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Resumo
Na teoria analítica dos números, a discrepância de uma função 𝑓 : ℕ → ℂ é definida

como:

sup
𝑛,𝑑

����� 𝑛∑︁
𝑗=1

𝑓 ( 𝑗𝑑)
����� .

O "Problema da Discrepância de Erdős" pergunta se a discrepância de uma função
𝑓 : ℕ → {−1, 1} é infinita. Tao mostrou em [18] que esse é, de fato, o caso. Consequente-
mente, toda função totalmente multiplicativa que toma valores em {−1, 1} possui somas
parciais ilimitadas. Isso nos leva a uma pergunta natural: o que acontece se considerarmos
funções multiplicativas ao invés de totalmente multiplicativas? Klurman [11] forneceu
uma classificação completa de funções multiplicativas com somas parciais limitadas, um
resultado conhecido como a conjectura de Erdős–Coons–Tao.

Outra questão relacionada é o estudo do que acontece se permitirmos o codomínio ser
ℂ ao invés de {−1, 1}. Nesse caso, não se conhece nenhuma classificação completa, porém
alguns resultados foram estudados por Aymone [1].

O principal objetivo desta dissertação é entender os passos chave da demonstração da
conjectura de Erdős-Coons-Tao e também investigar questões relacionadas no trabalho de
Aymone [1], quando o codomínio é ℂ. O texto foi escrito com a intenção de ser o mais
autocontido possível, portanto, todas as ferramentas necessárias são construídas do zero,
tornando-o acessível a qualquer pessoa com conhecimento básico de matemática superior.

Palavras-Chave: Erdős-Coons-Tao, somas parciais, funções multiplicativas, conjunto
limitado, teoria analítica dos números.



Abstract
In number theory the discrepancy of a function 𝑓 : ℕ → ℂ is defined as:

sup
𝑛,𝑑

����� 𝑛∑︁
𝑗=1

𝑓 ( 𝑗𝑑)
����� .

The Erdős Discrepancy Problem asks whether the discrepancy of a function 𝑓 : ℕ → {−1, 1}
is infinite. Tao showed in [18] that this is indeed the case. Consequently, every totally
multiplicative function that takes values in {−1, 1} has unbounded partial sums. This leads
to a natural question: What happens when we consider multiplicative functions instead?
Klurman [11] provided a complete classification of multiplicative functions with bounded
partial sums, a statement known as the Erdős–Coons–Tao conjecture.

Another important related question is the study of what happens when we allow the
codomain to be ℂ instead of {−1, 1}. In this case, there is no complete classification, but
some results in this direction were studied by Aymone [1].

The main goal of this dissertation is to understand the key steps in the proof of the Erdős-
Coons-Tao conjecture and also investigate some related questions in Aymone’s work [1]
when the codomain is ℂ. The text is meant to be self-contained so we build all the necessary
tools to understand the main results from the ground up, making this text accessible to
anyone with basic undergraduate mathematics knowledge.

Keywords: Erdős-Coons-Tao; partial sums; multiplicative functions; boundedness;
analytic number theory.
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1 Introduction
In modern mathematics, analytic number theory is an area that studies what we call

arithmetic functions, i.e., functions 𝑓 : ℕ → ℂ. The codomain being the complex numbers
allows us to use many tools from complex analysis to approach our problems. Many
problems in this field concern prime numbers, such as the famous Prime Number Theorem,
which describes the asymptotic distribution of prime numbers. Another well-known problem
is the Riemann Hypothesis, which remains an open problem and concerns the zeros of the
zeta function. If proven true, it would imply many results regarding the distribution of
prime numbers. The relationship between prime numbers and arithmetic functions arises
from a special type of arithmetic function called multiplicative functions, which we are going
to define shortly. Essentially, the idea is to utilize the Fundamental Theorem of Arithmetic
(see Theorem 2.1) to construct the function based on its values for powers of primes.

There are two important classes of arithmetic functions that we are going to use in this
work: multiplicative and totally multiplicative functions. We say that an arithmetic function
𝑓 is multiplicative if 𝑓 (1) = 1 and 𝑓 (𝑎𝑏) = 𝑓 (𝑎) 𝑓 (𝑏) for all 𝑎, 𝑏 such that (𝑎, 𝑏) = 1, where
(𝑎, 𝑏) denotes the greatest common divisor of 𝑎 and 𝑏. We say that an arithmetic function
𝑓 is totally multiplicative if 𝑓 (1) = 1 and 𝑓 (𝑎𝑏) = 𝑓 (𝑎) 𝑓 (𝑏) for all 𝑎, 𝑏 ∈ ℕ. An important
property of multiplicative functions is that their values are completely determined by their
values at prime powers. Now let us define some important multiplicative functions in
number theory.

Definition 1.1. The Euler totient function 𝜙(𝑛) is defined as the number of positive integers
not greater than 𝑛 that are coprime with 𝑛, i.e:

𝜙(𝑛) = #{𝑘 ∈ ℕ, 𝑘 ≤ 𝑛 | (𝑛, 𝑘) = 1}

We say that 𝑛 is square-free if the only square number that divides 𝑛 is 1.

Definition 1.2. The Möbius function `(𝑛) is defined as `(𝑛) = (−1)𝜔(𝑛) if 𝑛 is square-free
and `(𝑛) = 0 otherwise, where 𝜔(𝑛) denotes the number of prime divisors of 𝑛.

Remark 1.3. Since multiplicative functions are completely determined by their values at
prime powers, we can also define 𝜙(𝑛) as the multiplicative function such that 𝜙(𝑝𝑘) =
𝑝𝑘 − 𝑝𝑘−1 and `(𝑛) as the multiplicative function such that `(𝑝) = −1 and `(𝑝𝑘) = 0 for
𝑘 > 1.

Definition 1.4. The discrepancy of an arithmetic function 𝑓 is defined as:

sup
𝑛,𝑑

����� 𝑛∑︁
𝑗=1

𝑓 ( 𝑗𝑑)
�����
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The Erdős Discrepancy Problem was proposed by the famous mathematician Paul Erdős
around 1930. In his 1957 paper [7], Erdős listed many unsolved problems, including his
discrepancy problem. The problem aims to show that an arithmetic function that takes
values on the set {−1, 1} must have infinite discrepancy. For decades, the problem remained
open with little progress. Until, in 2010, the Polymath5 project[15] was initiated as an
online collaboration of mathematicians who shared their insights on the problem. Although
the project did not prove the discrepancy problem, it made significant progress towards its
solution. Eventually, in 2015, Terence Tao [18] found a solution, which was a much more
general version of the problem where the function could take values on the unit sphere of
an arbitrary Hilbert space. Therefore, we have the following results:

Theorem 1.5. (General form of Erdős Discrepancy Problem) Let 𝐻 be a real or complex
Hilbert space, and let 𝑓 : ℕ → 𝐻 be a function such that | | 𝑓 (𝑛) | |𝐻 = 1 for all 𝑛 ∈ ℕ.
Then the discrepancy of 𝑓 is infinite. Here we used the following more general notion of
discrepancy:

sup
𝑛,𝑑

 𝑛∑︁
𝑗=1

𝑓 ( 𝑗𝑑)

𝐻

Corollary 1.6. (Original formulation of Erdős Discrepancy Problem) Let 𝑓 : ℕ → {−1, 1} be
an arithmetic function. Then 𝑓 has infinite discrepancy.

Let 𝕌 denote the set of complex numbers with absolute value 1. An important conse-
quence of Corollary 1.5 is the following theorem:

Theorem 1.7. Let 𝑓 : ℕ → 𝕌 be a totally multiplicative function. Then 𝑓 has unbounded
partial sums.

Proof. We have
𝑛∑︁
𝑗=1

𝑓 ( 𝑗𝑑) = 𝑓 (𝑑)
𝑛∑︁
𝑗=1

𝑓 ( 𝑗).

Therefore

sup
𝑛,𝑑

����� 𝑛∑︁
𝑗=1

𝑓 ( 𝑗𝑑)
����� = sup

𝑛

����� 𝑛∑︁
𝑗=1

𝑓 ( 𝑗)
����� .

□

The next two examples show what might happen if we weaken the hypothesis of the
previous theorem.

Example 1.8. A Dirichlet character 𝜒 modulo 𝑞 is a totally multiplicative function, 𝑞-
periodic such that 𝜒(𝑛) = 0 if and only if (𝑞, 𝑛) > 1. We say that 𝜒 is a principal Dirichlet
character if (𝑞, 𝑛) = 1 implies 𝜒(𝑛) = 1. A non-principal Dirichlet character is a classical
example of a totally multiplicative function with bounded partial sums. Using that 𝜒 has
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bounded partial sums we can go a step further and state that it must be bounded by 𝑞 on
every homogeneous arithmetic progression and therefore has bounded discrepancy:����� 𝑛∑︁

𝑗=1
𝜒( 𝑗𝑑)

����� =
�����𝜒(𝑑) 𝑛∑︁

𝑗=1
𝜒( 𝑗)

����� ≤ 𝑞

Of course this does not violate the previous theorem as 𝜒 vanishes when (𝑛, 𝑞) ≠ 1. For
readers interested in delving deeper into properties of Dirichlet characters, I recommend
referring to analytical number theory books such as Montgomery’s [14].

Remark 1.9. The constant function, 𝑓 (𝑥) = 0, is also an example of a completely multiplica-
tive function with bounded partial sums. What makes the Dirichlet character special is that
it is a non-trivial one. In the sense that it is zero for only finitely many primes. Therefore, in
some sense, we can say that it is a near counter-example to the Erdős Discrepancy Problem.
In 2018, Klurman and Mangerel [13] proved Chudakov’s conjecture, which states that if 𝑓
is a completely multiplicative function that is zero for only finitely many primes and whose
image is a finite set, then 𝑓 is a Dirichlet character.

Example 1.10. (Coons)[6] We can define a multiplicative function 𝜒2 : ℕ → {−1, 1} by
𝜒2(𝑝𝑘) = (−1) 𝑝+1, where 𝑝 is prime and 𝑘 ∈ ℕ. So 𝜒2(𝑛) = 1 if 𝑛 is odd an 𝜒2(𝑛) = −1 if
𝑛 is even. We have that the partial sums of 𝜒2 are bounded by 1, so we conclude that being
totally multiplicative instead of only multiplicative is also important on Theorem 1.7.

Example 1.11. (Borwein-Choi-Coons)[4] Let 𝜒3 be the non principal Dirichlet character
modulo 3, i.e, 𝜒(𝑛) = 0 if 𝑛 = 0 mod 3, 𝜒3(𝑛) = 1 if 𝑛 = 1 mod 3 and 𝜒3(𝑛) = −1 if 𝑛 = 2
mod 3. We define an slightly different totally multiplicative function 𝑓 by: 𝑓 (𝑝) = 1 if 𝑝 = 3
and 𝑓 (𝑝) = 𝜒3(𝑝) otherwise. Now let us investigate the partial sums of this function 𝑓 for
values of the form 𝑛 = 1 + 3 + 32 + . . . + 3𝑘. Separating the sum according to the largest
power of 3 that divides the number we have:

𝑛∑︁
𝑚=1

𝑓 (𝑚) =
𝑘∑︁
𝑖=0

∑︁
1≤𝑚≤𝑛/3𝑖

𝑓 (3𝑖𝑚).
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Using that 𝑓 is completely multiplicative we have:

=
𝑘∑︁
𝑖=0

∑︁
1≤𝑚≤𝑛/3𝑖

𝑓 (3𝑖) 𝑓 (𝑚)

=
𝑘∑︁
𝑖=0

𝑓 (3𝑖)
∑︁

1≤𝑚≤𝑛/3𝑖
𝜒3(𝑚)

=
𝑘∑︁
𝑖=0

∑︁
1≤𝑚≤𝑛/3𝑖

𝜒3(𝑚).

By definition 𝑛/3𝑖 mod 3 = 1, so
∑

1≤𝑚≤𝑛/3𝑖 𝜒3(𝑚) = 1, as the partial sums of 𝜒3 vanishes
at multiplies of 3. Therefore the value of the partial sum is 𝑘 + 1, and we can conclude that
log 𝑛 ≪ ∑

𝑘≤𝑛 𝑓 (𝑘). So the discrepancy of this function grows logarithmically.

We know, by the Erdős Discrepancy Problem that the partial sums must diverge, but we
do not know how fast. It is believed that the partial sums of a totally multiplicative function
𝑓 : ℕ → {−1, 1} grows at least logarithmically like in the previous example.

Given Theorem 1.7 and Examples 1.8 and 1.10 a natural question arises: What are
sufficient conditions to guarantee that 𝑓 has bounded or unbounded partial sums when
𝑓 is only multiplicative? Before proceeding in stating results in this direction we must
introduce an important tool that will be used along this dissertation that is the notion of
pretentiousness introduced by Granville and Soundararajan [8]:

Definition 1.12. Let 𝑓 and 𝑔 be two multiplicative functions bounded by 1. We define the
distance between 𝑓 and 𝑔 as:

𝔻( 𝑓 , 𝑔, 𝑥) =
(∑︁
𝑝≤𝑥

1 − Re( 𝑓 (𝑝)𝑔(𝑝))
𝑝

)1/2
where 𝑝 is prime. It is worth noting that 𝔻 is not a distance in the classical sense, as we may
have 𝔻( 𝑓 , 𝑔) = 0, even though 𝑓 ≠ 𝑔. What makes this definition important and motivates
calling it a distance is that, for a fixed value of 𝑥, 𝔻 satisfies the triangle inequality. If 𝑓
and 𝑔 satisfy 𝔻( 𝑓 , 𝑔,∞) < ∞, we say that 𝑓 pretends to be 𝑔 or that 𝑓 is 𝑔-pretentious.

In the same paper where he solved the discrepancy problem [18], Tao shows an important
result towards the classification of multiplicative functions with bounded partial sums,
namely:

Theorem 1.13. Let 𝑓 : ℕ → {−1, 1} be a multiplicative function with bounded partial
sums. Then 𝑓 (2 𝑗) = −1 for all 𝑗 ≥ 1 and 𝑓 pretends to be 1, i.e. 𝑓 pretends to be the
constant function 𝑓 (𝑥) = 1.
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Some time later, Klurman [11] provided a complete classification of multiplicative
functions with bounded partial sums.

Theorem 1.14. (Erdős–Coons–Tao) Let 𝑓 : ℕ → {−1, 1} be a multiplicative function.
Then 𝑓 has bounded partial sums if and only if there exists𝑚 ≥ 1 such that 𝑓 (𝑛) = 𝑓 (𝑛+𝑚)
for all 𝑛 ∈ ℕ and

∑𝑚
𝑛=1 𝑓 (𝑛) = 0.

In the previous case, we were interested in multiplicative functions 𝑓 : ℕ → {−1, 1}. A
natural generalization is to consider multiplicative functions that take values on larger sets,
such as the complex numbers. However, a complete classification of when a multiplicative
function has bounded partial sums in this more general setting is still unknown. Nonetheless,
researchers have made progress in studying specific cases.

For instance, Aymone [1] gave sufficient conditions for a multiplicative function to have
bounded partial sums. Results in the other direction have also been established, for example
Aymone [2] and Klurman [12] have shown that totally multiplicative functions 𝑓 supported
on square-free integers, where 𝑓 (𝑝) = ±1 for all primes 𝑝, must have unbounded partial
sums. Aymone [1] demonstrated that if 𝑓1 and 𝑓2 are periodic multiplicative functions with
bounded partial sums. Then 𝑓 = 𝑓1 ∗ 𝑓2 has unbounded partial sums, where * stands for
the Dirichlet product of those functions (See Definition 2.28).

These findings highlight the complexities involved in determining the behavior of mul-
tiplicative functions with larger codomains, and further research is needed to obtain a
complete understanding of when bounded or unbounded partial sums arise in such cases.

Another interesting area of research is to determine the rate at which the partial sums
grow when a function has unbounded partial sums. In this regard, Aymone [1] has
made some contributions showing big omega and big O bounds (Definitions 2.3, 2.5) for
multiplicative functions of the form 𝑓 = 𝑓1 ∗ 𝑓2 where 𝑓1 and 𝑓2 are periodic multiplicative
functions with bounded partial sums. In a later paper [3] Aymone, Maiti, Ramaré and
Srivastav improved the omega bound.
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2 Preliminaries

2.1 Conventions and Basic Notation

Throughout all this dissertation prime numbers are going to be extensively used, so it is
convenient to reserve 𝑝 and 𝑝𝑖 represent prime numbers, unless explicitly mentioned the
opposite. We use the notation 𝑝 | 𝑎 when 𝑝 divides 𝑎 and 𝑝 ∤ 𝑎 otherwise. Also we denote
by 𝑝𝑘 | | 𝑎 if 𝑝𝑘 | 𝑎 and 𝑝𝑘+1 ∤ 𝑎, i.e 𝑘 is the largest number such that 𝑝𝑘 divides 𝑎.

We use the letter 𝑠 to denote a complex number and 𝜎 and 𝑡 its real and imaginary
parts, i.e 𝑠 = 𝜎 + 𝑖𝑡. We use ⌊.⌋ , ⌈.⌉ , {.} , ∥.∥ to denote the floor, ceiling, fractional part and
distance to nearest integers functions respectively.

2.2 Elementary Results

Our first result is so elementary that we make use all the time without explicitly mentioning.
It is this result that guarantees that multiplicative functions are well defined.

Theorem 2.1. (Fundamental Theorem of Arithmetic) Every integer 𝑛 > 1 has an unique
factorization as a product of primes, apart from the order of factors.

Proof. We use induction on 𝑛. The result holds for 𝑛 = 2 as it can only be written in one way.
Suppose the result is valid for all natural number less than 𝑛. We are going to show that the
result holds for 𝑛. If 𝑛 is prime its factorization is just the own number. If 𝑛 is composite,
then 𝑛 is divisible by a prime number 𝑝 < 𝑛, but we know by the inductive hypothesis that
𝑛/𝑝 can be written as a product of primes and so can 𝑛 = 𝑝 · 𝑛

𝑝
. It remains to show that such

factorization is unique, let 𝑛 = 𝑝1𝑝2 . . . 𝑝𝑘 = 𝑞1𝑞2 . . . 𝑞𝑙 be two ways to write 𝑛 as a product
of primes, as 𝑝1 | 𝑛 it must divide some of it’s factors denote this factor by 𝑞𝑛0 , so 𝑝1 | 𝑞𝑛0
which implies that 𝑝1 = 𝑞𝑛0, for convenience let us relabel 𝑞𝑛0 as 𝑞1. Note that 𝑛/𝑝1 < 𝑛

and that 𝑛/𝑝1 = 𝑝2 . . . 𝑝𝑘 = 𝑞2 . . . 𝑞𝑙, so applying the induction hypothesis we conclude
that both of these ways of writing 𝑛/𝑝1 have the same prime factors and so multiplying
back by 𝑝1 we conclude that both factorizations of 𝑛 have the same prime factors. □

Theorem 2.2. (Division Algorithm) Let 𝑛 and 𝑘 be integers with 𝑘 ≠ 0. Then there exists
an unique pair of integers 𝑞, 𝑟, with 0 ≤ 𝑟 < 𝑘 such that 𝑛 = 𝑘𝑞 + 𝑟.

Proof. Let 𝑆 = {𝑞 ∈ ℤ : 𝑛 − 𝑘𝑞 ≥ 0}, by the well ordering principle there exists an element
𝑞0 ∈ 𝑆 such that 𝑛 − 𝑘𝑞0 ≤ 𝑛 − 𝑘𝑞 for all 𝑞 ∈ 𝑆, define 𝑟 = 𝑛 − 𝑘𝑞0. We need to show that
0 ≤ 𝑟 < 𝑘. The first inequality follows straight from the fact that 𝑞0 ∈ 𝑆. For the second
inequality, suppose that 𝑟 ≥ 𝑘. Then we have 𝑛 − 𝑘𝑞0 = 𝑟 ≥ 𝑘 so 𝑛 − 𝑘(𝑞0 + 1) ≥ 0, this
implies that 𝑞0 + 1 ∈ 𝑆 but this contradicts the minimality of 𝑛 − 𝑘𝑞.
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For the uniqueness suppose that 𝑛 = 𝑘𝑞1 + 𝑟1 = 𝑘𝑞2 + 𝑟2, where 0 ≤ 𝑟1, 𝑟2 < 𝑘. Then
𝑘(𝑞1 − 𝑞2) = 𝑟2 − 𝑟1 and therefore 𝑘 | (𝑟2 − 𝑟1). But this only happens if 𝑟1 = 𝑟2 as
|𝑟2 − 𝑟1 | ∈ [0, 𝑘). Defining 𝑞1 = 𝑛−𝑟1

𝑘
and 𝑞2 = 𝑛−𝑟2

𝑘
we conclude also that 𝑞1 = 𝑞2. □

2.3 Asymptotic Notation

In order to study the behaviour of functions in the limit we make extensive use of asymptotic
notation, which we now define:

Definition 2.3. Let 𝑓 and 𝑔 be functions, with 𝑔 being a positive function. We say that " 𝑓
is big O of 𝑔" and denote it by 𝑓 (𝑥) = 𝑂(𝑔(𝑥)) if there exist constants 𝐶 and 𝑥0 such that
for all 𝑥 > 𝑥0, it holds that | 𝑓 (𝑥) | < 𝐶𝑔(𝑥).

Definition 2.4. Let 𝑓 and 𝑔 be functions, with 𝑔 being a positive function. We say that " 𝑓
is little o of 𝑔" and denote it by 𝑓 (𝑥) = 𝑜(𝑔(𝑥)) if for all 𝜖 > 0 there exists an constant 𝑥0
such that for all 𝑥 > 𝑥0, it holds that | 𝑓 (𝑥) | < 𝜖𝑔(𝑥).

Definition 2.5. Let 𝑓 and 𝑔 be functions, with 𝑔 being a positive function. We say that " 𝑓
is big omega of 𝑔" and denote it by 𝑓 (𝑥) = Ω(𝑔(𝑥)) as 𝑥 → ∞ if 𝑓 (𝑥) ≠ 𝑜(𝑔(𝑥)).

Remark 2.6. The above notation for the big Oh is know as Landau’s notation, we will also
make use of Vinogradov’s notation denoted by the symbol ≪: 𝑓 (𝑥) = 𝑂(𝑔(𝑥)) ⇔ 𝑓 (𝑥) ≪
𝑔(𝑥).

Remark 2.7. To indicate that the implicit constant used on the definition might depend on
some parameter 𝛿 we use 𝑂𝛿 and ≪𝛿.

Remark 2.8. We might be interested in study the asymptotic as f approaches some number
𝑎 instead of infinity, the change on the definitions is that we change the existence of the 𝑥0
by the existence of some neighborhood of 𝑎. The notation changes by an subscript 𝑥 → 𝑎

or by explicitly saying 𝑂(𝑔(𝑥)) as 𝑥 → 𝑎.

Theorem 2.9. We have the following alternative definitions:

(i) 𝑓 (𝑥) = 𝑂𝑥→𝑎(𝑔(𝑥)) ⇔ lim sup𝑥→𝑎
| 𝑓 (𝑥) |
𝑔(𝑥) < ∞,

(ii) 𝑓 (𝑥) = 𝑜𝑥→𝑎(𝑔(𝑥)) ⇔ lim𝑥→𝑎
| 𝑓 (𝑥) |
𝑔(𝑥) = 0,

(iii) 𝑓 (𝑥) = Ω𝑥→𝑎(𝑔(𝑥)) ⇔ lim sup𝑥→𝑎
| 𝑓 (𝑥) |
𝑔(𝑥) > 0.

Remark 2.10. 𝑓 (𝑥) = 𝑂(1) means that 𝑓 is bounded, and 𝑓 (𝑥) = 𝑜(1) means that not
only 𝑓 is bounded but also lim𝑥→𝑎 𝑓 (𝑥) = 0.

Theorem 2.11. The following properties are satisfied:
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(i) 𝑓 (𝑥) ≪ 𝑔(𝑥) =⇒ 𝑐 · 𝑓 (𝑥) ≪ 𝑔(𝑥), for all 𝑐 > 0;

(ii) 𝑓 (𝑥) ≪ ℎ(𝑥) and 𝑔(𝑥) ≪ ℎ(𝑥). Then 𝑓 (𝑥) + 𝑔(𝑥) ≪ ℎ(𝑥);

(iii) 𝑓 (𝑥) ≪ 𝑔(𝑥) ≪ ℎ(𝑥). Then 𝑓 (𝑥) ≪ ℎ(𝑥).

Proof. By definition, if 𝑓 (𝑥) ≪ 𝑔(𝑥), then there exists 𝐶 such that | 𝑓 (𝑥) | < 𝐶𝑔(𝑥), therefore
𝑐 𝑓 (𝑥) ≪ (𝑐𝐶)𝑔(𝑥), i.e, 𝑐 𝑓 (𝑥) ≪ 𝑔(𝑥).

If 𝑓 (𝑥) ≪ ℎ(𝑥) and 𝑔(𝑥) ≪ ℎ(𝑥), then there exists constants 𝐶1 and 𝐶2 such that 𝑓 (𝑥) <
𝐶1ℎ(𝑥) and 𝑔(𝑥) < 𝐶2ℎ(𝑥), therefore 𝑓 (𝑥) + 𝑔(𝑥) < (𝐶1 +𝐶2)ℎ(𝑥), i.e 𝑓 (𝑥) + 𝑔(𝑥) ≪ ℎ(𝑥).

If 𝑓 (𝑥) ≪ 𝑔(𝑥) ≪ ℎ(𝑥), then there exists constants 𝐶1 and 𝐶2 such that 𝑓 (𝑥) < 𝐶1𝑔(𝑥)
and 𝑔(𝑥) < 𝐶2ℎ(𝑥), therefore 𝑓 (𝑥) < (𝐶1𝐶2)ℎ(𝑥), i.e 𝑓 (𝑥) ≪ ℎ(𝑥). □

Remark 2.12. It is common to write equalities and inequalities using big O and little o like
they were numbers. Beware that we need to be careful as these terms might absorb others,
so the term represented by this notation might change between lines. So expressions like
𝑥 + 𝑂(𝑥2) = 𝑂(𝑥2), makes sense in the sense that 𝑥 was absorbed by the big O term.

Example 2.13. The logarithm function is 𝑂(𝑥𝜖) for every 𝜖 > 0 as:

lim
𝑛→∞

ln 𝑥
𝑥𝜖

= lim
𝑛→∞

1
𝜖𝑥𝜖

= 0. (2.1)

This result shows that the logarithm grows slower than any polynomial function.

Example 2.14. As we will see in Equation 2.5, it is possible to show that ln 𝑥 ≪ ∑𝑥
𝑛=1

1
𝑛
≪

ln 𝑥, so we might say that
∑𝑥
𝑛=1

1
𝑛
and ln 𝑥 are asymptotic equivalent and denote it by∑𝑥

𝑛=1
1
𝑛
≍ ln 𝑥.

2.4 The Riemann Stieltjes Integral

The Riemann Integral is a fundamental tool for every undergraduate student in exact
sciences. With little effort, it is possible to extend the idea of Riemann integration to
that of Riemann-Stieltjes integration, which allows us to apply integration techniques to
summations. This might seem surprising at first, as integration is not typically applied to
functions with a discrete domain when we first learn it.

Definition 2.15. Let 𝑃 = {𝑎 = 𝑥0 < 𝑥1 < · · · < 𝑥𝑛 = 𝑏} be a partition of [𝑎, 𝑏] and let
𝐶 = {𝑐1, · · · , 𝑐𝑛}, where each 𝑐𝑖 ∈ [𝑥𝑖−1, 𝑥𝑖]. For two bounded functions 𝑓 and 𝑔 define:

𝑆( 𝑓 , 𝑔, 𝑃, 𝐶) =
𝑛∑︁
𝑖=1

𝑓 (𝑐𝑖) [𝑔(𝑥𝑖) − 𝑔(𝑥𝑖−1)].
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Define ∥𝑃∥ = max1≤𝑖≤𝑛 𝑥𝑖 − 𝑥𝑖−1. If there exists a constant K such that for each 𝜖 > 0 there
exists 𝛿 > 0 such that

∥𝑃∥ < 𝛿 =⇒ |𝑆( 𝑓 , 𝑔, 𝑃, 𝐶) − 𝐾 | < 𝜖,

then we say that 𝑓 is Riemann-Stieltjes integrable on [𝑎, 𝑏] with respect to 𝑔 and its integral
is 𝐾. Denote this integral by: ∫ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑔(𝑥).

Clearly this definition extends the concept of Riemann integration as we can always take
𝑔(𝑥) = 𝑥.

Definition 2.16. The variation 𝑉 of a function 𝑓 on the interval [𝑎, 𝑏] is defined as:

𝑉 ( 𝑓 , 𝑎, 𝑏) =
∫ 𝑏

𝑎

| 𝑓 (𝑥) |𝑑𝑥.

If 𝑉 ( 𝑓 , 𝑎, 𝑏) exists and is finite, then we say that 𝑓 is of bounded variation.

We are going to enunciate some results, for the proof of these results and more properties
on Riemann-Stieltjes integration we refer the interest reader to Rudin’s book [16].

Theorem 2.17. Let 𝑓 be continuous and 𝑔 of bounded variation on [𝑎, 𝑏]. Then f is
Riemann-Stieltjes integrable on [𝑎, 𝑏] with respect to 𝑔.

Theorem 2.18. The following results holds for the Riemann-Stieltjes integral:

(i) Suppose that both
∫ 𝑏

𝑎
𝑓 𝑑ℎ and

∫ 𝑏

𝑎
𝑔𝑑ℎ exists and let 𝛼, 𝛽 be scalars. Then

∫ 𝑏

𝑎
(𝛼 𝑓 +𝛽𝑔)𝑑ℎ

exists and
∫ 𝑏

𝑎
(𝛼 𝑓 + 𝛽𝑔)𝑑ℎ = 𝛼

∫ 𝑏

𝑎
𝑓 𝑑ℎ + 𝛽

∫ 𝑏

𝑎
𝑔𝑑ℎ;

(ii) Suppose that both
∫ 𝑏

𝑎
𝑓 𝑑𝑔 and

∫ 𝑏

𝑎
𝑓 𝑑ℎ exists and let 𝛼, 𝛽 be scalars. Then

∫ 𝑏

𝑎
𝑓 𝑑(𝛼𝑔+𝛽ℎ)

exists and
∫ 𝑏

𝑎
𝑓 𝑑(𝛼𝑔 + 𝛽ℎ) = 𝛼

∫ 𝑏

𝑎
𝑓 𝑑𝑔 + 𝛽

∫ 𝑏

𝑎
𝑓 𝑑ℎ;

(iii) If
∫ 𝑏

𝑎
𝑓 𝑑𝑔 exists and 𝑐 ∈ [𝑎, 𝑏], then both

∫ 𝑐

𝑎
𝑓 𝑑𝑔 and

∫ 𝑏

𝑐
𝑓 𝑑𝑔 exists and

∫ 𝑐

𝑎
𝑓 𝑑𝑔+

∫ 𝑏

𝑐
𝑓 𝑑𝑔 =∫ 𝑏

𝑎
𝑓 𝑑𝑔;

(iv) If 𝑓1 ≤ 𝑓2 on [𝑎, 𝑏], both 𝑓1, 𝑓2 are Riemann-Stieltjes integrable on [𝑎, 𝑏] and 𝑔 is
non-decreasing. Then

∫ 𝑏

𝑎
𝑓1𝑑𝑔 ≤

∫ 𝑏

𝑎
𝑓2𝑑𝑔;

(v) If 𝑔 is of bounded variation and differentiable on [𝑎, 𝑏] and
∫ 𝑏

𝑎
𝑓 (𝑥)𝑑𝑔(𝑥) exists. Then∫ 𝑏

𝑎
𝑓 (𝑥)𝑑𝑔(𝑥) =

∫ 𝑏

𝑎
𝑓 (𝑥)𝑔′(𝑥)𝑑𝑥.
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Theorem 2.19. (Integration by Parts) Let 𝑓 and 𝑔 be two differentiable functions such that
both

∫ 𝑏

𝑎
𝑓 (𝑥)𝑑𝑔(𝑥) and

∫ 𝑏

𝑎
𝑔(𝑥)𝑑 𝑓 (𝑥) exists. Then the following equality is valid:

𝑓 (𝑏)𝑔(𝑏) − 𝑓 (𝑎)𝑔(𝑎) =
∫ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑔(𝑥) +
∫ 𝑏

𝑎

𝑔(𝑥)𝑑 𝑓 (𝑥).

As we can see, Riemann-Stieltjes integration retains most properties of classical Riemann
Integration. In the context of number theory, we use Riemann-Stieltjes integration to
rewrite any summation as an integral. Therefore, we can apply the same tools available for
integration to finite sums and series. A common technique that we will use several times is
integration by parts to rewrite sums in more useful forms. Suppose we want to express∑𝑏
𝑎 𝑎𝑛 in integral form. First, we define 𝑓 (𝑥) = 𝑎⌊𝑥⌋ . Then:

𝑏∑︁
𝑛=𝑎

𝑎𝑛 =
𝑏∑︁
𝑛=𝑎

𝑓 (𝑛) =
∫ 𝑏

𝑎−
𝑓 (𝑥)𝑑⌊𝑥⌋.

It is important to notice that the 𝑎− on the limit of integration is crucial. It allows us to get
the value of 𝑓 at 𝑎, as the floor function varies between 𝑎− and 𝑎.

2.5 Topics in Complex Analysis

Here we remember some definitions and basic results in complex analysis. For the proofs
not covered in this dissertation we refer the reader to Conway’s book [5].

Definition 2.20. Let 𝑈 ⊂ ℂ be an open set. We say that 𝑓 : 𝑈 → ℂ is analytic if for every
𝑧 ∈ 𝑈 there exists some 𝑟 such that 𝑓 can be represented by a convergent power series on
𝐵(𝑧0, 𝑟) ⊂ 𝑈, i.e, there exists a sequence of numbers 𝑐𝑖 ∈ ℂ, such that:

𝑓 (𝑧) = 𝑐0 + 𝑐1(𝑧 − 𝑧0) + 𝑐2(𝑧 − 𝑧0)2 + · · · ,

for all 𝑧 ∈ 𝐵(𝑧0, 𝑟).

Theorem 2.21. For a power series centered around 𝑧0, there exists a number 𝑅, which we
call the radius of convergence of the series, with the following properties:

(i) If |𝑧 − 𝑧0 | < 𝑅, then the series converges absolutely.

(ii) If |𝑧 − 𝑧0 | > 𝑅, then the series diverges.

(iii) The series converges uniformly for every compact contained inside 𝐵(𝑥0, 𝑅).
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Theorem 2.22. If 𝑓 : 𝑈 ⊂ ℂ → ℂ is analytic, then 𝑓 has continuous derivatives of all
orders and its power series expansion around 𝑧0 is given by:

𝑓 (𝑧) = 𝑓 (𝑧0) + 𝑓 ′(𝑧0)
(𝑧 − 𝑧0)

1!
+ 𝑓 ′′(𝑧0)

(𝑧 − 𝑧0)2
2!

+ 𝑓 ′′′(𝑧0)
(𝑧 − 𝑧0)3

3!
+ · · · ,

for 𝑧 sufficiently close to 𝑧0.

Definition 2.23. Let 𝑈 ⊂ ℂ and 𝑓 be an analytic function on 𝑈 − {𝑎}. We say that 𝑓 has a
pole of order 𝑚 at 𝑎 if 𝑚 is the smallest integer for which there exists an analytic function
𝑔 on 𝑈 such that 𝑓 (𝑧) = (𝑧 − 𝑧0)−𝑚𝑔(𝑧).

Definition 2.24. Let 𝑓 : 𝑈 → ℂ be analytic and 𝑓 (𝑧0) = 0. We say that 𝑧0 is a zero of
multiplicity 𝑚 if f(z) = (𝑧 − 𝑧0)𝑚𝑔(𝑧), where g is analytic on 𝑈 and 𝑔(𝑧0) ≠ 0.

Theorem 2.25. Let 𝑓 : 𝑈 → ℂ be an analytic function. Then 𝑧0 is a zero of multiplicity 𝑘
if and only if

𝑓 (𝑧0) = 𝑓 ′(𝑧0) = · · · = 𝑓 (𝑘−1) (𝑧0) = 0,

and

𝑓 (𝑘) (𝑧0) ≠ 0.

Proof. The proof follows straight from the power series expansion around 𝑧0. □

Theorem 2.26. Let 𝑓 : 𝑈 → ℂ be an analytic function and suppose 𝑓 (𝑧) = 𝑂( |𝑧 − 𝑧0 |𝑘).
Then 𝑧0 is a zero of multiplicity at least 𝑘.

Theorem 2.27. Let 𝑥𝑛 be a sequence of complex numbers that converges absolutely to 𝑠.
Then

∞∏
𝑛=1

(1 + 𝑥𝑛)

converges and its absolute value is less or equal 𝑒𝑠.
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Proof. Let 𝑠𝑛 =
∑𝑛
𝑘=1 |𝑥𝑛 | and 𝑠 =

∑
𝑠𝑛, remember that the product of 𝑛 distinct numbers

that sum to some fixed value is maximized when all terms are equal. Therefore:����� 𝑛∏
𝑘=1

(1 + 𝑥𝑘)
����� = 𝑛∏

𝑘=1
|1 + 𝑥𝑘 |

≤
𝑛∏
𝑘=1

(1 + |𝑥𝑘 |)

≤
𝑛∏
𝑘=1

(
1 + 𝑠𝑛

𝑛

)
=

(
1 + 𝑠𝑛

𝑛

)𝑛
≤

(
1 + 𝑠

𝑛

)𝑛
.

Taking the limit on both sides we have����� ∞∏
𝑘=1

(1 + 𝑥𝑘)
����� ≤ 𝑒𝑠.

□

2.6 Dirichlet Convolution

As multiplicative functions are defined according to their values at their divisors, it makes
sense to define some kind of product that combines the values of two functions over their
divisors. The Dirichlet character, which is defined in this section, does exactly that and, as
we are going to see, has many useful properties.

Definition 2.28. Let 𝑓 and 𝑔 be two arithmetic functions. We define its Dirichlet convolution
and denote it by 𝑓 ∗ 𝑔 the following function:

𝑓 ∗ 𝑔(𝑛) =
∑︁
𝑑 |𝑛

𝑓 (𝑑) · 𝑔
(
𝑛

𝑑

)
=

∑︁
𝑑1𝑑2=𝑛

𝑓 (𝑑1)𝑔(𝑑2).

Theorem 2.29. Let 𝑓 , 𝑔, ℎ be multiplicative functions. Then:

(i) 𝑓 ∗ 𝑔 is multiplicative,

(ii) 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓 ,

(iii) ( 𝑓 ∗ 𝑔) ∗ ℎ = 𝑓 ∗ (𝑔 ∗ ℎ),
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(iv) Y defined by Y(1) = 1 and Y(𝑛) = 0 for 𝑛 > 1 is the identity for Dirichlet convolution.

Proof. Suppose (𝑎, 𝑏) = 1. Then:

𝑓 ∗ 𝑔(𝑎𝑏) =
∑︁
𝑎1𝑎2=𝑎
𝑏1𝑏2=𝑏

𝑓 (𝑎1𝑏1)𝑔(𝑎2𝑏2)

=
∑︁
𝑎1𝑎2=𝑎
𝑏1𝑏2=𝑏

𝑓 (𝑎1) 𝑓 (𝑏1)𝑔(𝑎2)𝑔(𝑏2)

=
∑︁
𝑎1𝑎2=𝑎

𝑓 (𝑎1)𝑔(𝑎2)
∑︁
𝑏1𝑏2=𝑏

𝑓 (𝑏1)𝑔(𝑏2)

= ( 𝑓 ∗ 𝑔(𝑎)) ( 𝑓 ∗ 𝑔(𝑏)) .

So (i) holds. (ii) follows straight from the definition changing the roles of 𝑑1 and 𝑑2. For
(iii), we have:

( 𝑓 ∗ 𝑔) ∗ ℎ(𝑛) =
∑︁
𝑘𝑐=𝑛

( 𝑓 ∗ 𝑔) (𝑘)ℎ(𝑐)

=
∑︁
𝑘𝑐=𝑛

∑︁
𝑎𝑏=𝑘

𝑓 (𝑎)𝑔(𝑏)ℎ(𝑐)

=
∑︁
𝑎𝑏𝑐=𝑛

𝑓 (𝑎)𝑔(𝑏)ℎ(𝑐)

=
∑︁
𝑎𝑘=𝑛

∑︁
𝑏𝑐=𝑘

𝑓 (𝑎)𝑔(𝑏)ℎ(𝑐)

=
∑︁
𝑎𝑘=𝑛

𝑓 (𝑎) (𝑔 ∗ ℎ) (𝑘)

= 𝑓 ∗ (𝑔 ∗ ℎ) (𝑛).

(iv) follows direct from the definition of Y:

𝑓 ∗ Y(𝑛) =
∑︁

𝑑1𝑑2=𝑛

Y(𝑑1) 𝑓 (𝑑2) = 𝑓 (𝑛).

□

Example 2.30. The divisor function 𝜏(𝑛) counts the number of divisors of 𝑛. We can use
the previous theorem to show that 𝜏 is multiplicative as:

𝜏(𝑛) =
∑︁
𝑑 |𝑛

1

=
∑︁
𝑑 |𝑛

1(𝑑)1(𝑛/𝑑)

= 1 ∗ 1(𝑛).



20

The next result is very important and emphasizes the significance of the Möbius `
function on the theory of multiplicative functions.

Theorem 2.31. (Möbius Inversion Formula) 𝑓 ∗ 1 = 𝑔 ⇔ 𝑓 = 𝑔 ∗ `, i.e the following
equalities are equivalent:

𝑔(𝑛) =
∑︁
𝑑 |𝑛

𝑓 (𝑑),

𝑓 (𝑛) =
∑︁
𝑑 |𝑛

𝑔(𝑑)`(𝑛/𝑑).

Proof. First we will prove that 1 ∗ `(𝑛) =
∑
𝑑 |𝑛 `(𝑑) = Y(𝑛). If 𝑛 = 1 both equations

vanishes into 𝑓 (1) = 𝑔(1). If 𝑛 ≠ 1, let 𝑝𝑘 | | 𝑛, then we have:∑︁
𝑑 |𝑛

`(𝑑) =
∑︁
𝑑 |𝑛

(𝑝,𝑑)=1

`(𝑑) + `(𝑝𝑑) + · · · + `(𝑝𝑘𝑑)

=
∑︁
𝑑 |𝑛

(𝑝,𝑑)=1

`(𝑑) + `(𝑝𝑑)

=
∑︁
𝑑 |𝑛

(𝑝,𝑑)=1

`(𝑑) − `(𝑑)

= 0.

Using the above equality we have:

𝑓 ∗ 1 = 𝑔 ⇔ ( 𝑓 ∗ 1) ∗ ` = 𝑔 ∗ `
⇔ 𝑓 ∗ (1 ∗ `) = 𝑔 ∗ `
⇔ 𝑓 = 𝑔 ∗ `.

□

Example 2.32. We can rewrite Euler’s Totient Function as:

𝑛 =
∑︁
𝑑 |𝑛

𝜙(𝑑).

To verify this let 𝑆𝑑 = {𝑚 ∈ ℤ, 1 ≤ 𝑚 ≤ 𝑛 : (𝑚, 𝑛) = 𝑑}. Note that (𝑚, 𝑛) = 𝑑 if and only if
(𝑚/𝑑, 𝑛/𝑑) = 1. We know that there are 𝜙(𝑛/𝑑) integers 𝑚 satisfying such condition, so
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𝑆𝑑 has 𝜙(𝑛/𝑑) elements. Using that {𝑆𝑑} is a partition of the set of integers between 1 and
𝑛, we have:

𝑛 =
∑︁
𝑑 |𝑛

|𝑆𝑑 | =
∑︁
𝑑 |𝑛

𝜙(𝑛/𝑑) =
∑︁
𝑑 |𝑛

𝜙(𝑑).

By applying Theorem 2.31 we obtain a new way of calculating 𝜙:

𝜙(𝑛) =
∑︁
𝑑 |𝑛

`(𝑑) · 𝑛
𝑑
.

2.7 Dirichlet Series

We introduce in this section one of the most important tools in analytic number theory
which are the Dirichlet series. We note that some concepts related to these series have
analogue in the theory of power series. For example, for Dirichlet series, we have the
concept of semi-plane of convergence whereas in power series we have the concept of radius
of convergence, and these concepts somehow behaves similarly.

Definition 2.33. Given a sequence of complex numbers 𝑎 = (𝑎𝑛)𝑛. We define the Dirichlet
series associate to 𝑎 by:

𝐷(𝑎; 𝑠) :=
∑︁
𝑛≥1

𝑎𝑛

𝑛𝑠
,

where 𝑠 ∈ ℂ. We can see every sequence of complex numbers as the associated arithmetic
function and vice versa. So it makes sense to say the Dirichlet series associated to the
arithmetic function 𝑓 and denote it by 𝐷( 𝑓 ; 𝑠).

Example 2.34. The Riemman zeta function denoted by Z(𝑠) is defined by Z(𝑠) = 𝐷(1, 𝑠),
for all 𝑠 such that 𝜎 > 1, i.e.

Z(𝑠) =
∞∑︁
𝑛=1

1
𝑛𝑠
.

The next result shows the intrinsic relation between Dirichlet series and Dirichlet convo-
lutions, and provides a useful way of writing the product of two Dirichlet series as a new
Dirichlet series.

Theorem 2.35. Let 𝐹(𝑠), 𝐺(𝑠) and 𝐻 (𝑠) be the Dirichlet series associated with the arithmetic
functions 𝑓 , 𝑔, ℎ = 𝑓 ∗ 𝑔, respectively. If 𝐹(𝑠0) and 𝐺(𝑠0) are both absolutely convergent,
then we have that 𝐻 (𝑠0) is also absolutely convergent and 𝐹(𝑠0)𝐺(𝑠0) = 𝐻 (𝑠0).
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Proof. ∑︁
𝑛≤𝑥

����ℎ(𝑛)𝑛𝑠0

���� = ∑︁
𝑎𝑏≤𝑥

���� 𝑓 (𝑎)𝑔(𝑏)(𝑎𝑏)𝑠0

����
≤

∑︁
𝑎≤𝑥

���� 𝑓 (𝑎)𝑎𝑠0

����∑︁
𝑏≤𝑥

����𝑔(𝑏)𝑏𝑠0

����
The absolute convergence of 𝐻 (𝑠0) follows by taking 𝑥 → ∞. Now note that absolute
convergence allows the change of the order of summation. Therefore:

𝐹(𝑠0)𝐺(𝑠0) =
( ∞∑︁
𝑛=1

𝑓 (𝑛)
𝑛𝑠0

) ( ∞∑︁
𝑚=1

𝑔(𝑚)
𝑚𝑠0

)
=

∞∑︁
𝑛=1

∞∑︁
𝑚=1

𝑓 (𝑛)𝑔(𝑚)
(𝑛𝑚)𝑠0

=
∞∑︁
𝑛=1

∑︁
𝑘·𝑙=𝑛

𝑓 (𝑘)𝑔(𝑙)
𝑛𝑠0

=
∞∑︁
𝑛=1

ℎ(𝑛)
𝑛𝑠0

= 𝐻 (𝑠0).

□

Theorem 2.36. Let 𝐹(𝑠) = ∑∞
𝑛=1

𝑎𝑛
𝑛𝑠

and suppose that 𝐹(𝑠0) converges. Then for all 𝐻 > 0
𝐹(𝑠) is uniformly convergent on the region 𝑆 = {𝑠 : 𝜎 ≥ 𝜎0, |𝑡 − 𝑡0 | ≤ 𝐻 |𝜎 − 𝜎0 |}.

Proof. In this proof assume that 𝑠 ∈ 𝑆. Let 𝐻 > 0 be a constant and 𝑅(𝑥) = ∑
𝑛≥𝑥 𝑎𝑛𝑛

−𝑠0,
using Riemann-Stieltjes integral and integration by parts:

𝑁∑︁
𝑛=𝑀+1

𝑎𝑛

𝑛𝑠
=

∫ 𝑁

𝑀

𝑛𝑠0−𝑠𝑑𝑅(𝑛)

= 𝑅(𝑁)𝑁 𝑠0−𝑠 − 𝑅(𝑀)𝑀𝑠0−𝑠 −
∫ 𝑁

𝑀

𝑅(𝑛)𝑑𝑛𝑠0−𝑠

= 𝑅(𝑁)𝑁 𝑠0−𝑠 − 𝑅(𝑀)𝑀𝑠0−𝑠 − (𝑠0 − 𝑠)
∫ 𝑁

𝑀

𝑅(𝑛)𝑛𝑠0−𝑠−1𝑑𝑛.
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As the series converges at 𝑠0, for every 𝜖 > 0 there exists 𝑁0 such that |𝑅(𝑀) | < 𝜖/(3 + 𝐻)
for all 𝑀 ≥ 𝑁0. Taking 𝑁 ≥ 𝑀 > 𝑁0 and observing that 𝜎 > 𝜎0 implies 𝑁𝜎0−𝜎 ≤ 1 and
𝑀𝜎0−𝜎 ≤ 1. We therefore have:����� 𝑁∑︁

𝑛=𝑀+1

𝑎𝑛

𝑛𝑠

����� ≤ |𝑅(𝑁)𝑁 𝑠0−𝑠 | + |𝑅(𝑀)𝑀𝑠0−𝑠 | + |𝑠0 − 𝑠|
∫ ∞

𝑀

|𝑅(𝑛)𝑛𝑠0−𝑠−1 |𝑑𝑛

≤ 𝜖

3 + 𝐻 𝑁
𝜎0−𝜎 + 𝜖

3 + 𝐻𝑀
𝜎0−𝜎 + 𝜖

3 + 𝐻 |𝑠0 − 𝑠|
∫ ∞

𝑀

𝑛𝜎0−𝜎−1𝑑𝑛

≤ 𝜖

3 + 𝐻

(
2 + |𝑠0 − 𝑠|

𝜎 − 𝜎0
𝑀𝜎0−𝜎

)
≤ 𝜖

3 + 𝐻

(
2 + |𝑠0 − 𝑠|

𝜎 − 𝜎0

)
≤ 𝜖

3 + 𝐻

(
2 + |𝜎 − 𝜎0 | + |𝑡 − 𝑡0 |

𝜎 − 𝜎0

)
≤ 𝜖

3 + 𝐻 (3 + 𝐻)

= 𝜖.

Therefore the convergence is uniform on 𝑆. □

Corollary 2.37. Let 𝐹(𝑠) be a Dirichlet series and suppose that 𝐹(𝑠0) converges. Then if
𝑠 > 𝑠0 there exists a neighborhood of 𝑠 where the series converges uniformly.

Proof. Just take 𝐻 large enough in the previous theorem so that the region 𝑆 contains 𝑠 in
its interior. □

Definition 2.38. We say that 𝜎𝑐 is an abscissa of convergence of the Dirichlet series 𝐹(𝑠) if
for all 𝑠 with 𝜎 > 𝜎𝑐 the series converges and for every 𝑠 with 𝜎 < 𝜎𝑐 the series diverges.

Definition 2.39. We say that 𝜎𝑎 is an abscissa of absolute convergence of the Dirichlet
series 𝐹(𝑠) if 𝜎𝑎 is an abscissa of convergence of the Dirichlet series with coefficients given
by the absolute value of coefficients of 𝐹.

The existence of abscissa of convergence and absolute convergence is guaranteed by
Corollary 2.37.

Example 2.40. For the Dirichlet series that represents the Riemann Zeta function we have
𝜎𝑐 = 𝜎𝑎, as for 𝑠 = 1 the series is exactly the harmonic series which diverges, and for 𝑠 > 1
we have a 𝑝-series which we know to be absolute convergent for 𝑝 > 1.

Theorem 2.41. The Riemann Zeta function has the following analytic continuation for
Re(𝑠) > 0:

Z(𝑠) = 𝑠

𝑠 − 1
− 𝑠

∫ ∞

1

{𝑥}
𝑥𝑠+1

𝑑𝑥. (2.2)
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Proof.

∞∑︁
𝑛=1

1
𝑛𝑠

=

∫ ∞

1−

1
𝑥𝑠
𝑑⌊𝑥⌋

=

∫ ∞

1−

1
𝑥𝑠
𝑑𝑥 −

∫ ∞

1−

1
𝑥𝑠
𝑑{𝑥}

=
𝑥1−𝑠

1 − 𝑠

����∞
1−

− {𝑥}
𝑥𝑠

����∞
1−

+
∫ ∞

1
{𝑥}𝑑𝑥−𝑠

=
1

𝑠 − 1
+ 1 − 𝑠

∫ ∞

1

{𝑥}
𝑥𝑠+1

𝑑𝑥

=
𝑠

𝑠 − 1
− 𝑠

∫ ∞

1

{𝑥}
𝑥𝑠+1

𝑑𝑥.

Now observe that:

0 ≤ 𝑠

∫ ∞

1

{𝑥}
𝑥𝑠+1

𝑑𝑥 ≤ 𝑠

∫ ∞

1

1
𝑥𝑠+1

𝑑𝑥 = 1,

therefore the integral converges for Re 𝑠 > 0 and we conclude that Equation 2.2 is indeed
the desired analytic continuation. □

Corollary 2.42. As 𝑠 approaches 1, we have the following equality:

Z(𝑠) = 1
𝑠 − 1

+ 𝑂(1).

Theorem 2.43. Let (𝑎𝑛)𝑛 be a sequence and 𝐹 be its Dirichlet series. Then for 𝜎 > 𝜎𝑐 we
can write the derivative of the Dirichlet series by differentiating each term, i.e:

𝐹′(𝑠) = −
∞∑︁
𝑛=1

𝑎𝑛 ln 𝑛
𝑛𝑠

.

Proof. Define 𝐹𝑁 =
∑
𝑛≤𝑁

𝑎𝑛
𝑛𝑠
, and let 𝐾 be a compact contained in the semiplane 𝜎 > 𝜎𝑐, by

theorem 2.37 we know that this sequence converges uniformly to 𝐹, as each of these terms
is holomorphic in 𝐾 and its derivatives are given by:

𝐹′𝑁 = −
∑︁
𝑛≤𝑁

𝑎𝑛 ln 𝑛
𝑛𝑠

,

it follows from a classical result in complex analysis that 𝐹′𝑁 also converges to 𝐹𝑁 in 𝐾. □

Theorem 2.44. Let 𝐹(𝑠) be the Dirichlet Series of the arithmetic function 𝑓 and suppose
that 𝑓 has bounded partial sums. Then 𝜎𝑐 ≤ 0.

Proof. See Theorem 1.3 in [14]. □

Theorem 2.45. Let 𝐹(𝑠) = ∑
𝑛
𝑓 (𝑛)
𝑛𝑠

be a Dirichlet series, then 𝜎𝑐 ≤ 𝜎𝑎 ≤ 𝜎𝑐 + 1.



25

Proof. The first equality is straightforward. For the second one note that for 𝜖 > 0:

∞∑︁
𝑛=1

𝑓 (𝑛)
𝑛𝜎𝑐+𝜖

converges and therefore 𝑓 (𝑛) ≪𝜖 𝑛
𝜎+𝜖. Hence

∞∑︁
𝑛=1

| 𝑓 (𝑛) |
𝑛𝜎𝑐+1+2𝜖

≪
∞∑︁
𝑛=1

𝑛1+𝜖

𝑛𝜎𝑐+1+2𝜖

=
∞∑︁
𝑛=1

1
𝑛1+𝜖

< ∞.

The result follows letting 𝜖 → 0+. □

2.8 Euler Product

Let 𝑓 be a multiplicative function. We would like to use the fact that 𝑓 is multiplicative
to rewrite the Dirichlet series in such a way that is more convenient in most cases. More
precisely let 𝑛 = 𝑝

𝑘1
1 𝑝

𝑘2
2 . . . 𝑝

𝑘𝑙
𝑙
. Then we have that

𝑓 (𝑛)
𝑛𝑠

=
𝑓 (𝑝𝑘11 ) 𝑓 (𝑝𝑘22 ) . . . 𝑓 (𝑝𝑘𝑙

𝑙
)

𝑝
𝑘1𝑠
1 𝑝

𝑘2𝑠
2 . . . 𝑝

𝑘𝑙𝑠

𝑙

.

Reordering the terms of the series we obtain what we call the Euler product of the series:

∞∑︁
𝑛=1

𝑓 (𝑛)
𝑛𝑠

=
∏
𝑝

∞∑︁
𝑘=0

𝑓 (𝑝𝑘)
𝑝𝑘𝑠

. (2.3)

Let us remember that we must be careful reordering the terms of a series, so it is not
always that Equation 2.3 is valid. The following result gives a condition that ensures the
validity of this equality.

Theorem 2.46. Let 𝑓 be multiplicative and 𝐹(𝑠) be its associated Dirichlet series. If∑
𝑝
∑∞
𝑘=1

| 𝑓 (𝑝𝑘) |
𝑝𝑘𝜎

converges. Then 𝐹(𝑠) is absolutely convergent and Equation (2.3) is valid.
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Proof. Let 𝑃+(𝑛) denote the largest prime factor of 𝑛, and denote
∑

𝑝
∑∞
𝑘=1

| 𝑓 (𝑝𝑘) |
𝑝𝑘𝜎

by 𝑀.
Then ∑︁

𝑛≤𝑥

| 𝑓 (𝑛) |
𝑛𝑠

≤
∑︁

𝑃+ (𝑛)≤𝑥

| 𝑓 (𝑛) |
𝑛𝜎

=
∏
𝑝≤𝑥

(
1 +

∞∑︁
𝑘=1

| 𝑓 (𝑝𝑘) |
𝑝𝑘𝜎

)
≪ 1,

so 𝐹(𝑠) converges absolutely. For the other result observe that:����� ∞∑︁
𝑛=1

𝑓 (𝑛)
𝑛𝑠

−
∏
𝑝≤𝑥

∑︁
𝑘≥0

𝑓 (𝑝𝑘)
𝑝𝑘𝑠

����� =
����� ∑︁
𝑃+ (𝑛)>𝑥

𝑓 (𝑛)
𝑛𝑠

�����
≤

∑︁
𝑛>𝑥

���� 𝑓 (𝑛)𝑛𝑠

���� .
Letting 𝑥 → ∞ we can make the right hand side as small as we want, so the theorem
follows. □

If 𝑓 is totally multiplicative we can simplify more Equation (2.3) by noticing that the
terms of the series are in geometric progression:

∞∑︁
𝑛=1

𝑓 (𝑛)
𝑛𝑠

=
∏
𝑝

1
1 − 𝑓 (𝑝)/𝑝𝑠 . (2.4)

Example 2.47. The Dirichlet series associated to the Möbius function ` has the following
representation as an Euler product:

𝐷(`, 𝑠) =
∏
𝑝

(
∞∑︁
𝑘=0

`(𝑝𝑘)
𝑝𝑘𝑠

)
=

∏
𝑝

(
1 − 1

𝑝𝑠

)
.

Example 2.48. let us write the Euler product of the Riemann Z function. Observe that the
function 𝑓 (𝑛) = 1 has the Z function as its Dirichlet series. As 𝑓 is totally multiplicative we
have:

Z(𝑠) =
∞∑︁
𝑛=1

1
𝑛𝑠

=
∏
𝑝

(
1 − 1

𝑝𝑠

)−1
.
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Remark 2.49. We can see that the Euler product of the Riemann Zeta function is the inverse
of the Euler product of the Dirichlet series of the Möbius function, that is no coincidence
and comes from the fact that 1 ∗ ` = Y.

Remark 2.50. Let 𝑓 and 𝑔 be two arithmetic functions and 𝐹 and 𝐺 be their respective
Dirichlet Series. Suppose 𝐹 and 𝐺 converges absolutely at 𝑠0. Then we have by Theorem
2.27: ∏

𝑝

( ∞∑︁
𝑘=0

𝑓 (𝑝𝑘)
𝑝𝑘𝑠0

) ( ∞∑︁
𝑘=0

𝑔(𝑝𝑘)
𝑝𝑘𝑠0

)
= 𝐹(𝑠0)𝐺(𝑠0)

= 𝐻 (𝑠0)

=
∏
𝑝

( ∞∑︁
𝑘=0

𝑓 ∗ 𝑔(𝑝𝑘)
𝑝𝑘𝑠0

)
.

2.9 The Dirichlet Divisor Problem

This section is a brief introduction to the Dirichlet Divisor Problem, which is a classical
problem of analytic number theory. The importance of this function in this dissertation is
the Δ function which we will define. This function shows up in the important Theorem
3.15. Let us first observe that

𝑥∑︁
𝑛=1

1
𝑛
=

∫ 𝑥

1−

1
𝑛
𝑑⌊𝑛⌋

=

∫ 𝑥

1−

1
𝑛
𝑑𝑛 −

∫ 𝑥

1−

1
𝑛
𝑑{𝑛}

= ln 𝑥 − {𝑛}
𝑛

����𝑥
1−

+
∫ 𝑥

1
{𝑛}𝑑𝑛−1

= ln 𝑥 + 1 −
∫ 𝑥

1

{𝑛}
𝑛2

𝑑𝑛,

which motivates the following definition:

Definition 2.51. The Euler–Mascheroni constant 𝛾 is defined as:

𝛾 = 1 −
∫ ∞

1

{𝑥}
𝑥2

𝑑𝑥.

Using the above notation we can show the following expression:∑︁
𝑛≤𝑥

1
𝑛
= ln 𝑥 + 𝛾 + 𝑂(1/𝑥). (2.5)
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As 𝑥 goes to infinity the 𝑂 (1/𝑥) term becomes negligible, therefore the Euler-Mascheroni
constant is the asymptotic difference between the logarithm function and the sequence of
harmonic numbers.

The next lemma is an important tool for calculating the partial sums of the Dirichlet
product of two arithmetic functions. The name of the result Dirichlet Hyperbola Method
comes from a geometric way of looking at the partial sum of 𝑓 ∗𝑔 till 𝑡 as summing 𝑓 (𝑥)𝑔(𝑦)
under the hyperbola 𝑥𝑦 = 𝑡.

Lemma 2.52. (Dirichlet Hyperbola Method) Let 𝑓 and 𝑔 be two arithmetic functions and
define 𝐹(𝑥) =

∑
𝑛≤𝑥 𝑓 (𝑛) and 𝐺(𝑥) =

∑
𝑛≤𝑥 𝑔(𝑛). Then for all 0 < 𝑦 ≤ 𝑥 the following

equality holds:∑︁
𝑛≤𝑥

𝑓 ∗ 𝑔(𝑛) =
∑︁
𝑛≤𝑦

𝐹(𝑥/𝑛)𝑔(𝑛) +
∑︁
𝑛≤𝑥/𝑦

𝑓 (𝑛)𝐺(𝑥/𝑛) − 𝐹(𝑥/𝑦)𝐺(𝑦).

Proof. ∑︁
𝑛≤𝑥

𝑓 ∗ 𝑔(𝑛) =
∑︁
𝑎𝑏≤𝑥

𝑓 (𝑎)𝑔(𝑏)

=
∑︁

𝑚𝑛≤𝑥,𝑛≤𝑦
𝑓 (𝑚)𝑔(𝑛) +

∑︁
𝑛𝑚≤𝑥,𝑚>𝑦

𝑓 (𝑛)𝑔(𝑚)

=
∑︁
𝑛≤𝑦

𝐹(𝑥/𝑛)𝑔(𝑛) +
∑︁
𝑛≤𝑥/𝑦

𝑓 (𝑛) (𝐺(𝑥/𝑛) − 𝐺(𝑦))

=
∑︁
𝑛≤𝑦

𝐹(𝑥/𝑛)𝑔(𝑛) +
∑︁
𝑛≤𝑥/𝑦

𝑓 (𝑛)𝐺(𝑥/𝑛) − 𝐹(𝑥/𝑦)𝐺(𝑦).

□

We are interested in an estimate for the value of the partial sums of 𝜏. Using the previous
result, we are able to establish the following result:

Theorem 2.53. We have the following expression for
∑
𝑛≤𝑥 𝜏(𝑛):∑︁

𝑛≤𝑥
𝜏(𝑛) = 2𝑥 ln 𝑥 + (2𝛾 − 1)𝑥 + 𝑂(

√
𝑥).
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Proof. Observe that 𝜏 = 1 ∗ 1, so taking 𝑦 =
√
𝑥 on Lemma 2.52 and using Equation (2.5)

we have: ∑︁
𝑛≤𝑥

𝜏(𝑛) = 2
∑︁
𝑛≤

√
𝑥

⌊ 𝑥
𝑛

⌋
− ⌊

√
𝑥⌋2

= 2
∑︁
𝑛≤

√
𝑥

(
𝑥

𝑛
+ 𝑂(1)

)
− ⌊

√
𝑥⌋2

= 2𝑥
∑︁
𝑛≤

√
𝑥

1
𝑛
− 𝑥 + 𝑂(

√
𝑥)

= 2𝑥
(
ln 𝑥1/2 + 𝛾 + 𝑂(1/

√
𝑥)

)
− 𝑥 + 𝑂(

√
𝑥)

= 𝑥 ln 𝑥 + (2𝛾 − 1)𝑥 + 𝑂(
√
𝑥).

□

Definition 2.54. We can denote the error term in the previous theorem by Δ(𝑥) i.e:

Δ(𝑥) B
∑︁
𝑛≤𝑥

𝜏(𝑥) − 𝑥 log 𝑥 − (2𝛾 − 1)𝑥.

Definition 2.55. The Dirichlet Divisor Problem consists in finding estimates for the growth
of Δ. More formally, we seek for 𝛼 defined by:

𝛼 B inf{𝑎 > 0 : Δ(𝑥) = 𝑂𝑎(𝑥𝑎)}.

The search for the value of 𝛼 is an active area of research. From Theorem 2.53 we
know that 𝛼 ≤ 1/2, in 1917 [9] Hardy showed that 𝛼 ≥ 1/4. This bound was improved
several times, and the current lower bound is 131/416 which was proved by Huxley in
2003 [10].
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3 Multiplicative Functions With
Codomain ℂ

We chose to start with the study of the more general case in this chapter and only in the
next case we study the particular case where the codomain is {−1, 1}. This and the next
chapter are almost independent, so the next chapter can be read already. The only result
needed for the next chapter is Theorem 3.4, which can be easily assumed without any loss.

3.1 Necessary and Sufficient Conditions for Boundedness

The goal of this section is to give characterizations that help determining if a multiplicative
function 𝑓 has bounded or unbounded partial sums. Theorem 3.2 gives a necessary condition
in the case 𝑓 satisfies a property a little stronger than to be 1-pretentious. Theorem 3.4
gives an important characterization of boundedness of partial sums in the case 𝑓 is periodic.

The following lemma formalizes the notion that if a multiplicative function has bounded
partial sums, then it can’t attain many large values.

Lemma 3.1. Let 𝑓 : ℕ → ℂ be a multiplicative function with bounded partial sums. Then
𝑓 is bounded and for all 𝜖 > 0 there exists an 𝑀 such that if 𝑝 ≥ 𝑀, then | 𝑓 (𝑝𝑘) | < 1 + 𝜖
for all 𝑘 ≥ 1.

Proof. Suppose the partial sums are bounded by 𝐶. Then:

| 𝑓 (𝑛) | =
����� 𝑛∑︁
𝑘=1

𝑓 (𝑘) −
𝑛−1∑︁
𝑘=1

𝑓 (𝑘)
�����

≤
����� 𝑛∑︁
𝑘=1

𝑓 (𝑘)
����� +

�����𝑛−1∑︁
𝑘=1

𝑓 (𝑘)
����� ≤ 2𝐶.

Suppose that there are infinitely many distinct primes 𝑝𝑛 and a sequence 𝑘𝑛 satisfying��� 𝑓 (𝑝𝑘𝑛𝑛 )
��� ≥ 1 + 𝜖. Then the sequence ( 𝑓 (∏𝑛≤𝑘 𝑝

𝑘𝑛
𝑛 ))𝑘 is unbounded as:����� 𝑓 (∏

𝑛≤𝑘
𝑝
𝑘𝑛
𝑛

)����� =
�����∏
𝑛≤𝑘

𝑓 (𝑝𝑘𝑛𝑛 )
�����

≥ (1 + 𝜖)𝑘,

which diverges as 𝑘 goes to infinity, contradicting the hypothesis that the partial sums are
bounded.
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□

Theorem 3.2. Let 𝑓 be a multiplicative function with bounded partial sums such that∑
𝑝
|1− 𝑓 (𝑝) |

𝑝
< ∞. Then there exists a prime 𝑞 such that

∑
𝑘≥0

𝑓 (𝑞𝑘)
𝑞𝑘

= 0.

Proof. Define 𝐹(𝑠) = ∑
𝑛≥1

𝑓 (𝑛)
𝑛𝑠

. As 𝑓 has bounded partial sums we know by Theorem 2.44
that 𝐹 is analytic for Re(𝑠) > 0, so 𝜎𝑐 ≤ 0, and by Theorem 2.45, we have 𝜎𝑎 ≤ 1, so if
Re(𝑠) > 1. Then 𝐹 can be represented by its Euler product:

𝐹(𝑠) =
∏
𝑝

∞∑︁
𝑘=0

𝑓 (𝑝𝑘)
𝑝𝑘𝑠

.

By Lemma 3.1, choose 𝑀 such that | 𝑓 (𝑝𝑘) | ≤ 1 + 𝜖 for all 𝑝 ≥ 𝑀 and 𝑘 ≥ 1 and consider
the following tail product:

1
Z(𝑠)

∏
𝑝≥𝑀

∞∑︁
𝑘=0

𝑓 (𝑝𝑘)
𝑝𝑘𝑠

=
∏
𝑝<𝑀

(
1 − 1

𝑝𝑠

) ∏
𝑝≥𝑀

(
1 − 1

𝑝𝑠

) ∞∑︁
𝑘=0

𝑓 (𝑝𝑘)
𝑝𝑘𝑠

=
∏
𝑝<𝑀

(
1 − 1

𝑝𝑠

) ∏
𝑝≥𝑀

(
1 + 𝑓 (𝑝) − 1

𝑝𝑠
+ 𝑂(1)

𝑝2𝑠

)
.

By the pretentiousness hypothesis we know by theorem 2.27, that the previous product
converges at 𝑠 = 1. Using this convergence and Corollary 2.42, we note that:

∏
𝑝≥𝑀

∞∑︁
𝑘=0

𝑓 (𝑝𝑘)
𝑝𝑘𝑠

= Z(𝑠)
(

1
Z(𝑠)

∏
𝑝≥𝑀

∞∑︁
𝑘=0

𝑓 (𝑝𝑘)
𝑝𝑘𝑠

)
=

(
1

𝑠 − 1
+ 𝑂𝑠→1(1)

) (
1

Z(𝑠)
∏
𝑝≥𝑀

∞∑︁
𝑘=0

𝑓 (𝑝𝑘)
𝑝𝑘𝑠

)
=
𝑐 + 𝑜𝑠→1(1)

𝑠 − 1
,

for some constant 𝑐 ≠ 0. But we know that 𝐹 is analytic at 1 and in order for not being a
pole we must have: ∏

𝑝<𝑀

∞∑︁
𝑘=0

𝑓 (𝑝𝑘)
𝑝𝑘𝑠

= 𝑂(𝑠 − 1)

hence the following equality holds:∏
𝑝<𝑀

∞∑︁
𝑘=0

𝑓 (𝑝𝑘)
𝑝𝑘

= 0

and we conclude that one of the terms must vanish. □



32

Theorem 3.3. (Klurman) Let 𝑓 be a multiplicative function such that | 𝑓 (𝑛) | ≤ 1 for all
𝑛 ∈ ℕ. Then 𝑓 is periodic and sums to 0 at its period if and only if 𝑓 (2𝑘) = −1 for all 𝑘 ≥ 1
and there exists 𝑀 such that if 𝑝𝑘 > 𝑀, then 𝑓 (𝑝𝑘) = 𝑓 (𝑝𝑘−1).

Theorem 3.3 is an important tool established by Klurman [11] to investigate the partial
sums of multiplicative functions 𝑓 : ℕ → {−1, 1}. To prove that 𝑓 is periodic with bounded
partial sums, we just need to check some rigidity condition on large powers of primes,
which can be much simpler. Later Aymone [1] noted that the same proof used by Klurman
could be extended to prove a stronger result which is given by the following theorem:

Theorem 3.4. (Aymone) Let 𝑓 : ℕ → ℂ be a multiplicative function with period 𝑚 and
bounded partial sums. If 𝑓 (𝑚) ≠ 0, then we have the following:

(i) For some prime 𝑞 | 𝑚,
∑∞
𝑘=0

𝑓 (𝑞𝑘)
𝑞𝑘

= 0;

(ii) If 𝑝𝑎 | | 𝑚, 𝑓 (𝑝𝑘) = 𝑓 (𝑝𝑎) for all 𝑘 ≥ 𝑎;

(iii) If (𝑝, 𝑚) = 1, then 𝑓 (𝑝𝑘) = 1 for all 𝑘 ≥ 1.

Conversely, if 𝑓 is multiplicative and conditions (i)-(iii) are satisfied. Then 𝑓 has bounded
partial sums and 𝑓 has period 𝑚.

Proof. Suppose there exists an integer 𝑚 > 0 such that 𝑓 (𝑛 + 𝑚) = 𝑓 (𝑛) for all 𝑛 ∈ ℕ.
Additionally, assume that

∑𝑚
𝑘=1 𝑓 (𝑘) = 0 and 𝑓 (𝑚) ≠ 0. Let

∏
𝑝 𝑝

𝑘𝑝 = 𝑚 be the prime
factorization of 𝑚. By exploiting the properties of 𝑓 being 𝑚-periodic and multiplicative,
we can derive the following relationship for any prime 𝑞 and non-negative integer 𝛼:∏

𝑝

𝑓 (𝑝𝑘𝑝) = 𝑓 (𝑚)

= 𝑓 (𝑞𝛼𝑚)
= 𝑓 (𝑞𝛼+𝑘𝑞)

∏
𝑝≠𝑞

𝑓 (𝑝𝑘𝑝)

Since 𝑓 (𝑚) ≠ 0, we can conclude that 𝑓 (𝑝𝑘𝑝) ≠ 0. Therefore, by dividing both sides
by

∏
𝑝≠𝑞 𝑓 (𝑝𝑘𝑝), we arrive at 𝑓 (𝑞𝛼+𝑘𝑞) = 𝑓 (𝑞𝑘𝑞), so items (ii) and (iii) are proved. Now

let 𝑝𝑎 | | 𝑛 and 𝑝𝑏 | | 𝑚. If 𝑎 ≥ 𝑏, then by item (ii) we have 𝑓 (𝑝𝑎) = 𝑓 (𝑝𝑏), therefore
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𝑓 (𝑝min(𝑎,𝑏)) = 𝑓 (𝑝𝑎). By applying the multiplicative property of 𝑓 we can conclude that if
(𝑛, 𝑚) = 𝑑, then 𝑓 (𝑛) = 𝑓 (𝑑). So∑︁

𝑛≤𝑚
𝑓 (𝑛) =

∑︁
𝑑 |𝑚

∑︁
𝑛≤𝑚

(𝑛,𝑚)=𝑑

𝑓 (𝑛)

=
∑︁
𝑑 |𝑚

∑︁
𝑛≤𝑚

(𝑛,𝑚)=𝑑

𝑓 (𝑑)

=
∑︁
𝑑 |𝑚

𝜙(𝑚/𝑑) 𝑓 (𝑑)

= 𝑓 ∗ 𝜙(𝑚). (3.1)

The function 𝑓 ∗ 𝜙 is the product of two multiplicative functions so it is also multiplicative.
Let us investigate its values at powers of primes. First, remember that 𝜙(𝑝𝑘) = 𝑝𝑘(1− 1/𝑝).
Then:

𝑓 ∗ 𝜙(𝑝𝑎) = 𝑓 (𝑝𝑎) + 𝑓 (𝑝𝑎−1)𝜙(𝑝) + · · · + 𝑓 (1)𝜙(𝑝𝑎)

= 𝑓 (𝑝𝑎) + 𝑓 (𝑝𝑎−1)𝑝
(
1 − 1

𝑝

)
+ 𝑓 (𝑝𝑎−2)𝑝2

(
1 − 1

𝑝

)
+ · · · + 𝑝𝑎

(
1 − 1

𝑝

)
= 𝑝𝑎

(
1 − 1

𝑝

) (
𝑓 (𝑝0)
𝑝0

+ 𝑓 (𝑝)
𝑝1

+ · · · + 𝑓 (𝑝𝑎−1)
𝑝𝑎−1

+ 𝑓 (𝑝𝑎)
𝑝𝑎(1 − 1/𝑝)

)
= 𝑝𝑎

(
1 − 1

𝑝

) (
𝑎−1∑︁
𝑘=0

𝑓 (𝑝𝑘)
𝑝𝑘

+ 𝑓 (𝑝𝑎)
𝑝𝑎(1 − 1/𝑝)

)
= 𝑝𝑎

(
1 − 1

𝑝

) (
𝑎−1∑︁
𝑘=0

𝑓 (𝑝𝑘)
𝑝𝑘

+
∞∑︁
𝑘=0

𝑓 (𝑝𝑎)
𝑝𝑎

1
𝑝𝑘

)
= 𝑝𝑎

(
1 − 1

𝑝

) (
𝑎−1∑︁
𝑘=0

𝑓 (𝑝𝑘)
𝑝𝑘

+
∞∑︁
𝑘=𝑎

𝑓 (𝑝𝑘)
𝑝𝑘

)
= 𝑝𝑎

(
1 − 1

𝑝

) ∞∑︁
𝑘=0

𝑓 (𝑝𝑘)
𝑝𝑘

= 𝜙(𝑝𝑎)
∞∑︁
𝑘=0

𝑓 (𝑝𝑘)
𝑝𝑘

. (3.2)

Using (3.1) in (3.2) we obtain:∑︁
𝑛≤𝑚

𝑓 (𝑛) =
∏
𝑝𝑙 | |𝑚

𝑓 ∗ 𝜙(𝑝𝑙)

=
∏
𝑝𝑙 | |𝑚

𝜙(𝑝𝑙)
∞∑︁
𝑘=0

𝑓 (𝑝𝑘)
𝑝𝑘

= 𝜙(𝑚)
∏
𝑝|𝑚

∞∑︁
𝑘=0

𝑓 (𝑝𝑘)
𝑝𝑘

. (3.3)
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By hypothesis the above sum is zero so we conclude item (i). Now assume 𝑓 is multiplicative
and satisfies items (i), (ii) and (iii). Then by items (ii) and (iii) we have that if (𝑎, 𝑚) = 𝑑,
then 𝑓 (𝑎) = 𝑓 (𝑑), so if 𝑎 = 𝑘𝑚 is a positive multiple of 𝑚 we conclude that 𝑓 (𝑚) = 𝑓 (𝑘𝑚),
so 𝑓 is 𝑚-periodic. Observe that we can repeat the same calculations done in Equations
(3.1), (3.2) and (3.3), therefore using item (i) we conclude that 𝑓 has bounded partial
sums. □

Note that condition (iii) is weaker than Klurman’s requirement of 𝑓 (2𝑘) = −1 in the
sense that if 𝑓 (2𝑘) = −1, then condition (iii) is satisfied for 𝑞 = 2.

We end this section by showing some consequences of the previous theorem. The next
two results unfolds rigidity conditions that a multiplicative function must satisfy in order
to have bounded partial sums. In particular, Corollary 3.6 gives a partial demonstration of
Tao’s Theorem 1.13.

Corollary 3.5. Let 𝑞 be a prime number. Then there exists only one 𝑞-periodic function
with bounded partial sums such that 𝑓 (𝑞) ≠ 0.

Proof. Let 𝑞 be a prime number and 𝑓 be a 𝑞-periodic multiplicative function with bounded
partial sums and 𝑓 (𝑞) ≠ 0. By Theorem 3.4 item (iii) we have that 𝑓 (𝑝) = 1 for all 𝑝 ≠ 𝑞,
using items (i) and (ii) we have:

0 =
∑︁
𝑘≥0

𝑓 (𝑞𝑘)
𝑞𝑘

= 1 +
∑︁
𝑘≥1

𝑓 (𝑞)
𝑞𝑘

= 1 + 𝑓 (𝑞)
𝑞 − 1

Therefore 𝑓 (𝑞𝑘) = 1 − 𝑞 for all 𝑘 ≥ 1. □

Corollary 3.6. Let 𝑓 : ℕ → {−1, 1} be a 𝑚-periodic multiplicative function with bounded
partial sums. Then 𝑓 (2 𝑗) = −1 for all 𝑗 ≥ 1.

Proof. By Theorem 3.4, we have for some prime 𝑞 | 𝑚 that
∑

𝑗≥0 𝑓 (𝑞 𝑗)/𝑞 𝑗 = 0, so:

∑︁
𝑘≥0

𝑓 (𝑞𝑘)
𝑞𝑘

= 1 +
∑︁
𝑘≥1

𝑓 (𝑞)
𝑞𝑘

≥ 1 −
∑︁
𝑘≥1

1
𝑞𝑘

= 1 − 1
𝑞 − 1

.
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We conclude that the above sum can only be 0 if 𝑞 = 2. Besides that, observe that if
𝑓 (2𝑘) = 1 for some 𝑘 > 0, then the above sum would be at least 1

2𝑘−1 , so 𝑓 (2𝑘) = −1 for all
𝑘 ≥ 1. □

Remark 3.7. As pointed out by Aymone, Theorem 3.4 is a powerful tool to build multiplica-
tive functions with bounded partial sums. For example suppose we define a multiplicative
function by 𝑓 (𝑝𝑘) = 1 if (𝑝, 5) = 1, 𝑓 (5) = 𝜋 and we want 𝑓 to have bounded partial sums.
Then in order to satisfy the theorem’s hypothesis we can define 𝑓 (25) = 25 + 5𝜋 and
𝑓 (5𝑘) = 0, for all 𝑘 > 2.

3.2 An Important Lemma

For the remaining of this chapter we are interest in the study of functions of the form
𝑓 = 𝑓1 ∗ 𝑓2, where 𝑓1 and 𝑓2 satisfies conditions (i)-(iii) of Theorem 3.4. In this section we
introduce the function 𝑔 = 𝑓 ∗ ` ∗ ` and prove some important properties of then which
will be important on the remaining of this chapter when we investigate the asymptotic
growth of 𝑓 = 𝑓1 ∗ 𝑓2.

First let us remember a classical result of analysis that will be important in the proof of
the main result of this section.

Lemma 3.8. (Kroeneker’s Lemma) Let (𝑥𝑛)𝑛 be a sequence of real number such that the
series

∑∞
𝑛=1 𝑥𝑛 converges, and let (𝑏𝑛)𝑛 be a non-decreasing sequence of positive numbers

such that 𝑏𝑛 → ∞. Then:

lim
𝑛→∞

1
𝑏𝑛

𝑛∑︁
𝑘=1

𝑏𝑘𝑥𝑘 = 0

Proof. See Shiryaev’s book [17], lemma 2 on section 3 of chapter iv. □

Lemma 3.9. Let 𝑓 = 𝑓1∗ 𝑓2, where 𝑓1 and 𝑓2 are both functions satisfying hypothesis (i)-(iii)
of Theorem 3.4. Let𝑚1 and𝑚2 be their respective periods and define 𝑔 = 𝑓 ∗` ∗` = 𝑓 ∗𝜏−1.
Then 𝑔 satisfies the following properties:

(i)
∑
𝑛≤𝑥 |𝑔(𝑛) | = 𝑂𝜖(𝑥𝜖), for all 𝜖 > 0;

(ii) 𝑔(𝑛) = Y(𝑛) whenever (𝑛, 𝑚1𝑚2) = 1;

(iii)
∑∞
𝑛=1

𝑔(𝑛)
𝑛

=
∑∞
𝑛=1

𝑔(𝑛) log 𝑛
𝑛

= 0.
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Proof. Using the fact that 𝑝 is prime we have for each integer 𝑎, either 𝑝|𝑎 or (𝑝, 𝑎) = 1,
holds. Using this observation, and the Euler product formula for the Dirichlet series of the
convolution we have for all 𝜎 > 1:

𝐹(𝑠) =
∞∑︁
𝑛=1

𝑓1 ∗ 𝑓2(𝑛)
𝑛𝑠

=
∏
𝑝

( ∞∑︁
𝑘=0

𝑓1(𝑝𝑘)
𝑝𝑘𝑠

) ( ∞∑︁
𝑘=0

𝑓2(𝑝𝑘)
𝑝𝑘𝑠

)
=

∏
𝑝|𝑚1𝑚2

( ∞∑︁
𝑘=0

𝑓1(𝑝𝑘)
𝑝𝑘𝑠

) ( ∞∑︁
𝑘=0

𝑓2(𝑝𝑘)
𝑝𝑘𝑠

) ∏
(𝑝,𝑚1𝑚2)=1

( ∞∑︁
𝑘=0

𝑓1(𝑝𝑘)
𝑝𝑘𝑠

) ( ∞∑︁
𝑘=0

𝑓2(𝑝𝑘)
𝑝𝑘𝑠

)
=

∏
𝑝|𝑚1𝑚2

( ∞∑︁
𝑘=0

𝑓1(𝑝𝑘)
𝑝𝑘𝑠

) ( ∞∑︁
𝑘=0

𝑓2(𝑝𝑘)
𝑝𝑘𝑠

) ∏
(𝑝,𝑚1𝑚2)=1

(
1 − 1

𝑝𝑠

)−2
,

where the last equality comes from the fact that 𝑓𝑖(𝑝𝑘) = 1 if (𝑝, 𝑚𝑖) = 1. Define 𝐺(𝑠) =
𝐹(𝑠)/Z(𝑠)2. Using that Z(𝑠) = ∏

𝑝(1 − 1/𝑝𝑠)−1 we have:

𝐺(𝑠) = 𝐹(𝑠)/Z(𝑠)2 =
∏

𝑝|𝑚1𝑚2

( ∞∑︁
𝑘=0

𝑓1(𝑝𝑘)
𝑝𝑘𝑠

) ( ∞∑︁
𝑘=0

𝑓2(𝑝𝑘)
𝑝𝑘𝑠

) (
1 − 1

𝑝𝑠

)2
. (3.4)

Now that all terms are defined for the same primes 𝑝, we can see that 𝐺(𝑠) is exactly the
Dirichlet series of 𝑔 = 𝑓 ∗` ∗`. For all 𝑝 coprime with𝑚1𝑚2 we have that the corresponding
Euler product term must be 1. It follows that 𝑔(𝑝𝑘) = 0 for all 𝑘 ≥ 1, which proves item
(ii).

By Theorem 3.4 we have that 𝑓𝑖 has bounded partial sums and therefore 𝑓𝑖 = 𝑂(1), so:

|𝑔(𝑝𝑘) | = | 𝑓1 ∗ 𝑓2 ∗ ` ∗ `(𝑝𝑘) |
= |

∑︁
𝑘1+𝑘2+𝑘3+𝑘4=𝑘

𝑓1(𝑝𝑘1) 𝑓2(𝑝𝑘2)`(𝑝𝑘3)`(𝑝𝑘4) |

= |
∑︁

𝑘1+𝑘2+𝑘3+𝑘4=𝑘
𝑘3,𝑘4≤1

𝑓1(𝑝𝑘1) 𝑓2(𝑝𝑘2)`(𝑝𝑘3)`(𝑝𝑘4) |

= |
∑︁

𝑘1+𝑘2+𝑘3+𝑘4=𝑘
𝑘3,𝑘4≤1

𝑂(1) |

≪ 𝑘,

as we are summing 𝑂(𝑘) terms. We conclude that the following sum is bounded:∑︁
𝑝|𝑚1𝑚2

∞∑︁
𝑘=1

|𝑔(𝑝𝑘) |
𝑝𝑘𝜎

.
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But by Theorem 2.46, this implies that 𝐺(𝑠) = ∑∞
𝑛=1

𝑔(𝑛)
𝑛𝑠

is absolutely convergent for 𝜎 > 0
and its value is given by the Euler product (3.4). Now observe that in particular 𝐺(𝜖)
converges absolutely, i.e,

∑∞
𝑛=1

|𝑔(𝑛) |
𝑛𝜖

< ∞. Let 𝑥𝑛 =
|𝑔(𝑛) |
𝑛𝜖

and 𝑏𝑛 = 𝑛𝜖. By Kroenecker’s
lemma we conclude that:

0 = lim
𝑥→∞

1
𝑏𝑥

∑︁
𝑛≤𝑥

𝑏𝑛𝑥𝑛 = lim
𝑥→∞

1
𝑥𝜖

∑︁
𝑛≤𝑥

|𝑔(𝑛) |.

But this is equivalent to
∑
𝑛≤𝑥 |𝑔(𝑛) | = 𝑜(𝑥𝜖), as this holds for every 𝜖 > 0 we conclude item

(i).
By item (i) of hypothesis, there exist primes 𝑞𝑖 such that 𝑞𝑖 | 𝑚𝑖 and the following holds:

∞∑︁
𝑘=0

𝑓𝑖(𝑞𝑘𝑖 )
𝑞𝑘
𝑖

= 0.

Define 𝐹𝑞𝑖 (𝑠) =
∑∞
𝑘=0

𝑓𝑖 (𝑞𝑘𝑖 )
𝑞𝑘𝑠
𝑖

and observe that as 𝑓𝑖 has bounded partial sums, we have by
Theorem 2.44, that this function is analytic at 1, i.e, 𝐹𝑞𝑖 (𝑠) admits an expansion in power
series around 1 and therefore:

𝐹𝑞𝑖 (𝑠) = 𝐹𝑞𝑖 (1) + 𝐹′𝑞𝑖 (1)
(𝑠 − 1)
1!

+ 𝐹′′𝑞𝑖 (1)
(𝑠 − 1)2

2!
+ 𝐹′′′𝑞𝑖 (1)

(𝑠 − 1)3
3!

+ . . .

= 𝐹′𝑞𝑖 (1)
(𝑠 − 1)
1!

+ 𝐹′′𝑞𝑖 (1)
(𝑠 − 1)2

2!
+ 𝐹′′′𝑞𝑖 (1)

(𝑠 − 1)3
3!

+ . . .

= 𝑂( |𝑠 − 1|).

Observe that
∑∞
𝑘=0

𝑓𝑖 (𝑝𝑘)
𝑝𝑘𝑠

= 𝑂(1) and (1 − 1/𝑝𝑠)2 = 𝑂(1), now using these observations and
Equation (3.4) we conclude that 𝐺(𝑠) = 𝑂( |𝑠−1|2) for 𝑠 sufficiently close to 1, but this is by
Theorem 2.26 the same as saying that 1 is a zero of order 2 and therefore 𝐺(1) = 𝐺′(1) = 0,
which completes the proof of item (iii). □

3.3 An Omega Bound on the Partial Sums of 𝑓 = 𝑓1 ∗ 𝑓2

The goal of this section is to establish an omega bound for 𝑓 = 𝑓1 ∗ 𝑓2. An important
consequence of this bound is that the convolution of multiplicative functions with bounded
partial sums can be unbounded. Before going to the main result we need some results
about maximal order that we enunciate next.

Definition 3.10. We say that 𝑔 is a maximal order of 𝑓 if:

lim sup
𝑛→∞

| 𝑓 (𝑛) |
|𝑔(𝑛) | = 1.
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Saying that 𝑓 has maximal order 𝑔 is stronger than saying that 𝑓 = 𝑂(𝑔), as the imposed
condition requires 𝑓 to be arbitrarily close to 𝑔 for infinitely many 𝑥, and being much
greater than 𝑔 for only finitely many 𝑥. More formally, we can state the following:

Remark 3.11. If 𝑔 is a maximal order for 𝑓 , then we have:

(i) 𝑓 (𝑛) ≤ (1 + 𝑜(1))𝑔(𝑛) for all 𝑛;

(ii) There exists a sequence (𝑥𝑛)𝑛 such that 𝑓 (𝑥𝑛) = (1 + 𝑜(1))𝑔(𝑥𝑛).

In this dissertation, the only function for which we are concerned about the maximal
order is the prime omega function 𝜔, which we will use to obtain estimates for the partial
sums of 𝑓1 ∗ 𝑓2. The following lemma determines its maximal order:

Lemma 3.12. A maximal order for the prime omega function 𝜔 is:

log 𝑛
log log 𝑛

.

Proof. See Theorem 5.5 in [19]. □

Theorem 3.13. (Aymone) Let 𝑓1 and 𝑓2 be two multiplicative functions with periods 𝑚1

and 𝑚2 respectively, such that 𝑓1 and 𝑓2 satisfy conditions (i)-(iii) of Theorem 3.4. Let
𝑓 = 𝑓1 ∗ 𝑓2. Then there exists a constant 𝑑 > 0 such that:∑︁

𝑛≤𝑥
𝑓 (𝑛) = Ω

(
exp

(
𝑑

log 𝑥
log log 𝑥

))
.

Proof. By triangle inequality we have:

| 𝑓 (𝑥) | ≤ |
∑︁
𝑛≤𝑥−1

𝑓 (𝑛) | + |
∑︁
𝑛≤𝑥

𝑓 (𝑛) |.

We have that one of the above terms is at least | 𝑓 (𝑥) |/2. Suppose without loss of generality
that |∑𝑛≤𝑥 𝑓 (𝑛) | ≥ | 𝑓 (𝑥) |/2 and take 𝑥 such that (𝑥, 𝑚1𝑚2) = 1. By Lemma 3.9 we can
rewrite the function 𝑓 as 𝑔 ∗ 𝜏, and if (𝑛, 𝑚1𝑚2) = 1, then 𝑔(𝑛) = Y(𝑛). Therefore:

2|
∑︁
𝑛≤𝑥

𝑓 (𝑛) | ≥ | 𝑓 (𝑥) |

= |𝑔 ∗ 𝜏(𝑥) |
= |

∑︁
𝑎𝑏=𝑥

𝑔(𝑎) ∗ 𝜏(𝑏) |

= |
∑︁
𝑎𝑏=𝑥

Y(𝑎) ∗ 𝜏(𝑏) |

= |𝜏(𝑥) |
≥ 2𝜔(𝑥) .
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By Lemma 3.12 there exists a sequence 𝑥𝑛 such that 𝜔(𝑥𝑛) = (1+𝑜(1)) log 𝑥𝑛
log log 𝑥𝑛 , which implies

our theorem. □

It’s important to note that Theorem 3.13 does not give the best known omega bound
for this multiplicative function. In his paper [1] Aymone noted the existence of a big
gap between the omega and big O bounds established by him and conjectured that the
omega bound could be improved to Ω(𝑥1/4). In his recent work [3] Aymone together with
Maiti, Ramaré and Srivastav proved this result that we present in the form of the following
theorem.

Theorem 3.14. Let 𝑓1 and 𝑓2 be two multiplicative functions satisfying the hypothesis of
theorem 3.13. Let 𝑓 = 𝑓1 ∗ 𝑓2. Then:∑︁

𝑛≤𝑥
𝑓 (𝑛) = Ω(𝑥1/4).

3.4 An Upper Bound on the Partial Sums of 𝑓 = 𝑓1 ∗ 𝑓2

Now that we know an omega bound for the partial sums of 𝑓 its natural to look for a big O
bound, in this section we do exactly this. The first result gives a powerful expression to
evaluate the partial sums of 𝑓 , more precisely it says that for x sufficiently big these partial
sums are given as a linear combination of terms involving the Δ function of Dirichlet’s
Divisor Problem. The big O bound follows straight from this result by using big O estimates
for Δ.

Theorem 3.15. Let 𝑓1 and 𝑓2 be two multiplicative functions with periods 𝑚1 and 𝑚2

respectively, such that 𝑓1 and 𝑓2 satisfy conditions (i)-(iii) of Theorem 3.4. Let 𝑓 = 𝑓1 ∗ 𝑓2.
Then, for all 𝑥 > 𝑚1𝑚2, we have:∑︁

𝑛≤𝑥
𝑓 (𝑛) =

∑︁
𝑛|𝑚1𝑚2

𝑓 ∗ ` ∗ `(𝑛)Δ
(
𝑥

𝑛

)
,

where Δ is the function of Dirichlet Divisor problem.
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Proof. Using Lemma 3.9 to rewrite 𝑓 as 𝑔 ∗ 𝜏 and Theorem 2.53 to estimate the partial
sums of 𝜏, we have:∑︁

𝑛≤𝑥
𝑓 (𝑛) =

∑︁
𝑛≤𝑥

𝑔 ∗ 𝜏(𝑛)

=
∑︁
𝑛≤𝑥

𝑔(𝑛)
∑︁
𝑚≤𝑥/𝑛

𝜏(𝑚)

=
∑︁
𝑛≤𝑥

𝑔(𝑛)
(
𝑥

𝑛
ln
𝑥

𝑛
+ (2𝛾 − 1) 𝑥

𝑛
+ Δ(𝑥/𝑛)

)
= 𝑥 ln 𝑥

∑︁
𝑛≤𝑥

𝑔(𝑛)
𝑛

− 𝑥
∑︁
𝑛≤𝑥

𝑔(𝑛) ln 𝑛
𝑛

+ (2𝛾 − 1)𝑥
∑︁
𝑛≤𝑥

𝑔(𝑛)
𝑛

+
∑︁
𝑛≤𝑥

𝑔(𝑛)Δ(𝑥/𝑛).

(3.5)

By condition (ii) we have that if 𝑝𝑘𝑖 | | 𝑚𝑖, for 𝑖 = 1, 2, then 𝑓𝑖(𝑝𝑡) = 𝑓𝑖(𝑝𝑘𝑖) for all 𝑡 > 𝑘𝑖.
Therefore we conclude that 𝑓𝑖 ∗ `(𝑝𝑡) = 𝑓𝑖(𝑝𝑡) − 𝑓𝑖(𝑝𝑡−1) = 0 for all 𝑡 ≥ 𝑘𝑖 + 1. Taking
𝑡 ≥ 𝑘1 + 𝑘2 + 1 and using that 𝑔 = ( 𝑓1 ∗ `) ∗ ( 𝑓2 ∗ `) we conclude that 𝑔(𝑝𝑡) = 0 as each
term of the convolution vanishes.

Now let us show that 𝑔(𝑛) = 0, whenever 𝑛 > 𝑚1𝑚2. Suppose 𝑔(𝑛) ≠ 0, let 𝑝𝑘 | | 𝑛.
If (𝑝, 𝑚1𝑚2) ≠ 0, then we know by the previous observation that 𝑘 < 𝑘1 + 𝑘2 + 1, i.e,
𝑝𝑘 | | 𝑚1𝑚2. If (𝑝, 𝑚1𝑚2) = 0, then by item (ii) of Lemma 3.9, we have that 𝑔(𝑛) = 0.
Therefore the only prime factors of 𝑛 are of the form 𝑝𝑘, with 𝑝𝑘 | | 𝑚1𝑚2, and we conclude
that 𝑛 ≤ 𝑚1𝑚2.

By Lemma 3.9 item (iii) and the observation that 𝑔(𝑛) vanishes whenever 𝑛 > 𝑚1𝑚2,
we know that:

0 =
∑︁

𝑛≤𝑚1𝑚2

𝑔(𝑛)
𝑛

=
∑︁

𝑛≤𝑚1𝑚2

𝑔(𝑛) ln 𝑛
𝑛

. (3.6)

Combining Equations (3.5), (3.6) and using Lemma 3.9 (ii) we have:∑︁
𝑛≤𝑥

𝑓 (𝑛) =
∑︁

𝑛≤𝑚1𝑚2

𝑔(𝑛)Δ(𝑥/𝑛)

=
∑︁

𝑛|𝑚1𝑚2

𝑔(𝑛)Δ(𝑥/𝑛)

□

The result given by the previous theorem is an exact formula for the partial sums of 𝑓 .
By using estimates for Δ, we can establish the asymptotic behaviour of this formula.

Corollary 3.16. Let 𝑓 be defined according to Theorem 3.15 and 𝛼 be the constant of
Dirichlet Divisor Problem. Then for all 𝜖 > 0 we have

∑
𝑛≤𝑥 𝑓 (𝑛) = 𝑂(𝑥𝛼+𝜖).
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Proof. By Theorem 3.15, we have for 𝑥 > 𝑚1𝑚2:

|
∑︁
𝑛≤𝑥

𝑓 (𝑛) | = |
∑︁

𝑛|𝑚1𝑚2

𝑔(𝑛)Δ(𝑥/𝑛) |

≤
∑︁

𝑛|𝑚1𝑚2

|𝑔(𝑛) | |Δ(𝑥/𝑛) |

≪
∑︁

𝑛|𝑚1𝑚2

|Δ(𝑥/𝑛) |

≪ Δ(𝑥)
≪ 𝑥𝛼+𝜖.

□

Such result makes reasonable to believe that the improved big omega bound is in fact
tight, as we believe that the constant of the Dirichlet Divisor Problem satisfies 𝛼 = 1

4 .
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4 The Erdős Coons Tao Conjecture
The proof of Erdős-Coons-Tao conjecture is long, and we won’t present it completely, just

the core steps. In this chapter we begin by defining in Section 4.1 a function that relates
to our problem and showing some of its nice properties. In Section 4.2 we establish an
important lower bound for this function. In Section 4.3 we show that under the boundedness
hypothesis of 𝑓 some series which we will define must converge. Finally in Section 4.4 we
use the tools of the previous sections to give a proof of the conjecture.

4.1 The G Function

Definition 4.1. Let 𝑓 be multiplicative and 𝑔 = 𝑓 ∗ `. We define 𝐺 as:

𝐺(𝑎) =
∏
𝑝𝑘 | |𝑎

(
|𝑔(𝑝𝑘) |2 + 2

∑︁
𝑗>𝑘

𝑔(𝑝𝑘)𝑔(𝑝 𝑗)
𝑝 𝑗−𝑘

)
.

In the above sum we use the convention that 𝑘 can be zero. From now on we are going
to denote the term inside the product by 𝐸𝑝:

𝐸𝑝(𝑎) = |𝑔(𝑝𝑘) |2 + 2
∑︁
𝑗>𝑘

𝑔(𝑝𝑘)𝑔(𝑝 𝑗)
𝑝 𝑗−𝑘

.

The main reason to define 𝐺 the way we did is the following important result which
provides a decomposition of the mean value of a very specific case of correlation of mul-
tiplicative functions. We refer the interested reader to Klurman’s paper [11], where it is
established similar results for more complex cases.

Lemma 4.2. Let 𝑓 : ℕ → 𝕌 be multiplicative and 𝔻(1, 𝑓 ,∞) < ∞, 𝑚 ∈ ℕ. Then:

1
𝑥

∑︁
𝑛≤𝑥

𝑓 (𝑛) 𝑓 (𝑛 + 𝑚) =
∑︁
𝑟 |𝑚

𝐺(𝑟)
𝑟

+ 𝑜𝑥→∞(1),

where the term 𝑜(1) does depend of the particular choice of 𝑚.

Proof. See Corollary 3.3 in [11]. □

The remaining of this section is dedicated to establish basic results of the functions we
defined. These results are essential in the remaining of this chapter.

Lemma 4.3. The function 𝑔 = 𝑓 ∗ ` has the following properties:

(i) 𝑔(𝑝𝑘) = 𝑓 (𝑝𝑘) − 𝑓 (𝑝𝑘−1) for all 𝑘 ≥ 1, and therefore 𝑓 (𝑝𝑘) ∈ {−2, 0, 2}, for all 𝑘 ≥ 1;
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(ii) Let 𝑘 be the smallest positive integer such that 𝑔(𝑝𝑘) ≠ 0. Then 𝑔(𝑝𝑘) = −2;

(iii) If 𝑔(𝑝𝑘) ≠ 0, 𝑔(𝑝𝑙) ≠ 0 and 𝑔(𝑝𝑖) = 0 for all 𝑘 < 𝑖 < 𝑙. Then 𝑔(𝑝𝑘)𝑔(𝑝𝑙) < 0.

Proof. For 𝑘 ≥ 1 we have:

𝑔(𝑝𝑘) = 𝑓 ∗ `(𝑝𝑘)

=
𝑘∑︁
𝑛=0

𝑓 (𝑝𝑛) · `(𝑝𝑘−𝑛)

= 𝑓 (𝑝𝑘) − 𝑓 (𝑝𝑘−1).

So as 𝑓 assumes only the values −1 and 1, we have that result (i) follows.
If 𝑘 is the smallest positive integer such that 𝑔(𝑝𝑘) ≠ 0. Then 𝑓 (𝑝𝑖) = 1 for all 𝑖 < 𝑘 and

𝑓 (𝑝𝑘) = −1, so result (ii) follows by (i).
In order to prove item (iii), we separate in two cases. If 𝑘 = 0, then the result follows

directly from item (ii). If 𝑘 ≠ 0, we observe that 𝑔(𝑝𝑖) = 0 implies that 𝑓 (𝑝𝑖) = 𝑓 (𝑝𝑖−1)
and therefore 𝑓 (𝑝𝑘) = · · · = 𝑓 (𝑝𝑙−1), as 𝑔(𝑝𝑙) ≠ 0. By item (i) we conclude that 𝑓 (𝑝𝑘) =
− 𝑓 (𝑝𝑘−1) and 𝑓 (𝑝𝑙) = − 𝑓 (𝑝𝑙−1), therefore 𝑔(𝑝𝑙) = 𝑓 (𝑝𝑙) − 𝑓 (𝑝𝑙−1) = 𝑓 (𝑝𝑙) − 𝑓 (𝑝𝑘) implies
𝑓 (𝑝𝑙) = − 𝑓 (𝑝𝑙−1) = − 𝑓 (𝑝𝑘) = 𝑓 (𝑝𝑘−1), and so 𝑔(𝑝𝑙) = −𝑔(𝑝𝑘). □

The next result establishes bounds for the value of 𝐸𝑝 and is, therefore, useful for
bounding 𝐺.

Lemma 4.4. If 𝑔(𝑝𝑘) ≠ 0, then:

(i) 4 − 8
𝑝
≤ 𝐸𝑝(𝑝𝑘) ≤ 4 + 8

𝑝
, for all 𝑘 ≥ 1;

(ii) 1 − 4
𝑝
≤ 𝐸𝑝(1) ≤ 1.

Proof. All the proofs are based on the observation that Lemma 4.3 implies that the series
on the definition of 𝐸𝑝 alternates signs and the absolute values of its terms decreases, so
the lowest/greatest value is obtained by summing at most one term.

𝐸𝑝(𝑝𝑘) = |𝑔(𝑝𝑘) |2 + 2
∑︁
𝑗>𝑘

𝑔(𝑝𝑘)𝑔(𝑝 𝑗)
𝑝 𝑗−𝑘

= 4 + 2
∑︁
𝑗>𝑘

𝑔(𝑝𝑘)𝑔(𝑝 𝑗)
𝑝 𝑗−𝑘

≤ 4 + 8
𝑝
.
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𝐸𝑝(𝑝𝑘) = |𝑔(𝑝𝑘) |2 + 2
∑︁
𝑗>𝑘

𝑔(𝑝𝑘)𝑔(𝑝 𝑗)
𝑝 𝑗−𝑘

= 4 + 2
∑︁
𝑗>𝑘

𝑔(𝑝𝑘)𝑔(𝑝 𝑗)
𝑝 𝑗−𝑘

≥ 4 − 8
𝑝
.

𝐸𝑝(1) = |𝑔(1) |2 + 2
∑︁
𝑗>0

𝑔(1)𝑔(𝑝 𝑗)
𝑝 𝑗−𝑘

= 1 + 2
∑︁
𝑗>0

𝑔(𝑝 𝑗)
𝑝 𝑗

≤ 1.

𝐸𝑝(1) = |𝑔(1) |2 + 2
∑︁
𝑗>0

𝑔(1)𝑔(𝑝 𝑗)
𝑝 𝑗−𝑘

= 1 + 2
∑︁
𝑗>0

𝑔(𝑝 𝑗)
𝑝 𝑗

≥ 1 − 4
𝑝
.

□

Corollary 4.5. The function 𝐺 is well defined, i.e, the product on the definition converges.

Lemma 4.6. The function 𝐺(𝑎) has the following properties:

(i) 𝐺(4𝑎) = 0, 𝑎 ∈ ℕ;

(ii) 𝐺(2𝑎) = −4𝐺(𝑎), 𝑎 odd;

(iii)
∑
𝑎≥1

𝐺(𝑎)
𝑎2

= 0;

(iv) If 𝑓 (3) = 1. Then 𝐺(𝑎) ≤ 0 for all 𝑎 odd;

(v)
∑
𝑎≥1

𝐺(𝑎)
𝑎

= 1.

Proof. First observe that we know the value of 𝑔 at powers of 2: 𝑔(2) = 𝑓 (2)`(1) +
𝑓 (1)`(2) = 𝑓 (2) − 1 = −2 and 𝑔(2𝑘) = 𝑓 (2𝑘)`(1) + 𝑓 (2𝑘−1)`(2) = 0, when 𝑘 > 1.

Using the above remark and the definition of 𝐸2 we have:
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𝐸2(4𝑎) = |𝑔(2𝑘) |2 + 2
∑︁
𝑗>𝑘

𝑔(2𝑘)𝑔(2 𝑗)
2 𝑗−𝑘

= 0,

as 𝑘 > 1. Therefore 𝐺(4𝑎) = 0. In the same way, if 𝑎 is odd, then:

𝐸2(2𝑎) = |𝑔(2) |2 + 2
∑︁
𝑗>1

𝑔(2)𝑔(2 𝑗)
2 𝑗−1

= 4

= −4
(
|𝑔(1) |2 + 2

∑︁
𝑗>0

𝑔(1)𝑔(2 𝑗)
2 𝑗

)
= −4𝐸2(𝑎),

so 𝐺(2𝑎) = −4𝐺(𝑎). Using properties (i) and (ii) we prove the third:∑︁
𝑎≥1

𝐺(𝑎)
𝑎2

=
∑︁
𝑎≥1
𝑎 even

𝐺(𝑎)
𝑎2

+
∑︁
𝑎≥1
𝑎 odd

𝐺(𝑎)
𝑎2

=
∑︁
𝑎≥1
𝑎 odd

𝐺(𝑎)
𝑎2

+ 𝐺(2𝑎)
(2𝑎)2 + 𝐺(4𝑎)

(4𝑎)2 + . . .

=
∑︁
𝑎≥1
𝑎 odd

𝐺(𝑎)
𝑎2

+ 𝐺(2𝑎)
(2𝑎)2

=
∑︁
𝑎≥1
𝑎 odd

𝐺(𝑎)
𝑎2

− 4𝐺(𝑎)
4𝑎2

= 0.

In order to prove (iv) note that

𝐸2(𝑎) = |𝑔(1) |2 + 2
∑︁
𝑗>0

𝑔(1)𝑔(2 𝑗)
2 𝑗

= 1 + 2
−2
2

= −1.
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As 𝑓 (3) = 1we have 𝑔(3) = 𝑓 (3)`(1) + 𝑓 (1)`(3) = 𝑓 (3)−1 = 0, consequently if (𝑎, 3) = 1,
then:

𝐸3(𝑎) = 1 + 2
∑︁
𝑗>0

𝑔(3 𝑗)
3 𝑗

= 1 + 2
∑︁
𝑗>1

𝑔(3 𝑗)
3 𝑗

≥ 1 − 4
9

> 0.

By Lemma 4.4 we know that 𝐸𝑝(𝑎) > 0 if (𝑝, 𝑎) > 1 and that 𝐸𝑝(𝑎) > 0 if 𝑝 > 3, therefore
result (iv) follows from 𝐺(𝑎) = ∏

𝐸𝑝(𝑎) and from the fact that 2 is the only 𝑝 such that
𝐸𝑝(𝑎) < 0.

In order to prove result (v) we use Lemma 4.2 with 𝑚 = 0:

1 = lim
𝑥→∞

1
𝑥

∑︁
𝑛≤𝑥

1

= lim
𝑥→∞

1
𝑥

∑︁
𝑛≤𝑥

𝑓 (𝑛) 𝑓 (𝑛 + 0)

=
∑︁
𝑎|0

𝐺(𝑎)
𝑎

=
∑︁
𝑎≥1

𝐺(𝑎)
𝑎

.

□

4.2 A Lower Bound for G

An important step in the proof of Erdős-Coons-Tao conjecture is to show that a series that
depends on 𝐺 is divergent. In this section we establish an important non trivial lower bound
for |𝐺(𝑎) | in terms of |𝐺(1) |. So in order to prove that |𝐺(𝑎) | ≫ 1 we will just have to show
that 𝐺(𝑎) ≠ 0 and |𝐺(1) | ≫ 1.

Lemma 4.7. Suppose that 𝐺(𝑎) ≠ 0. Then:

|𝐺(𝑎) | ≫
(
4
3

)𝜔(𝑎)
|𝐺(1) |. (4.1)
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Proof. By Lemma 4.4 we have that 𝐸𝑝(1) ≤ 1 and 𝐸𝑝(𝑝𝑘) ≥ 4
3 , so we conclude that

4
3𝐸𝑝(1) ≤ 𝐸𝑝(𝑎). Using this result we have:

|𝐺(𝑎) | =
����� ∏
𝑝𝑘 | |𝑎,𝑘≥1

𝐸𝑝(𝑎)
����� ·

����� ∏
𝑝𝑘 | |𝑎,𝑘=0

𝐸𝑝(1)
�����

≥
(
4
3

)𝜔(𝑎)
����� ∏
𝑝𝑘 | |𝑎,𝑘≥1

𝐸𝑝(1)
����� ·

����� ∏
𝑝𝑘 | |𝑎,𝑘=0

𝐸𝑝(1)
�����

=

(
4
3

)𝜔(𝑎)
|𝐺(1) |.

□

Remark 4.8. The bound established by Klurman [11] was actually the following one:

|𝐺(𝑎) | ≫
(
5
4

)𝜔(𝑎)−12
5
|𝐺(1) |.

The choice of Equation (4.1) instead of Klurman’s bound was made due to its clearness.
Klurman’s way of estimating 𝐸𝑝 was not the most tight, so he had to deal separately the
case 𝑝 = 3 and 𝑝 > 3, as the 2

5 term would create the inconvenience of
( 2
5
)𝜔(𝑎) going to

zero as 𝜔 increases.

4.3 Estimating the Second Moment

In this section we show an equality involving the second moment and some series. A key
step in the proof of Theorem 1.14 is that this series must converge as the second moment of
a multiplicative function 𝑓 : ℕ → {−1, 1} with bounded partial sums is finite, therefore we
would obtain a contradiction if we show this series actually diverges. We start by proving
an auxiliary equality used in our proof.

Lemma 4.9. Let 𝐻 = 𝑟𝑎 + 𝑠 with 0 ≤ 𝑠 < 𝑎. Then:({
𝐻

𝑎

}
−

{
𝐻

𝑎

}2)
− 4

({
𝐻

2𝑎

}
−

{
𝐻

2𝑎

}2)
= −2

 𝐻2𝑎 .



48

Proof. We separate in two cases. First suppose r is even. Then:({
𝐻

𝑎

}
−

{
𝐻

𝑎

}2)
− 4

({
𝐻

2𝑎

}
−

{
𝐻

2𝑎

}2)
=

({ 𝑠
𝑎

}
−

{ 𝑠
𝑎

}2)
− 4

({ 𝑠

2𝑎

}
−

{ 𝑠

2𝑎

}2)
=
𝑠

𝑎
− 𝑠2

𝑎2
− 4

(
𝑠

2𝑎
− 𝑠2

4𝑎2

)
= − 𝑠

𝑎

= −2
 𝑠

2𝑎


= −2

 𝐻2𝑎 .
Now suppose 𝑟 is odd. Then:({

𝐻

𝑎

}
−

{
𝐻

𝑎

}2)
− 4

({
𝐻

2𝑎

}
−

{
𝐻

2𝑎

}2)
=

({ 𝑠
𝑎

}
−

{ 𝑠
𝑎

}2)
− 4

({
0.5 + 𝑠

2𝑎

}
−

{
0.5 + 𝑠

2𝑎

}2)
=

(
𝑠

𝑎
− 𝑠2

𝑎2

)
− 4

((
0.5 + 𝑠

2𝑎

)
−

(
0.5 + 𝑠

2𝑎

)2)
=
𝑠

𝑎
− 𝑠2

𝑎2
− 4

(
0.5 + 𝑠

2𝑎
− 0.52 − 𝑠

2𝑎
− 𝑠2

4𝑎2

)
=
𝑠

𝑎
− 1

= −2
0.5 + 𝑠

2𝑎


= −2

 𝐻2𝑎 .
□

Lemma 4.10. Let 𝐻 ∈ ℕ. Then:

1
𝑥

∑︁
𝑛≤𝑥

(
𝑛+𝐻∑︁
𝑘=𝑛

𝑓 (𝑘)
)2

= −2
∑︁

𝑎≥1,𝑎 odd
𝐺(𝑎)

 𝐻2𝑎 + 𝑜𝑥→∞(1)

Proof. First, let us open the products in
∑
𝑛≤𝑥

( ∑𝑛+𝐻
𝑘=𝑛

𝑓 (𝑘)
)2

and collect similar terms.

Whenever 𝑛 satisfies 𝐻 ≤ 𝑛 ≤ 𝑛 + ℎ ≤ 𝑥 − 𝐻, the term 𝑓 (𝑛) 𝑓 (𝑛 + ℎ) appears 2(𝐻 − ℎ)
times. Whenever 𝑛 satisfies 𝐻 ≤ 𝑛 ≤ 𝑥 − 𝐻, the term 𝑓 (𝑛) 𝑓 (𝑛 + ℎ) appears 𝐻 times. We
have 𝑂(𝐻2) remaining terms to take into account, as each one of these terms are bounded
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by 1, and 𝐻 does not depend on 𝑥, we see that the contribution of these terms is 𝑂(1).
Taking these observations into account we have:

1
𝑥

∑︁
𝑛≤𝑥

(
𝑛+𝐻∑︁
𝑘=𝑛

𝑓 (𝑘)
)2

=
1
𝑥

(∑︁
𝑛≤𝑥

𝐻 𝑓 (𝑛) 𝑓 (𝑛) + 2
∑︁
𝑛≤𝑥

∑︁
1≤ℎ≤𝐻

(𝐻 − ℎ) 𝑓 (𝑛) 𝑓 (𝑛 + ℎ)
)
+ 𝑜(1)

=
1
𝑥

(∑︁
𝑛≤𝑥

𝐻 𝑓 (𝑛) 𝑓 (𝑛) + 2
∑︁
𝑛≤𝑥

∑︁
1≤ℎ≤𝐻

(𝐻 − ℎ) 𝑓 (𝑛) 𝑓 (𝑛 + ℎ)
)
+ 𝑜(1)

=
∑︁
𝑎≥1

𝐺(𝑎)
𝑎

(
𝐻 + 2

∑︁
1≤ℎ≤𝐻,𝑎|ℎ

(𝐻 − ℎ)
)
+ 𝑜(1) (4.2)

The final equality is a direct application of Lemma 4.2. Using Theorem 2.2, let us rewrite
𝐻 as 𝐻 = 𝑟𝑎 + 𝑠, where 0 ≤ 𝑠 < 𝑎. Then:

𝐻 + 2
∑︁

1≤ℎ≤𝐻,𝑎|ℎ
(𝐻 − ℎ) = 𝑟𝑎 + 𝑠 + 2

∑︁
1≤𝑚≤𝑟

(𝑟𝑎 + 𝑠 − 𝑚𝑎)

= 𝑟𝑎 + 𝑠 + 2𝑟𝑠 + 𝑎𝑟(𝑟 − 1)

=
(𝑟𝑎 + 𝑠)2

𝑎
+ 𝑎

(
𝑠

𝑎
−

(
𝑠

𝑎

)2)
=

(𝑟𝑎 + 𝑠)2
𝑎

+ 𝑎
({
𝑠

𝑎

}
−

{
𝑠

𝑎

}2)
=
𝐻2

𝑎
+ 𝑎

({
𝐻

𝑎

}
−

{
𝐻

𝑎

}2)
. (4.3)
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Substituting (4.3) in (4.2), using results (i)-(iii) of Lemma 4.6 and Lemma 4.9, we obtain:

1
𝑥

∑︁
𝑛≤𝑥

(
𝑛+𝐻∑︁
𝑘=𝑛

𝑓 (𝑘)
)2

= 𝐻2 ∑︁
𝑎≥1

𝐺(𝑎)
𝑎2

+
∑︁
𝑎≥1

𝐺(𝑎)
({
𝐻

𝑎

}
−

{
𝐻

𝑎

}2)
+ 𝑜(1)

=
∑︁
𝑎≥1

𝐺(𝑎)
({
𝐻

𝑎

}
−

{
𝐻

𝑎

}2)
+ 𝑜(1)

=
∑︁
𝑎≥1
𝑎 odd

𝐺(𝑎)
({
𝐻

𝑎

}
−

{
𝐻

𝑎

}2)
+

∑︁
𝑎≥1
𝑎 even

𝐺(𝑎)
({
𝐻

𝑎

}
−

{
𝐻

𝑎

}2)
+ 𝑜(1)

=
∑︁
𝑎≥1
𝑎 odd

𝐺(𝑎)
({
𝐻

𝑎

}
−

{
𝐻

𝑎

}2)
+

∑︁
𝑎≥1
𝑎 odd

𝐺(2𝑎)
({

𝐻

2𝑎

}
−

{
𝐻

2𝑎

}2)
+ 𝑜(1)

=
∑︁
𝑎≥1
𝑎 odd

𝐺(𝑎)
[({

𝐻

𝑎

}
−

{
𝐻

𝑎

}2)
− 4

({
𝐻

2𝑎

}
−

{
𝐻

2𝑎

}2)]
+ 𝑜(1)

= −2
∑︁
𝑎≥1
𝑎 odd

𝐺(𝑎)
 𝐻2𝑎 + 𝑜(1).

□

The importance of the previous result in the proof of the Erdős-Coons-Tao conjecture
comes in the form of the following corollary.

Corollary 4.11. If 𝑓 has bounded partial sums. Then the following equality holds:

−2
∑︁
𝑎≥1
𝑎 odd

𝐺(𝑎)
 𝐻2𝑎 = 𝑂𝐻→∞(1).

Proof. Let 𝐶 = sup𝑥 |
∑
𝑛≤𝑥 𝑓 (𝑛) |. Then:

1
𝑥

∑︁
𝑛≤𝑥

(
𝑛+𝐻∑︁
𝑘=𝑛

𝑓 (𝑘)
)2

≤ 1
𝑥

∑︁
𝑛≤𝑥

(2𝐶)2

= 4𝐶2.

And the result follows by applying Lemma 4.10. □

4.4 Proof of Erdős-Coons-Tao Conjecture

In this section we prove Theorem 1.14, which is the main theorem of this dissertation.
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Proof of Theorem 1.14. Suppose there exists 𝑚 such that 𝑓 (𝑛) = 𝑓 (𝑛+𝑚) for all 𝑛 ∈ ℕ and∑𝑚
𝑛=1 𝑓 (𝑛) = 0. Then for all 𝑥 ∈ ℕ: �����∑︁𝑛≤𝑥 𝑓 (𝑛)

����� ≤ 𝑚,

therefore 𝑓 has bounded partial sums. Now suppose 𝑓 has bounded partial sums. Then by
Theorem 1.13 we have 𝑓 (2𝑘) = −1 for all 𝑘 ≥ 1 and 𝑓 is 1-pretentious. By Corollary 4.11
we have:

−2
∑︁
𝑎≥1
𝑎 odd

𝐺(𝑎)
 𝐻2𝑎 = 𝑂𝐻→∞(1). (4.4)

Suppose that 𝑔(𝑛) = 0 for all odd 𝑛 except for some finite set. Let 𝑎1, . . . , 𝑎𝑛 be all odd
indexes such that 𝑔(𝑎𝑖) ≠ 0 and suppose 𝑎𝑘 < 𝑎𝑘+1 for all 𝑘 < 𝑛. Then letting 𝑀 = 2𝑎𝑛 we
have that 0 = 𝑔(𝑝𝑘) = 𝑓 (𝑝𝑘) − 𝑓 (𝑝𝑘−1) for all 𝑝𝑘 > 𝑀. Applying Theorem 3.4 we conclude
the theorem for this case.

Let (𝑎𝑛)𝑛 be an increasing sequence containing all odd numbers such that 𝑔(𝑎𝑛) ≠ 0.
Now suppose that 𝑓 (3) = 1. By Lemma 4.7 item (iv), we have that 𝑔(3) = 0, therefore,

using the same technique of Lemma 4.4 we have:

𝐸3(1) = 1 + 2
∑︁
𝑗≥1

𝑔(3 𝑗)
3 𝑗

= 1 + 2
∑︁
𝑗≥2

𝑔(3 𝑗)
3 𝑗

≥ 1 − 4
9

=
5
9
,

so by Lemma 4.4, we conclude that |𝐺(1) | ≫ 1. By Lemma 4.7, we have that |𝐺(𝑎𝑛) | ≫ 1.
Let 𝐻𝑀 = 𝑙𝑐𝑚[𝑎1, 𝑎2, . . . , 𝑎𝑀]. Observe that 𝐻𝑀

𝑎𝑛
is odd, and therefore,

 𝐻𝑀

2𝑎𝑛

 = 1
2 . By
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Lemma 4.6 item (iv) we have that each 𝐺(𝑎𝑛) is negative and, therefore as we are summing
positive terms of the form −𝐺(𝑎𝑛), we can drop some values to obtain a smaller sum:

−2
∑︁

𝑎≥1,𝑎 odd
𝐺(𝑎)

𝐻𝑀

2𝑎

 = −2
∞∑︁
𝑛=1

𝐺(𝑎𝑛)
𝐻𝑀

2𝑎𝑛


≥ −2

𝑀∑︁
𝑛=1

𝐺(𝑎𝑛)
𝐻𝑀

2𝑎𝑛


= 2

𝑀∑︁
𝑛=1

|𝐺(𝑎𝑛) |
𝐻𝑀

2𝑎𝑛


=

𝑀∑︁
𝑛=1

|𝐺(𝑎𝑛) |

≫ 𝑀. (4.5)

But we know by Equation (4.4) that the left hand side of equation 4.5 is bounded, so we
have a contradiction for large 𝑀.

We are left with the case where 𝑓 (3) = −1. First suppose that 𝐸3(1) = 0. In this case
𝑔(3𝑘) = (−1)𝑘 and therefore |𝐺(3𝑘) | ≫ 1 for all 𝑘 > 0. Now suppose that 𝐸3(1) > 0. Then
by Lemma 4.4, |𝐺(𝑎𝑛) | ≫ 1 holds. In both cases we have infinitely many 𝑎𝑘 such that
|𝐺(𝑎𝑘) | ≫ 1 and we can just follow the same steps made on the case 𝑓 (3) = 1 to arrive on
the same contradiction.

Now assume 𝐸3(1) < 0. Let us define two auxiliary functions:

𝐺∗(𝑎) =
∏

𝑝𝑘 | |𝑎,𝑝>3

(
|𝑔(𝑝𝑘) |2 + 2

∑︁
𝑖≥𝑘+1

𝑔(𝑝𝑘)𝑔(𝑝𝑖)
𝑝𝑖−𝑘

)
and

𝑆(𝐻) = 2
∑︁
𝑎≥1

(𝑎,6)=1

𝐺∗(𝑎)
 𝐻2𝑎 .
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Using that 𝐸𝑝(𝑎) depends only on the value of 𝑝𝑘 | | 𝑎, we have that if (𝑏, 𝑝) = 1, then
𝐸𝑝(𝑎) = 𝐸𝑝(𝑎𝑏). Therefore:∑︁

𝑖≥0
𝐸3(3𝑖)𝑆

(
𝐻

3𝑖

)
= 2

∑︁
𝑖≥0

𝐸3(3𝑖)
∑︁
𝑎≥1

(𝑎,6)=1

𝐺∗(𝑎)
 𝐻

2𝑎3𝑖


= 2

∑︁
𝑖≥0

∑︁
𝑎≥1

(𝑎,6)=1

𝐸3(3𝑖)𝐺∗(𝑎)
 𝐻

2𝑎3𝑖


= 2

∑︁
𝑖≥0

∑︁
𝑎≥1

(𝑎,6)=1

𝐸3(𝑎3𝑖)𝐺∗(𝑎3𝑖)
 𝐻

2𝑎3𝑖


= −2

∑︁
𝑎≥1
𝑎 odd

𝐺(𝑎)
 𝐻2𝑎 (4.6)

Combining Equations (4.4), (4.6) and using the observation that that 𝑆 is non negative,
𝐸3(3𝑖) ≥ 0 for 𝑖 ≥ 1 and 𝐸3(1) < 0 we can arrive at:

𝑆(𝐻) = 𝐸3(3)𝑆(𝐻/3)
−𝐸3(1)

− 1
𝐸3(1)

∞∑︁
𝑖=2

𝐸3(3𝑖)𝑆
(
𝐻

3𝑖

)
+ 𝑂𝐻→∞(1)

≥ 𝐸3(3)𝑆(𝐻/3)
−𝐸3(1)

+ 𝑂𝐻→∞(1). (4.7)

By Lemma 4.4 we have:

𝐸3(3) ≥
4
3

and

𝐸3(1) ≥ −1
3
.

Using these bounds on Equation (4.7) we obtain:

𝑆(𝐻) ≥ 4𝑆
(
𝐻

3

)
+ 𝑂𝐻→∞(1).

We can change the 𝑂(1) term by a sufficiently large 𝑀 obtaining:

𝑆(𝐻) ≥ 4𝑆
(
𝐻

3

)
− 𝑀.

Suppose there are infinitely many numbers 𝑏 such that (𝑏, 6) = 0 and let (𝑏𝑛)𝑛 be an
increasing sequence containing all numbers 𝑏𝑛 such that (𝑏𝑛, 6) = 1 and 𝑔(𝑏𝑛) ≠ 0. Now
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define 𝐻0 = 𝑙𝑐𝑚[𝑏1, . . . , 𝑏𝐾]. Note that by Lemma 4.4, |𝐺∗(𝑏𝑛) | ≫ 1. Therefore, for
sufficiently large 𝐾, 𝑆(𝐻0) ≥ 2𝑀 holds. So:

𝑆(3𝐻0) ≥ 4𝑆(𝐻0) − 𝑀

≥ 4𝑆(𝐻0) −
𝑆(𝐻0)

2

=
7
2
𝑆(𝐻0).

Now we use induction on 𝑛 to conclude that for all 𝑛 ≥ 1 we have

𝑆(3𝑛𝐻0) ≥
(
7
2

)𝑛
𝑆(𝐻0).

Defining 𝐻𝑛 = 3𝑛𝐻0 and taking 𝑐 > 0 such that 31+𝑐 ≤ 7
2 . We have:

𝐻1+𝑐
𝑛 = (3𝑛𝐻0)1+𝑐

≪ 3(1+𝑐)𝑛

≪
(
7
2

)𝑛
≪

(
7
2

)𝑛
𝑆(𝐻0)

≪ 𝑆(3𝑛𝐻0)
= 𝑆(𝐻𝑛).

Now using the fact that
∑
𝑛≥1

𝐺(𝑎)
𝑎

is absolutely convergent, we have:∑︁
𝑎≥𝐻

(𝑎,6)=1

𝐺∗(𝑎)
𝑎

= 𝑜𝐻→∞(1). (4.8)
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So:

𝑆(𝐻) = 2
∑︁
𝑎≥1

(𝑎,6)=1

𝐺∗(𝑎)
 𝐻2𝑎

= 2
∑︁
𝑎<𝐻

(𝑎,6)=1

𝐺∗(𝑎)
 𝐻2𝑎 + 𝐻 ∑︁

𝑎≥𝐻
(𝑎,6)=1

𝐺∗(𝑎)
𝑎

≪
∑︁
𝑎<𝐻

(𝑎,6)=1

𝐺∗(𝑎) + 𝐻
∑︁
𝑎≥𝐻

(𝑎,6)=1

𝐺∗(𝑎)
𝑎

≪
√
𝐻

∑︁
𝑎<

√
𝐻

(𝑎,6)=1

𝐺∗(𝑎)
𝑎

+ 𝐻
∑︁

√
𝐻≤𝑎<𝐻
(𝑎,6)=1

𝐺∗(𝑎)
𝑎

+ 𝐻
∑︁
𝑎≥𝐻

(𝑎,6)=1

𝐺∗(𝑎)
𝑎

≪
√
𝐻 log

√
𝐻 + 𝐻

∑︁
𝑎≥

√
𝐻

(𝑎,6)=1

𝐺∗(𝑎)
𝑎

= 𝑜(𝐻).

From 𝑆(𝐻𝑛) ≫ 𝐻1+𝑐
𝑛 there exist constants 𝑘 and 𝑛0 such that 𝑛 > 𝑛0 implies 𝐻1+𝑐

𝑛 ≤ 𝑘𝑆(𝐻𝑛),
and from 𝑆(𝐻) = 𝑜(𝐻) we have that, for 𝐻 large enough, 𝑆(𝐻) < 𝐻/𝑘 holds. So we have:

𝐻1+𝑐
𝑛 ≤ 𝑘𝑆(𝐻𝑛) < 𝐻𝑛.

But this is clearly a contradiction. Therefore we are left with the case where 𝑏1, 𝑏2, . . . 𝑏𝑙 are
all indices 𝑏𝑖 such that (𝑏𝑖, 6) = 1 and 𝑔(𝑏𝑖) ≠ 0. We may assume without loss of generality
that 𝑏𝑖 < 𝑏𝑖+1 for all 𝑖 < 𝑙. Note that there exists at least one such element 𝑏𝑖 as g being
multiplicative implies 𝑔(1) = 1.

Let 𝑈 be the set of integers 𝑘 such that 𝑔(3𝑘) ≠ 0. Then, 𝑉 = {3𝑢 · 𝑏𝑖 : 𝑢 ∈ 𝑈, 1 ≤ 𝑖 ≤ 𝑙}
is exactly the set of odd integers 𝑚 for which 𝑔(𝑚) ≠ 0. In other words, the sequence (𝑎𝑛)𝑛
and the set 𝑉 contains the same elements. Note that |𝑉 | = 𝑙 |𝑈 |, however by the existence
of (𝑎𝑛), we know that |𝑉 | is infinite, we conclude that |𝑈 | is infinite, i.e, 𝑔(3𝑘) ≠ 0, for
infinitely many integers 𝑘.
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Define 𝐻0 = 𝑙𝑐𝑚[𝑏1, 𝑏2, . . . , 𝑏𝑙]. Observe that 𝐻0
𝑏𝑖

is odd, and therefore,
 𝐻0
2𝑏𝑖

 = 1
2 .

Therefore:

𝑆(3𝑖𝐻0) = 2
∑︁

(𝑎,6)=1
𝐺∗(𝑎)

3𝑖𝐻0

2𝑎


= 2

𝑙∑︁
𝑗=1

𝐺∗(𝑏 𝑗)
3𝑖𝐻0

2𝑏 𝑗


=

𝑙∑︁
𝑗=1

𝐺∗(𝑏 𝑗).

Therefore, defining 𝑀 =
∑𝑙

𝑗=1 𝐺
∗(𝑏 𝑗) . We have:

−2
∑︁
𝑎≥1
𝑎 odd

𝐺(𝑎)
3𝐾𝐻0

2𝑎

 = ∑︁
𝑖≥0

𝐸3(3𝑖)𝑆
(
3𝐾𝐻0

3𝑖

)
≥

∑︁
𝑖≤𝐾

𝐸3(3𝑖)𝑆
(
3𝐾−𝑖𝐻0

)
= 𝑀

∑︁
𝑖≤𝐾

𝐸3(3𝑖).

Now observe that if 𝑔(3𝑘) ≠ 0 for 𝑘 ≥ 1, then 𝐸3(3𝑘) ≥ 1, as 𝑔(3𝑘) ≠ 0 for infinitely
many values of 𝑘. Taking 𝐾 large enoughmakes the last sum unbounded, but this contradicts
Equation (4.4). □
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