. Espectro de RMN de ¹H da amina 20c (400 MHz, DMSO-*d*₆).

Figura 33. Mapa de contornos HSQC da amina 20c (400 MHz, DMSO-d₆).

No espectro de RMN de ¹³C de **20c** (Figura 34) foi possível observar alguns sinais desdobrados devido ao átomo de flúor. Por exemplo, os sinais referentes aos carbonos C10, C11, C12 e C13 são observados na forma de dupleto (Figura 35, p.73). Em 162,0 ppm observou-se um dupleto com $J_{C-F} = 243,0$ Hz, referente a C13 de acordo com Pretsh e colaboradores.¹²¹ Foram observados ainda os dupletos em *d* 115,6 ($J_{C-F} = 21,5$ Hz), em *d* 130,4 ($J_{C-F} = 8,5$ Hz) e em *d* 132,3 ($J_{C-F} = 3,0$ Hz), referentes a C12, C11 e C10, respectivamente. Além desses, foi possível atribuir o sinal de C7 do anel triazólico em *d* 142,8 ppm. Os demais sinais foram atribuídos por comparação com os materiais de partida como mostrado no Quadro 24 (Anexo A, p.158). Os outros triazóis sintetizados **20a-f** foram caracterizados de forma análoga e seus espectros são apresentados no Anexo B (p.216) e os quadros com os dados de RMN se encontram no Anexo A (p.158).

Figura 35. Expansão do espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) da amina **20c** (100 MHz, DMSO d_6). Finalmente as ureias **4a-f** foram obtidas via rearranjo de Curtius, com rendimentos que variaram de 52 a 82% (Figura 36). As aminas **20a-f** foram solubilizadas em tolueno e a acil azida **26** foi adicionada, a mistura foi agitada, sob refluxo, até formação de um precipitado.¹³⁴

Figura 36. Estruturas das ureias inéditas 4a-f sintetizadas neste trabalho e seus respectivos rendimentos.

O rearranjo de Curtius consiste na conversão de uma acil azida em um grupo isocianato que pode reagir com uma amina para formar uma ureia. O mecanismo (Esquema 19) dessa reação inicia-se com a decomposição da acil azida. O aquecimento promove a liberação de nitrogênio gasoso (N₂) e a formação do nitreno, nitrogênio deficiente em elétrons, muito eletrofílico e reativo. Em seguida, ocorre uma migração do grupo ligado à carbonila, nesse caso o anel 1,2,3-tiadiazólico, para o nitreno formando um isocianato. O isocianato formado sofre uma adição nucleofílica pelo par de elétrons do nitrogênio da anilina à carbonila, formando a respectiva ureia.¹³⁵

Esquema 19. Proposta mecanística para o Rearranjo de Curtius e a adição nucleofílica ao isocianato.¹³⁵

Os compostos inéditos da série **4a-f** foram caracterizados por espectroscopia na região do IV e RMN e como exemplo serão discutidos os espectros do composto **4c**. No espectro na região do IV do composto **4c** (Figura 37) não foi observado a banda relativa ao

 ¹³⁴ Abad, A.; Agulló, C.; Cuñat, A. C.; Jiménez, R.; Vilanova, C. Preparation and promotion of fruit growth in kiwifruit of fluorinated N-phenyl-N '-1, 2, 3-thiadiazol-5-yl ureas. *J. of Agric. and Food Chem.*, **2004**, 52, 4675-4683.
¹³⁵ Clayden, J. J.; Greeves, N.; Warren, S.; Wothers, P. *Organic Chemistry*. Oxford University, **2001**.

estiramento do grupo azida do material de partida e foi observado uma banda em 1706 cm⁻¹, característica de estiramento da carbonila da ureia.

Figura 37. Espectro na região do IV (KBr) da ureia 4c.

Na caracterização por RMN de ¹H os deslocamentos químicos observados no espectro do composto **4c** (Figura 38, p.76) foram comparados com aqueles da amina **20c** (Figura 32, p.71) e da acil azida **26** (Anexo B, Figura 171, p.213), como mostrado no Quadro 3. Assim, no espectro de RMN de ¹H de **4c** não se observou o sinal referente ao grupo -NH₂, um indício que a reação ocorreu. Além da presença de dois simpletos em δ 10,40 e 9,34 referentes aos grupos -NH da ureia.

	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $		N ^{≥N} 4' S 5' 26 (DMSO- <i>d</i> ₆ , 400MHz)		$\begin{array}{c} \begin{array}{c} N_{\equiv N} & 0 & 0 & 0 & 0 \\ S & 1 & 0 & 0 & 0 & $			
Hidrogênio	δ (ppm)	Multi.	J (Hz)	$\delta(ppm)$	Multi.	δ (ppm)	Multi.	<i>J</i> (Hz)
NH ₂	6,01	S	-	-	-	-	-	-
H2	6,56	d	8,0	-	-	7,62	d	8,0
H3	7,61	d	8,0	-	-	7,91	d	8,0
H6	5,27	S	-	-	-	5,36	S	-
H8	8,26	S	-	-	-	8,31	S	-
H9	5,59	S	-	-	-	5,61	S	-
H11	7,36-7,45	m	-	-	-	7,44-7,40	m	-
H12	7,20	t	8,0	-	-	7,21	t	8,0
H5'	-	-	-	9,98	S	8,80	S	-
NH	-	-	-	-	-	9,34	S	-
NH	-	-	-	-	-	10,40	S	-

Quadro 3. Comparação dos dados de RMN de ¹H dos compostos 27c, 26 e 4c

Multi. = Multiplicidade; s= simpleto; sl = sinal largo; m = multipleto; d = dupleto; t = tripleto.

Figura 38. Espectro de RMN de ¹H da ureia 4c (400 MHz, DMSO-d₆).

Com a ajuda do mapa de contornos HSQ, (Figura 39, p.77) foi possível atribuir alguns sinais no espectro de RMN de ¹³C (Figura 40,p.77). No espectro de RMN de ¹³C de **4c**, (Figura 40), observou-se alguns sinais desdobrados devido ao átomo de flúor. Na expansão do espectro de RMN de ¹³C (Figura 41, p.78) é possível observar os dupletos em δ 162,0 (J_{C-F} = 243,0 Hz), em δ 115,6 (J_{C-F} = 21,0 Hz), em δ 130,4 (J_{C-F} = 8,0 Hz) e em δ 132,3 (J_{C-F} = 3,0 Hz), referentes a C13, C12, C11 e C10, respectivamente. Além desses, foi possível atribuir o sinal referente a carbonila da ureia C6' em δ 156,4 ppm, outro indício que a ureia foi formada. Os demais sinais foram atribuídos por comparação com os materiais de partida como mostrado no Quadro 27 (Anexo A, p.161). As demais ureias **4a-f** foram caracterizadas de forma análoga e seus espectros são apresentados no Anexo B (p.224) e suas atribuições encontram-se nos quadros no Anexo A (p.161).

Figura 39. Mapa de contornos HSQC da ureia 4c (400 MHz, DMSO-d₆).

Figura 40. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) do composto 4c (100 MHz, DMSO-*d*₆).

Figura 41. Expansões do espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) do composto **4c** (100 MHz, DMSO-*d*₆).

1.4 Conclusões e Perspectivas

Neste trabalho foi possível sintetizar os derivados das citocininas, cinetina e TDZ, para a potencial aplicação como PGRs e agentes anticancerígenos. A primeira parte desse trabalho consistiu na síntese de duas séries de derivados do anel purínico com o anel 1,2,3-triazol, totalizando 24 compostos finais (Figura 42). Os derivados foram obtidos com bons rendimentos globais que variaram de 21-87% para os derivados da série **1a-k** e 18-79% para os derivados da série **1a-k**, sendo a etapa-chave a reação *click*, o que evidencia a eficiência da rota planejada. Os derivados purina-triazol tiveram sua atividade reguladora de crescimento avaliada e os resultados encontram-se no capítulo 2 deste trabalho. Além dos resultados do ensaio antiproliferativo no capítulo 3.

Figura 42. Estruturas dos derivados purina-1,2,3-triazol sintetizados nesse trabalho.

A segunda parte desse trabalho consistiu na síntese dos derivados do anel 1,2,3tiadiazol-triazol, totalizando-se 12 compostos finais (Figura 43). Nessa série foram sintetizados 14 compostos, a acil azida 26, com 33% de rendimento global, o alcino precursor 28, com 93% de rendimento, as seis aminas inéditas 20a-f, com rendimentos globais que variaram de 18-59%, e as seis ureias inéditas 4a-f, com rendimentos globais que variaram de 4-17%. A etapa-chave dessa rota foi a reação de formação da acil azida, não foi possível otimizar a síntese da azida 19 e a obtenção das ureias 3a-f. No futuro, temos perspectivas de finalizar essa parte do trabalho e conseguir avaliar o efeito dos compostos em plantas.

Figura 43. Estruturas dos triazóis 20a-f e dos derivados tiadiazol-1,2,3-triazol 4a-f sintetizados nesse trabalho.

2 - Capítulo – Avaliação do efeito dos derivados da cinetina e da adenina no desenvolvimento da espécie *Lactuca sativa* (alface)

2.1 Introdução

2.1.1 Agroquímicos e a agricultura

A sobrevivência e o crescimento da população humana advêm do surgimento da agricultura e da pecuária, quando há aproximadamente 10.000 anos o homem deixou de retirar seu alimento diretamente da natureza para cultivá-lo.¹³⁶⁻¹³⁷ A chamada primeira Revolução Agrícola transformou a vida da humanidade, possibilitou o aumento considerável da população humana e consequentemente os pequenos acampamentos viraram grandes cidades.¹³⁶⁻¹³⁷

No decorrer da história da humanidade o aumento da produção agrícola foi antecedido por novas técnicas agrárias e consequentemente novas revoluções agrícolas (Figura 44, p.81).¹³⁶⁻¹³⁷ O último grande aumento na produção de alimentos foi devido a Revolução Verde, baseada no uso de sementes geneticamente modificadas, tecnologias de irrigação, agroquímicos (fertilizantes e produtos de tratamento) e no uso da mecanização (diminuição da mão de obra).¹³⁸ Tecnologias garantiram que a produção de alimentos, principalmente de grãos, saltasse de 1,84 bilhão de toneladas em 1961 para 4,38 bilhões toneladas em 2007 (um aumento de 138%), possibilitando a erradicação da fome em várias regiões do mundo.¹³⁸ Isto conferiu o Prêmio Nobel da Paz de 1970 à Norman Borlaug, o agrônomo pai da Revolução Verde.¹³⁹

O uso de agroquímicos é bastante antigo, sendo o primeiro registro atribuído aos sumérios em 2500 a.C. que utilizavam enxofre para combater insetos. No entanto, apenas em meados da década de 1940 que os agricultores começaram a utilizar em grande escala fertilizantes e compostos químicos para o controle de pragas.¹⁴⁰ O uso de substâncias para a proteção de plantas, controle de pragas, doenças e ervas daninhas tem um impacto

¹³⁶ Harari, Y. N. Sapiens – Uma Breve História da Humanidade, Porto Alegre, Editora L&M Pocket, **2020**

¹³⁷ Mazoyer, M.; Roudart, L. *História das agriculturas no mundo: do neolítico à crise contemporânea.* Brasília, Editora UNESP, **2010**

¹³⁸ Baulcombe, D.; Crute, I.; Davies, B.; Dunwell, J.; Gale, M.; Jones, J.; Pretty, J.; Sutherland, W.; Toulmin, C.; Green, N.; *Reaping the Benefits: Science and The Sustainable Intensification of Global Agriculture.* The Royal Society, London, **2009.**

¹³⁹ Collomb, P.; Une voie étroite pour la sécurité alimentaire d'ici à 2050. Paris, Economica, **1999.**

¹⁴⁰ Barbosa, Luiz Cláudio A. Os pesticidas, o homem e o meio ambiente. Viçosa, Editora UFV, 2004

importante na produção de alimentos. Na ausência de pesticidas e outras tecnologias de controle de pragas as perdas na safra mundial seriam de 50-80%, mostrando assim a importância dos agroquímicos para o aumento da produção agrícola.^{138;141}

Figura 44. O aumento da produção de alimento no decorrer da história.

A população mundial atual é de cerca 8 bilhões de pessoas e com previsão de aumento para 9,7 bilhões até 2050.¹⁴² Consequentemente a demanda global de alimentos irá quase que triplicar nos países em desenvolvimento e mais que quintuplicar na África.¹⁴³ Tal estimativa é um grande desafio para os agricultores, que terão que produzir mais em uma área cultivável limitada, devido à urbanização, à pecuária, à proteção ambiental e às condições desfavoráveis e inapropriadas para agricultura.¹⁴⁴⁻¹⁴⁵ Outros desafios incluem as

¹⁴¹ Oerke, E.; Dehne, H. Safeguarding production—losses in major crops and the role of crop protection. *Crop Protection*, **2004**, 23, 275-285.

¹⁴² United Nations (NU), *World Population Prospects 2022: Ten Key Messages*. Disponivel em <u>https://population.un.org/wpp/Publications/</u>. Acesso em: 24 abri de 2023.

¹⁴³ Cobb, A. H.; Reade, J. P. *Herbicides and plant physiology.* 2^a edição, John Wiley & Sons, **2010**.

¹⁴⁴ Pinto-Zevallos, D. M.; Zarbin, P. H. G. A química na agricultura: perspectivas para o desenvolvimento de tecnologias sustentáveis. *Quím. Nova*, **2013**, 36, 1509-1513.

¹⁴⁵Lamberth, C.; Jeanmart, S.; Luksch, T.; Plant, A. Current Challenges and Trends in the Discovery of Agrochemicals. *Science*, **2013**, 341, 742-746.

mudanças climáticas (devido ao aquecimento global), a resistência de plantas daninhas e pragas, o aumento da exigência ambiental e da toxicologia das substâncias químicas. Assim o desenvolvimento de novos agroquímicos mais eficientes e de menor impacto ambiental é importante.

2.1.1.1 Reguladores de crescimento

Os reguladores de crescimento vegetal (PGRs, sigla em inglês de *Plant Growth Regulators*), ou hormônios vegetais, são substâncias de origem natural ou sintética, que regulam o crescimento e o desenvolvimento das plantas.¹⁴⁶⁻¹⁴⁷ Em outras palavras, tratam-se de compostos orgânicos que, em pequenas quantidades modulam processos fisiológicos que aumentam a qualidade, a produção e facilitam a colheita (substâncias que de alguma forma ajudam o processo de colheita mecanizada, por uniformizarem a altura das plantas ou pela ação desfolhante).¹⁴⁸⁻¹⁴⁹

Os PGRs são utilizados na agricultura desde o isolamento do ácido indolilacético (AIA), o primeiro regulador de origem natural, em 1931, por Haagen-Smit.¹⁵⁰⁻¹⁵¹ Desde então o uso de PGRs vem crescendo a cada ano, principalmente na horticultura, fruticultura e em cultivos anuais. Em 2008, o mercado de PGRs era apenas 2,5% (1,04 de 41,7 bilhões de dólares) do mercado mundial de defensivos agrícolas.¹⁵² Em 2019, o mercado de PGRs chegou à marca 5,72 bilhões de dólares, cerca de 9,6% do mercado de defensivos agrícolas (59,827 bilhões de dólares),¹⁵³⁻¹⁵⁴ o que mostra a importância dessa classe no cenário mundial da agricultura pois possibilita o aumento da qualidade, da produção e apresentam baixa fitotóxidade.¹⁴⁷

O AIA é um PGR da classe das auxinas, usado para impedir a queda de frutos das macieiras e regular o porte bienal de árvores frutíferas. Como plantas adultas ou em formação tendem a formar ramos laterais que atrapalham a colheita e a entrada de luz no interior da copa (parte de cima da planta) sendo assim necessárias podas, que de maneira manual

¹⁵⁴ Market and Markets, *Plant Growth Regulators Market*. Disponível em

¹⁴⁶ Ware, W. G. *The Pesticide Book.* 5^a edição, Thomson Publications, **1993**.

¹⁴⁷ Rademacher, W. Plant Growth Regulators: Backgrounds and Uses in Plant Production. *J. Plant Growth Regul.*, **2015**, 34, 845–872.

¹⁴⁸ Nickell, L. G. *Plant growth regulators. Agricultural Uses.* Springer-Verlag, **1982**.

¹⁴⁹ Petri, J. L.; Haverroth, F. J.; Leite, G. B.; Sezerino, A. A.; Couto, M. *Reguladores de crescimento para frutíferas de clima temperado.* Florianópolis, Epagri, **2016.**

¹⁵⁰ Miller, S. S. Plant bioregulators in apple and pear culture. *Hortic. Rev.*, **1988**, 10, 309-401.

¹⁵¹ Roberts, J. A.; Hooley, R. Plant Growth Regulators, Springer, 1988

¹⁵² Rademacher, W. Dealing with plant bioregulators: An industrial view. Acta Hort., 2010, 884, 717-724.

¹⁵³ Statista, *Market value of global agrochemicals from 2006 to 2019 by type.* Disponível em <u>https://www.statista.com/statistics/311953/agrochemical-market-value-worldwide-by-type/</u>. Acesso em: 12 de abril de 2020.

https://www.marketsandmarkets.com/Market-Reports/plant-growth-regulators-market-94580110. Acesso em: 20 de agosto de 2020.

muitas vezes rebrotam. Assim são aplicadas auxinas nas superfícies dos cortes para evitar o crescimento novamente do ramo lateral. Estes compostos contribuem também para o crescimento das plantas e o retardamento da abscisão de frutos.¹⁴⁶⁻¹⁵⁵ Contudo, atualmente as auxinas são bastante utilizadas como herbicidas seletivos se aplicadas em concentrações relativamente elevadas.¹⁵¹

Além das auxinas, são exemplos de PGRs: i) as giberelinas, como o ácido giberélico, que são reguladoras da altura e do envelhecimento da planta; ii) as citocininas, como a cinetina, que são reguladoras da divisão celular; iii) o etileno, hormônio gasoso responsável pela maturação dos frutos e senescência foliar e iv) o ácido abscísico, que regula a maturação das sementes e o antiestresse vegetal.¹⁴⁶⁻¹⁵⁵ As estruturas dessas substâncias estão representadas na Figura 45. A classe das citocininas será detalhada a seguir, por ser o foco deste trabalho.

Figura 45. Estruturas de alguns reguladores de crescimento vegetal de origem natural.

2.1.1.2 Citocininas

Em meados de 1940 existia uma enorme procura por substâncias que promovessem a divisão celular e estimulassem o crescimento de tecidos vegetais.¹⁵⁶ Dentre as classes de substâncias pesquisadas tem-se as bases nitrogenadas, destacando-se a adenina. Em um de seus estudos o cientista americano Folk Skoog verificou que espermas, autoclavados, de peixe promoviam a divisão celular em cultura de tabaco. A partir disso, em 1955, Carlos Miller isolou, caracterizou e sintetizou a primeira substância com essas características, ¹⁵⁷⁻¹⁵⁸ a cinetina, nome dado devido à sua capacidade de promover a citocinese (divisão celular).¹⁵⁹ Na mesma época, David Lethan isolou a primeira citocinina de origem natural descrita, em sementes de milho, a zeatina.¹⁶⁰ A zeatina é a principal citocinina encontrada nas plantas, nas

¹⁵⁵ Zeiger, E. Taiz, L. *Fisiologia Vegetal*, 3ª edição, Porto Alegre, Artmed, 2003

¹⁵⁶ Kieber, J. J.; Schaller, G. E. Cytokinins. *Arabidopsis Book*, **2014**, 12, 1-35.

¹⁵⁷ Miller, C. O.; Skoog, F.; Von Saltza, M.H.; Strong, F. Kinetin, a cell division factor from deoxyribonucleic acid. *J. Am. Chem. Soc.*, **1955**, 77, 1392-1392.

¹⁵⁸ Miller, C. O.; Skoog, F.; Okomura, F. S.; Von Saltza, M. H.; Strong, F. M. Isolation, structure and synthesis of kinetin, a substrance promoting cell division. *J. Am. Chem. Soc.*, **1956**, 78, 1345-1350.

¹⁵⁹ Amasino, R. 1955: Kinetin arrives. The 50th anniversary of a new plant hormone. *Plant Physiol.*, **2005**, 138, 1177-1184.

¹⁶⁰ Fagan, E. B.; Ono, E. O.; Rodrigues, J. D.; Júnior, A. C.; Neto, D. D. *Fisiologia vegetal: Reguladores Vegetais*, São Paulo, Andrei, **2015**.

configuração *E* ou *Z*, usualmente chamadas de *trans*-zeatina (tZ) e *cis*-zeatina (cZ) (Figura 46).¹⁵⁹

trans-zeatina (tZ) cis-zeatina (cZ)

Figura 46. Citocininas derivadas da adenina de origem natural.

Na agricultura as CKs, como já falado na introdução geral, são utilizadas principalmente para aumentar o tamanho de frutos, a produtividade¹⁵⁹ e na conservação de hortaliças.¹⁴⁷ Devido à aplicabilidade das CKs na agricultura, há um grande interesse na busca e no desenvolvimento de novas substâncias derivadas das citocininas.

Além dos derivados das citocininas apresentados anteriormente (introdução geral e capítulo 1), na literatura são relatados derivados de outras citocininas como apresentado na Figura 47. Tem-se, por exemplo, a citocinina derivada da benziladenina (BA), o INCYDE, que é um inibidor da enzima CKX, e mostrou-se mais ativo que a própria BA.¹⁶¹⁻¹⁶² Além de derivados da adenina modificados em N9 têm-se aqueles modificados em C8 como, por exemplo, o derivado iP-diamina.¹⁶³ Como exemplos de novos derivados de citocininas com núcleo diferente da adenina, tem-se o Tsitodef, um derivado de ureia que apresenta o anel 1,2,4-triazólico em sua estrutura, e o Cartolin-2 que possui dois grupos carbamato, uma estrutura diferente dos demais compostos.¹⁶⁴

Figura 47. Compostos de origem sintética que apresentam efeitos similares aos das citocininas.

¹⁶¹ van Voorthuizen, M. J.; Song, J.; Novák, O.; Jameson, P. E. Plant Growth Regulators INCYDE and TD-K Underperform in Cereal Field Trials. *Plants*, **2021**, 10, 2309-2323.

¹⁶² Zatloukal, M.; Gemrotová, M.; Doležal, K.; Havlíček, L.; Spíchal, L.; Strnad, M. Novel potent inhibitors of A. thaliana cytokinin oxidase/dehydrogenase. *Bioorg. Med. Chem.*, **2008**, 16, 9268-9275.

¹⁶³ Zahajská, L.; Nisler, J.; Voller, J.; Gucký, T.; Pospíšil, T.; Spíchal, L.; Strnad, M. Preparation, characterization and biological activity of C8-substituted cytokinins. *Phytochemistry*, **2017**, 135, 115-127.

¹⁶⁴ Oshchepkov, M. S.; Kalistratova, A. V.; Savelieva, E. M.; Romanov, G. A.; Bystrova, N. A.; Kochetkov, K. A. Natural and synthetic cytokinins and their applications in biotechnology, agrochemistry and medicine. *Russ. Chem. Rev.*, **2020**, 89, 787-810.

2.2 Objetivos e Estratégias

Neste capítulo, pretende-se verificar o potencial dos derivados purina-triazol (**6**, **7**, **1a-k** e **2a-k**) como possíveis reguladores de crescimento vegetais. A estratégia escolhida foi a avaliação do efeito (se induzem ou inibem o crescimento da planta) dos compostos em frente a uma espécie de planta dicotiledônea, *Cucumis sativus* (pepino) e *Lactuca sativa* (alface). No primeiro ensaio frente a *Cucumis sativus*, verificou-se o efeito dos compostos sintetizados (**6**, **7**, **1a-i** e **2a-i**) em duas concentrações (1µM e 100 µM). A partir desse ensaio foram selecionados os compostos **1d-e** e **2d-e** para serem testados frente a *Lactuca sativa* a 100 µM. Em uma segunda parte do ensaio frente a *Lactuca sativa*, os compostos **6**, **7**, **1d**, **1j-k**, **2a**, **2h** e **2j-k** foram selecionados para verificar o efeito a 10 µM. A estratégia empregada para selecionar os compostos foi a solubilidade dos compostos nas soluções utilizadas no ensaio. Além da escolha de derivados com diferentes substituintes no anel 1,2,3-triazólico.

2.3 Resultados e Discussão

Os resultados e discussão foi divido em duas partes, a primeira parte trata-se do ensaio do efeito dos compostos a 100 μ M no desenvolvimento de *Lactuca sativa* e a segunda parte a 10 μ M. Antes desse, foi realizado um ensaio preliminar com *Cucumis sativus* (pepino) com os compostos **1a-i** e **2a-i**, os resultados obtidos encontram-se no Anexo C (p.232), por tratar-se de um ensaio preliminar. Apesar disso, verificou-se que a cinetina e os compostos **1b** (*p*-CH₃), **1e** (*p*-F), **1f** (*p*-OCH₃), **1h** (*p*-CF₃), **1i** (*p*-C₃H₇), **2c** (*p*-CI), **2e** (*p*-F), **2g** (*p*-OCF₃) e **2h** (*p*-CF₃) inibiram o crescimento da raiz a 100 μ M. Os compostos **1i** (ambas as concentrações), **2b** e **2f** (1 μ M) inibiram o crescimento da parte aérea. Com esses resultados foram escolhidos compostos que apresentaram efeitos diferentes no pepino para um segundo ensaio com *Lactuca sativa* (alface), que será detalhado nos tópicos a seguir.

2.3.2 Avaliação do efeito dos compostos 1d-e e 2d-e na germinação de sementes e no desenvolvimento de *Lactuca* sativa (alface)

O estudo foi realizado com os compostos **1d-e** e **2d-e** e a cinetina (usada como referência), esses foram solubilizados em uma solução diluente (contendo 0,05 % v/v DMSO, 0,05 % v/v etanol, 0,5 % v/v de propileno glicol, 1,4% v/v PEG-400 e 98% v/v de água). O ensaio foi realizado em placas Petri (quintuplicada) contendo 25 sementes de *Lactuca sativa* (alface) por placa, as quais foram incubadas em uma câmara de germinação a 25 ± 2,0 °C, em fotoperíodo de 12 horas, por sete dias. Após esse tempo, foram determinados o comprimento da raiz e da parte aérea das plântulas (Figura 48). Durante o experimento, em um intervalo de 24 em 24 h, as sementes germinadas eram contabilizadas e no final do experimento todas as sementes não germinadas foram avaliadas pelo teste do tetrazólio para verificação de viabilidade (capacidade germinativa).¹⁶⁵ O experimento realizado seguiu as diretrizes do Ministério da Agricultura e do Abastecimento.¹⁶⁶ Os resultados obtidos para o estudo de desenvolvimento da plântula encontram-se na Figura 48 (p.87) e os relacionados à germinação na Tabela 3 (p.88), os dados foram avaliados pelo teste Scott-Knott.

Analisando os resultados obtidos para os derivados 1d, 1e, 2d e 2e a 100 µM, observase que esses não afetaram o desenvolvimento da raiz e da parte aérea da alface,

¹⁶⁵ Souza, C. R.; Ohlson, O. C.; Gavazza, M. I. A.; Panobianco, M. Tetrazolium test for evaluating triticale seed viability. *Rev. Bras. Sementes*, **2010**, 32, 163-169.

¹⁶⁶ Regras para análise de sementes, Ministério da Agricultura, Pecuária e Abastecimento (Mapa). Secretaria de Defesa Agropecuária, Brasil, **2009**, 1-399. Disponível em <u>https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/arquivos-publicacoes-insumos/2946_regras_analise__sementes.pdf.</u> Acesso em 10 de novembro de 2022.

apresentaram resultados similares ao das plântulas-controle (tratadas com água e/ou solução diluente; Figura 48). Além disso, não houve diferenças significativas entre os dados obtidos para os tratamentos com os derivados da cinetina **1d-e** ou da adenina **2d-e**. Também não se observou diferença significativa entre os tratamentos com diferentes substituintes no anel benzílico, bromo e flúor (Figura 48). Na análise do crescimento radicular, apenas a cinetina inibiu o crescimento da raiz em 70% em comparação a solução diluente. Efeito esperado, pois, a cinetina, como muitas CKs, quando aplicado de forma exógena em concentrações maiores que 1 µM apresentam efeitos negativos na raiz.¹⁶⁷⁻¹⁶⁸ Os seus derivados não apresentaram os mesmos efeitos, devido, principalmente, as modificações realizadas na posição N9 do anel purínico.¹⁶² Na parte aérea, todos os tratamentos não apresentaram diferenças significativas quando comparados ao controle.

Figura 48. Efeito dos compostos **1d-e**, **2d-e**, da cinetina, da solução diluente (0,05 % v/v DMSO, 0,05 % v/v etanol, 0,5 % v/v de propileno glicol, 1,4% v/v PEG-400 e 98% v/v de água) e da água no comprimento (a) da raiz e (b) da parte aérea da espécie *Lactuca sativa* (alface), na concentração de 100 µM. (c) Estruturas dos compostos **1d-e** e **2d-e**. Médias seguidas pela mesma letra minúscula não apresentam diferenças significativas pelo teste de Scott-Knott.

¹⁶⁷ Mik, V.; Szucova, L.; Smehilova, M.; Zatloukal, M.; Dolez, K.; Nisler, J.; Gruz, J.; Galuszka, P.; Strnad, M.; Spichal, L. N9-substituted derivatives of kinetin: Effective anti-senescence agents. *Phytochemistry*, **2011**, 72, 821–831.

¹⁶⁸ Kurepa, J.; Shull, T. E.; Smalle, J. A. Antagonistic activity of auxin and cytokinin in shoot and root organs. *Plant Direct.*, **2019**, 25, 1-9.

No estudo de germinação de sementes, os tratamentos com os compostos **1d-e** e **2d-e** (Tabela 3) não afetaram a porcentagem de germinação (G%). No índice velocidade de germinação (IVG) os tratamentos com os derivados da cinetina **1d-e** e da adenina **2d-e** e a solução diluente resultaram em valores de IVG aproximadamente 20% menores (faixa de IVG 16,4 – 18,8 sementes germinadas por dia) do que aqueles para os tratamentos com água (21,7 ± 1,3 sementes germinadas por dia) e com cinetina (22,2 ± 1,0 sementes germinadas por dia). Nos valores de tempo médio de germinação (TMG), os tratamentos com **1d-e** ou cinetina apresentaram valores comparáveis aos do tratamento com água, ou seja, neutralizaram os efeitos da solução diluente. Diferente dos compostos **2d-e** que apresentaram resultados comparáveis aos do tratamento com a solução diluente (faixa de TMG 1,9-2,1 dias). Portanto, os tratamentos com **2d-e** aumentaram o tempo de germinação das sementes em 73% quando comparados ao tratamento com água (TMG de 1,1 dias).

Tabela 3. Efeito dos compostos **1d-e** e **2d-e**, da cinetina, da solução diluente (0,05 % v/v DMSO, 0,05 % v/v etanol, 0,5 % v/v de propileno glicol, 1,4% v/v PEG-400 e 98% v/v de água) e da água na germinação das sementes da espécie *Lactuca sativa* (alface), na concentração de 100 µM. Expresso em porcentagem de germinação (%), IVG (sementes germinadas por dia) e TMG (dia). Médias seguidas pela mesma letra minúscula não apresentam diferenças significativas pelo teste de Scott-Knott.

Tratamento	Germinação (%)	IVG	TMG (dia)
Água	96,8 ± 5,2 a	21,7 ± 1,3 a	1,1 ± 0,2 b
Solução Diluente	98,4 ± 3,6 a	17,5 ± 1,9 b	1,9 ± 0,3 a
Cinetina	98,4 ± 3,6 a	22,2 ± 1,0 a	1,4 ± 0,1 b
1d	91,2 ± 7,2 a	16,9 ± 2,2 b	1,6 ± 0,2 b
1e	96,8 ± 3,3 a	18,8 ± 1,7 b	1,6 ± 0,3 b
2d	99,2 ± 1,8 a	16,4 ± 3,1 b	1,9 ± 0,4 a
2e	96,8 ± 3,3 a	16,9 ± 4,5 b	2,1 ± 0,8 a

IVG = índice de velocidade de germinação; TMG = tempo médio de germinação.

Como os compostos na concentração de 100 μ M não apresentaram efeitos fitotóxicos e não estimularam o crescimento da alface, resolveu-se testar uma nova concentração. Assim, realizou-se o experimento com os compostos **6**, **7**, **1d**, **1j-k**, **2a**, **2h** e **2j-k** na concentração de 10 μ M. Os compostos foram selecionados considerando a presença de diferentes substituintes no anel 1,2,3-triazólico e sem a presença desse (os alcinos), como mostrado a seguir.

2.3.3 Avaliação do efeito dos compostos 6, 7, 1d, 1j-k, 2a, 2h e 2d e 2j-k na germinação de sementes e no desenvolvimento de *Lactuca sativa* (alface)

Nesse experimento realizou-se o mesmo procedimento do anterior e os resultados para os compostos 6, 7, 1d, 1j-k, 2a, 2h, 2d e 2j-k na concentração de 10 µM, encontram-se na Figura 49 (p.90) na Tabela 4 (p.91). Esses compostos foram escolhidos dos demais para avaliar a diferença de efeitos entre os diferentes substituintes do anel 1,2,3-triazólico (sem substituinte, alquílico e benzílico), além dos alcinos. Analisando os resultados dos efeito dos compostos no desenvolvimento da planta (Figura 49, p.90), percebe-se que os derivados da adenina 2a, 2d e 2k, assim como a cinetina, inibiram o crescimento das raízes de plântulas de alface nessa concentração. Enquanto os demais compostos não apresentaram esse efeito sobre o crescimento de raízes. Assim, os derivados de adenina 2d e 2k inibiram do crescimento da raiz da mesma forma que a cinetina, em 65%, em média, e o 2a 51%. Os compostos 2d e 2k também inibiram o crescimento da parte aérea, em 32%, em média. Os demais compostos e a cinetina não apresentaram efeitos sobre a parte aérea da planta. A partir desse ensaio percebe-se que a modificação estrutural na cinetina em N9 foi suficiente para suprimir os efeitos indesejáveis na raiz. No entanto, alguns derivados de adenina, a 10 µM, apresentam efeitos fitotóxicos na alface com exceção os compostos 2h e 2j.

Figura 49. Efeito dos compostos **6**, **7**, **1d**, **1j-k**, **2a**, **2d**, **2j-k**, da cinetina, da solução diluente (0,05 % v/v DMSO, 0,05 % v/v etanol, 0,5 % v/v de propileno glicol, 1,4% v/v PEG-400 e 98% v/v de água) e da água no comprimento (a) da raiz e (b) da parte aérea da espécie *Lactuca sativa* (alface), na concentração de 10 µM. Médias seguidas pela mesma letra minúscula não apresentam diferenças significativas pelo teste de Scott-Knott.

No estudo de germinação de sementes, os tratamentos não apresentaram efeitos significativos sobre a porcentagem de germinação, apenas para os índices IVG e o TMG (Tabela 4, p.91). Nos resultados obtidos para a velocidade de germinação percebe-se uma diferença significativa entre os valores obtidos dos derivados da adenina (2d e 2k) e os demais compostos. Os derivados de adenina 2d e 2k apresentaram valores de IVG aproximadamente de 20-30% menores (IVG de 18,2 ± 2,8 e 16,1 ± 4,0 sementes germinadas por dia, respectivamente 2d e 2k) do que quando comparados ao tratamento com água ($22,9 \pm 1,0$)

sementes germinadas por dia). O derivado **1d** apresentou valores de IVG próximos aos obtidos pela solução diluente. Os demais compostos neutralizaram os efeitos negativos da solução diluente, ao restabelecerem os valores de IVG aos níveis do tratamento com água. Para o tempo médio de germinação, os compostos **6**, **1d**, **1k**, **1j**, **7**, e **2j** e a cinetina neutralizaram os efeitos da solução diluente, que apresentou efeito negativo sobre esse parâmetro. Sendo que o composto **6**, teve um aumento de cerca 10% do valor obtido da água. Os demais compostos (**2a**, **2d**, **2h** e **2k**) e a solução diluente, obtiveram valores de TMG cerca de 50% maiores que o tratamento apenas com água.

Tabela 4. Efeito dos compostos **6**, **1d**, **1j**, **1k**, **7**, **2a**, **2d**, **2h**, **2j** e **2k**, da cinetina, da solução diluente (0,05 % v/v DMSO, 0,05 % v/v etanol, 0,5 % v/v de propileno glicol, 1,4% v/v PEG-400 e 98% v/v de água) e da água na germinação das sementes da espécie *Lactuca sativa* (alface), na concentração de 10 μM. Expresso em porcentagem de germinação (%), IVG (sementes germinadas por dia) e TMG (dia). Médias seguidas pela mesma letra minúscula não apresentam diferenças significativas pelo teste de Scott-Knott.

Tratamento	Germinação (%)	IVG	TMG
Água	98,4 ± 1,0 a	22,9 ± 1,0 a	1,1 ± 0,2 a
Solução Diluente	98,9 ± 0,9 a	20,4 ± 2,2 b	1,6 ± 0,2 b
Cinetina	99,2 ± 0,8 a	21,8 ± 1,9 a	1,4 ± 0,1 c
6	99,0 ± 2,1 a	21,7 ± 1,9 a	1,2 ± 0,3 a
1d	97,5 ± 3,7 a	19,9 ± 1,2 b	1,4 ± 0,1 c
1j	99,2 ± 1,9 a	21,6 ± 0,7 a	1,3 ± 0,1 c
1k	98,4 ± 2,2 a	21,5 ± 1,8 a	1,3 ± 0,2 c
7	100,0 ± 0,0 a	23,9 ± 1,4 a	1,3 ± 0,1 c
2a	99,2 ± 1,8 a	22,2 ± 0,8 a	1,6 ± 0,3 b
2d	95,7 ± 5,3 a	18,2 ± 2,8 c	1,5 ± 0,1 b
2h	98,4 ± 3,6 a	22,1 ± 0,1 a	1,5 ± 0,1 b
2j	98,4 ± 2,2 a	22,5 ± 0,9 a	1,3 ± 0,2 c
2k	98,4 ± 2,2 a	16,1 ± 4,0 c	1,6 ± 0,1 b

IVG = índice de velocidade de germinação; TMG = tempo médio de germinação.

2.4 Conclusões e Perspectivas

Neste capítulo, foi possível avaliar os efeitos dos derivados purina-triazol no desenvolvimento de uma espécie de planta dicotiledônea (*Lactuca sativa*). No experimento com *Lactuca sativa* (alface) os compostos foram solubilizados em uma solução diluente com uma concentração de 0,05% de DMSO. Os compostos **1d-e** e **2d-e**, contendo os bromo e flúor em suas estruturas, foram avaliados na concentração de 100 µM e não apresentaram efeito fitotóxico para a alface e não inibiram o crescimento da raiz como a cinetina. Os compostos **6, 1d, 1j-k, 7, 2a, 2d, 2h** e **2j-k** foram avaliados na concentração de 10 µM. Apenas os compostos derivados da adenina **2a** (*p*-H), **2d** (*p*-Cl) e **2k** (triazol *N*-não-substituído) apresentaram efeito fitotóxico na raiz da alface como a cinetina, inibição, em média, de 65% para **2d** e **2k**, e 51% para **2a**. Além disso, os compostos **2d** e **2k** inibiram o crescimento da parte aérea, em 32%, em média. Assim, esses compostos apresentaram potencial para atividade herbicida.

Os derivados da cinetina não apresentaram efeitos inibitórios na raiz, mostrando que a modificação realizada na estrutura da cinetina, em N9, mostrou-se eficiente para diminuir os efeitos negativos da cinetina na raiz. Apesar disso, são necessários realizar outros ensaios para poder afirmar que os compostos atuam como citocininas nas plantas, como ensaios em calos de tabaco para a verificação de os compostos induzem a divisão celular. Além disso, a realização de ensaios em espécies de plantas monocotiledôneas, como sorgo (*Sorghum bicolor*), que devido ao tempo curto e por não ter conseguido um lote de sorgo de qualidade, o ensaio não foi realizado. Assim, continua como perspectiva futura a realização desses ensaios.

3 - Capítulo - Avaliação da citotoxicidade dos derivados de cinetina e adenina em linhagens de células tumorais e não tumorais de mama

3.1 Introdução

3.1.1 Câncer de Mama

O câncer de mama, segundo a Organização Mundial da Saúde (OMS), é o câncer mais comum em todo o mundo e a principal causa de morte entre as mulheres.¹⁶⁹ Em 2020, 2,3 milhões de mulheres foram diagnosticadas com câncer de mama e 685 mil mulheres morreram em todo o mundo.¹⁷⁰ Além disso, no Brasil, em 2020, dentre os tipos de câncer, o de mama apresentou a segunda causa de mortalidade.¹⁷¹

O câncer, ou neoplasia, termo científico, é caracterizado pelo crescimento desordenado de células anormais, formando uma massa, denominada tumor. As células tumorais são capazes de se desprenderem-se do tumor e invadir outros tecidos a partir dos sistemas sanguíneos e linfático. Diferentes das células normais, as células tumorais são menos especializadas em suas funções. Dessa forma, conforme a multiplicação ocorre as células normais são substituídas pelas células cancerosas e os tecidos invadidos perdem sua função, podendo levar à falência dos órgãos afetados e à morte do indivíduo.¹⁷²

As causas do câncer são diversas e estão relacionadas a fatores genéticos e ao estilo de vida do indivíduo, sendo esse relacionado à maioria dos casos de câncer (cerca de 80% dos casos).¹⁷² Para o câncer de mama os fatores que mais contribuem são genéticos e hereditários, além de fatores hormonais.¹⁷³

O tratamento mais comum para o câncer de mama é a cirurgia, a retirada do tumor ou da mama, em conjunto com a radioterapia,¹⁷² método eficaz para casos em que não ocorreu metástase. Em outros casos, mais graves, o tratamento mais utilizado é a terapia hormonal e

¹⁶⁹ World Health Organization (WHO), *The Global Breast Cancer Initiative*. Disponível em <u>https://www.who.int/initiatives/global-breast-cancer-initiative</u>. Acesso em: 27 de outubro de 2022.

¹⁷⁰ Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, *CA Cancer J. Clin.*, **2021**, 71, 209–249.

¹⁷¹ Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA). *Atlas de Mortalidade por Câncer*, **2020.** Disponível em <u>https://www.inca.gov.br/app/mortalidade.</u> Acesso em: 12 de outubro de 2022.

¹⁷² Almeida, V. L.; Leitão, A.; Reina, L. C. B.; Montanari, C. A.; Donnici, C. L.; Lopez, M. T. P. Câncer e agentes antineoplásicos ciclo-celular não específicos que interagem com o DNA: Uma introdução. *Quim. Nova,* **2005**, 28, 118-129.

¹⁷³ Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA). *Câncer de mama*. Disponível em <u>https://www.gov.br/inca/pt-br/assuntos/cancer/tipos/mama</u>. Acesso em: 12 de outubro de 2022.

a quimioterapia.¹⁷³ A quimioterapia consiste no uso de fármacos e visa a destruição das células tumorais de forma seletiva frente às células normais. Os fármacos antineoplásicos são classificados pelo tipo de mecanismo de ação (agentes alquilantes e antimetabólitos), estrutura química (agentes platinantes), origem (produtos naturais) e ação fisiológica (hormônios).¹⁷² Alguns exemplos de fármacos utilizados na quimioterapia se encontram na Figura 50.

Figura 50. Fármacos antineoplásticos utilizados na quimioterapia.

A grande maioria dos fármacos interfere na divisão celular, em alguma parte do ciclo celular, e/ou interagem quimicamente com o DNA, mecanismos que inibem a proliferação celular e/ou leva a morte celular. Contudo, a maioria dos agentes antineoplásticos não é seletiva, ou seja, lesa as células normais também, ocasionando efeitos colaterais indesejáveis no tratamento, como náuseas, fadiga, perda de cabelo e maior susceptibilidade a infecções.¹⁷² Assim, o grande desafio é o desenvolvimento de novos agentes antitumorais que consigam distinguir uma célula tumoral de uma normal, e, consequentemente, apresentem uma menor toxicidade e efeitos colaterais menos agressivos ao paciente.¹⁷⁴

Na literatura é crescente o número de publicações em busca de novos agentes antineoplásticos, um grupo de moléculas importantes compostos heterocíclicos contendo nitrogênio,¹⁷⁵ como por exemplo, os derivados purínicos e os derivados 1,2,3-triazólicos. Nos próximos tópicos será detalhado um pouco da aplicação de cada um desses grupos com ênfase na atividade antitumoral.

¹⁷⁴ Brandão, H. N.; David, J. P.; Couto, R. D.; Nascimento, J. A.; David, J. M. Química e farmacologia de quimioterápicos antineoplásicos derivados de plantas. *Quím. Nova*, **2010**, 33, 1359-1369.

¹⁷⁵ Chaurasiya, A.; Wahan, S. K.; Sahu, C.; Chawla, P. A. An insight into the rational design of recent purine-based scaffolds in targeting various cancer pathways. *J. Mol. Structure*, **2022**, 134308-134331.

3.1.1.1 Derivados purínicos e o câncer

Os derivados purínicos (Figura 51), como comentado anteriormente, no Capítulo 1, são utilizados no tratamento do câncer desde 1953, com o registro da 6-mercatopurina na FDA.¹⁷⁶ Ao longo dos anos, outros derivados purínicos foram registrados, como a clofarabina, um inibidor da enzima ribonucleotídeo redutase, responsável pela síntese do desoxinucleotídeo precursor do DNA,¹⁷⁵ aprovada pela FDA em 2004¹⁷⁶ e a nelarabina, aprovada pela FDA em 2005,¹⁷⁶ que inibe a síntese do DNA e a proliferação celular. Os dois fármacos são derivados da purina e ditos de segunda geração.¹⁷⁵

Figura 51. Fármacos, contendo o anel purínico em sua estrutura, utilizados no tratamento de câncer.

Além dos fármacos presentes no mercado, encontram-se muitos derivados em fases de testes clínicos para o tratamento de câncer como mostrado na Figura 52 (p.96). Como por exemplo a roscovitina (Seliciclib), citada na introdução geral, um inibidor das enzimas CDK, uma das enzimas envolvidas no ciclo celular. Inibidores dessa enzima interferem na divisão celular e, consequentemente, no processo de proliferação celular.¹⁷⁷⁻¹⁷⁸ A roscovitina foi testada para diversas linhagens de células tumorais, os melhores resultados foram para as linhagens MCF-7 (câncer de mama estrogênio dependente) e HCT-116 (carcinoma de colorretal humano) com valores de IC₅₀ 9,32 e 12,24 µM, respectivamente.¹⁷⁹ O Pinometostat (EPZ-5676) inibidor da enzima histona metiltransferase DOT1L (do inglês *Disrupter of Telomeric Silencing 1-like*), envolvida no processo de reparação do DNA.¹⁸⁰ O composto AZD-7648, que está na primeira e na segunda fase dos teste clínicos, foi testado para a linhagem

¹⁷⁶ Parker, W. B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. *Chem. Rev.*, **2009**, 109, 2880-2893.

¹⁷⁷ Meijer, L.; Borgne, A.; Mulner, O.; Chong, J. P. J.; Blow, J. J.; Inagaki, N.; Inagaki, M.; Delcros, J. G.; Moulinoux, J. P. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. *Eur. J. Biochem.*, **1997**, 243, 527-536.

¹⁷⁸ Cicenas, J.; Kalyan, K.; Sorokinas, A.; Stankunas, E.; Levy, J.; Meskinyte, I.; Stankevicius, V.; Kaupinis, A.; Valius, M. Roscovitine in cancer and other diseases. *Ann. of Transl. Med.*, **2015**, 3, 135-147.

¹⁷⁹ Taha, H.; Mohamed, S. H.; Al-Sawaf, H.; Hassan, Z. Evaluation of roscovitine anticancer agent as a reference compound for cancer and apoptosis studies. *J. Innov. Pharm. Biol. Sci.*, **2019**, 6, 53-56.

¹⁸⁰ Kurani, H.; Razavipour, S. F.; Harikumar, K. B.; Dunworth, M.; Ewald, A. J.; Nasir, A., Pearson, G.; Van Booven, D.; Zhou, Z.; Azzam, D.; Wahlestedt, C.; Slingerland, J. DOT1L is a novel cancer stem cell target for triple negative breast cancer. *Clinical Cancer Res.*, **2022**, 28, 1948–1965.

HCT-116 com IC₅₀ = 35,3 μ M,¹⁸¹ é um inibidor da enzima DNA-PK (do inglês *DNA-dependent protein kinase*).¹⁸² O composto PU-H71 foi testado para a linhagem de câncer de mama MCF-7 com IC₅₀ de 0,051 μ M,¹⁸³ inibidor da enzima Hsp90 (do inglês *Heat shock protein 90*). Enzima que atua no processo de degradação e estabilização de proteínas, sendo necessária para o crescimento e a sobrevivência de tumores, assim seus inibidores são importantes para o desenvolvimento de novos agentes antitumorais.¹⁸⁴⁻¹⁸⁵

Figura 52. Compostos contendo o anel purínico em sua estrutura que estão em fase de testes clínicos para o tratamento de câncer.

Como apresentado, os fármacos a base de purinas apresentam mecanismos de ação diversos e a maioria atua impedindo a síntese dos ácidos nucléicos ou inibindo enzimas relacionadas ao metabolismo celular.¹⁷⁵ Devido à grande aplicabilidade e a popularidade de

¹⁸¹ Ding, Z.; Pan, W.; Xiao, Y.; Cheng, B.; Huang, G.; Chen, J. Discovery of novel 7, 8-dihydropteridine-6 (5H)-onebased DNA-PK inhibitors as potential anticancer agents via scaffold hopping strategy. *Eur. J. of Med. Chem.*, **2022**, 237, 114401-114418.

¹⁸² Fok, J. H.; Ramos-Montoya, A.; Vazquez-Chantada, M.; Wijnhoven, P. W.; Follia, V.; James, N.; Farrington, P. M.; Karmokar, A.; Willis, S. E.; Cairns, J.; Nikkilä, J.; Beattie, D.; Lamont, G. M.; Finlay, M. R. V.; Wilson, J.; Smith, A.; O'Connor, L. O.; Ling, S.; Fawell, S. E.; O'Connor, M. J.; Hollingsworth, S. J.; Dean, E.; Goldberg, F. W.; Davies, B. R.; Cadogan, E. B. AZD7648 is a potent and selective DNA-PK inhibitor that enhances radiation, chemotherapy and olaparib activity. *Nature Comm.*, **2019**, 10, 1-15.

¹⁸³ Lee, J. H.; Shin, S. C.; Seo, S. H.; Seo, Y. H.; Jeong, N.; Kim, C. W.; Kim, E. E.; Keum, G. Synthesis and in vitro antiproliferative activity of C5-benzyl substituted 2-amino-pyrrolo [2, 3-d] pyrimidines as potent Hsp90 inhibitors. *Bioorg. & Med. Chem. Lett.*, **2017**, 27, 237-241.

¹⁸⁴ Trendowski, M. PU-H71: An improvement on nature's solutions to oncogenic Hsp90 addiction. *Pharma. Res.*, **2015**, 99, 202-216.

¹⁸⁵ Caldas-Lopes, E.; Cerchietti, L.; Ahn, J. H.; Clement, C. C.; Robles, A. I.; Rodina, A.; Moulick, K.; Taldone, T.; Gozman, A.; Guo, Y.; Wu, N.; de Stanchina, E.; White, J.; Gross, S. S.; Ma, Y.; Varticovski, L.; Melnick, A.; Chiosis, G. Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. *Proc. Natl. Acad. Sci. U. S. A.*, **2009**, 106, 8368–8373.

seus fármacos, a purina é considerada um fragmento preferido e atraente para pesquisadores no desenvolvimento de novos fármacos.

3.1.1.2 Derivados do anel 1,2,3-triazólicos e o câncer

O heterociclo 1,2,3-triazol é muito utilizado pelos químicos para construir novas moléculas bioativas, que podem ser derivadas ou não de algum produto natural. Na literatura, há vários derivados triazólicos de produtos naturais (Figura 53) com atividade antiproliferativa, como por exemplo, o derivado da melampo magnolida B com o 1,2,3-triazol (MMB-triazol) que apresentou uma atividade superior para a linhagem tumoral HCT-116 (IC₅₀ = 0,43 ± 0,08 μ M) quando comparado ao seu precursor (IC₅₀ = 4,93 ± 1,77 μ M para HCT-116).¹⁸⁶ Outro produto natural que teve a atividade melhorada com a inserção de um anel 1,2,3-triazólico foi o diterpeno Jiyuan Oridonin A (JOA), com IC₅₀ = 1,5 μ M para células de câncer de mama (MCF-7).¹⁸⁷ Rahman e colaboradores fizeram o mesmo com o esteroide diosgenina (DGN), seu derivado com o triazol foi ativo frente a células de carcinoma de mama humano (HBL-100), com IC₅₀ = 8,07 μ M.

Figura 53. Derivados triazólicos com produtos naturais, que apresentam atividade antiproliferativa para células tumorais.

¹⁸⁶Ding, Y.; Guo, H.; Ge, W.; Chen, X.; Li, S.; Wang, M.; Chen, Y.; Zhang, Q. Copper(I) oxide nanoparticles catalyzed click chemistry based synthesis of melampomagnolide B-triazole conjugates and their anti-cancer activities. *Eur J Med Chem.*, **2018**, 156, 216–229.

¹⁸⁷ Ke, Y.; Liang, J. J.; Hou, R. J.; Li, M. M.; Zhao, L. F.; Wang, W.; Liu, Y.; Xie, H.; Yang, R. H.; Hu, T. X.; Wang, J. Y.; Liu, H. M. Synthesis and biological evaluation of novel Jiyuan Oridonin A-1,2,3-triazole-azole derivatives as antiproliferative agents. *Eur. J. Med. Chem.*, **2018**, 157, 1249–1263.

Além de derivados triazólicos com produtos naturais, na literatura são encontrados derivados com diversos heterociclos (Figura 54).¹⁸⁸ Como por exemplo, o composto contendo os heterociclos indol e o triazol, sintetizado por Narsimha e colaboradores,¹⁸⁹ que apresentou atividade antiproliferativa considerável para células tumorais (valores IC₅₀ de 16,53 e 11,74 μ M, para respectivamente, MCF-7 e HeLa).¹⁸⁹ Outro heterociclo muito encontrado na literatura com o triazol é a quinolina.¹⁸⁸ Freitas e colaboradores sintetizaram compostos com os dois núcleos, o mais ativo (Figura 54) apresentou IC₅₀ 2,9 e 2,8 μ M, respectivamente, para MCF-7 e PC-3 (câncer de próstata).¹⁹⁰ Há também na literatura derivados do triazol com o núcleo purínico, um exemplo, é o composto sintetizado por Khazir e colaboradores, que apresentou baixos valores de IC₅₀ 0,4 e 0,08 μ M, respectivamente, para A549 (células de adenocarcinoma pulmão humano) e THP-1 (células humana de leucemia monocítica aguda).¹⁹¹

Figura 54. Derivados triazólicos com diferentes heterociclos contendo nitrogênio.

Assim, é notório que a união dos heterociclos purina e triazol é uma estratégia na construção de novas moléculas bioativas com potencial uso como agentes antitumorais.

¹⁸⁸ Xu, Z.; Zhao, S. J.; Liu, Y. 1, 2, 3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. *Eur. J. of Med. Chem.*, **2019**,183, 111700-111737.

¹⁸⁹ Narsimha, S.; Kumar, N. S.; Swamy, B. K.; Reddy, N. V.; Hussain, S. A.; Rao, M. S. Indole-2-carboxylic acid derived mono and bis 1, 4-disubstituted 1, 2, 3-triazoles: Synthesis, characterization and evaluation of anticancer, antibacterial, and DNA-cleavage activities. *Bioorg. & Med. Chem. Lett.*, **2016**, 26, 1639-1644.

¹⁹⁰ De Freitas, L. B. O.; Borgati, T. F.; De Freitas, R. P.; Ruiz, A. L. T. G.; Marchetti, G. M.; De Carvalho, J. E.; Da Cunha, E. F. F.; Ramalho, T. C.; Alves, R. B. Synthesis and antiproliferative activity of 8-hydroxyquinoline derivatives containing a 1,2,3-triazole moiety. *Eur. J. Med. Chem.*, **2014**, 84, 595-604.

¹⁹¹ Khazir, J.; Mir, B. A.; Chashoo, G.; Pilcher, L.; Riley, D. Synthesis and anticancer activity of N-9-and N-7substituted 1, 2, 3 triazole analogues of 2, 6-di-substituted purine. *Med. Chem. Res.*, **2020**, 29, 33-45.

3.2 Objetivos e Estratégias

Neste capítulo, pretende-se avaliar o potencial dos derivados purina-triazol (**6**, **7**, **1a-k** e **2a-k**) como possíveis agentes antitumorais. Para este estudo foi escolhido o ensaio MTT frente a duas linhagens de células tumorais, a MCF-7 (câncer de mama estrogênio dependente) e MDA-MB-231 (câncer de mama triplo negativo) e uma linhagem de célula não tumoral da mama (MCF-10A), a fim de se avaliar a seletividade dos compostos.

3.3 Resultados e Discussão

3.3.1 Ensaio de atividade antiproliferativa

O ensaio de atividade antiproliferativa da cinetina e dos compostos sintetizados, contendo o núcleo purínico em sua estrutura [os alcinos 6 e 7 e a série de triazóis 1a-k e 2ak] e a cinetina. Os compostos citados foram submetidos ao ensaio MTT,¹⁹² em cinco concentrações (100, 50, 10, 5 e 1 µM), frente a duas linhagens de células tumorais de câncer de mama (MCF-7 e MDA-MB-231) e uma linhagem de célula não tumoral (MCF-10A). A linhagem MCF-7 é utilizada como modelo para o estudo de resposta hormonal devido a sua sensibilidade à expressão do receptor de estrogênio (RE). A linhagem MDA-MB-231 é utilizada como modelo para câncer de mama triplo negativo (TNBC) por ser altamente agressiva, invasiva e pouco diferenciada, pois não tem expressão com RE, receptor de progesterona (RP) e receptor do fator de crescimento epidérmico humano 2 (HER2).¹⁹³⁻¹⁹⁴ A linhagem celular MCF-10A (célula epitelial mamária humana) foi utilizada como modelo de resposta a células não tumorais e para determinação do índice de seletividade (SI). Como controle positivo foi utilizada a doxorrubicina (fármaco de referência), que é um fármaco muito utilizado no tratamento do câncer de mama que apresenta alta citotoxicidade, mas não apresenta seletividade frente a células normais da mama causando efeitos colaterais indesejáveis em seus usuários.¹⁹⁵ Os resultados obtidos destes ensaios foram expressos em IC₅₀ (concentração necessária para inibir em 50% o crescimento celular) e índice de seletividade (IS) [Tabela 5 (p.101), derivados da cinetina 6 e 1a-k e, Tabela 6 (p.104), derivados da adenina 7 e 2a-k].

¹⁹² Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. *J. Immunol. Methods*, **1983**, 65, 55-63.

¹⁹³ Holliday, D. L.; Speirs, V. Choosing the right cell line for breast cancer research. *Breast Cancer Res.*, **2011**, 13, 1–7.

¹⁹⁴ Garimella S. V.; Lipkowitz, S. Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. *Breast Dis.*, **2010**, 32, 35-48.

¹⁹⁵ Ashrafizadeh, M.; Zarrabi, A.; Hashemi, F.; Zabolian, A.; Saleki, H.; Bagherian, M.; Azami, N.; Bejandi, A. K.; Hushmandi, K.; Ang, H. L.; Makvandi, P.; Khan, H.; Kumar, A. P. Polychemotherapy with curcumin and doxorubicin via biological nanoplatforms: Enhancing antitumor activity. *Pharmaceutics*, **2020**, 12, 1084.

Tabela 5. Atividade citotóxica, expressa em IC₅₀ (μ M \pm DP) e índice de seletividade (IS), da cinetina e de seus derivados 1 e **1a-k** obtida pelo ensaio de MTT para as linhagens celulares MCF-7, MDA-MB-231 (tumorais) e MCF-10 (normais)

		N	R				
		IC ₅₀ ± DP ^a (μM)					
Compostos	R		Células normais				
		MCF-7	IS	MDA-MB-231	IS	MCF-10 ^a	
6	and the second s	76,6±6,7	1,2	99,0±1,5	0,9	90,9±5,7	
1a	Alw ANN N	45,8±1,2	0,6	24,0±0,9	1,2	28,3±0,8	
1b	All ANN ANN ANN ANN ANN ANN ANN ANN ANN	37,0±0,3	0,7	47,3±3,3	0,6	27,5±2,2	
1c		22,3±2,9	0,7	9,3±1,7	1,8	16,4±0,6	
1d		22,9±1,6	1,1	16,7±1,8	1,5	24,6±0,8	
1e	N=N F	69,6±1,5	0,4	38,1±5,7	0,6	23,9±1,4	
1f		*	n.d	*	n.d	*	
1g		*	n.d	*	n.d	*	
1h		30,5±2,1	1,6	29,2±3,6	1,7	48,6±0,6	
1i		*	n.d	*	n.d	*	
1j	where the second	>100	n.d	>100	n.d	>100	
1k	W NH 1	>100	n.d	>100	n.d	>100	
Cinetina	Н	>100	n.d	>100	n.d	>100	
DOXO°		0,7±0,1	0,9	0,9±0,1	0,7	0,6±0,2	

^a DP: desvio padrão; ^b IS: índice de seletividade = IC₅₀ (μM) de células normais/IC₅₀(μM) de células tumorais ^C Doxorrubicina (fármaco de referência); n.d: não determinado; *Composto insolúvel no meio de cultura.

Inicialmente foi analisada a série de derivados da cinetina, composta por doze compostos, sendo um alcino precursor **6** e onze compostos triazólicos **1a-k** (Tabela 5, p.101). Nesta série, sete compostos (**6**, **1a-e** e **1h**) foram ativos e três compostos inativos (**1i-k**). Dentre estes compostos, três (**1f**, **1g** e **1i**) apresentaram-se insolúveis no meio biológico durante os testes. Em geral, os derivados da cinetina apresentaram efeito citotóxico em células tumorais (os valores de IC₅₀ variaram de 22,3-88,3 µM e 9,3-99,0 µM contra MCF-7 e MDA-MB-231, respectivamente), diferente da cinetina que não foi ativa nas concentrações testadas. Isto evidencia que a inserção de grupos no anel purínico da cinetina (R) na posição N9, nesse estudo, induziu a um efeito citotóxico em alguns de seus derivados.

O precursor sintético dos triazóis, o alcino **6**, (IC₅₀ = 76,6±6,7 μ M e IC₅₀ = 99,0±1,50 μ M, respectivamente, para MCF-7 e MDA-MB-231), apresentou baixa citotoxicidade e foi menos citotóxico que a maioria dos compostos, exceto para os compostos **1i-k**. Para avaliar se os substituintes do anel triazólico, na posição N1, contribuem para a atividade foram testados compostos: **1k**, *N*-não substituído; **1j**, *N*-alquilado; e **1a-i**, substituídos com diferentes grupos benzílicos. Comparando os diferentes substituintes percebe-se que o composto **1k**, sem substituinte em N1, não apresentou atividade, o que mostra que a presença de um substituinte em N1 do anel triazólico é importante para a atividade. No entanto, o triazol *N*-alquilado **1j** também não se mostrou ativo. Por outro lado, os compostos triazólicos benzílicos **1a-i**, em sua maioria, apresentaram atividade antiproliferativa contra as linhagens testadas. Dessa forma, é notório que a inserção de grupos benzílicos no anel 1,2,3-triazólico contribuiu para o aumento da atividade dos compostos testados neste ensaio. Esta tendência é observada também em outros compostos de origem natural ou sintética descritos na literatura, da mesma forma, que em alguns casos o composto alquilado é mais ativo que o benzílico.¹⁹⁶

Os triazóis benzílicos **1a-i** possuem diferentes substituintes, tais como, apenas hidrogênio (**1a**), grupos alquílicos (**1b** e **1i**), halogênios **1c-e** e **1g-h**, e metoxila **1f**. Comparando a atividade do triazol benzílico **1a** (sem substituinte) com **1b** e **1i** (alquilados), percebe-se que a presença do grupo metila no composto **1b** conduz um aumento da atividade para a linhagem MCF-7 ($IC_{50} = 45,8\pm1,2 \mu M e IC_{50} = 37,0\pm0,3 \mu M$, respectivamente ,**1a** e **1b**) enquanto para a linhagem MDA-MB-231 ($IC_{50} = 24,0\pm0,9 \mu M e IC_{50} = 47,3\pm3,3 \mu M$, respectivamente ,**1a** e **1b**) ocorre uma redução da atividade.

Comparando as atividades dos quatro triazóis benzílicos halogenados (**1c**-Cl, **1d**-Br, **1e**-F e **1h**-CF₃), percebe-se que os compostos **1c** [IC₅₀ = 22,3±2,9 μ M (MCF-7) e IC₅₀ = 9,3±1,7

¹⁹⁶ Xu, Z.; Zhao, S. J.; Liu, Y. 1, 2, 3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. *Eur. J. of Med. Chem.*, **2019**, 183, 111700.

 μ M (MDA-MB-231)] e **1d** [IC₅₀ = 22,9±1,6 μM (MCF-7) e IC₅₀ = 16,7±1,8 μM (MDA-MB-231)] são mais ativos que os compostos **1e** [IC₅₀ = 69,6±1,5 μM (MCF-7) e IC₅₀ = 38,1±5,7 μM (MDA-MB-231)] e **1h** [IC₅₀ = 30,5±2,1 μM (MCF-7) e IC₅₀ = 29,2±3,6 μM (MDA-MB-231)] com relação as células tumorais. Observa-se ainda que os compostos **1c** (IS = 1,8), **1d** (IS = 1,5) e **1h** (IS = 1,7) apresentaram índices de seletividade superior ao composto **1e** (IS = 0,6). Além disso, os compostos **1c** e **1d** são mais ativos que os demais derivados da cinetina, mostrando a importância da inserção desses átomos (CI e Br) para a melhoria da atividade biológica nesse ensaio. Dentre esses dois compostos, o composto **1c** é o mais ativo frente a linhagem MDA-MB-231 do que a MCF-7, além da linhagem MDA-MB-231 ser uma linhagem de câncer de mama mais agressiva que a MCF-7, pode-se concluir que o composto **1c** apresentou o melhor resultado nos testes. Normalmente os compostos halogenados são os mais ativos, principalmente contendo o átomo de flúor, verifica-se que a presença desses átomos em vários fármacos devido a capacidade de estabelecer ligações intermoleculares de forma semelhante às ligações de hidrogênio.¹⁹⁷⁻¹⁹⁸

A série de derivados da adenina é composta por doze compostos, sendo um alcino **7** e onze compostos triazólicos **2a-k** (Tabela 6, p.104). Nesta série dois compostos (**2f** e **2g**) foram insolúveis no meio biológico durante os testes. Analisando os resultados obtidos percebe-se que apenas o composto **2a** se mostrou ativo e apresentou uma baixa citotoxicidade, próxima a concentração máxima utilizada no ensaio. Isto sugere que o anel furânico, presente na cinetina, contribui para a atividade dos derivados desta. Isto fica evidenciado quando se compara um derivado da cinetina com outro da adenina, por exemplo, os compostos **1a** (IC₅₀ de 45,8 ± 1,2 µM para MCF-7) e **2a** (97,4 ± 4,0 µM para MCF-7) percebe-se que **2a** é menos ativo que **1a.** Em outras publicações na literatura também foi observado que adenina sem substituinte no grupo NH₂ apresenta baixa citotoxicidade.¹⁹⁹

¹⁹⁷ Hernandes, M. Z.; Cavalcanti, S. M. T.; Moreira, D. R. M.; de Azevedo Junior, W. F.; Leite, A. C. L. Halogen atoms in the modern medicinal chemistry: hints for the drug design. *Curr. drug targets*, **2010**, 11, 303-314.

¹⁹⁸ Kadayat, T. M.; Park, S.; Jun, K. Y.; Magar, T. B. T.; Bist, G.; Shrestha, A. Na, Y.; Known, Y.; Lee, E. S. Effect of chlorine substituent on cytotoxic activities: Design and synthesis of systematically modified 2, 4-diphenyl-5H-indeno [1, 2-b] pyridines. Bioorg. & Med. Chem. Lett., **2016**, 26, 1726-1731.

¹⁹⁹ Halay, E.; Ay, E.; Şalva, E.; Ay, K.; Karayıldırım, T. Syntheses of 1, 2, 3-triazole-bridged pyranose sugars with purine and pyrimidine nucleobases and evaluation of their anticancer potential. *Nucleosides, Nucleotides Nucleic Acids*, **2017**, 36, 598-619.

			N N				
		 IC ₅₀ ± DP ^a (μΜ)					
Compostos	R		Células				
		MCF-7	IS⁵	MDA-MB-231	IS⁵	MCF-10	
7	22	>100	n.d	>100	n.d	>100	
2a	where the second	97,4±4,0	1,0	>100	n.d	>100	
2b	AN=N N	>100	n.d	>100	n.d	>100	
2c		>100	n.d	>100	n.d	>100	
2d		>100	n.d	>100	n.d	>100	
2e	N=N F	>100	n.d	>100	n.d	>100	
2f	MW N N OCH3	*	n.d	*	n.d	*	
2g	M 4 N=N OCF3	*	n.d	*	n.d	*	
2h	ALW A N N CF3	>100	n.d	>100	n.d	98,70±0,6	
2i	ALVAN ANN ANN ANN ANN ANN ANN ANN ANN ANN	>100	n.d	>100	n.d	>100	
2j	www.and N=N	>100	n.d	>100	n.d	>100	
2k	www. 4 N=N ¹	>100	n.d	>100	n.d	>100	
DOXO°		0,7±0,1	0,9	0,9±0,1	0,7	0,6±0,2	

Tabela 6. Atividade citotóxica, expressa em IC₅₀ (μ M \pm DP) e índice de seletividade, dos derivados da adenina 2 e 2a-k obtidas pelo ensaio de MTT para as linhagens celulares MCF-7, MDA-MB-231 (tumorais) e MCF-10 (normais)

^a DP: desvio padrão; ^b IS: índice de seletividade = IC₅₀ (μM) de células normais/IC₅₀(μM) de células tumorais ^C Doxorrubicina (fármaco de referência)

n.d: não determinado

*Composto insolúvel em meio de cultura.

3.4 Conclusões e Perspectivas

Neste capítulo, foi possível avaliar a citotoxicidade de 24 compostos pelo ensaio com MTT frente a duas linhagens de células tumorais de câncer de mama (MCF-7 e MDA-MB-231) e uma linhagem de célula não tumoral (MCF-10A). A partir dos resultados de IC₅₀ obtidos, podemos identificar os principais grupos farmacofóricos importante para atividade dos compostos, baseando principalmente na diferença de atividade entre a cinetina e seus derivados 1a-k e com os derivados de adenina 2a-k. Assim, observou-se que a cinetina não apresenta efeito citotóxico e que os seus derivados foram mais ativos que os derivados da adenina. Isto evidencia que modificações na estrutura da cinetina foram importantes para induzir a uma atividade citotóxica, principalmente a inserção de triazólicos benzílicos. No entanto, apenas a presença desses grupos não foi o suficiente para induzir os mesmos efeitos citotóxicos para os derivados da adenina, sugerindo que o anel furânico da cinetina e seus derivados também contribui para a atividade observada. Além disso, entre os derivados da cinetina percebeu-se que os compostos que apresentam em sua estrutura os átomos de cloro **1c** [p-Cl: $IC_{50} = 22,3\pm2,9 \ \mu\text{M}$ (MCF-7) e $IC_{50} = 9,3\pm1,7 \ \mu\text{M}$ (MDA-MB-231)] e bromo **1d** [p-Br: $IC_{50} = 22,9\pm1,6 \mu M$ (MCF-7) e $IC_{50} = 16,7\pm1,8 \mu M$ (MDA-MB-231)] foram os mais ativos para linhagem MCF-7 e o composto 1c foi o mais ativo para a linhagem MDA-MB-231, mais agressiva. Portanto, nesse estudo foi possível identificar os grupos farmacofóricos que contribuíram para atividade dos compostos, como o anel furânico, o anel benzílico e os átomos de cloro e bromo, principalmente o cloro.

4 Parte Experimental

4.1 Equipamentos

Os espectros de Ressonância Magnética Nuclear de ¹H, ¹³C, DEPT, e os mapas de correlação COSY, HSQC e HMBC foram obtidos pelo espectrômetro de RMN Bruker AVANCE-III 400 Nanobay ou AVANCE NEO 600 ou AVANCE DPX 200. Utilizou-se como referência interna o resíduo do solvente deuterado ou o tetrametilsilano. Os espectros na região do infravermelho foram obtidos no espectrômetro Perkin Elmer FT-IR de feixe duplo em pastilha de KBr anidro. Os espectros de massas de alta resolução foram obtidos pela infusão direta de uma solução metanoica (~ 50 ppm) em uma fonte H-ESI, operando em modo positivo (condições: modo full scan, spray voltagem 4.0 kV, resolução 70000, fluxo de 20 µLmin-1, gás de bainha 12, temperatura do capilar 300°C, temperatura do gás auxiliar 37oC, s-lens 55) no espectrômetro QExactive (ThermoScientific) do Centro Regional para o Desenvolvimento Tecnológico e Inovação da UFG. As faixas de fusão foram determinadas no aparelho digital de ponto de fusão Microquímica MQAPF-302. As reações sob irradiação por micro-ondas foram realizadas no reator CEM Discover e as demais em chapas de aquecimento com agitação magnética.

4.2 Materiais

Os solventes hexano, acetato de etila, DCM, DMF e tolueno foram tratados para remoção de impurezas conforme Perrin e colaboradores.²⁰⁰ As purificações em coluna cromatográfica foram realizadas em sílica gel (SiliCycle 0,060 – 0,200 mm, diâmetro de poro de 6 nm).

²⁰⁰ Perrin, D. D.; Armarego, W. L. F. *Purification of laboratory chemicals,* 4^a edição, Oxford, Butterworth-Heinemann, **2000**.

4.3 Síntese, purificação e caracterização

4.3.1 Síntese dos alcinos 6, 7 e 28

4.3.1.1 Síntese do alcino 6 (Adaptado de Mik et al., 2011)

Em um balão de fundo redondo (50 mL) foram adicionados cinetina (1,0 g, 4,32 mmol), carbonato de potássio (1,28 g, 9,28 mmol) e 14 mL de DMSO. Em seguida adicionou-se, gota a gota, 1,0 mL de brometo de propargila (9,28 mmol). A mistura reacional foi mantida sob agitação em temperatura ambiente, por 20 horas. O término da reação foi verificado por CCD. A mistura reacional foi vertida em gelo e o produto extraído com acetato de etila (3 x 20 mL) e a fase orgânica seca com Na₂SO₄. O solvente da fase orgânica foi removido sob pressão reduzida. O resíduo foi purificado em coluna com sílica gel, com gradiente de hexano e acetato de etila (80:20, 70:30, 50:50, 40:60, 0:100), obtendo-se um sólido amarelo claro com 91% de rendimento, como mostrado no Quadro 4 (p.108).

4.3.1.2 Síntese do alcino 7 (Adaptado de Prajapati et al., 2010)

Em um balão de fundo redondo (50 mL) foram adicionados adenina (0,5 g, 3,7 mmol) e carbonato de potássio (1,022 g, 7,4 mmol) e 7,5 mL de DMF anidro. A mistura reacional foi deixada, sob atmosfera de N₂, agitando magneticamente por 30 minutos. Em seguida adicionou-se, gota a gota, 0,660 mL de brometo de propargila (3,7 mmol). A mistura reacional foi mantida sob agitação em temperatura ambiente, por 16 horas. O término da reação foi verificado por CCD. A mistura reacional foi filtrada para retirada do sólido residual, e o solvente foi removido sob pressão reduzida. O resíduo obtido foi purificado em coluna com sílica gel, com gradiente de diclorometano e metanol (100:0, 99:01, 97:03, 95:05), obtendo-se um sólido amarelo claro com 89% de rendimento, como mostrado no Quadro 4 (p.108).
4.3.1.3 Síntese do alcino 27 (Adaptado Hradilová et al., 2012)

Em um balão de fundo redondo (50 mL) foram adicionados ácido *p*-aminobenzóico (2,0 g, 14,6 mmol), carbonato de potássio (1,47 g, 10,7 mmol) e 15 mL de DMF, a mistura foi mantida sob refluxo por cinco minutos. Em seguida adicionou-se, gota a gota, 1,14 mL de brometo de propargila (10,6 mmol). A mistura reacional foi mantida, por 2 horas, sob agitação magnética a 80°C. O fim da reação foi verificado por CCD. A mistura reacional foi vertida em gelo e o produto extraído com acetato de etila (3 x 30 mL) e a fase orgânica seca com Na₂SO₄. O solvente da fase orgânica foi removido sob pressão reduzida. O resíduo purificado em coluna de sílica gel, com gradiente de hexano e acetato de etila (100:0, 80:20, 70:30), obtendo-se um sólido amarelo com 93% de rendimento, como mostrado no Quadro 4.

Compostos	(6) (6) (6) (0) (0) (0) (0) (0) (0) (0) (0	(7) NH2 N N N N N N N N N N N N N N N N N N	(27) O H₂N 4-aminobenzoato de propargil
FM	C13H11N5O	C ₈ H ₇ N ₅	C ₁₀ H ₉ NO ₂
MM (g mol ⁻¹)	253,27	173,18	175,19
Aspecto físico	sólido amarelo claro	sólido amarelo claro	sólido amarelo
FF (ºC)	147,2-150,2	209,5-212,4 (209-210 °C de acordo Prajapati et al., 2010)	94-96,8 (93-95 °C de acordo Hradilová et al., 2012)
Solubilidade	metanol, clorofórmio, DMSO	metanol, DMSO	metanol, clorofórmio, DMSO
Rend. (%)	91	89	93
IV (KBr, ⊽, cm ⁻¹)	3270 (v -C≡C-H), 2122 (v C≡C), 1634 (v C=C ou C=N),1330 (v C _{Aromático} -NH)	3274 (v _{as} NH ₂), 3248 (v -C≡C-H), 3146 (v _s NH ₂), 2112 (v C≡C), 1692 (v C=C ou C=N),1338 (v C _{Aromático} - NH)	3432 (v _{as} NH ₂), 3336 (v _s NH ₂), 3290 (v -C≡C-H), 2126 (v C≡C), 1696 e 1596 (v C=C ou C=O),1274 (v C _{Aromático} - NH)
EMAR (ESI+) (m/z)	[M+H]⁺ encontrada: 254,10303, massa calculada para [C ₁₃ H ₁₁ N₅O]⁺: 254,10364.	[M+H]⁺ encontrada: 174,07724, massa calculada para [C ₈ H ₇ N₅]⁺: 174,07742	-

Quadro 4. Dados físico-químicos e espectrométricos referentes aos alcinos, 6,7 e 27

Observação: Os espectros encontram-se no Anexo B (p.164) e os dados de RMN no Anexo A (p.146).

4.3.2 Síntese do ácido 1,2,3-tiadiazol-5-carboxílico

4.3.2.1 Síntese da semicarbazona 15 (Adaptado de Wang et al., 2016 e Shirode et al., 2015)

Em um balão de fundo redondo (100 mL) solubilizaram-se 4,1 mL de 3,3dietoxipropionato em 5 mL de THF. Em seguida foram adicionados, com a ajuda de um funil de adição, 20 mL de uma solução de HCl 4 mol/L a 0°C. Após a adição, a mistura reacional foi mantida sob agitação magnética em temperatura ambiente, por 8 horas. Em seguida a mistura reacional foi extraída com éter etílico (3 x 20 mL). A fase orgânica foi seca com MgSO₄ e o solvente removido sob pressão reduzida. O aldeído correspondente foi obtido, comparado por CCD com o material de partida e utilizado na próxima etapa. Assim, em um balão de fundo redondo (50 mL) solubilizaram-se a semicarbazida (1,81 g, 15,6 mmol) e NaOAc (3,12 g, 39 mmol) em 8 mL de água. Em seguida foi adicionado, gota a gota, 1,76 g de 3-oxopropanoato de etila, a 0°C. A mistura reacional foi mantida sob agitação em temperatura ambiente, por 30 min. Foi observado a formação de um precipitado branco. O precipitado foi lavado com água e filtrado sob vácuo, obtendo-se um sólido branco com 48% de rendimento, como mostrado no Quadro 5 (p.110).

4.3.2.2 Síntese do éster 16 (Adaptado de Shafiee et al., 1997)

Em um balão de fundo redondo (25 mL) solubilizou-se a semicarbazona **15** (0,247 g, 1,42 mmol) em 5 mL de clorofórmio. Em seguida adicionou-se, gota a gota, 0,413 mL de cloreto de tionila, a 0°C. A mistura reacional foi mantida sob agitação magnética a 0°C, por 30 minutos e, em seguida em temperatura ambiente por 15 horas. O desenvolvimento da reação foi acompanhado por CCD. Em seguida a reação foi neutralizada com solução saturada de NaHCO₃ gelada e extraída com CHCl₃ (3 x 10 mL). A fase orgânica foi seca com Na₂SO₄ e o solvente removido sob pressão reduzida. Obteve-se um óleo amarelo com 66% de rendimento, como mostrado no Quadro 5 (p.110).

4.3.2.3 Síntese do ácido 17 (Adaptado de Schnatbaum et al., 2010)

Em um balão de fundo redondo (25 mL) solubilizou-se o éster 16 (0,210 g, 1,33 mmol) em 1 mL de acetonitrila. Em seguida foi adicionado 0,210 mL de uma solução de LiOH 1M em água. A mistura reacional foi mantida sob agitação magnética em temperatura ambiente, por 2 horas. O desenvolvimento da reação foi acompanhado por CCD. Em seguida o solvente foi removido sob pressão reduzida, o resíduo foi tratado com solução 1M de HCI para pH 4-5 e extraído com acetato de etila (3 x 10 mL). A fase orgânica foi seca com Na₂SO₄ e o solvente removido sob pressão reduzida. Obteve-se um óleo amarelo com 63% de rendimento, como mostrado no Quadro 5.

Compostos	(15) H ₂ N N N O H₂N H N N H 2-(carbamoilidrazono)- propanoato de etila	(16) N S O 1,2,3-tiadiazol-5- carboxilato de etila	(17) N s o ácido 1,2,3-tiadiazol- 5-carboxílico
FM	$C_6H_{11}N_3O_3$	$C_5H_6N_2O_2S$	$C_3H_2N_2O_2S$
MM (g mol ⁻¹)	173,172	158,17	130,12
Aspecto físico	sólido branco	óleo amarelo	óleo amarelo
FF (ºC)	145,6-148,9	-	-
Solubilidade	clorofórmio, metanol, DMSO	diclorometano, clorofórmio, DMSO	diclorometano, clorofórmio, DMSO
Rend. (%)	48	66	63

Quadro 5. Dados físico-químicos e espectrométricos relacionados aos compostos 15-17

Observação: Os espectros de RMN de ¹H encontram-se no Anexo B (p.164).

4.3.3 Síntese da 1,2,3-tiadiazolecarbonil azida

4.3.3.1 Síntese do carbazato de etila (Adaptado de Liu et al., 2012)

Em um balão de fundo redondo (50 mL) foram adicionados carbonato de dietila (10 mL, 82,53 mmol) e 3,3 mL de uma solução de hidrazina hidratada 80% (78,40 mmol). A mistura reacional foi mantida sob agitação magnética a 70°C, por 30 minutos e, em seguida em temperatura ambiente por 15 horas. O solvente foi removido sob pressão reduzida, obtendose um sólido branco com 80% de rendimento, como mostrado no Quadro 6 (p.112).

Em um balão de fundo redondo (50 mL) solubilizou-se carbazato de etila (1,0 g, 1,1 mmol) em 5 mL de tolueno. Em seguida foi adicionado, gota a gota, 0,0978 g de ácido pirúvico. A mistura reacional foi mantida sob agitação magnética em temperatura ambiente, por 15 horas. Foi observado a formação de precipitado amarelo claro. O precipitado foi filtrado sob vácuo, obtendo-se um sólido amarelo claro com 98% de rendimento, como mostrado no Quadro 6 (p.112).

4.3.3.2 Síntese do ácido 25 (Adaptado de Hurd et al., 1955)

Em um balão de fundo redondo (100 mL) solubilizou-se o composto **24** (1,89 g, 10,8 mmol) em 20 mL DCM anidro. Em seguida foram adicionados, gota a gota, 3,14 mL de cloreto de tionila. A mistura reacional foi mantida sob agitação magnética a 45°C, por 15 horas. O desenvolvimento da reação foi acompanhado por CCD. A reação foi finalizada com a adição de acetato de etila a 0°C e foi observado a formação de um precipitado amarelo. O precipitado foi filtrado sob vácuo, obtendo-se um sólido amarelo com 61% de rendimento, como mostrado no Quadro 6 (p.112).

4.3.3.3 Síntese da azida 26 (Adaptado de Ambade et al., 2001)

Em um balão de fundo redondo (100 mL) dissolveu-se o ácido 1,2,3-tiadiazol-4carboxílico (1,30 g, 0,01 mmol) em 15 mL de acetona anidra. Em seguida, a 0°C, foram adicionados, gota a gota, a solução de 1,7 mL de trietilamina em 5 mL de acetona anidra e a solução de 1,3 mL de cloroformiato de etila em 5 mL de acetona anidra. A reação foi mantida sob agitação magnética, a 0°C, por 45 minutos. O término da reação foi verificado por CCD. Em seguida, adicionou-se, gota a gota, a solução de 1,20 g de NaN₃ em 4 mL de água destilada. A mistura reacional foi mantida sob agitação magnética em temperatura ambiente, por 2 horas. A formação do produto foi verificada por CCD. Logo em seguida, a mistura reacional foi vertida em solução saturada de NaCl gelada e o produto extraído com éter etílico (3 x 20mL) e a fase orgânica seca com MgSO₄. O solvente da fase orgânica foi removido sob pressão reduzida, obtendo-se um sólido amarelo claro com 78% de rendimento, como mostrado no Quadro 6.

Compostos	(22) ○ N [/] NH ₂ H carbazato de etila	(24) O O N N H O O O N O O O O O O O O O O O O O	(25) N=N OH ácido 1,2,3- tiadiazol-4- carboxílico	(26) N [≤] N O S N ₃ 1,2,3-tiadiazol- 4-carbonil azida
FM	C ₃ H ₈ N2O ₂	$C_6H_{10}N_2O_4$	$C_3H_2N_2O_2S$	C₃HN₅OS
MM (g mol⁻¹)	104,11	174,16	130,12	155,14
Aspecto físico	sólido branco	sólido amarelo claro	sólido amarelo	sólido amarelo claro
FF (ºC)	44,9-46,1 (44- 45°C de acordo com Hurd et al., 1955)	213,8-215,1 (215 de acordo com Shirode et al., 2015)	Sublima a 190°C (sublima a 190 °C de acordo com Hurd et al., 1955)	95,1-97,9
Solubilidade	acetato de etila, água, clorofórmio, DMSO	acetato de etila, clorofórmio, metanol, DMSO	diclorometano, clorofórmio, DMSO	acetona, água, DMSO
Rend. (%)	80	98	61	78
Ⅳ (KBr, ⊽, cm ⁻¹)	-	-	-	3094 (v =C-H), 2926 (v C-H), 2184 e 2154 (v N ₃), 1686 (v C=O)

Quadro 6. Dados físico-químicos	e espectrométricos	referentes aos	compostos 22-26
---------------------------------	--------------------	----------------	-----------------

Observação: Os espectros de RMN de ¹H encontram-se no Anexo B (p.164).

4.3.4 Síntese das benzilazidas 8a-i (Adaptado de Freitas et al., 2014)

Em um balão de fundo redondo (50 mL) foram adicionados álcool benzílico correspondente (3 mmol) e 4 mL de uma solução aquosa HBr (47% p/p). O balão foi colocado no reator de micro-ondas e conectou-se um condensador de refluxo. A mistura foi aquecida a

80 °C, por 8 minutos (potência: 100 Watts; tempo de rampa: 1 min.; tempo de reação: 8 min; sem pressão), até completo consumo do material de partida. Em seguida a mistura reacional foi neutralizada com solução saturada de NaHCO₃ e extraída com DCM (3 x 10 mL). A fase orgânica foi seca com MgSO₄ e o solvente removido sob pressão reduzida. O produto bromado correspondente foi obtido e prosseguiu para a próxima etapa. Assim, em um balão de fundo redondo (50 mL) foram adicionados o produto bromado e a solução de 0,5 mol L⁻¹ de NaN₃ em DMSO (7,8 mL, 3,9 mmol). A mistura foi mantida sob agitação em temperatura ambiente, por 17 horas. À mistura reagente adicionou-se água gelada e extraiu-se com CH₂Cl₂ (3 x 20 mL). A fase orgânica foi seca com MgSO₄ e o solvente removido sob pressão reduzida. O resíduo foi filtrado em coluna com sílica gel, utilizou hexano como eluente, para se eliminar o DMSO residual. Foram obtidos óleos com rendimentos que variaram de 27 a 98%, como mostrado no Quadro 7.

	(8a)	(8b)	(8c)
Compostos			CI
Composios	N ₃	N ₃	N ₃
	Benzilazida	4-Metilbenzilazida)	4-Clorobenzilazida
FM	C7H7N3	C ₈ H ₉ N ₃	C7H6CIN3O
MM (g mol ⁻¹)	133,15	147,18	167,60
Aspecto físico	Líquido incolor	Líquido incolor	Líquido incolor
Solubilidade	Diclorometano	Diclorometano	Diclorometano
Rend. (%)	27	74	100
	1		Ι
	(8d)	(8e)	(8f)
Commontos	Br	F	H ₃ CO
Compostos	N ₃	N_3	
	4-Bromobenzilazida	4-Fluorobenzilazida	4-Metoxibenzilazida
FM	C ₇ H ₆ BrN ₃	C7H6FN3	C ₈ H ₉ N ₃ O
MM (g mol ⁻¹)	212,05	151,14	163,18
Aspecto	Líquido incolor		
físico			
Solubilidade	Diclorometano	Diclorometano	Diclorometano
Rend. (%)	50	98	43
	Γ	I.	
	(8g)	(8h)	(81)
	F ₃ CO	F ₃ C	
Compostos	N ₃	N ₃	
	4 -	4-	
	(Trifluorometoxi)benzilazida	(Trifluorometil)benzilazida	4- Isopropilbonzilazida
EM		C.H.E.N.	
MM (a mol-1)			175 24
	217,15	201,15	175,24
físico	Líquido incolor	Líquido incolor	Líquido incolor
Solubilidade	Diclorometano	Diclorometano	Diclorometano
Rend. (%)	45	50	35

Quadro 7. Dados físico-químicos e espectrométricos referentes às azidas 8a-i

Observação: Os espectros de RMN de ¹H encontram-se no Anexo B (p.168).

4.3.4 Síntese dos derivados triazólicos

4.3.4.1 Síntese dos derivados triazólicos benzílicos (Adaptado de Kapadiya et al., 2018)

Procedimento geral:

Em um balão de fundo redondo (15 mL) solubilizou-se o alcino correspondente (6, 7 e 27) (0,40 mmol) em 4 mL de uma solução THF (ou CHCl₃) em H₂O, na proporção 1:1. Em seguida foram adicionados CuSO₄.5H₂O (0,02 g, 0,08 mmol), ascorbato de sódio (0,03 g, 0,16 mmol) e, gota a gota, uma solução da azida correspondente [8a-i] (0,60 mmol) em 2mL de THF. A mistura foi mantida sob agitação em temperatura ambiente, por 15 horas. O desenvolvimento da reação foi acompanhado por CCD. Após término da reação, a mistura foi extraída com acetato de etila (3 x 10 mL) e lavada com uma solução de EDTA 50% m/v em NH₄OH concentrado, na proporção 1:1 (1 x 5 mL). A fase orgânica foi seca com Na₂SO₄ anidro e o solvente foi removido sob pressão reduzida. O resíduo purificado em coluna de sílica gel, com gradiente de hexano e acetato de etila (80:20, 50:50, 40:60, 0:100) obtendo-se sólidos com rendimentos que variaram de 45 a 100%, como mostrado nos Quadro 8 (p.116), Quadro 9 (p.119) e Quadro 10 (p.122).

4.3.4.2 Síntese dos derivados triazólicos N-butílicos (Adaptado de Paulino, 2020)

Procedimento geral:

Em um tubo selado foram solubilizados o bromobutano (0,064 mL, 0,60 mmol) e a azida de sódio (0,513 g, 0,80 mmol) em 3 mL de DMF. A mistura reacional foi mantida sob agitação em temperatura ambiente, por 24 horas. Após esse tempo foram adicionados à

mistura o alcino correspondente (6-7) (0,40 mmol), sulfato de cobre (0,02 g, 0,08 mmol) e ascorbato de sódio (0,03 g, 0,16 mmol), cada um dissolvido em 1mL de água. Assim, novamente a mistura submetida a agitação em temperatura ambiente por mais 24 horas. No final desse tempo foram adicionados à mistura 2 mL de solução de EDTA 50% m/v e NH₄OH concentrado, na proporção 1:1, por 10 min. A mistura foi extraída com acetato de etila (3 x 10 mL), a fase orgânica seca com Na₂SO₄ anidro e o solvente removido sob pressão reduzida. O resíduo purificado em coluna de sílica gel, com gradiente de hexano e acetato de etila (80:20, 50:50, 0:100) obtendo-se sólidos com rendimentos que variaram de 71 a 83%, como mostrado nos Quadro 8 (p.116) e Quadro 9 (p.119).

4.3.4.3 Síntese dos derivados triazólicos N-não substituídos (Adaptado de Jin et al., 2004 e Wen et al., 2019)

Procedimento geral:

Em um tubo selado foram solubilizados o alcino correspondente (6-7) (0,20 mmol) e o sulfato de cobre (5 mg, 0,02 mmol) em 1 mL de DMF/MeOH (ou DMF/H₂O), na proporção 9:1. A mistura foi submetida a agitação magnética em atmosfera de N₂, por 5 min. Em seguida, foram adicionados à mistura a azida de trimetilsilila (53 μ L, 0,40 mmol) e ascorbato de sódio (8 mg, 0,04 mmol). A mistura reacional foi submetida a agitação, a 90°C, por 24 horas. No final desse tempo foram adicionados à mistura 2 mL de solução de EDTA 50% m/v e NH₄OH concentrado, na proporção 1:1. A mistura foi extraída com acetato de etila (3 x 10 mL), a fase orgânica seca com Na₂SO₄ anidro e o solvente foi removido sob pressão reduzida. O resíduo foi purificado em coluna de sílica gel, com gradiente de hexano e acetato de etila (70:30, 50:50, 0:100) e acetato de etila e metanol (90:10, 50:50), obtendo-se sólidos com rendimentos que variaram de 49 a 63%, como mostrado nos Quadro 8 (p.116) e Quadro 9 (p.119).

Quadro 8. Dados físico-químicos e espectrométricos relacionados aos derivados triazólicos da cinetina 1a-k

Continuação do Quadro 8

	(1e)	(1f)	(1g)	(1h)
Composto	R ₁ N=N F	R1 N=N OCH3	R1 N=N OCF3	R ₁ N=N CF ₃
	6-furfurilamino-9-((1-(4-	6-furfurilamino-9-((1-(4-	6-furfurilamino-9-((1-(4-	6-furfurilamino-9-((1-(4-
	fluorobenzil)-1 <i>H</i> -1,2,3-triazol-	metoxibenzil)-1 <i>H</i> -1,2,3-	(trifluorometoxi)benzil)-1 <i>H</i> -	(trifluorometil)benzil)-1 <i>H</i> -
	4-il)metil)-purina	triazol-4-II)metII)-purina	1,2,3-triazol-4-il)metil)-purina	1,2,3-triazol-4-il)metil)-purina
FM	C ₂₀ H ₁₇ FN ₈ O.	$C_{21}H_{20}N_8O_2$	C ₂₁ H ₁₇ F ₃ N ₈ O ₂	C ₂₁ H ₁₇ F ₃ N ₈ O
MM (g mol ⁻¹)	404,41	416,45	470,42	454,42
Aspecto físico	sólido branco	sólido branco	Sólido branco	Sólido branco
FF (ºC)	167,0-169,7	99,5-102,5	149,9-151,0	165,7-167,5
Solubilidade	DMSO e metanol	DMSO e metanol	DMSO e metanol	DMSO e metanol
Rend. (%)	98	98	51	57
IV (KBr, ⊽, cm⁻¹)	3448 (v N-H), 1630 (v C=C ou C=N),1340 (v C _{Aromático} -NH), 752 (γ C _{Aromático} -H), 640 (δ C-F)	3410 (ν N-H), 1630 (ν C=C ou C=N), 754 (γ C _{Aromático} -H)	3414 (ν N-H), 1630 (ν C=C ou C=N), 1260 (ν C-F), 752 (γ C _{Aromático} -H)	3432 (v N-H), 1622 (v C=C ou C=N), 1330 (v C-F)
EMAR (ESI⁺) (m/ <i>z</i>)	[M+H] ⁺ encontrada: 405,15750, massa calculada para [C ₂₀ H ₁₇ FN ₈ O] ⁺ : 405,15821	[M+H]⁺ encontrada: 417,17673, massa calculada para [C ₂₁ H ₂₀ N ₈ O ₂]⁺ : 417,17820	[M+H] ⁺ encontrada: 471,14847, massa calculada para [C ₂₁ H ₁₇ F ₃ N ₈ O] ⁺ : 471,14993.	[M+H] ⁺ encontrada: 455,15436, massa calculada para [C ₂₁ H ₁₇ F ₃ N ₈ O] ⁺ : 455,15502.

Continuação do Quadro 8

Composto	(1i) R ₁ N=N 6-furfurilamino-9-((1-(4- isopropilbenzil)-1 <i>H</i> -1,2,3- triazol-4-il)metil)-purina	(1j) R ₁ N=N 6-furfurilamino-9-((1-butil- 1 <i>H</i> -1,2,3-triazol-4-il)metil)- purina	(1k) R₁ _ NH N≃Ń 6-furfurilamino-9-((1 <i>H</i> -1,2,3- triazol-4-il)metil)-purina
FM	C ₂₃ H ₂₄ N ₈ O	C17H20N8O	C ₁₃ H ₁₂ N ₈ O
MM (g mol⁻¹)	428,50	352,40	296,29
Aspecto físico	Sólido branco	Sólido branco	Sólido branco
FF (ºC)	149,0-150,2	142,9-143,8	192,5-193,8
Solubilidade	DMSO e metanol	DMSO e metanol	DMSO e metanol
Rend. (%)	72	71	95
IV (KBr, ⊽, cm ⁻¹)	3414 (v N-H), 2962 (v CH ₃), 1626 (v C=C ou C=N),1340 (v C _{Aromático} -NH), 750 (γ C _{Aromático} -H)	3268 (ν N-H), 3128 (ν C=C- H), 2958 (ν CH ₃), 1626 (ν C=C ou C=N),1484 (δ CH ₂), 752 (γ C _{Aromático} -H)	3424 (ν N-H), 1628 (ν C=C ou C=N),1340 (ν C _{Aromático} -NH), 744 (γ C _{Aromático} -H)
EMAR (ESI ⁺) (m/ <i>z</i>)	[M+H] ⁺ encontrada: 429,21399, massa calculada para [C ₂₃ H ₂₄ N ₈ O] ⁺ : 429,21458	[M+H] ⁺ encontrada: 353,18298, massa calculada para [C ₁₇ H ₂₀ N ₈ O] ⁺ : 353,18328	[M+H] ⁺ encontrada: 297,12024, massa calculada para [C ₁₃ H ₁₂ N ₈ O] ⁺ : 297,12068.

Observação: Os espectros dos compostos encontram-se no Anexo B (p.172) e os quadros relacionados a atribuição de sinais dos espectros de RMN ¹H e ¹³C no Anexo A (p.146)

	$NH_2 Adenina = R_1$ $N + N + N$ $N + N + N + N$ $N + N + N + N + N$ $N + N + N + N + N$ $N + N + N + N + N$	$= \underbrace{\mathbf{R}_{1}}_{\mathbf{N}=\mathbf{N}} \cdot \mathbf{R} \cdot \mathbf{R} = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	(i) (i) (k) $R_2 = H$ (i) $R_2 = OCH_3$ $R_2 = CH_3$ (i) $R_2 = OCF_3$ $R_2 = CH_3$ (i) $R_2 = OCF_3$ $R_2 = CH_3$ (i) $R_2 = CF_3$ $R_2 = Br$ (i) $R_2 = C_3H_7$ $R_2 = F$	
Composto	(2a) R ₁ N=N	(2b) R ₁ N=N		(2d) R ₁ N=N Br
	9-((1-benzil-1 <i>H</i> -1,2,3-	9-((1-(4-metilbenzil)-1 <i>H</i> -	9-((1-(4-clorobenzil)-1 <i>H</i> -	9-((1-(4-bromobenzil)-
	triazol-4-il)metil)-	1,2,3-triazol-4-il)metil)-	1,2,3-triazol-4-il)metil)-	1 <i>H</i> -1,2,3-triazol-4-
	adenina	adenina	adenina	il)metil)-adenina
FM	C15H14N8	C16H16N8	C ₁₅ H ₁₃ CIN ₈	C ₁₅ H ₁₃ BrN ₈
MM (g mol ⁻¹)	306,33	320,36	340,78	385,23
Aspecto físico	sólido branco	sólido branco	sólido amarelo claro	sólido amarelo claro
FF (°C)	183,6-185,3	208,0-211,5	Degrada em 265,2	212,8-215,0
Solubilidade	DMSO e metanol	DMSO e metanol	DMSO e metanol	DMSO e metanol
Rend. (%)	92	98	88	64
IV (KBr, ⊽, cm ⁻¹)	3272 (v _{as} NH ₂), 3146 (v _s NH ₂), 1694 (v C=C ou C=N),1342 (v C _{Aromático} - NH ₂), 728 (γ C _{Aromático} -H)	3394 (v _{as} NH ₂), 3330 (v _s NH ₂), 1664 (v C=C ou C=N),1300 (v C _{Aromático} - NH ₂), 772 (γ C _{Aromático} -H)	3404 (v _{as} NH ₂), 3186 (v _s NH ₂), 1664 (v C=C ou C=N),1302 (v C _{Aromático} - NH ₂), 788 (γ C _{Aromático} -H)	3400 (v _{as} NH ₂), 3186 (v _s NH ₂), 1664 (v C=C ou C=N),1336 (v C _{Aromático} - NH ₂), 784 (γ C _{Aromático} -H) 644 (δ C-Br)
	[M+H] ⁺ encontrada:	[M+H] ⁺ encontrada:	[M+H] ⁺ encontrada:	[M+H] ⁺ encontrada:
HRMS (ESI⁺)	307,14029, massa	321,15646, massa	341,10187, massa	385,05081, massa
(m/ <i>z</i>)	calculada para	calculada para	calculada para	calculada para
	[C ₁₅ H ₁₄ N ₈] ⁺ : 307,14142	[C ₁₆ H ₁₆ N ₈] ⁺ : 321,15707	[C ₁₅ H ₁₃ CIN ₈] ⁺ : 341,10245.	[C15H13BrN8]+: 385,05193

Quadro 9. Dados físico-químicos e espectrométricos relacionados aos derivados triazólicos da adenina 2a-k

Continuação do Quadro 9

	(2e)	(2f)	(2g)	(2h)
Composto		R ₁ N=N OCH ₂	R1 N=N OCF3	R1 N=N CF3
	9-((1-(4-fluorobenzil)-1 <i>H</i> - 1,2,3-triazol-4-il)metil)- adenina	9-((1-(4-metoxibenzil)- 1 <i>H</i> -1,2,3-triazol-4- il)metil)-adenina	9-((1-(4- (trifluorometoxi)benzil)-1 <i>H</i> - 1,2,3-triazol-4-il)metil)- adenina	9-((1-(4- (trifluorometil)benzil)-1 <i>H</i> - 1,2,3-triazol-4-il)metil)- adenina
FM	C15H13FN8	C ₁₆ H ₁₆ N ₈ O	C ₁₆ H ₁₃ F ₃ N ₈ O	C ₁₆ H ₁₃ F ₃ N ₈
MM (g mol⁻¹)	324,32	336,36	390,33	374,33
Aspecto físico	sólido branco	Sólido amarelo claro	sólido branco	Sólido branco
FF (ºC)	199,6-203,7	215,3-218,0	191,6-194,1	235,0-237,0
Solubilidade	DMSO e metanol	DMSO e metanol	DMSO e metanol	DMSO e metanol
Rend. (%)	72	45	92	85
IV (KBr, ⊽, cm⁻¹)	3284 (vas NH2), 3134 (as NH2), 1674 e 1604 (v C=C ou C=N),1306 (v CAromático-NH2), 1216 (v C-F), 788 (γ CAromático- H), 654 (δ C-F)	3422 (vas NH2), 3142 (vs NH2), 1612 (v C=C ou C=N), 776 (γ CAromático-H)	3396 (v _{as} NH ₂), 3186 (v _s NH ₂), 1664 e 1606 (v C=C ou C=N), 1300 e 1166 (v C- F), 789 (γ C _{Aromático} -H), 644 (δ C-F)	3274 (v _{as} NH ₂), 3132 (v _s NH ₂), 1674 e 1602 (v C=C ou C=N), 1324 (v C-F), 774 (γ C _{Aromático} -H), 662 (δ C-F)
EMAR (ESI⁺) (m/ <i>z</i>)	[M+H]⁺ encontrada: 325,13104, massa calculada para [C15H13FN8]⁺: 325,13200.	[M+H] ⁺ encontrada: 337,15161, massa calculada para [C ₁₆ H ₁₆ N ₈ O] ⁺ : 337,15198.	[M+H] ⁺ encontrada: 391,12250, massa calculada para [C ₁₆ H ₁₃ F ₃ N ₈ O] ⁺ : 391,12372.	[M+H]⁺ encontrada: 375,12808, massa calculada para [C16H13F3N8]⁺: 375,12880.

Continuação do Quadro 9

Composto	(2i) R ₁ N=N 9-((1-(4-isopropilbenzil)- 1 <i>H</i> -1,2,3-triazol-4-il)metil)- adenina	(1j) ^R 1 / N N ^{≤ N} 9-((1-butll-1 <i>H</i> -1,2,3- triazol-4-il)metil)-adenina	(2k) R ₁ NH N=N 9-(((1 <i>H</i> -1,2,3-triazol-4- il)metil)-adenina
FM	C ₁₈ H ₂₀ N ₈	C ₁₂ H ₁₆ N ₈	C ₈ H ₈ N ₈
MM (g mol ⁻¹)	348,41	272,32	216,21
Aspecto físico	Sólido branco	Sólido branco	Sólido branco
FF (ºC)	199,9-202,8	151,5-152,0	Degradação em 226
Solubilidade	DMSO e metanol	DMSO e metanol	DMSO e metanol
Rend. (%)	57	83	49-73
IV (KBr, ⊽, cm ⁻¹)	3388 (vas NH ₂), 3272 (vs NH ₂), 2956 (v CH ₃), 1692 e 1614 (v C=C ou C=N), 788 (γ CAromático-H)	3370 (v _{as} NH ₂), 3308 (v _s NH ₂), 3140 (v C=C-H), 2958 (v CH ₃), 1680 e 1606 (v C=C ou C=N),1482 (δ CH ₂), 796 (γ C _{Aromático} -H)	3418 (vas NH2), 3272 (vas NH2), 1682 e 1608 (v C=C ou C=N),1384 e 1340 (v CAromático-NH2), 726 (γ CAromático-H)
EMAR (ESI ⁺) (m/ <i>z</i>)	[M+H] ⁺ encontrada: 349,18787, massa calculada para [C ₁₈ H ₂₀ N ₈] ⁺ : 349,18837.	[M+H] ⁺ encontrada: 273,15659, massa calculada para [C ₁₂ H ₁₆ N ₈] ⁺ : 273.15707.	[M+H] ⁺ encontrada: 217,09384, massa calculada para [C ₈ H ₈ N ₈] ⁺ : 217,09447.

Observação: Os espectros dos compostos encontram-se no Anexo B (p.172) e os quadros relacionados a atribuição de sinais dos espectros de RMN de ¹H e ¹³C no Anexo A

(p.146)

H₂N	$PABA = R_1 R$	$= \underbrace{N^{+}}_{N=N} \underbrace{R^{+}}_{R} \underbrace{R^{+}}_{R}$	= H d) R= OCH ₃ = Br e) R= OCF ₃ = F f) R= CF ₃
Compostos	(20a) R1 N=N	(20b) R ₁ N=N Br	(20c) R ₁ N=N F
	4-aminobenzoato de (1-benzil-1 <i>H</i> -1,2,3- triazol-4-il)metil	4-aminobenzoato de (1- (4-bromobenzil)-1 <i>H</i> -1,2,3- triazol-4-il)metil	4-aminobenzoato de (1-(4-fluorobenzil)-1 <i>H</i> - 1,2,3-triazol-4-il)metil
FM	C17H16N4O2	C17H15BrN4O2	C17H15FN4O2
MM (g mol⁻¹)	308,34	387,24	326,33
Aspecto físico	Sólido amarelo claro	Sólido branco	Sólido branco
FF (ºC)	125,6-127,5	152.2-153.3	137,2-138,8
Solubilidade	DMSO e clorofórmio	DMSO e clorofórmio	DMSO e clorofórmio
Rend. (%)	70	74	63
Ⅳ (KBr, ⊽, cm ⁻¹)	3422(v _{as} NH ₂), 3348 (v _s NH ₂), 1678 e 1600 (v C=C ou C=O),1280 (v C _{Aromático} -NH ₂)	3462 (v _{as} NH ₂), 3378 (v _s NH ₂), 1702 (v C=O), 1628(v C=C), 1280 (v C _{Aromático} -NH ₂), 782 (γ C _{Aromático} -H)	3502 (v _{as} NH ₂), 3402 (as NH ₂), 1700 (v C=O), 1606 (v C=C), 1278 (v C _{Aromático} -NH ₂), 1216 (v C-F), 786 (γ C _{Aromático} -H)
			(20f)
Compostos	(20d) $R_1 \rightarrow N \rightarrow OCH_3$ 4-aminobenzoato de	(20e) R ₁ N=N OCF ₃ 4-aminobenzoato de (1-	4-aminobenzoato de
	(1-(4-metoxibenzil)-1 <i>H</i> - 1,2,3-triazol-4-il)metil	(4- (trifluorometoxi)benzil)- 1 <i>H</i> -1,2,3-triazol-4-il)metil	(trifluorometil)benzil)- 1 <i>H</i> -1,2,3-triazol-4- il)metil
FM	C ₁₈ H ₁₈ N ₄ O ₃	C ₁₈ H ₁₅ F ₃ N ₄ O ₃	C ₁₈ H ₁₅ F ₃ N ₄ O ₂
MM (g mol ⁻¹)	338,37	392,34	376,34
Aspecto físico	Sólido amarelo	Sólido branco	Sólido branco
FF (°C)	99,7-100,9	179,8-180,6	154,5-155,6
Solubilidade	DMSO e clorofórmio	DMSO e clorofórmio	DMSO e clorofórmio
Rend. (%)	62	66	53
Ⅳ (KBr, ⊽, cm ⁻¹)	3448 (vas NH2), 3356 (vs NH2), 1686 e 1602 (v C=C ou C=O), 1272 (v CAromático-NH2), 786 (γ CAromático-H)	3460(v _{as} NH ₂), 3346 (v _s NH ₂), 1702 (v C=O), 1606 (v C=C), 1282 (v C _{Aromático} - NH ₂), 1100 (v C-F), 774 (γ C _{Aromático} -H)	3470 (vas NH ₂), 3360 (vs NH ₂), 1702 (v C=O), 1606 (v C=C), 1280 (v C _{Aromático} -NH ₂), 1104 (v C-F), 772 (γ C _{Aromático} -H)

Quadro 10. Dados físico-químicos e espectrométricos relacionados aos triazóis 20a-f

Observação: Os espectros dos compostos encontram-se no Anexo B (p.172) e os quadros relacionados a atribuição de sinais dos espectros de RMN de ¹H e ¹³C no Anexo A (p.146)

4.3.5 Síntese das ureias 4a-f (Adaptado de Abad et al., 2004)

Procedimento geral:

Em um balão de fundo redondo (50 mL) dissolveu-se a amina correspondente (**20a-f**) (0,22 mmol) em tolueno anidro. Em seguida adicionou-se, gota a gota, uma solução da acil azida (23 mg, 0,15 mmol) em 1,5 mL de tolueno anidro. A mistura reacional mantida sob refluxo e com agitação magnética por 8 horas. Foi observado a formação de um precipitado branco, o qual foi filtrado sob vácuo, obtendo-se sólidos brancos com rendimentos que variaram de 52 a 82%, como mostrado no Quadro 11 (p.124).

a) R= H f) R= OCH₃ d) R= Br g) R= OCF₃ e) R= F h) R= CF₃ *i*-TDZ e PABA = R_1 (4d) (4e) (4a) R₁ R/ Compostos benzoato de 1-(4benzoato de 1-(4benzoato de 1-benzilbromobenzil)-1H-1,2,3fluorobenzil)-1H-1,2,3-1H-1,2,3-triazol-4triazol-4-il)metil 4-(3triazol-4-il)metil 4-(3il)metil 4-(3-(1,2,3-(1,2,3-tiadiazol-4-(1,2,3-tiadiazol-4tiadiazol-4-il)ureileno il)ureileno il)ureileno C20H17N7O3S FM C20H16BrN7O3S C20H16FN7O3S MM (g mol⁻¹) 435,46 514,36 453,45 Sólido branco Aspecto físico Sólido branco Sólido branco FF (°C) Degradação em 200,6 Degradação em 208,9 Degradação em 208,9 Solubilidade DMSO e clorofórmio DMSO e clorofórmio DMSO e clorofórmio Rend. (%) 60 71 82 3384 (v NH), 1706 (v C=O), 3378 (v NH), 1718 (v 3448 (v NH), 1715 (v C=O), 1606 e 1542 (v 1602 e 1536 (v C=C e IV C=O), 1605 e 1546 (v C=N), 1280 (v CAromático-C=C e C=N), 1274 (v (KBr, \overline{v} , cm⁻¹) C=C e C=N), 1311 e CAromático-NH), 786 (γ NH), 1174 e 1102 (v C-F), 1273 (v CAromático-NH) 788 (γ C_{Aromático}-H) CAromático-H) (4f) (4g) (4h) OCH₃ OCF₃ CF_3 Compostos benzoato de 1-(4benzoato de 1-(4benzoato de 1-(4metoxibenzil)-1H-(trifluorometoxi)benzil)-(trifluorometil)benzil)-1H-1H-1,2,3-triazol-4-il)metil 1,2,3-triazol-4-il)metil 1,2,3-triazol-4-il)metil metil 4-(3-(1,2,3metil 4-(3-(1,2,3-tiadiazol-4-(3-(1,2,3-tiadiazol-4tiadiazol-4-il)ureileno il)ureileno 4-il)ureileno FΜ C21H19N7O4S $C_{21}H_{16}F_3N_7O_4S$ C₂₁H₁₆F₃N₇O₃S 465,49 MM (g mol⁻¹) 519,46 503,46 Aspecto físico Sólido branco Sólido branco Sólido branco FF (ºC) 204,4-207,5 207,8-209,7 194,0-195,5 Solubilidade DMSO e clorofórmio DMSO e clorofórmio DMSO e clorofórmio Rend. (%) 52 66 81 3370 (v NH), 1716 (v C=O), 3422 (v NH), 1718 (v 3448 (v NH), 1717 (v 1606 e 1546 (v C=C e IV C=O), 1605 e 1545 (v C=O), 1605 e 1546 (v C=N), 1334 e 1276 (v (KBr, \overline{v} , cm⁻¹) C=C e C=N), 1311 e C=C e C=N), 786 (γ CAromático-NH), 1176 e 1120 1273 (v CAromático-NH) CAromático-H) (ν C-F), 790 (γ CAromático-H)

Quadro 11. Dados físico-químicos e espectrométricos relacionados as ureias 4a-f

Observação: Os espectros dos compostos encontram-se no Anexo B (p.172) e os quadros relacionados a atribuição de sinais dos espectros de RMN de ¹H e ¹³C no Anexo A (p.146)

4.4 Bioensaios

4.4.1 Ensaio em plantas

4.4.1.1 Ensaio de avaliação do desenvolvimento de Cucumis sativus (pepino) (Adaptado de Borgati et al., 2013)

Os ensaios foram realizados na câmara de germinação cedida pela Professora Henriete da Silva Vieira do Departamento de Química da UFMG. Neste ensaio foram avaliados o efeito dos compostos (**6**, **1a-i**, **7** e **2a-i**), da cinetina (referência), da adenina e da solução diluente (DMSO e água) a 1 e 100 μ M no desenvolvimento do *Cucumis sativus* (pepino). Os compostos foram solubilizados em DMSO (solução estoque) e em seguida foram realizadas diluições seriadas para obtenção das soluções finais de tal forma que a concentração final de DMSO não ultrapasse 0,30%. As sementes de *Cucumis sativus* (pepino) da variedade verde comprido foram obtidas da marca Isla. Foram adicionadas 20 sementes de pepino sobre cada placa de pétri (100 x 15 mm), contendo papel de germinação Germitest® (gramatura entre 57 e 65g/m²) embebido com 5mL das soluções testes, em triplicata. As placas de Petri foram fechadas e incubadas em câmara de germinação, no escuro, a $25 \pm 0,5$ °C por sete dias. Após esse tempo, as placas foram abertas e o comprimento da raiz e da parte aérea de cada plântula foram medidos. Os valores de porcentagem de crescimento em relação ao branco foram calculados usando os programas Excel e GraphPad Prism 7.0.

4.4.1.2 Ensaio de avaliação da germinação de sementes e do desenvolvimento da Lactuca sativa (alface) (Chaves-Silva et al., 2020)

Os ensaios foram realizados no Laboratório da Fisiologia Vegetal do Instituto de Ciências Biológicas da UFMG, sob orientação da Professora Luzia Valentina Modolo. Neste ensaio foram avaliados os efeitos dos compostos (**6**, **1d-e**, **1j-k**, **7**, **2a**, **2d-e**, **2h** e **2j-k**), da cinetina (usada como referência), da água e da solução diluente (contendo 0,05 % v/v DMSO, 0,05 % v/v etanol, 0,5 % v/v de propileno glicol, 1,4% v/v PEG-400 e 98% v/v de água) a 10 e 100 µM no desenvolvimento da *Lactuca sativa* (alface). Os compostos foram solubilizados inicialmente em 25 µL de DMSO, 25 µL de etanol, 700 µL de PEG-400 e 250 µL de propileno glicol e em seguida o volume foi completado com água de tal forma que a concentração final de DMSO seja de 0,05%. As sementes de *Lactuca sativa* (alface) da variedade Fortaleza, obtidas da marca Isla, foram desinfetadas superficialmente com solução de 0,5% de hipoclorito de sódio em água por 5 minutos e em seguidas lavadas com água destilada de forma abundante. Depois 25 sementes foram adicionadas sobre cada placa de pétri (92 x 15 mm) contendo papel de filtro qualitativo duplo (gramatura 80g/m²), embebido com uma

solução de 1% de nistatina em água e com 5 mL das soluções testes, em quintuplicada. As placas de Petri foram incubadas em câmara de germinação, em fotoperíodo de 12 horas (as sementes ficavam 12 horas na presença de luz e 12 horas no escuro), a 25 ± 2,0 °C por sete dias. Após esse período, foram determinados o comprimento da raiz e da parte aérea (a partir do programa ImagemJ) e o peso fresco e seco das plântulas. Durante o experimento, em um intervalo de 24 em 24 horas, as sementes germinadas foram contabilizadas e no final do experimento as sementes não germinadas foram avaliadas pelo teste do tetrazólio. As sementes não germinadas foram então mantidas em uma solução de 1% de 2,3,5-trifenil cloreto de tetrazólio, durante 24 horas, no escuro, a 30°C. Após esse período, os embriões foram lavados em água corrente e mantidos submersos em água até sua avaliação individual. O experimento realizado seguiu as diretrizes do Ministério da Agricultura e do Abastecimento. Os resultados obtidos foram expressos em porcentagem de germinação (G%), índice de velocidade de germinação (IVG), tempo médio de germinação (TMG) e comprimento da raiz e da parte aérea foram calculados usando os programas Excel e GraphPad Prism 7.0.

4.4.1.3 Análise dos resultados

Porcentagem de germinação (G%)

Para o cálculo dos valores de G% foi utilizada a seguinte equação:

% germinação = $\frac{número \ de \ sementes \ germinadas}{número \ total \ de \ sementes} X \ 100\%$

• Índice de velocidade de germinação (IVG)

Para o cálculo de IVG foi utilizada a seguinte equação:

$$IVG = \sum_{i=1}^{n} \left(\frac{ni}{i}\right)$$

Onde *ni* é o número de sementes germinadas no dia *i* e *i* é o número de dias.

• Tempo médio de germinação (TMG)

Para o cálculo de TMG foi utilizada a seguinte equação:

$$TMG = \frac{(\sum ni \cdot ti)}{\sum ni}$$

Onde *ni* é o número de sementes germinadas no dia *i*, *i* é o número de dias e *ti* é o tempo de incubação

4.4.1.3 Análise estatística

Os dados obtidos nos bioensaios em plantas foram submetidos a análises estatísticas. Para avaliar normalidade foi utilizado o teste Shapiro-Wilk, para análise paramétrica o teste One Way ANOVA foi utilizado e para comparação de médias o teste de Scott-Knott. Os dados foram analisando o software R (Software Foundation, Boston, MA, EUA) e o GraphPad Prism 7.0.

4.4.2 Ensaio de atividade antiproliferativa (Mosmann, 1983)

O ensaio de atividade antiproliferativa in vitro dos compostos foi realizado no Laboratório de síntese e interações bioinorgânicas (SIBLab) no Departamento de Química da UFMG, sob orientação da Professora Heveline Silva. Neste ensaio foi avaliada citotoxicidade dos compostos (6, 1a-k, 7 e 2a-k), da cinetina e da doxorrubicina (fármaco de referência) frente a duas linhagens de células tumorais de câncer de mama, MCF-7 (câncer de mama estrogênio dependente) e MDA-MB-231 (câncer de mama triplo negativo) e uma linhagem de célula de mama não tumoral MCF-10A. As células foram cultivadas a 37°C em atmosfera úmida a 5% de CO₂, em garrafas de 25 a 75 cm², em meio de cultura RPMI 1640 suplementadas com 10% (v/v) de soro fetal bovino em pH 7,4. Após o crescimento celular adequado, as células foram tripsinizadas, colhidas e semeadas em placas de 96 poços com densidades que variaram de 0,8 a 1,5 x 103 células/poços e incubadas por 24 horas para adesão. Em seguida, soluções estoque dos compostos (10⁻² M em DMSO) foram diluídas em meio de cultura em diferentes concentrações, onde a concentração de DMSO nunca ultrapassou 1%. As soluções foram adicionadas aos poços das placas para obter concentrações finais de 100, 50, 10, 5 e 1 µM. Após 72 h, as células foram incubadas com brometo de 3-(4,5-dimetiltiazol-2-il)-2,5difeniltetrazólio (MTT) a 5 µg/10 µL/poco durante 4 h. Finalmente, o meio de cultura foi removido e foi adicionado DMSO (100 µL/poço). A leitura colorimétrica foi realizada em um leitor de placas multipoços (absorbância a 570 nm). Os valores de IC₅₀ (concentração necessária para reduzir a absorbância em 50% em relação aos controles) foram calculados usando os programas Excel e GraphPad Prism 5.0.

CONCLUSÃO GERAL

Neste trabalho, foi possível alcançar os objetivos de modificar as estruturas de duas citocininas, a cinetina e o TDZ por meio da síntese de seus derivados (Figura 55). Assim, foram sintetizados 34 compostos inéditos com rendimentos globais que variaram de 4 a 91%.

Figura 55. Estruturas gerais dos compostos finais sintetizados nesse trabalho.

Dos compostos sintetizados apenas os derivados purina-triazol foram avaliados biologicamente em dois diferentes ensaios, em plantas e em células tumorais. Os bioensaios em planta, mostraram que a inserção de grupos na posição N9 da cinetina foi eficaz para suprimir os efeitos negativos da cinetina nas raízes da alface (*Lactuca sativa*). Resultado diferente foi obtido nos derivados de adenina **2a**, **2d** e **2k** (Figura 56) apresentaram um efeito herbicida na alface, inibiram o crescimento da raiz em 51% a 65%, em média, e da parte aérea em 32% (exceto **2a**), em média.

Figura 56. Derivados da adenina (2a, 2d e 2k) que apresentaram efeito fitotóxico no desenvolvimento da *Lactuca* sativa (alface).

No ensaio de atividade antiproliferativa os compostos da série da cinetina (6 e 1a-k) apresentaram atividade antiproliferativa superior aos derivados da adenina (7 e 2a-k), mostrando que o anel furânico contribui para atividade dos derivados da cinetina. Os compostos mais ativos (Figura 57, 129) foram os derivados contendo os átomos de cloro 1c ($IC_{50} = 22,3\pm2,9 \mu M$ e $IC_{50} = 9,3\pm1,7 \mu M$, respectivamente, para MCF-7 e MDA-MB-231) e

bromo **1d** (IC₅₀ = 22,9±1,6 μ M e IC₅₀ = 16,7±1,8 μ M, respectivamente, para MCF-7 e MDA-MB-231) para a linhagem MCF-7 e o composto **1c** (*p*-Cl) para a MDA-MB-231, que é uma linhagem de câncer mais agressiva. Assim a inserção de substituintes halogenados, principalmente o cloro, foi importante para a atividade observada dos compostos sintetizados. Podemos concluir que nesse trabalho não foi possível obter compostos com potencial uso como reguladores de crescimento vegetais e, além disso, dois compostos foram ativos frente a duas linhagens de câncer de mamas

Figura 57. Derivados da cinetina (**1c** e **1d**) mais ativos no ensaio de citotoxicidade de células tumorais de mama (MCF-7 e MDA-MB-231) e seus respectivos valores de IC_{50} .

REFERÊNCIAS

Abad, A.; Agulló, C.; Cuñat, A. C.; Jiménez, R.; Vilanova, C. Preparation and promotion of fruit growth in kiwifruit of fluorinated N-phenyl-N '-1, 2, 3-thiadiazol-5-yl ureas. *J. of Agric. and Food Chem.*, **2004**, 52, 4675-4683.

Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. A strain-promoted [3+ 2] azide- alkyne cycloaddition for covalent modification of biomolecules in living systems. *J. Am. Chem. Soc.*, **2004**, 126, 15046-15047.

Ahmad, N.; Faisal, M. *Tidiazuron: From urea derivative to plant growth regulator.* Springer Singapore, **2018**.

Alam, M. S.; Kajiki, R.; Hanatani, H.; Kong, X.; Ozoe, F.; Matsui, Y.; Matsumura, F.; Ozoe, Y. Synthesis and Structure– Activity Relationships of 1-Phenyl-1 H-1, 2, 3-triazoles as Selective Insect GABA Receptor Antagonists. *J. of Agric. and Food Chem.*, **2006**, 54, 1361-1372.

Almeida, V. L.; Leitão, A.; Reina, L. C. B.; Montanari, C. A.; Donnici, C. L.; Lopez, M.T.P. Câncer e agentes antineoplásicos ciclo-celular não específicos que interagem com o DNA: Uma introdução. *Quim. Nova*, **2005**, 28, 118-129.

Alvarez, S. G; Alvarez, M. T. A pratical procedure for the synthesis of alkyl azides at ambiente temperature in dimethyl sulfoxide in high purity and yield. *Synthesis*, **1997**, 4, 413-414.

Amasino, R. 1955: Kinetin arrives. The 50th anniversary of a new plant hormone. *Plant Physiol.*, **2005**, 138, 1177-1184.

Ambade, A. V.; Kumar, A. An efficient route for the synthesis of hyperbranched polymers and dendritic building blocks based on urea linkages. Journal of Polymer Science Part A: *Polymer Chem.*, **2001**, 39, 1295-1304.

Arndt, F.; Rusch, R.; Schulz, H. Agents for the defoliation of plants. US4294605, 1981.

Ashrafizadeh, M.; Zarrabi, A.; Hashemi, F.; Zabolian, A.; Saleki, H.; Bagherian, M.; Azami, N.; Bejandi, A. K.; Hushmandi, K.; Ang, H. L.; Makvandi, P.; Khan, H.; Kumar, A. P. Polychemotherapy with curcumin and doxorubicin via biological nanoplatforms: Enhancing antitumor activity. *Pharmaceutics*, **2020**, 12, 1084.

Bakkestuen, A. K.; Gundersen, L. L.; Petersen, D.; Utenova, B. T.; Vik, A. Synthesis and antimycobacterial activity of agelasine E and analogs. *Org. Biomol. Chem.*, **2005**, 3, 1025-1033.

Balasankar, T.; Gopalakrishnan, M.; Nagarajan, S. Synthesis and antibacterial activity of some 5-(4-biphenylyl)-7-aryl[3,4-d][1,2,3]-benzothiadiazoles. *Eur. J. Med. Chem.*, **2005**, 40, 728–731.

Barbosa, Luiz Cláudio A. *Espectroscopia no Infravermelho na caracterização de compostos orgânicos.* Viçosa, Editora UFV, **2007**.

Barbosa, Luiz Cláudio A. *Os pesticidas, o homem e o meio ambiente*. Viçosa, Editora UFV, **2004**.

Barreiro, E. J.; Fraga, C. A. M. *Química Medicinal: as bases moleculares da ação dos fármacos.* 3ª edição, Porto Alegre, Artmed, **2015**.

Baulcombe, D.; Crute, I.; Davies, B.; Dunwell, J.; Gale, M.; Jones, J.; Pretty, J.; Sutherland,
W.; Toulmin, C.; Green, N.; *Reaping the Benefits: Science and The Sustainable Intensification of Global Agriculture*. London, The Royal Society, **2009**.

Beasley, A. E.; Rasmussen, M. Heterocyclic ambident nucleophiles. II. The alkylation of adenine. *Aust. J. Chem.*, **1981**, 34, 1107-1116.

Beck, J. P.; Arvanitis, A. G.; Curry, M. A.; Rescinito, J. T.; Fitzgerald, L. W.; Gilligan, P. J.; Zaczek, R.; Trainor, G. L. Purin-8-ones as corticotropin-releasing hormone (CRH-R1) receptor antagonists. *Bioorg. Med. Chem. Lett.*, **1999**, 9, 967-972.

Boratyński, P. J.; Gałęzowska, J.; Turkowiak, K.; Anisiewicz, A.; Kowalczyk, R.; Wietrzyk, J. Triazole biheterocycles from cinchona alkaloids: coordination and antiproliferative properties. *Chem. Select.*, **2018**, 3, 9368–9373.

Borgati, T. F.; Alves, R. B.; Teixeira, R. R.; Freitas, R. P; De Perdigão, T. G.; Silva, S. F.; Da Santos, A. A.; Dos Bastidas, A. J. O. Synthesis and Phytotoxic Activity of 1,2,3-Triazole Derivatives. *J. of the Braz. Chem. Soc.*, **2013**, 24, 953-805.

Bozorov, K.; Zhao, J.; Aisa, H. A. 1, 2, 3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. *Bioorganic. Med. Chem.*, **2019**, 27, 3511-3531.

Brandão, H. N.; David, J. P.; Couto, R. D.; Nascimento, J. A.; David, J. M. Química e farmacologia de quimioterápicos antineoplásicos derivados de plantas. *Quím. Nov.*, **2010**, 33, 1359-1369.

Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic azides: an exploding diversity of a unique class of compounds. *Angew. Chem. Int. Ed.*, **2005**, 44, 5188-5240.

Beasley, A. E.; Rasmussen, M. Heterocyclic ambident nucleophiles. II. The alkylation of adenine. *Aust. J. Chem.*, **1981**, 34, 1107-1116.

Caldas-Lopes, E.; Cerchietti, L.; Ahn, J. H.; Clement, C. C.; Robles, A. I.; Rodina, A.; Moulick, K.; Taldone, T.; Gozman, A.; Guo, Y.; Wu, N.; de Stanchina, E.; White, J.; Gross, S. S.; Ma, Y.; Varticovski, L.; Melnick, A.; Chiosis, G. Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. *Proc. Natl. Acad. Sci. U. S. A.*, **2009**, 106, 8368–8373.

Chaurasiya, A.; Wahan, S. K.; Sahu, C.; Chawla, P. A. An insight into the rational design of recent purine-based scaffolds in targeting various cancer pathways. *J. of Mol. Structure*, **2022**, 134308-134331.

Chaves-Silva, S.; Horta, L. P.; Souza, L. T.; da Silva, C. M.; Dohanik, C. S.; Goulart, G. A.; Marriel, I. E.; de Fátima, A.; Modolo, L. V. Do schiff bases-based urease inhibitors improve plant growth and affect the activity of soil arginase? *Ind. Crops and Prod.*, **2020**, 145, 111995-112006.

Cicenas, J.; Kalyan, K.; Sorokinas, A.; Stankunas, E.; Levy, J.; Meskinyte, I.; Stankevicius, V.; Kaupinis, A.; Valius, M. Roscovitine in cancer and other diseases. *Ann. of Transl. Med.*, **2015**, 3, 135-147.

Clayden, J. J.; Greeves, N.; Warren, S.; Wothers, P. *Organic Chemistry*. Oxford University, **2001**.

Cobb, A. H.; Reade, J. P. *Herbicides and plant physiology.* 2^a edição, John Wiley & Sons, **2010.**

Collomb, P. *Une voie étroite pour la sécurité alimentaire d'ici à 2050*. Paris, Economica, **1999**.

da Silva Santos, L.; de Carvalho, M. F.; de Souza Pinto, A. C.; da Fonseca, A. L.; Dias Lopes, J. C.; de Pilla Varotti, F.; de Freitas, R. P.; Alves, R. B. Synthesis of novel 1, 2, 3-

triazole derivatives of isocoumarins and 3, 4-dihydroisocoumarin with potential antiplasmodial activity in vitro. *Med. Chem.*, **2021**, 17, 820-833.

Danne, A. B.; Choudhari, A. S.; Chakraborty, S.; Sarkar, D.; Khedkar, V. M.; Shingate, B. B. Triazole-diindolylmethane conjugates as new antitubercular agents: synthesis, bioevaluation, and molecular docking. *Med. Chem. Comm.*, **2018**, 9, 1114–1130.

De Freitas, L. B. O.; Borgati, T. F.; De Freitas, R. P.; Ruiz, A. L. T. G.; Marchetti, G. M.; De Carvalho, J. E.; Da Cunha, E. F. F.; Ramalho, T. C.; Alves, R. B. Synthesis and antiproliferative activity of 8-hydroxyquinoline derivatives containing a 1,2,3-triazole moiety. *Eur. J. Med. Chem.*, **2014**, 84, 595-604.

Dehaen, W.; Bakulev, V. A. The Chemistry of 1, 2, 3-Thiadiazoles. John Wiley & Sons, 2004.

Ding, Y.; Guo, H.; Ge, W.; Chen, X.; Li, S.; Wang, M.; Chen, Y.; Zhang, Q. Copper(I) oxide nanoparticles catalyzed click chemistry based synthesis of melampomagnolide B-triazole conjugates and their anti-cancer activities. *Eur. J. Med. Chem.*, **2018**, 156, 216–229.

Ding, Z.; Pan, W.; Xiao, Y.; Cheng, B.; Huang, G.; Chen, J. Discovery of novel 7, 8dihydropteridine-6 (5H)-one-based DNA-PK inhibitors as potential anticancer agents via scaffold hopping strategy. *Eur. J. Med. Chem.*, **2022**, 237, 114401-114418.

Elion, G. B. The purine path to chemotherapy. *Biosci. Report.*, **1989**, 9, 509-529.

Enkhtaivan, G.; Kim, D. H.; Pandurangan, M. Cytotoxic effect of TDZ on human cervical cancer cells. *J. of Photochem. and Photobio.*, **2017**, 173, 493–498.

Fagan, E. B.; Ono, E. O.; Rodrigues, J. D.; Júnior, A. C.; Neto, D. D. *Fisiologia vegetal: Reguladores Vegetais*, São Paulo, Andrei, **2015**.

Fernholm, A. The Nobel Prize In Chemistry 2022, *The Royal Swedish Academy Of Science*, **2022.** Disponível em <u>https://www.nobelprize.org/prizes/chemistry/2022/press-release/</u>. Acesso em: 21 de outubro de 2022.

Figueiredo, P.; Costa, M.; Pontes, O.; Baltazar, F.; Proença, F. Adenine Derivatives: Promising Candidates for Breast Cancer Treatment. *Eur. J. Org. Chem.*, **2018**, 29, 3943– 3956.

Fok, J. H.; Ramos-Montoya, A.; Vazquez-Chantada, M.; Wijnhoven, P. W.; Follia, V.; James, N.; Farrington, P. M.; Karmokar, A.; Willis, S. E.; Cairns, J.; Nikkilä, J.; Beattie, D.; Lamont, G. M.; Finlay, M. R. V.; Wilson, J.; Smith, A.; O'Connor, L. O.; Ling, S.; Fawell, S. E.;

O'Connor, M. J.; Hollingsworth, S. J.; Dean, E.; Goldberg, F. W.; Davies, B. R.; Cadogan, E. B. AZD7648 is a potent and selective DNA-PK inhibitor that enhances radiation, chemotherapy and olaparib activity. *Nature Comm.*, **2019**, 10, 1-15.

Forezi, L. S. M.; Lima, C. G. S.; Amaral, A. A. P.; Ferreira, P. G.; de Souza, M. C. B. V.; Cunha, A. C.; da Silva, F. C.; Ferreira, V. F. Bioactive 1,2,3-Triazoles: An Account on their Synthesis, Structural Diversity and Biological Applications. *Chem. Rec.*, **2021**, 21, 2782– 2807.

Freitas, L. B. O.; Ruela, F. A.; Pereira, G. R.; Alves, R. B.; Freitas, R. P.; Santos, L. J. A reação "click" na síntese de 1,2,3-triazóis: aspectos químicos e aplicações. *Quím. Nova*, **2011**, 34, 1791-1804.

Garimella S. V.; Lipkowitz, S. Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. *Breast Dis.*, **2010**, 32, 35-48.

Gontijo, V. S.; Espuri, P. F.; Alves, R. B.; de Camargos, L. F.; dos Santos, F. V.; Judice, W. A. D.; Marques, M. J.; Freitas, R. P. Leishmanicidal, antiproteolytic, and mutagenic evaluation of alkyltriazoles and alkylphosphocholines. *Eur. J. Med. Chem.*, **2015**, 101, 24-33.

Guo, B.; Abbasi, B. H.; Zeb, A.; Xu, L. L.; Wei, Y.H. Tidiazuron: A multi-dimensional plant growth regulator. *Afr. J. Biotechnol.*, **2011**,10, 8984-9000.

Halay, E.; Ay, E.; Şalva, E.; Ay, K.; Karayıldırım, T. Syntheses of 1, 2, 3-triazole-bridged pyranose sugars with purine and pyrimidine nucleobases and evaluation of their anticancer potential. *Nucleosides, Nucleotides Nucleic Acids*, **2017**, 36, 598-619.

Harari, Y. N. *Sapiens – Uma Breve História da Humanidade*, Porto Alegre, Editora L&M Pocket, **2020**.

Hayat, F.; Salahuddin, A.; Zargan, J.; Azam, A. Synthesis, characterization, antiamoebic activity and cytotoxicity of novel 2-(quinolin-8-yloxy) acetohydrazones and their cyclized products (1,2,3-thiadiazole and 1,2,3-selenadiazole derivatives). *Eur. J. Med. Chem.*, **2010**, 45, 6127–6134.

Hernandes, M. Z.; Cavalcanti, S. M. T.; Moreira, D. R. M.; de Azevedo Junior, W. F.; Leite, A. C. L. Halogen atoms in the modern medicinal chemistry: hints for the drug design. *Curr. drug targets*, **2010**, 11, 303-314.

Holliday, D. L.; Speirs, V. Choosing the right cell line for breast cancer research. *Breast Cancer Res.*, **2011**, 13, 1–7.

Hönig, M.; Plíhalová, L.; Spíchal, L.; Grúz, J.; Kadlecová, A.; Voller, J.; Svobodová, A. R.; Vostálová, J.; Ulrichová, J.; Doleža, K.; Strnad, M. New cytokinin derivatives possess UVA and UVB photoprotective effect on human skin cells and prevent oxidative stress. *Eur. J. Med. Chem.*, **2018**, 150, 946–957.

Hradilová, L.; Poláková, M.; Dvořáková, B.; Hajdúch, M.; Petruš, L. Synthesis and cytotoxicity of some D-mannose click conjugates with aminobenzoic acid derivatives. *Carbohydrate Res.*, **2012**, 361, 1-6.

Huisgen, R.; Szeimies, G.; Möbius, L. 1.3-Dipolare Cycloadditionen, XXXII. Kinetik der Additionen organischer Azide an CC-Mehrfachbindungen. *Chem. Ber.*, **1967**, 100, 2494-2507.

Hurd, C. D.; Mori, R. I. On acylhydrazones and 1,2,3-thiadiazoles. *J. Am. Chem. Soc.*, **1955**, 77, 5359-5364.

Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA). Atlas de Mortalidade por Câncer, 2020. Disponível em <u>https://www.inca.gov.br/app/mortalidade</u>. Acesso em: 12 de outubro de 2022.

Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA). Câncer de mama. Disponível em <u>https://www.gov.br/inca/pt-br/assuntos/cancer/tipos/mama.</u> Acesso em: 12 de outubro de 2022.

Irfan, A.; Ullah, S.; Anum, A.; Jabeen, N.; Zahoor, A. F.; Kanwal, H.; Kotwica-Mojzych, K.; Mojzych, M. Synthetic Transformations and Medicinal Significance of 1,2,3-Thiadiazoles Derivatives: An Update. *Appl. Sci.*, **2021**, 11, 5742-5771.

Ivasiv, V.; Albertini, C.; Gonçalves, A. E.; Rossi, M.; Bolognesi, M. L. Molecular hybridization as a tool for designing multitarget drug candidates for complex diseases. *Curr. Top. Med. Chem.*, **2019**, 19, 1694-171

Jeschke, P. The unique role of halogen substituents in design of modern agrochemicals. *Pest Manag. Sci.*, **2010**, 66, 10-27.

Jewett, J. C.; Bertozzi, C. R. Cu-free click cycloaddition reactions in chemical biology. *Chem. Soc. Rev.*, **2010**, 39, 1272-1279.

Jin, L.; Tolentino, D. R.; Melaimi, M.; Bertrand, G. Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne "click reaction". *Sci. Adv.*, 2015, 1,1-5.

Jin, T.; Kamijo, S.; Yamamoto, Y. Copper-Catalyzed Synthesis of N-Unsubstituted 1,2,3-Triazoles from Nonactivated Terminal Alkynes. *Eur. J. Org. Chem.*, **2004**, 18, 3789-3791.

Johnson, J. A.; Baskin, J. M.; Bertozzi, C. R.; Koberstein, J. T.; Turro, N. J. Copper-free click chemistry for the *in situ* crosslinking of photodegradable star polymers. *Chem. Commun.*, **2008**, 26, 3064-3066.

Beasley, A. E.; Rasmussen, M. Heterocyclic ambident nucleophiles. II. The alkylation of adenine. *Aust. J. Chem.*, **1981**, 34, 1107-1116.

Kadayat, T. M.; Park, S.; Jun, K. Y.; Magar, T. B. T.; Bist, G.; Shrestha, A. Na, Y.; Known, Y.; Lee, E. S. Effect of chlorine substituent on cytotoxic activities: Design and synthesis of systematically modified 2, 4-diphenyl-5*H*-indeno [1, 2-*b*] pyridines. *Bioorg. & Med. Chem. Lett.*, **2016**, 26, 1726-1731.

Kadlecova, A.; Makova, B.; Artal-Sanz, M.; Strnad, M.; Voller, J. The plant hormone kinetin in disease therapy and healthy aging. *Ageing Res. Rev.*, **2019**, 55, 100958-100970.

Kalinina, T. A.; Shakhmina, Y. S.; Glukhareva, T. V.; Morzherin, Y.; Fan, Z. J.; Borzenkova, R. A.; Skolobanova, E. S.; Kiseleva, I. S. 1, 2, 3-thiadiazolyl isocyanates in the synthesis of biologically active compounds. Study of the cytotoxic activity of N-(4-methyl-1, 2, 3-thiadiazolyl-5-yl)-N'-(4-methylphenyl) Urea. *Chem. of Heterocyclic Compounds*, **2014**, 50, 1039-1046.

Kapadiya, K.; Jadeja, Y.; Khuntc, R. Synthesis of Purine-based Triazoles by Copper (I)catalyzed Huisgen Azide–Alkyne Cycloaddition Reaction. *J. of Heterocyclic Chem.*, **2018**, 55, 109-208.

Ke, Y.; Liang, J. J.; Hou, R. J.; Li, M. M.; Zhao, L. F.; Wang, W.; Liu, Y.; Xie, H.; Yang, R. H.;
Hu, T. X.; Wang, J. Y.; Liu, H. M. Synthesis and biological evaluation of novel Jiyuan
Oridonin A-1,2,3-triazole-azole derivatives as antiproliferative agents. *Eur. J. Med. Chem.*, **2018**, 157, 1249–1263.

Khazir, J.; Mir, B. A.; Chashoo, G.; Pilcher, L.; Riley, D. Synthesis and anticancer activity of N-9-and N-7-substituted 1, 2, 3 triazole analogues of 2, 6-di-substituted purine. *Med. Chem. Res.*, **2020**, 29, 33-45.

Kieber, J. J.; Schaller, G. E. Cytokinins. Arabidopsis Book, 2014, 12, 1-35.

Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry: Diverse chemical function from a few good reactions. *Angew. Chem. Int. Ed.*, **2001**, 40, 2004-2021.

Krasnov, V. P.; Levit, G. L.; Musiyak, V. V.; Gruzdev, D. A.; Charushin, V. N. Fragmentbased approach to novel bioactive purine derivatives. *Pure and Applied Chem.*, **2020**, 92, 1277-1295.

Kurani, H.; Razavipour, S. F.; Harikumar, K. B.; Dunworth, M.; Ewald, A. J.; Nasir, A., Pearson, G.; Van Booven, D.; Zhou, Z.; Azzam, D.; Wahlestedt, C.; Slingerland, J. DOT1L is a novel cancer stem cell target for triple negative breast cancer. *Clinical Cancer Res.*, **2022**, 28, 1948–1965.

Kurepa, J.; Shull, T. E.; Smalle, J. A. Antagonistic activity of auxin and cytokinin in shoot and root organs. *Plant Direct.*, **2019**, 25, 1-9.

Lamberth, C.; Jeanmart, S.; Luksch, T.; Plant, A. Current Challenges and Trends in the Discovery of Agrochemicals. *Science*, **2013**, 341, 742-746.

Lee, J. H.; Shin, S. C.; Seo, S. H.; Seo, Y. H.; Jeong, N.; Kim, C. W.; Kim, E. E.; Keum, G. Synthesis and in vitro antiproliferative activity of C5-benzyl substituted 2-amino-pyrrolo [2, 3-d] pyrimidines as potent Hsp90 inhibitors. *Bioorg. & Med. Chem. Lett.*, **2017**, 27, 237-241.

Legraverend, M. Recent advances in the synthesis of purine derivatives and their precursors. *Tetrahedron*, **2008**, 64, 8585-8603.

Legraverend, M.; Grierson, D. S. The purines: Potent and versatile small molecule inhibitors and modulators of key biological targets. *Bioorg. & Med. Chem.*, **2006**, 14, 3987-4006.

Li, J. J. Name reactions in heterocyclic chemistry. John Wiley & Sons, 2005.

Li, Z.; Wu, Z.; Luo, F. Synthesis and antifungal activities of alkyl N-(1, 2, 3-thiadiazole-4carbonyl) carbamates and S-alkyl N-(1, 2, 3-thiadiazole-4-carbonyl) carbamothioates. *J. Agric. Food Chem.*, **2005**, 53, 3872-3876.

Lin, Y. L.; Huang, R. L.; Chang, C. M.; Kuo, Y. H. Two new puriniums and three new pyrimidines from Heterostemma brownii. *J. of Nat. Prod.*, **1997**, 60, 982-985.

Liu, X. H.; Zhao, W. G.; Wang, B. L.; Li, Z. M. Synthesis, bioactivity and DFT structure– activity relationship study of novel 1, 2, 3-thiadiazole derivatives. *Res. on Chem. Intermed.*, **2012**, 38, 1999-2008.

Lomin, S. N.; Krivosheev, D. M.; Steklov, M. Y.; Osolodkin, D. I.; Romanov, G. A. Receptor properties and features of cytokinin signaling. *Acta Nat.*, **2012**, 4, 31.

Market and Markets, *Plant Growth Regulators Market*. Disponível em <u>https://www.marketsandmarkets.com/Market-Reports/plant-growth-regulators-market-94580110</u>. Acesso em: 20 de agosto de 2020.

Márquez-López, R. E.; Quintana-Escobar, A. O.; Loyola-Vargas, V. M. Cytokinins, the Cinderella of plant growth regulators. *Phytochem. Rev.*, **2019**, 18, 1387-1408.

Mazoyer, M.; Roudart, L. *História das agriculturas no mundo: do neolítico à crise contemporânea*. Brasília, Editora UNESP, **2010**

Meijer, L.; Borgne, A.; Mulner, O.; Chong, J. P. J.; Blow, J. J.; Inagaki, N.; Inagaki, M.; Delcros, J. G.; Moulinoux, J. P. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. *Eur. J. Biochem.*, **1997**, 243, 527-536.

Meldal, M.; Tornøe, C. W. Cu-catalyzed azide- alkyne cycloaddition. *Chem. Rev.*, **2008**, 108, 2952-3015.

Mik, V.; Szucova, L.; Smehilova, M.; Zatloukal, M.; Dolez, K.; Nisler, J.; Gruz, J.; Galuszka, P.; Strnad, M.; Spichal, L. N9-substituted derivatives of kinetin: Effective anti-senescence agents. *Phytochemistry*, **2011**, 72, 821–831.

Miller, C. O.; Skoog, F.; Okomura, F. S.; Von Saltza, M. H.; Strong, F. M. Isolation, structure and synthesis of kinetin, a substrance promoting cell division. *J. Am. Chem. Soc.*, **1956**, 78, 1345-1350.

Miller, C. O.; Skoog, F.; Von Saltza, M.H.; Strong, F. Kinetin, a cell division factor from deoxyribonucleic acid. *J. Am. Chem. Soc.*, **1955**, 77, 1392-1392.

Miller, S. S. Plant bioregulators in apple and pear culture. Hortic. Rev., 1988, 10, 309-401.

Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. *J. Immunol. Methods*, **1983**, 65, 55-63.

Narsimha, S.; Kumar, N. S.; Swamy, B. K.; Reddy, N. V.; Hussain, S. A.; Rao, M. S. Indole-2-carboxylic acid derived mono and bis 1, 4-disubstituted 1, 2, 3-triazoles: Synthesis, characterization and evaluation of anticancer, antibacterial, and DNA-cleavage activities. *Bioorg. & Med. Chem. Lett.*, **2016**, 26, 1639-1644.

Nickell, L. G. Plant growth regulators: Agricultural Uses. Springer-Verlag, 1982.

Nisler, J.; Kopečný, D.; Končitíková, R.; Zatloukal, M.; Bazgier, V.; Berka, K.; Zalabák, D.; Briozzo, P.; Strnad, M.; Spíchal, L. Novel tidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase. *Plant Mol. Biol.*, **2016**, 92, 235-248.

Nisler, J.; Zatloukal, M.; Spíchal, L.; Koprna, R.; Doležal, K.; Strnad, M. 1, 2, 3-thiadiazol-5ylurea derivatives, use thereof for regulating plant senescence and preparations containing these derivatives. US9993002, **2018**.

Oerke, E.; Dehne, H. Safeguarding production—losses in major crops and the role of crop protection. *Crop Protection*, **2004**, 23, 275-285.

Oshchepkov, M. S.; Kalistratova, A. V.; Savelieva, E. M.; Romanov, G. A.; Bystrova, N. A.; Kochetkov, K. A. Natural and synthetic cytokinins and their applications in biotechnology, agrochemistry and medicine. *Russ. Chem. Rev.*, **2020**, 89, 787-810.

Parker, W. B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. *Chem. Rev.*, **2009**, 109, 2880-2893.

Paruch, K.; Popiołek, Ł.; Biernasiuk, A.; Berecka-Rycerz, A.; Malm, A.; Gumieniczek, A.; Wujec, M. Novel derivatives of 4-methyl-1,2,3-thiadiazole-5-carboxylic acid hydrazide: Synthesis, lipophilicity, and in vitro antimicrobial activity screening. *Appl. Sci.*, **2021**, 11, 1180-1192.

Patel, R.; Mehta, K.; Goswami, D.; Saraf, M. An Anecdote on Prospective Protein Targets for Developing Novel Plant Growth Regulator. *Mol. Biotec.*, **2022**, 109-129.

Paulino, R. P. *Síntese de novos análogos triazólicos do fentanil.* Dissertação de Mestrado, Departamento de Química do Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, **2020**.

Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. R. *Introdução à espectroscopia*, 4^a edição, Cengage Learning, São Paulo, **2010**.

Perrin, D. D.; Armarego, W. L. F. *Purification of laboratory chemicals*, 4^a edição, Oxford, Butterworth-Heinemann, **2000**.

Petri, J. L.; Haverroth, F. J.; Leite, G. B.; Sezerino, A. A.; Couto, M. *Reguladores de crescimento para frutíferas de clima temperado,* Florianópolis, Epagri, **2016**.

Pinto-Zevallos, D. M.; Zarbin, P. H. G. A química na agricultura: perspectivas para o desenvolvimento de tecnologias sustentáveis. *Quím. Nova*, **2013**, 36, 1509-1513.

Podlešáková, K.; Zalabák, D.; Čudejková, M.; Plíhal, O.; Szüčová, L.; Doležal, K.; Spíchal, L.; Strnad, M.; Galuszka, P. Novel cytokinin derivatives do not show negative effects on root growth and proliferation in submicromolar range. *PloS one*, **2012**, 7, e39293-e39308.

Prajapati, R. K.; Kumar, J.; Verma, S. Silver-catalyzed intramolecular cyclization of 9propargyladenine via N3 alkylation. *Chem. Commun.*, **2010**, 46, 3312–331.

Pretsh, E.; Affolter, C.; Bühlmann, P. *Structure determination of organic compounds: Tables of spectral data*, 4^a edição, Berlin, Springer, **2009**.

Qiu, X.; Huang, Y.; Wu, D.; Mao, F.; Zhu, J.; Yan, W.; Luo, H.; Li, J. Discovery of novel purine nucleoside derivatives as phosphodiesterase 2 (PDE2) inhibitors: Structure-based virtual screening, optimization and biological evaluation. *Bioorg. Med. Chem.*, **2018**, 26, 119-133.

Rademacher, W. Dealing with plant bioregulators: An industrial view. *Acta Hort.*, **2010**, 884, 717-724.

Rademacher, W. Plant Growth Regulators: Backgrounds and Uses in Plant Production. *J. Plant Growth Regul.*, **2015**, 34, 845–872.

Ram, V. J.; Sethi, A.; Nath, M.; Pratap, R. *The Chemistry of Heterocycles: Nomenclature and Chemistry of Three to Five Membered Heterocycles*, Elsevier, **2019**.

Rasmussen, M.; Hope, J. M. Heterocyclic ambident nucleophiles. III. The alkylation of sodium adenide. *Aust. J. Chem.*, **1982**, 35, 525-534.

Rasmussen, M.; Hope, J. M. Heterocyclic ambident nucleophiles. IV. The alkylation of metal salts of adenine. *Aust. J. Chem.*, **1982**, 35, 535-542.

Regras para análise de sementes, Ministério da Agricultura, Pecuária e Abastecimento (Mapa). Secretaria de Defesa Agropecuária, Brasil, **2009**, 1-399. Disponível em

Roberts, J. A.; Hooley, R. Plant Growth Regulators, Springer, 1988.

Rodionov, V.O.; Fokin, V.V.; Finn, M.G. Mechanism of the ligand-Free Cul-catalyzed azide– alkyne cycloaddition reaction. *Angew. Chem. Int. Ed.*, **2010**, 44, 2210-2215.

Rosemeyer, H. The chemodiversity of purine as a constituent of natural products. *Chem. & Biodiversity*, **2004**, 1, 361-401.

Rostovtsev, V. V.; Green, G. L.; Fokin, V. V.; Sharpless, K. B. A Stepwise HuisgenCycloaddition Process: Copper(I)-Catalyzed Regioselective Ligation of Azides and Terminal Alkynes. *Angew. Chem. Int. Ed.*, **2002**, 41, 2596-2599.

Schnatbaum, K. Small molecule bradykinin b1 receptor antagonists, WO 2010/091876A2, **2010**.

Schulze, B.; Schubert, U. S. Beyond click chemistry – supramolecular interactions of 1,2,3-triazoles. *Chem. Soc. Rev.*, **2014**, 43, 2522-2571.

Shafiee, A.; Lalezari, I.; Mirrashed, M.; Nercesian, D. 1,2,3-Selenadiazolyl-1,3,4-oxadiazole, 1,2,3-Thiadiazolyl-1,3,4-oxadiazole and 5-(1,2,3-Thiadiazolyl)-s-triazolo [3, 4-b]-1, 3, 4-thiadiazoles. *J. of Heterocyclic Chem.*, **1977**, 14, 567-571.

Shafran, Y.; Glukhareva, T.; Dehaen, W.; Bakulev, V. Recent Developments in the Chemistry of 1,2,3-Thiadiazoles. *Adv. in Heterocyclic Chem.*, **2018**, 126, 109-172.

Shirode, P.; Agrawal, R.; Jain, A.; Yeole, P. Synthesis and Structural Studies of Mixed Ligand Complexes of Transition Metals with Pyruvic Acid Semicarbazone and Acetone Semicarbazone. *Chem. Sci.*, **2015**, 4, 275-281.

Silverstein, R.; Webster, F.; Kiemle, D. *Identificação espectrométrica de composto orgânicos*, 7^a edição, LTC, **2006**.

Souza, C. R.; Ohlson, O. C.; Gavazza, M. I. A.; Panobianco, M. Tetrazolium test for evaluating triticale seed viability. *Ver. Bras. Sementes*, **2010**, 32, 163-169.

Souza, T. M. L.; Pinho, V. D.; Setim, C. F.; Sacramento, C. Q.; Marcon, R.; Fintelman-Rodrigues, N.; Chaves, O. A.; Heller, M.; Temerozo, J. R.; Ferreira, A. C.; Mattos, M.; Momo, P. B.; Dias, S. S. G.; Gesto, J. S. M.; Pereira-Dutra, F.; Viola, J. P. B.; Queiroz-Junior, C. M.; Guimarães, L. C.; Chaves, I. M.; Guimarães, P. P. G.; Costa, V. V.; Siqueira-Junior, J.; Macedo-Junior, S.; Andrade, E. L.; Fadanni, G. P.; Tolouei, S. E, L.; Potrich, F. B.; Santos, A. A.; Marques, N. F.; Calixto, J. B.; Rabi, J. A. Preclinical development of kinetin as a safe error-prone SARS-CoV-2 antiviral able to attenuate virus-induced inflammation, *Nat. Commun.*, **2023**, 14, 199.

Spasov, A. A.; Khaliullin, F. A.; Babkov, D. A.; Timirkhanova, G. A.; Kuznetsova, V. A.; Naumenko, L. V.; Sturova, E. A. Synthesis and antidiabetic activity of thiazolo [2, 3-f] purine derivatives and their analogs. *Pharm. Chem. J.*, **2017**, 51, 533-539.

Statista, *Market value of global agrochemicals from 2006 to 2019 by type*. Disponível em <u>https://www.statista.com/statistics/311953/agrochemical-market-value-worldwide-by-type/</u>. Acesso em: 12 de abril de 2020.

Straub, B.F. μ-Acetylide and μ-alkenylidene ligands in "click" triazole synthesis. *Chem. Comm.*, **2007**, 37, 3868-3870.

Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. *CA Cancer J. Clin.*, **2021**, 71, 209–249.

Szucova, L.; Zatloukal, M.; Spichal, L.; Frohlich, L.; Dolezal, K.; Strnad, M.; Massino, F. J. *6,9-Disubstituted Purine Derivatives and Their Use for Treating Skin.* US2008009508, **2008**.

Taha, H.; Mohamed, S. H.; Al-Sawaf, H.; Hassan, Z. Evaluation of roscovitine anticancer agent as a reference compound for cancer and apoptosis studies. *J. Innov. Pharm. Biol. Sci.*, **2019**, 6, 53-56.

Tornfe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase:[1, 2, 3]-triazoles by regiospecific copper (I)-catalyzed 1, 3-dipolar cycloadditions of terminal alkynes to azides. *J. Org. Chem.*, **2002**, 67, 3057-3064.

Trendowski, M. PU-H71: An improvement on nature's solutions to oncogenic Hsp90 addiction. *Pharma. Res.*, **2015**, 99, 202-216.

Tunçbilek, M.; Ateş-Alagöz, Z.; Altanlar, N.; Karayel, A.; Özbey, S. Synthesis and antimicrobial evaluation of some new substituted purine derivatives. *Bioorg. Med. Chem.*, **2009**, 17, 1693-1700.

United Nations (NU), *World Population Prospects 2022: Ten Key Messages.* Disponivel em https://population.un.org/wpp/Publications/. Acesso em: 24 abri de 2023.

van Voorthuizen, M. J.; Song, J.; Novák, O.; Jameson, P. E. Plant Growth Regulators INCYDE and TD-K Underperform in Cereal Field Trials. *Plants,* **2021**, 10, 2309-2323.

Verbeke, P.; Siboska, G. E.; Clark, B. F.; Rattan, S. I. Kinetin inhibits protein oxidation and glycoxidation in vitro. *Biochem. and Biophys. Res. Comm.*, **2000**, 276, 1265-1270.

Voller, J.; Zatloukal, M.; Lenobel, R.; Doležal, K.; Béreš, T.; Kryštof, V.; Spíchal, L.; Niemann, P.; Džubák, P.; Hajdúch, M.; Strnad, M. Anticancer activity of natural cytokinins: A structure– activity relationship study, *Phytochemistry*, **2010**, 71, 1350-1359.

Wang, C.; Geng, X.; Zhao, P.; Zhou, Y.; Wu, Y. D.; Cui, Y. F.; Wu, A. X. I2/CuCl2 -promoted one-pot three-component synthesis of aliphatic or aromatic substituted 1,2,3-thiadiazoles. *Chem. Commun.*, **2019**, 55, 8134–8137.

Wang, C.; Song, Z.; Yu, H.; Liu, K.; Ma, X. Adenine: an important drug scaffold for the design of antiviral agents. *Acta Pharm. Sinica B*, **2015**, 5, 431-441.

Wang, H.; Yang, Z.; Fan, Z.; Wu, Q.; Zhang, Y.; Mi, N.; Wang, S.; Zhang, Z.; Song, H.; Liu,
F. Synthesis and insecticidal activity of N-tert- 314 butyl-N,N0-diacylhydrazines containing
1,2,3-thiadiazoles. *J. Agric. Food Chem.*, **2011**, 59, 628–634.

Wang, S.; Kumpulainen, E.; Pystynen, J.; Pohjakallio, A.; Haikarainen, A. 2-(1heteroarylpiperazin-4-yl)methyl-1,4-benzodioxane derivatives as alpha2c antagonists. WO 2016/193551, **2016**.

Wang, X.; Dai, Z. C.; Chen, Y. F.; Cao, L. L.; Yan, W.; Li, S. K.; Wang, J. X.; Zhang, Z. G.; Ye, Y. H. Synthesis of 1, 2, 3-triazole hydrazide derivatives exhibiting anti-phytopathogenic activity. *Eur. J. Med. Chem.*, **2017**, 126, 171-182.

Ware, W. G. The Pesticide Book. 5ª Edição, Thomson Publications, 1993.

Wen, Z.; Tuttle, P. R.; Howlader, A. H.; Vasilyeva, A.; Gonzalez, L.; Tangar, A.; Lei, R.;
Laverde, E. E.; Liu, Y.; Miksovska, J.; Wnuk, S. F. Fluorescent 5-Pyrimidine and 8-Purine
Nucleosides Modified with an N-Unsubstituted 1,2,3-Triazol-4-yl Moiety. *J. of Org. Chem.*, **2019**, 84, 3624-3631.
World Health Organization (WHO), *The Global Breast Cancer Initiative*. Disponível em <u>https://www.who.int/initiatives/global-breast-cancer-initiative</u>. Acesso em: 27 de outubro de 2022.

Worrell, B. T.; Malik, J. A.; Fokin, V. V. Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions. *Science*, **2013**, 340, 457-460.

Wu, M.; Sun, Q.; Yang, C.; Chen, D.; Ding, J.; Chen, Y.; Lin, L.; Xie, Y. Synthesis and activity of Combretastatin A-4 analogues: 1,2,3-thiadiazoles as potent antitumor agents. *Bioorg. Med. Chem. Lett.*, **2007**, 17, 869–873.

Wyszko, E.; Barciszewska, M. Z.; Markiewicz, M.; Szymański, M.; Markiewicz, W. T.; Clark, B. F.; Barciszewski, J. "Action-at-a distance" of a new DNA oxidative damage product 6-furfuryl-adenine (kinetin) on template properties of modified DNA. *Biochim. et Biophys. Acta*, **2003**, 1625, 239-245.

Xu, Z.; Zhao, S. J.; Liu, Y. 1, 2, 3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. *Eur. J. of Med. Chem.*, **2019**,183, 111700-111737.

Yang, Z.; Liang, Y.; Li, A.; Liu, K.; Li, L.; Yang, T.; Zhou, C. One-pot synthesis of 5-acyl-1, 2, 3-thiadiazoles from enaminones, tosylhydrazine, and elemental sulfur under transition-metal-free conditions. *The J. of Org. Chem.*, **2019**, 84, 16262-16267.

Yoshida, M.; Kataoka, N.; Miyauchi, K.; Ohe, K.; Iida, K.; Yoshida, S.; Nojima, T.; Okuno, Y.; Onogi, H.; Usui, T.; Takeuchi, A.; Hosoya, T.; Suzuki, T.; Hagiwara, M. Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia. *Proc. Natl. Acad. Sci.*, **2015**, 112, 2764–2769.

Zahajská, L.; Nisler, J.; Voller, J.; Gucký, T.; Pospíšil, T.; Spíchal, L.; Strnad, M. Preparation, characterization and biological activity of C8-substituted cytokinins. *Phytochemistry*, **2017**, 135, 115-127.

Zatloukal, M.; Gemrotová, M.; Doležal, K.; Havlíček, L.; Spíchal, L.; Strnad, M. Novel potent inhibitors of A. thaliana cytokinin oxidase/dehydrogenase. *Bioorg. Med. Chem.*, **2008**, 16, 9268-9275.

Zeiger, E. Taiz, L. Fisiologia Vegetal, Porto Alegre, 3ª Edição, Artmed, 2003

Zhan, P.; Liu, X.; Cao, Y.; Wang, Y.; Pannecouque, C.; Clercq, E. D. 1,2,3-thiadiazole thioacetanilides as a novel class of potent HIV-1 non-nucleoside reverse transcriptase inhibitors. *Bioorg. Med. Chem. Lett.*, **2008**, 18, 5368–5371.

Zhang, X.; Dong, S.; Ding, Q.; Fan, X.; Zhang, G. Selenium-catalyzed oxidative carbonylation of 1, 2, 3-thiadiazol-5-amine with amines to 1, 2, 3-thiadiazol-5-ylureas. *Chinese Chem.I Lett.*, **2019**, 30, 375-378.

ANEXO A – Quadro de dados de RMN dos Compostos Obtidos

Quadro 12. Dados de RMN de ¹H dos compostos 6, 1a, 1b e 1c (DMSO-*d*₆)

Multi. = Multiplicidade

	$ \begin{array}{c} 17 & 16 \\ 0 & 15 \\ 14 & 13 \\ 0 & 5 \\ 0 & 4 \\ 0 & 11 \\ 10 & 12 \\ 6 (150 \text{ MHz}) \end{array} $	$ \begin{array}{c} 17 & 16 \\ 0 & 15 \\ 13 & \text{NH} \\ 0 & 5 \\ 2 & N & 4 \\ 10 & 11 \\ 10 \\ 11 \\ N & N^{-1} \\ 15' \\ 15' \\ 16' \\ 17' \end{array} $ 1a (100 MHz)	$ \begin{array}{c} 17 & 16 \\ 0 & 15 \\ 14 & 13 \\ 0 & 4 \\ 10 & 11 \\ 10 & 11 \\ 10 \\ 10 \\ 15 \\ 15 \\ 16 \\ 16 \\ 18 \\ 18 \\ 18 \\ 10 \\ 16 \\ 18 \\ 18 \\ 10 \\ 18 \\ 18 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	$ \begin{array}{c} 17 & 16 \\ 0 & 15 \\ 14 & 13 \\ N \\ 0 & 4 \\ 10 \\ 10 \\ 11 \\ N \\ 15 \\ 16' \\ 17' \\ Cl $
Carbono	δ (ppm)	δ (ppm)	$\delta(\text{ppm})$	$\delta(\text{mag})$
C2	152,6	153,0	152,4	152,5
C4	148,8**	não observado	não observado	não observado
C5	119,0**	não observado	não observado	não observado
C6	154,2	não observado	não observado	não observado
C8	140,3	140,8	140,8	140,9
C10	32,4	38,1	38,1	38,1
C11	78,3	142,9	142,8	142,9
C12	75,9	123,8	123,5	123,8
C13	36,6	não observado	não observado	36,0*
C14	152,9	152,4	153,0	153,0
C15	106,7	106,7	106,6	106,7
C16	110,5	110,5	110,4	110,5
C17	141,9	141,9	141,8	141,9
C13'	-	52,9	52,6	52,1
C14'	-	136,0	137,5***	134,9***
C15'	-		128 0 ou 129 3	130,0***
C16'	-	128,0 ou 128,2 ou 128,8	120,0 00 129,5	128,8***
C17'	-		132,9***	133,0***
C18'	-	-	20,7	-

Quadro 13. Dados de RMN de ¹³C dos compostos 6, 1a, 1b e 1c (DMSO-*d*₆)

Multi. = Multiplicidade; *atribuído pelo HSQC; **atribuído pelo HMBC; ***atribuído segundo Silverstein et al., 2006²⁰¹

²⁰¹ Silverstein, R.; Webster, F.; Kiemle, D. Identificação espectrométrica de composto orgânicos, 7a ed., LTC, **2006**.

Quadro 14. Dados de RMN de ¹H dos compostos 1d, 1e e 1f (DMSO-d₆)

	17 16 0 19 14 13 NH 6 N 2 N	$ \begin{array}{c} 5 \\ 5 \\ 4 \\ 10 \\ 10 \\ 11 \\ 8 \\ 12 \\ 10 \\ 11 \\ 8 \\ 12 \\ 10 \\ 11 \\ 8 \\ 12 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 10$	N 13' N 14' N 15' 17' 16' Br	17 16 0 14 13 NI 6 N 2 N	5 H $\frac{5}{4}$ N 8 10 10 11 N ² 10 11	= N + 13' + 14' + 17' + 16' + F	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$		
Hidrogênio	δ (ppm) Multi. J (Hz)			δ (ppm)	Multi.	J (Hz)	δ (ppm)	Multi.	J (Hz)
H2/H8	9 10 9 40	~	X /	8,22	sl	-	8,20-8,25	m	-
H12	0,10-0,40	m	-	8,14	S	-	8,09	S	-
H10	5,46	S	-	5,45	S	-	5,43	S	-
NH		não obse	rvado		não obse	ervado	não observado		
H13	4,68	sl	-	4,70	sl	-	4,69	sl	-
H15	6,20-6,26	m	-	6,20-6,26	m	-	6,20-6,36	m	-
H16	6,31-6,38	m	-	6,33-6,38	m	-	6,33-6,36	m	-
H17	7,50-7,53	m	-	7,50-7,53	m	-	7,50-7,54	m	-
H13'	5,54	S	-	5,54	S	-	5,46	S	-
H15'	7,23	d	H15'/H16' = 8,1	7,18	t	H15'/H16'/F= 9,2	7,26*	d	H15'/H16' = 8,0
H16'	7,54	d	H16'/H15' = 8,1	7,32-7,40	m	-	6,90*	d	H16'/H15' = 8,0
H18'	-	-	-	-	-	-	3,72	S	-

Multi. = Multiplicidade; *atribuído segundo Pretsch et al., 2009²⁰²

²⁰² Badertscher, M.; Bühlmann, P.; Pretsch, E. Structure Determination of Organic Compounds: Tables of Spectral Data, 4a ed., Springer, **2009**.

Quadro 15. Dados de RMN de ¹³C dos compostos 1d, 1e e 1f (100 MHz, DMSO-d₆)

Multi. = Multiplicidade; *atribuído pelo HMBC; **atribuído segundo Silverstein et al., 2006²⁰¹

	$ \begin{array}{c} 17 & 16 \\ 0 & 15 \\ 14 \\ 13 \\ N \\ 2 \\ N \\ 4 \\ N \\ 10 \end{array} $	8 12 13 N N N 13 N 15 19	14' 16' 17' O CF ₃ 18'	17 16 0 15 14 13 NH 6 5 N 2 N 4	-N N 12 10 11 N=N 10	13' 15' 17' 16' CF _{3 18'}	$ \begin{array}{c} $			
Hidrogênio	δ (ppm) Multi. J(Hz)		<i>J</i> (Hz)	Multi.	<i>J</i> (Hz)	δ (ppm)	Multi.	<i>J</i> (Hz)		
H2/H8	8,26	sl	-	8,25-8,31	m	-	8,23	sl	-	
H12	8,21	s	-	8,23	S	-	8,14	S	-	
H10	5,46	s	-	5,49	S	-	5,45	S	-	
NH	n	ão observa	ido	não observado			nã	o observa	do	
H13	4,69	sl	-	4,72	sl	-	4,71	sl	-	
H15	6,20-6,24	m	-	6 20-6 29	m	_	6 21-6 26	m	-	
				0,20 0,20	111	-	0,21-0,20	111		
H16	6,32-6,40	m	-	6,32-6,40	m	-	6,33-6,37	m	-	
H16 H17	6,32-6,40 7,50-7,55	m m	-	6,32-6,40 7,50-7,53	m m		6,33-6,37 7,51-7,54	m m	-	
H16 H17 H13'	6,32-6,40 7,50-7,55 5,61	m m s	- - -	6,32-6,40 7,50-7,53 5,70	m m s	-	6,33-6,37 7,51-7,54 5,50	m m s	- - -	
H16 H17 H13' H15'	6,32-6,40 7,50-7,55 5,61	m m s	- - - H15'/H16'=8,0	6,32-6,40 7,50-7,53 5,70 7,48*	m m s d	- - - H15'/H16'=8,0	6,33-6,37 7,51-7,54 5,50 7,20,7,26	m m s	- - -	
H16 H17 H13' H15' H16'	6,32-6,40 7,50-7,55 5,61 7,43 ou 7,37	m m s d	- - - H15'/H16'=8,0 H16'/H15'=8,0	6,32-6,40 7,50-7,53 5,70 7,48* 7,72*	m m s d d	- - - H15'/H16'=8,0 H16'/H15'=8,0	6,33-6,37 7,51-7,54 5,50 7,20-7,26	m m s m	- - - -	
H16 H17 H13' H15' H16' H18'	6,32-6,40 7,50-7,55 5,61 7,43 ou 7,37	m m s d	- - - H15'/H16'=8,0 H16'/H15'=8,0 -	6,32-6,40 7,50-7,53 5,70 7,48* 7,72* -	m m s d d	- - - H15'/H16'=8,0 H16'/H15'=8,0 -	6,33-6,37 7,51-7,54 5,50 7,20-7,26 2,85	m m s m hepteto	- - - H18'/H19'=7,4	

Quadro 16. Dados de RMN de ¹H dos compostos 1g, 1h e 1i (400 MHz, DMSO-*d*₆)

Multi. = Multiplicidade; *atribuído segundo Pretsch et al., 2009²⁰²

	17 16 0 15 15 14 13 NH 6 5 N 2 N 4 N 10	• 8 12 13' N=N 15' 16' 1g	7' O CF ₃ 18'	17 16 0 15 14 13 NH 6 5 2 N 4	N N 12 13 10 11 N=N 16 1h	5' 14' 17' CF _{3 18'}	$17 - 16 \\ 0 - 14 \\ 13 - 15 \\ 10 - 17 - 18 \\ 10 - 11 - 12 - 13' \\ 10 - 11 - 12 - 13' \\ 15' - 16' - 17' \\ 16' - 19' \\ 19' \\ 11$
Carbono	δ (ppm)	Multi.	J (Hz)	δ (ppm)	Multi.	J (Hz)	δ (ppm)
C2	152,4	-	-	152,4	-	-	152,4
C4	nâ	ao observado			não observa	ado	não observado
C5	118,8	-	-	119,0	-	-	não observado
C6	154,2	-	-	154,2	-	-	154,2
C8	140,8	-	-	140,8	-	-	140,8
C10	38,1	-	-	38,1	-	-	38,1
C11	143,0	-	-	143,0	-	-	142,8
C12	123,9	-	-	124,1	-	-	123,6
C13	36,5	-	-	36,5	-	-	36,5
C14	153,0	-	-	153,0	-	-	153,0
C15	106,6	-	-	106,6	-	-	106,6
C16	110,4	-	-	110,4	-	-	110,4
C17	141,8	-	-	141,8	-	-	141,8
C13'	51,9	-	-	52,2	-	-	52,6
C14'	135,4	-	-	140,5	-	-	133,3*
C15'	130,0	-	-	128,6	-	-	128,9*
C16'	121,3	-	-	125,6	q	C16'/F = 4,0	126,7*
C17'	148,1	-	-	128,7	q	C17'/F = 32,0	148,4*
C18'	nâ	io observado		124,1	q	C18'/F = 270,0	33,1
C19'	-	-	-	-	-	-	23,8
				201			

Quadro 17. Dados de RMN de ¹³C dos compostos 1g, 1h e 1i (100 MHz, DMSO-*d*₆)

Multi. = Multiplicidade; *atribuído segundo o Silverstein et al., 2006²⁰¹

Quadro 18. Dados de RMN de ¹H dos compostos **1j**, **1k** (400 MHz, DMSO-*d*₆)

	17 0 14 13 N 2		2 13' 15' N 14' 16' =N	$ \begin{array}{c} 17 & 16 \\ 0 & 15 \\ 14 & 13 \\ 0 & 4 \\ 10 & 11 \\ 10 & 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11$			
Hidrogênio	$\delta(ppm)$	Multi.	J (Hz)	$\delta(ppm)$	Multi.		
H2/H8	8,27-8,21	m	-	8,24	sl		
H12	8,08	S	-	7,87	S		
H10	5,44	S	-	5,49	S		
NH		não obse	ervado	não	observado		
H13	4,69	sl	-	4,69	sl		
H15	6,26-6,18	m	-	6,21-6,24	m		
H16	6,31-6,38	m	-	6,34-6,37	m		
H17	7,50-7,53	m	-	7,51-7,54	3		
H13'	4,29	t	H13'/H14'=7,2	-	-		
H14'	1,73	q	H13'/H14'/H15' = 7,3	-	-		
H15'	1,19	sexteto	H14'/H15'/H16'= 7,4	-	-		
H16'	0,84	t	H16'/H15' = 7,4	-	-		

	$ \begin{array}{c} 17 & 16 \\ 0 & 15 \\ 14 \\ 13 & \text{NH} \\ 0 & 5 \\ 2 & N \\ 10 & 11 \\ 10 \\ 11 \\ N=N \\ 1j \end{array} $	$ \begin{array}{c} 17 & 16 \\ 0 & 15 \\ 14 & NH \\ 0 & 5 \\ 10 & 11 \\ 10 & 11 \\ N=N \\ 1k \end{array} $
Carbono	δ (ppm)	$\delta(ppm)$
C2	152,4	152,3
C4	não observado	não observado
C5	não observado	119,0
C6	154,3	154,2
C8	140,8	140,8
C10	38,1	37,9
C11	142,4	142,1
C13	36,6	36,5
C12	123,5	128,8
C14	153,0	153,0
C15	106,7	106,7
C16	110,4	110,5
C17	141,8	141,8
C13'	49,1	-
C14'	31,7	-
C15'	19,1	-
C16'	13,3	-

Quadro 19. Dados de RMN de ¹³C dos compostos **1j** e **1k** (100 MHz, DMSO-*d*₆)

	$\delta(\text{ppm}) \qquad \text{MH}_{2} \qquad \qquad \text{NH}_{2} \qquad \qquad \text{NH}_{10} \qquad \qquad$			NH2 N 4 N 12 10 11 N= 2a	N 13 N 14 N 15 15 16	NH ₂ 6 5 N 2 N 4 N 7 12 N 10 11 N N N 2 N 2 N 4 N 7 12 N N 8 2 N 8 2 N 8 2 N 8 12 N 10 10 10 10 10 10 10 10 10 10 10 10 10	13 14 15 17 16 18	1000000000000000000000000000000000000			
Hidrogênio	δ (ppm)	Multi.	J(Hz)	$\delta(ppm)$	Multi.	$\delta(ppm)$	Multi.	δ (ppm)	Multi.	J (Hz)	
H8	8.17	S		8.20	S	8.19	S	• (PP)		- ()	
H2	8,20	S	-	0.15		8,13	S	8,10-8,30	m	-	
H12	3,46	t	H12/H10=2,4	8,15	SI	8,10	S	, ,			
H10	5,03	d	H10/H12=2,4	5,44	S	5,41	S	5,43	S	-	
H13	-	-	-	5,56	S	5,49	S	5,56	S	-	
NH ₂	7,32 s -		-			7,24	sl	7,17	sl	-	
H15			7 22 7 20	~	7 10 7 01		7,31	d	H15/H16=8,0		
H16			7,23-7,39	m	7,10-7,21	m	7,41	d	H16/H15=8,0		
H17	-	-	-			-	-	-	-	-	
H18	-	-	-	-	-	2,25	S	-	d H16/H15=8,0 δ(ppm) 152.5		
Carbono		$\delta(ppr)$	n)	δ (ppm)		δ (ppm)		$\delta(ppm)$		
C2		152,8	3	152,6		152,7		152,5			
C4		149,1	1	149,	3	não observado		não observado			
C5		118,5	5	118,	6	não observado		não observado			
C6		156,1	1	156,	0	156,0			155,9		
C8		140,2	2	140,	7	140,8			140,7		
C10		32,3	1	38,0)	38,1			38,0		
C11		78,4		142,	9	142,9			142,9		
C12		75,9		123,	7	123,6			123,8		
C13		-		52,8	3	52,7			52,0		
C14		-		135,	9	137,6*			134,9*		
C15		-				128 0 00 1	29.3		128 7 ou 12	999	
C16		-		127,9 ou 128,	1 ou 128,7	120,0 00 1	20,0		120,1 00 12	.0,0	
C17		-				132,9*			132,8*		
C18		-		-		20,7			-		

Quadro 20. Dados de RMN de ¹H (400 MHz) e de ¹³C (100 MHz) dos compostos **7, 2a**, **2b** e **2c** (DMSO-*d*₆)

*atribuído segundo o Silverstein et al., **2006**²⁰¹

	NH2 6 5 N 2 N 4	-N N 12 10 11 N=N	13 14 15 16 17 Br		N 8 N 7 12 0 11 N=N	13 14 15 16 F	NH_{2} $N = 12$ $N = 13$ N			
	a ()	2d			2e		2f			
Hidrogênio	δ (ppm)	Multi.	<i>J</i> (Hz)	δ (ppm)		Multi.	δ (ppm)	Multi.	J (Hz)	
H8	8,19	S	-	8,19		S	8,19	S	-	
H2	8.11-8.16	m	-	8.11-8.16		m	8,13	S	-	
H12	- , - , - , - , - , - , - , - , - , - ,			-, -, -			8,09	S	-	
H10	<u>5,43</u> s - <u>5,42</u> s				5,41	S	-			
H13	5,54	S	-	5,54	S		5,46	S	-	
<u>NH2</u> H15	- 7,21-7,26 m -		7,14-7,24 m		7,19-7,30	m	-			
H16	7,56	d	H16/H15 = 8,0	7,32-7,37		m	6,90	d	H16/H15=8,0	
H18	-	-	-	-		-	3,72	S	-	
Carbono		$\delta(ppr)$	n)	δ (ppm)	Multi.	<i>J</i> (Hz)		ı)		
C2		152,6	5	152,6			152,6			
C4		149,3	3	não observado			149,3			
C5		118,6	6	118,6	-	-		118,6		
C6		156,0)	156,0	-	-		156,0		
C8		140,7	7	140,7	-	-		140,6		
C10		38,0		38,0	-	-		38,0		
C11		142,9	9	142,9	-	-		142,8		
C12	123,8			123,6	-	-		123,3		
C13	52,1			52,1	-	-		52,4		
C14	135,3*			132,1	-	-		127,8*	*	
C15	130,2			130,3	d	C15/F = 8,0		129,6*	*	
C16		131,7	7	115,6	d	C16/F = 22,0		114,1*	*	
C17		121,4	*	163,1	-	-		159,1*	*	
C18		-		-	-	-		55,1		

Quadro 21. Dados de RMN de ¹H (400 MHz) e de ¹³C (100 MHz) dos compostos 2d, 2e e 2f (DMSO-*d*₆)

*foi comparado com o espectro de 1d; ** atribuído segundo o Silverstein et al., 2006²⁰¹

	NH2 6 5 N 2 N 4 N 10	> 8 12 13 13 14 11 N = N 15	CF ₃	NH2 0 2 N 4	N = N = N = N = N = N = N = N = N = N =	17 16 CF _{3 18}	$ \begin{array}{c} $			
	S (29	//11->	S (1/11->	S (21	1/11->	
Hidrogenio	0 (ppm)	Multi.	J (⊓Z)	o(ppm)	wuiti.	J (⊓Z)	<u> </u>	Multi.	J (HZ)	
	0,21	S	-	8,20	sl		0,10	5	-	
	0,19	S	-	9 1 /			8,12	sl	-	
	5.44	5	-	5.45	5	-	5 /1			
	5,44	5	-	5,45	5	-	5.41	-		
NH.	7.24	5	_	7.23	5	_	3,43	-		
H15/H16	7,43 ou 7,36 d		- H15/H16=8,0 H16/H15=8,0	7,47 ou 7,73	d	- H15/H16=8,0 H16/H15=8,0	7,19-7,23	m	-	
H18				-	-	-	2,85	hepteto	H18/H19= 7,7	
H19	-	-	-	-	-	-	1,15	d	H19/H18=7,7	
Carbono		δ (ppm)		<i>δ</i> (ppm)	Multi.	J		δ (ppm)		
C2		152,6		152,6	-	-	152,6			
C4		149,3		149,3	-	-		149,3		
C5		118,6		118,6	-	-		118,6		
C6		156,0		156,0	-	-		156,0		
C8		140,7		140,7	-	-		140,7		
C10		38,0		38,0	-	-		38,0		
C11		143,0		143,0	-	-		142,9		
C12		123,8		124,0	-	-		123,6		
C13		51,9		52,1	-	-		52,6		
C14		135,4		140,6	-	-		133,3*		
C15		130,0		128,6	-	-		128,1*		
C16		121,3		125,7	q	C16/F = 3,5		126,6*		
C17		148,1		128,8	-	-	148,4*			
C18	n	ião observad	0	122,7	-	-		33,1		
C19		-		-	-	-		23,8		

Quadro 22. Dados de RMN de ¹H (400 MHz) e de ¹³C (100 MHz) dos compostos 2g, 2h e 2i (DMSO-d₆)

*atribuído segundo o Silverstein et al., 2006

	N 2	NH ₂ 6 5 N 4 N 10 11 N= 2j	N = 13 = 15 N = 14 = 16 N = 14 = 16	$ \begin{array}{c} $			
Hidrogênio	$\delta(ppm)$	Multi.	<i>J</i> (Hz)	$\delta(ppm)$	Multi.		
H2	8,15	S	-	8,14	S		
H8	8,19	S	-	8,20	S		
H12	8,08	S	-	7,86	S		
H10	5,43	S	-	5,46	S		
NH ₂	7,25	S	-	7,23	S		
H13	4,30	t	H13/H14=8,0	-	-		
H14	1,73	quinteto	H13/H14/H15=7,7	-	-		
H15	1,19	sexteto	H14/H15/H16=8,0	-	-		
H16	0,84	t	H15/H16=8,0	-	-		
Carbono		$\delta(pp)$	m)	$\delta(ppm)$			
C2		152,	6	153,0			
C4		149,	.3		149,8		
C5		118,	6		119,0		
C6		156,	0		156,0		
C8		140,	7		141,2		
C10		38,0	0		38,2		
C11		142,	5		142,5		
C12		123,	.4		129,3		
C13		49,1	1		-		
C14		31,6	6		-		
C15		19,0	0		-		
C16		13,2	2		-		

Quadro 23. Dados de RMN de ¹H (400 MHz) e de ¹³C (100 MHz) dos compostos 2j e 2k (DMSO-*d*₆)

	$\begin{array}{c c} 3 & 0 & 6 \\ 2 & 4 & 5 & 0 \\ H_2 N & 1 & 28 \end{array}$			$H_{2}N \xrightarrow{1}{12} \xrightarrow{13}{10} \\ H_{2}N \xrightarrow{1}{4} \xrightarrow{5}{0} \xrightarrow{7} \xrightarrow{N=N'}{N=N'} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $			$H_{2}N \xrightarrow{1}{1} U_{1} U$			$H_{2}N^{-1} = \frac{12}{13} + \frac{12}{13} + \frac{12}{13} + \frac{12}{13} + \frac{12}{13} + \frac{12}{13} + \frac{13}{10} + \frac{12}{10} + \frac{13}{10} + \frac{12}{10} + \frac{13}{10} + \frac{12}{10} + \frac{13}{10} + $		
Hidrogênio	δ(ppm)	Multi.	J(Hz)	δ (ppm)	Multi.	J(Hz)	δ(ppm)	Multi.	J (Hz)	$\delta(ppm)$	Multi.	J (Hz)
NH ₂	6,04	S		6,00	S	-	6,0	sl		6.01	sl	-
H2	6,59	d	H2/H3 = 8,0	6,55	d	H2/H3 = 8,0	6,55	d	H2/H3 = 8,0	6,56	d	H2/H3 = 8,0
H3	7,66	d	H3/H2 = 8,0	7,62	d	H3/H2 = 8,0	7,62	d	H3/H2 = 8,0	7,61	d	H3/H2 = 8,0
H6	4,83	S	-	5,26	S	-	5,26	S	-	5,27	S	-
H8	3,49	S	-	8,25	S	-	8,26	S	-	8,26	S	-
H9	-	-	-	5,60	S	-	5,59	S	-	5,59	S	-
H11	-	-	-	-			7,29	d	H11/H12 = 8,0	7,36-7,45	m	-
H12	-	-	-	7,31-7,39	m	-	7,62	d	H12/H11 = 8,0	7,20	t	H12/H11= 8,0
H13	-	-	-							-	-	-
Carbono		$\delta(\text{ppm})$			$\delta(\text{ppm})$		δ (ppm)			δ (ppm)	Multi.	J (Hz)
C1		153,9			153,7		153,7			153,7	-	-
C2		112,8			112,7*		11		7	112,7	-	-
C3		131,4			131,3*			131,3			-	-
C4		114,9			115,3			115,3			-	-
C5		165,1			165,6			165	6	165,6	-	-
C6		51,4			57,0			56,	9	56,9	-	-
C7		79,1			142,8			142	8	142,8	-	-
<u>C8</u>		77,3			124,8			124	9	124,7	-	-
<u> </u>		-			52,8			52,	1**	52,1	- -	-
		-			136,0			135,4	+	132,3	u d	C10/F = 3,0
		-		120 0	120 2 ~	100.0*		130,3 ou	131,7**	130,4	u d	011/F = 0,0
C12		-		120,000	1 120,2 00	1∠0,0		121 /	5**	162.0	u d	C12/F = 21,3
613		-						121,)	162,0	a	0.13/F = 243,1

Quadro 24. Dados de RMN de ¹H (400 MHz) e de ¹³C (100 MHz) dos compostos 28, 20a, 20b e 20c (DMSO-*d*₆)

*atribuído pelo HSQC; **atribuído segundo Silverstein et al., 2006²⁰¹

	H ₂ N 1		N = N	H_2N	N = N	$H_{2}N = N$			
Hidrogênio	δ (ppm)	Multi.	<i>J</i> (Hz)	δ (ppm)	Multi.	<i>J</i> (Hz)	$\delta(ppm)$	Multi.	<i>J</i> (Hz)
NH ₂	6,01	sl	-	6,01	sl	-	6,01	sl	-
H2	6,55	d	H2/H3 = 8,0	6,55	d	H2/H3 = 8,0	6,55	d	H2/H3 = 8,0
H3	7,62	d	H3/H2 = 8,0	7,62	d	H3/H2 = 8,0	7,62	d	H3/H2 = 8,0
H6	5,52	S	-	5,27	S	-	5,27	S	-
H8	8,19	S	-	8,29	S	-	8,31	S	-
H9	5,51	S	-	5,65	S	-	5,73	S	-
H11	7,31	d	H11/H12 = 8,00	7,46 ou	Ь	H11/H12 = 8,00	7,52	d	H11/H12 = 8,00
H12	6,92 d H12/H13 = 8,00		H12/H13 = 8,00	7,38	ŭ	H12/H13 = 8,00	7,75	d	H12/H13 = 8,00
H14	3,36	S	-	-	-	-	-	-	-
Carbono		$\delta(pp)$	m))	δ (ppm)	Multi.	<i>J</i> (Hz)	
C1		153,	7			153,7	-	-	
C2		112,	7		112,6		112,7	-	-
C3		131,	3		131,3		131,3	-	-
C4		115,	3		115,3		115,3	-	-
C5		165,	6		165,6		165,6	-	-
C6		56,9	9		56,9		56,9	-	-
C7		142,	7		142,9		142,9	-	-
C8		124,	7		124,9		125,1	-	-
C9		52,4	1		51,97		52,1	-	-
C10	127,9*				135,4		140,6	-	-
C11	129,7*				131,3		128,7	-	-
C12		114,1	1*	121,4			125,7	q	C12/F= 3,6
C13		159,2	2*		148,1		128,7	q	C13/F = 30
C14		55,1	1		não obser\	vado	124,7	q	C14/F = 270

Quadro 25. Dados de RMN de ¹H (400 MHz) e de ¹³C (100 MHz) dos compostos **20d**, **20e** e **20f** (DMSO-*d*₆)

*atribuído segundo Silverstein et al., 2006²⁰¹

	N=N_4' S_5' 26	0 6' N ₃	N=N S 5' H 6' N H H	³ 1 4 5 4 4 4 4 4 4 4		N=N 5' H 6' N 1 5' H 1	³ 4 ⁵ 4b	6 8 7 N=N N=N Br	N=N 0 2 S 4' 1 6' N 5' H H	³ 4 ⁵ 4c	
Hidrogênio	$\delta(ppm)$	Multi.	δ (ppm)	Multi.	<i>J</i> (Hz)	δ (ppm)	Multi.	J (Hz)	δ (ppm)	Multi.	J (Hz)
H5'	9,98	S	8,80	S	-	8,80	S	-	8,80	S	-
NH	-	-	10,40 e 9,43	S	-	10,39 e 9,32	S	-	10,40 e 9,34	s	-
H2	-	-	7,62	d	H2/H3 = 8,0	7,64-7,56	m	-	7,62	d	H2/H3 = 8,0
H3	-	-	7,91	d	H3/H2 = 8,0	7,91	d	H3/H2 = 8,0	7,91	d	H3/H2 = 8,0
H6	-	-	5,36	S	-	5,36	S	-	5,36	S	-
H8	-	-	8,30	S	-	8,31	S	-	8,31	S	-
H9	-	-	5,61	S	-	5,60	S	-	5,61	S	-
H11	-	-	7,41-7,32	32 m	-	7,29	d	H11/H12 = 8,0	7,44-7,40	m	-
H12	-	-				Superposto com H3			7,21	t	H12/H11 = 8,0
H13	-	-				-	-	-	-	-	-

Quadro 26. Dados de RMN de ¹H (400 MHz) dos compostos 26, 4a, 4b e 4c (DMSO-*d*₆)

	N=N 4' O S 5' N ₃ 26	$S_{5'} = N + 0$ $S_{5'} = H + 0$ $H = 0$ $S_{1} = 0$ $H = 0$	$S_{5'}^{N=N} \stackrel{0}{\xrightarrow{5'}} \stackrel{2}{\xrightarrow{H}} \stackrel{0}{\xrightarrow{6'}} \stackrel{1}{\xrightarrow{1}} \stackrel{0}{\xrightarrow{4'}} \stackrel{0}{\xrightarrow{6'}} \stackrel{0}{\xrightarrow{7'}} \stackrel{0}{\xrightarrow{7'}} \stackrel{0}{\xrightarrow{7'}} \stackrel{0}{\xrightarrow{7'}} \stackrel{1}{\xrightarrow{7'}} \stackrel{1}{$	N=N S 5' H 6' N H H	² 1 4 5 4 6	$ \begin{array}{c} $
Carbono	δ (ppm)	δ (ppm)	δ (ppm)	δ (ppm)	Multi.	<i>J</i> (Hz)
C5'	146,6	119,1	119,1	119,1	-	-
C4'	154,3	151,3	151,3	151,3	-	-
C6'	164,8	156,4	156,4	156,4	-	-
C1	-	143,9	143,9	143,9	-	-
C2	-	117,6*	117,6	117,6	-	-
C4	-	122,7	122,7	122,7	-	-
C5	-	165,1	165,1	165,1	-	-
C6	-	57,7	57,9	57,6	-	-
C7	-	142,3	142,4	142,4	-	-
C8	-	125,0	125,0	124,9	-	-
C9	-	52,9	52,1	52,1	-	-
C10	-	136,0	135,3	132,2	d	C10/F = 3,0
C3	-	130,7*		130,7	-	-
C11	-		131,7 ou 130,7 ou 130,3	130,4	d	C11/F = 8,0
C12	-	128,8 ou 128,2 ou 128,1*		115,6	d	C12/F = 21,0
C13	-		121,5	161,9	d	C13/F = 243,0

Quadro 27. Dados de RMN de ¹³C (100 MHz) dos compostos 26, 4a, 4b e 4c (DMSO-d₆)

*atribuído pelo HSQC;

Quadro 28. Dados de RMN de ¹H (400 MHz) dos compostos 4d, 4e e 4f (DMSO-*d*₆)

	$S_{5'}^{N=N} = H_{H}^{0} = H_{H}^{2} = H_{H}^{0} = H$	$S_{5'}^{N=N}$ $H_{6'}^{2}$ $H_{1}^{4'}$ $H_{6'}^{2}$ $H_{1}^{4'}$ H	$\mathbf{\hat{s}_{5'}^{N=N}} \overset{O}{\underset{H}{\overset{4'}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{$		⁸ N N 10 11 12 13 CF ₃
	4d	4e		4f	1
Carbono	δ (ppm)	δ ppm)	δ (ppm)	Multi.	J (Hz)
C5'	119,1	119,0	119,1	-	-
C4'	151,3	151,3	151,3	-	-
C6'	156,4	156,4	156,4	-	-
C1	143,8	143,8	143,9	-	-
C2	117,6	117,6	117,6	-	-
C4	122,8	122,7	122,7	-	-
C5	165,1	165,1	165,1	-	-
C6	57,6	57,6	57,6	-	-
C7	142,2	142,2	142,5	-	-
C8	124,8	125,0	125,3	-	-
C9	52,4	51,9	52,2	-	-
C10	127,8	135,4	140,6	-	-
C3	130,6	130,6	130,7	-	-
C11	129,7	130,1	128,7	-	-
C12	114,1	121,3	125,7	q	C12/F = 3,7
C13	159,2	148,1	128,8	-	-
C14	55,1	não observado	125,6	-	-

Quadro 29. Dados de RMN de ¹³C (100 MHz) dos compostos **4d**, **4e** e **4f** (DMSO-*d*₆).

ANEXO B - Espectros dos Compostos Obtidos

Figura 58. Espectro de RMN de ¹H do composto **6** (600) (ddHdz, DMSO- d_6).

Figura 59. Espectro de RMN de ¹³C do composto **6** (150 MHz, DMSO-*d*₆).

Figura 60. Mapa de contornos HSQC do composto 6 (600 MHz, DMSO-d₆).

Figura 61. Espectro de massas do composto 6 (ESI+).

Figura 63. Espectro de RMN de ¹H do composto 7 (400 MHz, DMSO-*d*₆).

Figura 65. Espectro de massas do composto 7 (ESI+).

Figura 66. Espectro de RMN de ¹H do composto **8a** (400 MHz, CDCl₃).

Figura 67. Espectro de RMN de ¹H do composto **8b** (200 MHz, CDCl₃).

Figura 68. Espectro de RMN de ¹H do composto 8c (400 MHz, CDCl₃).

Figura 69. Espectro de RMN de ¹H do composto 8d (400 MHz, CDCl₃).

Figura 70. Espectro de RMN de ¹H do composto 8e (400 MHz, CDCl₃).

Figura 71. Espectro de RMN de ¹H do composto 8f (400 MHz, CDCl₃).

Figura 73. Espectro de RMN de ¹H do composto 8h (400 MHz, CDCl₃).

Figura 75. Espectro na região do IV (KBr) do composto 1a.

Figura 76. Espectro de RMN de ¹H do composto **1a** (600 MHz, DMSO-*d*₆).

Figura 77. Espectro de RMN de ¹³C (a) e subespectro de DEPT-135 (b) do composto **1a** (100 MHz, DMSO-*d*₆).

Figura 78. Espectro de massas do composto 1a (ESI+).

Figura 80. Espectro de RMN de ¹H do composto 1b (400 MHz, DMSO-*d*₆).

Figura 81. Espectro de RMN de ¹³C (a) e subespectro de DEPT-135 (b) do composto 1b (100 MHz, DMSO-d₆).

Figura 82. Espectro de massas do composto 1b (ESI+).

Figura 83. Espectro na região do IV (KBr) do composto 1c.

Figura 84. Espectro de RMN de ¹H do composto **1c** (400 MHz, DMSO-*d*₆).

160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 $\delta({
m ppm})$

Figura 85. Espectro de RMN de ¹³C (a) e subespectro de DEPT-135 (b) do composto **1c** (100 MHz, DMSO- d_6).

Figura 86. Espectro de massas do composto 1c (ESI+).

Figura 87. Espectro na região do IV (KBr) do composto 1d.

Figura 88. Espectro de RMN de ¹H do composto 1d (400 MHz, DMSO-d₆).

Figura 89. Espectro de RMN de ¹³C (a) e subespectro de DEPT-135 (b) do composto 1d (100 MHz, DMSO-d6).

Figura 90. Mapa de contornos HSQC do composto 1d (400 MHz, DMSO-d₆).

d6).

Figura 92. Expansão na região dos aromáticos no mapa de $_{\delta OPH}$ printo HMBC do composto **1d** (600 MHz, DMSOd₆).

Figura 93. Espectro de massas do composto 1d (ESI+).

Figura 95. Espectro de RMN de ¹H do composto **1e** (400 MHz, DMSO-*d*₆).

Figura 96. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) do composto **1e** (100 MHz, DMSO-*d*₆).

 δ (ppm) Figura 97. Expansões do espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) do composto **1e** (100 MHz, DMSO-*d*₆).

Figura 98. Espectro de massas do composto 1e (ESI+).

Figura 100. Espectro de RMN de ¹H do composto **1f** (400 MHz, DMSO-*d*₆).

Figura 103. Espectro na região do IV (KBr) do composto 1g.

Figura 104. Espectro de RMN de ¹H do composto **1g** (400 MHz, DMSO-*d*₆).

Figura 107. Espectro de massas do composto 1g (ESI+).

Figura 108. Espectro na região do IV (KBr) do composto 1i.

Figura 109. Espectro de RMN de ¹H do composto **1i** (400 MHz, DMSO-*d₆*).

Figura 110. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) do composto **1i** (100 MHz, DMSO-*d*₆).

Figura 111. Espectro de massas do composto 1i (ESI+).

Figura 112. Espectro na região do IV (KBr) do composto 1j.

Figura 113. Espectro de RMN de ¹H do composto **1j** (400 MHz, DMSO-*d*₆).

Figura 114. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) do composto **1**j (100 MHz, DMSO-*d*₆).

Figura 115. Espectro de massas do composto 1j (ESI+).

Figura 116. Espectro na região do IV (KBr) do composto 1k.

Figura 117. Espectro de RMN de ¹H do composto **1k** (400 MHz, DMSO-*d*₆).

 δ (ppm)

Figura 118. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) do composto 1k (100 MHz, DMSO-*d*₆).

Figura 119. Espectro de massas do composto 1k (ESI+).

Figura 120. Espectro na região do IV (KBr) do composto 2a.

Figura 122. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) do composto 2a (100 MHz, DMSO-d₆).

Figura 123. Espectro de massas do composto 2a (ESI+).

Figura 124. Espectro na região do IV (KBr) do composto 2b.

Figura 125. Espectro de RMN de ¹H do composto **2b** (400 MHz, DMSO-*d*₆).

Figura 126. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) do composto **2b** (100 MHz, DMSO-*d*₆).

Figura 128. Espectro na região do IV (KBr) do composto 2c.

Figura 129. Espectro de RMN de ¹H do composto **2c** (400 MHz, DMSO-*d*₆).

Figura 131. Espectro de massas do composto 2c (ESI+).

Figura 132. Espectro na região do IV (KBr) do composto 2d.

Figura 136. Espectro na região do IV (KBr) do composto 2e.

Figura 137. Espectro de RMN de ¹H do composto **2e** (400 MHz, DMSO-*d*₆).

Figura 138. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) do composto 2e (100 MHz, DMSO-d₆).

Figura 139. Espectro de massas do composto 2e (ESI+).

Figura 140. Espectro na região do IV (KBr) do composto 2f.

Figura 141. Espectro de RMN de ¹H do composto 2f (400 MHz, DMSO-*d*₆).

Figura 143. Espectro de massas do composto 2f (ESI+).

Figura 144. Espectro na região do IV (KBr) do composto 2g.

Figura 145. Espectro de RMN de ¹H do composto **2g** (400 MHz, DMSO-*d*₆).

Figura 146. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) do composto **2g** (100 MHz, DMSO-*d*₆).

Figura 147. Espectro de massas do composto 2g (ESI+).

Figura 148. Espectro na região do IV (KBr) do composto 2h.

Figura 150. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b)do composto **2h** (100 MHz, DMSO-*d*₆).

Figura 151. Expansões do espectro de RMN de ^{δ (ppm)} (a) e subespectro DEPT-135 (b) do composto **2h** (100 MHz, DMSO-*d*₆).

Figura 152. Espectro de massas do composto 2h (ESI+).

Figura 153. Espectro na região do IV (KBr) do composto 2i.

Figura 154. Espectro de RMN de ¹H do composto **2i** (400 MHz, DMSO-*d*₆).

Figura 155. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) do composto **2i** (100 MHz, DMSO-*d*₆).

Figura 156. Espectro de massas do composto 2i (ESI+).

Figura 157. Espectro na região do IV (KBr) do composto 2j.

Figura 159. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) do composto 2i (100 MHz, DMSO-*d*₆).

Figura 160. Espectro de massas do composto 2j (ESI+).

Figura 161. Espectro na região do IV (KBr) do composto 2k.

Figura 162. Espectro de RMN de ¹H do composto 2k (400 MHz, DMSO-*d*₆).

Figura 163. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) do composto 2i (100 MHz, DMSO-*d*₆).

Figura 164. Espectro de massas do composto 2k (ESI+).

Figura 165. Espectro de RMN de ¹H do composto 16 bruto (400 MHz, DMSO-d₆)

Figura 166. Espectro de RMN de ¹H do éster 1,2,3-tiadiazol-5-carboxilato de etila (400 MHz, DMSO-*d*₆).

Figura 167. Espectro de RMN de ¹H do ácido 1,2,3-tiadiazol-5-carboxílico (400 MHz, CDCl₃).

Figura 168. Espectro de RMN de ¹H do composto 21 (200 MHz, CDCl₃).

Figura 169. Espectro de RMN de ¹H do composto 23 (200 MHz, CDCl₃).

Figura 170. Espectro de RMN de ¹H do ácido 1,2,3-tiadiazol-4-carboxílico (400 MHz, DMSO-*d*₆).

Figura 171. Espectro de RMN de ¹H do composto 25 (400 MHz, DMSO-d₆).

Figura 172. Espectro de RMN de ¹³C do composto 26 (100 MHz, DMSO-d₆).

Figura 173. Espectro na região do IV (KBr) do composto 27.

Figura 174. Espectro de RMN de ¹H do composto 23(pdf) MHz, DMSO-d₆).

Figura 175. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) do composto 28 (100 MHz, DMSO-*d*₆).

Figura 176. Espectro na região do IV (KBr) da amina 20a.

Figura 177. Espectro de RMN de ¹H do composto **20a** (400 MHz, DMSO-*d₆*).

Figura 178. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) da amina **20a** (100 MHz, DMSO-*d*₆).

Figura 179. Espectro na região do IV (KBr) do composto 20b.

Figura 181. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) da amina **20b** (100 MHz, DMSO-*d*₆).

Figura 182. Espectro na região do IV (KBr) do composto 20d.

Figura 184. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) da amina **20d** (100 MHz, DMSO-*d*₆).

Figura 185. Espectro na região do IV (KBr) do composto 20e.

Figura 186. Espectro de RMN de ¹H do composto **20e** (400 MHz, DMSO-*d*₆).

Figura 187. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) da amina **20e** (100 MHz, DMSO-*d*₆).

Figura 188. Espectro na região do IV (KBr) do composto 20f.

 δ (ppm)

Figura 190. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) da amina **20f** (100 MHz, DMSO-*d*₆).

Figura 191. Expansões do espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) da amina **20f** (100 MHz, DMSO- d_6).

Figura 192. Espectro na região do IV (KBr) do composto 4a.

Figura 194. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) do composto **4a** (100 MHz, DMSO-*d*₆).

Figura 195. Espectro na região do IV (KBr) do composto 4b.

Figura 197. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) do composto **4b** (100 MHz, DMSO- d_6).

Figura 198. Espectro na região do IV (KBr) do composto 4d.

Figura 199. Espectro de RMN de ¹H do composto 4d (400 MHz, DMSO-*d₆*).

Figura 200. Espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) do composto 4d (100 MHz, DMSO-*d*₆).

Figura 201. Espectro na região do IV (KBr) do composto 4e.

Figura 202. Espectro de RMN de ¹H do composto 4e (400 MHz, DMSO-*d*₆).

229

Figura 204. Espectro na região do IV (KBr) do composto 4f.

Figura 205. Espectro de RMN de ¹H do composto 4f (400 MHz, DMSO-*d*₆).

Figura 207. Expansões do espectro de RMN de ¹³C (a) e subespectro DEPT-135 (b) do composto **4f** (100 MHz, DMSO- d_6).

Figura 208. Efeito dos compostos **6**, **1a-i**, **7**, **2a-i**, cinetina, adenina e soluções diluentes (SD1, SD2, SD3 e SD4) (a) no comprimento da raiz (b) e da parte aérea da espécie *Cucumis sativus* (pepino), nas concentrações de 1 e 100 μ M. Concentração de DMSO: SD1 (0,26% para 100 μ M e 0,0026% para 1 μ M), SD2 (0,30% para 100 μ M e 0,0030% para 1 μ M), SD3 (0,15% para 100 μ M e 0,0015% para 1 μ M), SD4 (0,15% para 100 μ M e 0,0015% para 1 μ M. Médias seguidas pela mesma letra minúscula não apresentam diferenças significativas pelo teste de Scott-Knott.