
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Fábio da Silva Ferreira

Assisting JavaScript Front-End Developers in Maintaining and Evolving

React-Based Applications: Code Smells and Refactoring Operations

Belo Horizonte
2023

Fábio da Silva Ferreira

Assisting JavaScript Front-End Developers in Maintaining and Evolving

React-Based Applications: Code Smells and Refactoring Operations

Final Version

Thesis presented to the Graduate Program in Computer Sci-
ence of the Federal University of Minas Gerais in partial ful-
fillment of the requirements for the degree of Doctor in Com-
puter Science.

Advisor: Marco Túlio de Oliveira Valente

Belo Horizonte
2023

2023, Fábio da Silva Ferreira.
Todos os direitos reservados

Ferreira, Fábio da Silva.

F383a Assisting JavaScript front-end developers in maintaining and
evolving react-based applications: code smells and refactoring
operations [recurso eletrônico] : / Fábio da Silva Ferreira –
2023.
1 recurso online (113 f. il., color.) : pdf.

Orientador: Marco Túlio de Oliveira Valente.

Tese (Doutorado) - Universidade Federal de Minas Gerais,
Instituto de Ciências Exatas, Departamento de Ciências da
Computação.
Referências: f.106-113

1. Computação – Teses. 2. Engenharia de Software – Teses.
JavaScript (Linguagem de programação de computador) –
Teses. 4. Mineração de repositórios de software – Teses.
I. Valente, Marco Túlio de Oliveira. II. Universidade Federal de
Minas Gerais, Instituto de Ciências Exatas, Departamento de
Computação. III.Título.

CDU 519.6*32(043)

Ficha catalográfica elaborada pela bibliotecária Irénquer vismeg Lucas Cruz
CRB 6/819 - Universidade Federal de Minas Gerais - ICEx

���������	��
�����	�
��
��	�
���	�����������
��
������	�
��	�	����	��	����
��
������	
�	
�����	��������		
��
������	��	���
�
������	
�	
�����	��������
��
� !�"�#$�
	��������
%	�	������
���������
����������
��
	���	�����
	����������
��	���&	���	�����	�����'
����
�����
	��
���	�������
����	�����
�(&��
�	
����	
�������	

 �)*)
+),)-+.+/
)
/0123/+/
0)4/
5/-6/
)7/8.-/+21/
62-*9:;<+/
0)42*
�)-=21)*'
�12,>
/162
�?4.2
+)
�4.3).1/
�/4)-:)
�
�1.)-:/+21�)0/1:/8)-:2
+)
�.@-6./
+/
�280;:/AB2
�
���
�12,>
/16)42
+)
	48).+/
/./
�/6;4+/+)
+)
�280;:/AB2
�
���
�12,>
&1)-2
&)1-/1+
�.624/;
+)
�1/-A/
�-*9:;:2
+)
�280;:/AB2
�
����	�
�12,>
	-+1C
�/3/46/-:)
D21/
�)0/1:/8)-:2
+)
�.@-6./
+/
�280;:/AB2
�
����12,>
�+;/1+2
/E-2
�/E)*
�.E;).1)+2
�)0/1:/8)-:2
+)
�.@-6./
+/
�280;:/AB2
�
���&)42
D21.F2-:)G
HH
+)
/E2*:2
+)
IJIK>�26;8)-:2
/**.-/+2
)4):12-.6/8)-:)
021
LMNOP
QRSTP
UV
�STWVTNM
"MSVXYVG
 NPZV[[PN
UP
LM\T[Y]NTPR̂_VNTPNG
)8
HH̀JàIJIKG
b*
Hc'JdG
62-,218)
=21e1.2
2f6./4
+)
&1/*<4./G
628
,;-+/8)-:2
-2
/1:>
gh+2
�)61):2
-h
HJ>giKG
+)
HK
+)
-23)8512
+)
IJIJ>�26;8)-:2
/**.-/+2
)4):12-.6/8)-:)
021
�XUNV
jMWMSOMXYV
�PNMG
 NPZV[[PN
UP
LM\T[Y]NTPR̂_VNTPNG
)8
HìJàIJIKG
b*
HH'icG
62-,218)
=21e1.2
2f6./4
+)
&1/*<4./G
628
,;-+/8)-:2
-2
/1:>
gh+2
�)61):2
-h
HJ>giKG
+)
HK
+)
-23)8512
+)
IJIJ>

���������	
����
�	���������
�����	���	�������	�����	�����	�����������	 ��!�����	�������"#���	$�%������	��	&'()*(+)+,�	-�	&'.)&�	���/����	0��1���	�2��
�	�	3�
�4��
�	���	/��
�������	
��5	67	�	�������	�7	&)56',�	�	&,	�	��8��9��	�	+)+)5���������	
����
�	���������
�����	���	���:�;�	��	<;=����	�����	>��?���	�@"�����	��)'()A(+)+,�	-�	&'.6+�	���/����	0��1���	�2��
�	�	3�
�4��
�	���	/��
�����	��	
��5	67	�	�������	�7&)56',�	�	&,	�	��8��9��	�	+)+)5���������	
����
�	���������
�����	���	B����	B������	C�:�;��	��	����D��	>��?���	�@"�����	��)'()A(+)+,�	-�	&6.,A�	���/����	0��1���	�2��
�	�	3�
�4��
�	���	/��
�����	��	
��5	67	�	�������	�7&)56',�	�	&,	�	��8��9��	�	+)+)5E	
����F��
�	����	��������	���	���	���/���
	��	����0G��.((���5�/�H59�(���(�������
��I�J�����5�0�K
�
�L��������I���/����M�I��H
�I
�����I�J�����L)�	��/���
��	�	�N�H�	8���2�
��	OPQRSOT	��	�N�H�	UVU	STWXPYQW5Z�!��[�:��\]�������	�7	+,)̂+5+'*6*,(+)+,_&+ àb	�7	+6,'*+c

To Maria Marćılia and Antônio, my dearly loved parents.

Acknowledgments

Este trabalho representa o resultado de uma intensa jornada de aprendizado. Por isso,

agradeço a cada um dos familiares, amigos e colegas que tanto me ensinaram e incenti-

varam ao longo desse caminho. Agradeço, em especial:

À Deus por me amparar nos momentos dif́ıceis, dando-me forças para superar as dificul-

dades e guiando-me nos momentos de incerteza.

Aos meus familiares, pelo incentivo constante ao longo de todo o curso. Em especial,

gostaria de expressar minha profunda gratidão aos meus pais, Maria Marćılia e

Antônio Ferreira, pelo apoio incondicional e incentivo recebidos. Aos meus irmãos,

Razzo e Aline, por estarem ao meu lado durante os momentos mais dif́ıceis e por

compartilharmos o cuidado e apoio necessário durante os tratamentos do nosso pai.

Ao meu orientador, professor Marco Túlio Valente, pela oportunidade oferecida, pela con-

fiança e pelos desafios impostos durante todos esses anos. Pelas revisões, sugestões

e suporte essenciais para que este trabalho fosse desenvolvido. Por me transmitir

tantos ensinamentos que levarei comigo em minha vida e carreira.

Aos colegas do ASERG, pelo aprendizado constante e pelos momentos de crescimento

pessoal e profissional. Especialmente à Hudson Borges por tanto contribuir com este

trabalho. Gostaria de agradecer também à Luciana Silva, Laerte Xavier, Rodrigo

Brito e João Eduardo Montandon pelas parcerias de trabalho.

Aos professores membros da banca, Marcelo Maia, Breno de França, André Hora e

Eduardo Figueiredo, pela disponibilidade em contribuir com este trabalho.

Aos colegas do LABSOFT, João Paulo, Daniel Cruz, Johnatan Oliveira e Cleiton Tavares,

pelas parcerias de trabalho e estudos.

Meu muito obrigado ao Instituto Federal do Sudeste de Minas Gerais - Campus Bar-

bacena e aos colegas de trabalho que estiveram ao meu lado desde o ińıcio desta

caminhada. Em especial, agradeço ao Núcleo de Informática pelo sacrif́ıcio realizado

durante minha ausência.

Por fim, à Priscila Sad de Sousa por me apoiar de todas as formas posśıveis do ińıcio

ao fim deste curso. Agradeço principalmente pelo seu amor e carinho que inspira

confiança e incentivo me ajudando a terminar este trabalho com êxito!

“Education is an ornament in prosperity, a refuge in adversity, and the best provision

for old age.”

(Aristotle)

Resumo

Frameworks front-end baseados em JavaScript, como React e Vue, são ferramentas-

chave para implementar aplicações Web modernas. No entanto, devido à complexidade

das interfaces Web, essas aplicações podem atingir centenas de componentes e arquivos

de código fonte. Consequentemente, os desenvolvedores front-end estão enfrentando de-

safios crescentes ao projetar e modularizar essas aplicações. No entanto, pouca pesquisa

tem se aprofundado nos desafios de manutenção associados à adoção de tais frameworks.

Especificamente, (1) falta-nos uma compreensão dos fatores que motivam a adoção desses

frameworks, (2) falta-nos um catálogo de “code smells” comuns que podem surgir nos

clientes desses frameworks, e, por fim, (3) faltam-nos informações sobre as operações de

refatoração que os desenvolvedores realizam ao implementar sistemas Web usando esses

frameworks. Nesse contexto, o principal objetivo desta tese de doutorado é auxiliar os

desenvolvedores front-end na manutenção e evolução de seus sistemas. Para alcançar esse

objetivo, apresentamos um catálogo de “code smells” comuns a esses sistemas, bem como

um catálogo de refatorações que podem ser aplicadas para eliminar esses “smells” e, con-

sequentemente, melhorar a qualidade do código front-end. Organizamos esta pesquisa

em três unidades de trabalho principais. Começamos investigando os fatores que moti-

vam a adoção de frameworks front-end em JavaScript. Particularmente, realizamos uma

pesquisa com desenvolvedores de projetos JavaScript sobre sua motivação para adotar tais

frameworks. No segundo estudo, propomos um catálogo de 12 “code smells” associados

a problemas de design enfrentados pelos desenvolvedores ao implementar aplicações Re-

act. Além disso, para verificar se os “smells” identificados são prevalentes em projetos de

software reais, também implementamos uma ferramenta chamada ReactSniffer para

detectar os “smells” propostos. Como resultado, detectamos 2.565 ocorrências dos ”code

smells” propostos nos 10 projetos mais populares do GitHub que utilizam React. Final-

mente, em nosso último e terceiro estudo, investigamos as operações de refatoração real-

izadas com frequência por desenvolvedores ao manter e evoluir aplicações React. Após

inspecionar manualmente 320 commits de refatoração realizados em projetos de código

aberto, catalogamos 69 operações de refatoração distintas, das quais 25 são espećıficas

para código React, 17 são adaptações de refatorações tradicionais para o contexto Re-

act, 22 são refatorações tradicionais e seis são espećıficas para código JavaScript e CSS.

Palavras-chave: javaScript, front-end frameworks, refatoração, code smells, mineração

de repositórios de software, manutenção de software

Abstract

JavaScript-based front-end frameworks, such as React and Vue, are key tools for im-

plementing modern Web applications. However, due to the complexity of Web UIs, these

applications can reach hundreds of components and source code files. Consequently, front-

end developers are facing increasing challenges in designing and modularizing these ap-

plications. Surprisingly, only limited research has delved into the maintenance challenges

associated with adopting such frameworks. Specifically, (1) we lack a deep understanding

of the factors driving their adoption, (2) we lack a comprehensive catalog of common code

smells that may arise in clients of these frameworks, and finally, (3) we lack information

and documentation on the refactoring operations that developers perform when imple-

menting Web-based systems using these frameworks. In this context, the main goal of this

Ph.D. thesis is to assist JavaScript front-end developers in maintaining and evolving their

systems. To achieve this goal, we introduce a catalog of code smells that are common in

such systems, as well as a catalog of refactorings that can be applied to eliminate these

smells and consequently improve the source code quality of front-end components. We

organize the research into three major working units. We start by investigating the fac-

tors that motivate the adoption of JavaScript front-end frameworks. Notably, we survey

developers of JavaScript projects about their motivation to adopt such frameworks. In

the second study, we propose a catalog of 12 code smells associated with design prob-

lems developers face when using JavaScript front-end frameworks. We focus on React

applications because it is currently the most popular JavaScript front-end framework.

Moreover, to check whether the identified smells are prevalent in real software projects,

we also implement a tool, called ReactSniffer, to detect the proposed smells. As a

result, we detected 2,565 instances of the proposed code smells in the top-10 most popu-

lar GitHub projects that use React. Finally, in our last and third study, we investigate

frequent refactoring operations developers perform when maintaining and evolving Re-

act applications. By manually inspecting 320 refactoring commits performed in open

source projects, we catalog 69 distinct refactoring operations of which 25 are specific to

React code, 17 are adaptations of traditional refactorings for the React context, 22 are

traditional refactorings, and six are specific to JavaScript and CSS code.

Keywords: javaScript, front-end frameworks, refactoring, code smells, mining software

repositories, maintainability

List of Figures

1.1 Multi-Page Application vs Single-Page Application 16

2.1 Gallery of images application . 26

2.2 Structure of components to display comments 29

4.1 Overview of the grey literature methodology 52

4.2 Example of Prop Drilling (code smell). 58

4.3 ReactSniffer architecture . 65

4.4 Time frames used in the analysis . 73

4.5 Removal rates of each smell by time frame (LC: Large component, TP: Too

many props, IIC: Inheritance instead of Composition; PIS: props in Initial

State; DOM: Direct DOM manipulation; JSX: JSX outside the render method;

FU: Force update; UC: Uncontrolled component; LF: Large File) 74

4.6 Issue questioning the use of Force Update . 74

4.7 Direct DOM Manipulation Refactoring . 75

4.8 ReactSniffer Validation with Developers (LC: Large component, TP: Too many

props, IIC: Inheritance instead of Composition; PIS: props in Initial State;

DOM: Direct DOM manipulation; JSX: JSX outside the render method; FU:

Force update; UC: Uncontrolled component; LF: Large File) 76

5.1 Example of an unclear commit. 82

5.2 Example of a discarded commit because it is revoking a previous refactoring

operation. 82

5.3 Example of a false positive commit that does not preserve behavior. 84

5.4 Number of refactoring operations by category 85

5.5 Refactoring that extracts a stateful logic to a custom hook 87

5.6 Refactoring CreateUserDialog class component to function component . . . 88

5.7 Commit message indicanting an Extract HOC refactoring 90

List of Tables

3.1 Package names used by the studied frameworks 39

3.2 Number of clients by framework (Initial Selection) 40

3.3 Dataset to study framework’s adoption . 40

3.4 Front-end files extensions . 41

3.5 Factors motivating the adoption of front-end frameworks 42

3.6 Factors that motivate the adoption of JavaScript front-end frameworks (an-

swers per individual frameworks). 43

3.7 Weakness factors of JavaScript front-end frameworks (answers per individual

frameworks). 44

4.1 Code smells identified in the grey literature 53

4.2 Participants experience . 54

4.3 Code smells validated in the interviews, with examples of participants’ comments 55

4.4 New code smells identified in the interviews 55

4.5 Front-end files extensions . 66

4.6 Dataset (FF: number of front-end files; Comp: number of components) 70

4.7 Thresholds selection . 70

4.8 Code smells by project (LC: Large component, TP: Too many props, IIC:

Inheritance instead of Composition; PIS: props in Initial State; DOM: Direct

DOM manipulation; JSX: JSX outside the render method; FU: Force update;

UC: Uncontrolled component; LF: Large File) 71

4.9 Dataset (FF: number of front-end files; Comp: number of components) 75

4.10 Relevance scores of ReactSniffer Evaluation 77

5.1 Dataset of React clients (FF: number of front-end files; Comp: number of

components; Ref: Number of refactoring commits) 81

5.2 Example of refactoring operations labeled with different names (the final se-

lected version is underlined). 83

5.3 React-specific refactorings . 86

5.4 React-adapted refactorings . 92

5.5 JavaScript and CSS refactorings . 95

5.6 Traditional refactorings . 96

5.7 React smells and the refactorings that eliminate them 97

Contents

1 Introduction 14

1.1 Problem and Motivation . 14

1.2 Objectives and Contributions . 18

1.3 Publications . 21

1.4 Thesis Outline . 22

2 Background and Related Work 23

2.1 JavaScript Front-end Frameworks . 23

2.2 Related Work . 31

2.3 Final Remarks . 37

3 Adoption of JavaScript Front-end Frameworks 38

3.1 Dataset . 39

3.2 Survey Design . 40

3.3 Survey Results . 42

3.4 Implications . 47

3.5 Threats to Validity . 47

3.6 Final Remarks . 48

4 Detecting Code Smells in React-based Web Apps 50

4.1 Methodology . 51

4.2 React Code Smells . 57

4.3 ReactSniffer: Code Smell Detection Tool 65

4.4 Field Study . 69

4.5 Historical Analysis . 73

4.6 Validation with Developers . 75

4.7 Discussion . 77

4.8 Threats to Validity . 78

4.9 Final Remarks . 79

5 Refactoring React-based Web Apps 80

5.1 Study Design . 80

5.2 A Catalog of Refactorings for React-Based Web Apps 85

5.3 Discussion . 95

5.4 Threats to Validity . 98

5.5 Final Remarks . 100

6 Conclusion 101

6.1 Thesis Recapitulation . 101

6.2 Contributions . 102

6.3 Future Work . 103

Bibliography 106

14

Chapter 1

Introduction

This chapter introduces this thesis. We start by stating our problem and motivation in

Section 1.1. Section 1.2 details our objectives, goals, and intended contributions, while

Section 1.3 present the list of publications resulted from this thesis. Finally, we present

the structure of this thesis in Section 1.4.

1.1 Problem and Motivation

The World Wide Web (WWW) emerged in the 1990s with the expansion of the

Internet around the world. Initially, the Web consisted of static documents identified by

Uniform Resource Locators (URLs) and accessed using the Hypertext Transfer Proto-

col (HTTP). However, the success of the WWW increased the complexity of its content

which evolved from static pages to Web systems that behave similarly to desktop applica-

tions [Araújo and Filho, 2020]. This evolution was possible mainly due to the emergence of

JavaScript, a programming language introduced by Netscape in the mid-1990s that allows

developers to enhance user interface by creating dynamic and responsive elements [Silva

et al., 2017].

JavaScript has grown over the years and has become the de-facto programming

language for the Web. For example, according to the most recent StackOverflow Survey,1

JavaScript is the world’s most popular programming language for the eleventh year in

a row. Moreover, HTML and CSS emerged in the second place in the last six years.2

Essentially, this popularity reflects the importance of modern Web-based systems.

JavaScript is characterized by a large, rich, and dynamic ecosystem of frameworks

and libraries [Wittern et al., 2016]. For example, npm—the largest package repository

for the language—hosts more than 3.2 million projects.3 Over time, several JavaScript

1https://survey.stackoverflow.co/2022/#most-popular-technologies-language
2Indeed, Stack Overflow ranks programming, scripting, and markup languages together. For this

reason, HTML and CSS appear in their ranking.
3https://www.npmjs.com/

https://survey.stackoverflow.co/2022/#most-popular-technologies-language
https://www.npmjs.com/

1.1. Problem and Motivation 15

frameworks and libraries also emerged to address problems that appear when engineering

complex user interfaces [Araújo and Filho, 2020; Ramos et al., 2018]. As a distinguished

example, we have front-end frameworks—such as Angular,4 React,5 and Vue6— that

are relevant tools for building Single-Page Applications (SPAs).

SPA is an application that runs as a single Web page and that does not reload

during its use [Mikowski and Powell, 2013]. Instead, the browser loads the entire applica-

tion in a single HTML page along with JavaScript and CSS resources, which can update

parts of the UI without reloading the entire page. The ultimate goal is to provide a user

experience similar to that of a desktop application. Figure 1.1 illustrates the mechanics

behind Multi-Page and Single-Page Applications lifecycles. In Multi-Page Applications

(Figure 1.2(a)), user actions are embodied in HTTP requests (e.g., POST and GET) and

the server responds with a fresh HTML page. On the other hand, Single-Page Appli-

cations (Figure 1.2(b)) handle user actions through Asynchronous JavaScript and XML

(AJAX) calls. Therefore, instead of requesting a new page from the server, SPAs only

request the necessary data to update parts of the UI. As a positive outcome, there is no

need to reload the entire page.

The evolution of Web applications is so significant that developers roles focused on

front-end concerns emerged recently as a new career [Montandon et al., 2020]. According

to Stack Overflow Survey,7 25.9% percent of the surveyed programmers worldwide are

front-end developers. Comparing Web frameworks and technologies, the same survey

shows that both Vue and React are more popular than traditional MVC-based Web

frameworks, such as Spring, Django, and Ruby on Rails.8 Furthermore, the former are

usually developed and maintained by major Internet companies, as is the case of React

(Facebook) and Angular (Google).

Essentially, the afore-mentioned JavaScript front-end frameworks provide abstrac-

tions—usually called components—for structuring and organizing the codebase of modern

Web UIs. Thus, developers can modularize the UI into independent and reusable elements

and reason about each one in isolation [Bajammal et al., 2018]. Moreover, these compo-

nents can also be reused in other pages and applications. However, due to the complexity

of SPAs, the front-end layer of a modern application can easily reach hundreds of com-

ponents and source code files. As a result, it is natural to expect that suboptimal

design decisions will eventually lead to SPAs that are hard to maintain, un-

derstand, modify, and test.

4https://angular.io/
5https://reactjs.org/
6https://vuejs.org/
7https://survey.stackoverflow.co/2022/#developer-profile-developer-roles
8https://survey.stackoverflow.co/2022/#section-most-popular-technologies-web-

frameworks-and-technologies

https://angular.io/
https://reactjs.org/
https://vuejs.org/
https://survey.stackoverflow.co/2022/#developer-profile-developer-roles
https://survey.stackoverflow.co/2022/#section-most-popular-technologies-web-frameworks-and-technologies
https://survey.stackoverflow.co/2022/#section-most-popular-technologies-web-frameworks-and-technologies

1.1. Problem and Motivation 16

Figure 1.1: Multi-Page Application vs Single-Page Application

(a) Multi-Page Application

(b) Single-Page Application

As previous research in the area has shown, a important indicator of maintenance

problems is code smells [Fowler and Beck, 1999, 2018; Lacerda et al., 2020; Sobrinho

et al., 2018; Sharma and Spinellis, 2018]. Such structures indicate problems like low

cohesion, high coupling, and encapsulation-related problems that influence design deci-

sions and maintenance [Sobrinho et al., 2018]. In this context, refactoring is a well-known

technique to improve software design and an indispensable practice in modern software de-

velopment [Fowler and Beck, 1999, 2018]. Refactoring and code smells are linked because

refactoring is the principal strategy to remove/mitigate code smells, and thus improving

software quality.

However, although traditional code smells and refactorings describe general prob-

lems in object-oriented design we still lack studies investigating the key main-

tenance problems that occur when implementing Web-based systems using

JavaScript front-end frameworks. Particularly, we identify the following specific

problems in this context:

1.1. Problem and Motivation 17

1. A lack of understanding on the factors that motivate the adoption of modern

JavaScript front-end frameworks. Since JavaScript is characterized by a large and

dynamic ecosystem of frameworks and libraries, this information has practical value

for the software’s evolution and practitioners.

2. The lack of a code smells catalog that can be shared among practitioners for docu-

menting and discussing specific design problems that occur when using these frame-

works, as well as empirical studies on the prevalence and relevance of these smells.

Furthermore, we also miss detection tools that can warn developers about these

front-end specific code smells;

3. A lack of information and documentation on the refactoring operations that devel-

opers perform when maintaining and evolving Web systems using these frameworks.

Regarding the lack of studies on the factors that motivate the adoption of JavaScript

front-end frameworks, an important exception is a study by Pano et al. [2018], where the

authors interviewed 18 developers regarding their criteria for selecting JavaScript frame-

works and, as a result, they propose a model of framework adoption factors. However,

the study was conducted in July 2014, when front-end frameworks were still in their early

adoption phases. For example, the second most popular framework nowadays (Vue) was

not mentioned by any participant, and a single participant mentioned the most popular

framework nowadays (Facebook’s React). By contrast, jQuery—which is not widely

used anymore—was cited by half of the interviewed developers.

Concerning code smells associated to design problems in Web-based systems, previ-

ous studies identified such structures in pure JavaScript [Fard and Mesbah, 2013; Saboury

et al., 2017; Johannes et al., 2019], HTML [Harold, 2012; Nederlof et al., 2014], Cascad-

ing Style Sheets (CSS) [Mazinanian et al., 2014], and in MVC frameworks [Aniche et al.,

2018], but did not focus on smells specific to the usage of JavaScript front-end frameworks,

such as React.

Finally, although refactoring is a well-known technique to improve software design

and an indispensable practice in modern software development, most studies on refactor-

ing focus on mainstream programming languages, such as Java [Fowler and Beck, 1999]

and JavaScript [Fowler and Beck, 2018]. There are also few studies targeting refactorings

performed in particular domains, such as CSS [Mazinanian et al., 2014], Android [Pe-

ruma et al., 2020], Docker projects [Ksontini et al., 2021], and machine learning sys-

tems [Tang et al., 2021]. However, refactoring has not been studied in the relevant domain

of JavaScript front-end frameworks.

In summary, to the best of our knowledge, we are the first to propose a

holistic investigation on code smells and refactorings in the particular but

relevant context of Web-based systems implemented using JavaScript front-

end frameworks.

1.2. Objectives and Contributions 18

1.2 Objectives and Contributions

As previously mentioned, we still lack studies investigating design and maintenance

problems specific to the context of Web-based systems implemented using JavaScript

front-end frameworks. Therefore, the general objective of this thesis is described as fol-

lows:

We aim to assist JavaScript front-end developers in the task of maintaining and evolving

their systems. This assistance will be materialized by providing a catalog of code smells

that are common in such systems, as well as a catalog of refactorings that can be applied

to eliminate them and thus improve the source code quality of front-end components.

To make this research possible, we divided the work into three major working units:

1. First, we study the factors that motivate the adoption of JavaScript front-end frame-

works. Notably, we survey developers of JavaScript projects about their motivation

to adopt such frameworks. The primary objective was to gain an initial understand-

ing of this area, which is new to our research group but also in the global landscape

of software engineering research. Additionally, given JavaScript’s expansive and

dynamic ecosystem of frameworks and libraries, comprehending this dynamism be-

comes paramount in assisting developers to select frameworks that align with their

requirements and avoid potential maintenance issues tied to these frameworks.

2. In the second study, we propose a catalog of code smells associated to design prob-

lems faced by developers when using JavaScript front-end frameworks. Based on

the results of the first study, we focus on React applications because it is currently

the most popular JavaScript front-end framework. Moreover, to check whether the

identified smells are prevalent in open-source systems, we also implement a tool to

detect the proposed smells.

3. Finally, in the third study, we investigate frequent refactoring operations that devel-

opers perform when maintaining and evolving React applications. We categorize

these operations into Traditional, React-adapted, React-specific, and JavaScript

and CSS related refactorings. We also identify the refactoring operations that elim-

inate the design problems found in the second study.

These objectives are covered in three studies detailed in next chapters. Particularly,

in Chapter 3, we investigate the factors that motivate the adoption of JavaScript front-

end frameworks. In Chapter 4, we propose a catalog of code smells documenting design

1.2. Objectives and Contributions 19

problems in JavaScript React-based applications. To build this catalog, we conduct a

grey literature review and interview professional React developers. We focus on React

because it is currently the most popular JavaScript front-end framework [Hora, 2021].9 For

example, according to BuiltWith,10 more than 18 million websites are powered by React.

Of the top 10K sites by traffic, 40.9% are built with React. Finally, in Chapter 5,

we investigate the most important refactoring operations that developers perform when

maintaining and evolving React-based applications.

We summarize each study and highlight their contributions in the remainder of

this section.

1.2.1 Adoption of JavaScript Front-end Frameworks

Due to the increasing complexity of Web applications and the number of JavaScript

front-end frameworks available, developers face difficulties defining the most suitable char-

acteristics of a framework to use in their projects. A wrong choice can lead to maintenance

problems over the application’s lifetime. Despite that, we still lack empirical results on

the factors that motivate the adoption of these frameworks. Therefore, in Chapter 3,

we report the results of a study on the factors that drive the adoption of JavaScript

frameworks. Particularly, we reveal a list of nine key factors developers consider

when selecting contemporary JavaScript front-end frameworks. This list can

help JavaScript developers that plan to adopt a front-end framework in their projects. It

can also be used by framework developers, helping them to better position their projects

in a very competitive software market.

1.2.2 Catalog of Code Smells

Modern Web applications can reach hundreds of components, lines of code, and

files. As a result, it is natural to expect that suboptimal design decisions will eventually

lead to code that is hard to maintain. In this context, identifying design problems when

using these frameworks has a key importance. For example, front-end developers can

use this information for refactoring and better understanding and evolving their systems.

9https://survey.stackoverflow.co/2023/#most-popular-technologies-webframe
10https://trends.builtwith.com/javascript/React

https://trends.builtwith.com/javascript/React

1.2. Objectives and Contributions 20

Therefore, in Chapter 4, we propose a set of 12 code smells common in React

applications. These smells were identified by conducting a grey literature review and by

interviewing six professional software developers. We also implement a tool, called

ReactSniffer, to detect the proposed code smells. We use this tool to unveil the

most common code smells in React-based Web systems. For example, in the top-10

most popular GitHub projects that use React, we detect 2,565 instances of the proposed

code smells.

In summary, in this working unit we present the following contributions:

• A catalog of code smells for JavaScript React-based applications.

• The method employed for constructing our catalog of code smells through a grey

literature review followed by validation with developers represents a valuable con-

tribution that can be used or adapted to other technologies.

• A tool, called ReactSniffer, to detect the proposed code smells. It is also publicly

available as a NPM package.11

• We used ReactSniffer to unveil the most common code smells in React-based sys-

tems.

• A dataset of code smells for React applications.

1.2.3 Refactoring React-based Web Apps

Refactoring is a well-known technique to improve software design and an indispens-

able practice in modern software development. Despite that, there is a relevant domain

where refactoring has not been studied in depth before. It includes the front-end compo-

nents that are part of modern Web UIs. Particularly the components implemented using

JavaScript-based frameworks, such as React and Vue.

Therefore, in Chapter 5, we report the results of a large empirical study on refactor-

ing operations that developers perform when maintaining and evolving React-based Web

applications. By manually inspecting 320 refactoring commits performed in open source

projects, we catalog 69 distinct refactoring operations of which 22 refactorings

are traditional transformations (i.e., described in Fowler’s book), six are spe-

cific to JavaScript and CSS code, 25 are specific to React code, and 17 are

11https://www.npmjs.com/package/reactsniffer

https://www.npmjs.com/package/reactsniffer

1.3. Publications 21

React-adapted refactorings (i.e., although related to the React context, they

are adaptations of traditional refactorings). The catalog of refactorings proposed

as a result of this work might support practitioners when improving the maintainability

of React applications. The main contributions of this final working unit encompass the

following:

• A catalog of refactorings that developers employ when maintaining and evolving

React-based applications.

• The approach utilized to identify refactoring operations by analyzing commits in

front-end files, filtered through keywords in their log messages, is applicable and

adaptable to other technologies and objectives.

• A dataset of refactorings performed in open-source React projects from GitHub.

1.3 Publications

The following publications are a result of this thesis:

• SPE ’22 Ferreira, F., Borges, H. S., and Valente, M. T. On the (Un-) Adoption

of JavaScript Front-end frameworks . Software: Practice and Experience, 52(4):

947–966, 2022. (Chapter 3)

• IST ’23 Ferreira, F. and Valente, M. T. Detecting Code Smells in React-based Web

Apps. Information and Software Technology, 155:1–35, 2023. (Chapter 4)

Furthermore, we also contributed to the following work during this Ph.D.:

• EMSE ’22 Xavier, L., Montandon, J. E., Ferreira, F., Brito, R., and Valente,

M. T. On the Documentation of Self-Admitted Technical Debt in Issues . Empirical

Software Engineering, 27(7):1–34, 2022.

• ACM SAC ’21 Ferreira, F., Silva, L. L., and Valente, M. T. Software engineering

meets deep learning: a mapping study. In 36th Annual ACM Symposium on Applied

Computing (SAC), pages 1542–1549, 2021.

• SBES ’20 Ferreira, F., Silva, L. L., and Valente, M. T. Turnover in Open-Source

Projects: The Case of Core Developers. In 34th Brazilian Symposium on Software

Engineering (SBES), pages 447–456, 2020.

1.4. Thesis Outline 22

• MSR ’20 Xavier, L., Ferreira, F., Brito, R., and Valente, M. T. Beyond the Code:

Mining Self-Admitted Technical Debt in Issue Tracker Systems. In 17th Interna-

tional Conference on Mining Software Repositories (MSR), pages 137–146, 2020.

• SCAM ’20 Diniz, J. P., Cruz, D., Ferreira, F., Tavares, C., and Figueiredo, E.

GitHub Label Embeddings. In 20th IEEE International Working Conference on

Source Code Analysis and Manipulation (SCAM), pages 249–253, 2020.

1.4 Thesis Outline

We organized the remainder of this work as follows:

• Chapter 2 gives an overview of modern JavaScript front-end frameworks and presents

the works that are directly related to this thesis.

• Chapter 3 presents a study aiming to understand the factors that motivate the

adoption of JavaScript front-end frameworks. We reveal a list of nine key factors

developers consider when selecting contemporary JavaScript front-end frameworks.

• Chapter 4 proposes a list of code smells for React-based JavaScript applications.

To detect these smells, we implement a prototype tool, called ReactSniffer, and

we use this tool to unveil the most common code smells in React-based Web

systems.

• Chapter 5 presents the results of an empirical study on refactoring operations that

developers perform when maintaining and evolving React-based Web applications.

We also propose a catalog with 69 distinct refactoring operations of which 25 are

specific to React code, 17 are adaptations of traditional refactorings for the React

context, 22 are traditional refactorings, and six are specific to JavaScript and CSS

code.

• Chapter 6 summarizes the conclusions we leveraged throughout this thesis and out-

lines some ideas we find interesting to investigate in the future.

23

Chapter 2

Background and Related Work

We start this chapter by giving an overview of modern JavaScript front-end frameworks

(Section 2.1). Next, we describe the characteristics of the most popular JavaScript front-

end frameworks (React) in Section 2.1.2, and comment on other frameworks in Sec-

tion 2.1.3. Finally, in Section 2.2, we present other works related to this thesis.

2.1 JavaScript Front-end Frameworks

2.1.1 Overview

To facilitate reuse and shorten the development time of Web applications, program-

mers have created libraries and frameworks with pre-implemented JavaScript code [Pano

et al., 2018]. Thus, developers can reuse the code and concentrate on the application do-

main. The first frameworks and libraries maintained the classic separation of responsibili-

ties among CSS, data, structure (HTML), and dynamic interactions (JavaScript) [Araújo

and Filho, 2020]. On the other hand, modern JavaScript front-end frameworks fol-

low a component-based development paradigm. Essentially, these frameworks provide

abstractions—usually called components—for structuring and organizing the codebase of

modern Web UIs. Thus, developers can modularize the UI into independent and reusable

elements and reason about each one in isolation [Bajammal et al., 2018]. Nowadays,

developers have several alternatives of such frameworks, including React,1 Vue,2 and

Angular.3

Particularly, the popularity of JavaScript frameworks is rising quickly mainly due

to the Single-Page Application (SPA) architecture model, which allows an application

1https://reactjs.org/
2https://vuejs.org/
3https://angular.io/

https://reactjs.org/
https://vuejs.org/
https://angular.io/

2.1. JavaScript Front-end Frameworks 24

to run as a single Web page that does not reload during its use. These frameworks

support an architecture for creating SPAs and allow developers to create UIs with a user

experience similar to a desktop application. On the one hand, frameworks for building

SPAs have a lot in common. They are usually open-source, allow the creation of reusable

UI components, and provide an architecture for keeping model data in sync with the view.

In addition, they allow writing HTML and JavaScript code together. On the other hand,

they differ in particular aspects, for example, React allows writing HTML in JavaScript,

whileAngular andVue allow writing JavaScript in HTML. In the following subsections,

we comment on the characteristics of these frameworks.

2.1.2 React

Released by Facebook in 2013, React is a JavaScript library for building user

interfaces that does not enforce any architectural pattern (e.g., MVC). Instead, React

prioritizes interoperability, i.e, it can be incorporated into a system without rewriting

existing code, therefore allowing gradual adoption. React allows developers to focus on

the view layer before introducing any other resources to their applications.

React provides a domain-specific language called JSX (which stands for JavaScript

XML) for writing UI elements. Thus, rather than separating markup and logic in differ-

ent files, React separates concerns under modularization units called components, which

contain both logic and markup. By modularizing the UI into independent and reusable

components, code becomes more easy to maintain.

A React component can have parameters called props (short for properties) and

returns a React element via the render method representing what should appear on

the UI. React supports different kinds of components. The main ones are class and

function components. Though class components retain support within React, the official

React documentation is recommending the use of function components in new codebases.

However, it is essential to study class components since they are still largely used in

React projects. The key difference between class and function is that the latter is

just a JavaScript function that accepts props as an argument and returns a JSX code.

Furthermore, there is no render method in functional components, and they usually do

not have state.4 That is, a functional component is itself a render method. For example,

the following listings show the same component implemented using class (see Listing 2.1)

and function component (see Listing 2.2). In both cases, the component accepts a single

4However, the introduction of hooks in React 16.8 allows adding state to function components using
the useState() method.

2.1. JavaScript Front-end Frameworks 25

object argument (name) via props and returns a React element that displays a welcome

message.

Listing 2.1: Example of Class Component.

1 class Welcome extends React.Component {

2 render() {

3 return (

4 <h1>Hello, {this.props.name}</h1>;

5);

6 }

7 }

Listing 2.2: Example of Function Component.

1 function Welcome(props) {

2 return (

3 <h1>Hello, {props.name}</h1>;

4);

5 }

React follows functional programming principles, such as immutability, pure func-

tions, composition, and higher-order functions. React elements are immutable. Once

created, their data cannot be changed. Therefore, React assumes that every compo-

nent is a pure function and must always return the same JSX given the same inputs.

Moreover, components can not change existing variables while rendering. Nevertheless,

React takes a step forward by introducing hooks, which allow developers to incorporate

stateful behavior and manage side effects within functional components. For example,

the useState hook facilitates the creation of stateful logic with functional components,

while useEffect enables the management of side effects in a controlled and declarative

manner. However, these changes may not happen during rendering.

Furthermore, to render a React element, we must create a root to display Re-

act components inside a browser DOM node and then pass the React element to the

root.render() method. For example, consider the HTML page in the Listing 2.3. We

can use the HTML element with id “root” (line 3) to render the React element that

displays a welcome message (Listings 2.1 and 2.2).

Listing 2.3: Example of HTML page used to render a React component.

1 <html>

2 <body>

3 <div id="root"></div>

4 </body>

5 </html>

2.1. JavaScript Front-end Frameworks 26

Listing 2.4 shows how to render a React element using the Welcome component.

First, we have to pass the DOM element to ReactDOM.createRoot() (lines 1-3). Then,

we instantiate the Welcome component (line 4). Finally, we pass the React element to

the root.render() method.

Listing 2.4: Rendering a React element.

1 const root = ReactDOM.createRoot(

2 document.getElementById('root')

3);

4 const reactElement = <Welcome name="Fabio">;

5 root.render(reactElement);

To better illustrate the React-related concepts used in this thesis, we use a small

application that implements a gallery of images that allows comments by users, as illus-

trated in Figure 2.1.

Figure 2.1: Gallery of images application

Listing 2.5 shows the Comment component, which provides the code that handles

each comment. This component displays the comment data via props (lines 5-6) and

instantiates the component that displays the avatar of the user who created the comment

(line 4).

2.1. JavaScript Front-end Frameworks 27

Listing 2.5: Comment Component.

1 function Comment(props) {

2 return (

3 <div>

4 <Avatar user={props.user} />

5 <div>{props.text}</div>

6 <div>{props.date}</div>

7 </div>

8);

9 }

To avoid repeating the code that displays the comments, we also create a CommentList

component (see Listing 2.6). It receives the list of comments via props (line 1) and it-

erates in this list rendering each comment using our previous Comment component (line

5).

Listing 2.6: CommentList Component.

1 function CommentList(props) {

2 return (

3 <div>

4 { props.comments.map((comment) => (

5 <Comment date={comment.date} text={comment.text} user={comment.user} />

6)) }

7 </div>

8);

9 }

Besides props, a React component can also have a state, which differentiates

stateful from stateless components. Props and state are both plain JavaScript objects.

However, while both hold information that can be used in the render output, they have

a fundamental difference: props are immutable and they are passed to the component

(similar to function parameters), whereas the state is managed within the component

(similar to the local variables of a function or attribute in a class). The state starts with

a default value when the component mounts and then can change over time (mainly as a

result of user events).

Therefore, a stateless component does not have a state and only renders what it

receives via props. On the other hand, a stateful component in addition to taking input

data (accessed via props) can maintain internal data (accessed via state). Furthermore,

when a component’s state changes, the component is automatically re-rendered to update

the View, which is how React supports data binding. This concept refers to the asso-

ciation between the view with the data that populates it. There are two types of data

binding: when any change in the component’s state is reflected in the View, and when

any change in the View is propagated to the component’s state. React supports one-way

2.1. JavaScript Front-end Frameworks 28

data binding since changes in the model are automatically propagated to the View, but

not in the other way.

To illustrate these concepts, consider our gallery of images application. The com-

ponent to create new comments deals with the user and comment data. For example,

to create a new comment, the component needs to know the comment data (text and

date) and the user who is creating it. The user provides the comment’s data at runtime.

Therefore, the component itself handles this data in its state. By contrast, the user data

does not change. For this reason, the component gets user data through props.

Listing 2.7: Component to create new comments.

1 function CommentForm(props){

2 const [comments, setComments] = useState([]);

3 const [commentValue, setCommentValue] = useState('');

4

5 const handleChange = e => {

6 setCommentValue(e.target.value);

7 };

8

9 const handleSubmit = e => {

10 e.preventDefault();

11

12 const newComment = {

13 user: {

14 name: props.name,

15 url: props.url

16 },

17 commentValue: commentValue,

18 date: Date.now()

19 };

20

21 setComments(comments.concat(newComment));

22 setCommentValue('');

23 }

24

25 return (

26 <div>

27 <form onSubmit = {handleSubmit}>

28 <h3>Comments</h3>

29 <textarea placeholder="Add a comment..." onChange={handleChange}

30 value={commentValue}></textarea>

31 <div className="limitChar">{commentValue.length}/250</div>

32 <button>Post</button>

33 <CommentList comments={comments} />

34 </form>

35 </div>

36);

37 }

2.1. JavaScript Front-end Frameworks 29

To add new comments, we create the CommentForm component (see Listing 2.7).

This component gets user data (name and url) via props and uses the useState hook to

track the current list of comments (line 2), including the user’s input text. Since the list

of comments is in the state, every time this list changes, the component view is updated.

Figure 2.2 summarizes the structure of components to display comments on the

Web page. The CommentForm component has a form (lines 27-34 in Listing 2.7) that

renders an input to receive new comments’ data (lines 29-30), a button to submit the

form (line 32), and the current list of comments via CommentList component (line 33).

Handling events in React is similar to handling events with DOM elements. Thus, we

use the handleChange and handleSubmit methods to catch changes in the input element

and the form submission, respectively.

Figure 2.2: Structure of components to display comments

Since React relies on one-way data binding, the View changes are not automat-

ically reflected in the model. For this reason, we use the handleChange method (lines

5–7) to keep the comment text updated in the model and to track how many characters

the comment has (there is a limit of 250 characters). Thus, the input element (lines 29-

30) receives the comment text, and the handleChange method propagates it to the state

(lines 5–7) via the setCommentValue method.

On the other hand, when a user posts a comment, the handleSubmit method (lines

9–23) creates a new comment object using the user data received via props (lines 13–16)

and the comment data in the state (line 17). Finally, the method adds the comment to

the list of comments (line 21). Since this list is part of the component’s state, the View

is refreshed automatically.

2.1. JavaScript Front-end Frameworks 30

2.1.3 Other Frameworks

Released by Evan You in 2014, Vue is a framework for building user interfaces that

is entirely developed by an open-source community and not by a large enterprise. Similar

to React, Vue also allows gradual adoption. For example, its core library also focuses on

the View layer, simplifying integration with other libraries or existing projects. However,

Vue relies on a Model–View–ViewModel (MVVM) architecture, with the ViewModel

layer connecting the View and the Model via two-way data bindings. Vue also separates

concerns under components. However, instead of writing HTML elements in JavaScript

code through JSX, Vue offers an HTML-based template syntax that allows rendering

data to the DOM declaratively. Thus, Vue templates are valid HTML that browsers can

interpret.

Angular is an open-source front-end Web application framework for building dy-

namic and robust Web applications. The first version of Angular was released by Google

in 2010. Then, in 2016, Google launched a new framework version, which was rewritten

from scratch. Similar to React and Vue, Angular is a component-based framework.

It provides developers with a set of tools and libraries that make it easier to build com-

plex Web applications, including declarative templates, dependency injection, end-to-end

testing, and more. In addition, it dictates a Model-View-Controller (MVC) architecture

pattern, which separates data, presentation, and user interaction concerns [Krasner and

Pope, 1988]. Furthermore, a two-way data binding mechanism keeps the view and model

in sync. As mentioned before, this mechanism automatically reflects model changes in

the view and vice-versa.

Created in 2011 by Yehuda Katz, Ember.js, commonly referred to as Ember, is

an open-source JavaScript front-end framework that follows the Model-View-ViewModel

(MVVM) pattern. Ember offers a complete solution for building JavaScript applications,

including features such as templates, components, two-way data binding, computed prop-

erties, observers, and routes. One of the main features of Ember is its set of default

conventions for organizing files, managing data, and routing, which makes it easier for

developers to get started and maintain their applications as they scale.

Backbone was released by Jeremy Ashkenas in 2010 and therefore is the oldest

framework we will consider in Chapter 3. One of the main benefits of Backbone is its

simplicity. It is a lightweight open-source JavaScript framework and includes features

such as models, views, collections, and events, which make it easier to manage data and

update the UI of the application. Similar to React, Backbone supports only one-way

data binding.

2.2. Related Work 31

2.2 Related Work

The studies which approach the challenges of engineering modern Web systems

using JavaScript front-end frameworks present several particularities. Thus, in the fol-

lowing subsections, we present the works we identified as relevant to this thesis. First,

we describe studies that explore factors that can motivate the adoption and the un-

adoption of JavaScript front-end frameworks. Next, we discuss studies on code smells in

Web technologies and strategies and tools to detect them. Finally, we present studies on

refactorings in Web systems.

2.2.1 Adoption of JavaScript Front-End Frameworks

There is a fair amount of studies on the use and acceptance of technologies. For

example, Polančič et al. [2011] investigated the characteristics and individual differences

that impact the users’ perceptions about object-oriented frameworks by using the Tech-

nology Acceptance Model (TAM) [Davis, 1989]. However, and particularly, the number

of studies that explore the adoption of JavaScript front-end frameworks is limited. In an

exploratory study, Graziotin and Abrahamsson [2013] claimed that these studies focused

on benchmarks and other quantitative metrics, whereas practitioners also have interests in

other aspects. For example, they argue that practitioners are driven by different concerns

when choosing a JavaScript framework, such as the age of the latest release, the size of

the framework, the license, the presence of features, and the browser support. Thus, they

propose a comparison framework that combines researchers’ interests with practitioners’s

interests to meet the best of both worlds.

Based on these findings, Pano et al. [2018] conducted a study on factors and actors

that explain the adoption of JavaScript frameworks. They relied on semi-structured inter-

views with 18 developers. By using the Unified Theory of Acceptance and Use of Technol-

ogy (UTAUT) [Venkatesh et al., 2003], they ended up with five major groups of adoption

factors: (i) performance expectancy (performance and size), (ii) effort expectancy (au-

tomatization, learnability, complexity, and understandability), (iii) social influence (com-

petitor analysis, collegial advice, community size, and community responsiveness), (iv)

facilitating conditions (suitability, updates, modularity, isolation, and extensibility), and

(v) price.

However, their study was conducted in 2014, when front-end frameworks were still

in the early adoption phases. For example, the second most popular framework nowadays

2.2. Related Work 32

(Vue) was not mentioned by any participant and a single participant mentioned the

most popular framework nowadays (Facebook’s React). The characteristics of these

new frameworks can influence the factors of adoption.

Other studies evaluate other aspects of the frameworks, which can influence their

adoption. For example, Gizas et al. [2012] conducted several quality, performance, and

validation tests to evaluate general aspects of JavaScript frameworks (i.e., they are not

only restricted to front-end implementation). The authors relied on well-established soft-

ware quality metrics, such as size metrics (e.g., lines of code), complexity metrics (e.g.,

McCabe’s Cyclomatic Complexity), and maintainability metrics (e.g., Halstead metrics).

Their quality tests revealed that all frameworks have many functions with a high cyclo-

matic complexity and a low maintainability index, indicating that these functions prob-

ably need to be improved. In contrast, their validation tests focused on parts that must

be modified to harmonize with browsers’ continuous evolution. However, their study was

conducted in 2012 and does not consider popular frameworks used to create SPAs.

In another study, Mariano [2017] compared three well-known frameworks (React,

Angular, and Backbone) using benchmarks and complexity metrics. Using the three

frameworks, the author implemented a benchmark application (a TODO application).

Regarding performance, Backbone outperformed the other frameworks in their experi-

ment (probably because it is a lightweight framework with just 6.5 KB plus 43.5 KB of

required dependencies). In terms of complexity (measured using the cyclomatic complex-

ity metric per function), ReactJS has the highest mean per-function measure (1.85),

followed by Backbone (1.25) and Angular (1.16).

Nakajima et al. [2019] proposed a playground tool named Jact that enables de-

velopers to compare the runtime performance of JavaScript frameworks based on typical

tasks in Web development. The authors argue that by sharing tasks and source code

written by developers, Jact can continuously provide information related to JavaScript

frameworks, including benchmark results. Zerouali et al. [2019] empirically analyzed the

relationship between different software popularity measures of JavaScript libraries from

three open source tracking systems (libraries.io, npm, and GitHub). They report that

popularity can be measured using different metrics related to both social and technical

aspects. However, the authors observed that many popularity metrics are not strongly

correlated, implying that using different metrics may produce different outcomes.

Finally, there are websites that provide data on the popularity of JavaScript li-

braries and frameworks. For example, the most recent Stack Overflow Survey5 shows

that React.js and Vue are more popular than traditional MVC-based Web frameworks,

such as Spring, Django, and Ruby on Rails. Another popular site with information on

5https://survey.stackoverflow.co/2022/#section-most-popular-technologies-web-

frameworks-and-technologies

https://survey.stackoverflow.co/2022/#section-most-popular-technologies-web-frameworks-and-technologies
https://survey.stackoverflow.co/2022/#section-most-popular-technologies-web-frameworks-and-technologies

2.2. Related Work 33

the usage of JavaScript-based technologies is State of JS.6 The site annually runs a sur-

vey including mostly closed questions. Notably, the platform designates React as the

foremost front-end framework in usage. Additionally, it has announced its intention to

conduct a dedicated survey specifically addressing the state of React starting in 2023.7

Summary: The last empirical study on the adoption of JavaScript front-end frame-

works was conducted in 2014, when such frameworks were still in their early adoption

phases. As the adoption of JavaScript front-end frameworks has evolved significantly

since then, we decided to start this thesis by gathering up-to-date information on their

adoption. To achieve this, we surveyed JavaScript developers to understand the cur-

rent status of adoption and un-adoption of modern front-end frameworks. Chapter 3

provides more details on our survey study and findings.

2.2.2 Code smells in Web Technologies

There is a large body of papers, chapters, and books on code smells [Palomba

et al., 2013; Moha et al., 2009; Liu et al., 2019; Fontana et al., 2015; Vegi and Valente,

2023; Nguyen et al., 2012; Sobrinho et al., 2018]. The principal one is a chapter by Fowler

and Beck [1999], which proposes 22 code smells for object-oriented design and associates

each one with a possible fixing refactoring. However, more recently, code smells have

also been studied for Web technologies. These works study bad practices in HTML,

CSS, JavaScript, and MVC frameworks. For example, Nederlof et al. [2014] investigated

deviations from best practices in performance, accessibility, and correct structuring of

HTML documents. Their findings reveal that most sites contain a substantial number

of problems, making them unnecessarily slow, inaccessible for the visually impaired, and

subjected to unpredictable layouts due to errors in dynamically modified DOM trees. For

example, dynamic components might not be interpreted reliably by a wide variety of user

agents, including assistive technologies, therefore impacting accessibility.

Many researchers have also focused on detecting duplicated content in Web pages

or finding Web pages with similar structures [Boldyreff and Kewish, 2001; Lucca et al.,

2001, 2002]. For example, Boldyreff and Kewish [2001] replaced the content of the Web

pages (i.e., the content delimited by different tags) with hash values and compared them

to find duplicated content. Synytskyy et al. [2003] use island grammar to find clones in

6https://stateofjs.com
7https://stateofreact.com

https://stateofjs.com
https://stateofreact.com

2.2. Related Work 34

multilanguageWeb documents. Lucia et al. [2005] use the Levenshtein distance to quantify

the structural similarity between Web pages. Finally, to locate code clones in the source

code of Web applications written in multiple languages, Rajapakse and Jarzabek [2005]

utilize CCFinder, a clone detection tool that uses token-to-token comparison to find the

clones. They examined 17 Web applications and found a 17% to 63% duplication rate.

Mesbah and Mirshokraie [2012] propose a technique to detect unused and ineffec-

tive CSS code automatically. Having a similar goal, Geneves et al. [2012] use tree logic

to detect unused CSS code. Relate to JavaScript, Fard and Mesbah [2013] propose a

set of 13 JavaScript code smells and a code smell detection tool, called JSNose. They

investigate the occurrence of these smells in 11 Web applications and show that Lazy Ob-

ject, Long Method/Function, Closure Smells, Coupling between JavaScript, HTML, CSS,

and Excessive Global Variables are the most prevalent smells. Interestingly, they include

HTML in JavaScript and JavaScript in HTML as code smells, which is exactly one of

the key characteristics of modern JavaScript front-end frameworks. For example, React

allows writing HTML in JavaScript, and Vue allows writing JavaScript in HTML.8

Aniche et al. [2018] present a catalog of six smells for Web-based MVC appli-

cations. To define the catalog, the authors rely on interviews with Spring developers

(Spring is a popular Java-based MVC framework). They show that the proposed smells

are more subjected to changes and defects and that developers indeed perceive them

as relevant problems. The authors also claim the proposed smells can be generalized

to other frameworks, although they are more related to object-oriented design than to

SPA-related technologies. For example, Brain Repository, Laborious Repository Method,

and Fat Repository smells refer to persistence classes. The other smells are Promiscuous

Controller, Brain Controller, and Meddling Service, which refer to the back-end layer of

Web-based systems. Sobrinho et al. [2018] conducted a systematic review of the literature

on articles about code smells published between 1990 and 2017. The review identified 104

code smells within this timeframe, however, none of them refer to JavaScript front-end

frameworks.

An essential point when detecting code smells regards the definition of the thresh-

olds for the selected metrics. Some authors propose thresholds based on their experience

only. For example, in the seventies, McCabe [1976] proposed the value ten as a threshold

for the Cyclomatic Complexity metric based on his past experience. Other approaches,

use real-world software systems to derive metric thresholds [Lanza and Marinescu, 2007;

Fontana et al., 2015; Oliveira et al., 2014; Vale et al., 2019]. For example, Alves et al. [2010]

determine thresholds empirically from measurement data of a benchmark of software sys-

tems and derive the threshold values by choosing the 70%, 80%, and 90% percentiles.

Aniche et al. [2018] use the third quartile (3Q) and the interquartile range (3Q - 1Q) to

8However, this is not a surprise, considering that Web development technologies have drastically
changed since when the article was published (2013).

2.2. Related Work 35

define the thresholds.

There are also approaches that rely on evolution history information to detect

the smells, such as HIST [Palomba et al., 2013] and DECOR [Moha et al., 2009], and

approaches that use Deep Learning [Fakhoury et al., 2018; Liu et al., 2019]. On the other

hand, existing tools to detect smells in Web languages and frameworks generally use static

analysis or a blend of static and dynamic analysis. For example, JSNose [Fard and

Mesbah, 2013] applies static and dynamic analysis for detecting code smells in JavaScript

code. Cilla [Mesbah and Mirshokraie, 2012] is a tool that also relies on dynamic analysis

for detecting unused CSS code. Another related tool is WebScent [Nguyen et al., 2012],

which identifies six types of embedded code smells in dynamic Web applications.

There are also studies that evaluate code smells detection tools [Fernandes et al.,

2016; Paiva et al., 2017]. For example, Paiva et al. [2017] evaluate and compare four code

smell detection tools, namely inFusion, JDeodorant, PMD, and JSpIRIT. These

tools were applied to different versions of the same software systems, namely MobileMe-

dia and Health Watcher. The results show that the evaluated tools present different

levels of accuracy according to the context. For example, for all smells in both systems,

JDeodorant identified most of the correct entities, but reports many false positives.

Finally, Sobrinho et al. [2018] studied a wide range of tools used in experimental settings

for addressing code smells. However, a significant number of these tools do not provide

access to their implementations, thereby limiting their applicability. Furthermore, from

the perspective of open science, the unavailability of these implementations hinders repro-

ducibility and creates obstacles to conducting empirical studies, especially those aiming

to assess new approaches.

Summary: Previous works investigated code smells in HTML, CSS, and JavaScript

code, including, for example, duplicated code. However, to the best of our knowledge,

none focuses on smells specific to JavaScript front-end frameworks that support the

implementation of Single Pages Applications. Therefore, after confirming in Chapter 3

that these frameworks are extensively used today, we continued our research by explor-

ing code smells specific to Facebook React, the most popular JavaScript front-end

framework nowadays. For more information on our approach and findings, refer to

Chapter 4.

2.2. Related Work 36

2.2.3 Refactorings in Web Technologies

Refactoring is recognized as a fundamental practice to maintain a healthy code

base [Fowler and Beck, 1999; Beck, 2000]. For this reason, a significant amount of em-

pirical research was conducted to extend the knowledge of this practice [Murphy-Hill

et al., 2011; Hora and Robbes, 2020; Kim et al., 2014; Alizadeh et al., 2018; Tsantalis

and Chatzigeorgiou, 2009]. However, most of these studies have focused on mainstream

programming languages, such as Java [Fowler and Beck, 1999] and JavaScript [Fowler and

Beck, 2018]. For example, Silva et al. [2016] monitored Java projects hosted on GitHub to

detect recently applied refactorings and asked the developers to explain why they decided

to refactor the code. As a result, they compiled a catalog of 44 distinct motivations for

12 well-known refactoring types. Tsantalis et al. [2018] designed and implemented a tool

called RMiner, which automatically detects refactorings in a project’s commit history.

To empirically evaluate the tool, the authors create an oracle of refactoring operations,

comprising 3,188 refactorings found in 538 commits from 185 open-source projects. How-

ever, their approach is also constrained to a granular analysis of traditional refactorings

in Java-based projects.

There are also studies that target refactoring opportunities in Web technologies,

such as JavaScript [Fard and Mesbah, 2013], HTML [Nederlof et al., 2014], CSS [Mesbah

and Mirshokraie, 2012], and MVC frameworks [Aniche et al., 2018]. For example, Harold

[2012] published a book to explain how to use refactoring to improve virtually any Web

site or application. They presented refactorings related to the layout, accessibility, va-

lidity, and well-formedness of Web sites or applications. Related to CSS, Mazinanian

et al. [2014] propose an automated approach to remove duplication in CSS code. Their

approach detects three types of CSS declaration duplication and recommends refactorings

to eliminate each one. The authors also show that duplication in CSS is widely common.

Since the main practice to style React applications is by writing CSS styling separate

from JSX files, their work also applies to React applications.

However, despite the papers mentioned above, refactoring practices related to Web

technologies need to receive more research attention. For example, there is a relevant do-

main where refactoring has not been studied in depth before. It includes the front-end

components that are part of modern Web UIs. Mainly the components implemented

using JavaScript-based frameworks, such as React and Vue. For example, refactor-

ing duplicated content in Web pages contributes to developers modularizing static UIs

into independent and reusable components provided by such frameworks. However, as

mentioned earlier, there is a lack of studies investigating both traditional and specific

refactorings related to the context of JavaScript front-end frameworks.

For this reason, in Chapter 5, we investigate refactoring operations that developers

2.3. Final Remarks 37

perform when maintaining and evolving React applications. A study by Tang et al.

[2021] that empirically investigates refactorings and technical debt in machine learning

systems and a study by Ksontini et al. [2021] that investigates refactorings in Docker

projects served as our inspiration. Tang et al. [2021] empirically investigated common

refactorings in 26 open-source machine learning (ML) systems. Their study aimed to

identify specific and tangential refactorings related to ML performed in these systems.

Similar to our study, the authors used commit logs containing the keyword “refactor*” and

selected a random subset of these commits for manual analysis. The study revealed that

code duplication was a major crosscutting theme that affects ML configuration and model

code, which were then the most frequently refactored block of code. Additionally, the

authors introduced 14 new ML-specific refactorings and seven technical debt categories.

Finally, Ksontini et al. [2021] also employed a similar methodology to study refac-

torings in 68 Docker projects and the related technical debt. First, the authors extracted

commits containing the keywords “refactor” and “docker” in their log messages. Then,

they manually analyzed 193 unique commits from different projects to identify refactor-

ings. The study resulted in the documentation of 24 new Docker-specific refactorings and

seven technical debt categories.

Summary: Since there are no studies on code smells for React-based front-ends, it

is not exactly a surprise that we also have not found relevant papers on refactorings

specific to such key components of Web systems. Therefore, as a natural consequence of

our previous study, we concluded our thesis by investigating novel refactorings specific

to React components and by also adapting existing refactorings to this framework.

For more details, we refer the reader to Chapter 5.

2.3 Final Remarks

In this chapter, we started by providing an overview of modern JavaScript front-

end frameworks (Section 2.1). Notably, we presented the key characteristics of these

frameworks and why they are used to build front-ends. In Section 2.1, we describe with

examples the two most popular JavaScript front-end frameworks, React and Vue. Fi-

nally, we concluded by discussing in Section 2.2 studies that are closely relate to this

thesis. First, we presented studies on the adoption of JavaScript front-end frameworks

(Section 2.2.1). Then, we discuss studies on code smells in Web systems (Section 2.2.2).

Last, we presented studies on refactorings in Web technologies (Section 2.2.3).

38

Chapter 3

Adoption of JavaScript Front-end

Frameworks

As the first working unit of our PhD thesis, we decided to conduct a study on the adoption

of JavaScript frameworks, as our research group had never worked with such frameworks

before. Furthermore, as stated in Chapter 2, there are few Software Engineering papers

related to the front-end of Web systems, particularly papers on Single-Page Applications

and the frameworks used to implement them. Therefore, we start the thesis by conduct-

ing an exploratory study to gain a better understanding of the ecosystem of JavaScript

front-end frameworks. In this study, we aimed to comprehend—from a broader

but practical perspective—the factors that motivate developers to choose a

particular framework. We also investigated whether they have plans to mi-

grate from one framework to another in the near future. The second question

was prompted by frequent comments suggesting that the JavaScript ecosystem is highly

dynamic, with new frameworks emerging but also being abandoned very rapidly. Thus,

we would not be interested in proceeding with the research if this fact turned out to be

true.

This chapter is organized as follows. Section 3.1 describes our dataset, which

includes JavaScript projects whose developers were surveyed about their motivation to

adopt JavaScript front-end frameworks. In Section 3.2 we detail the survey conducted

with developers. Section 3.3 reports the results of the survey conducted to reveal the

major factors driving the adoption of these frameworks. The implications and lessons

learned are discussed in Section 3.4. Section 3.5 describes threats to validity. Lastly, we

conclude this chapter in Section 3.6.

3.1. Dataset 39

3.1 Dataset

As the first step for creating a dataset with clients of JavaScript front-end frame-

works, we retrieved the names that identify them in two popular package managers: npm

and Bower. For this purpose, we randomly selected 10 GitHub projects that are clients

of each framework (using GitHub’s Used-by feature) and inspected their package.json and

bower.json files. Table 3.1 describes the package names we found after this step.

Table 3.1: Package names used by the studied frameworks

Framework Package Names

Vue vue
React react
Angular angular, @angular/core
Backbone backbone
Ember ember, ember-cli, ember-cli-app-version

Next, we selected the top-15,000 most popular projects on GitHub ranked by

stars, which is a metric commonly used to rank projects by popularity [Borges et al.,

2016; Borges and Valente, 2018]. Then, we discarded 541 projects labeled as archived

by GitHub. We also searched for forks, but we did not find anyone among the selected

projects. Finally, for the remaining 14,459 projects (15, 000 − 541), we checked out all

versions of their package.json and bower.json files in order to retrieve the project’s de-

pendencies. If a project has never depended on any of the five frameworks of interest, it

was discarded.

We found 1,515 projects that are (or were) clients of the studied frameworks, since

they have (or had) a dependency to one of them. Table 3.2 shows the number of clients

by framework.1 As can be observed, React is the most popular framework (988 clients,

65.2%), followed by Vue (315 projects, 20.7%), and Angular (263 clients, 17.3%). By

contrast, Ember has only 11 clients (0.7%).

However, for this initial study, we decided to randomly select at most 10% of these

clients for each framework (or ten clients, selecting the greater value). The reason is

that we will rely on this dataset to conduct a survey with developers and we do not

intend to send a massive number of e-mails in order to avoid our research being perceived

as spam [Baltes and Diehl, 2016]. Furthermore, the clients in this dataset are already

popular, which minimizes the possibility of randomly selecting irrelevant projects.

After randomly selecting this sample of 10% of the clients, the author of this

thesis carefully analyzed each one to discard non-software projects, archived projects,

1There are 116 projects that have at least two dependencies to the studied frameworks in their commit
history.

3.2. Survey Design 40

Table 3.2: Number of clients by framework (Initial Selection)

Framework # Clients

React 988
Vue 315
Angular 263
Backbone 68
Ember 11

and projects that use the frameworks only in examples, tutorials, documentation, and

tests. After that, new projects were randomly selected to replace the discarded ones. This

procedure was repeated until we reached the target number of clients for each framework

or had no more projects to select. As a result, we selected a sample of 169 projects, as

presented in Table 3.3. React has the highest number of clients (99 projects), followed

by Vue (32 projects). By contrast, we found only one eligible Ember project.

Table 3.3: Dataset to study framework’s adoption

Framework # Projects

React 99
Vue 32
Angular 27
Backbone 10
Ember 1

3.2 Survey Design

To reveal the factors that motivate the adoption of front-end frameworks, we sur-

veyed developers of the projects summarized in Table 3.3. To increase the chances of

receiving accurate responses, we decided to send the survey only to the project’s core

front-end developers. To identify such developers, we used a Commit-Based Heuristic

but taking into account only commits that change front-end-related source code files, ac-

cording to the extensions listed in Table 3.4. In other words, we adapted the heuristic

commonly used in the literature to identify core developers to the context of front-end

files. According to the Commit-Based Heuristic, the core team is responsible for 80%

of the overall amount of commits in a project [Joblin et al., 2017; Robles et al., 2009;

Coelho et al., 2018]. Therefore, after our adaptation, core front-end developers are the

ones responsible for at least 80% of the commits performed in front-end related files.

3.2. Survey Design 41

Table 3.4: Front-end files extensions

*.js, *.jsx, *.ts, *.tsx, *.es, *.es6, *.mjs, *.vue

*.htm, *.html, *.xhtm, *.xhtml, *.css, *.scss, *.sass

Next, we retrieved the email addresses of the core front-end developers from their

GitHub profile. We sent only one email per project, addressed to its top core front-end

developer, i.e., the one with the highest number of commits. We also sent at most one

email to a given developer, i.e., whenever we found a core front-end developer who was

emailed before—for another project—, we selected the next one. Again, our intention was

to avoid developers perceiving our messages as spam.

In the email, we asked only two questions:

1. Why did you choose [framework]?

2. Do you have plans to migrate to another framework? Please explain.

With the first question, our goal is to reveal the factors that drive the adoption of

JavaScript front-end frameworks. With the second question, we intend to unveil possible

intentions to migrate to another framework in the future.

We sent 169 emails and received 49 responses, achieving a response rate of 29%.

After collecting all responses, we analyzed the answers using thematic analysis, a tech-

nique for identifying and recording patterns (or “themes”) within a collection of docu-

ments [Cruzes and Dyba, 2011; Cruzes and Dyb̊a, 2011; Silva et al., 2016]. The analysis

involves the following steps: (1) initial reading of the developer responses; (2) generating

initial codes for each response; (3) searching for themes among codes; (4) reviewing the

themes to find opportunities for merging; and (5) defining and naming the final themes.

The author of this thesis performed these five steps. Then, two other researches reviewed

the final classification. When quoting the answers, we use labels RA1 to RA49 to indicate

the respondents.

3.3. Survey Results 42

3.3 Survey Results

3.3.1 Why did you choose [framework]?

We identified nine key factors that motivate the adoption of front-end frameworks

in JavaScript. Table 3.5 summarizes these factors and provides a brief description of each

one. Some respondents mentioned more than one factor. Thus, the number of occurrences

in Table 3.5 is greater than 49.

Table 3.5: Factors motivating the adoption of front-end frameworks

Factor Description Occurences

Popularity This framework is widely known and used 19
Learnability This framework is easy to learn and use 17
Architecture This framework forces clients to follow a solid ar-

chitecture
15

Expertise I have previous expertise in this framework 10
Community This framework is maintained by a large commu-

nity
9

Performance This framework has excellent performance 8
To gain experience I wanted to gain experience in this framework 6
Documentation This framework’s documentation is very good 5
Sponsorship This framework is supported by well-known com-

panies
4

To better understand our results, we also divided the factors by framework, as

presented in Table 3.6. Then, in the following paragraphs, we describe and give examples

of the top factors that influence the adoption of each framework.

React: We received 20 answers from React’s developers. Popularity (8 answers), archi-

tecture (7 answers), and community (6 answers) are the most common adoption factors

cited by them. As examples, we have the following answers:

I chose React because it was emerging as the most popular UI. Framework popularity

doesn’t always mean the best, but it does mean you have a larger talent pool to draw

from, a larger pool of supporting libraries in the ecosystem, more tutorials, etc. (RA26

- Popularity)

React allowed us to have a constant velocity whatever the size of the application, thanks

to an architecture based on composition and the one-way data binding encouraged by

Flux. (RA35 - Architecture)

3.3. Survey Results 43

Table 3.6: Factors that motivate the adoption of JavaScript front-end frameworks (answers
per individual frameworks).

Factor Total Ember Backbone Angular Vue React

Popularity 19 0 2 5 4 8

Learnability 17 0 1 0 11 5

Architecture 15 0 1 3 3 7

Expertise 10 0 1 2 4 3

Community 9 0 0 1 2 6

Performance 8 1 1 1 5 1

To gain experience 6 0 0 2 0 4

Documentation 5 0 1 0 3 1

Sponsorship 4 0 0 1 0 3

I/we are very happy with the stability and community that React offers (no major bugs

we’ve seen and people are creating and maintaining libraries for all sorts of things).

(RA44 - Community)

Vue: The framework stands out for its simplicity and ease of use. 11 (out of 14 re-

spondents, or 78.6%) decided to use Vue because it is easy to learn. Other factors are

performance with five answers, popularity, and previous expertise, each with four answers.

As examples, we have the following responses:

Because Vue.js is much easier to start working with, one can easily transfer the team

from existing technology to Vue.js. We’ve seen guys without previous Vue.js experience,

building complete e-shops in 2–3 weeks. (RA17 - Learnability)

We chose Vue specifically because it felt simpler, easier to learn, and we already had

someone in our team experienced with Vue. (RA18 - Learnability and Expertise)

Vue because the documentation is great, it is easy to learn and it is really performant.

(RA24 - Documentation, Learnability and Performance)

Another reason to go for VueJS was its popularity, so developers can contribute more

easily. (RA23 - Popularity)

Angular: Popularity—not nowadays, but at the time of the adoption— was cited by

five Angular’s respondents (50%), as in the following quote:

At the time Angular 1 was the hottest framework in town. This was before React, before

Vue. (RA5 - Popularity)

Backbone: Similar to Angular, developers adopted Backbone due to its popularity

3.3. Survey Results 44

at the time:

It was the most popular library at the time, and I had a lot of experience with it. (RA2

- Popularity and Expertise)

Ember: We received the following answer about Ember:

Ember was a fully featured framework, but If I had the option, I would probably have

chosen React at the time or Angular if we were to build it now. (RA1 - Ember)

Summary: Popularity (39%) and learnability (35%) are the main factors that motivate

the adoption of front-end frameworks in JavaScript.

Weakness Factors: Beyond the factors that motivate adopting a JavaScript front-end

framework, some respondents mentioned why they did not choose other frameworks. After

carefully analyzing such answers, we identified eight factors considered as weaknesses by

the respondents. Table 3.7 summarizes these factors for each framework.

Table 3.7: Weakness factors of JavaScript front-end frameworks (answers per individual
frameworks).

Factor Total Ember Backbone Angular Vue React

Incompatibility of versions 7 0 0 7 0 0

Complexity 4 0 0 4 0 0

Suboptimal architecture 4 0 1 2 0 1

Lack of experts 4 0 1 0 0 3

Difficult to maintain 3 0 1 1 0 1

Lack of TypeScript Support 3 0 1 0 2 0

Poor performance 1 0 0 1 0 0

Security issues 1 0 0 1 0 0

In the following paragraphs, we briefly describe and give examples of the weak

points of each framework.

React: Three developers cited the lack of experts as the key reason for not choosing

React as their front-end framework. A clear example is the following answer:

The talent pool for experienced React devs is limited. (RA26)

Vue: At the time of the survey, two developers cited the lack of support to TypeScript

as one of the Vue’s drawbacks. However, this issue is solved in Vue 3, as also mentioned

by the participant:

3.3. Survey Results 45

If the project grows much larger than current implementation in the future, Vue 3.0

might be adopted as it better supports TypeScript. (RA18)

Angular: The incompatibility between Angular 1 and Angular 2 is a key factor for

developers not choosing Angular. Seven respondents mentioned this problem in their

answers:

We were using AngularJS version 1, and when version 2 came out, with a completely

new syntax that would have required rewriting most of the code, we decided to see if

there were other options. (RA20)

Backbone: Three developers commented on Backbone’s drawbacks. The difficulty

to find developers with expertise in Backbone (1 answer), the framework’s suboptimal

architecture (1 answer), code maintainability problems (1 answer), and the lack of support

to TypeScript were pointed as drawbacks of the framework.

Ember: Only one developer comment about Ember:

I chose React for [my-project] in 2016 because it was emerging as the most popular UI

framework. At the time, it was clear Ember would not reach the popularity that React

and Angular were reaching. (RA26)

3.3.2 Do you have plans to migrate to another framework?

We received 46 answers for this question. Five (10.9%) out of 46 respondents

explicitly expressed the intention to migrate to another framework: one respondent from

Ember to Angular, one from Backbone to React, two from Angular to React,

and one from Angular to Vue. The main reasons are difficulty in hiring developers and

difficulty to maintain the codebase, as in this answer:

Yes, we already migrated our paid products to React and are going to update the open

source codebase as well. The main reason for migration was (1) the simplicity of React

and much more possibilities to create reusable component libraries; (2) It was hard to

hire an engineer that knows Backbone; (3) It was a pain to maintain a huge codebase

written using Backbone. (RA3)

Furthermore, 6 (13.0%) out of 46 respondents stated they already completed a

migration before (one from Angular to Backbone, two from jQuery to Angular,

two from Angular to Vue, and one from Backbone to Angular and next to React).

As example, we received this answer:

3.3. Survey Results 46

We were using AngularJS version 1, and when version 2 came out, with a completely

new syntax that would have required rewriting most of the code, we decided to migrate

to Vue. (RA20)

On the other hand, 35 respondents (76.1%) did not express intention to migrate

to another framework. The main reasons are as follows: our system is working well

(16 respondents), our project is in maintenance mode (3 respondents), and migrating to

another framework requires a huge effort (4 answers). As examples, we have the following

answers:

It would be nice to move to something TypeScript based, however as [my-project] is in

maintenance only, there are no plans, only hopes. (RA2)

Not at all. The main goal is still to offer the best tool that solves a problem, and the

roadmap is huge. Users do not really care which technology is used as long as it solves

their problems and saves them some time. (RA6)

Rewriting it in either framework represents a huge work that nobody is willing to take

at the moment. (RA10)

However, 7 (20%) out of 35 respondents that did not express the intention to

migrate to another framework stated they would not use the same framework in a new

project. As example, we have the following quote:

No plans to migrate [my-project]. However, for new projects that I have picked up since

then and the ones I will pick up, my default choice is now Vue. The overall development

experience of Vue feels way better to me and easier to wrap my head around than React.

(RA33)

Interestingly, one respondent mentioned PReact, and one mentioned Svelte as

an alternative in the future, for replacing React. We did not include these frameworks

in our study because they are very recent, and thus they are not good candidates for

the un-adoption study. For example, the respondent that commented on Svelte also

indicated that five years are needed to make a decision:

In 5 years, if Svelte becomes extremely popular and the React ecosystem begins to shrink

or become deprecated, we plan to consider a migration. (RA26)

Summary: On one hand, it is true that there is a migration between frameworks in

the ecosystem of Single-Page Applications implemented in JavaScript. For instance,

23.9% of the participants stated their intention to migrate to a new framework in the

future. On the other hand, this rate is not as alarming and impactful, especially if

we consider that all respondents were using first-generation frameworks like jQuery,

Ember, Angular, and Backbone.

3.4. Implications 47

3.4 Implications

This section presents the implications of our study for practitioners, framework

developers, and researchers.

For practitioners: our study provides interesting insights for practitioners that are inter-

ested in adopting a front-end framework in their JavaScript projects, as summarized in

the following box:

Guidelines for adoption:

• Key factors: framework’s popularity, learnability, and architecture.

• Other factors: previous expertise, community, performance, and support.

• Evaluate the quality of the framework’s documentation.

• Analyze whether the framework’s architecture fits the application’s one.

• Analyze the team’s expertise.

For framework developers: our study provides key lessons also to the developers of modern

JavaScript frameworks. First, we show that the framework’s adoption is guided by factors

they do not directly control. For example, framework developers do not have direct

influence on the popularity of their frameworks [Borges and Valente, 2018]. On the other

hand, we also listed several factors that developers might improve, such as quality of the

documentation, performance, and architecture.

For researchers: We also found a limited number of scientific papers on JavaScript front-

end frameworks. Since they are fundamental components in modern JavaScript applica-

tions, we claim that researchers should also invest more time and effort on aspects such

as architecture, design, performance, and documentation of such systems.

3.5 Threats to Validity

The first threat is related to the generalization of our results. In this study, we

presented an analysis of the adoption of JavaScript front-end frameworks. As is typical in

empirical software engineering studies, our dataset might not represent the entire popula-

tion of projects that depend on JavaScript front-end frameworks. Although we considered

five of the most popular and well-known frameworks, we cannot generalize our results to

3.6. Final Remarks 48

other frameworks. To mitigate this threat, we employed a selection criterion of choosing

the most popular projects ranked by stars for our initial dataset. However, future studies

could also consider closed projects.

Another threat relates to facets that may affect our empirical results. We relied

on information stored in package.json and bower.json files to identify the projects using

the analyzed frameworks. These files include a list of required dependencies. However,

we acknowledge it is possible to use the frameworks without a package manager, although

this is not a recommended practice when building professional applications.2 Additionally,

detecting dependencies without package manager support is not trivial and error-prone.

A final threat relates to the selection of candidates for our survey. In our study,

we rely on the maintainers’ answers to characterize the adoption of front-end frameworks.

However, some of the studied projects have hundreds of contributors with distinct respon-

sibilities. Thus, we adopted a Commit-Based Heuristic over changes in front-end files to

increase the chances of receiving accurate responses. However, we may have missed main-

tainers who do not contribute with code.

3.6 Final Remarks

JavaScript is the language that runs the Web. In the large, complex, and dynamic

ecosystem created around the language, a remarkable class of applications are the frame-

works widely used by front-end JavaScript developers to architecture and implement rich

Web apps, usually called Single-Page Applications. With the increasing complexity of

Single-Page Applications and the abundance of available frameworks, developers often

face difficulties making informed decisions regarding framework selection, which can have

significant implications for application maintenance and evolution. To address this gap, in

this chapter, we studied the factors driving the adoption of such frameworks. Through a

survey conducted with front-end developers, we gathered valuable insights into the ecosys-

tem of JavaScript front-end frameworks. Our findings revealed a list of nine key factors

that developers consider when selecting such frameworks. We found that the two main

factors are popularity and learnability.

Furthermore, beyond the factors that motivate adopting a JavaScript front-end

framework, we also found factors that negatively influence the choice of front-end frame-

works, such as incompatibility of versions, complexity, sub-optimal architecture, difficult

to maintain, and lack of experts. Our results not only contribute to the understanding

of JavaScript front-end frameworks adoption but also provide practical guidance for de-

2https://vuejs.org/v2/guide/installation.html

https://vuejs.org/v2/guide/installation.html

3.6. Final Remarks 49

velopers seeking to make informed decisions in their projects. Furthermore, framework

developers can leverage these findings to better position their projects in this competitive

software market.

Our datasets—including the survey responses in an anonymized format—are avail-

able at: https://doi.org/10.5281/zenodo.4148591

https://doi.org/10.5281/zenodo.4148591

50

Chapter 4

Detecting Code Smells in

React-based Web Apps

In this chapter, we propose a list of code smells for React-based JavaScript

applications. We focus on React because it is currently the most popular JavaScript

front-end framework [Hora, 2021].1 Specifically, we aim to answer the following research

questions:

RQ1: What are the most common code smells when using React?

RQ2: How common are the identified React smells in open-source projects?

RQ3: How often are the identified React smells removed?

To answer the first RQ, we identify a list of React smells by conducting a grey

literature review and by interviewing six professional React developers. Then, to check

whether the identified smells are common in open-source systems—and therefore to answer

the second RQ—we first implement a tool, called ReactSniffer, that detects the smells

in JavaScriptReact-based applications. Then, we useReactSniffer to unveil the most

common code smells in React-based Web systems. Finally, we conducted a historical

analysis to check how often developers remove the proposed smells.

This chapter is organized as follows. In Section 4.1, we present the procedure we

used to define our catalog of React code smells. In Section 4.2, we present our catalog

of smells. For each smell, we provide its definition and an illustrative example. We detail

our code smell detection tool, ReactSniffer, in Section 4.3. Section 4.4 presents a field

study by using ReactSniffer in ten GitHub projects. In Section 4.5 we present the

results of a historical analysis and show how often developers remove these smells. In

Section 4.6, we validate ReactSniffer’s results with an experienced React Developer.

In Section 4.7, we discuss the novelty of the proposed code smells. In Section 4.8, we

detail threats to validity. Finally, we conclude this chapter in Section 4.9.

1https://2020.stateofjs.com/en-US/technologies/front-end-frameworks/

4.1. Methodology 51

4.1 Methodology

Although JavaScript front-end frameworks foster reuse and modularity, developers

may also make design decisions that lead to code that is hard to maintain, understand,

modify, and test. However, we still lack studies investigating these design problems in

Web-based systems implemented using JavaScript front-end frameworks. For this reason,

in this section, we describe the methodology we use to derive a catalog of React code

smells. We collect the smells following two instruments: a grey literature review (4.1.1)

and semi-structured interviews with professional software developers (4.1.2).

4.1.1 Grey Literature Review

In this initial step, our goal is to reveal bad design practices when implementing

React applications. Since React emerged in recent years, there are few studies on it,

and to the best of our knowledge, we are the first to study code smells in React-based

systems. Therefore, as usual with emerging and technological topics, grey literature is

recommended as a source of evidence rather than formal literature reviews since practi-

tioners are the key protagonists in terms of using this new technology (and sharing their

experiences in blogs, QA forums, and ebooks) [Garousi et al., 2016; Barik et al., 2015;

Kamei et al., 2021; Zhang et al., 2020].

Thus, we conduct a grey literature review to answer our first research question:

RQ1: What are the most common code smells when using React?

Figure 4.1 summarizes the procedure we followed for selecting the articles and iden-

tifying the smells, which has four main steps: (1) Google search, (2) article selection, (3)

data extraction, and (4) data validation. In the rest of the section, we provide additional

details on each step.
Google search: To retrieve an initial list of articles, we defined a search query on code

smells related to React. We made two primary considerations when defining this query.

First, we added the terms react and reactjs to restrict the search toReact-related articles.

Furthermore, we added code smell, bad smell, anti-pattern and bad practice to search for

design problems related to this framework. As a result, we used the following search

query:

("react" OR "reactjs") AND

("code smell" OR "bad smell" OR "anti-pattern" OR "bad practice")

4.1. Methodology 52

Figure 4.1: Overview of the grey literature methodology

Then, we executed this query in the Google Search Engine. The first result included

thousands of documents. Since JavaScript front-end frameworks are a recent and emerging

technology, we set 2017 as the initial search date, and we only considered articles written

in English, resulting in 157 articles.

Article selection: Since the grey literature is not peer-reviewed, practitioners can share

their experiences without rigorous methodological concerns. For this reason, we rely on

additional assessment levels to make sure the selected articles are appropriate to our

purposes and to meet minimum qualification levels. In particular, we assessed the articles

using the Quality Assessment Checklist proposed by Garousi et al. [2019]. We selected

articles that attend at least one of the following Authority of the Producer criteria from

this checklist: (a) is the publishing organization reputable? (b) is an individual author

associated with a reputable organization? (c) has the author published other works in

the field? (d) does the author have expertise in the area?

As mentioned, we initially selected 157 articles, including React’s official doc-

umentation.2 Then, we sequentially removed articles that do not include a valid URL

(9 articles), that are a copy of another selected article (5 articles), that are about hu-

mans reactions to chemical smells, i.e., aromas (6 articles), that do not meet our quality

assessment levels (22 articles) or that do not discuss or answer our research question

(63 articles). After discarding these articles, we ended up with 52 articles for analysis

(157− 105 = 52), which we refer to as A1 to A52.

Data extraction: After collecting the articles, the author of this thesis carefully read

and analyzed each one. He used thematic analysis for identifying and recording patterns

(or themes) related to code smells within the selected articles [Cruzes and Dyba, 2011;

Cruzes and Dyb̊a, 2011]. A tabular data extraction form was used to keep track of the

extracted information. In particular, each row of this form reports an article, and each

column corresponds to a candidate code smell.

Data Validation: In the data validation step, a different research analyzed each article

to validate each candidate code smell retrieved during the data extraction step. Initially,

2https://reactjs.org/docs/getting-started.html

https://reactjs.org/docs/getting-started.html

4.1. Methodology 53

Table 4.1: Code smells identified in the grey literature

React Smell Description Articles #

Props in Initial State Initializing state with props A1, A3, A6, A14,
A15, A16, A17, A24,
A25, A26, A27, A36,
A41

13

Large Component Component with too many props, at-
tributes, and/or lines of code

A2, A5, A7, A9, A13,
A14, A18, A21, A27,
A40, A44, A47

12

Inheritance Instead of
Composition

Using inheritance to reuse code among
components

A1, A12, A25, A26,
A29, A35, A36, A38,
A40, A49

10

Prop Drilling Passing properties through multiple lev-
els of a components hierarchy

A1, A2, A12, A19,
A29, A37, A45, A49

8

JSX outside the ren-
der method

Implementing markup in multiple meth-
ods

A2, A3, A7, A25,
A44, A45, A51

7

Direct DOM Manipula-
tion

Manipulating DOM directly A7, A20, A28, A30,
A31, A52

6

Duplicated Component Code duplication among components A2, A32, A40, A46,
A48

5

Multiple Components
in the same file

Multiple and unrelated components im-
plemented in the same file

A7, A35, A46, A48 4

Too Many Props Passing too many properties to a single
component

A3, A44, A46 3

Uncontrolled Compo-
nent

A component that does not use props/s-
tate to handle form’s data

A1, A20, A26 3

Force Update Forcing the component or page to update A1, A34 2

Low Cohesion Component with unrelated elements and
multiple responsibilities

A5, A32 2

we identified 57 candidate smells. However, in this validation step, we decided to consider

only smells cited in more than one article. Consequently, we removed 35 candidates that

did not meet this criterion, resulting in 22 candidate smells. Next, we discussed each

candidate smell and removed nine cases that describe low-level concerns, i.e., unrelated

to design. Particularly, all the removed smells are detected by state-of-the-practice linter

tools (e.g., modify state directly, array index as key, no access state in setState, props

spreading, etc.). We also removed the smell Derived state from props because it is related

to another one, Props in initial state.

We finished with 12 candidate smells, which are summarized in Table 4.1. The

complete list of the selected articles and candidate smells is available at https://doi.

org/10.5281/zenodo.6985604.

https://doi.org/10.5281/zenodo.6985604
https://doi.org/10.5281/zenodo.6985604

4.1. Methodology 54

4.1.2 Semi-Structured Interviews

We interviewed six professional React developers recruited through the author’s

social networks to validate the candidate smells identified in the grey literature review.

In these interviews, we asked the participants to comment on bad design practices they

observed while working with React. Our ultimate goal was to double-check whether the

smells identified in the grey literature indeed occur in real software projects.

The interviewed participants have from two to six years of experience with React.

They work with industrial projects from distinct organizations, ranging from startups to

big tech companies. The author of this thesis conducted the interviews, taking from 27

minutes (minimum) to 43 minutes (maximum). We report data about each participant

in Table 4.2.

Table 4.2: Participants experience

Participant React Experience Industry

P01 6 years E-commerce

P02 4 years E-commerce

P03 4 years IT services

P04 4 years IT services

P05 2 years Banking

P06 2 years Banking

We started the interviews by asking the following question: What are the main

bad practices you observed while working with React? Thus, the participants had the

freedom to comment on problems not identified in the grey literature.

In the second part of the interview, we provide concrete examples of the smells

identified in the grey literature that the participants did not mention. We also asked

them whether they view these examples as design problems. In case of a positive answer,

we asked whether it is common to find the smell in projects they worked on.

As a result, we were able to validate 11 out of 12 candidate smells, as described in

Table 4.3. Particularly, we were not able to validate Multiple Components in the

Same File. Two developers did not view this smell as a clear problem, as expressed in

the following comment:

Working with too many open files can also be harmful. If the components are closely

related, I do not see it as a problem, it is a developer preference.

Table 4.3 highlights the smells validated with the developers as well some of the

participants’ comments. The JSX outside the render method and Inheritance

4.1. Methodology 55

instead of Composition smells are only related to class components. Since this type

of component is in disuse, they are found more in legacy code.

Table 4.3: Code smells validated in the interviews, with examples of participants’ com-
ments

React Smell Participants’ Comments

Props in Initial State When we initialize a state with props, the component practically
ignores all updated values of the props. If the props values change,
the component would still render its first values.

Large Component When a component grows, it is a sign that it needs to be broken.

Inheritance Instead of
Composition

Using inheritance makes it difficult to reuse components elsewhere.

Prop Drilling If you have a grandparent component, which passes props to the
child, which passes props to the grandchild, but only the grandchild
needs these props, the mistake is to deliberately pass props down
instead of using a contextAPI.

JSX outside the ren-
der method

It is a bad practice. Class methods with JSX should be components,
also for reuse purposes.

Direct DOM Manipula-
tion

React beginners usually use plain vanilla JavaScript to direct access
a HTML DOM element, which can cause inconsistencies between
React’s virtual DOM and the real DOM.

Duplicated Component It is common to find components or parts of a component duplicated,
especially if you do not have documentation such as a storybook.

Too Many Props It is also common, and the problem is worse in React because
every change in a prop generates a new request to update the view.

Uncontrolled Compo-
nents

It is common among inexperienced developers or when migrating to
REACT to use uncontrolled components.

Force Update This is a terrible practice, I have never used force update, but in
[my-company] there is everywhere.

Low Cohesion Components doing a lot. That is what we have the most.

New Smells: We also identified three new smells in the interviews: Large Bundlers,

Lack of Accessibility, and Large Files, as summarized in Table 4.4. In this case,

we selected Large Files to include in the catalog.

We did not include the first two smells because they do not appear in our grey

literature review. Therefore, our catalog ended up with 12 React Smells. In Section 4.2,

we provide examples of each one.

Table 4.4: New code smells identified in the interviews

React Smell Description

Large Bundles A JS bundler is a tool that puts JS code and all its dependencies
together in one JS file. A large JavaScript bundle contains several
components, dependencies, utility libraries and so on.

Lack of Accessibility Dynamic components transformed to HTML non-semantic ele-
ments, which can not be interpreted reliably by a wide variety of
user agents, including assistive technologies.

Large Files A file with several components and lines of code

4.1. Methodology 56

4.1.3 Code Smells Classification

After selecting the final smells, we also classified them into three major categories:

Novel Smells. We claim our list includes five novel smells: Force Update,

Direct DOM Manipulation, Uncontrolled Components, Props in Initial

State, and JSX Outside the Render Method.3 They refer to features very specific

to React, including View updates, components that manipulate DOM directly, compo-

nents that refer to HTML elements, components’ state, and render methods.

Partially Novel Smell. We classified a single smell in our catalog as partially

novel: Prop Drilling. For example, Ousterhout [2018] mention a design red flag called

Pass-Through Methods, i.e., a method that does nothing but only pass its arguments to

another method with a similar signature. However, in our case, Prop Drilling does not

relate to methods but to components. As a second observation, Prop Drilling resembles

to some degree a Middle Man class, i.e., a class that delegates most of its work to other

classes [Fowler and Beck, 1999]. However, Middle Man classes by definition are anemic in

the terms of behavior and data, which is not the case of Prop Drilling. In other words, a

complex component can also be used to pass through properties to its child components.

Traditional Smells. In the grey literature and in the interviews with developers,

we identified six smells that are similar to traditional smells: Large File, Large Com-

ponent (which can be considered a particular case of the traditional Large Class smell),

Inheritance instead of Composition (since the inverse relation is considered a good

object-oriented principle [Gamma et al., 1994]), Duplicated Component (which is a

particular case of Duplicated Code), and Low Cohesion. We also consider that Too

Many Props is similar to Data Class and Large Class [Fowler and Beck, 1999]. A Data

Class has mostly data and only setter and getter methods. A Large Class is a class with

several responsibilities. On the other hand, Too Many Props designates a component with

a large number of props. Essentially, this smell is very similar to the well-known Long

Parameter List smell, proposed by Fowler and Beck [1999]. Just to clarify, in React,

properties designates the parameters passed into components.

Summary: We identify a list of 12 React smells by conducting a grey literature

review and interviewing six professional React developers: Force Update, Direct

DOM Manipulation, Uncontrolled Components, Props in Initial State,

JSX Outside the Render Method, Large File, Large Component, Low

Cohesion, Prop Drilling, Too Many Props, and Inheritance instead of

Composition.

3JSX outside the render method are usually Large Components as well. Indeed, 324 out of 401 JSX
smells (80.7%) detected in our Field Study (Section 4.4) — occur in Large Components.

4.2. React Code Smells 57

4.2 React Code Smells

In this section, we present our catalog of smells. For each smell, we provide its

definition and an illustrative example. A more detailed presentation of each smell is

available at: https://github.com/fabiosferreira/React-Code-Smells.

4.2.1 Prop Drilling

Props drilling refers to the practice of passing props through multiple components

in order to reach a particular component that needs the property. Therefore, the inter-

mediate components act only as bridges to deliver the data to the target component.

For example, consider an App to create a Gallery that renders images and allows com-

ments in each one (see Figure 4.2). First, the App renders Gallery passing the user and

avatar props. Then, Gallery renders Image passing the user and avatar props. Next,

the Image renders the Comment components, also passing the user and avatar props.

Finally, Comment renders Author, passing again the user and avatar props. In other

words, Author is the only component that really needs to use these props.

As the size of the codebase increases, Prop Drilling makes it challenging to

figure out where the data is initialized, updated, or consumed. Since each component is

usually in a separate file, in our Gallery example (see Figure 4.2), there are five differ-

ent files to check for property updates, including, Author.jsx, Comment.jsx, Image.jsx,

Gallery.jsx, and the file that calls the Gallery component, App.jsx. Moreover, it seems

that current IDEs do have help on the task of tracking property initialization and updates.

As a second problem, Prop Drilling results in tightly coupled components. For example,

whenever the Author component needs more props from the top, all the intermediate lev-

els must be updated. Alternatives to Prop Drillings include component composition and

Context API. However, at least Context API has similar problems, for example, regarding

the difficulty in tracking property updates. Finally, it is worth mentioning that React

documentation recommends using component composition:

If you only want to avoid passing some props through many levels, component compo-

sition is often a simpler solution than context.

https://github.com/fabiosferreira/React-Code-Smells

4.2. React Code Smells 58

Figure 4.2: Example of Prop Drilling (code smell).

4.2.2 Duplicated Component

This smell refers to almost identical components. For example, the problem usually

occurs when multiple developers extract the same UI code to different components. As

an example, in the Listing 4.1, Comment and Opinion have the same code.

Listing 4.1: Example of Duplicated Component (code smell).

function Comment(props) {

return (

<div>

<User user={props.user} />

<div>{props.text} </div>

<div>{props.date}</div>

</div>

);

}

4.2. React Code Smells 59

function Opinion(props) {

return (

<div>

<User user={props.user} />

<div>{props.text} </div>

<div>{props.date}</div>

</div>

);

}

4.2.3 Inheritance instead of Composition

In React, developers tend to use inheritance to tackle two problems: (1) to ex-

press containment relations, particularly when a component does not know its possible

children; (2) to express specialization relations, when components are “special cases” of

other components. However, as usual in object-oriented design, React developers rec-

ommend using composition over inheritance whenever possible, mainly after the disuse of

class components.

For example, consider a component that handles Employee and a special collabora-

tor called Developer, which has a level and receives a bonus. The Employee component

can share props with Developer, and a possible design to show the data consists of cre-

ating a generic view to show data common to all employees and reuse it in the view that

handles Developer (see Listing 4.2).

Listing 4.2: Example of the Code Smell Inheritance instead of Composition.

class Employee extends React.Component {

render() {

return (<div> Name: {this.props.name} </div>);

}

}

class Developer extends Employee {

render() {

return (

<div>

{super.render()}
<div> Level: {this.props.level} </div>

<div> Bonus: {this.props.bonus} </div>

</div>

)

}

}

4.2. React Code Smells 60

However, inheritance usually results a tight coupling between components [Gamma

et al., 1994]. For example, changes in the base component can affect all child components.

On the other hand, by using composition instead of inheritance, we can reuse only the UI

behavior. Moreover, the article A40 comments about this smell: We’re fans of composition

over inheritance in pretty much any programming language. It’s tempting to treat your

component’s render method as a template method.. Listing 4.3 shows the Developer

component using composition instead of inheritance, which produces the same result.

Listing 4.3: Example of composition instead of inheritance.

class Developer extends React.Component {

render() {

return (

<div>

<Employee name={this.props.name}/>

<div> Level: {this.props.level} </div>

<div> Bonus: {this.props.bonus} </div>

</div>

)

}

}

In some cases, it may be necessary to share non-UI functionality between compo-

nents, for which React documentation recommends using separate JavaScript modules:

If you want to reuse non-UI functionality between components, we suggest extracting

it into a separate JavaScript module. The components may import it and use that

function, object, or a class, without extending it.

4.2.4 JSX outside the Render Method

The render method is the only method that is mandatory in a class component.

It provides the JSX template for UI elements. Normally, we assume that all JSX code is

confined in the render method. Therefore, the existence of JSX code in other methods

indicates that the component is assuming too many responsibilities and providing a com-

plex UI element. As a result, it is more difficult to reuse the component in other pages or

apps. For example, in the following Gallery component (see Listing 4.4), we have three

render methods: one to render an Image (that calls renderComment()), the method

that only renders Comments, and the main render method (that calls renderImage()).

However, suppose we should handle just a Comment. In this case, it is impossible to rely

4.2. React Code Smells 61

on Gallery since this component also provides other visual elements, such as the ones

needed to display an Image.

Listing 4.4: Example of JSX outside the Render Method (code smell).

class Gallery extends React.Component {

renderComment() {

return (<div> ... </div>)

}

renderImage() {

return (

<div>

...

{this.renderComment()}

</div>)

}

render() {

return (

<div>

{this.renderImage()}

...

</div>

)

}

}

In summary, the presence of JSX code in multiple methods indicates a complex UI

element, which might be decomposed into smaller and reusable ones.

4.2.5 Too Many Props

Props (or properties) are arguments passed to components via HTML attributes.

However, it is hard to understand components with a long list of props. For example,

consider the Comment component used as an example in React’s documentation (see

Listing 4.5). This component has many properties, including the four properties presented

in the Listing 4.5).

To reduce the number of props handled by Comment, we can extract the props

related to avatars (i.e., name and avatarUrl) to a new component, called Avatar. After

that, Comment just need to reference this new component, as shown in the Listing 4.6.

4.2. React Code Smells 62

Listing 4.5: Example of Too Many Props (code smell).

function Comment(props) {

return (

<div>

<div>{props.name}</div>

<div>{props.text} </div>

<div>{props.date}</div>

// other props

</div>

);

}

Listing 4.6: Example used to reduce the number of props.

function Comment(props) {

return (

<div>

<Avatar avatar={props.avatar} />

<div>{props.text} </div>

<div>{props.date}</div>

</div>

);

}

4.2.6 Force Update

JavaScript frameworks rely on a data binding mechanism to keep the View layer

updated with data automatically. Particularly, React supports one-way data binding,

which automatically reflects model changes in the View. For this reason, it is considered

a bad practice to force the update of components or even reload the entire page to update

some content, as recommended in React documentation: normally, you should try to

avoid all uses of forceUpdate() and only read from this.props and this.state in render().

4.2. React Code Smells 63

4.2.7 Uncontrolled Components

Forms are key elements in Web UIs. The official React documentation recom-

mends using controlled components to implement forms. In such components, React

fully handles the form’s data. However, developers sometimes implement forms using

vanilla HTML, where the form data is handled by the DOM itself, leading to so-called

Uncontrolled Components. For example, the following AddComment component (see

Listing 4.7) is considered uncontrolled, since it uses a ref to get the comment value.

Listing 4.7: Example of Uncontrolled Component (code smell).

class AddComment extends React.Component {

// ...

render() {

return (

<form onSubmit={this.handleSubmit}>

<label>Comment:</label>

<input type="text" ref={this.input} />

<input type="submit" value="Submit" />

</form>

);

}

}

On the other hand, when developers use controlled components, all data is stored

in the component’s state, making it easy to validate fields instantly or render them con-

ditionally.

4.2.8 Low Cohesion

As usual in software design, the implementation of components must be cohesive

and follow the Single Responsibility Principle [Martin et al., 2018]. In other words, the

component’s data and behavior must be related to make the component reusable and easy

to understand.

4.2. React Code Smells 64

4.2.9 Large Files

A large file is one with several components whose implementation requires sev-

eral lines of code. Indeed, some developers advocate that we should have exactly one

component per file. See for example the following comment from one the interviewed

developers:

I got tired of trying to fix a bug on a component co-located with other six components

in a file with thousands of lines.

4.2.10 Large Component

Clean and small components improve readability and maintainability. For example,

React documentation provides this recommendation for refactoring large components:

If a part of your UI is used several times, or is complex enough on its own, it is a good

candidate to be extracted to a separate component.

4.2.11 Direct DOM Manipulation

React uses its own representation of the DOM, called virtual DOM, to denote

what to render. When props and state change, React updates the virtual DOM and

propagates the changes to the real DOM. For this reason, manipulating the DOM using

vanilla JavaScript can cause inconsistencies between React’s virtual DOM and the real

DOM.

4.2.12 Props in Initial State

Initializing state with props makes the component to ignore props updates. If the

props values change, the component will render its first values. React documentation

4.3. ReactSniffer: Code Smell Detection Tool 65

also states about this smell:

Using props to generate state in the constructor (or getInitialState) often leads to

duplication of “source of truth”, for example where the real data is. This is because the

constructor (or getInitialState) is only invoked when the component is first created.

4.3 ReactSniffer: Code Smell Detection Tool

We implemented a prototype tool—calledReactSniffer—to detect the proposed

smells. In this section, we describe its architecture (Section 4.3.1), thresholds selection

policy (Section 4.3.2), and limitations (Section 4.3.3).

4.3.1 Architecture

As described in Figure 4.3, ReactSniffer architecture has three key components:

a parser for generating the AST of React files, an AST Analyzer for collecting metrics

and analyzing rules, and a Smells Detector module for identifying the smells.

Figure 4.3: ReactSniffer architecture

The Parser is a Command-Line Interface (CLI) implemented in Node, which re-

ceives as input a valid front-end file and generates an Abstract Syntax Tree (AST) in a

JSON format. We filter front-end files according to the extensions listed in Table 4.5.

4.3. ReactSniffer: Code Smell Detection Tool 66

The principal element of this parser is Babel,4 a JavaScript compiler commonly used to

convert new JavaScript syntactic elements (e.g., ES6 syntax) into backward-compatible

elements, therefore allowing programs to run in older browsers. A powerful component of

Babel is its parser,5 which generates an AST for JSX code.

Table 4.5: Front-end files extensions

*.js, *.jsx, *.ts, *.tsx

The AST Analyzer module relies on the AST to search and inspect React ele-

ments. It recursively traverses the AST using a preorder algorithm. Finnaly, the Smells

Detector module compares the component metrics against predefined thresholds to iden-

tify any potential code smells. To better understand ReactSniffer architecture, List-

ing 4.8 shows the pseudocode of the ReactSniffer tool and Listing 4.9 details the major

steps and computations performed by ReactSniffer to detect smells in components.

Listing 4.8: ReactSniffer algorithm.

ReactSniffer(dirname)

smells = []

FrontEndFiles = all files in dirname with .js, .jsx, .ts, and .tsx extensions

FOREACH file IN FrontEndFiles DO

AST = GenerateAST(file)

IF isReactFile(AST) THEN

components = astAnalyzer(AST)

FOREACH component IN components DO

smells = DetectComponentSmells(component)

IF (file[LOC] > LOC_F_th OR components.length > N_Components_th

OR file[N_Imports] > N_Imports_th) THEN

smells.add(LF);

return smells

Next, we discuss the smells supported by our tool and which detection strategy we

implemented to recognize their instances.

JSX outside the render method: we can create methods in class components using

two different syntaxes: traditional or arrow functions. Thus, we rely on two types of

nodes to check whether a component implements UI features outside its render method:

ClassMethod and ClassProperty. For ClassProperty nodes, we also verify whether

they receive an ArrowFunction. The detection strategy considers the number of meth-

ods containing UI elements, which we call NM JSX. If NM JSX is higher than a given

threshold, the component is tagged as a smell.

4https://babeljs.io
5https://babeljs.io/docs/en/babel-parser

https://babeljs.io
https://babeljs.io/docs/en/babel-parser

4.3. ReactSniffer: Code Smell Detection Tool 67

Listing 4.9: Smell detection algorithm.

DetectComponentSmells(Component)

smells = []

IF (component[LOC] > LOC_th OR component[N_Props] > N_Props_th or

component[NM] > NM_th) THEN

smells.add(LC)

IF (component[N_Props] > N_props_th) THEN

smells.add(TP)

IF (component.hasNode('SuperClass') OR component.hasNode('super')) THEN

smells.add(IIC)

IF (component.hasNode('forceUpdate') OR (component.hasNode('reload')) THEN

smells.add(FU)

IF (component.hasAnyDOMManipulationNode()) THEN

smells.add(DOM)

IF (component.hasInputWithoutState()) THEN

smells.add(UC)

FOREACH method IN component[methods] DO

IF (method.hasJSXElement()) THEN

smells.add(JSX)

IF (method == constructor AND method.hasPropsInState()) THEN

smells.add(PIS)

return smells

Too Many Props: To detect this smell, we count the component’s number of props,

which we call N Props. If this value is higher than a threshold, the component is marked

as a smell.

Large Component: To detect this smell, we rely on the number of lines of code (LOC),

the number of props (N Props), and the number of methods (NM) in the component. We

then check whether at least one of these values is greater than the given thresholds (each

metric has its own threshold).

Force Update: To detect components that force updates, we check whether its functions

include calls to forceUpdate() or reload() methods.

Direct DOM Manipulation: to detect components that manipulate the DOM di-

rectly, we check whether they include calls to any HTML DOMmethods, such as innerHTML,

getElementById and getElementsByTagName.

Props in Initial State: we check whether the state is initialized with any component

props to detect this smell.

Large File: To detect large files, we rely on the number of lines of code (LOC), the

number of components (N Components), and the number of imports (N Imports) in a file.

We then check whether at least one of these values is greater than the given thresholds

(each metric has its own threshold).

4.3. ReactSniffer: Code Smell Detection Tool 68

Inheritance instead of Composition: We use the SuperClass AST node to detect

inheritance relations. If a component has the SuperClass node and it is not a default

React component, it is inheriting from another component.

Uncontrolled Components: to detect uncontrolled components, we check whether

components have inputs that values are not binding with a state.

4.3.2 Benchmark-based Thresholds Selection

As described, most heuristics used by ReactSniffer rely on thresholds. There-

fore, to define these thresholds, we propose the usage of a benchmark-based approach [Alves

et al., 2010; Palomba et al., 2013], when the thresholds are derived from a dataset of

systems. In this case, we need a dataset of systems (more details in Section 4.4.1).

Our dataset comprises heterogeneous and relevant GitHub projects (the top-10 React

projects ranked by stars). According to Mori et al. [2018], benchmarks composed of

heterogeneous systems in terms of size and domains tend to have similar thresholds.

Specifically, we compute the respective metrics for all systems and then used the 90th

percentile value of each metric as a threshold. For example, the same approach is used

by Alves et al. [2010] to characterize very-high risk code. On the other hand, Aniche

et al. [2018] use a threshold of 75% (third quartile) in the context of traditional MVC

frameworks. However, since this is the first study on React-based smells, we decided to

be conservative in our thresholds selection policy.

4.3.3 Limitations

Currently, ReactSniffer does not detect the following code smells: Low Cohe-

sion, Duplicated Component, and Prop Drilling. The reason is that these smells

require a complex implementation or metric selection. For example, usually, there is a

lack of consensus on recommended cohesion metrics [Pantiuchina et al., 2018; Cinnéide

et al., 2012]. Regarding Duplicated Component and Prop Drilling, their detection

depends on a static analysis of multiple files, a task that falls beyond the scope of this

thesis. We plan to support these three smells in future versions of our tool.

4.4. Field Study 69

4.3.4 Availability

ReactSniffer is publicly available on GitHub and can be easily installed via

the NPM package manager. More details about the tool and installation are available at

https://www.npmjs.com/package/reactsniffer.

4.4 Field Study

Our catalog emerged from the analysis of 52 documents from the grey literature

and was validated with six professional React developers. Despite that, we argue it is

important do check whether the identified smells indeed happen in the wild. Moreover, it

is also important to provide quantitative data about the frequency of each smell described

in the catalog, since it is not reasonable to assume that they appear in the same number

in real-world projects. For this reason, this section reports the results of a field study

conducted to investigate whether the proposed React smells are common in open-source

systems.

First, we formulated the following research question:

RQ2: How common are the proposed React smells in open-source projects?

We start by creating a dataset of GitHub projects that use React (Section 4.4.1)

and by using ReactSniffer to search for smells in these projects (Section 4.4.2).

4.4.1 Dataset

We intend to validate our catalog of smells with relevant GitHub projects. For

that, we used the dataset of the study on the adoption of JavaScript front-end frameworks

presented in Chapter 3, which contains 988 projects that depend on React. From the 988

projects, we selected the top-10 projects by stars after manually discarding non-software

projects and projects that use React only in examples, tutorials, documentation, and

tests. Table 4.6 shows the number of stars, number of front-end files (FF), and number of

components of the selected projects. We analyzed 2,060 front-end files and 2,695 React

components.

 https://www.npmjs.com/package/reactsniffer

4.4. Field Study 70

Table 4.6: Dataset (FF: number of front-end files; Comp: number of components)

Project Stars FF Comp.

grafana/grafana 47,629 914 1116
apache/superset 45,230 387 438
prometheus/prometheus 41,650 34 46
RocketChat/Rocket.Chat 31,970 532 815
ant-design/ant-design-pro 31,661 19 20
carbon-app/carbon 29,936 62 103
mastodon/mastodon 29,746 203 222
joplin/joplin 28,799 52 52
metabase/metabase 27,881 1159 1344
getredash/redash 20,736 295 352

Total - 3,657 4,508

For detecting smells, ReactSniffer relies on a benchmark-based threshold se-

lection policy. Therefore, we computed the required thresholds before running the tool,

as previously explained in Section 4.3.2. As a result, we obtained the values in Table 4.7,

which are then used to obtain the results presented in the following section.

Table 4.7: Thresholds selection

React smell Metric Threshold

JSX outside the render method NM JSX 2

Too many props N Props 13

Large Component LOC 116
N Props 13
NM 2

Large File LOC 225
N Components 2
N Imports 19

4.4.2 Results

Table 4.8 details the number of instances of each smell, as we found in our dataset.

We briefly discuss the results for each one.

Inheritance Instead of Composition (IIC): We found five projects reusing UI

elements by means of inheritance instead of composition, with 20 occurrences in total.

The project joplin/joplin concentrates ten occurrences.

4.4. Field Study 71

Table 4.8: Code smells by project (LC: Large component, TP: Too many props, IIC:
Inheritance instead of Composition; PIS: props in Initial State; DOM: Direct DOM ma-
nipulation; JSX: JSX outside the render method; FU: Force update; UC: Uncontrolled
component; LF: Large File)

Project LC TP IIC FU DOM JSX UC PIS LF

grafana/grafana 202 101 5 26 7 136 1 4 265
apache/superset 129 84 0 4 5 56 1 11 152
prometheus/prometheus 9 5 0 0 0 5 0 0 6
RocketChat/Rocket.Chat 70 61 0 0 0 0 0 0 156
ant-design/ant-design-pro 4 4 0 2 0 4 0 0 5
carbon-app/carbon 17 7 0 0 2 2 2 0 19
mastodon/mastodon 77 38 1 2 7 78 2 0 35
joplin/joplin 35 28 10 1 0 29 1 0 16
metabase/metabase 138 100 2 3 5 65 0 5 164
getredash/redash 45 26 2 3 0 26 0 2 44

Total 726 454 20 41 26 401 8 22 867

JSX Outside the Render method (JSX): this is a common smell in our dataset:

nine out of ten projects have at least one occurrence, with 401 occurrences in total. In

relative terms, 8.89% of the components in our dataset have methods implementing JSX

outside the render method.

Too many Props (TP): 10.07% of the components contain too many props, according

to our thresholds. In total, we found 454 occurrences of this smell, distributed over nine

projects. The component with the highest number of props has 131 props. Interestingly,

this same component (DashboardContainer) has 790 LOC, seven methods with JSX

outside the render method, and inherits props from StatefulUIElement, which in

turn inherits from UIElement.

Large Files (LF): all projects have at least one large file. Grafana is the project with

the highest number, both in relative and absolute terms. According to our thresholds,

out of 914 React files in Grafana, 265 files (28.9%) are large. The largest file in our

dataset has 1,413 LOC.

Large Components (LC): all projects have large components. Specifically, 726 (16.10%)

out of 4,508 components are considered large components. The largest component has

1,089 LOC.

Props in Initial State (PIS): We found four projects initializing their state with

props, with 22 occurrences in total. The project apache/superset concentrates 11

occurrences.

Direct DOM Manipulation (DOM): we found five projects with this smell and

26 occurrences in total. The HTML DOM methods they call are getElementById,

createElement, and getElementByClassName.

Uncontrolled Component (UC): we found five projects with this smell and eight

4.4. Field Study 72

occurrences in total. They usually use a ref HTML attribute to read/update form values

directly from the DOM instead of using React features to handle this kind of data. The

Listing 4.10 illustrates one of these occurrences where a ref attribute is used to clear the

value of a file input:

Listing 4.10: Example of Uncontrolled Component found by the ReactSniffer Tool.

const clearModal = () => {

//...

if (fileInputRef && fileInputRef.current) {

fileInputRef.current.value = '';

}

};

<input ref = {fileInputRef} type= "file" ... />

When we handle form data directly, we assume the responsibility of keeping the

form (UI element) and the component’s state synchronized. In other words, instead of

relying on React’s one-way data binding mechanism for handling this synchronization,

we assume the burden to handle this task.

Force Update (FU): we found seven projects that force updates and 41 occurrences

in total. A single project (grafana) concentrates 26 occurrences of this smell. We

also manually analyzed each case. Interestingly, in one case, we found a comment self-

admitting a technical debt (SATD), as shown in the Listing 4.11:

Listing 4.11: Example of Force Update found by the ReactSniffer Tool.

// Angular HACK: Since the target does not actually change!

this.forceUpdate();

We also discovered that grafana migrated to React after using Angular since

October 2017. Indeed, the project still has some parts implemented in Angular. There-

fore, the use of forceUpdate seems to be a hack to allow a rapid migration instead of

fully reimplementing the UI according to React best practices.

Summary: Using ReactSniffer, we detected 2,565 code smells in the top-10 most

popular GitHub projects that use React. The smells with the highest number of oc-

currences are Large Component, Too Many Props, JSX outside the render

method, and Large File.

4.5. Historical Analysis 73

4.5 Historical Analysis

In the first RQ, we relied on a grey literature review and on interviews to come

up with a catalog of 12 code smells for React-based systems. In the second RQ, we

provided quantitative data on the frequency of each smell. This is important, for example,

to provide guidance to developers on how often they should expect to find each smell in

their projects. However, a key information is still missing in the previous RQs, i.e., the

removal rate of each smell. For example, a smell can be very common but rarely removed.

Therefore, this indicates that developers tend to see this smell as less harmful. On the

other hand, smells that are rapidly removed from the code tend to be more important.

Therefore, this section reports the results of a historical analysis conducted to in-

vestigate how often developers remove the proposedReact smells in open-source systems.

First, we formulated the following research question:

RQ3: How often are the identified React smells removed?

To answer this research question, we deliberately decided to work with timeframes

of six months. We start by checking out the repository of the projects in our dataset

and defining three times frames of six months for our analysis: Aug-2020 to Jan-2021,

Feb-2021 to Jul-2021, and Aug-2021 to Feb-2022, as illustrated in Figure 4.4. For each

time frame, we downloaded the repository versions at the time frame start and end dates

and used ReactSniffer to search for smells. Then, we computed the smells identified

at the time frame start date that were removed at the time frame end date.

Figure 4.4: Time frames used in the analysis

To facilitate the visualization and analysis, we group the results of all projects by

time frame. Figure 4.5 shows the overall removal rates.

The removal rates range from 0.9% to 50.5%; the smell with the greatest removal

rate is Large File (50.5%). In fact, all projects contain refactorings for large files.

On the other hand, the Inheritance instead of Composition smell has the lowest

removal rate (0.91%), and only one project contains a removal of Inheritance Instead

of Composition (IIC).

4.5. Historical Analysis 74

Figure 4.5: Removal rates of each smell by time frame (LC: Large component, TP: Too
many props, IIC: Inheritance instead of Composition; PIS: props in Initial State; DOM:
Direct DOM manipulation; JSX: JSX outside the render method; FU: Force update; UC:
Uncontrolled component; LF: Large File)

19.35 % 5.36 % 1.67 %

5.01 % 5.05 % 7.52 %

15.17 % 3.7 % 5.37 %

4.5 % 4 % 6.29 %

6.47 % 14.01 % 5.58 %

0.91 %

4.82 % 5.67 % 6.95 %

10 % 10 %

23.42 % 18.92 % 9.71 %

DOM

FU

IIC

JSX

LC

LF

PIS

TP

UC

0 20 40 60
Removal Rate (%)

S
m

el
l

 Time Frame A Time Frame B Time Frame C

However, we also have other smells with a significant removal rate, such as Props

in Initial State (26.3%), JSX outside the render method (26.0%), and Force

Update (24.2%). For example, Figure 4.6 shows a developer from grafana project

questioning the use of Force Update before it was refactored.

Figure 4.6: Issue questioning the use of Force Update

Finally, the removal rates of the other smells are Direct DOM Manipulation

(14.7%), Large Component (LC) (17.4%), and Too many props (17.5%). Four

4.6. Validation with Developers 75

projects contain removal of Direct DOM Manipulation. Figure 4.7 shows a refactor-

ing removing an occurrence of this last smell with a comment self-admitting a technical

debt.

Figure 4.7: Direct DOM Manipulation Refactoring

Summary: The removal rates range from 0.9% to 50.5%. The smell with the high-

est removal rate is Large File (50.5%). The smells with the lowest removal rates are

Inheritance Instead of Composition (IIC) (0.9%), and Direct DOM Ma-

nipulation (14.7%).

4.6 Validation with Developers

To validate ReactSniffer’s results, we recruited an experienced React De-

veloper to execute the tool in one of his company’s projects using the same thresholds

presented in Table 4.7. We also asked him to evaluate the tool results. Table 4.9 shows

the number of front-end files (FF), and number of components of the selected project.

Table 4.9: Dataset (FF: number of front-end files; Comp: number of components)

Project FF Comp.

E-commerce project 189 181

For this particular validation, we instrumented ReactSniffer to generate as

output a csv file containing detailed information about each smell, such as the smell

name, the smell file path, and the line of code where the smell was detected. We also

added a column to this csv file, asking the developer to rate the relevance of each smell in

a 5-point scale, where 1 means the smell is not important at all and probably will not be

refactored and 5 means the smell is very important and therefore it should be refactored

in the near future. In the last column, the developer was invited to add comments about

each detected smell, in case he found it relevant.

ReactSniffer detected 157 smells instances. However, the developer did not

evaluate 24 of such smells for two key reasons: 15 smells occurred in deprecated code

4.6. Validation with Developers 76

(i.e., code responsible for features that are not used anymore in the project) and nine

smells occur in code required by third-party modules (i.e., the developer sees this code as

external to their project).

Figure 4.8 shows the number of instances of each remaining smell. The most com-

mon smell was Large Component (LC), with 45 instances (28%). In the other extreme

of the chart, there are no occurrences of the Inheritance Instead of Composition

(IIC) and Uncontrolled Component (UC) smells.

Figure 4.8: ReactSniffer Validation with Developers (LC: Large component, TP: Too
many props, IIC: Inheritance instead of Composition; PIS: props in Initial State; DOM:
Direct DOM manipulation; JSX: JSX outside the render method; FU: Force update; UC:
Uncontrolled component; LF: Large File)

45

39

0

2

5

35

0

1

29

IIC

UC

PIS

FU

DOM

LF

JSX

TP

LC

0 10 20 30 40 50

'
Occurrences

S
m

el
l

Table 4.10 shows the average relevance scores for each smell, as answered by the

contacted developer. All smells have an average relevance score greater than 3.3. The

exception is JSX Outside the render method (JSX), with an average score of 2.2. The

developer justified that most JSX occurrences are correlated and caused by two other

smells: Large Component (LC) and Too Many Props (TP). For example, he added

the following comment to justify some JSX instances:

As the components were very large, developers decided to separate some chunks of JSX

into non-render methods to organize the code. Then in the render, they would only

invoke these methods.

The developer considered the smells Force Update (FU) and Props in Initial

State (PIS) severe. However, they are also in third-party modules and will not be

refactored. For example, he added the following comment to justify these smells instances:

They are grave and should be rated five. However, they are all in third-party modules,

so they will not be refactored, as it is not the project’s fault.

4.7. Discussion 77

Table 4.10: Relevance scores of ReactSniffer Evaluation

LC TP DOM JSX LF

Average 3.4 3.3 3.5 2.2 3.7
Standard Dev. 1.1 1.1 1.1 0.4 1.1

Summary: ReactSniffer detected 157 instances of the proposed smells in a commer-

cial React-based project. According to an experienced developer, the mean relevance

of such smells in a 5-point scale range from 2.2 (JSX Outside the Render Method)

to 3.7 (Large File).

4.7 Discussion

Code smells are a widely studied concept, not only in object-oriented designs

but also in particular domains, such as MVC-based applications [Aniche et al., 2018],

JavaScript [Fard and Mesbah, 2013], HTML [Nederlof et al., 2014], and CSS [Mazinanian

et al., 2014]. Therefore, a key discussion relates to the novelty of smells we identified for

React systems. In this regard, in Section 4.1.3 we have classified our smells into three

major categories: Novel, Partially Novel, and Traditional ones.

Another discussion refers to the small number of some smells, as detected in the

field study. Although they indicate well-known problems in React apps, we detected few

cases of Direct DOM Manipulation, Uncontrolled Components, and Inheri-

tance instead of Composition. However, this might be explained by the fact that

our dataset is composed of popular projects, which might follow more strict programming

and design guidelines.

Particularly, it is not easy to provide the precise reasons for the low removal rate of

Inheritance instead of Composition. However, we hypothesize two main reasons

for this result: (a) inheritance is a widely-known object-oriented mechanism; therefore,

developers that already use inheritance in mainstream object-oriented languages may

keep using this mechanism in their React-based projects; (b) inheritance leads to a tight-

coupling between subclasses and superclasses; however, this coupling does not necessarily

cause maintenance problems, including bugs, particularly when the classes are responsible

for stable and rarely changed requirements. For example, 14 out of 20 instances of the

Inheritance instead of Composition smell occur in files that have not been changed

in the time frame of our study.

4.8. Threats to Validity 78

Since we focused on React-based Web systems, a discussion that arises relates to

the possibility of generalizing our smells to other front-end frameworks. Since these frame-

works also rely on components for structuring and organizing Web UIs, code smells such

as Large Component, Duplicated Component, Uncontrolled Components,

Large Files, Too Many Props, Low Cohesion, Direct DOM Manipulation,

and Prop Drilling can be easily generalized to these frameworks. It is also possible

to find bad practices that force the update of components or even reload the entire page

in applications based on other frameworks. For example, we can use forceUpdate() and

location.reload() methods when working with Vue.

Vue recommends using templates to build HTML in most cases (instead of JSX,

as in React). Despite that, Vue also provides the render method, which is a closer

alternative to templates and also allows the usage of JSX. Therefore, we can generalize

the JSX Outside the Render Method smell to Vue-based systems. Finally, the

Inheritance instead of Composition smell also applies to Vue, since Vue provides

extension and mixins mechanisms to reuse features.

Therefore, this preliminary analysis reveals that it possible to generalize most of

our detected smells to other frameworks, particularly Vue. However, we acknowledge

that a further analysis should be conducted in this direction, possibly also considering

other frameworks, such as Angular and Svelte.

4.8 Threats to Validity

In this section we discuss threats to the validity of our results [Wohlin, 2012].

Since we started with a list of smells from grey literature documents, our results and

observations may include questionable smells, threatening validity. However, to reinforce

the validity of our findings, we only selected articles that attend to at least one of the

“authority of the producer criteria”, proposed by Garousi et al. [2019]. Moreover, we only

considered smells cited by more than one document. In a second step, all smells were

validated with professional React developers. Finally, we conducted a field study that

showed the collected smells are prevalent in open-source systems.

Another threat relates to the developers’ interviews. Some developers may be

concerned on stating that a bad practice was common in their company. To minimize

this threat, we allowed the participants to comment on any smells they observed while

working with React, regardless of place and time.

The values chosen as thresholds can also threaten the validity of this study. To

minimize this thread, we decided to be conservative in our thresholds selection policy

4.9. Final Remarks 79

and used the 90th percentile value of each metric. Moreover, we also achieved promising

results using these same thresholds when we asked an experienced developer to evaluate

the smells detected by ReactSniffer in a commercial project. Specifically, the average

relevance score was 3.16 (in a scale from 1 to 5).

A final threat relates to decisions that may affect our empirical results. As usual in

empirical software engineering studies, our dataset might not represent the whole popula-

tion of React-based projects. For example, we selected only 10 GitHub projects (plus one

closed project, which we used to provide a first validation of our results with a professional

software developer). Therefore, future studies might also include more closed projects.

Moreover, as a complementary selection criteria, future studies might also consider the

proportion of React-based code in a repository. This extra criteria might contribute to

select projects that heavily depend on React to build their front-end components.

4.9 Final Remarks

Code smells were first proposed for mainstream object-oriented languages. For

example, the examples presented in Fowler and Beck’s original catalog of smells are im-

plemented in Java [Fowler and Beck, 1999]. However, software engineering and related

technologies have evolved considerably in the last decades. Particularly, Web-based sys-

tems evolved to include full and non-trivial applications running in the browsers, which

are implemented using frameworks such as Facebook’s React. Therefore, as the key

implication of our study we showed that React-based applications include new and spe-

cific smells that are not covered in general-purpose catalogs. We claim this finding can

help front-end developers—who represent 25.9% of the developers according to recent

surveys—to better maintain and improve the quality of their code.

React is a very popular JavaScript front-end library. It is now used to imple-

ment complex and Reactive Web interfaces, which can reach thousands of lines of code.

Therefore, it is important to assure the maintainability of React-based applications. In

this chapter, by using a grey literature review and by interviewing professional React

developers, we derived a list of 12 code smells for React-based apps. We provided ex-

amples for each smell; implemented a tool to detect them; and used this tool in a sample

of ten GitHub projects, when we were able to detect 2,565 smells instances, covering nine

out of 12 smell types proposed in this chapter. As future work, we plan to consider new

frameworks, such as Vue.js, Angular, and Svelte. This is particularly important

to provide a general catalog of smells for front-development and therefore to avoid the

explosion of smells for a wide range of frameworks. We also plan to extend our tool to

handle all identified smells.

80

Chapter 5

Refactoring React-based Web Apps

In Chapter 4, we proposed a list of 12 common code smells describing design issues in

React applications. Since refactoring is a well-known technique to improve software

design and an indispensable practice in modern software development, in this chapter,

we propose a catalog of refactorings that can be applied to eliminate these

smells and consequently improve the source code quality of front-end compo-

nents. Specifically, we set out to discover (i) the most important refactoring operations

performed in React applications, (ii) how often these refactorings occur in a represen-

tative sample of open-source projects, and (iii) whether they are indeed frontend-specific

program transformations or whether they are variations of traditional refactorings.

This chapter is organized as follows. In Section 5.1, we present the methodology

we used to define our catalog of refactorings. In Section 5.2, we present this catalog. In

Section 5.3, we discuss and put our findings and insights in perspective. In Section 5.4,

we detail threats to validity. Finally, we conclude this chapter in Section 5.5.

5.1 Study Design

Our goal is to study React-specific refactorings that developers perform when

maintaining and evolving Web apps. For that, we selected the top-10 React-based

projects by stars from the dataset of the study on the adoption of JavaScript front-end

frameworks presented in Chapter 3. For each selected project, Table 5.1 shows the number

of front-end files (FF) and the number of components.

To identify commits that include refactorings, we initially collected all commits

with changes in front-end files, i.e., files with the extensions *html, *htm, *.js, *.jsx,

*.ts, and *.tsx. Then, similar to Ksontini et al. [2021] and Tang et al. [2021], we

selected, via git log, the commits containing the keyword refactor* in their log mes-

sages. However, we also selected commits containing the keywords reengineer*, re-

structur*, and reorgani*. The “Ref.” column in Table 5.1 shows the number of

5.1. Study Design 81

Table 5.1: Dataset of React clients (FF: number of front-end files; Comp: number of
components; Ref: Number of refactoring commits)

Project FF Comp. Commits Ref. Analyzed

grafana/grafana 914 1116 24,018 939 106
apache/superset 387 438 6,852 810 60
prometheus/prometheus 34 46 2,826 8 8
RocketChat/Rocket.Chat 532 815 4,530 70 17
ant-design/ant-design-pro 19 20 2,381 37 5
carbon-app/carbon 62 103 1,785 28 21
joplin/joplin 52 52 7,636 58 20
mitmproxy/mitmproxy 22 33 6,740 11 11
metabase/metabase 1159 1344 21,659 314 47
getredash/redash 295 352 1,844 42 25

Total 3,476 4,319 80,271 1,917 320

commits containing at least one of these keywords in their messages (1,917 commits in

total).

Next, we randomly selected a subset of these commits to examine manually. How-

ever, as this analysis is manual, it is crucial to select a sample size that is neither too small

nor too large. A small sample may not provide a representative picture of the commits

and does not give a satisfactory level of accuracy, while a large sample demands increased

costs and time to conduct a manual analysis. Therefore, we used a sample size calculator

with a 95% confidence level and a 5% margin of error to determine the optimal subset

size. Using this methodology, we selected 320 commits out of a total of 1,917 to examine

manually, striking a balance between minimizing costs and time while ensuring statistical

confidence. The “Analyzed” column in Table 5.1 shows the number of commits selected

by project.

Due to the large and complex nature of many commits, the author of this thesis

carefully reviewed each commit message to identify only those commits that were clear

instances of refactoring. This process involved analyzing each commit message to deter-

mine whether it contained unambiguous descriptions of the refactoring operations being

performed. As a result, only those commits with clear and explicit descriptions of their

refactoring activities were selected for further analysis. In other words, some commits

were discarded because their logs contained refactoring-related keywords but the exact

refactorings were not precisely described. For example, some logs contained statements

such as “should refactor the UI code,” which is not a specific refactoring operation. Other

commits could potentially represent refactorings. However, due to the lack of clarity re-

garding the nature and location of the refactoring, they were also discarded. Figure 5.1

shows a second example of an unclear log message related to a discarded commit.

After the author’s initial examination, 65 commits were discarded. To ensure accu-

5.1. Study Design 82

Figure 5.1: Example of an unclear commit.

racy, a second researcher conducted a thorough review of these commits to confirm their

elimination. Upon review, he agreed with discarding 56 commits (86%) but claimed nine

commits could potentially be considered in the analysis. Then, after discussions between

the author of this thesis and the second researcher, six of the nine cases were ultimately

reclassified as valid commits. Out of the three remaining commits, one introduces a

change in functionality that does not preserve behavior, another commit description was

considered unclear, and the third revoked a previous refactoring operation, as illustrated

in Figure 5.2. Consequently, the final classification resulted in 261 commits whose de-

scriptions clearly indicate refactorings.

Figure 5.2: Example of a discarded commit because it is revoking a previous refactoring
operation.

In the subsequent stage of the analysis, the author of this thesis and a third re-

searcher undertook a detailed and independent examination of the 261 selected commits.

This process involved conducting an independent review of each commit to identify the

specific refactoring operations and their underlying rationale. To determine the nature of

the operations, the researches primarily studied the commit diff, carefully analyzing the

changes made to the codebase. They also examined issues linked to the commits (if any),

as they often provide valuable context for the commit activities.

After completing the analysis, the researchers discussed their classification and

addressed the disagreements that emerged during the process. Notably, in nine instances

the authors assigned different labels to the commits despite them representing the same

refactoring operation. Through collaborative discussions, a consensus was reached to use

5.1. Study Design 83

the same names, as summarized in Table 5.2. In this table, we underline the final name

choice.

Table 5.2: Example of refactoring operations labeled with different names (the final se-
lected version is underlined).

First researcher classification Second researcher classification

Merge Components Combine components into one

Convert JS code in TS Migrate to Typescript

Convert class component into
function component

Migrate to functional compo-
nent

Extract HTML to Component Migrate HTML to react

Remove directly state updates Remove state usage

Dead Code Elimination Remove dead code

Replace EOL to semi-colon format Change style format

Convert function component
into class component

Migrate to class style

Extract Logic to a Custom Hook Extract Custom Hook

After this names’ standardization, the authors reached a consensus on 234 com-

mits, indicating a substantial level of agreement (89.6%). However, there were 27 commits

in which the researchers held differing opinions. The disagreements were often attributed

to instances where one researcher failed to identify a refactoring activity that the other

researcher had recognized. Another case of disagreement emerged when one researcher

identified an activity as a refactoring while the other researcher did not recognize it as

such. For instance, one researcher attributed the labels “Add parameter” and “Change

parameter” to certain commits. However, the other researcher argued that these oper-

ations do not preserve behavior. They reviewed these conflicting cases, discussed their

reasons for disagreement, and sought a consensus on the correct classification for each

one.

Furthermore, in this second classification stage, the researchers classified ten com-

mits as false positives (3.8%). As example, five commits describe a refactoring operation

but the changed code indeed adds a new feature or change an existing one. For instance,

Figure 5.3 illustrates a commit that introduces a restriction, resulting in a change of

behavior. This change mandates that all these properties will be mandatory. This mod-

ification alters the behavior. Other five commits include refactorings performed only in

the back-end code. After eliminating these cases, we found 565 refactoring instances in

the remaining 251 commits.

Finally, the researchers classified the refactoring instances into four major cate-

gories:

5.1. Study Design 84

Figure 5.3: Example of a false positive commit that does not preserve behavior.

• React-specific refactorings (134 instances, 23.7%), which are novel refactorings

that only occur in front-end code.

• React-adapted refactorings (214 instances, 37.8%), which are refactorings that

although related to the React context are adaptations of traditional refactorings.

• Traditional refactorings (192 instances, 33.9%), i.e., refactorings documented in

Fowler’s catalog.

• JavaScript-specific refactorings (22 instances, 3.8%) and CSS-specific refactorings

(3 instances, 0.5%), which are refactorings related to JavaScript and CSS code and

structures and that were not previously classified as React-specific or React-

adapted

We identified a total of 69 distinct refactoring operations. The distribution of these

refactoring operations by category is illustrated in Figure 5.4. In the subsequent section,

we provide a comprehensive overview of the proposed catalog, delving into the specifics

of more frequent refactoring operations.

5.2. A Catalog of Refactorings for React-Based Web Apps 85

Figure 5.4: Number of refactoring operations by category

29

12

22

6JavaScript and CSS

React−adapted

Traditional

React−specific

0 10 20 30 40 50
'

Refactorings

C
at

eg
or

y

5.2 A Catalog of Refactorings for React-Based Web

Apps

In the following sections, we discuss the most frequent React-specific (Table 5.3)

and React-adapted (Table 5.4) refactorings. In addition, we briefly comment on the

JavaScript-specific (Table 5.5) and on the traditional (Table 5.6) refactorings.

5.2.1 React-specific Refactorings

In this section, we focus on the refactoring operations that are specific to React

code. Based on our analysis, which is detailed in Table 5.3, we have identified a total

of 134 instances involving 25 unique React refactoring operations. These operations

are exclusive to front-end code and have been observed multiple times, indicating their

relevance and practical applicability in React development. Since React documentation

advises against using class components in new codebases, among the 25 React-specific

refactoring operations, three directly relate to the abandonment of class components:

Migrate Class Component to Function Component, Generalize interface

to accept class and functional component types, and Extract JSX outside

render method component.

In the following subsections, we will present the React refactorings that have

been observed in more than one instance during our analysis.

5.2. A Catalog of Refactorings for React-Based Web Apps 86

Table 5.3: React-specific refactorings

Refactoring Occur.

Extract Stateful logic to a custom hook 47

Migrate class component to function component 33

Migrate Angular to React Component 7

Replace third-party component with own component 5

Extract conditional in render 4

Remove props in initial state 4

Migrate to styled component 4

Memoize component 4

Extract higher-order component (HOC) 3

Remove direct DOM manipulation 3

Replace access state in setState with callbacks 3

Replace direct mutation of state with setState() 2

Remove forceUpdatte() 2

Replace Stateful logic to hook 2

Extract logic to a custom context 1

Split hook 1

Generalize hook 1

Replace callback bind in constructor with bind in render 1

Replace HTML/JS code with third-party components 1

Migrate function component to class component 1

Migrate React.FC to functional component syntax 1

Move reducer 1

Replace id with Routers 1

Generalize interface to accept class and functional component types 1

Replace dynamic keys with stable ids 1

Total 134

Extract stateful logic to a custom hook

React hooks were introduced in React 16.8 to use state and other features without

needing class components. For example, the useState() hook allows tracking state in

function components. However, the logic that deals with state might become duplicated

in components. For example, in a chat application, more than one component may store

data about the status of the users. Moreover, these components may also replicate the

logic that checks whether a user is online or not. React Hooks allows developers to

eliminate this duplicated logic by extracting it to a custom hook, which is a function

whose name starts with “use” (e.g., useFriendStatus). This hook usually returns the

state and the function to update it (e.g., const [friendStatus, setFriendStatus]

= useFriendStatus()). Custom hooks improve reusability since the same code that

appears in multiple components can be implemented in a single function. We classify

this refactoring as specific to React because it is tightly connected to React’s key

5.2. A Catalog of Refactorings for React-Based Web Apps 87

abstractions, such as hooks, function components, and states.

For example, several components in the Redash project need to load geolocation

data and add it to the geoJson components state. Initially, each component had its

geolocation state and the loading. Then, a refactoring was performed to extract the state

and the associated logic to a single custom hook, called useLoadGeoJson, as illustrated

in Figure 5.5. We found 47 occurrences of this refactoring.

Figure 5.5: Refactoring that extracts a stateful logic to a custom hook

(a) useLoadGeoJson custom hook

(b) The component GeneralSettings using the useLoadGeoJson hook

Migrate class component to function component

React supports class and function components. A class component is an ES6 class

with lifecycle control methods (e.g., componentDidMount() and componentDidUpdate()),

local state, and a render method that returns what must appear in the UI. On the other

hand, a function component is just a JavaScript function that accepts props (or inputs)

as arguments and returns a React element representing the UI. For this reason, function

components are simpler to understand than class components. Moreover, by using hooks,

function components can access state and other React features.

For these reasons, replacing class components with function components is a com-

mon React-specific refactoring, with 33 occurrences in our dataset. Figure 5.6 shows an

example that replaces the CreateUserDialog class with a function component. Specifi-

cally, the refactoring (1) changes the class to a function, (2) removes the render method,

(3) removes references to this, (4) removes the constructor and replaces the state with a

useState hook, (5) replaces the componentDidMount() lifecycle method with a useEffect

hook.

5.2. A Catalog of Refactorings for React-Based Web Apps 88

Figure 5.6: Refactoring CreateUserDialog class component to function component

Migrate Angular to React Component

This refactoring operation transforms a component developed using the Angular frame-

work into a React component. Therefore, it is commonly performed when developers mi-

grate an Angular-based application to a React-based one. In our analysis, we identified

seven instances of this refactoring operation in two projects that underwent a migration

from Angular to React.

Replace Third-party Component with Own Component

While developing a React Web App, developers can use components from a component

library. This refactoring replaces a third-party component with an in-house component

developed by the team. We found five occurrences of this refactoring.

Extract Conditional in Render

React allows conditional rendering of UI elements, depending on the application’s state—for

example, a set of UI elements is rendered only when the user is logged in. However, mixing

JSX code with nested conditional rendering makes the code hard to read and maintain.

In our dataset, we found four refactorings that simplify such conditionals by extracting

the JSX code to other components or helper methods.

Remove Props in Initial State

Initializing the state with props makes the component ignore all props updates. If the

props values change, the component renders its initial values. We found four refactorings

that eliminate the initialization of state with props.

5.2. A Catalog of Refactorings for React-Based Web Apps 89

Migrated to Styled Component

Styled-components is a React-specific CSS-in-JS styling solution that allows developers

to write CSS code to style React components. The required dependencies from the

styled-components package must be imported to create a styled component, which involves

defining a new component using the styled object or utility functions. 1 For example, a

button HTML tag and its original CSS class names can be replaced by a styled component.

The following code defines a styled component to create a button.

import styled from 'styled-components';

const StyledButton = styled.button`

background-color: blue;

color: white;

`;

Then, we can replace the corresponding HTML element tag with the newly defined

styled component name, as showed next:

// Before

<button className="originalButtonClass">Click Me</button>

// After

<StyledButton>Click Me</StyledButton>

We found four occurrences of migration to styled components.

Memoize Component

This refactoring focuses on enhancing the performance of a React component through

the application of memoization. This technique is crucial in optimizing the rendering

process, particularly for components involving computationally intensive tasks and com-

plex rendering logic. By caching callbacks and the results of expensive computations,

memoization prevents unnecessary renderization of components. In addition, this caching

mechanism enables the reuse of cached values when the inputs to those computations

remain unchanged, resulting in improved overall performance. We found four refactoring

operations for memoize component.

Extract Higher-Order Component (HOC)

A higher-order component (HOC) is an advanced technique in React for reusing compo-

nent logic. It takes a component as an input and returns a new enhanced component. Re-

act allows writing custom HOC or reusing HOCs from third-party React libraries, such

1https://styled-components.com

5.2. A Catalog of Refactorings for React-Based Web Apps 90

as Redux’s connect.2 For example, the following code use the higherOrderComponent()

function that takes a component as an input (WrappedComponent) and returns a new

enhanced component.

const EnhancedComponent = higherOrderComponent(WrappedComponent);

Thus, HOC can be used to wrap around other components and provide additional

functionality or data to them. Thus, the refactoring Extract higher-order compo-

nent involves extracting common functionality from multiple components into a HOC,

avoiding code duplication and making it easier to manage and update the shared func-

tionality. Figure 5.7 shows a commit message indicanting the extract of an HOC called

LiveItemsList, which wraps common logic for the DashboardList, QueriesList,

and UsersList components

Figure 5.7: Commit message indicanting an Extract HOC refactoring

Remove Direct DOM Manipulation

React uses its own representation of the DOM, called virtual DOM. When the state

changes, React updates the virtual DOM and propagates the changes to the real DOM.

However, manipulating the DOM using standard JavaScript code can cause inconsisten-

cies between React’s virtual DOM and the real DOM. We found three refactoring that

removes direct DOM manipulation.

Replace Access State in setState with callbacks

In React, accessing state in the setState() method can lead to inconsistencies because

such updates are asynchronous, i.e., React can batch multiple setState() calls into a

2https://react-redux.js.org/api/connect

5.2. A Catalog of Refactorings for React-Based Web Apps 91

single update to increase performance. Therefore, if two setState operations are grouped

they both can access the old state. For example, the following code may fail to update

the counter state:

this.setState({counter: this.state.counter + 1}) // 2

this.setState({counter: this.state.counter + 1}) // 2, not 3

The recommended refactoring uses a variation of setState() that accepts a func-

tion rather than an object. This function receives the previous state as an argument:

this.setState(prevState => ({counter: prevState.counter + 1}));

We found three occurrences of this refactoring.

Replace Direct Mutation of State with setState()

Class components provide the setState() method, which updates the component state

and indicates to the framework what needs to be re-rendered. To support this process,

React keeps the previous state and compares it with the updated state to decide whether

or not the component needs to be re-rendered. The problem occurs when the state is

changed directly i.e., without calling setState(). As a result, the component may not

reflect the state updates.

Therefore, the solution is always use setState() to update the state. We found

two occurrences of direct mutation of the state being replaced with mutation using the

setState() method.

Remove forceUpdatte()

In order to automatically reflect model changes in the view, React re-renders a compo-

nent only if its state or the props passed to it changed. However, developers can force

the update of components or even reload the entire page, which may cause inconsistencies

between the model and view. React documentation recommends to avoid all uses of

forceUpdate() and to only access this.props and this.state in render(). We found

two refactorings that eliminate calls to forceUpdate() or reload().

Replace Stateful Logic to Hook

This refactoring involves replacing a custom logic or functionality implemented within

a React component with an existing hook. By employing a hook, the component can

utilize pre-existing functionality provided by third-party libraries or implemented by the

team, which helps in reducing redundancy and promoting code reusability. We found two

occurrences of this refactoring.

5.2. A Catalog of Refactorings for React-Based Web Apps 92

5.2.2 React-adapted Refactorings

In our analysis, we found 214 instances of 17 refactoring operations that, although

related to the React context, are adaptations of traditional refactorings. For this rea-

son, we call them as React-adapted refactorings. For example, React structures and

organizes the UI through the abstraction of component composition. Consequently, the

Extract Component refactoring remembers the Extract Class operation. How-

ever, a component is not exactly a class. Table 5.4 shows such refactorings and highlights

the traditional refactoring they are similar to.

Table 5.4: React-adapted refactorings

Refactoring Similar to Occur.

Extract component Extract Class 76

Rename component Rename Class 30

Remove unused props Remove unused parameter 24

Move Component Move Class 24

Rename prop Rename parameter 12

Split component Extract Class 9

Move Hook Move Method 8

Extract HTML/JS code to
component

Extract Class 7

Extract JSX outside render
method to component

Extract Class 6

Rename hook Rename Method 6

Combine Components into one Combine Functions into Class 3

Remove unused state Remove unused field 3

Rename state Rename field 2

Remove unused useEffect Dead Code Elimination 1

Remove unused hook Dead Code Elimination 1

Change prop type Change variable type 1

Replace value with props Change Value to Reference 1

Total 214

Extract Component

This refactoring occurs when parts of a component appear in multiple places. Therefore,

extracting these parts into a new component allows their reuse in other places. We found

76 occurrences of this refactoring in our dataset.

5.2. A Catalog of Refactorings for React-Based Web Apps 93

Rename Component

We found 30 refactorings that rename components. This refactoring usually occurs when

the name of a component does not represent the component well, either because the com-

ponent was poorly named or because its purpose evolved and the original name finished

being a good choice.

Remove Unused props

Passing props to child components is common when developing and maintaining React

applications. However, as the application evolves, some props may become unused due

to changes in the component’s logic or requirements. These unused props can clutter the

codebase, making it harder to understand and maintain the component. We found 24

occurrences of a refactoring that eliminates unused props.

Move Component

This refactoring is recommended when a component is used in multiple files. In such

cases, we should consider moving the component to the location where it is most used.

We found 24 occurrences of this refactoring.

Rename Props

This refactoring is similar to a traditional rename refactoring. It occurs when the name

of a prop does not represent its purpose very well. We found 12 occurrences of this

refactoring.

Split Component

This refactoring occurs when a component starts getting too large, with many responsi-

bilities, making it hard to maintain. We found nine occurrences of this refactoring in our

dataset.

Move Hook

This refactoring is recommended when a hook is used in multiple components. In such

cases, we should consider moving the hook to the location where it is most used. We

found eight occurrences of this refactoring.

Extract HTML/JS Code to Component

In Web apps, duplicated UI elements are also a common design problem. For example,

some buttons in an app might be very similar, changing only details such as text and

5.2. A Catalog of Refactorings for React-Based Web Apps 94

image. The problem happens when the HTML/JS code that implements these buttons

is duplicated, making it more difficult to maintain, reuse, and evolve. Thus, refactor-

ing duplicated UI code to components fosters reuse and encapsulation. We found seven

refactorings extracting HTML/JS code to reusable components.

Extract JSX Outside render Method to Component

This refactoring enables the reuse of helper methods with JSX code in other components.

In React, the render method—which is the only method required in a class— returns

a JSX template describing what should appear on the UI. However, when this method

becomes large, developers sometimes move part of its code to separate methods, which

prevents reuse decoupled from the render. Therefore, extracting these methods to new

components improves reusability and allows their reuse in other pages. We found six

occurrences of this refactoring in our dataset.

Rename Hook

This refactoring is also similar to a traditional rename refactoring. It occurs when the

name of a hook does not represent its purpose well. We found six occurrences of this

refactoring.

Combine Components into One

This refactoring is recommended when two or more components share UI elements and

logic, i.e., when we have code duplication. The solution is to create a new common com-

ponent and move the duplicated UI elements and logic to it. We found three occurrences

of this refactoring.

Remove Unused State

We found three refactoring operations that remove unused states, i.e., state variables that

have been declared but are no longer used or referenced within the component’s logic.

Rename state

This refactoring occurs when the name of a state does not represent its purpose well. We

found two occurrences of rename state.

5.3. Discussion 95

5.2.3 JavaScript and CSS Refactorings

As described in Table 5.5, we found 22 instances of four refactoring operations

specific to JavaScript and two refactoring operations specific to CSS, i.e., they are not

directly related to React-specific code. For example, the most common JS refactoring

is Convert JavaScript Code into TypeScript, with 13 occurrences.

Table 5.5: JavaScript and CSS refactorings

Refactoring Type Occur.

Convert JS code in TS JS 13

Migrate function to arrow function syntax JS 4

Replace promises with useCallBack JS 1

Replace EOL to semi-colon format JS 1

Rename CSS Class CSS 2

Extract Stylesheet CSS 1

Total 22

5.2.4 Traditional Refactorings

As summarized in Table 5.6, we also found 192 instances of 22 refactoring opera-

tions documented in Fowler’s catalog Fowler and Beck [1999]. Dead Code Elimination

is the most common one, with 83 occurrences.

5.3 Discussion

In this section, we discuss our results under two main dimensions. First, we map

the proposed refactorings to a set of React-based code smells. Next, we discuss how our

findings can be generalized to other frameworks, such as Vue.

5.3. Discussion 96

Table 5.6: Traditional refactorings

Refactoring Occur.

Dead Code Elimination 83

Move Function 20

Extract Function 16

Rename Function 13

Consolidate Conditional Expression 11

Duplicated Code Elimination 7

Rename Method 6

Rename Variable 6

Extract Method 4

Rename Type 4

Rename Parameter 4

Move File 3

Rename File 3

Rename Object Fields 2

Move Type Definition 2

Replace magic literal 2

Merge Methods 1

Move Method 1

Rename Interface 1

Encapsulate fields in Object 1

Replace custom logic with external lib 1

Use Composition instead of Inheritance 1

Total 192

5.3.1 React Code Smells and Refactorings

In chapter 4, we proposed a catalog of code smells for React-based Web applica-

tions. We also implemented a tool to detect these code smells. The catalog and detection

tool serve as valuable resources for front-end developers, alerting them to potential design

issues in the source code of React applications. However, only identifying code smells,

even with the aid of an automated tool, does not resolve the underlying design issues. In

other words, addressing and eliminating these code smells is equally crucial by applying

appropriate refactorings [Sharma et al., 2015]. To facilitate this process, in this section,

we establish a mapping between prevalent React code smells and the refactorings identi-

fied in this chapter, which could be used to remove them. By associating each code smell

with a possible “fixing” refactoring, we aim to provide developers with practical guidance

5.3. Discussion 97

Table 5.7: React smells and the refactorings that eliminate them

Smell Possible Refactoring

Large Component Split Component
Extract Component
Extract Logic to Custom Hook
Extract JSX outside render method to component

Duplicated code Extract logic to a custom hook
Extract Component
Extract Higher Order Component
Extract HTML/JS code to compoment
Replace logic with Hook

Poor names

Rename Component
Rename Prop
Rename State
Move Hook

Dead Code Remove unused props
Remove unused state

Feature Envy
Move Method
Move Component

Too Many Props Remove unused props
Split Component

Poor performance
Migrate class component to function component
Memoize component

Props in initial state Remove props in initial state

Direct DOM Manipulation Remove direct DOM manipulation

Force Update Remove forceUpdatte()

Inheritance Instead of Composition Use Composition instead of Inheritance

JSX outside the render method Extract JSX outside render method to component
Extract component

Low Cohesion Extract component

Conditional rendering Extract conditional in render

No access state in setState() Replace access state in setState with callbacks

Direct Mutation of state Replace direct mutation of state with setState()

Dependency smell Replace third-party component with own component

Prop Drilling Extract logic to a custom context

on efficiently addressing and resolving these design issues.

Table 5.7 describes the relationship between specific React smells and the cor-

responding refactorings that potentially eliminate them. Among the various refactorings

available, Extract Component is the most versatile and can address design issues such

as Large Components, Duplicated Code, JSX outside the render method,

and Low Cohesion. Other refactoring operations also eliminate more than one code

smell, such as Split Component, Extract Logic to Custom Hook, Extract

JSX outside the render method, and Remove unused props. It is also worth

noting that a code smell may be removed by different types of refactoring. For instance,

we have identified five refactoring operations that can be used to remove duplicated

code. Therefore, it is the developer’s responsibility to select the most suitable refactoring

5.4. Threats to Validity 98

approach that aligns with the specific problem at hand.

5.3.2 Generalization to Other Frameworks

Another key discussion is the possibility of generalizing our refactorings to other

front-end frameworks, such as Vue. Since these frameworks usually rely on components

for structuring and organizing Web UIs, refactorings such as Rename component, Ex-

tract HTML/JS code to component, Replace HTML/JS code with third-

party components, and Replace third-party component with own compo-

nent apply to these frameworks. In addition, the components of these frameworks also

have props, making it possible to generalize the Rename props and Remove Unused

props refactorings. It is also possible to find bad practices that force the update of

components or manipulate the DOM directly in other frameworks.

On the other hand, the setState() method is part of the React architecture,

which presents challenges when attempting to generalize certain refactorings such as Re-

place access state in setState with callbacks, Remove unused state and

Replace direct mutation of state with setState(). The Migratet Class

component to function component and Extract Logic to a Custom Hook

refactorings became common after React hooks’ release. On the other hand, it is worth

mentioning that there are also initiatives to define and share logic in Vue.3

Furthermore, the Memoize component refactoring can be applied to other

frameworks as well. For instance, Vue provides the v-memo directive, which enables

the memoization technique. By utilizing v-memo on a computed property or method, Vue

automatically caches the result and recalculates it only when the dependencies change.

This feature significantly enhances the performance of reactive components by avoiding

unnecessary recomputations.

5.4 Threats to Validity

In this section we discuss threats to the validity of our results [Wohlin, 2012]. The

first threat is related to decisions that may affect our empirical results. As is typical in

empirical software engineering studies, our dataset might not represent the entire popu-

3https://www.npmjs.com/package/@u3u/vue-hooks

https://www.npmjs.com/package/@u3u/vue-hooks

5.4. Threats to Validity 99

lation of React-based projects. For instance, we selected only ten open-source projects,

which may not be representative of the extensive number of React projects. To mitigate

this threat, we employed a selection criterion of choosing the top-10 projects ranked by

stars, a common metric for selecting widely popular and relevant GitHub projects [Borges

et al., 2016; Borges and Valente, 2018]. Typically, these projects are continuously main-

tained and have been utilized in our previous studies [Ferreira et al., 2022; Ferreira and

Valente, 2023]. However, future studies could also consider closed projects. Additionally,

as a complementary selection criterion, future studies might consider the proportion of

React-based code in a repository. This criterion could aid in selecting projects that

heavily rely on React to build their front-end components.

Another threat concerns identifying and classifying refactoring operations, which

can be subjective due to the manual nature of this step. To mitigate this threat, our

analysis involved two stages. Firstly, two researchers independently reviewed each com-

mit message to identify only those commits that unambiguously represented instances

of refactoring. In cases of disagreement, the experts engaged in discussions to reach a

consensus. Consequently, only commits with clear and explicit descriptions of their refac-

toring activities were selected for further analysis. However, with this manual approach

we may have excluded commits with relevant but non-documented refactorings.

In the second stage, our study involved substantial manual validation and analysis

to categorize the refactorings, which can be subjective. To address these threats, the au-

thor and a second researcher thoroughly examined the commit diffs carefully analyzing the

changes made to the codebase. They also examined associated issues (if any), pull-request

descriptions, and comments in the code to gain a better understanding of the contextual

changes. The agreement score between them was consistently high for all identification

and classification results, as discussed in Section 5.1. In instances of disagreement, the

experts discussed the commit(s) to achieve a consensus. They marked the refactorings

and their rationale only when they had a high level of confidence in their identification.

Another threat relates to larger commits, which may encompass multiple activities,

making it challenging to categorize the tasks accurately. To mitigate this, we focused on

commit messages with clear and explicit descriptions of refactoring activity, which were

selected during the initial stage of our analysis. Consequently, it is possible that developers

performed additional refactorings within the same commit but did not explicitly mention

them in the log message, potentially resulting in missed refactorings. Nonetheless, our

study still involved manual identification and classification of a representative sample of

320 commits.

A final threat pertains to the heuristics employed to determine whether refactorings

were related to React code. Particularly, there could be cases where a commit includes

changes both in the front-end and in the back-end, but the refactoring occurs only in the

latter. During our manual analysis, we marked such commits as false positives to address

5.5. Final Remarks 100

this concern.

5.5 Final Remarks

Refactoring is a well-known technique to improve software quality. However, most

studies on refactoring focused on mainstream programming languages, such as Java and

JavaScript. This chapter proposed a catalog of common refactorings in React appli-

cations. By manually inspecting 320 refactoring instances performed in front-end files,

we identified 25 distinct refactoring operations specific to React code, 17 adaptations

of traditional refactorings, six specific to JavaScript and CSS code, and 22 traditional

refactorings.

Our study offers a range of refactoring options to address these specific design

problems in React applications. By employing the appropriate refactoring techniques,

developers can improve the quality, maintainability, and overall design of their React-

based Web applications. In future work, we plan to validate our findings with professional

developers and consider other frameworks, such as Vue and Angular. We also plan to

provide tool support to detect the refactorings identified in this chapter. For example,

we plan to extend tools such as RefDiff [Silva and Valente, 2017; Silva et al., 2020], or

Refactoring Miner [Tsantalis et al., 2013] to detect React-based refactorings. Finally, we

also aim to expand our catalog by including composite refactorings, which are sequences

of individual refactorings performed on a specific program element (e.g., component de-

composition)[Brito et al., 2023].

101

Chapter 6

Conclusion

This chapter describes the three major works conducted throughout this thesis (Sec-

tion 6.1). Next, in Section 6.2 we list the main contributions of these efforts. Finally,

Section 6.3 outlines future work that we find interesting for follow-up research.

6.1 Thesis Recapitulation

JavaScript-based front-end frameworks, such as React and Vue, are key tools

for implementing modern Web applications. However, limited research has focused on

these frameworks’ design and maintenance challenges. In this thesis, we presented a set

of three work units where we examined common problems encountered when designing

Web systems using JavaScript-based front-end frameworks.

Firstly, we provided an overview of modern JavaScript front-end frameworks in

Chapter 2, emphasizing two popular frameworks: React and Vue. We also described

the state-of-the-art concerning studies related to the design and maintenance issues that

occur when implementing Web systems.

In Chapter 3, we presented our initial exploratory study, which involved surveying

the key factors that motivate developers to adopt JavaScript front-end frameworks. We

also investigated whether they have plans to migrate from one framework to another in

the near future. Since the JavaScript ecosystem is highly dynamic, with new frameworks

emerging but also being abandoned very rapidly, this information holds practical value

for software evolution and practitioners.

In Chapter 4, we propose a list of code smells for React-based JavaScript

applications. We identified these smells by conducting a grey literature review and

interviewing six professional React developers. Additionally, we implemented a tool

called ReactSniffer to detect these smells. By utilizing this tool, we discovered

the most prevalent code smells in React-based Web systems. Ultimately, we

conducted a historical analysis to check how often developers remove the proposed smells.

6.2. Contributions 102

Finally, in Chapter 5, we reported the results of an empirical study on refactor-

ing operations that developers perform when maintaining and evolving React-based

Web applications. Through manual inspection of 320 refactoring commits in open-source

projects, we proposed a catalog of refactorings that can be applied to eliminate the smells

presented in Chapter 4 and consequently improve the source code quality of front-end

components. Additionally we reportetd how often these refactorings occur in a repre-

sentative sample of open-source projects, and whether they are indeed frontend-specific

program transformations or whether they are variations of traditional refactorings.

6.2 Contributions

In the context of the research conducted in this thesis, we highlight the following

contributions:

1. We revealed a list of nine key factors developers consider when selecting contempo-

rary JavaScript front-end frameworks. This list is useful to JavaScript developers

that plan to adopt a frontend framework in their projects. It can also be used by

framework developers, helping them better position their projects in a competitive

software market. We also provide a public dataset with popular projects that are

clients of front-end frameworks. Therefore, future research on JavaScript front-end

frameworks can use this dataset.

2. We proposed a catalog of 12 code smells for React, including five novel smells

and one partially novel smell. They were proposed after carefully analyzing 52

documents collected in a grey literature review and by interviewing six professional

software developers. This catalog can help front-end developers to better spot and

fix design problems in the React components they are responsible for.

3. We implemented a tool, called ReactSniffer, to detect the proposed code smells.

This tool works as a complement to the proposed catalog, by supporting the auto-

matic identification of the smells proposed in our work. It is also publicly available

as a NPM package.1

4. We used ReactSniffer to unveil the most common code smells in React-based

systems. Moreover, we also show how often developers remove these smells. These

studies were important to show the proposed smells indeed occur in real-world Re-

act-based projects. For example, we found smells in all systems in our dataset

1https://www.npmjs.com/package/reactsniffer

6.3. Future Work 103

(10 systems, in total). To complement, we also showed how the removal rate varies

among the smells in our catalog (since it is not important to show the number of

occurrences of the proposed smells, but also how frequently they are removed). We

also provide a public dataset with these smells for future research.

5. Through a careful manual analysis of ten open-source projects, we proposed a cata-

log comprising 69 refactorings employed by developers when maintaining and evolv-

ing React-based applications. We documented 25 new refactorings specific to Re-

act and 17 adaptations of traditional refactorings tailored to the React context,

therefore acknowledging the distinctive nature of React applications. Addition-

ally, we offer access to the dataset encompassing these refactorings, thus facilitating

further studies and analysis.2

6. Lastly, we provided a relationship between specific React smells and the corre-

sponding refactorings that eliminate them. By associating each React smell with

a “fixing” refactoring, we provided developers with practical guidance on efficiently

addressing and resolving these design issues.

6.3 Future Work

During the works conducted in this thesis, we identified some unexplored questions

that can result in relevant studies. We detailed these future works in the following sections.

6.3.1 Design Pattern Catalog

A Design Pattern is a typical solution to a recurring design problem. However,

despite the popularity of JavaScript front-end frameworks, we still lack a design pattern

catalog documenting repeatable solutions to common problems when designing Web sys-

tems using these frameworks. Indeed, the classical book on design patterns [Gamma

et al., 1994] was published before JavaScript became popular. Therefore, as future work,

a study can be conducted to explore front-end frameworks’ internal architecture, aiming

to document the key design and architectural patterns used by them. We envision that

2https://doi.org/10.5281/zenodo.8044249

https://doi.org/10.5281/zenodo.8044249

6.3. Future Work 104

this study can help practitioners gain an in-depth understanding of the internals of such

frameworks and, therefore, better assess the trade-offs involved in their adoption.

6.3.2 Code Smells: Tool Improvements and New Future Works

In Chapter 4, we proposed a list of code smells for React-based JavaScript ap-

plications. We also implemented a prototype tool, called ReactSniffer, to detect the

proposed smells. However, ReactSniffer does not support all proposed smells. Specifi-

cally, it does not detect Prop Drilling and Duplicated Component. Thus, a future

work can extend our current implementation to handle all identified smells. Chapter 4

also reports the results of a field study conducted to investigate whether the proposed

React smells are common in open-source systems. However, we agree that is important

to consider new frameworks, such as Vue.js, Angular, and Svelte. This is particu-

larly important to provide a general catalog of smells for front-development and therefore

to avoid the explosion of smells for a wide range of frameworks. Furthermore, our catalog

paves the way for future research avenues, including investigating the impact of refactor-

ing these smells, exploring the concurrent presence of these smells, and enhancing metrics

for identifying the code smells. Lastly, we provide a public dataset of code smells found

in ten GitHub projects that use React. This dataset can also be used for future research

endeavors like conducting surveys with developers regarding the identified smells.

6.3.3 Refactorings: Tool Improvements and New Future Works

In Chapter 5, we proposed a catalog of common refactorings in React applica-

tions. Our study offers a range of refactoring options to address specific design problems

in React applications. By employing the appropriate refactoring techniques, developers

can improve the quality, maintainability, and overall design of their React-based Web

applications. In future work, we plan to validate our findings with professional developers

and consider other frameworks, such as Vue and Angular. We also plan to provide

tool support to detect the refactorings identified in Chapter 5. For example, we plan to

extend tools such as RefDiff [Silva and Valente, 2017; Silva et al., 2020], or Refactoring

Miner [Tsantalis et al., 2013] to detect React-based refactorings. We also provide a

public dataset with refactorings performed by developers on React applications. This

6.3. Future Work 105

dataset can be used for other studies in the future, for example, for surveying developers

about the motivations for performing specific refactorings and on how these refactorings

affect quality attributes. Finally, we also aim to expand our catalog by including com-

posite refactorings, which are sequences of individual refactorings performed on a specific

program element (e.g., component decomposition)[Brito et al., 2023].

106

Bibliography

Alizadeh, V., Kessentini, M., Mkaouer, M. W., Cinnéide, M. Ó., Ouni, A., and Cai, Y.

An interactive and dynamic search-based approach to software refactoring recommen-

dations. IEEE Transactions on Software Engineering, 46(9):932–961, 2018.

Alves, T. L., Ypma, C., and Visser, J. Deriving metric thresholds from benchmark data.

In 26th IEEE International Conference on Software Maintenance (ICSM), pages 1–10,

2010.

Aniche, M., Bavota, G., Treude, C., Gerosa, M. A., and van Deursen, A. Code smells for

model-view-controller architectures. Empirical Software Engineering, 23(4):2121–2157,

2018.

Araújo, C. P. and Filho, A. M. Evolution of web systems architectures: A roadmap.

Special Topics in Multimedia, IoT and Web Technologies, page 1, 2020.

Bajammal, M., Mazinanian, D., and Mesbah, A. Generating reusable web components

from mockups. In 33rd IEEE/ACM International Conference on Automated Software

Engineering (ASE), pages 601–611, 2018.

Baltes, S. and Diehl, S. Worse than spam: Issues in sampling software developers. In

10th International Symposium on Empirical Software Engineering and Measurement

(ESEM), pages 1–6, 2016.

Barik, T., Johnson, B., and Murphy-Hill, E. I heart hacker news: expanding qualitative

research findings by analyzing social news websites. In 10th Joint Meeting on Founda-

tions of Software Engineering (FSE), pages 882–885, 2015.

Beck, K. Extreme programming explained: embrace change. addison-wesley professional,

1 edition, 2000.

Boldyreff, C. and Kewish, R. Reverse engineering to achieve maintainable WWW sites.

In Eighth Working Conference on Reverse Engineering, pages 249–257. IEEE, 2001.

Borges, H., Hora, A., and Valente, M. T. Understanding the factors that impact the

popularity of GitHub repositories. In 32nd IEEE International Conference on Software

Maintenance and Evolution (ICSME), pages 334–344, 2016.

Bibliography 107

Borges, H. S. and Valente, M. T. What’s in a GitHub star? understanding repository

starring practices in a social coding platform. Journal of Systems and Software, 146

(1):112–129, 2018.

Brito, A., Hora, A., and Valente, M. T. Towards a catalog of composite refactorings.

Journal of Software: Evolution and Process, 1:1–22, 2023.

Cinnéide, M. Ó., Tratt, L., Harman, M., Counsell, S., and Moghadam, I. H. Experimental

assessment of software metrics using automated refactoring. In 6th ACM/IEEE Inter-

national Symposium on Empirical Software Engineering and Measurement (ESEM),

pages 49–58, 2012.

Coelho, J., Valente, M. T., Silva, L. L., and Hora, A. Why we engage in FLOSS: Answers

from core developers. In 11th International Workshop on Cooperative and Human

Aspects of Software Engineering (CHASE), pages 14–21, 2018.

Cruzes, D. S. and Dyb̊a, T. Research synthesis in software engineering: A tertiary study.

Information and Software Technology, 53(5):440–455, 2011.

Cruzes, D. S. and Dyba, T. Recommended steps for thematic synthesis in software

engineering. In 5th International Symposium on Empirical Software Engineering and

Measurement (ESEM), pages 275–284, 2011.

Davis, F. D. Perceived usefulness, perceived ease of use, and user acceptance of informa-

tion technology. MIS Quarterly, 13(3):319–340, 1989.

Diniz, J. P., Cruz, D., Ferreira, F., Tavares, C., and Figueiredo, E. GitHub Label Embed-

dings. In 20th IEEE International Working Conference on Source Code Analysis and

Manipulation (SCAM), pages 249–253, 2020.

Fakhoury, S., Arnaoudova, V., Noiseux, C., Khomh, F., and Antoniol, G. Keep it simple:

Is deep learning good for linguistic smell detection? In SANER, pages 602–611, 2018.

Fard, A. M. and Mesbah, A. Jsnose: Detecting JavaScript code smells. In 13th Interna-

tional Working Conference on Source Code Analysis and Manipulation (SCAM), pages

116–125, 2013.

Fernandes, E., Oliveira, J., Vale, G., Paiva, T., and Figueiredo, E. A review-based

comparative study of bad smell detection tools. In 20th International Conference on

Evaluation and Assessment in Software Engineering (EASE), pages 1–12, 2016.

Ferreira, F. and Valente, M. T. Detecting Code Smells in React-based Web Apps. Infor-

mation and Software Technology, 155:1–35, 2023.

Bibliography 108

Ferreira, F., Silva, L. L., and Valente, M. T. Turnover in Open-Source Projects: The Case

of Core Developers. In 34th Brazilian Symposium on Software Engineering (SBES),

pages 447–456, 2020.

Ferreira, F., Silva, L. L., and Valente, M. T. Software engineering meets deep learning: a

mapping study. In 36th Annual ACM Symposium on Applied Computing (SAC), pages

1542–1549, 2021.

Ferreira, F., Borges, H. S., and Valente, M. T. On the (Un-) Adoption of JavaScript

Front-end frameworks . Software: Practice and Experience, 52(4):947–966, 2022.

Fontana, F. A., Ferme, V., Zanoni, M., and Yamashita, A. Automatic metric thresholds

derivation for code smell detection. In 6th International Workshop on Emerging Trends

in Software Metrics (WETSoM, pages 44–53, 2015.

Fowler, M. and Beck, K. Refactoring: improving the design of existing code. Addison-

Wesley Professional, 1999.

Fowler, M. and Beck, K. Refactoring: improving the design of existing code. Addison-

Wesley Professional, second edition, 2018.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1994.

Garousi, V., Felderer, M., and Mäntylä, M. V. The need for multivocal literature re-

views in software engineering: complementing systematic literature reviews with grey

literature. In 20th International Conference on Evaluation and Assessment in Software

Engineering (EASE), pages 1–6, 2016.

Garousi, V., Felderer, M., and Mäntylä, M. V. Guidelines for including grey literature

and conducting multivocal literature reviews in software engineering. Information and

Software Technology, 106(1):101–121, 2019.

Geneves, P., Layäıda, N., and Quint, V. On the analysis of cascading style sheets. In 21st

International Conference on World Wide Web (WWW), pages 809–818, 2012.

Gizas, A., Christodoulou, S., and Papatheodorou, T. Comparative evaluation of javascript

frameworks. In 21st International Conference on World Wide Web, pages 513–514,

2012.

Graziotin, D. and Abrahamsson, P. Making Sense Out of a Jungle of JavaScript Frame-

works. In Product-Focused Software Process Improvement, pages 334–337, 2013.

Harold, E. R. Refactoring html: improving the design of existing Web applications.

Addison-Wesley Professional, 1 edition, 2012.

Bibliography 109

Hora, A. Googling for software development: What developers search for and what they

find. In 18th IEEE/ACM International Conference on Mining Software Repositories

(MSR), pages 1–12, 2021.

Hora, A. and Robbes, R. Characteristics of method extractions in java: A large scale

empirical study. Empirical Software Engineering, 25:1798–1833, 2020.

Joblin, M., Apel, S., Hunsen, C., and Mauerer, W. Classifying developers into core and

peripheral: An empirical study on count and network metrics. In 39th International

Conference on Software Engineering (ICSE), pages 164–174, 2017.

Johannes, D., Khomh, F., and Antoniol, G. A large-scale empirical study of code smells

in javascript projects. Software Quality Journal, 27(3):1271–1314, 2019.

Kamei, F., Wiese, I., Lima, C., Polato, I., Nepomuceno, V., Ferreira, W., Ribeiro, M.,

Pena, C., Cartaxo, B., Pinto, G., et al. Grey literature in software engineering: A

critical review. Information and Software Technology, 1(1):1–26, 2021.

Kim, M., Zimmermann, T., and Nagappan, N. An empirical study of refactoring chal-

lenges and benefits at microsoft. IEEE Transactions on Software Engineering, 40(7):

633–649, 2014.

Krasner, G. E. and Pope, S. T. A cookbook for using the model-view-controller user

interface paradigm in smalltalk-80, ch. 31 (3). Journal of Object-Oriented Programming,

1(3):26–49, 1988.

Ksontini, E., Kessentini, M., do N. Ferreira, T., and Hassan, F. Refactorings and tech-

nical debt in docker projects: An empirical study. In 36th IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages 781–791, 2021.

Lacerda, G., Petrillo, F., Pimenta, M., and Guéhéneuc, Y. G. Code smells and refactoring:

A tertiary systematic review of challenges and observations. Journal of Systems and

Software, 167:110610, 2020.

Lanza, M. and Marinescu, R. Object-oriented metrics in practice: using software metrics

to characterize, evaluate, and improve the design of object-oriented systems. Springer

Science & Business Media, 2007.

Liu, H., Jin, J., Xu, Z., Bu, Y., Zou, Y., and Zhang, L. Deep learning based code smell

detection. IEEE Transactions on software Engineering, pages 1–28, 2019.

Lucca, G. A. D., Penta, M. D., and Fasolino, A. R. An approach to identify duplicated

web pages. In 26th Annual International Computer Software and Applications, pages

481–486. IEEE, 2002.

Bibliography 110

Lucca, G. A. D., Penta, M. D., Fasolino, A. R., and Granato, P. Clone analysis in the

web era: An approach to identify cloned web pages. In Seventh Workshop on Empirical

Studies of Software Maintenance, volume 107, 2001.

Lucia, A. D., Francese, R., Scanniello, G., and Tortora, G. Understanding cloned pat-

terns in web applications. In 13th International Workshop on Program Comprehension

(IWPC), pages 333–336. IEEE, 2005.

Mariano, C. Benchmarking JavaScript Frameworks. Master’s thesis, Technological Uni-

versity Dublin, 2017.

Martin, R. C., Grenning, J., and Brown, S. Clean architecture: a craftsman’s guide to

software structure and design. Prentice Hall, 2018.

Mazinanian, D., Tsantalis, N., and Mesbah, A. Discovering refactoring opportunities in

cascading style sheets. In 22nd ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering (FSE), pages 496–506, 2014.

McCabe, T. J. A complexity measure. IEEE Transactions on software Engineering, 1(4):

308–320, 1976.

Mesbah, A. and Mirshokraie, S. Automated analysis of css rules to support style mainte-

nance. In 34th International Conference on Software Engineering (ICSE), pages 408–

418, 2012.

Mikowski, M. and Powell, J. Single page Web applications: JavaScript end-to-end. Man-

ning Publications Co., 2013.

Moha, N., Guéhéneuc, Y.-G., Duchien, L., and Le Meur, A.-F. Decor: A method for the

specification and detection of code and design smells. IEEE Transactions on Software

Engineering, 36(1):20–36, 2009.

Montandon, J. E., Politowski, C., Silva, L. L., Valente, M. T., Petrillo, F., and Guéhéneuc,

Y.-G. What skills do IT companies look for in new developers? a study with Stack

Overflow Jobs. Information and Software Technology, 1:1–6, 2020.

Mori, A., Vale, G., Viggiato, M., Oliveira, J., Figueiredo, E., Cirilo, E., Jamshidi, P.,

and Kastner, C. Evaluating domain-specific metric thresholds: an empirical study. In

Proceedings of the 2018 International Conference on Technical Debt, pages 41–50, 2018.

Murphy-Hill, E., Parnin, C., and Black, A. P. How we refactor, and how we know it.

IEEE Transactions on Software Engineering, 38(1):5–18, 2011.

Nakajima, N., Matsumoto, S., and Kusumoto, S. Jact: A playground tool for compar-

ison of JavaScript frameworks. In 26th Asia-Pacific Software Engineering Conference

(APSEC), pages 474–481, 2019.

Bibliography 111

Nederlof, A., Mesbah, A., and van Deursen, A. Software engineering for the web: the

state of the practice. In 36th International Conference on Software Engineering (ICSE),

pages 4–13, 2014.

Nguyen, H. V., Nguyen, H. A., Nguyen, T. T., Nguyen, A. T., and Nguyen, T. N. De-

tection of embedded code smells in dynamic web applications. In 27th IEEE/ACM

International Conference on Automated Software Engineering (ASE), pages 282–285,

2012.

Oliveira, P., Valente, M. T., and Lima, F. Extracting relative thresholds for source code

metrics. In IEEE Conference on Software Maintenance, Reengineering and Reverse

Engineering (CSMR-WCRE), pages 254–263, 2014.

Ousterhout, J. A Philosophy of Software Design. Yaknyam Press, 2018.

Paiva, T., Damasceno, A., Figueiredo, E., and Sant’Anna, C. On the evaluation of code

smells and detection tools. Journal of Software Engineering Research and Development,

5(1):1–28, 2017.

Palomba, F., Bavota, G., Penta, M. D., Oliveto, R., Lucia, A. D., and Poshyvanyk, D. De-

tecting bad smells in source code using change history information. In 28th IEEE/ACM

International Conference on Automated Software Engineering (ASE), pages 268–278,

2013.

Pano, A., Graziotin, D., and Abrahamsson, P. Factors and actors leading to the adoption

of a JavaScript framework. Empirical Software Engineering, 23(6):3503–3534, 2018.

Pantiuchina, J., Lanza, M., and Bavota, G. Improving code: The (mis) perception of

quality metrics. In 34th IEEE International Conference on Software Maintenance and

Evolution (ICSME), pages 80–91, 2018.

Peruma, A., Newman, C. D., Mkaouer, M. W., Ouni, A., and Palomba, F. An exploratory

study on the refactoring of unit test files in Android applications. In 42nd International

Conference on Software Engineering Workshops, pages 350–357, 2020.

Polančič, G., Heričko, M., and Pavlič, L. Developers’ perceptions of object-oriented frame-

works – An investigation into the impact of technological and individual characteristics.

Computers in Human Behavior, 27(2):730–740, 2011.

Rajapakse, D. C. and Jarzabek, S. An investigation of cloning in web applications. In

International Conference on Web Engineering, pages 252–262. Springer, 2005.

Ramos, M., Valente, M. T., and Terra, R. AngularJS performance: A survey study. IEEE

Software, 35(2):72–79, 2018.

Bibliography 112

Robles, G., Gonzalez-Barahona, J. M., and Herraiz, I. Evolution of the core team of de-

velopers in libre software projects. In 6th International Working Conference on Mining

Software Repositories (MSR), pages 167–170, 2009.

Saboury, A., Musavi, P., Khomh, F., and Antoniol, G. An empirical study of code smells

in javascript projects. In 24th international conference on software analysis, evolution

and reengineering (SANER), pages 294–305. IEEE, 2017.

Sharma, T. and Spinellis, D. A survey on software smells. Journal of Systems and

Software, 138:158–173, 2018.

Sharma, T., Suryanarayana, G., and Samarthyam, G. Challenges to and solutions for

refactoring adoption: An industrial perspective. IEEE Software, 32(6):44–51, 2015.

Silva, D. and Valente, M. T. RefDiff: Detecting refactorings in version histories. In 14th

International Conference on Mining Software Repositories (MSR), pages 1–11, 2017.

Silva, D., Tsantalis, N., and Valente, M. T. Why we refactor? confessions of GitHub

contributors. In 24th ACM SIGSOFT International Symposium on Foundations of

Software Engineering (FSE), pages 858–870, 2016.

Silva, D., da Silva, J. P., Santos, G., Terra, R., and Valente, M. T. RefDiff 2.0: A multi-

language refactoring detection tool. IEEE Transactions on Software Engineering, 1(1):

1–17, 2020.

Silva, L. H., Valente, M. T., Bergel, A., Anquetil, N., and Etien, A. Identifying classes in

legacy JavaScript code. Journal of Software: Evolution and Process, 29(8):1–20, 2017.

Sobrinho, E. V. P., Lucia, A. D., and de Almeida Maia, M. A systematic literature review

on bad smells–5 w’s: which, when, what, who, where. IEEE Transactions on Software

Engineering, 47(1):17–66, 2018.

Synytskyy, N., Cordy, J. R., and Dean, T. Resolution of static clones in dynamic web

pages. In Fifth IEEE International Workshop on Web Site Evolution, 2003. Theme:

Architecture. Proceedings., pages 49–56. IEEE, 2003.

Tang, Y., Khatchadourian, R., Bagherzadeh, M., Singh, R., Stewart, A., and Raja, A.

An empirical study of refactorings and technical debt in machine learning systems. In

43rd International Conference on Software Engineering (ICSE), pages 238–250. IEEE,

2021.

Tsantalis, N. and Chatzigeorgiou, A. Identification of move method refactoring opportu-

nities. IEEE Transactions on Software Engineering, 35(3):347–367, 2009.

Bibliography 113

Tsantalis, N., Guana, V., Stroulia, E., and Hindle, A. A multidimensional empirical

study on refactoring activity. In Conference of the Centre for Advanced Studies on

Collaborative Research (CASCON), pages 132–146, 2013.

Tsantalis, N., Mansouri, M., Eshkevari, L. M., Mazinanian, D., and Dig, D. Accurate

and efficient refactoring detection in commit history. In 40th International Conference

on Software Engineering (ICSE), pages 483–494, 2018.

Vale, G., Fernandes, E., and Figueiredo, E. On the proposal and evaluation of a

benchmark-based threshold derivation method. Software Quality Journal, 27(1):275–

306, 2019.

Vegi, L. and Valente, M. T. Towards a catalog of refactorings for Elixir. In 39th In-

ternational Conference on Software Maintenance and Evolution (ICSME), pages 1–5,

2023.

Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D. User acceptance of infor-

mation technology: Toward a unified view. MIS Quarterly, 27(3):425–478, 2003.

Wittern, E., Suter, P., and Rajagopalan, S. A look at the dynamics of the JavaScript

package ecosystem. In 13th International Conference on Mining Software Repositories

(MSR), pages 351–361, 2016.

Wohlin, C. Experimentation in software engineering. Springer Science & Business Media,

2012.

Xavier, L., Ferreira, F., Brito, R., and Valente, M. T. Beyond the Code: Mining Self-

Admitted Technical Debt in Issue Tracker Systems. In 17th International Conference

on Mining Software Repositories (MSR), pages 137–146, 2020.

Xavier, L., Montandon, J. E., Ferreira, F., Brito, R., and Valente, M. T. On the Docu-

mentation of Self-Admitted Technical Debt in Issues . Empirical Software Engineering,

27(7):1–34, 2022.

Zerouali, A., Mens, T., Robles, G., and Gonzalez-Barahona, J. M. On the diversity of

software package popularity metrics: An empirical study of npm. In 26th International

Conference on Software Analysis, Evolution and Reengineering (SANER), pages 589–

593, 2019.

Zhang, H., Zhou, X., Huang, X., Huang, H., and Babar, M. A. An evidence-based inquiry

into the use of grey literature in software engineering. In 42nd International Conference

on Software Engineering (ICSE), pages 1422–1434, 2020.

	Introduction
	Problem and Motivation
	Objectives and Contributions
	Publications
	Thesis Outline

	Background and Related Work
	JavaScript Front-end Frameworks
	Related Work
	Final Remarks

	Adoption of JavaScript Front-end Frameworks
	Dataset
	Survey Design
	Survey Results
	Implications
	Threats to Validity
	Final Remarks

	Detecting Code Smells in React-based Web Apps
	Methodology
	React Code Smells
	ReactSniffer: Code Smell Detection Tool
	Field Study
	Historical Analysis
	Validation with Developers
	Discussion
	Threats to Validity
	Final Remarks

	Refactoring React-based Web Apps
	Study Design
	A Catalog of Refactorings for React-Based Web Apps
	Discussion
	Threats to Validity
	Final Remarks

	Conclusion
	Thesis Recapitulation
	Contributions
	Future Work

	Bibliography

