
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Escola de Engenharia

Programa de Pós-Graduação em Engenharia Elétrica

Jean Nunes Ribeiro Araújo

DIVERSITY-DRIVEN MIGRATION STRATEGY FOR DISTRIBUTED
EVOLUTIONARY ALGORITHMS APPLIED TO LARGE-SCALE OPTIMIZATION

PROBLEMS

Belo Horizonte
2023

Jean Nunes Ribeiro Araújo

DIVERSITY-DRIVEN MIGRATION STRATEGY FOR DISTRIBUTED

EVOLUTIONARY ALGORITHMS APPLIED TO LARGE-SCALE OPTIMIZATION

PROBLEMS

Tese de Doutorado submetida à Banca
Examinadora designada pelo
Colegiado do Programa de Pós-
Graduação em Engenharia Elétrica da
Escola de Engenharia da Universidade
Federal de Minas Gerais, como
requisito para obtenção do Título de
Doutor em Engenharia Elétrica.

Orientador: Prof. Dr. Lucas de Souza
Batista

Belo Horizonte

2023

Araújo, Jean Nunes Ribeiro.

A663d Diversity-driven migration strategy for distributed evolutionary
algorithms applied to large-scale optimization problems [recurso letrônico]
/ Jean Nunes Ribeiro Araújo. - 2023.

 1 recurso online (111 f. : il., color.) : pdf.

Orientador: Lucas de Souza Batista.

 Tese (doutorado) - Universidade Federal de Minas Gerais,
Escola de Engenharia.

 Apêndices: f. 93-104.

 Bibliografia: f. 105-111.

 Exigências do sistema: Adobe Acrobat Reader.

 1. Engenharia elétrica - Teses. 2. Algoritmos - Teses. 3. Modelos
matemáticos - Teses. 4. Otimização - Teses. I. Batista, Lucas de Souza.
II. Universidade Federal de Minas

Gerais. Escola de Engenharia.

III. Título.

 CDU: 621.3(043)

 Ficha catalográfica elaborada pela bibliotecária Ângela Cristina Silva - CRB-6/2361
Biblioteca Prof. Mário Werneck, Escola de Engenharia da UFMG.

UNIVERSIDADE FEDERAL DE MINAS GERAIS
ESCOLA DE ENGENHARIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

FOLHA DE APROVAÇÃO

"DIVERSITY-DRIVEN MIGRATION STRATEGY FOR DISTRIBUTED EVOLUTIONARY ALGORITHMS APPLIED TO LARGE-SCALE OPTIMIZATION
PROBLEMS"

JEAN NUNES RIBEIRO ARAUJO

 Tese de Doutorado submetida à Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação em Engenharia Elétrica da Escola
de Engenharia da Universidade Federal de Minas Gerais, como requisito para obtenção do grau de Doutor em Engenharia Elétrica. Aprovada em 17 de
agosto de 2023. Por:

Prof. Dr. Lucas de Souza Batista
DEE (UFMG) - Orientador

Prof. Dr. Cristiano Leite de Castro

DEE (UFMG)

Profa. Dra. Elizabeth Fialho Wanner
Computer Science (Aston University)

Prof. Dr. Rodrigo César Pedrosa Silva

Departamento de Computação (UFOP)

Prof. Dr. André Luiz Maravilha Silva
Departamento de Informática, Gestão e Design (CEFET-MG)

Documento assinado eletronicamente por Lucas de Souza Batista, Professor do Magistério Superior, em 17/08/2023, às 18:06, conforme horário oficial
de Brasília, com fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por André Luiz Maravilha Silva, Usuário Externo, em 18/08/2023, às 14:29, conforme horário oficial de Brasília,
com fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Cristiano Leite de Castro, Professor do Magistério Superior, em 18/08/2023, às 15:03, conforme horário
oficial de Brasília, com fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Elizabeth Fialho Wanner, Usuária Externa, em 22/08/2023, às 10:53, conforme horário oficial de Brasília, com
fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Rodrigo Cesar Pedrosa Silva, Usuário Externo, em 22/08/2023, às 14:16, conforme horário oficial de Brasília,
com fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

A autenticidade deste documento pode ser conferida no site https://sei.ufmg.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador 2547339 e o código CRC 2C990AE7.

Referência: Processo nº 23072.249602/2023-10 SEI nº 2547339

Dedicado aos meus pais, irmão e sobrinhos.

“Os mais fortes de todos os guerreiros são estes dois: tempo e paciência.”

Leon Tolstói

Resumo

Problemas de otimização global em larga escala geralmente possuem milhares de variáveis de

decisão e podem ser extremamente complicados de resolver usando metaheurı́sticas tradicionais.

Para lidar com esses problemas, modelos distribuı́dos têm sido empregados com sucesso por

muitos algoritmos evolucionários (AEs) na última década. Esses modelos fornecem meios

para permitir a colaboração entre ilhas (subpopulações), permitindo assim projetar estratégias

para lidar com a convergência prematura e a perda de diversidade. Por meio de migrações

periódicas, muitos algoritmos evolucionários distribuı́dos (AEDs) têm sido propostos para mel-

horar o equilı́brio entre exploração global e local. Neste trabalho, nós apresentamos um mecan-

ismo de migração baseado em diversidade, em que o momento da migração é determinado

avaliando a perda de diversidade das ilhas. Chamamos essa estratégia de Estratégia de Migração

Orientada à Diversidade (DDMS). Tendo os problemas de otimização global de larga escala como

foco, construı́mos o DDMS dentro de um modelo Cooperativo Coevolutivo (CC) e usamos o

DE/best/1 e o SHADE como otimizadores. Nós testamos o DDMS enviando o melhor indivı́duo

e chamamos essa estratégia de DDMS-BEST. Para competir com o DDMS-BEST, nós criamos

uma estratégia para tentar garantir que o indivı́duo migrante seja capaz de gerar uma diversidade

que ajude uma determinada ilha a explorar novas regiões sem prejudicar sua saúde. Para isso,

nós usamos um algoritmo de agrupamento online chamado TEDA-Cloud para gerar nuvens de

indivı́duos com boa aptidão que foram migrados anteriormente. Nesta estratégia, o indivı́duo

a ser migrado deve ser extraı́do de uma nuvem cuja distribuição populacional seja suficiente-

mente diferente da distribuição populacional da ilha que solicitou a migração. Nós chamamos

essa estratégia de DDMS-TEDA. Usando o conjunto de testes de otimização em larga escala

CEC’2013 com 1000 variáveis de decisão, nós comparamos as estratégias que usam o DDMS

com estratégias de migração tradicionais, ou seja, migrações com intervalo fixo e probabilı́stico.

Experimentos computacionais em diferentes cenários mostraram que a incorporação da es-

tratégia DDMS em um algoritmo cooperativo coevolutivo evolucionário distribuı́do levou a mel-

hores resultados. Considerando os valores médios de erro, mostramos que tanto o DDMS-BEST

quanto o DDMS-TEDA são melhores na grande maioria das funções e cenários testados. Em

relação à diversidade, mostramos que o DDMS-TEDA obtem melhores resultados em 100% das

funções testadas. No Apêndice A deste texto, destacamos também os resultados promissores do

DDMS-TEDA em cenários com 50 e 100 variáveis.

Palavras-chave: problemas de otimização em larga escala; algoritmos evolucionários

distribuı́dos; diversidade em algoritmos evolucionários; polı́ticas de migração em algoritmos

distribuı́dos.

Abstract

Large-Scale Global Optimization (LSGO) Problems usually have thousands of decision vari-

ables and can be extremely complicated to solve using traditional metaheuristics. To deal with

these problems, distributed models have been successfully employed by many Evolutionary

Algorithms (EAs) over the past decade. These models provide means to enable collaboration

between multiple islands (subpopulations), thus allowing to design strategies to deal with pre-

mature convergence and loss of diversity. Through introducing periodic migrations, many Dis-

tributed Evolutionary Algorithms (DEAs) have been proposed to improve the balance between

exploration and exploitation. In this work, we present a diversity-based migration mechanism,

in which the moment to perform the migrations is determined by assessing the loss of diversity

of the islands. We call this strategy Diversity-driven Migration Strategy (DDMS). Focusing on

large-scale global optimization problems, we built DDMS into a Cooperative Co-evolutionary

(CC) model and used DE/best/1 and SHADE as optimizers. We test DDMS by sending the best

individual and call it DDMS-BEST. To compete with the DDMS-BEST, we create a strategy to

try to ensure that the migrant individual is capable of generating a diversity that helps a given

island to explore new regions without harming its health. For that, we use an online clustering

algorithm called TEDA-Cloud to generate clouds of good fitness individuals that have been pre-

viously migrated. In this strategy, the individual to be migrated must be extracted from a cloud

whose population distribution is sufficiently different from the population distribution of the re-

questing island. We call it DDMS-TEDA. Using the CEC’2013 large-scale optimization test suite

with 1000 decision variables, we compare DDMS against traditional migration strategies, namely,

fixed and probabilistic interval migrations. Computational experiments with different scenarios

showed that incorporating the DDMS strategy in a Cooperative Co-evolution Distributed Evo-

lutionary Algorithm (CCDEA) led to better results. Considering the average error values, we

show that both DDMS-BEST and DDMS-TEDA are better in the vast majority of functions and

scenarios tested. Regarding the diversity, we showed that DDMS-TEDA gets better results in

100% of the functions. In Appendix A of this text, we also highlight the promising results of the

DDMS-TEDA in scenarios with 50 and 100 variables.

Keywords: large-scale optimization problems, distributed evolutionary algorithms, diversity in

evolutionary algorithms, migration policies in distributed evolutionary algorithms.

List of Figures

2.1 Migration topologies (Wang et al., 2019). 23

3.1 Structure of CCEA. 34
3.2 Optimization steps of a serial CCDEA. 35

4.1 Example of convergence to the same region. 44
4.2 Example of identifying the population’s convergence and stagnation, consider-

ing NP = 5 and D = 5. 46
4.3 Rule 3: When to migrate. The green line represents the Ψ values as the algo-

rithm evolves. Red points are generations in which a migration must not occur
and blue points are generations in which a migration must occur. 48

5.1 Illustration of a distributed EA with the proposed migratory policy. Circles into
the island represent the individuals of the population. The values in the small cir-
cles and the black arrows represent the steps/sequence of the events. The dashed
rectangles show actions taken on the islands. The rectangle with a straight line
houses the clouds obtained by the clustering algorithm. 56

5.2 Illustration of Typicality and Eccentricity concepts in TEDA (Bezerra et al., 2016) 59
5.3 Data clouds DC1, DC2 and DC3 after k observations. 60
5.4 Data clouds updating: left illustration shows DC1, DC2, DC3 and a newly ar-

rived data sample xk; right illustration shows the clouds after updating. 62
5.5 Data clouds creating: left illustration shows DC1, DC2, DC3 and a newly arrived

data sample xk; right illustration shows the clouds after creation of DC4. 63

6.1 Mean values of objective functions. The results are stratified by the decomposi-
tion method and group of functions. 74

6.2 Mean values of objective functions. The results are stratified by the decomposi-
tion method and group of functions. 77

6.3 f4 (G2): Effective moves after migration in a typical run. The illustration shows
the moment when a migration occurred and if such a migration promoted an
improvement in the requesting island. 82

6.4 f9 (G3): Effective moves after migration in a typical run. The illustration shows
the moment when a migration occurred and if such a migration promoted an
improvement in the requesting island. 83

6.5 f12 (G4): Effective moves after migration in a typical run. The illustration
shows the moment when a migration occurred and if such a migration promoted
an improvement in the requesting island. 84

6.6 f15 (G5): Effective moves after migration in a typical run. The illustration
shows the moment when a migration occurred and if such a migration promoted
an improvement in the requesting island. 85

8

6.7 Convergence plots of the migration strategies for the best island for functions
f4 − f9. Axes x (NFE) is multiplied by 105 for clarity. 86

6.8 Convergence plots of the migration strategies for the best island for functions
f10 − f15. Axes x (NFE) is multiplied by 105 for clarity. 87

List of Tables

2.1 Summary with features the referenced studies. 32

6.1 Parameter setting of distributed model for each strategy. 69
6.2 Parameter setting of TEDA/TEDA-Class. 69
6.3 Counts of wins, losses and ties of proposed strategies (DDMS-TEDA, DDMS-BEST,

FIXED-TEDA, and PROBA-TEDA) vs. traditional strategies (FIXED-BEST
and PROBA-BEST) according to significance of Dunn’s test. 70

6.4 Counts of wins, losses and ties of DDMS-TEDA vs. DDMS-BEST according to
significance of Dunn’s test. 71

6.5 Results obtained by proposed and traditional migration strategies. The results
presented in this table are the mean values of the objective function and the mean
values of runtime in seconds for each group of functions and decomposition
method. 72

6.6 RDG2: Results obtained by proposed and traditional migration strategies. The
results presented in this table are the mean values of the objective function and
the mean values of runtime in seconds for each group of functions. 76

6.7 Average of µσ of the population. 81

A.1 Counts of wins, losses and ties of DDMS-TEDA vs. FIXED-BEST according to
significance of Dunn’s test. 94

A.2 Counts of wins, losses and ties of DDMS-TEDA vs. PROBA-BEST according to
significance of Dunn’s test. 94

A.3 Average error on D = 50. Numbers in bold highlight represent the strategies
with the lowest average error. Numbers in parentheses represent the standard
error and the p-value, respectively. 95

A.4 Average error on D = 100. Numbers in bold highlight represent the strategies
with the lowest average error. Numbers in parentheses represent the standard
error and the p-value, respectively. 96

A.5 Counts of wins, losses and ties of DDMS-TEDA vs. SHADE according to signif-
icance of Dunn’s test. 97

A.6 Counts of wins, losses and ties of DDMS-TEDA vs. L-SHADE according to
significance of Dunn’s test. 97

A.7 Counts of wins, losses and ties of DDMS-TEDA vs. SHADE-ILS according to
significance of Dunn’s test. 97

A.8 Average error on D = 50: DDMS-TEDA vs. Sequential EAs. Numbers in bold
highlight represent the strategies with the lowest average error. Numbers in
parentheses represent the standard error and the p-value, respectively. 99

10

A.9 Average error on D = 100: DDMS-TEDA vs. Sequential EAs. Numbers in bold
highlight represent the strategies with the lowest average error. Numbers in
parentheses represent the standard error and the p-value, respectively. 100

A.10 Average error on D = 50: DDMS-TEDA vs. some recent sequential EAs. Num-
bers in bold highlight represent the strategies with the lowest average error.
Numbers in parentheses represent the standard error. 103

A.11 Average error on D = 100: DDMS-TEDA vs. some recent sequential EAs. Num-
bers in bold highlight represent the strategies with the lowest average error.
Numbers in parentheses represent the standard error. 104

Contents

1 Introduction 14
1.1 Presentation . 14
1.2 Motivation . 16
1.3 Objectives . 16
1.4 Contributions . 17
1.5 Organization of the text . 18

2 Distributed evolutionary algorithms to improve exploration and exploitation 20
2.1 Exploration and exploitation of search space 20
2.2 Improving exploration and exploitation with distributed EAs 22
2.3 Large-scale global optimization problems . 28
2.4 Final discussion . 30

3 Cooperative co-evolution distributed evolutionary algorithms for large-scale global
optimization problems 34
3.1 General structure of a CCEA . 34
3.2 Optimization separability . 35
3.3 Decomposition methods . 36

3.3.1 Differential Grouping (DG) . 36
3.3.2 Differential Grouping 2 (DG2) . 38
3.3.3 Recursive Differential Grouping (RDG) 38

3.4 Final discussion . 40

4 Diversity-driven migration strategy (DDMS) 42
4.1 Assessing the loss of diversity . 42

4.1.1 Measuring premature convergence . 43
4.1.2 Measuring stagnation . 44

4.2 Determining migratory frequency . 45
4.3 Evolving subpopulation . 49

4.3.1 DE . 49
4.3.2 JADE . 50
4.3.3 SHADE . 51

4.4 Final discussion . 53

5 TEDA-based approach to defining the migratory policy 55
5.1 Defining migratory policy . 55

12

5.2 TEDA . 57
5.3 Adapted TEDA-Cloud . 59
5.4 Final discussion . 65

6 Computational experiments 67
6.1 Test instances . 67
6.2 Experimental design . 68
6.3 Implementation details . 68
6.4 Performance of the proposed algorithms . 68
6.5 Proposed mechanism’s effectiveness . 78

6.5.1 Effective moves after migration . 78
6.5.2 Convergence . 79
6.5.3 Diversity . 80

6.6 Results on moderate-scale optimization problems 81

7 Final remarks 89
7.1 Overall conclusions . 89
7.2 Further works . 90

A Computational experiments on CEC’2014 special session and competition 93
A.1 DDMS-TEDA vs. Traditional migration strategies 93
A.2 DDMS-TEDA vs. Sequential EAs . 97
A.3 DDMS-TEDA vs. Recent Sequential EAs . 101

Bibliography 105

Chapter 1

Introduction

1.1 Presentation

In the last years, several Evolutionary Algorithms (EAs) have emerged as efficient metaheuris-

tics to solve complex, multidimensional, non-differentiable, and multimodal optimization prob-

lems. In spite of their prominent ability, many studies have shown the difficulties of EAs in

dealing with Large-Scale Global Optimization (LSGO) problems, which usually have more

than 100 decision variables. In fact, the curse of dimensionality is a problem that degrades

the performance of the EAs mainly because the complexity of the optimization problem grows

exponentially as the number of variables increases (Li et al., 2013, Chen et al., 2015). In these

cases, it is a great challenge to explore the entire search space efficiently during the evolution

process when the decision space is extremely wide (Ali et al., 2015, Sudholt, 2020, Jian et al.,

2020).

To address this issue, distributed models have been utilized and EAs have shown to be easy

to adapt to run in these environments (Gong et al., 2015). A common distributed policy is to

break a population into small subpopulations. From there, each subpopulation evolves within an

independent island. So, it is more likely to explore different regions of the search space. Many

Distributed Evolutionary Algorithms (DEAs) use a communication policy that involves migrat-

ing individuals between islands periodically. This exchange of information helps to promote

both convergence to promising regions and population diversity (Gong et al., 2015).

The literature has demonstrated that DEAs tend to outperform sequential EAs (Lorion et al.,

2009, Ishimizu and Tagawa, 2010, Zhang et al., 2013, Apolloni et al., 2014, Gong et al., 2015).

In fact, the benefit of having islands exploring multiple regions of the search space tends to

outweigh the cost of performing periodic migrations (Gong et al., 2015, Lynn et al., 2018, Zhan

et al., 2022). However, the performance of DEAs depends on some parameters. Two of the main

14

Chapter 1. Introduction 15

parameters are migration frequency and policy. The migratory frequency concerns defining

when to migrate. Generally, higher migration frequencies can promote faster convergence but

the algorithm may get trapped. On the other hand, when the migration frequency is lower,

the global exploration ability tends to be higher but the algorithm can converge much slower.

This trade-off between exploration and exploitation demonstrates that the choice of migratory

frequency is essential to achieve good performance and usually such a parameter is problem-

dependent. However, no work has considered a proper estimation of the instant to perform the

migration. On the contrary, many works prefer to carry out migrations at fixed or probabilistic

intervals (Gong et al., 2015, Sudholt, 2015, Ge et al., 2017, Abdelhafez et al., 2019, Duarte et al.,

2021, Li and Gonsalves, 2022).

The migratory policy concerns choosing which individual will be sent by the sending island1 and

which individual will be replaced on the requesting island2. The most usual policy is to send the

best individual, which replaces a random individual on the requesting island. However, such an

approach can cause an increase in selective pressure since the subpopulations can become very

similar over the generations. This occurs because the best individuals will be spread between

the islands through subsequent migrations, which eventually will reduce the diversity. The side

effect of this approach is that the algorithm tends to converge to a local-optimal solution. A

more adequate approach involves migrating individuals that are not too similar to the requesting

island population and, at the same time, these migrated individuals should have good fitness

values. However, most works do not explore this possibility (Gong et al., 2015, Sudholt, 2015,

Ge et al., 2017, Abdelhafez et al., 2019, Li and Gonsalves, 2022).

In short, although distributed models are designed to prevent the premature convergence prob-

lem and improve diversity, these models are subject to fall into the same problems as sequential

EAs when frequency and policy of migrations are defined empirically or even defined without

any criteria, which usually implies the occurrence of out-of-time, unnecessary and irrelevant mi-

grations (Gong et al., 2015, Sudholt, 2015, 2020). This work explores these issues by proposing

an approach to estimate the instant to perform the migrations based on the loss of diversity of the

islands. In addition, a diversity-driven migration strategy is proposed with the aim of promoting

a productive diversity3 on the requesting island.
1Sending island: it receives a request from a requesting island and sends a selected individual to it.
2Requesting island: it requests a migration and receives an individual from the sending island.
3The concept of productive diversity is derived of the idea presented in McGinley et al. (2011), which defines

the healthy diversity term as a diverse population of highly-fit (healthy) individuals, capable of adapting quickly to
fitness landscape change and well-suited to the efficient optimization of multimodal fitness landscapes.

Chapter 1. Introduction 16

1.2 Motivation

To our knowledge, there are no previous works in the literature that consider, in the same pro-

posal, the need to properly choose the instant of migration and the individual to be migrated

when attempting to develop distributed evolutionary algorithms. Ignoring these factors can pre-

vent evolutionary algorithms to take advantage of the full capabilities of distributed models in

LSGO problems (nonlinear problems with hundreds or even thousands of real variables).

Given this gap, this work is motivated by the importance of: i) developing a proper approach

to estimate the instant of migration considering that the loss of diversity on the islands can

be asynchronous, and ii) defining the proper individual to be migrated taking into account the

population distribution of the requesting island. In this way, we hope migrations end up having

the desired effect, which is to help the requesting island to escape from local optima and explore

promising new regions in LSGO problems.

1.3 Objectives

In a distributed environment in which multiple islands execute an evolutionary algorithm in par-

allel to solve an optimization problem, the main objective of this work is to propose a Diversity-

driven Migration Strategy (DDMS) capable of promoting productive diversity applied to large-

scale global optimization problems. We use the term productive diversity to say that a migration

should generate timely diversity without severely compromising convergence (McGinley et al.,

2011). To achieve this main objective, the specific objectives are defined:

• Assess recursively the loss of diversity considering that this can occur asynchronously.

• Design a distributed evolutionary algorithm where islands run subpopulations using a

parallel implementation.

• Define rules that establish when a migration should occur between the islands, allowing it

to be utilized into the implemented distributed evolutionary algorithm.

• Create a Cooperative Co-evolution Distributed Evolutionary Algorithm (CCDEA) that in-

cludes the proposed Diversity-driven Migration Strategy (DDMS) in order to solve Large-

Scale Global Optimization (LSGO) problems.

• Develop a strategy based on clustering capable of increasing the positive effect generated

by individuals migrated to the requesting island regarding diversity.

Chapter 1. Introduction 17

• Evaluate the proposed approaches to validate their efficacy and to compare them against

the traditional approaches that do not consider diversity as a determining factor to specify

when and how to carry out migrations.

1.4 Contributions

The main contributions of this work are:

1. The proposal of a proper approach to estimate recursively the instant to perform a migra-

tion in a distributed evolutionary algorithm considering stagnation and convergence of the

population.

2. The proposal of specific strategies that determine how to migrate in a distributed evo-

lutionary algorithm taking into account that the migrated individual must be an agent

capable of generating diversity on the islands.

3. The proposal of a Cooperative Co-evolution Distributed Evolutionary Algorithm

(CCDEA) that executes the proposed migration strategies to optimize large-scale con-

tinuous problems.

The contributions mentioned above have resulted in two publications in scientific journals.

These publications are:

• Araujo, J.N.R., Batista, L.S. & Monteiro, C.C. Improving proactive routing with a

multicriteria and adaptive framework in ad-hoc wireless networks. Wireless Netw 26,

4595–4614 (2020). https://doi.org/10.1007/s11276-020-02366-4

• Araujo, J.N.R. & Batista, L.S. A Diversity-driven Migration Strategy for Distributed

Evolutionary Algorithms. Swarm and Evolutionary Computation (2023).

https://doi.org/10.1016/j.swevo.2023.101361

In the first article, a differential evolution algorithm for multiobjective optimization is used to

solve a node deployment problem in ad-hoc wireless networks. In this work, some limitations of

the evolutionary algorithm are discussed when applied to problems with a high number of nodes

(variables). As future work, a distributed evolutionary algorithm is suggested to solve problems

with a large number of nodes and sensors.

In the second article, the cornerstone of the strategies proposed in this text are presented. Specif-

ically, contributions 1 and 2 above are introduced under the name DDMS (Diversity-driven Mi-

gration Strategy). The strategy is tested in problems with 10, 30, 50, and 100 variables, showing

very promising results when compared against traditional migration strategies.

https://doi.org/10.1007/s11276-020-02366-4
https://doi.org/10.1016/j.swevo.2023.101361

Chapter 1. Introduction 18

1.5 Organization of the text

The chapters are briefly described below:

This Chapter 1 introduces the issues addressed in this work and presents the motivation, the

objectives and contributions of this thesis.

Chapter 2 describes one of the main challenges of search algorithms, which is to design mecha-

nisms capable of balancing exploration and exploitation of the search space. Population diversity

is presented as a relevant index used to identify stagnation and premature convergence. Then,

distributed evolutionary algorithms are introduced as promising tools to improve exploration and

exploitation. The relevant parameters used to evaluate the performance of a distributed model

are also presented, followed by a discussion of the main studies in the literature on distributed

evolutionary algorithms.

Chapter 3 introduces the decomposition methods utilized to decompose a LSGO problem into

several low-dimensional subproblems and presents the architecture of the proposed CCDEA

(Cooperative Co-evolution Distributed Evolutionary Algorithm).

Chapter 4 presents the mechanism to identify the stagnation and convergence in each dimen-

sion. Three rules are established to determine when to migrate. The first rule determines that

migration should occur when all dimensions converge or stagnate. The second rule establishes

that migration must occur in a given generation with a small probability. A final rule is intro-

duced so that the probability of migration increases as the algorithm evolves. Furthermore, the

optimization algorithms utilized are described.

In Chapter 5, specific algorithms are presented for the implementation of the proposed diversity-

driven migration strategy. Then, the framework for detecting outliers and the algorithm for

performing clustering are detailed.

Chapter 6 describes the computational experiments performed to evaluate the proposed diversity-

driven migration strategy using the suite of 15 benchmark functions for large-scale global op-

timization provided by CEC’2013 (Li et al., 2013). The gains in terms of convergence and

diversity are assessed in detail when compared with traditional migration strategies.

Finally, in Chapter 7 the conclusions are presented, ending with some ideas of continuity that

can be explored in future works.

In addition, Appendix A extends the analysis of the proposed strategy to problems with a mod-

erate number of variables (50 and 100) using the suite of 30 benchmark functions for single-

objective real-parameter numerical optimization provided by CEC’2014 (Liang et al., 2013).

Chapter 2

Distributed evolutionary algorithms to
improve exploration and exploitation

2.1 Exploration and exploitation of search space

The main challenge of search algorithms is to explore vast and promising regions of the search

space while generating good solutions by converging to a particular region. Countless applica-

tions have come across this question: how to exploit without losing the ability to explore and

how to explore without losing the ability to exploit?

The authors in Črepinšek et al. (2013) describe that exploration is the process of visiting entirely

new regions of a search space, while exploitation is the process of visiting those regions of a

search space within the neighborhood of previously visited points. Generally, a metaheuristic is

efficient when it is able to balance exploration and exploitation. However, this task is not trivial.

In essence, most current evolutionary algorithms have mechanisms to deal with exploration and

exploitation. Many researches share the idea that the crossover/mutation operators are designed

to explore, while exploitation is done by selection operators. However, this perception has

changed as the area has developed.

• Crossover operator: This operator seeks to generate an offspring by mixing information

from two or more parents. In general, such an operator is designed to combine good indi-

viduals in order to generate a new one even better than its parents. From this perspective,

it can be mainly seen as an exploitation operator. However, a good crossover operator

should also be able to generate explorers individuals (Črepinšek et al., 2013).

• Selection operator: Operator that seeks to drive the search toward the regions where the

best individuals are located. From this point of view, selection is more about exploitation.

20

Chapter 2. Distributed evolutionary algorithms to improve exploration and exploitation 21

This is especially true if the selection pressure is high. On the other hand, the search tends

to be more exploratory when the selection pressure is low. Therefore, it can be tuned to

balance between exploration and exploitation (Črepinšek et al., 2013).

• Mutation operator: According to a given probability, this operator seeks to modify indi-

viduals randomly. Generally, this operation is applied to increase the structural diversity

of a population. From this perspective, a mutation operator is more applied to exploration

as it can recover the diversity lost during the selection phase. But, a mutation can also be

seen as an exploitation operator because it preserves most of the individual’s characteris-

tics. Besides, the role of mutation can be very different depending on the algorithm used

(Črepinšek et al., 2013).

In this context, the authors in Črepinšek et al. (2013) argue that it is difficult to predict if a

crossover and/or mutation operator will generate exploiter or explorer individuals. In a nut-

shell, there is not a clear line that separates exploration and exploitation. In consequence, both

operators can have both roles.

Achieving the balance has been the subject of numerous researches nowadays, mainly in the

field of parameter setting. For example, if crossover and mutation rates are low, the search space

can not be explored in depth. In such a case, the evolutionary algorithm and the hill-climbing

algorithm will be alike. On the other hand, if crossover and mutation rates are very high, good

solutions can be missed due to this exploratory feature. In such a case, the evolutionary algo-

rithm will be closer to a random search (Karafotias et al., 2014, Eiben and Smith, 2015). It is

important to highlight that these are general assumptions and, depending on the structure of the

algorithm, may not apply in specific contexts. In fact, the parameters and operators set in EAs

present many nuances and it is not always possible to define general rules (Hassanat et al., 2019,

Drugan, 2019).

Besides that, researches in EAs have shown that control parameter setting is problem-dependent.

A parameter setting can be optimal for a specific problem and might not be well adjusted for

another problem (Smit and Eiben, 2009, Karafotias et al., 2014). In practice, different problems

require different treatments in relation to exploration and exploitation. For instance, multimodal

function optimization usually requires more exploration than unimodal function optimization.

Another important factor is the population size. It is a common belief that the larger the popu-

lation size, the greater the search-space exploration tends to be. Generally, increasing the pop-

ulation size is a simple strategy to keep the population as diverse as possible. However, larger

populations can also converge slowly and waste processing time. Besides that, some researches

have shown situations in which the population size (small or large) has no significant effect on

the quality of the final solution (Smit and Eiben, 2009, Črepinšek et al., 2013, Karafotias et al.,

2014, Eiben and Smith, 2015).

Chapter 2. Distributed evolutionary algorithms to improve exploration and exploitation 22

Another issue is that the optimal value of the population size can change during the different

stages of an evolution process. A classical idea is that a larger population is more needed in

the early stages of the process. It is common to believe that EAs should start with exploration

and then gradually change into exploitation. Such a policy can be easily applied to the mutation

in which its rate decreases along with the evolution. The authors in Črepinšek et al. (2013)

point out that such reasoning is generally correct, but this policy tends to face difficulties when

solving multimodal problems with many optima or when dynamic environments are evolved.

They argue that can occur premature takeover of exploitation over exploration.

2.2 Improving exploration and exploitation with distributed EAs

As discussed previously, evolutionary algorithms can suffer from premature convergence and

loss of diversity in spite of their prominent ability. Distributed models have been utilized to lead

with these issues. A standard policy is partitioning the population into small subsets as if they

were islands. From there, each subset evolves independently with the aim of exploring different

regions. Generally, such an autonomy helps to avoid premature convergence. In addition, a

communication policy is implemented between the islands, which is called migration. The

exchange of information among islands is a strategy to promote both convergence to promising

regions and population diversity. An additional advantage of island-based algorithms is the

possibility of running them on parallel/distributed hardware and, thus, reducing computational

time. The authors in Lopes and de Freitas (2017), Wang et al. (2019) list some parameters

that directly impact the island model performance in relation to the solution quality and the

convergence speed. These parameters are summarized as follows:

• Number of islands: defines the number of subpopulations in the model;

• Migration topology: describes the communication schema between the islands. Fig-

ure 2.1 illustrates three commonly adopted topologies. In the ring, each island has two

neighboring islands and they form a ring-shaped. The lattice is grid-shaped, and its neigh-

boring islands are those with one difference at the location of either vertical or horizontal

position. In the fully connected, each island is a neighbor of any other island;

• Migratory rate: defines how many individuals migrate from one island to another. The

most common is to define that only one individual will be migrated, although there are

several proposals that use more than one;

• Synchronization type: defines if the migration process is performed synchronously or

asynchronously;

Chapter 2. Distributed evolutionary algorithms to improve exploration and exploitation 23

• Migratory frequency: defines the periodicity of migration process. It is quite common

to define a fixed frequency or even to establish a probability of migration occurring. This

parameter significantly influences the decreasing speed of population diversity;

• Migratory policy: describes which individuals will be copied and replaced when the mi-

gration process occurs. The commonly used policies are best-to-worst, best-to-random,

and random-to-random, which stand for the best individual substituting to the worst in-

dividual, the best individual substituting to a random individual, and a random individual

substituting to a random individual, respectively. This parameter significantly influences

the process of restoring population diversity.

FIGURE 2.1: Migration topologies (Wang et al., 2019).

In this context, some prominent works in the literature are cited below with a special focus on

migratory frequency and policy since these strategies can be used directly to maintain or recover

diversity in island models or variants.

In Apolloni et al. (2008, 2014), the authors propose a simple distributed island-based DE in

which the population is partitioned into two identical subpopulations. The subpopulations

evolve independently with the same parameters and, after 100 generations, migration is made

in order to promote diversity. In migration, one randomly selected individual is sent from one

island to another. Incoming individual replaces randomly chosen local individual only if the

former is better. This approach is simple, however, it is effective to improve the global search

ability when compared to traditional DE. As said previously, traditional DE with a single pop-

ulation suffer from premature convergence problem when all individuals gather in the same

valley. On the other hand, the migration made in fixed-interval policy has some drawbacks.

For example, the work by Ishimizu and Tagawa (2010) demonstrates that can occur a trade-off

between exploration and exploitation when different migration frequencies are used. The au-

thors concluded that a higher communication frequency between the islands can speed up the

convergence but the algorithm may get trapped. On the other hand, when the communication

frequency is lower, the algorithm exhibits better global exploration ability but converges much

Chapter 2. Distributed evolutionary algorithms to improve exploration and exploitation 24

slower. They also show that the migration extent can bear a significant impact on performance.

Therefore, choosing the migratory frequency is not a trivial task and usually, such a parameter

is problem-dependent.

In Weber et al. (2009), the authors propose to group the subpopulations into two families. The

first family has the role of exploring the decision space. The second family is composed of

subpopulations with a population size that is progressively reduced. The idea is that the sub-

populations belonging to the second family are highly exploitative. The solutions generated by

the second family then migrate to the first family. The first family is composed of three sub-

populations (islands) arranged according to a ring topology. Instead of fixed migration, a copy

of the best individual of the subpopulation is sent to the next subpopulation in the ring with a

given probability. Incoming individual replaces randomly chosen local individual, which is then

discarded. The key idea is to divide the second family into two ages. In the initial age, two sub-

populations have their population size progressively reduced during the optimization process

until a determined number of fitness evaluations is achieved. During the second age, the two

subpopulations evolve with the minimum population size and at each generation, the best indi-

vidual is sent to one of the subpopulations of the first family. The main goal of the research is to

promote exploration and exploitation synchronously. The progressive reduction of population

size in the second family is derived from the common belief that EAs should start with explo-

ration and then gradually change into exploitation. However, it can be difficult to demonstrate

the effectiveness of separating islands for exploration and exploitation, since it is not possible to

determine whether such strategies are actually producing exploratory or exploitative individuals.

Besides, the migration is made without knowing if it is necessary to generate diversity or not.

Araujo and Merelo (2010) discuss the importance of defining a good migration policy. They

argue the more effective way to cause the algorithm to converge significantly faster is to replace

a random/worst individual with the best individual arriving from a home island. However, such

an approach may lead the algorithm to a local-optimal solution as the populations become very

similar after a few rounds of immigration. This occurs because the best immigrant individuals

will be combined with other high-fitness individuals in the requesting island population, which

eventually will reduce the diversity. On the other hand, the migration of a random individual

can make the migration ineffective since the migrated individual tends to get lost in the evo-

lutionary process of the new population. To overcome these drawbacks, the authors present a

Genetic Algorithm (GA) that uses a diversity-driven approach that chooses the individuals to

be sent to other islands based on the principle of multiculturality, that is, the individual sent

should be different enough to the requesting island population. They demonstrate that such a

policy outperforms the usual policy of sending the best or a random individual. This proposal

indicates that migration also needs to be an adaptive process as far as possible. Another inter-

esting discussion is about the synchronous/asynchronous communication between the islands.

They argue that asynchronous communication does not have a negative effect on performance,

Chapter 2. Distributed evolutionary algorithms to improve exploration and exploitation 25

and it can even outperform synchronous one. However, the authors do not tackle the migration

frequency problem and define it in a fixed way.

In Piotrowski et al. (2012), a new DE algorithm with separated groups is proposed. The main

goal is to improve performance for difficult problems by distributing individuals into small sub-

populations and defining diversified communication rules between them. The authors divide the

population into some separate groups with 10 individuals in each group. They use two muta-

tion and crossover strategies that differ significantly in terms of offspring selection. The first

strategy, called DE/rand/1/mod-either-or, is well suited for exploration, but performs slowly in

exploitation. On the other hand, the second strategy, called DE/rand/1/exp, does not perform

well for exploring, but it speeds up exploitation and easily deals with separable functions. For

each parent individual in an iteration, just one strategy is chosen randomly with equal probabil-

ity. An interesting approach is introduced when the vectors of mutation are selected. Mostly,

these vectors are randomly chosen from the small group. However, if the algorithm identifies

the group has converged to a local minimum, the vectors are chosen from the whole population

for a predefined number of iterations. This helps the group to get out from the local optimum.

But, as information is spread quickly among members of small groups, using this single strategy

can be inefficient. With this in mind, the authors also introduce a migration scheme based on

the exchange of indices between individuals in a minimization problem. At the beginning of

each iteration, the migration schema is triggered with probability 0.005. For the first half of

the population, if f(xi) > f(xi+1) then the individuals exchange the indices immediately. The

idea is that the individuals with good and moderate fitness are scattered among different groups,

but the ones with the poorest fitness are quickly moved into the single poorest group. For the

second half of the population, the process is reversed; the individuals just exchange the indices

if f(xi) < f(xi+1). In this case, the individuals with the best fitness are quickly moved to the

elitist group. The combination of these strategies allows the algorithm to have various kinds of

groups and, hence, adds diversity to the algorithm’s search. As the authors define the migration

frequency in a probabilistic way, the migration can occur after many generations with a group

trapped in a local optimum. Besides that, the index exchange strategy can cause sudden changes

in some groups and almost no change in other groups since the migration is not made directly

between the groups.

In Meng et al. (2017), the authors use a GA method to implement a dynamic island model

and a new migration schema based on similarity. The proposed island model starts with one

island in the first generation. When the evolution reaches a specific generation, the spectral

clustering algorithm is introduced to split the population into a set of new islands. Similar

individuals are assigned to the same island. Then, each new island evolves independently. Every

50 generations, all individuals migrate to a pool wherein the spectral clustering algorithm is

executed in order to reconstruct the islands according to the difference-based similarities of

individuals. After a number of generations, the best individuals are considered potential global

Chapter 2. Distributed evolutionary algorithms to improve exploration and exploitation 26

optimized solutions. The authors evaluate the proposal on a set of combinatorial optimization

problems including Job Shop Scheduler (JSSP), Travelling Salesman (TSP), and the Quadratic

Multiple Knapsack (QMKP) problems. The performance was evaluated by fitness score and

population diversity and compared with three migration schemes (ring, star-shape, and fully

connected). They showed that the clustering model performs better than ring, star-shape, and

fully-connected models because the clustering can effectively maintain diversity compared to

the other ones. However, this similarity-based approach is extremely elitist as it reconstructs the

clusters/islands entirely after in a fixed interval.

In Abdelhafez et al. (2019), the authors propose a distributed GA-based algorithm utilizing mul-

tiprocessors. They implement an algorithm in which the migration topology is based on the

uni-directional ring topology. The authors argue that, different from more sophisticated topolo-

gies like lattice and fully connected topologies, the ring topology ensures local communications

between subpopulations and smooth propagation of the information at a pace that does not make

the algorithm converge too fast and keeps low the overall communication effort of the distributed

GA. This is especially true because they use a model with 32 islands. Naturally, this requires

more computational resources. In models with fewer islands, convergence tends to be faster

because the propagation of the information will also be more accelerated. In their study, the

migratory policy is best-to-worst and the migration is triggered every 5000 evaluations made

in a subpopulation to let each island make sufficient exploration on its own before communica-

tions. They present an interesting result regarding the synchronization type. The asynchronous

implementation is more time efficient than the synchronous implementation. The blocking com-

munication of the synchronous implementation can cause delay since every island should wait

to communicate with its neighbor island in the ring, leading to a waste of processing resources.

On the other hand, the asynchronous algorithm uses unblocking communications, which means

there are no idle cores waiting for communications. Besides that, asynchronous implementation

is extremely useful when you want to design approaches in which the migration frequency is not

fixed. In this case, the immigrant individuals merge into individuals in the requesting islands at

any time, which can ensure a more productive diversity inside the islands.

In Zhang et al. (2013), the authors propose a new DE evolution in which the initial population

is divided into subpopulations arranged by a grid topology. In this topology, subpopulations are

denoted as nodes. Each node has four neighbors. Only those nodes that are close to each other

(neighborhood) exchange information. Every 100 generations, the best individual in each node

replaces the worst individual of its neighbor nodes. The study uses the Hooke-Jeeves algorithm,

a local search method, mainly in the later evolution stage for enhancing the local search ability

and improve the precision of solutions. Besides, two learning mechanisms to combine evolu-

tionary search and local search heuristics are proposed. In short, the study finds out to prevent

stagnation through a hybridization of DE with a local search algorithm and periodic migrations.

However, nothing is done if the stagnation takes place as the migrations are fixed.

Chapter 2. Distributed evolutionary algorithms to improve exploration and exploitation 27

The authors in Ali et al. (2016) divide the population into two different tribes. Each tribe fol-

lows a different mutation strategy. The first strategy implements the DE/current-to-pbest/1/bin

with a memory scheme to improve the parameter settings of F and CR. The second strategy,

DE/current-to-pbest/1/exp, uses exponential crossover instead of binomial and adapts F and CR

without using the memory scheme. Each of these mutation strategies utilizes different param-

eter settings to enhance diversity among the population. Each tribe has its own life cycle that

controls its participation ratio for the next generation based on its recorded success. Besides,

the population size is changed dynamically in each generation using a linear reduction method.

However, the tribes are independent; there is no migration. With this strategy of dynamic adapta-

tion of parameters in different tribes, the authors seek to improve SHADE algorithm (Tanabe and

Fukunaga, 2013), which is an extension of JADE (adaptive differential evolution with optional

external archive) algorithm (Zhang and Sanderson, 2009b). They demonstrate the algorithm is

effective in solving unimodal, hybrid, composition functions, and most of the simple multimodal

functions on the suite of 30 benchmark functions with 10D, 30D, 50D, and 100D from the IEEE

CEC’2014 special session and competition on single objective optimization. Many studies have

been dedicated to proposing adaptive strategies like this. The number of citations to the JADE

(Zhang and Sanderson, 2009b) and SHADE (Tanabe and Fukunaga, 2013) papers in Google

Scholar exceeds 2200 and 450, respectively, at the time of writing; not to mention papers that

refer to other JADE/SHADE-based variants. In fact, these studies have shown that self-adaptive

mechanisms can update the parameter settings to deal with different fitness landscapes (Awad

et al., 2018). Piotrowski and Napiorkowski (2018) perform an inter-comparison among 22 dif-

ferent JADE/SHADE-based variants that were proposed between 2009 and 2017. They reveal

that SHADE-based variants outperform those based on initial JADE and define the following

chain of performance evolution: DE (Storn and Price, 1997) → JADE (Zhang and Sanderson,

2009b) → JADE with a weighted adaptation of control parameters (Peng et al., 2009) → SHADE

(Tanabe and Fukunaga, 2013) → L-SHADE (Tanabe and Fukunaga, 2014), and from L-SHADE

within the last years a number of successful variants were created (Ali et al., 2016). DE and its

variants, like L-SHADE, have proven to be easy to adapt in distributed environments. Because

of that, they have been gaining great prominence in specialized literature. We argue in this work

that L-SHADE (Tanabe and Fukunaga, 2014), and possible variants (Ali et al., 2016), can be-

come even more efficient when applied in a distributed environment with well-suited migrations.

In addition, our proposal allows any EA can be employed as the optimizer.

In Duarte et al. (2021), the authors combine two strategies to preserve diversity in the island

model. The first strategy uses different kinds of GAs for each island to force the generation

of different individual characteristics and slow down the global diversity among the islands.

The second strategy implements a novel migration policy that splits migrants into two classes:

pursuer and avoider. An avoider has a task to promote diversity on the island, while a pursuer

tries to enable exploration. A migrant of an island has a certain probability of being a pursuer or

Chapter 2. Distributed evolutionary algorithms to improve exploration and exploitation 28

avoider, depending on the island’s current state. This mechanism seeks to ensure the individual

migrates to the correct island dynamically, which will maintain diversity. The authors show that

combining these strategies has great potential to preserve the overall island diversity.

Li and Gonsalves (2022) propose a new alternative to implement the island model, called the

Stigmergy Island Model (Stgm-IM), inspired by the natural phenomenon of stigmergy. In this

model, the population of each island is evolved by a distinct EA, which can imply different

evolutionary characteristics applied in parallel to solve the problem. Each connection between

the islands is weighted adaptively according to the attractiveness between each pair of islands.

The idea is that the islands with the most suitable EAs to solve the problem become more

attractive, and more solutions are directed to them.

In Price and Radaideh (2023), the authors propose an algorithm called AEO (Animorphic En-

semble Optimization), which assumes that a set of algorithms working as an ensemble can be

a stronger performance across a wider range of optimization problems than any standalone al-

gorithm. For this purpose, the algorithm is divided into two stages: the evolution phase and the

migration phase. In the first phase of the AEO algorithm, a number of optimization strategies

are specified to act as the ensemble for the optimization process. The authors use ES (Evolution

strategy), PSO (Particle Swarm Optimization), and DE (Differential Evolution) as optimization

strategies. In this phase, each population evolves apart from others as if they were on different

islands. The migration phase consists of changing the island populations according to the per-

formance of each algorithm. To this end, the authors propose strategies to remove and migrate

individuals, as well as define the destination of individuals and the number of individuals to be

removed and migrated.

These researches show the benefits of having a number of islands exploring multiple regions of

the search space tend to outweigh the cost of performing periodic migrations. Another insight

is that there is space in the literature to propose solutions that seek to carry out migrations only

“when necessary”, in addition to selecting migrated individuals in order to improve diversity

without significantly compromising convergence.

2.3 Large-scale global optimization problems

Some researches have shown the difficulties of metaheuristics in dealing with Large-Scale Global

Optimization (LSGO) problems, which usually have more than 100 decision variables (Li et al.,

2013, Omidvar et al., 2021b, Zhan et al., 2022). In fact, even though the EA implements mech-

anisms to balance exploration and exploitation, the curse of dimensionality is a problem that

degrades performance as the number of variables increases. This is because the complexity of

the optimization problem grows exponentially as the dimensionality increases (Li et al., 2013,

Chapter 2. Distributed evolutionary algorithms to improve exploration and exploitation 29

Chen et al., 2015, Omidvar et al., 2021a,b). As a result, LSGO problems are also different

when it comes to population size. Commonly, many algorithms define the number of individ-

uals as a function of the number of variables. This can not be done for such problems, since

it has an even greater impact on computational time, and can delay convergence prohibitively

(Kazimipour et al., 2013, Chen et al., 2015, Omidvar et al., 2021a,b).

On the other hand, it is challenging to maintain population diversity during the evolution process

with few individuals since the decision space is extremely wide. In LSGO problems, maintain-

ing diversity is primordial to explore the entire search space efficiently (Ali et al., 2015, Sudholt,

2020, Jian et al., 2020). In this context, distributed evolutionary algorithms have attracted atten-

tion because of their capability of exploring multiple search regions by dividing the population

into subgroups (Ge et al., 2017, Jia et al., 2018). Island-based models have shown very promis-

ingly in many works (Ge et al., 2017, Meng et al., 2017, Wang et al., 2019).

The authors in De Falco et al. (2007) propose a locally connected topology, where each node

is connected to 4 other nodes. The diversity policy determines each node must send a copy of

its best individual to its neighbors every 5 generation. The algorithm is tested on larger-scale

problems (500 and 1000-dimensional problems). This proposal generates more diversity since

the migration is made routinely and the receiving island obtains individuals from more than one

neighbor. However, this high and poorly targeted diversity can impair convergence since it is

more prone to lose its ability to improve on its solutions. Also, the fixed-frequency migration

might not be the better strategy as such a parameter tends to be problem-dependent.

Recent works have investigated strategies to solve LSGO problems in distributed environments.

The work by Ali et al. (2015) divides the population into multiple islands. The idea employs

different mutation strategies and control parameters for each island with the aim of driving the

search toward promising regions. Some of these mutation strategies are adjusted to maintain

a balance between exploration and exploitation. Each island evolves independently during a

given interval to enhance diversity among the subpopulations. After this interval, migrations are

performed. Some random individuals are selected from each island and they are sent to all other

islands (fully-connected topology). The replacement is also done randomly and the 30% best

performing individuals of each island can not be replaced. In short, the authors seek to maintain

diversity by using different mutation strategies on each island and migrating random individuals.

In general, such strategies are efficient. However, there is still the problem of defining when the

migration should be made. That is, it is necessary to find a sufficient number of generations

where the algorithm must evolve before mixing of information between the islands. The work

does not address this issue and uses fixed-frequency migration.

In Ge et al. (2017), the authors propose to arrange the population dynamically. For that, they

present two operators, namely mergence and split, which are executed by considering the contri-

bution value of each island (subpopulation) to the entire evolution. The higher the contribution

Chapter 2. Distributed evolutionary algorithms to improve exploration and exploitation 30

value, the more the subpopulation has contributed to the optimization process. Otherwise, if

the contribution value is lower, the subpopulation has been ineffective. In mergence operator,

individuals that belong to ineffective subpopulations are merged into the good performing sup-

populations. If a merged subpopulation becomes ineffective, the split operator selects randomly

half of the individuals on the island and generates a new subpopulation to maintain diversity.

Every 25 generations, a master node evaluates the contribution value of each island and deter-

mines if mergence or split should be executed. The migrations among islands are made in a

probabilistic way. However, the migration frequency is empirically defined.

In Jia et al. (2018), the authors propose a two-layer distributed cooperative co-evolution archi-

tecture with adaptive computing resource allocation for large-scale optimization. The algorithm

uses a decomposition procedure to divide a large-scale problem into subcomponents from the

perspective of dimension. Then, each subcomponent initializes its own population and evolves

using the Self-adaptive Differential Evolution with Neighborhood Search algorithm (SaNSDE)

(Yang et al., 2008). During evolution, the subcomponents calculate their contribution to the

global objective. After 20 generations, they send the best individuals and contributions to the

master process to make the synchronization. Based on the contributions, the resource allocator

reallocates the computing resources through an allocation algorithm that assigns more proces-

sors to the subcomponents which contribute more to the global objective. The key idea is to

take limited computing resources from the subcomponents that contribute less and give them

to the subcomponents that contribute more. In Zhang et al. (2019b), a similar framework is

proposed. But, instead of punishing subcomponents, this study evaluates the contribution of

each variable according to the historical information of the best overall fitness value, and each

subcomponent is dynamically constructed based on these contribution information. The authors

in Li et al. (2022) assume this idea to build an algorithm capable of performing adaptive re-

source allocation based on this contribution information. However, although these studies cover

the possibility of dividing the population of a subcomponent into subpopulations, no migration

scheme is used to try to maintain diversity.

2.4 Final discussion

Despite the advantages brought by the use of distributed metaheuristics to solve a wide variety

of optimization problems, none of the studies reviewed in this research deal with the following

four issues:

1. Assess the loss of diversity in each dimension. It is important to consider that an island

can converge asynchronously in each dimension. Therefore, it can be useful to identify

which dimensions need to be diversified. Some proposals assess whether the population

Chapter 2. Distributed evolutionary algorithms to improve exploration and exploitation 31

has converged. But, they diversify through migration schemes that fully replace one or

more individuals (Meng et al., 2017, Ge et al., 2017).

2. Determine when to migrate. The migration should be triggered according to some mea-

sure that informs diversity has been lost. It is useful in trying to avoid unnecessary mi-

grations, i.e., migrations that do not contribute to diversity because the subpopulation has

not stagnated or do not contribute to convergence because the subpopulation is evolving.

In addition, a timely migration is essential to design a subsequent strategy that adequately

responds to the loss of diversity. Most studies focus on performing migrations at fixed or

probabilistic intervals (Araujo and Merelo, 2010, Ishimizu and Tagawa, 2010, Piotrowski

et al., 2012, Apolloni et al., 2014, Meng et al., 2017, Ge et al., 2017).

3. Determinate how to migrate. The migrated individual should be sufficiently different from

the requesting island population in order to improve diversity. This helps the island to get

out from the local optimum. However, it is important to ensure the migrated individual

has good or moderate fitness so as not to harm convergence. Most studies do not carry out

this analysis and focus on migrating the best individual or a random individual (De Falco

et al., 2007, Ishimizu and Tagawa, 2010, Piotrowski et al., 2012, Apolloni et al., 2014, Ali

et al., 2015, Meng et al., 2017).

4. Implement a diversity-driven migration strategy for large-scale global optimization prob-

lems. Recent works demonstrate there is an openness to propose diversity-driven migra-

tion strategies for large-scale problems. Generally, we use a decomposition procedure to

divide a large-scale problem into subcomponents from the perspective of the dimension

(Jia et al., 2018, Zhang et al., 2019b, Lopes et al., 2021, Li et al., 2022). In this way,

the mechanism for assessing the loss of diversity must be adjusted to work within each

subcomponent.

Table 2.1 summarizes the strategies used by these studies. This work proposes a diversity-driven

migration strategy to improve the performance of a Distributed Evolutionary Algorithm (DEA)

applied to Large-Scale Global Optimization (LSGO) problems. This analysis must consider that

convergence/stagnation can occur asynchronously both in the islands and in the dimensions of

the problem. This diversification is expected to be productive in the sense of helping the sub-

population to escape from local optimums and find promising new regions. The objective is

that the evolution and the migrations are done by trying to balance exploration and exploitation.

Then, we propose the following mechanisms to achieve such a productive diversity: i) migra-

tions must be triggered according to some diversity loss rules; ii) migrated individuals must be

sufficiently different from the requesting island population, and iii) migrated individuals must

have the potential to drive the evolution towards promising new regions.

C
hapter2.D

istributed
evolutionary

algorithm
s

to
im

prove
exploration

and
exploitation

32

TABLE 2.1: Summary with features the referenced studies.

References Migration policy Communication Handle asynchronous
stagnation/convergence (Y/N)

Large-scale
problems (Y/N)When How

Apolloni et al. (2008, 2014) Fix Random Asynchronous N N
Ishimizu and Tagawa (2010) Fix Best Synchronous N N

Weber et al. (2009) Probabilistic Best Synchronous N Y
Araujo and Merelo (2010) Fix Multiculturality Asynchronous N N

Piotrowski et al. (2012) Probabilistic Best and Worst Synchronous N N
Zhang and Sanderson (2009b) No migration No migration - N N
Tanabe and Fukunaga (2013) No migration No migration - N N
Tanabe and Fukunaga (2014) No migration No migration - N N

Ali et al. (2016) No migration No migration - N N
Meng et al. (2017) Fix Similarity Synchronous N Y

Abdelhafez et al. (2019) Fix Best
Synchronous and

Asynchronous
N N

Zhang et al. (2013) Fix Best Synchronous N N
De Falco et al. (2007) Fix Best Synchronous N Y

Ali et al. (2015) Fix Random Synchronous N Y
Ge et al. (2017) Probabilistic Best Synchronous N Y
Jia et al. (2018) No migration No migration - Y Y

Zhang et al. (2019b) No migration No migration - Y Y
Li et al. (2022) No migration No migration - Y Y

Zhang and Sanderson (2009b) No migration No migration - Y Y
Duarte et al. (2021) Fix Random selection Synchronous N N

Li and Gonsalves (2022) Fix
Best and Elitism
Random

Synchronous N N

Price and Radaideh (2023) Fix Elistim Synchronous N N

Chapter 3

Cooperative co-evolution distributed
evolutionary algorithms for large-scale
global optimization problems

3.1 General structure of a CCEA

To improve the performance of EAs for Large-Scale Global Optimization (LSGO) problems,

a useful approach is to decompose the problem into several low-dimensional subproblems. In

fact, solving lower-dimensional subproblems is faster than optimizing the complete problem

due to the curse of dimensionality (Li et al., 2013, Chen et al., 2015). The algorithms that use

these decomposition approaches are called Cooperative Co-evolution Evolutionary Algorithms

(CCEAs) (Mahdavi et al., 2015, Mei et al., 2016, Cabrera, 2016). In CCEAs, the process to

solve an optimization problem consists of two steps: 1) decomposition and 2) optimization, as

shown in Figure 3.1.

FIGURE 3.1: Structure of CCEA.

In the first step, CCEA decomposes a problem into several smaller subproblems. In the liter-

ature, these subproblems are also called subcomponents. Then each subproblem is associated

with a separate optimizer with its own population. These two steps are relatively independent,

which means one can choose any suitable decomposition method (e.g., DG, DG2, RDG, RDG2,

34

Chapter 3. Cooperative co-evolution distributed evolutionary algorithms for large-scale global
optimization problems 35

etc.) and any evolutionary algorithm (e.g., DE, PSO, GA, etc.) according to the real application

(Yang et al., 2016, Lopes and de Freitas, 2017, Jia et al., 2018).

Figure 3.2 illustrates this process more closely for a serial CCEA where the optimization pro-

cess uses a distributed model. This model is known as CCDEA (Cooperative Co-evolution

Distributed Evolutionary Algorithm). While a subcomponent evolves, the others are held fixed.

Thus, it is a serial architecture because there is only one subpopulation evolving. Within each

subcomponent, a distributed model is executed according to the strategies proposed in the pre-

vious sections. In our implementation, we use 4 islands (subpopulations) per subcomponent.

FIGURE 3.2: Optimization steps of a serial CCDEA.

3.2 Optimization separability

To execute the first step, the decomposition methods apply the concept of separability. An

optimization problem is separable if it can be divided into two or more subproblems that can be

solved independently. Thus, an optimization problem defined over the objective function, f(x)1,

is partially separable with M independent subcomponents if (Lopes et al., 2021)

argmin
x∈F

f(x) =

〈
argmin

s1∈F1

f(s1), . . . , argmin
sM∈FM

f(sM)

〉
, (3.1)

where M is the number of independent subcomponents, x = ⟨x1, . . . , xD⟩ ∈ RD is a decision

vector of D dimensions, s1 ∈ RD1 , . . . , sM ∈ RDM are disjoint sub-vectors of x, 2 ≤ M ≤ D,
1Variables in bold are vector variables.

Chapter 3. Cooperative co-evolution distributed evolutionary algorithms for large-scale global
optimization problems 36

and D1 + . . .+DM = D. Fi ⊂ RDi is the feasible set of the subproblem defined over si such

that F1, . . . ,FM are disjoint sets and F1 ∪ . . . ∪ FM = F (Lopes et al., 2021).

A particular case of the definition above is when M is equal to D. In this case, the optimization

problem is called fully separable, meaning that all decision variables can be searched indepen-

dently.

A function can also have additive separability. An f(x) is partially additively separable function

if (Lopes et al., 2021):

f(x) =
M∑
i=1

f subi(si) , (3.2)

where x = ⟨x1, . . . , xD⟩ ∈ RD is the global decision variable vector of D dimensions, si
are disjoint sub-vectors from x, and M is the number of independent subcomponents (Lopes

et al., 2021). When an objective function is additively separable, the unconstrained optimization

problem defined over it is also separable according to Equation (3.1).

Equation (3.2) has been commonly used to find subproblems in the literature (Omidvar et al.,

2013, Mei et al., 2016, Hu et al., 2017, Omidvar et al., 2017, Sun et al., 2017, 2018, 2019).

However, this definition does not represent all possible optimization separability types implied

by Equation (3.1). Therefore, methods that are solely based on additive separability may not be

able to find all subcomponents in a problem.

3.3 Decomposition methods

In this work, we used 3 well-studied and well-established decomposition methods, namely DG

(Omidvar et al., 2013), DG2 (Omidvar et al., 2017), and RDG2 (Sun et al., 2017, 2018).

3.3.1 Differential Grouping (DG)

Proposed by Omidvar et al. (2013), the Differential Grouping (DG) method is one of the first

and main decomposition strategies to examine and decompose continuous optimization prob-

lems automatically. Based on the partial additive separability definition presented in Equation

(3.2), DG uses the following theorem to identify an interaction between two decision variables

(Omidvar et al., 2013, Lopes et al., 2021):

Theorem 3.1. Let f(x) be an additively separable function. ∀a, b1 ̸= b2, σ ̸= 0, if the following

condition holds

∆σ,xp [f](x)|xp=a,xq=b1 ̸= ∆σ,xp [f](x)|xp=a,xq=b2 (3.3)

Chapter 3. Cooperative co-evolution distributed evolutionary algorithms for large-scale global
optimization problems 37

implies

∆σ,xp [f](x)|xp=a,xq=b1 −∆σ,xp [f](x)|xp=a,xq=b2 ̸= 0 , (3.4)

then xp and xq interact with each other, i.e. they are non-separable, where

∆σ,xp [f](x) = f(. . . , xp + σ, . . .)− f(. . . , xp, . . .) (3.5)

means the difference of f(x) with respect to xp with the interval σ.

In short, Theorem (3.1) determines that there is an interaction between decision variables xp and

xq if Equation (3.4) yields a value different from 0. The proof of this theorem can be found in

Omidvar et al. (2013).

The DG method considers the interaction of pairs of decision variables, xp and xq, for example.

It analyzes if xp has interaction with all other decision variables, xq. If no decision variable

interaction has been detected, it means xp can be searched independently. Then, xp is removed

from the set of variables. Otherwise, if interactions are identified, all decision variables involved

are grouped in the same set and an independent subproblem is defined over them. This process

continues until there is no pair of decision variables to analyze (Omidvar et al., 2013, Lopes

et al., 2021).

Theorem (3.1) is used to evaluate whether any pair of decision variables interact. To do that,

DG initializes two vectors, x and x’, with the lower bound of the decision variables. To verify

the interaction between the decision variables xp and xq, the variable xp from the vector x’ is

changed to its upper bound, then, the value of ∆1 is computed as follows (Omidvar et al., 2013,

Lopes et al., 2021):

∆1 = f(x)− f(x′) . (3.6)

After that, q-th variables from x and x’ are set to their middle value. The new points generated

from these changes will be called y and y’, respectively. Next, a new ∆ is computed as follows

(Omidvar et al., 2013, Lopes et al., 2021):

∆2 = f(y)− f(y′) . (3.7)

Thus, an interaction between xp and xq is detected when the condition described in Equation

(3.8) is true (Omidvar et al., 2013, Lopes et al., 2021).

|∆1 −∆2| > ϵ , (3.8)

where ϵ is a parameter that has to be defined by the user. The value of ϵ directly influences the

interactions detected and its choice is not a trivial task. Another issue of this algorithm is that

it may incorrectly identify subproblems since it skips through the decision variables for which

Chapter 3. Cooperative co-evolution distributed evolutionary algorithms for large-scale global
optimization problems 38

one interaction has already been identified, ignoring higher-order interactions (Omidvar et al.,

2013, Lopes et al., 2021).

Even though DG is not the most used algorithm due to more function evaluations and its accu-

racy to identify the subproblems compared to the other decomposition strategies, its theoretical

foundation is widely applied by other methods.

3.3.2 Differential Grouping 2 (DG2)

An improved version of the DG method was proposed in (Omidvar et al., 2017), called Dif-

ferential Grouping 2 (DG2). DG2 is also based on Theorem (3.1). However, to deal with the

disadvantages of its predecessor, DG2 does the following (Omidvar et al., 2013, Lopes et al.,

2021):

1. Computes the raw interaction matrix which stores the values from |∆1−∆2| (see Equation

(3.8)) for all pairs of decision variables;

2. Defines ϵ based on the raw interaction matrix by estimating the magnitude of round-off

errors;

3. Defines an adjacency matrix based on the raw interaction matrix and the epsilon values;

4. Extracts the subproblems by analyzing the adjacency matrix.

The DG2 method has shown to be more efficient and presented greater grouping accuracy than

DG. The authors in Lopes et al. (2021) point out that this version automatically defines a suitable

threshold value ϵ. Furthermore, it can reuse sample points generated for detecting interactions.

3.3.3 Recursive Differential Grouping (RDG)

Recursive Differential Grouping (RDG) is a decomposition method proposed by Sun et al. (2017)

that recursively analyzes the decision variable interaction. For that, it follows the Corollary next

(Sun et al., 2017, Lopes et al., 2021):

Corollary 3.2. Let f(x), x1 and x2 mutually exclusive subsets from the decision variables where

x1 ∩ x2 = ∅. If there two unit vectors u1 and u2, two values l1 and l2 greater than 0, such that

f(x + l1u1 + l2u2)− f(x + l2u2) ̸= f(x + l1u1)− f(x) (3.9)

Chapter 3. Cooperative co-evolution distributed evolutionary algorithms for large-scale global
optimization problems 39

there is some interaction of at least one pair of decision variables between sets x1 and x2.

Moreover, Ux1 is a subset of Ux such that any unit vector u1 = (u1, . . . , uD) ∈ Ux, where

ui = 0, if xi ̸∈ x1 (3.10)

and the same idea is applied to Ux2 .

According to Sun et al. (2017), the interaction between x1 and x2 subsets can be calculated by

setting a point x with the lower bound of all decision variables. Then, x’ is defined by setting

all decision variables with the lower bound and perturbing the variables from the subset x1 with

the upper bound. After, the objective function value difference (δ1) is calculated by

δ1 = f(x)− f(x′) . (3.11)

Perturbing the decision variables of the subset x2 from points x and x’ with the middle value

between the lower and upper bounds, the points y and y’ will be generated. Thus, the objective

function value difference is described by

δ2 = f(y)− f(y′) . (3.12)

If |δ1−δ2| > ϵ, then there is some interaction between the decision variables from subsets x1 and

x2 where ϵ represents a control parameter from the RDG method to defined variable interaction.

The ϵ parameter is defined according to the following Equation (Mei et al., 2016):

ϵ = α× min {|f(x1)|, . . . , |f(xn)|} , (3.13)

where n is the number of points randomly selected, and α is the controlling coefficient pro-

posed by the authors in Mei et al. (2016). The parameters n and α must be defined before the

decomposition process started.

Unlike the other decomposition methods, the RDG algorithm works recursively identifying the

interaction between the decision variables. It starts from the first variable from the subset x1,

and if there is no interaction, x1 is classified as a separable decision variable. If some interac-

tion is detected, the remainder of the decision variables and the recursive identification of the

interaction process continue.

RDG achieves a competitive grouping accuracy rate compared to the other decomposition meth-

ods (Sun et al., 2017). However, it requires a suitable parameter setting for the parameters n and

α in order to compute the interaction threshold ϵ. The authors in Sun et al. (2018) propose a

second version of the RDG. RDG2 computes values automatically for the ϵ parameter according

Chapter 3. Cooperative co-evolution distributed evolutionary algorithms for large-scale global
optimization problems 40

the formulation below:

ϵ = γ × {|f(x)|+ |f(x′)|+ |f(y)|+ |f(y′)|} , (3.14)

where γ is defined by the Equation next:

γ = (υ × µ)/(1− (υ × µ)) , (3.15)

where υ =
√
D + 2, µ represents machine epsilon2, and D is the dimensionality of the opti-

mization problem.

3.4 Final discussion

In this work, we use DG, DG2, and RDG2 as decomposition methods. DG2 and RDG2 are

parameter-free. In DG, we defined ϵ = 0.1 according to the related work (Omidvar et al.,

2013). The implementation of the methods was extracted from the work presented by Lopes

et al. (2021). The authors define a decomposition library called Continuous Optimization Prob-

lem Decomposition (COPD). Thus, we integrate our solver into the library COPD according to

instructions presented in Lopes et al. (2021).

2It represents the difference between 1.0 and the next value representable by the floating-point. For C++, see
epsilon function on numeric limits.

Chapter 4

Diversity-driven migration strategy
(DDMS)

Currently, many evolutionary algorithms have achieved excellent performance when promoting

exploration and exploitation during evolution. Good examples are the JADE and SHADE al-

gorithms and their variants. In Piotrowski and Napiorkowski (2018), the authors have shown

JADE/SHADE-based methods outperform the vast majority of other metaheuristics (DE, PSO,

GA, and variants) on some benchmark functions and real-world problems. Despite excellent re-

sults, these algorithms tend to lose diversity in the final stages of evolution (Arabas and Opara,

2019, Sudholt, 2020) or when the problem has many variables because of the curse of dimen-

sionality (Mahdavi et al., 2015, LaTorre et al., 2015).

Therefore, we are interested in introducing a distributed structure for large-scale optimization

problems where it is possible to ensure productive diversity within the islands through effective

migration strategies. In this work, we propose new ideas to define the best moment to carry

out the migration and what is the most appropriate composition of the individuals that will be

migrated in order to increase the chances to restore diversity.

In this chapter, we will address two issues in our proposal: i) assess the loss of diversity in

each dimension, and; ii) determine when to migrate. We have called this proposal of DDMS

(Diversity-driven Migration Strategy).

4.1 Assessing the loss of diversity

In distributed algorithms, migration can be unnecessary or even out of time when done without

criteria. A reasonable scenario would be to diversify when the population converges prematurely

or stagnates.

42

Chapter 4. Diversity-driven migration strategy (DDMS) 43

4.1.1 Measuring premature convergence

In Yang et al. (2014), the authors propose a method to measure the premature convergence, as

follows:

µg
j =

1

NP

NP∑
i=1

xgi,j , (4.1)

σg
j =

√√√√ 1

NP

NP∑
i=1

(xgi,j − µg
j)

2 , (4.2)

in which NP is the population size, µg
j and σg

j are the mean and the standard deviation of the

population in the j-th dimension at generation g, respectively. The standard deviation (σg
j)

measures the population diversity in the j-th dimension. When σg
j ≈ 0, we have a strong

indication that the j-th dimension has lost diversity. To denote whether the population has

converged in the j-th dimension at the g-th generation, the flag τ̄ gj is defined as follows:

τ̄ gj =

1, if σg
j ≤ ωg

j

0, otherwise
. (4.3)

If σg
j is not greater than ωg

j , τ̄ gj gets 1 to indicate the population has converged in the j-th dimen-

sion. The diversity is often large at the beginning of the evolutionary process and, consequently,

the σg
j value is also large. Despite being problem-dependent, it usually takes a long time for the

σg
j to drop to zero. Therefore, ωg

j assumes a small value according to the condition below:

ωg
j = min(T, θgj) . (4.4)

The parameter T assumes a value close to zero (e.g. 10−3). A variable θgj is added to assess

whether the j-th dimension had already converged on that same region in previous generations.

The value of θgj is defined as follows:

θgj =

|µg
j − µf

j | × T, if σg
j ≤ T

T, otherwise
. (4.5)

Suppose the population has converged in a given generation before g, which we can call genera-

tion g−. Therefore, µµµg− vector is the population mean in generation g−, regarding all subpopu-

lations. If σg
j ≤ T , the population has converged in the j-th dimension in the current generation

g. We are interested in finding if this convergence in dimension j occurs in the same region

as generation g−. If |µg
j − µg−

j | is small, we assume that the population has converged to the

same region. Observe in (4.5) that, in this case, θgj is set to |µg
j − µg−

j | × T . Thus, as θgj is less

Chapter 4. Diversity-driven migration strategy (DDMS) 44

than T , ωg
j receives θgj in (4.4). Note that while the algorithm remains converging to the same

local minimum even after applying some diversification mechanism, ωg
j value tends to decrease.

Consequently, σg
j must be less than σg−

j to consider that the j-th dimension converged in (4.3).

This schema allows the population to sufficiently exploit a revisited local optimum before using

any diversification mechanism.

FIGURE 4.1: Example of convergence to the same region.

Figure 4.1 illustrates this schema considering a given dimension j. Note that, as the algorithm

evolves, σg
j decreases until it surpass the initial threshold T (10−3). In the first convergence, σg

j

is equal to σf
j , then ωg

j receives T and some diversification mechanism is activated. Assuming

that the xg
j remains converging to the same region, ωg

j value continues to decrease, allowing the

region to be better exploited before activating a new diversification. This strategy tends to be

efficient when dealing with unimodal problems.

For multimodal problems, we need to explore efficiently new promising optimal solutions. For

this purpose, a diversification mechanism can be activated always when the population con-

verges to a different region than the previous one, which is when |µg
j −µf

j | is large. In this case,

ωg
j is probably set to T . If σg

j is less than ωg
j , a diversification is immediately triggered.

4.1.2 Measuring stagnation

Stagnation occurs when the population distribution does not change significantly for a while.

This fact can be identified while the mean and the standard deviation remain unchanged for

some successive generations (Yang et al., 2014). The authors in Yang et al. (2014) set the

variable λg
j , which denotes the number of successive generations in which µg

j and σg
j remain

Chapter 4. Diversity-driven migration strategy (DDMS) 45

unchanged for the j-th dimension at the g-th generation. It is calculated as follows:

λg
j =

λg−1
j + 1, if µg

j = µg−1
j and σg

j = σg−1
j

0, otherwise
, (4.6)

in which λg
j = 0 in first generation. Another flag τ̂ gj is defined to denote when the population

has stagnated in the j-th dimension at the g-th generation, as follows:

τ̂ gj =

1, if λg
j ≥ UN

0, otherwise.
, (4.7)

in which UN is an integer value. If λg
j ≥ UN then τ̂ gj = 1, which indicates that the population

can be stagnated in the j-th dimension. In Yang et al. (2014), the authors show the larger the

population size, the more generations it will take for the population to enter a stable stagnation

state. Therefore, they use UN = NP, in which NP is the population size.

The authors in Yang et al. (2014) apply these approaches to identify when a diversification

mechanism should be utilized. In this work, we define three diversification mechanisms based

on migration schemes between islands in distributed computing environments. Thus, we use

these approaches to identify when to migrate.

4.2 Determining migratory frequency

Consider a population P = {x1,x2, . . . ,xNP} in which NP is the population size. Each indi-

vidual is represented by a vector xi = {xi,j , . . . , xi,D}, i = 1, 2, . . . ,NP and j = 1, 2, . . . ,D,

in which D is the number of dimensions. Figure 4.2 illustrates the process of identifying the

population’s convergence and stagnation as presented above.

This example shows convergence did not happen in dimensions 1 to 4 since the standard devia-

tion (σ) is still high. That is, these dimensions still preserve a certain diversity. However, note

that σg
5 (0.0007) is less than T (10−3). Since the difference between the mean (µg

5) and the value

of the mean of the last convergence (µf
5) is not small, ωg

5 assumes the value of T . This means

that the region of the last convergence is significantly different from the current one. As the σ5

is less than ω5, τ5 receives 1, indicating that this dimension needs to be diversified.

Regarding stagnation, we can observe that, in dimensions 2 and 4, the values of µ and σ have

not changed for 5 generations (λ = 5). Since UN = NP, τ̂ assumes 1, which means that we

can consider that both dimensions may be trapped. The authors in Yang et al. (2014) define the

Chapter 4. Diversity-driven migration strategy (DDMS) 46

2.511 4.222 3.163 2.130 0.241x1

2.701 4.012 3.510 5.427 0.242x2

1.321 4.312 3.273 1.142 0.241x3

4.532 4.221 3.413 1.741 0.240x4

3.119 4.196 3.370 2.445 0.241

1.246 0.099 0.133 1.525 0.0007

0 0 0 0 1

4.531 4.212 3.493 1.784 0.240x5

2.151 4.196 3.301 2.445 1.821

0 1 0 1 0

Stagnation

Enhancement

0 1 0 1 1

1 2 3 4 5

2 5 0 5 0

10-3 10-3 10-3 10-3 1.6x10-3

10-3 10-3 10-3 10-3 10-3

Convergence

FIGURE 4.2: Example of identifying the population’s convergence and stagnation, considering
NP = 5 and D = 5.

follow condition:

τ gj =

1, if τ̄ gj = 1 or τ̂j,g = 1

0, otherwise
. (4.8)

That is, if τ̄j or τ̂j is equal to 1, the j-th dimension needs some diversification mechanism must

be used. In this work, we utilize migrations between islands to improve diversity.

After identifying whether the population has converged or stagnated in the j-th dimension, some

rules are checked to decide if migration should be triggered.

• Rule 1: The authors in Yang et al. (2014) show immediate diversifying of the converged

or stagnated dimension identified by the Equation (4.8) may deteriorate the search, thus

slowing up convergence. Therefore, migration occurs when all dimensions have lost di-

versity, as shown below:

Γ1g =

1, if NDIV = D

0, otherwise
, (4.9)

Chapter 4. Diversity-driven migration strategy (DDMS) 47

in which NDIV is the number of dimensions that need some diversity, being calculated as

NDIV =
∑D

j=1 τ
g
j .

• Rule 2: For high-dimensional problems, a large number of function evaluations (genera-

tions) would be required for the algorithm to trigger Rule 1 (Γ1g). To alleviate this issue,

migration occurs with a small probability in any dimension j according to the following

condition (Yang et al., 2014):

Γ2g =

1, if τ gj = 1 and rand() < c

0, otherwise
, (4.10)

in which c is a small constant number, e.g., c = 10−3 (Yang et al., 2014). The rand()

function generates a uniformly distributed random number within [0, 1].

• Rule 3: In a distributed algorithm, inopportune migrations happen because most propos-

als use fixed or probabilistic migrations. For this reason, we propose a third rule, as shown

below:

Γ3g =

1, if Φ ≥ Ψ

0, otherwise
, (4.11)

in which

Φ =
NDIV

D
and Ψ = 1−

(NFE

NFEmax

)
. (4.12)

In this definition, D is the number of decision variables, and NDIV is the number of di-

mensions that need some diversity. Then, Φ represents the proportion of dimensions that

must be diversified. NFE is the current number of function evaluations, while NFEmax is

the maximum number of function evaluations. We define a metric that helps to estimate

when diversity is least likely to be lost. Diversity loss is much less likely to occur early in

the evolutionary process, so the value of Ψ is higher at this stage. Therefore, migrations

only happen early in the evolutionary process if the value of Φ is massive.

As the algorithm evolves, convergence and stagnation become more likely to happen, so

Ψ will become smaller. Thus, more migrations can occur at the end of the evolutionary

process even if the Φ value is small.

Figure 4.3 shows that this approach can identify situations of diversification that the au-

thors in Yang et al. (2014) do not cover. The green line represents the Ψ values as the

algorithm evolves. The points are the proportion of dimensions that must be diversified

Chapter 4. Diversity-driven migration strategy (DDMS) 48

(Φ) in that generation1. The red points are generations in which a migration must not

occur and the blue points are generations in which a migration must occur, according to

the Rule 3 (Γ3g).

According to this proposal, migration can occur in the first half of evolution since the

proportion of variables that must be diversified (Φ) is not too small. On the other hand,

the probability for dimensions to converge or stagnate increases after half the evolution.

Thus, even with the small value of Φ, more migrations can occur to improve diversity at

the end of the evolutionary process.

FIGURE 4.3: Rule 3: When to migrate. The green line represents the Ψ values as the algorithm
evolves. Red points are generations in which a migration must not occur and blue points are

generations in which a migration must occur.

The rules for determining when to migrate are summarized as follows:

Γg =

1, if Γ1g = 1 or Γ2g = 1 or Γ3g = 1

0, otherwise
. (4.13)

After each generation g, this procedure generates the Γg value. If Γg = 1, then the migration

must happen; otherwise, the migration is discarded.
1For simplicity, we generate these points randomly.

Chapter 4. Diversity-driven migration strategy (DDMS) 49

4.3 Evolving subpopulation

Any optimization algorithm can be used to evolve subpopulations within islands, such as DE,

GA, PSO, among others. In this work, we use the traditional version of the DE (Storn and Price,

1997) and an improved version of the DE (SHADE (Tanabe and Fukunaga, 2014)). This section

briefly describes these algorithms.

4.3.1 DE

Proposed by Storn and Price (1997), DE is a well-known population-based metaheuristic. In

each generation g, DE generates a mutant vector vg
i by employing a mutation operation on each

candidate solution xg
i . Some of the most frequently used mutation strategies in DE are listed as

follows:

1. DE/rand/1

vg
i = xg

r1 + F × (xg
r2 − xg

r3) , (4.14)

2. DE/best/1

vg
i = xg

best + F × (xg
r1 − xg

r2) , (4.15)

3. DE/current-to-best/1

vg
i = xg

i + F × (xg
best − xg

i) + F × (xg
r1 − xg

r2) , (4.16)

4. DE/rand-to-best/1

vg
i = xg

ri + F × (xg
best − xg

ri) + F × (xg
r2 − xg

r3) . (4.17)

The indices r1, r2 and r3 are mutually exclusive integers randomly generated within the range

{1,2,. . . , NP}. xgbest is the individual with the best fitness value at the generation g. The scaling

factor F ∈ [0, 1] controls the magnitude of the differential mutation operator.

After that, the mutant vector vg
i is crossed with the target vector xg

i and a trial vector ug
i is

generated. Equation (4.18) describes a commonly used binomial crossover operator in DE.

ugi,j =

vgi,j , if rand() ≤ CR or j = jrand

xgi,j , otherwise
. (4.18)

Chapter 4. Diversity-driven migration strategy (DDMS) 50

The rand() function generates a uniformly distributed random number within [0, 1] and jrand

is a decision variable index that is randomly selected from [1,D]. Finally, CR ∈ [0, 1] is the

crossover rate.

Then, a selection process determines which vectors must survive for the next generation. Equa-

tion (4.19) describes a common selection operator which compares each individual xg
i against

its corresponding trial vector ug
i , keeping the better vector in the population.

xg+1
i =

ug
i , if f(ug

i) ≤ f(xg
i)

xg
i , otherwise

. (4.19)

4.3.2 JADE

In Zhang and Sanderson (2009b), the authors propose an improved version of the DE, called

JADE (adaptive differential evolution with optional external archive). They introduce three new

features: I) a new mutation strategy (DE/current-to-pbest/1), II) an external archive, and III) an

adaptive control of the F and CR values. These features are briefly described below.

I. New mutation strategy: the mutation strategy current-to-best shown in Equation (4.16)

drives the generation of mutant vectors towards the best individual of the population. A

side effect of this strategy is that the search can converge quickly to a local optimum.

Although this behavior is useful for unimodal problems, this premature convergence can

mean a poor performance on multimodal problems (Zhang and Sanderson, 2009b, Tanabe

and Fukunaga, 2013). Because of that, the JADE algorithm presents a new mutation strat-

egy called current-to-pbest/1, in which a new parameter p is added to adjust the degree of

greediness of the mutation strategy. Equation (4.20) summarizes this feature.

vg
i = xg

i + Fi × (xg
pbest − xg

i) + Fi × (xg
r1 − xg

r2) , (4.20)

in which xg
pbest is an individual randomly selected from the NP× p best individuals in the

g-th generation, with p ∈ [0, 1]. The p parameter controls the degree of greediness and,

hence, the balance between exploitation and exploration (small p means more greedy).

II. External archive: JADE also uses an archive feature to maintain diversity. Parent vectors

xg
i which are discarded in Equation (4.19) are stored in an archive A. In Equation (4.20),

the individual xg
r2 is selected from union of the population P and the archive A (P ∪A).

The maximum size of the archive, NPA, is the same as the population (NPA = NP). If the

size of the archive exceeds NPA, individuals are randomly deleted to make space for the

newly inserted individuals.

Chapter 4. Diversity-driven migration strategy (DDMS) 51

III. Adaptive control of F and CR values: In JADE, each individual xi has its own CRi

and Fi parameters in Equations (4.18) and (4.20). At the beginning of each generation

g, the crossover probability CRi of each individual xi is generated according to a normal

distribution (N) with mean µCR and variance σ2 = 0.1. Similarly, at each generation

g, the mutation factor Fi of each individual xi is independently generated according to a

Cauchy distribution (C) with mean µF and variance σ2 = 0.1. Equations (4.21) and (4.22)

demonstrate such operations.

CRi = N (µCR, 0.1) , (4.21)

Fi = C(µF , 0.1) . (4.22)

If CRi is out the range of [0, 1], then it is rounded to the nearest bound (0 or 1). If Fi > 1,

then Fi receives 1. If Fi ≤ 0, then Equation (4.22) is repeatedly executed until the gener-

ation of a valid value. In each generation, CRi and Fi values that succeed in generating

a trial vector ug
i which is better than the parent vector xg

i are stored in the SCR and SF

vectors, and at the end of the generation, µCR and µF are updated as:

µCR = (1− c)× µCR + c× µA(SCR) , (4.23)

µF = (1− c)× µF + c× µL(SF) . (4.24)

In first generation, µCR and µF are both initialized to 0.5. Zhang and Sanderson (2009b)

define the learning rate c equal to 0.1. Finally, µA(·) is an arithmetic mean, and µL(·) is a

Lehmer mean which is computed as:

µL =

∑|SF|
k=1 (SFk)

2∑|SF|
k=1 SFk

. (4.25)

Zhang and Sanderson (2009b) explain such proposals. The idea is to propagate to the

next generations the values of µCR that tend to generate individuals more likely to survive

and, thus, guide the generation of new values of CRi’s. The adaptation of µF uses the

Cauchy distribution because it is more useful to diversify the mutation factors and thus

avoid premature convergence. In addition, the adaptation of µF using the Lehmer mean

gives preference to propagate larger successful mutation factors, which tends to improve

the progress rate.

4.3.3 SHADE

Tanabe and Fukunaga (2013) propose an improved version of JADE which uses a different

Chapter 4. Diversity-driven migration strategy (DDMS) 52

parameter adaptation mechanism. In Success-History based Adaptive DE (SHADE), the mean

values of SCR and SF for each generation are stored in MCR and MF vectors, respectively.

Thus, SHADE maintains a diverse set of parameters to drive control parameter adaptation. Now,

Equations (4.21) and (4.22) become:

CRi = N (MCRr, 0.1) , (4.26)

Fi = C(MFr, 0.1) . (4.27)

In contrast to JADE, which uses a single pair (µCR, µF) to guide parameter adaptation, the

control parameters CRi and Fi used by each individual xi are generated by selecting an index

r randomly from {1,H}, in which H is the maximum number of entries that can be saved in

MCR and MF. If CRi or Fi exceeds the range [0, 1], the same procedures described for JADE

are utilized. The contents of memories MCR and MF are updated as follows:

MCRg+1
k =

µWA(SCR), if |SCR| ≠ 0

MCRg
k, otherwise

, (4.28)

MF g+1
k =

µWL(SF), if |SF| ≠ 0

MF g
k , otherwise

, (4.29)

in which k ∈ {1, 2, . . . ,H} is the position in the memory to update. At the beginning of the

search, k is initialized to 1 and both MCR and MF vectors are initialized to 0.5. When a new

element is inserted into the history, k is incremented. If k > H, k is reset to 1. In generation g,

the k-th element in the memory is updated. When all individuals in generation g are unable to

generate at least one trial vector ui which is better than the parent xi, i.e., |SCR| = |SF| = 0,

the memory is not updated. To prevent MCRk converges to a small value, the authors replace

the arithmetic mean with the following weighted mean:

µWA(SCR) =

|SCR|∑
k=1

wk × SCRk , (4.30)

in which
wk =

∆fk∑|SCR|
k=1 ∆fk

, (4.31)

in which ∆fk = |f(ug
k)−f(xg

k)|. Thus, the amount of improvement is used in order to influence

the parameter adaptation. wk is also used to compute the weighted Lehmer mean µWL(SF), as

follows:

µWL(SF) =

∑|SF|
k=1 wk × (SFk)

2∑|SF|
k=1 wk × (SFk)

. (4.32)

Chapter 4. Diversity-driven migration strategy (DDMS) 53

Also, SHADE implements a schema to adapt the parameter p in the current-to-pbest/1 mutation

strategy presented in Equation (4.20). In each generation g, an individual xi has an associated

pi, which is set according to the equation below:

pi = rand[pmin, pmax] , (4.33)

in which pmin = 2/NP so that, when the pbest individual is selected, at least 2 individuals are part

of the set. Related to the maximum value, the authors use pmax = 0.2 as proposed by Zhang

and Sanderson (2009a).

4.4 Final discussion

This chapter establishes the rules to determine when to migrate considering population conver-

gence and stagnation. In the next chapter, we present an efficient strategy to compute conver-

gence and stagnation based on a framework to detect anomaly using the cumulative proximity

between data samples. This strategy updates recursively the statistics (mean and standard de-

viation) in each dimension as if it were a data stream. Thus, the proposal made by Yang et al.

(2014) can be implemented by incrementally modeling a non-parametric data distribution for

each decision variable.

Also, we introduce a new migratory policy based on a centralization-clustering approach in order

to keep a recent migration history. This history is used to generate clusters with similar and good

fitness individuals, but also identify the changes in the parameters of the data distribution.

Chapter 5

TEDA-based approach to defining the
migratory policy

5.1 Defining migratory policy

From now on, we are interested in defining how migration should be done. Figure 5.1 illustrates

the proposed strategy. The idea is to migrate an individual not too similar to the island population

that has lost diversity. Meanwhile, we seek to generate multiple migration options considering

the recent migration history.

Consider that Islands 1 and 2 identify the need for migration according to a criterion (for ex-

ample, the rules presented in the last chapter). In this case, they send a vector with the best

individual to a pool (step 1). In this pool, such a best individual will be clustered into a cloud

together with similar individuals. In Bezerra et al. (2016), the authors introduce a new evolving

clustering algorithm called TEDA-Class. Using a TEDA-based (Typicality and Eccentricity Data

Analysis) approach, they implement a clustering algorithm that evolves in an iterative and au-

tonomous way, without the need for constant adjustments in its parameters, which is very useful

to deal with situations in which changes in data distributions are not usually known a priori. In

this work, we adjusted the TEDA-Class to group similar individuals arriving at the pool.

After grouping, the algorithm chooses an individual to be migrated (MIG). Preferably, this indi-

vidual should be different from the population distribution of the island (step 2). Subsequently,

MIG is then sent to the island (step 3). Finally, the island selects the values in the variables that

should be diversified considering the τττ g vector (step 4). Next, the empty dimensions of βββg are

filled regarding the best individual of the island, then generating a new individual that replaces

a random individual into the subpopulation.

55

Chapter 5. TEDA-based approach to defining the migratory policy 56

Migration

2.83 4.23 3.32 2.59 0.24

0 1 0 1 1

0 0.43 0 1.53 0.08

Mean individual extracted from a cloud

2.12 0.43 4.32 1.53 0.08

2

3

4

Island 1 Island 2

2.79 4.27 6.23 0.53 0.11

2.12 0.43 4.32 1.53 0.08 1.21 4.13 5.32 0.24 0.02

Migration

1 1

3

1 0 0 0 1

1.21 0 0 0 0.02

1.21 4.13 5.32 0.24 0.02

4

Clustering

Mean individual extracted from a cloud

Best individual Best individual

“I need diversity” “I need diversity”

FIGURE 5.1: Illustration of a distributed EA with the proposed migratory policy. Circles into
the island represent the individuals of the population. The values in the small circles and the
black arrows represent the steps/sequence of the events. The dashed rectangles show actions
taken on the islands. The rectangle with a straight line houses the clouds obtained by the

clustering algorithm.

In contrast to traditional migration models that involve direct communication policies, this pro-

posal introduces an island model based on a clustering framework. This practice can provide

straight control of exploration and exploitation to maintain diversity. To this end, we seek to

increase the probability that the migrated individual will be valuable in promoting diversity.

Meanwhile, the migrated individual must have a quality track record, which helps the island

escape stagnation and move into promising new regions.

We can combine this proposal with the DDMS presented in the previous chapter, as shown

in Algorithm 1. The algorithm has as input parameters: the maximum number of function

evaluations (NFEmax); the size of population (NP); the number of dimensions (D); and the role,

which can be “pool” or “island”. The subpopulation is initialized randomly, and an objective

function f(·) evaluates solutions (line 1). At any given iteration (line 3), the algorithm executes

until met the stopping condition. Generally, the algorithm stops when NFEmax is reached or the

optimal solution is found. In each generation g, the number of function evaluations (NFE) is

computed according to the number of individuals in the population (line 4).

A typical island runs an optimizer that guides the evolutionary process (line 6). In our exper-

iments, we choose DE (Storn and Price, 1997) and SHADE (Tanabe and Fukunaga, 2014) as

optimizers. After that, the island identifies in which dimensions the population has lost diver-

sity, as shown in subsection 4.1 (lines 7). Finally, the rules described in subsection 4.2 are

Chapter 5. TEDA-based approach to defining the migratory policy 57

applied to define if a migration must occur or not (line 8). If a migration must occur (line 10),

the island sends its best individual to the pool (line 11).

In a loop, the pool is always available to receive the best individual (best ind) of any island

that needs diversity (line 17). In this case, the clustering algorithm presented in subsection 5.3

is used to group such individuals in data clouds (line 18). After that, the average individual

(MIG) is extracted from any data cloud in which the best ind is considered an outlier (line

19). Subsequently, this selected individual (MIG) is then sent to the island (line 20). Once

the migrated individual (MIG) has been received (line 12), the island selects the values in the

dimensions that should be diversified, according to the anomaly detection of TEDA described in

the subsection 5.2. The empty dimensions of βββg are filled by the best individual, and this new

individual replaces a random solution, different from the best one (lines 13–14). Lastly, g is

incremented, and a new generation begins (line 21).

Algorithm 1 General structure of the DDMS-TEDA.
NFEmax: Maximum number of function evaluations; NP: size of population; D: Number of dimensions; role:
define the role of the island;

1: Initialize subpopulation with NP individuals
2: g ← 1 ▷ First generation
3: while the stopping condition is not met do
4: NFE← g × NP ▷ Number of function evaluations
5: if role == “island” then ▷ Island
6: Execute optimizer
7: Identify premature convergence and stagnation using equations (4.3) and (4.7)
8: Determine if a migration must occur using equation (4.13)
9:

10: if migration must occur then ▷ “Need diversity”
11: Send the best individual, best ind, to the pool
12: Receive the migrated individual MIG
13: Store in βββg the dimensions that should be diversified
14: Replace a random individual by composition of βββg and best ind
15: else if role == “pool” then ▷ Pool
16: while migration request has arrived do
17: Receive the best individual, best ind, from island
18: Perform clustering of best ind
19: Extract the average individual, MIG, of one of the clouds in which best ind is an outlier
20: Send MIG to the island
21: g ← g + 1 ▷ Update generation

5.2 TEDA

TEDA is a framework proposed by Angelov (2014) which is specially used to detect anomaly.

Basically, TEDA incrementally models a non-parametric data distribution based only on the

cumulative proximity between data samples. Consider a D-dimensional input vector xk in the

timestamp k. The cumulative proximity π(·) of xk in relation to all existing data samples is

Chapter 5. TEDA-based approach to defining the migratory policy 58

calculated as:

πk(x) =
k∑

i=1

dist(xk,xi) , (5.1)

in which dist(xk,xi) is the distance between data points xk and xi; k is the timestamp when the

data point x is sampled. For anomaly detection, TEDA works with two concepts: eccentricity

and typicality. Eccentricity is a measure of the dissimilarity between the data point xk in relation

to all the data points received until timestamp k. On contrary, the typicality represents how

typical an arbitrary data point xk is in relation to all the data points received until the timestamp

k. For the case of Euclidean distance, eccentricity can be calculated recursively as follows

(Angelov, 2014):

ξk(x) =
1

k
+

(µµµk − xk)T (µµµk − xk)

k × (σ2)k
, (5.2)

in which µµµk and (σ2)k are the average and variance, respectively, that can also be recursively

updated as follows (Angelov, 2014):

µµµk =
k − 1

k
×µµµk−1 +

xk

k
, (5.3)

(σ2)k =
k − 1

k
× (σ2)k−1 +

1

k − 1
× ||µµµk − xk||2 , (5.4)

with k ≥ 1. When k = 1, µµµk = xk and (σ2)k = 0. The normalized eccentricity ζk(x) and

typicality T k(x) can be obtained as follows:

ζk(x) =
ξk(x)

2
, (5.5)

T k(x) =
1− ξk(x)

k − 2
, (5.6)

with k ≥ 2. The authors in Bezerra et al. (2016) illustrate typicality and eccentricity concepts

with the Figure 5.2. Observe that the data point A is more distant from the data set than the data

point B. Therefore, A has higher eccentricity and lower typicality than B (Bezerra et al., 2016).

The normalized eccentricity ζk(x) can be used to determine if xk is an outlier in relation to

the data set. For this purpose, ζk(x) becomes a threshold based on the well known Chebyshev

inequality (Saw et al., 1984)

ζk(x) >
m2 + 1

2× k
, (5.7)

in which m is a constant value that is greater than 0. This inequality can be explained in the

following way: if the actual sample xk is m × σ away from the average, then it is considered

an outlier in relation to the data set. Therefore, m represents how many standard deviations

Chapter 5. TEDA-based approach to defining the migratory policy 59

FIGURE 5.2: Illustration of Typicality and Eccentricity concepts in TEDA (Bezerra et al., 2016)

distant from the average a data sample should be in order to be considered an outlier (Angelov,

2014). We use the robustness to anomaly detection of TEDA to extract the individual that will

be migrated.

5.3 Adapted TEDA-Cloud

In this section, we detail the implementation of the functions to perform the clustering of the

best individual, best ind, received from the island and extract the average individual, MIG,

of one of the clouds in which best ind is an outlier (Algorithm 1, lines 18–19).

We create and update clusters based on the TEDA-Cloud algorithm proposed in Bezerra et al.

(2016). The approach generates granular data structures called data clouds, whose main char-

acteristic is that they do not have predefined shapes or boundaries as traditional data clusters. In

TEDA-Cloud, data clouds are being formed as the data arrives by considering common proper-

ties among the data samples. This way, the set of data clouds directly describes all previous data

samples. Another characteristic of TEDA-Cloud is the possibility to represent the data sets in

terms of fuzzy membership. An example is that a particular data sample can belong to all data

clouds with different membership degrees, with values between [0, 1].

The algorithm derives each equation from TEDA to a generalized form, in which each data

cloud is an independent data set. Then, it determines the membership of each read data sample

to each existing data cloud, based on Equation (5.7). Let DCi, i = 1, . . . ,NC, be the set of data

Chapter 5. TEDA-based approach to defining the migratory policy 60

clouds, in which NC is the number of clusters. A prototype of DCi is defined by the following

parameters, which are updated every time a new data point arrives at the pool:

• ski : number of data samples;

• µµµk
i : the average, which represents the center of data cloud;

• (σ2)ki : variance;

• ξi(x
k), ζi(xk): eccentricity and normalized eccentricity;

• Ti(x
k): normalized typicality;

The first cluster DC1 is created when the first data sample x1 arrives. In this case, the parameters

are initialized as follows:

NC = 1, s11 = 1, µµµ1
1 = x1, (σ2)11 = 0 . (5.8)

It is worth mentioning that typicality and eccentricity can only be calculated with at least two

data samples. Figure 5.3 illustrates three data clouds (DC1, DC2 and DC3) after k observations.

For the sake of simplicity, structures are represented as circles. However, data clouds do not

have specific shapes because TEDA-Cloud identifies the true distribution of the data.

samples
only in

samples
only in

samples
only in

samples in

and

samples in

and

samples in

and

samples in
and,

FIGURE 5.3: Data clouds DC1, DC2 and DC3 after k observations.

The number of data points that belong to data clouds DC1, DC2 and DC3 is sk1 = 13, sk2 =

13 and sk3 = 14, respectively. Note that there are points that are in multiple clusters. As a

fuzzy-based approach, TEDA-Cloud allows a given data sample can simultaneously belong to

Chapter 5. TEDA-based approach to defining the migratory policy 61

more than one data cloud, which generates an intersection region between two or more clusters.

Besides, the averages µµµk
1 , µµµk

2 and µµµk
3 graphically represent the center of the data clouds DC1,

DC2 and DC3, respectively. Finally, the variances (σ2)k1 , (σ2)k2 and (σ2)k3 represent the data

spread in data clouds DC1, DC2 and DC3, respectively (Bezerra et al., 2016).

We adapt TEDA-Cloud to work into a pool that receives the best individual from a given island

whenever a migration is triggered, according to the rules previously presented. Basically, for

each individual xk which arrives at the pool, TEDA-Cloud computes its eccentricity ζi(x
k) in

relation to the data cloud DCi. If ζi(xk) is high, we assume that xk is considerably different

from the data samples belonging to DCi, therefore, it is not necessary to carry out any updates

to the cloud structure. Otherwise, we assume that xk is similar to the data samples belonging

to DCi, hence, it is necessary to update the number of points (ski), the average (µµµk
i), and the

variance ((σ2)ki) of the cloud structure. Now, if xk is considerably different from all existing

data clouds, a new cloud is created. Thus, one of the conditions below may occur (Bezerra et al.,

2016):

• Condition 1: xk is not an outlier for at least one cluster; then update all the clusters for

which this condition holds according to the following generalized versions of the TEDA

equations:

ski = sk−1
i + 1

µµµk
i =

ski − 1

ski
×µµµk−1

i +
xk

ski

(σ2)ki =
ski − 1

ski
× (σ2)ki +

1

ski − 1
×
(
2× ||xk −µµµk

i ||
D

)2

ξi(x
k) =

1

ski
+

2× (µµµk
i − xk)T (µµµ

k
i − xk)

ski × (σ2)ki × D

ζi(x
k) =

ξi(x
k)

2

, (5.9)

in which D is the dimensionality of the data set.

• Condition 2: xk is an outlier for all existing clusters; then create a new cluster with the

following parameters:

NC = NC+ 1, skNC = 1, µµµk
NC = xk, (σ2)kNC = 0 . (5.10)

Similar to TEDA, the condition to define if a data point xk is an outlier in relation to a data cloud

DCi is given by

ζi(x
k) >

m2 + 1

2× ski
. (5.11)

Chapter 5. TEDA-based approach to defining the migratory policy 62

However, the authors in Maia et al. (2020) argue that the condition expressed by Equation (5.11),

with m ≥ 1, will always be false when ski = 2. That is, the second data point of the cluster DCi

will never be considered an outlier. This fact can be a problem especially when the first two data

points are far away from each other. In practice, very large clusters can be generated and, as

a consequence, dense regions can be improperly modeled in the data space. Thus, the authors

in Maia et al. (2020) added a parameter r0 to limit the variance of each cluster when ski = 2

in order to prevent a cluster to grow indefinitely. This parameter modifies the outlier condition

expressed by the Equation (5.11) as follows:

ζi2(x2) >
m2 + 1

4
and (σi

2)
2 < r0 . (5.12)

They set the parameter r0 to 0.001. In this work, we use that same value.

Figures 5.4 and 5.5 illustrate these two conditions by showing three data clouds, DC1, DC2 and

DC3, and an input data sample xk at the k-th time instant. In Figure 5.4, TEDA-Cloud calculates

the normalized eccentricities of xk (ζi(xk)) in relation to all three data clouds. As xk belongs to

DC2 and DC3, these two data clouds are updated, while DC1 is kept unchanged. If the second

condition is met as it is illustrated in Figure 5.5, a cloud DCNC+1 is created with the parameters

presented in Equation (5.10). Note that xk is a point considerably distant from all existing data

clouds.

FIGURE 5.4: Data clouds updating: left illustration shows DC1, DC2, DC3 and a newly arrived
data sample xk; right illustration shows the clouds after updating.

To adjust the TEDA-Cloud to the distributed model, we propose some adaptations as shown in

Algorithm 2. The mechanisms presented in the algorithm are detailed below.

Chapter 5. TEDA-based approach to defining the migratory policy 63

FIGURE 5.5: Data clouds creating: left illustration shows DC1, DC2, DC3 and a newly arrived
data sample xk; right illustration shows the clouds after creation of DC4.

1. Storage window of individuals: As a recursive algorithm, TEDA does not need to store

the data in memory, as only three main statistical resources are required for each data

cloud DCi: ski , µµµk
i and (σ2)ki (Bezerra et al., 2016). However, we need to migrate an indi-

vidual to the island. In our approach, we send the average individual considering a given

number of best individuals of the cloud. Besides that, we have defined a restart mecha-

nism if there is evidence that all data clouds are in the same search region. Therefore, we

have established a maximum number w of individuals that can be saved in a data cloud.

If the last individual xk is not an outlier (line 12), it must be inserted in the data cloud.

If the cloud is full, we define a sliding window scheme, in which the oldest individual is

discarded, the window slides, and the individual xk is inserted in the first position of the

window (line 16).

2. Restart mechanism: Although the strategy of generating data clouds increases migra-

tion options, it is still possible that all clouds have similar individuals at some point in

evolution. When this occurs, we have an indication that the islands are exploring the

same search region, which can make migration unproductive. An excellent way to find

out if this has occurred is when an incoming individual is not an outlier in any of the

data clouds, i.e., for all data clouds, the condition in line 12 is true. To circumvent this

problem, we propose a cloud restart mechanism when such a condition occurs (line 32).

The idea is simple: we perform a perturbation in the data cloud DCi, according to the

equation below:

xi = N (µµµi, σ) + (ϵ× xbest − ϵ̄× xi) , (5.13)

Chapter 5. TEDA-based approach to defining the migratory policy 64

Algorithm 2 Function to perform clustering using TEDA-Cloud.
INPUT: xk: the best individual of the island at the k-th time instant; w: window size for storing individuals in data
clouds; NCmax: maximum number of data clouds.
OUTPUT: DCi, i = 1, 2, . . . ,NC

1: while new samples are arriving do
2: if k == 1 then
3: Set DC1 parameters as defined in Equation (5.8)
4: else
5: flag new cluster ← true
6: flag restart← true
7: for i← 1 to NC do
8: if ski == 2 then
9: outlier← condition of Equation (5.12)

10: else
11: outlier← condition of Equation (5.11)
12: if outlier == false then
13: if ski < w then
14: Update DCi according to Equation (5.9)
15: else
16: Slide the window of DCi
17: Update DCi according to Equation (5.9)
18: flag new cluster ← false
19: else
20: flag restart← false

21: if flag new cluster == true then
22: if NC < MAX NC then
23: Create a new cluster with the parameters of Equation (5.10)
24: else
25: Randomly select a cloud DCrand

26: if skrand < w then
27: Update DCrand according to Equation (5.9)
28: else
29: Slide the window of DCrand

30: Update DCrand according to Equation (5.9)
31: ▷ Restart mechanism
32: if flag restart == true then
33: if NC > 1 then
34: for i← 1 to NC do
35: Perform a perturbation on DCi according to Equation (5.13)
36: ▷ Send an individual to the island
37: Randomly select a cloud DCrand among those where xk is an outlier
38: Send the DCrand average individual, µµµ, to the island

in which ϵ and ϵ̄ are two uniform random numbers in the range [0, 1], xbest is the best

individual among the w individuals from DCi, xi is the i-th individual among the w

individuals from DCi, µµµi and σ are the average and the standard deviation of DCi, respec-

tively. Note that this perturbation occurs only when the number of clouds is greater than

1 (line 33).

3. Number of clouds: It is important to stress the goal of using the pool is to generate

multiple migration options taking into account the migration history. Therefore, we are

interested in generating a sufficient number of data clouds to provide some diversity. So,

we have utilized a parameter (NCmax) to define the maximum number of data clouds (line

Chapter 5. TEDA-based approach to defining the migratory policy 65

22). If the incoming individual is an outlier to all data clouds and NC = NCmax, this

individual is added into an existing random cloud DCrand (line 25), observing the issue of

the storage window of individuals (lines 26–30). This strategy is also useful for generating

diversity within the clouds.

Since clustering has been performed, we need to choose the individual that should migrate to

the island. For this purpose, we select a cloud DCrand randomly among those where xk is an

outlier. After that, we send the DCrand average individual, µµµ, to the island. Thus, we seek to

ensure that the migrated individual will generate diversity.

5.4 Final discussion

This clustering approach is proposed in order to keep a recent migration history. This history

is used to generate clusters with similar and good-fitness individuals. However, this strategy

needs to be efficient in identifying the changes in the parameters of the data distribution. The

TEDA-based approach implements a clustering algorithm that evolves in an iterative, recursive,

and autonomous way, which is very useful to deal with situations in which changes in data

distributions are not usually known a priori. In this chapter, we adapted the idea to group

similar individuals arriving at the pool. Finally, we use the TEDA to select migrated individuals

that are sufficiently different from the requesting island.

Considering the DDMS and the adapted TEDA-Class, we can test 4 distributed strategies to rec-

ognize the contribution of each proposal: 1) DDMS-TEDA: it employs both diversity-driven mi-

gration strategy and adapted TEDA-Cloud; 2) DDMS-BEST: it uses the diversity-driven migra-

tion strategy to trigger the migrations, but it always sends the best individual; 3) FIXED-TEDA:

it implements the adapted TEDA-Cloud to choose the migrated individual, but the migrations

occur at a fixed interval, and; 4) PROBA-TEDA: it implements the adapted TEDA-Cloud to

choose the migrated individual, but the migrations follow a probabilistic flow. In the next chap-

ter, we compare these 4 migration strategies with the traditional migration strategies considering

large-scale problems.

Chapter 6

Computational experiments

The computational experiments are divided into two parts. The first evaluates the performance

of the proposed algorithms in terms of solution quality and running time. The second part of

the experiments evaluates the timing of migrations and their impact on the convergence process.

Besides that, we want to observe whether the proposed strategies are efficient in maintaining

population diversity.

6.1 Test instances

A widely used large-scale optimization test suite provided in CEC’2013 is adopted to test the

proposed approaches. The benchmark definitions can be found in Li et al. (2013). It should be

noted that these test functions have been used in recent competitions of the IEEE Task Force on

Large-Scale Global Optimization, such as the IEEE CEC’2021 Special Session and Competition

on Large-Scale Global Optimization. Therefore, these are functions that adequately express the

complexity of most real-world large-scale problems. These functions are classified into the

following five groups:

1. G1: Fully-separable Functions (f1 − f3)

2. G2: Partially Additively Separable Functions with a separable subcomponent (f4 − f7)

3. G3: Partially Additively Separable Functions with no separable subcomponents (f8−f11)

4. G4: Overlapping Functions (f12 − f14)

5. G5: Non-separable Functions (f15)

67

Chapter 6. Computational experiments 68

6.2 Experimental design

We split the proposed strategies into 4 distributed algorithms to understand the contribution of

each strategy. DDMS-TEDA employs both diversity-driven rules to trigger the migrations and

TEDA-Cloud to choose the migrated individual. FIXED-TEDA and PROBA-TEDA implement

TEDA-Cloud, but the migrations follow a constant flow. Finally, DDMS-BEST uses the diversity-

driven rules, but it always sends the best individual. Table 6.1 summarizes these algorithms

and lists the parameter settings of the distributed models. In all algorithms we use 4 islands

(subpopulations) per subcomponent.

For each algorithm and test function, 30 independent runs were conducted with NFEmax =

3E + 06 and D = 1000 (Li et al., 2013, Molina et al., 2018, Li et al., 2019, Chen et al., 2022).

The control parameters of TEDA/TEDA-Class are: (1) the number of standard deviations distant

from the mean for a data to be considered an outlier, m; (2) the maximum number of data

clouds, NCmax; (3) the window size for storing individuals in data clouds, w. Table 6.2 lists the

parameter settings.

With m = 1, we are not too rigorous when evaluating whether a point is an outlier in relation

to a given data distribution. So, it is possible to generate multiple cluster options. Regarding

NCmax and w parameters, we want to have multiple cluster options and a sufficient number of

individuals within the clusters to generate diversity in migrations. We understand that NCmax

and w equal to 10 is enough to promote this diversity. However, it may be useful to adjust these

parameters in future experiments.

6.3 Implementation details

The algorithms were implemented in C++/MPI. The code was compiled using GNU Compiler

Collection (GCC) version 7.5.0 with compiler optimization flag set to “-O3”. MPI is a message-

passing interface that allows a easy and efficient partitioning of the problem. It provides means

of parallel communication among a distributed collection of processors (Karniadakis et al.,

2003). The computational system is an Ubuntu 20.04 with 8 cores and 16GB of memory. In our

implementation, we allocate a processor core to each island1.

6.4 Performance of the proposed algorithms

A nonparametric statistical test called Kruskal-Wallis was used to determine if there are statis-

tically significant differences between the groups. In case there is a difference, Dunn post-hoc
1The source codes are available for download at https://github.com/jeanto/ddms_lsgo.

https://github.com/jeanto/ddms_lsgo

Chapter 6. Computational experiments 69

TABLE 6.1: Parameter setting of distributed model for each strategy.

Algorithm Parameter Value Description

Proposed Algorithms

DDMS-TEDA

Migratory Topology Pool - Migrate individuals according to rules
presented in Chapter 3.
- Extract the average individual from one
of the clouds where the best individual
is an outlier according to TEDA-Cloud.

Synchronization Asynchronous

Migratory Policy Mean individual substitutes random

DDMS-BEST

Migratory Topology Ring - Migrate individuals according to rules
presented in Chapter 3.
- Send the best individual from the
neighboring island.

Synchronization Asynchronous

Migratory Policy Best individual substitutes random

FIXED-TEDA

Migratory Topology Pool

- Migrate individuals in a fixed interval.
- Extract the average individual from one
of the clouds where the best individual
is an outlier according to TEDA-Cloud.

Migratory Frequency 100

Synchronization Synchronous

Migratory Policy Mean individual substitutes random

PROBA-TEDA

Migratory Topology Pool
- Migrate individuals in a probabilistic
interval.
- Extract the average individual from one
of the clouds where the best individual
is an outlier according to TEDA-Cloud.

Migratory Rate 0.05

Synchronization Asynchronous

Migratory Policy Mean individual substitutes random

Traditional Algorithms

FIXED-BEST

Migratory Topology Ring

- Migrate individuals in a fixed interval.
- Send the best individual from the
neighboring island.

Migratory Frequency 100

Synchronization Synchronous

Migratory Policy Best individual substitutes random

PROBA-BEST

Migratory Topology Ring

- Migrate individuals in a probabilistic
interval.
- Send the best individual from the
neighboring island.

Migratory Rate 0.05

Synchronization Asynchronous

Migratory Policy Best individual substitutes random

TABLE 6.2: Parameter setting of TEDA/TEDA-Class.

Parameter Value

m 1
NCmax 10

w 10

test with a Bonferroni adjustment was used to find out such differences (Dinno, 2015). We

compare the proposed migration strategies (DDMS-TEDA, DDMS-BEST, FIXED-TEDA, and

Chapter 6. Computational experiments 70

PROBA-TEDA) against the traditional migration strategies (FIXED-BEST and PROBA-BEST).

The idea is to show the count of wins, ties, and losses for each proposed strategy when com-

pared to the two traditional strategies. That is, if a proposed strategy wins over both traditional

strategies, then its count of wins is incremented. If a proposed strategy ties or losses to one of

the traditional strategies, its count of ties or losses is incremented.

In the first round of experiments, we used three decomposition methods (DG, DG2, and RDG2),

as presented in Chapter 3. The idea is to observe whether the proposed algorithms can achieve

good results regardless of the decomposition method used. Initially, we implemented the al-

gorithm DE/best/1 as an optimizer, with the scaling factor F ∈ [0, 1] and the crossover rate

CR ∈ [0, 1] extracted from a uniform distribution. We defined the population size (NP) as equal

to 100. The results are presented in Table 6.3, where the results of Dunn’s test are summarized.

TABLE 6.3: Counts of wins, losses and ties of proposed strategies (DDMS-TEDA,
DDMS-BEST, FIXED-TEDA, and PROBA-TEDA) vs. traditional strategies (FIXED-BEST

and PROBA-BEST) according to significance of Dunn’s test.

dec. proposed strategy f1-f3 f4-f7 f8-f11 f12-f14 f15 Total

DG

DDMS-TEDA # wins 0 2 3 2 1 8
losses 0 0 0 0 0 0
ties 3 2 1 1 0 7

DDMS-BEST # wins 0 2 3 2 1 8
losses 0 0 0 0 0 0
ties 3 2 1 1 0 7

FIXED-TEDA # wins 0 0 0 1 0 1
losses 0 0 0 1 0 1
ties 3 4 4 1 1 13

PROBA-TEDA # wins 0 0 0 0 0 0
losses 0 2 3 2 1 8
ties 3 2 1 1 0 7

DG2

DDMS-TEDA # wins 0 3 2 3 1 9
losses 0 0 0 0 0 0
ties 3 1 2 0 0 6

DDMS-BEST # wins 0 3 2 3 1 9
losses 0 0 0 0 0 0
ties 3 1 2 0 0 6

FIXED-TEDA # wins 0 1 0 0 0 1
losses 0 0 0 0 0 0
ties 3 3 4 3 1 14

PROBA-TEDA # wins 0 0 0 0 0 0
losses 0 0 3 3 0 6
ties 3 4 1 0 1 9

RDG2

DDMS-TEDA # wins 0 4 4 3 1 12
losses 0 0 0 0 0 0
ties 3 0 0 0 0 3

DDMS-BEST # wins 0 3 4 3 1 11
losses 0 0 0 0 0 0
ties 3 1 0 0 0 4

FIXED-TEDA # wins 0 1 0 0 0 1
losses 0 0 0 0 0 0
ties 3 3 4 3 1 14

PROBA-TEDA # wins 0 0 0 0 0 0
losses 0 0 0 0 0 0
ties 3 4 4 3 1 15

Chapter 6. Computational experiments 71

From a broader perspective, DDMS-TEDA and DDMS-BEST obtained the highest number of win

counts among the proposed strategies, regardless of the decomposition method. These results

indicate that the mechanism to determine the instant to carry out the migrations seems to have a

strong positive impact on the results since the DDMS stands out. In other words, properly defining

when to migrate can be more important than choosing which individual should be migrated.

Observe that FIXED-TEDA and PROBA-TEDA do not reach the same performance as

DDMS-TEDA and DDMS-BEST. On the contrary, FIXED-TEDA and PROBA-TEDA tie with

the traditional migration algorithms (FIXED-BEST and PROBA-BEST) in most scenarios. In

fact, PROBA-TEDA is surpassed by FIXED-BEST and PROBA-BEST in most of the test func-

tions when the decomposition algorithm is DG or DG2.

On the other hand, DDMS-TEDA and DDMS-BEST are better than traditional strategies in most

test functions. Note that, in RDG2, DDMS-TEDA and DDMS-BEST overcome traditional strate-

gies in 12 and 11 functions, respectively. This was the only difference observed between them.

Considering that DDMS-TEDA and DDMS-BEST obtained the best results, Table 6.4 shows the

results of Dunn’s test to observe if there is any statistical difference between them. The test

demonstrates that there is no significant difference between the two strategies, regardless of the

decomposition method used. They tied in all scenarios. These results suggest that it can be

enough to send a highly-fit individual (the best one or the average of the n best) as long as the

migrations occur at an appropriate time.

TABLE 6.4: Counts of wins, losses and ties of DDMS-TEDA vs. DDMS-BEST according to
significance of Dunn’s test.

proposed strategy dec. f1-f3 f4-f7 f8-f11 f12-f14 f15 Total

DDMS-TEDA

DG
wins 0 0 0 0 0 0
losses 0 0 0 0 0 0
ties 3 4 4 3 1 15

DG2
wins 0 0 0 0 0 0
losses 0 0 0 0 0 0
ties 3 4 4 3 1 15

RDG2
wins 0 0 0 0 0 0
losses 0 0 0 0 0 0
ties 3 4 4 3 1 15

Table 6.5 shows the results obtained by the proposed strategies as well as the results obtained

by the traditional strategies. The results in this table are summarized as mean values for each

function group. Columns f and dec are, respectively, the test function and the decomposition

method. Note the results for the function group G1 (Fully-separable functions [f1 − f3]) are

not listed since there was no statistical difference between the methods in this group. The next

columns contain the results obtained by the proposed and traditional strategies, in which obj.

and t(s) columns contain, respectively, the mean values of the objective function, and the mean

values of runtime in seconds.

Chapter 6. Computational experiments 72

TABLE 6.5: Results obtained by proposed and traditional migration strategies. The results
presented in this table are the mean values of the objective function and the mean values of

runtime in seconds for each group of functions and decomposition method.

Proposed strategies Traditional strategies
DDMS-TEDA DDMS-BEST FIXED-TEDA PROBA-TEDA FIXED-BEST PROBA-BEST

f dec obj. t(s) obj. t(s) obj. t(s) obj. t(s) obj. t(s) obj. t(s)

G
2:

Fu
nc

tio
ns

w
ith

a
se

pa
ra

bl
e

su
bc

om
po

ne
nt

4
DG 2.28e+12 11 2.65e+12 11 1.75e+12 12 2.80e+12 11 1.96e+12 11 2.06e+12 11
DG2 4.57e+12 08 4.58e+12 09 7.01e+12 08 1.06e+13 8 9.33e+12 08 9.34e+12 08
RDG2 4.03e+12 10 4.04e+12 10 6.88e+12 10 1.03e+13 10 9.38e+12 10 9.64e+12 10

5
DG 3.95e+07 07 3.96e+07 07 4.50e+07 07 4.80e+07 06 4.76e+07 06 4.87e+07 06
DG2 3.54e+07 10 3.51e+07 10 4.35e+07 10 4.81e+07 09 4.65e+07 10 4.78e+07 10
RDG2 3.25e+07 12 3.24e+07 12 4.27e+07 12 4.76e+07 12 4.63e+07 12 4.82e+07 12

6
DG 1.07e+06 06 1.07e+06 06 1.07e+06 06 1.07e+06 06 1.07e+06 06 1.07e+06 06
DG2 1.06e+06 15 1.06e+06 15 1.06e+06 15 1.06e+06 14 1.06e+06 14 1.06e+06 14
RDG2 1.06e+06 18 1.06e+06 19 1.06e+06 18 1.06e+06 17 1.06e+06 17 1.06e+06 17

7
DG 1.76e+11 07 1.51e+11 07 1.12e+12 06 6.34e+12 06 9.79e+11 06 4.72e+11 06
DG2 1.26e+12 05 1.28e+12 05 5.18e+12 05 1.88e+13 05 6.33e+12 05 3.94e+12 05
RDG2 5.16e+11 06 4.38e+11 06 3.74e+12 06 1.29e+13 05 4.78e+12 06 2.51e+12 06

G
3:

Fu
nc

tio
ns

w
ith

no
se

pa
ra

bl
e

su
bc

om
po

ne
nt

s 8
DG 6.75e+16 20 6.21e+16 20 8.62e+16 20 1.39e+17 19 9.88e+16 20 1.24e+17 20
DG2 1.53e+17 16 1.50e+17 16 2.50e+17 14 4.21e+17 14 1.68e+17 14 2.07e+17 15
RDG2 1.46e+17 19 1.35e+17 19 2.55e+17 18 4.66e+17 17 2.59e+17 17 3.20e+17 18

9
DG 9.71e+08 22 9.72e+08 22 1.37e+09 21 2.06e+09 20 1.40e+09 22 2.43e+09 21
DG2 9.10e+08 19 9.09e+08 19 1.24e+09 19 1.84e+09 19 1.28e+09 18 1.55e+09 18
RDG2 8.73e+08 23 8.63e+08 24 1.22e+09 23 1.80e+09 23 1.29e+09 21 1.52e+09 21

10
DG 9.49e+07 20 9.48e+07 19 9.51e+07 19 9.54e+07 18 9.49e+07 19 9.50e+07 18
DG2 9.44e+07 19 9.44e+07 19 9.45e+07 19 9.49e+07 18 9.45e+07 18 9.47e+07 19
RDG2 9.43e+07 23 9.43e+07 24 9.46e+07 22 9.46e+07 23 9.46e+07 22 9.48e+07 23

11
DG 8.44e+12 21 8.08e+12 21 1.70e+13 20 8.47e+13 20 1.93e+13 20 3.91e+13 20
DG2 2.32e+11 17 2.17e+11 17 5.21e+11 17 2.30e+12 16 5.05e+11 16 8.39e+11 17
RDG2 2.09e+11 21 2.00e+11 21 4.78e+11 20 2.56e+12 21 5.16e+11 20 8.07e+11 20

G
4:

O
ve

rl
ap

pi
ng

Fu
nc

tio
ns

12
DG 1.04e+05 0 2.25e+04 0 1.32e+08 01 3.79e+09 01 4.49e+04 0 1.75e+04 0
DG2 1.75e+11 35 1.81e+11 36 1.21e+12 33 3.10e+12 33 1.27e+12 32 1.74e+12 32
RDG2 1.33e+11 43 1.33e+11 44 1.21e+12 38 1.75e+12 39 1.31e+12 37 1.80e+12 38

13
DG 4.89e+12 21 5.47e+12 21 5.03e+13 20 5.71e+14 19 5.53e+13 20 1.64e+14 19
DG2 3.34e+12 18 4.05e+12 18 3.06e+13 18 4.99e+14 18 4.20e+13 17 1.40e+14 17
RDG2 1.30e+11 39 1.34e+11 39 2.43e+12 37 1.42e+14 36 3.40e+12 35 8.64e+13 37

14
DG 1.64e+12 21 1.77e+12 21 2.76e+12 20 7.78e+12 19 6.29e+12 19 1.52e+13 19
DG2 1.01e+13 19 9.94e+12 19 2.75e+13 18 1.70e+14 17 2.94e+13 18 5.42e+13 17
RDG2 6.13e+11 59 6.12e+11 59 1.05e+13 53 5.32e+14 53 1.36e+13 50 6.23e+14 51

G5: Non-SF 15
DG 2.00e+08 52 1.95e+08 51 5.93e+12 48 3.05e+14 49 1.60e+12 46 8.73e+13 45
DG2 2.37e+08 42 2.29e+08 42 5.73e+12 39 2.98e+14 38 1.68e+12 38 1.32e+14 38
RDG2 2.00e+08 51 1.98e+08 51 6.14e+12 46 2.88e+14 47 3.62e+12 46 1.72e+14 46

Chapter 6. Computational experiments 73

Regarding the objective function values, DDMS-TEDA and DDMS-BEST obtained the best mean

values and alternated in the first position for the vast majority of cases. Overall, they were better

in about 87% of the functions when dec. was equal to DG. When dec. was equal to DG2 or

RDG2, DDMS-TEDA and DDMS-BEST get lower mean objective function values in 100% of the

functions. It is therefore possible to state that the diversity-driven migration strategy has great

potential to improve the performance of distributed evolutionary algorithms in terms of the mean

value of the objective function.

Although statistical tests have not shown any significant difference between DDMS-TEDA and

DDMS-BEST, it is possible to observe that DDMS-BEST obtained lower mean values in most

functions. One would think this is because sending the best individual during migrations pro-

motes convergence. But, note that, in traditional strategies (FIXED-BEST and PROBA-BEST),

even sending the best individual, the results are worse than the proposed strategies. Therefore,

the results indicate that the moment of migration is the factor that can promote a significant

positive impact on the performance of distributed evolutionary algorithms.

Regarding the runtime, the results do not indicate any significant increase when comparing

the proposed and traditional strategies. The runtime values are similar mainly because the

DDMS rules are implemented using TEDA framework concepts, where mean and standard de-

viation calculations are done recursively. The most visible difference is in f15, where the

DDMS-TEDA/DDMS-BEST spends an average of 6 minutes more than the traditional strategies.

The main reason is that f15 is the only fully non-separable function, which impacts the calcula-

tion time of the DDMS rules since the 1000 variables are considered at once in the convergence

and stagnation computation.

In addition to the results presented in the table above, Figure 6.1 shows boxplot graphs for the

mean values of the objective functions of the solutions returned by the proposed and traditional

strategies. The results are stratified by the decomposition method and group of functions. The

logarithmic values are used for clarity.

From the results presented in the Table 6.5 and Figures 6.1a, 6.1b and 6.1c, it can be observed

that both DDMS-TEDA and DDMS-BEST present similar performance in terms of the mean

value of the objective function of the solutions returned by them.

Figure 6.1a shows the results to G2 (Partially Additively Separable Functions with a separable

subcomponent). Note that DDMS-TEDA and DDMS-BEST clearly outperform the other strate-

gies on functions f5 and f7, regardless of the decomposition algorithm. About G3 (Partially

Additively Separable Functions with no separable subcomponents), the same result appears in

functions f9 and f11, as shown in Figure 6.1b. In the functions of G4 (Overlapping Func-

tions) and G5 (Non-separable Function), DDMS-TEDA and DDMS-BEST stand out over the

other strategies in functions f13, f14, and f15, as illustrated in Figure 6.1c.

C
hapter6.C

om
putationalexperim

ents
74

(A) Mean value of objective function obtained for functions with a separable subcomponent (G2).

(B) Mean value of objective function obtained for functions with no separable subcomponents (G3).

(C) Mean value of objective function obtained for functions with overlapping functions (G4) and Non-separable functions (G5).

FIGURE 6.1: Mean values of objective functions. The results are stratified by the decomposition method and group of functions.

Chapter 6. Computational experiments 75

In general, DDMS-TEDA and DDMS-BEST just don’t outperform the other strategies at f6 and

f10 (Ackley Function). In its two-dimensional form, Ackley Function is characterized by a

nearly flat outer region and a large hole at the center. Because of this characteristic, the algo-

rithms present very similar performance. However, as shown in the Table 6.5, DDMS-TEDA and

DDMS-BEST tend to reach lower mean values.

Regarding decomposition methods, DG performs better when dealing with functions with ellip-

tical characteristics or subcomponents (f4, f7, f8, and f12). In the other functions, DG2 and

RDG2 are more effective, especially RDG2 in functions f5, f9, f11, f13, f14, and f15.

It should be remembered that the optimizer used (DE/best/1) does not implement recent strate-

gies to improve diversity in the optimization process. Therefore, migrations play this role. From

these results, we can assume that the diversity-driven migration strategy has a strong positive

impact on the results. In this context, we also want to observe whether these results are main-

tained if we use an evolutionary algorithm that implements strategies to maintain diversity, such

as SHADE.

The control parameters of SHADE are: (1) population size, NP = 100; (2) external archive

size, NPA = NP; (3) historical memory size, H = NP; (4) initial value of MCR and MF ,

µinit
CR = 0.5 and µinit

F = 0.5; (5) parameters to define p value for current-to-pbest/1 mutation,

pmin = 2/NP and pmax = 0.2. These parameters follow the values of the original paper (Tanabe

and Fukunaga, 2013).

To simplify and speed up the execution, this second round of experiments considers only the two

best-proposed strategies (DDMS-TEDA and DDMS-BEST) compared to the traditional strategies

(FIXED-BEST and PROBA-BEST). In addition, RDG2 is used as a decomposition method

since it obtained the best average performance. Table 6.6 shows the results obtained for each

group of functions.

Regarding the objective function values, DDMS-TEDA and DDMS-BEST obtained the best mean

values in all cases. DDMS-BEST obtained the best results in 9 (f5, f7 − f12, f14 − f15) of the

12 analyzed functions, while DDMS-TEDA performed better in three functions (f4, f6, and f13).

Therefore, the diversity-driven migration strategy proved to be very promising even using an

optimizer already known for its excellent performance. That is, DDMS can improve the per-

formance of distributed evolutionary algorithms regardless of the optimizer(s) used within the

islands. Again, these results suggest that a strategy to define a good moment to perform a mi-

gration can promote a significant difference in the performance of a DEA.

Figure 6.2 shows boxplot graphs for the mean values of the objective function of the solutions

returned by the proposed and traditional strategies. The results are stratified by optimizer and

group of functions. The logarithmic values are used for clarity. Optimizers are highlighted to

compare the performance of traditional DE/best/1 against SHADE.

Chapter 6. Computational experiments 76

TABLE 6.6: RDG2: Results obtained by proposed and traditional migration strategies. The
results presented in this table are the mean values of the objective function and the mean values

of runtime in seconds for each group of functions.

Proposed strategies Traditional strategies
DDMS-TEDA DDMS-BEST FIXED-BEST PROBA-BEST

f obj. t obj. t obj. t obj. t

G2: Functions with
a separable subcomponent

4 4.03e+12 10 4.04e+12 10 9.38e+12 10 9.64e+12 10
5 3.25e+07 12 3.24e+07 12 4.63e+07 12 4.82e+07 12
6 1.06e+06 18 1.06e+06 19 1.06e+06 17 1.06e+06 17
7 5.16e+11 06 4.38e+11 06 4.78e+12 06 2.51e+12 06

G3: Functions with
no separable subcomponents

8 1.46e+17 19 1.35e+17 19 2.59e+17 17 3.20e+17 18
9 8.73e+08 23 8.63e+08 24 1.29e+09 21 1.52e+09 21
10 9.43e+07 23 9.43e+07 24 9.46e+07 22 9.48e+07 23
11 2.09e+11 21 2.00e+11 21 5.16e+11 20 8.07e+11 20

G4: Overlapping
Functions

12 1.33e+11 43 1.33e+11 44 1.31e+12 37 1.80e+12 38
13 1.30e+11 39 1.34e+11 39 3.40e+12 35 8.64e+13 37
14 6.13e+11 59 6.12e+11 59 1.36e+13 50 6.23e+14 51

G5: Non-SF 15 2.00e+08 51 1.98e+08 47 3.62e+12 46 1.72e+14 46

From the results, it can be observed that the proposed strategies that use SHADE present a

better performance in most functions (f5, f7, f9, f11 − f15). In other functions (f4, f6, f8,

and f10), both SHADE and DE present similar performance. It was already expected that the

SHADE would perform better than the DE/best/1 since SHADE employs a success-history-based

parameter adaptation that guides the selection of future control parameter values, which tends

to improve the search efficiency.

It is important to emphasize that the proposed strategies not only accompany but also enhance

the improvement promoted by SHADE. Furthermore, it is interesting to note that in some cases

SHADE is only significantly better than DE if it uses DDMS. This behavior can be shown in

f5, f7, f11, and f12.

Focusing on functions in which SHADE was able to find the best solutions (i.e., f5, f7, f9,

f11−f15), it is possible to observe that there was no significant difference between DDMS-TEDA

and DDMS-BEST. These results reinforce that the choice of the individual to be migrated is less

decisive than the choice of the moment of migration.

In these circumstances, it is possible to highlight that the TEDA-Cloud would add the possibil-

ity of having more options for migrating highly-fit individuals. That is, new possibilities can

be explored, such as migrating more than one individual, choosing an individual who has the

most potential to promote improvements on the requesting island, and creating clouds that favor

exploration and clouds that favor exploitation, among others. The precise advantages of using

TEDA-Cloud as part of the migration process go through the implementation of these proposals

in future work.

C
hapter6.C

om
putationalexperim

ents
77

(A) Mean value of objective function obtained for functions with a separable subcomponent (G2).

(B) Mean value of objective function obtained for functions with no separable subcomponents (G3).

(C) Mean value of objective function obtained for functions with overlapping functions (G4) and Non-separable functions (G5).

FIGURE 6.2: Mean values of objective functions. The results are stratified by the decomposition method and group of functions.

Chapter 6. Computational experiments 78

Figures 6.2a and 6.2b show the results to G2 (Partially Additively Separable Functions with a

separable subcomponent) and G3 (Partially Additively Separable Functions with no separable

subcomponents), respectively. The results are similar to those obtained in the first round of ex-

periments. Figure 6.2c shows the results to G4 (Overlapping Functions) and G5 (Non-separable

Function). Note that the main difference is at f12, where the DDMS/SHADE/RDG2 combi-

nation promoted an extremely significant improvement when compared to the results obtained

using DE/best/1.

6.5 Proposed mechanism’s effectiveness

The results reinforce the choice of the proposed migration strategies, especially DDMS-BEST

and DDMS-TEDA, rather than traditional strategies, allowing us to draw tentative conclusions

regarding their performance. However, the precise advantages of using them as part of the dis-

tributed optimization framework remain to be investigated. The following sections will explore

how the proposed ideas impact migration timing, convergence, and diversity. Taking these issues

into account, we can assess whether migrations were efficient.

6.5.1 Effective moves after migration

We are also interested in evaluating when migration occurs and if it has been effective. If such

a migration promoted any improvement, that is, the migrated individual is better than the best

individual of the requesting island, we consider that an effective move has occurred.

We choose four functions according to the type of function, in which f4 is from G2, f9 is

from G3, f12 is from G4, and f15 is from G5. Figures 6.3, 6.4, 6.5, and 6.6 illustrate the

effective moves after migration in a typical run. The green bars mean that migration has occurred

and it does not promote immediate improvement in the error value on the requesting island

(migration without improvement). The red bars illustrate that migration has occurred and it

promotes immediate improvement in the error value on the requesting island (migration with

improvement). Some conclusions can be drawn as follows:

• Figures 6.3c, 6.3d, 6.4c, 6.4d, 6.5c, 6.5d, 6.6c, and 6.6d show that the migrations in

traditional strategies are constant throughout evolution since they do not assess the loss

of diversity on the islands. On the other hand, migrations in proposed strategies are more

concentrated after half the run, which is when islands generally lose diversity, as shown

in the Figures 6.3a, 6.3b, 6.4a, 6.4b, 6.5a, 6.5b, 6.6a, and 6.6b.

• DDMS-TEDA tries to apply the principle in which the migrated individual must not be

too similar, but also not too different, to the subpopulation distribution of the requesting

Chapter 6. Computational experiments 79

island. In this strategy, the migrated individual must have a proper difference from the

requesting island population while maintaining a historical quality standard. In practice,

DDMS-TEDA has greater potential to temporarily restore the diversity of the island, which

means less migration, as shown in Figures 6.3a, 6.4a, 6.5a, and 6.6a.

• Depending on the function, it is common for islands to converge to the same regions of the

search space. According to DDMS, this fact tends to cause more migration due to the loss

of diversity. The approach of sending the best individual helps to aggravate this decline

in diversity. Therefore, DDMS-BEST has more migrations than DDMS-TEDA overall. In

this sense, DDMS-TEDA seems to be the strategy that best suits the needs of the islands.

This is because it seeks to maintain the historical backing of better individuals during

migrations through the TEDA-Cloud. By clustering these individuals, it is possible to

migrate an individual of good fitness and, at the same time, different from the requesting

island population. However, this does not mean better mean values of objective function

as it was shown in the previous section.

These results demonstrate the influence of the approach to define the proper moment of migra-

tion. In general, the average number of migrations of DDMS-BEST is significantly larger than

other strategies, which suggests that the island subpopulations are trying to escape from a local

minimum. This result shows two facts: i) the mechanism of determining when to migrate was

effective, and ii) DDMS-BEST tends to be less effective than DDMS-TEDA in restoring island

diversity.

6.5.2 Convergence

Figures 6.7 and 6.8 show the convergence plots for the island that obtained the lowest value

of the objective function in a typical run using SHADE with RDG2. Note that, in general,

DDMS-TEDA and DDMS-BEST converge faster. This is because our approach waits for the is-

land to lose diversity to perform migrations. That is, DDMS allows islands to converge normally.

On the other hand, traditional migration approaches perform periodic migrations, which can

contribute to subpopulations being trapped in the same local minima. Then, after a while, the

migrations stop taking effect.

In general, DDMS-BEST is a little more efficient than DDMS-TEDA in terms of convergence,

as shown in the results of the previous section, although this difference was not statistically

significant. From the results shown in Figures 6.7 and 6.8, it can be observed that sending the

best individual allied to the DDMS tends to promote better results than the clustering mechanism

of the DDMS-TEDA. It was somewhat predictable that this result would occur, given that the

best individual sent by DDMS-BEST had already been recognized as a good solution. On the

Chapter 6. Computational experiments 80

other hand, the solution derived from TEDA-Cloud typically performs poorer in regards to the

objective function as it is based on a kind of mutation.

Future works could explore novel methods of selecting the migrated individual as a means of

enhancing convergence on DDMS-TEDA. However, in the upcoming section, we will observe

that DDMS-TEDA has the potential to enhance diversity further.

6.5.3 Diversity

To be even more assertive about the overall performance of migration strategies, we are also

interested in evaluating whether the migrations have promoted a gain in diversity. Along with

previous results, information about diversity can support us to determine which strategies were

able to drive convergence and meanwhile maintain or improve diversity on the islands.

Standard deviation is a frequently used statistic to assess the diversity of communities (Thukral

et al., 2019). In our proposal to identify population convergence, we compute the standard

deviation σ for each dimension j in each generation g (see Equation (4.2)). Having the σg
j

matrix at the end of the run, we compute the average of σj according to the following equation:

µσj =
1

GEN

GEN∑
i=1

σi,j , (6.1)

in which GEN is the number of generations at the end of the run. The result is a vector of averages

of standard deviations. We generate a metric by computing the average of µσ. Considering the

round of experiments using SHADE and RDG2, Table 6.7 summarizes this metric for each island,

respectively. The numbers in bold highlight the strategies with the highest average standard

deviation considering the 4 islands.

Considering the average ranks, DDMS-TEDA reaches the first position in all functions, fol-

lowed by DDMS-BEST. Finally, the two traditional strategies were the worst ones. These results

demonstrate apparently the influence of proper choice of the migrated individual so that diver-

sity on the requesting island is improved. In fact, DDMS-BEST is the best method to guarantee

smaller average errors because it imports the best individual. On the other hand, DDMS-TEDA is

more effective in ensuring greater diversity mainly because it tries to import an average individ-

ual with good fitness. Overall, both approaches complement each other and perform similarly.

In summary, the results indicate the influence of the approach to define the proper moment of

migration (DDMS). Also, TEDA proved its efficiency with the approach to improve diversity

using clustering. In general, it is a promising idea to combine an approach to define the proper

moment of migration together with an appropriate approach to promote diversity in distributed

Chapter 6. Computational experiments 81

evolutionary algorithms. For the latter case, the use of TEDA proved to be efficient due to its

recursive and online characteristics.

TABLE 6.7: Average of µσ of the population.

Functions Average of the µσ
DDMS-TEDA DDMS-BEST FIXED-BEST PROBA-BEST

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

G1
f1 11.20 11.68 10.20 11.51 10.15 10.28 10.54 10.81 1.61 1.44 1.43 1.12 1.91 1.43 1.12 1.61
f2 11.23 14.11 7.83 12.18 11.20 11.01 10.41 10.43 9.61 9.64 9.41 9.51 9.24 9.43 9.11 9.43
f3 36.16 39.74 40.13 35.32 36.32 34.72 33.31 36.87 21.07 22.07 18.61 19.21 11.21 11.81 11.33 10.31

G2

f4 0.55 0.54 0.51 0.48 0.50 0.45 0.44 0.50 0.43 0.35 0.28 0.48 0.43 0.59 0.22 0.21
f5 11.60 10.83 9.73 10.15 7.51 8.50 8.12 8.31 5.81 6.23 5.41 6.32 3.35 3.81 3.44 3.46
f6 13.96 15.91 16.41 16.05 15.53 15.16 14.17 14.68 8.31 8.34 8.18 9.21 5.15 4.51 5.13 5.31
f7 23.80 23.80 24.99 29.41 21.12 21.43 22.53 22.10 7.56 7.44 7.62 7.71 16.12 16.21 16.48 16.21

G3

f8 11.12 14.41 7.87 13.88 10.13 10.21 10.34 10.24 9.53 9.61 9.13 9.13 9.42 9.23 9.41 9.53
f9 11.32 10.34 9.65 10.13 7.51 8.01 8.53 8.41 5.81 6.93 5.93 6.12 3.54 3.81 3.55 3.12
f10 35.75 34.01 38.63 38.31 12.56 13.57 12.78 14.14 15.71 15.31 15.10 14.71 8.30 8.12 8.11 9.81
f11 33.81 35.12 39.81 38.61 26.91 28.50 25.91 28.86 18.41 18.89 17.41 15.90 10.71 11.61 10.93 11.90

G4
f12 32.85 38.61 37.21 38.61 36.62 35.36 36.45 35.23 23.53 21.23 22.43 24.25 12.49 11.28 11.40 11.47
f13 7.65 7.61 6.11 7.73 6.91 6.21 6.01 6.32 4.21 3.55 3.17 3.86 2.13 2.32 2.10 2.51
f14 5.32 5.21 6.45 5.82 5.11 5.91 5.41 5.31 2.91 2.91 3.34 2.13 1.35 1.10 1.21 1.45

G5 f15 2.33 2.71 2.31 2.14 2.14 2.11 2.13 2.14 1.23 1.89 1.99 1.54 0.64 0.94 1.01 0.99

6.6 Results on moderate-scale optimization problems

The main objective of this work is to investigate the behavior of the proposed strategies in large-

scale global optimization (LSGO) problems. Considering the promising performance, we extend

the DDMS-TEDA analysis to problems with a moderate number of variables (50 and 100). In

this case, it is not necessary to use a decomposition algorithm to perform the optimization.

For problems of this dimensionality, the literature generally uses the 30 test instances of the

CEC’2014 Special Session and Competition on Single-Objective Real-Parameter Numerical

Optimization (Liang et al., 2013, Awad et al., 2016, Zhang et al., 2019a, Wang et al., 2019,

Tan et al., 2021, Halim et al., 2021, Wang et al., 2022).

Appendix A highlights some results of the DDMS-TEDA when compared with traditional migra-

tion strategies (FIXED-BEST and PROBA-BEST) and some prominent sequential evolutionary

algorithms, namely, SHADE (Tanabe and Fukunaga, 2013), L-SHADE (Tanabe and Fukunaga,

2014), SHADE-ILS (Molina et al., 2018), L-SHADE-EpSin (Awad et al., 2016), FLDE (Tan

et al., 2021), MSHCSA (Zhang et al., 2019a), and ADECSA (Wang et al., 2022).

In summary, DDMS-TEDA performed competitively against the most recent sequential DE-

based and clonal algorithms, demonstrating that an efficient distributed proposal tends to im-

prove the performance of prominent sequential evolutionary algorithms, even those not so re-

cent, such as L-SHADE. In relation to traditional migration models in distributed algorithms,

DDMS-TEDA showed as promising results as in large-scale problems. It had good performance

especially for problems with 100 variables and hybrid/composition functions. The results pre-

sented in Appendix A demonstrate that the DDMS-TEDA is an effective strategy to promote

better performance of evolutionary algorithms within a distributed model in smaller problems

as well.

C
hapter6.C

om
putationalexperim

ents
82

(A) DDMS-TEDA (B) DDMS-BEST

(C) FIXED-BEST (D) PROBA-BEST

FIGURE 6.3: f4 (G2): Effective moves after migration in a typical run. The illustration shows the moment when a migration occurred and if such a migration
promoted an improvement in the requesting island.

C
hapter6.C

om
putationalexperim

ents
83

(A) DDMS-TEDA (B) DDMS-BEST

(C) FIXED-BEST (D) PROBA-BEST

FIGURE 6.4: f9 (G3): Effective moves after migration in a typical run. The illustration shows the moment when a migration occurred and if such a migration
promoted an improvement in the requesting island.

C
hapter6.C

om
putationalexperim

ents
84

(A) DDMS-TEDA (B) DDMS-BEST

(C) FIXED-BEST (D) PROBA-BEST

FIGURE 6.5: f12 (G4): Effective moves after migration in a typical run. The illustration shows the moment when a migration occurred and if such a migration
promoted an improvement in the requesting island.

C
hapter6.C

om
putationalexperim

ents
85

(A) DDMS-TEDA (B) DDMS-BEST

(C) FIXED-BEST (D) PROBA-BEST

FIGURE 6.6: f15 (G5): Effective moves after migration in a typical run. The illustration shows the moment when a migration occurred and if such a migration
promoted an improvement in the requesting island.

C
hapter6.C

om
putationalexperim

ents
86

(A) f4 (B) f5 (C) f6

(D) f7 (E) f8 (F) f9

FIGURE 6.7: Convergence plots of the migration strategies for the best island for functions f4 − f9. Axes x (NFE) is multiplied by 105 for clarity.

C
hapter6.C

om
putationalexperim

ents
87

(A) f10 (B) f11 (C) f12

(D) f13 (E) f14 (F) f15

FIGURE 6.8: Convergence plots of the migration strategies for the best island for functions f10 − f15. Axes x (NFE) is multiplied by 105 for clarity.

Chapter 7

Final remarks

7.1 Overall conclusions

In the literature on distributed evolutionary algorithms, most of the approaches are proposed

with migrating at fixed intervals or with a given probability. In this work, we recognize the

importance of considering a more reliable estimation of the proper moment to perform the mi-

gration of an individual. This involves assessing the loss of diversity in each dimension and

determining when to migrate. For that, we presented rules to assess recursively the loss of di-

versity in each dimension in order to obtain a trigger to perform timely migrations. We called

this migration strategy the Diversity-driven Migration Strategy (DDMS).

Another important issue that has been little explored in the literature involves the definition

of how to migrate an individual so that this migration promotes a productive improvement in

the diversity of the requesting island. An efficient strategy would be to ensure the migrated

individual is sufficiently different from the requesting island population and, at the same time,

has good or moderate fitness so as not to harm convergence. Most studies focus on migrating the

best or a random individual replacing the worst or a random individual on the requesting island.

In this work, we proposed two different strategies to define how the migration should be done.

In the first strategy, called DDMS-BEST, the sending island sends its best individual to the

requesting island to promote a diversity that does not negatively impact convergence. In the

second strategy, we proposed an approach that aims to balance exploitation and exploration.

Instead of creating a topology where there is direct communication between neighboring islands,

migrations occur between the islands and a pool. After receiving the best individual from a

given requesting island, this pool clusters it in a cloud together with other individuals which

are similar by using the TEDA-Cloud framework. After clustering, an individual sufficiently

different from the requesting island is extracted from one of the clouds and then the migration is

89

Chapter 7. Final remarks 90

made. This approach seeks to maintain a recent history of good-fitness individuals while trying

to generate diversity by sending individuals that are outliers when compared to the requesting

island population. We combined this approach with DDMS and call it DDMS-TEDA.

The proposed strategies were compared against the usual approaches that consider periodic mi-

grations in which a given individual on the requesting island is replaced by a copy of the best

individual on the sending island. The experimental comparison was carried out on a test suite of

15 functions defined for the CEC’2013 Special Session and Competition on Large-Scale Global

Optimization. The strategies were tested with the dimension (D) set to 1000 variables.

The experimental comparison brings promising results for the proposed strategies. A deeper

analysis of the comparisons’ results told us that it is beneficial to use our Diversity-driven Mi-

gration Strategy (DDMS) along with a Cooperative Co-evolution Distributed Evolutionary model

for solving large-scale optimization problems. Besides, DDMS performed better than traditional

strategies (FIXED-BEST and PROBA-BEST) in the vast majority of functions considering two

evolutionary algorithms (DE/best/1 and SHADE) and three decomposition methods (DG, DG2,

and RDG2). Regarding specifically diversity, DDMS-TEDA proved to be the most promising

approach in most functions and scenarios. On convergence, DDMS-BEST is particularly more

effective.

Although not the focus of this work, DDMS-TEDA was also tested for problems with 50 and

100 variables using the 30 test instances of the CEC’2014 Special Session and Competition

on Single-Objective Real-Parameter Numerical Optimization. DDMS-TEDA were compared

against the traditional migration approaches and prominent sequential evolutionary algorithms.

Overall, DDMS-TEDA achieved excellent results, outperforming traditional migration models on

more than half of the test problems in both scenarios. Furthermore, DDMS-TEDA was superior

to sequential SHADE-based algorithms in the vast majority of functions.

These results should provide enough reason for adopting a proper diversity-based migration

mechanism to reduce unnecessary and unproductive migrations. In particular, the proposed

mechanisms have the potential to deal with high-dimensional, large-scale problems and com-

posite landscapes that often refer to complex real-world problems.

7.2 Further works

Despite the promising results of this study, the research on diversity-based migration mecha-

nisms should continue. We point out below some aspects that should be investigated in future

works regarding large-scale optimization problems (LSOP).

Chapter 7. Final remarks 91

The researches have shown the difficulties of metaheuristics in dealing with LSOP (Li et al.,

2013, Omidvar et al., 2021b, Zhan et al., 2022). In fact, even though an EA implements mech-

anisms to balance exploration and exploitation, the curse of dimensionality is a problem that

degrades the performance as the number of variables increases (Li et al., 2013, Chen et al.,

2015). In this context, distributed evolutionary algorithms have attracted attention because of

their ability to explore multiple search regions by dividing the population into subgroups (Ge

et al., 2017, Jia et al., 2018). Distributed models have shown very promisingly in many works

(Ge et al., 2017, Meng et al., 2017, Wang et al., 2019, Li et al., 2022).

Another common strategy for improving the performance of EAs for LSOPs is to decompose

the problem into several low-dimensional subproblems. The algorithms that use this strategy

are called Cooperative Co-evolution Evolutionary Algorithms (CCEAs) (Li et al., 2013, Chen

et al., 2015). However, maintaining diversity remains an open challenge for both traditional

metaheuristics (Omidvar et al., 2021b) and CCEAs (Omidvar et al., 2021a) when applied to

LSOPs, even when the algorithm is distributed due to the significant impact of the migration

strategy (Wang et al., 2019). This work presents a new approach that combines a CCEA with a

distributed model that seeks to make the migration process efficient and well-adapted to the di-

versity needs of the islands. However, some improvements and adaptations need to be addressed

in future works.

• The results showed that migration often does not produce an immediate result in terms

of both convergence and diversity. When this occurs, it is innate in our mechanism for

assessing the loss of diversity that a new migration takes place right afterward. As a conse-

quence, it was common to observe many migrations occurring in consecutive generations.

In future work, we wish to develop a scheme to measure the historical contribution, in

terms of convergence and diversity, of the migrations that have occurred on a given is-

land. The goal is to determine whether or not migration is a better option at that very

moment. To this end, new actions must be implemented other than just migration.

• Some situations can happen with some recurrence in distributed models. First, a couple

of islands may be exploring the same search region. Second, the islands’ contribution to

convergence and diversity can differ greatly. Third, computational resources are limited

and can change during the evolutionary process. Fourth, migrations may be ineffective in

terms of convergence and diversity for several generations in a row. Therefore, we wish to

use some statistics to implement actions such as mergence and split of islands, inclusion

or removal of islands according to the computational resources available, and migration

schemes better suited to the needs of the islands and the recent migration history.

• In the approach to determine when to migrate in Chapter 4, section 4.2, we proposed

a rule that follows the premise that convergence and stagnation are much less likely to

Chapter 7. Final remarks 92

occur at the beginning of the evolutionary process. Although the proposed approach in

Equation (4.11) can identify situations of diversification, this premise may not apply to all

cases. It may happen that, as the algorithm evolves, the probability of applying diversifi-

cation increases regardless of the real need of the island. Therefore, an improvement to be

considered is the addition of a condition that is not tied to this time parameter. In future

works, we want to introduce a metric to assess the proportion of times rule 3 is triggered

in the past n generations to obtain a clearer indication of the real need for the island.

• In DDMS-TEDA, new possibilities can be explored, such as migrating more than one in-

dividual, choosing an individual who has the most potential to promote improvements on

the island, and creating clouds that favor exploration and clouds that favor exploitation,

among others. Also, we hope to make a sensitivity analysis in relation to the parameters

of the TEDA-Class algorithm. For example, we want to assess whether the maximum

number of data clouds (NCmax) directly impacts the results.

• In this work, DDMS-BEST uses a ring topology. Future works can also investigate the

behavior of strategies in different distributed topologies.

• In future experiments, it is necessary to evaluate the scalability of the proposed approaches.

• In future versions, PCA (Principal Component Analysis) and similar approaches can be

used for dimensionality reduction in subproblems with a large number of variables.

Appendix A

Computational experiments on
CEC’2014 special session and
competition

Thirty test instances, proposed in the CEC’2014 special session and competition on single-

objective real-parameter numerical optimization, were used to study the performance of the

DDMS-TEDA in scenarios with moderate number of variables. A detailed description of these

test instances can be found in Liang et al. (2013). In this benchmark, f1 − f3 are unimodal

functions (U), f4 − f16 are simple multimodal functions (SM), f17 − f22 are hybrid functions

(H), and f23 − f30 are composition functions (C).

For each algorithm and each test function, 30 independent runs were conducted with NFEmax

= 10000 × D evaluations as the termination criterion, in which D is the number of dimensions.

When the objective function gap between the best found solution and the optimal one is 10−8

or less, the error (score) is treated as 0, and the algorithm terminates. In these experiments, we

define two scenarios, with D = 50 and D = 100.

We have used Kruskal-Wallis test to determine if there are statistically significant differences be-

tween the groups. In case there is a difference, Dunn post-hoc test with a Bonferroni adjustment

was used to find out such differences (Dinno, 2015).

A.1 DDMS-TEDA vs. Traditional migration strategies

First, we compare the DDMS-TEDA against the traditional migration strategies (FIXED-BEST

and PROBA-BEST). The control parameters of DDMS-TEDA, FIXED-BEST, and

93

Computational experiments on CEC’2014 special session and competition 94

PROBA-BEST are the same as presented in the section 6.2 (Experimental design) of Chapter 6.

The idea is to show the count of wins, ties, and losses for the proposed strategy when compared

to the two traditional strategies. That is, if the DDMS-TEDAwins over both traditional strategies,

then its count of wins is incremented. If the DDMS-TEDA ties or losses to one of the traditional

strategies, its count of ties or losses is incremented. In all strategies, we use L-SHADE as the

optimizer. These results are shown in Tables A.1 and A.2.

The results reveal that the count of wins of DDMS-TEDA is higher especially for hybrid (H)

and composition (C) functions. Such a result indicates DDMS-TEDA can deal with complex

landscapes that usually resemble real-world problems. Observe DDMS-TEDA performs better

than traditional migration strategies (FIXED-BEST and PROBA-BEST) in more than half of

the test problems, and the count of wins is larger than the count of losses in both scenarios.

TABLE A.1: Counts of wins, losses and ties of DDMS-TEDA vs. FIXED-BEST according to
significance of Dunn’s test.

D = 50 D = 100
DDMS-TEDA U SM H C Tot. U SM H C Tot.

wins 0 7 5 3 15 0 6 4 7 17
losses 0 5 1 4 10 0 7 2 0 9
ties 3 1 0 1 5 3 0 0 1 4

TABLE A.2: Counts of wins, losses and ties of DDMS-TEDA vs. PROBA-BEST according to
significance of Dunn’s test.

D = 50 D = 100
DDMS-TEDA U SM H C Tot. U SM H C Tot.

wins 0 7 5 3 15 0 6 5 8 19
losses 0 5 1 3 9 0 6 0 0 6
ties 3 1 0 2 6 3 1 1 0 5

The error values (f(x) − f(x∗)) are given in Tables A.3 and A.4 for 50 and 100 variables,

respectively. The numbers in parentheses represent the standard error and the p-value of each

algorithm. We added a bold highlight to the strategies that obtained the lowest average error

for each function. With D = 50, DDMS-TEDA achieves the first position in 19 functions and

outperforms other ones in 15 functions. For D = 100, DDMS-TEDA achieves the first position

in 22 functions and outperforms other ones in 17 functions.

All strategies had good results in optimizing the unimodal functions (f1–f3). In simple multi-

modal functions (f4–f16), we can see a balance between DDMS-TEDA and traditional strategies.

In hybrid and composition functions (f17–f30), DDMS-TEDA had good performance, especially

in composition functions for D = 100. In fact, Tables A.3 and A.4 show that DDMS-TEDA is

more favorable for solving problems with hybrid and composition functions.

C
om

putationalexperim
ents

on
C

E
C

’2014
specialsession

and
com

petition
95

TABLE A.3: Average error on D = 50. Numbers in bold highlight represent the strategies with the lowest average error. Numbers in parentheses represent the
standard error and the p-value, respectively.

Fun. DDMS-TEDA FIXED-BEST PROBA-BEST

f1 0.00e+00 (±0.00e+00)(−) 0.00e+00 (±0.00e+00)(1.00e+00) 0.00e+00 (±0.00e+00)(1.00e+00)
f2 0.00e+00 (±0.00e+00)(−) 0.00e+00 (±0.00e+00)(1.00e+00) 0.00e+00 (±0.00e+00)(1.00e+00)
f3 0.00e+00 (±0.00e+00)(−) 0.00e+00 (±0.00e+00)(1.00e+00) 0.00e+00 (±0.00e+00)(1.00e+00)
f4 1.36e+01 (±1.10e+00)(−) 1.39e−01 (±1.58e−01)(2.11e−15) 7.08e−01 (±4.40e−02)(2.41e−05)
f5 2.02e+01 (±3.09e−03)(−) 2.00e+01 (±5.18e−03)(0.00e+00) 2.00e+01 (±3.97e−03)(0.00e+00)
f6 1.27e−05 (±9.58e−07)(−) 0.00e−00 (±1.78e−10)(1.08e−08) 0.00e+00 (±0.00e+00)(1.08e−08)
f7 0.00e+00 (±0.00e+00)(−) 0.00e+00 (±0.00e+00)(1.00e+00) 0.00e+00 (±0.00e+00)(1.00e+00)
f8 1.04e−08 (±7.86e−10)(−) 0.00e+00 (±0.00e+00)(2.19e−14) 0.00e+00 (±0.00e+00)(2.19e−14)
f9 1.42e+01 (±1.63e−01)(−) 3.05e+01 (±1.88e−01)(6.99e−15) 2.97e+01 (±2.56e−01)(6.65e−11)
f10 2.85e−01 (±3.09e−03)(−) 1.11e+01 (±4.74e−02)(5.14e−12) 9.99e+00 (±5.01e−03)(5.78e−06)
f11 2.68e+03 (±2.62e+01)(−) 4.25e+03 (±1.83e+01)(2.19e−14) 4.97e+03 (±1.19e+01)(0.00e+00)
f12 1.60e−01 (±1.13e−03)(−) 5.16e−02 (±2.13e−03)(0.00e+00) 6.77e−02 (±1.42e−03)(2.46e−11)
f13 1.17e−01 (±1.17e−03)(−) 1.23e−01 (±1.15e−03)(4.03e−03) 1.21e−01 (±1.76e−03)(7.85e−03)
f14 2.59e−01 (±4.76e−04)(−) 2.99e−01 (±1.52e−03)(3.02e−10) 2.96e−01 (±1.47e−03)(2.53e−07)
f15 4.69e+00 (±2.45e−02)(−) 4.85e+00 (±1.74e−02)(1.48e−02) 4.84e+00 (±2.76e−02)(1.95e−03)
f16 1.57e+01 (±2.44e−02)(−) 1.77e+01 (±3.65e−02)(1.11e−15) 1.80e+01 (±3.46e−02)(0.00e+00)
f17 3.48e+02 (±8.77e+00)(−) 5.94e+02 (±1.37e+01)(5.14e−12) 4.75e+02 (±1.25e+01)(4.62e−05)
f18 9.00e+01 (±4.33e−01)(−) 9.47e+01 (±6.23e−01)(8.81e−04) 1.03e+02 (±7.96e−01)(6.23e−13)
f19 8.57e+00 (±9.36e−02)(−) 6.50e+00 (±2.43e−01)(2.41e−05) 6.29e+00 (±1.62e−01)(6.23e−13)
f20 8.06e+00 (±1.18e−01)(−) 9.43e+00 (±1.16e−01)(2.06e−04) 1.08e+01 (±2.01e−01)(1.74e−12)
f21 3.57e+02 (±4.74e+00)(−) 3.72e+02 (±4.47e+00)(1.20e−02) 3.88e+02 (±5.43e+00)(8.83e−05)
f22 1.36e+02 (±1.84e+00)(−) 1.78e+02 (±1.23e+00)(2.03e−08) 1.83e+02 (±2.48e+00)(2.03e−08)
f23 1.24e+02 (±0.00e+00)(−) 1.24e+02 (±0.00e+00)(1.00e+00) 1.24e+02 (±0.00e+00)(1.00e+00)
f24 2.70e+02 (±8.38e−02)(−) 2.71e+02 (±1.74e−01)(4.03e−03) 2.71e+02 (±1.56e−01)(4.03e−03)
f25 2.00e+02 (±2.19e−04)(−) 2.00e+02 (±0.00e+00)(1.09e−02) 2.00e+02 (±1.98e−04)(3.69e−02)
f26 1.00e+02 (±6.96e−04)(−) 1.00e+02 (±7.55e−04)(4.00e−04) 1.00e+02 (±1.48e−03)(6.50e−01)
f27 4.00e+02 (±3.21e−05)(−) 4.00e+02 (±4.97e−05)(1.00e−04) 4.00e+02 (±5.88e−05)(1.00e−04)
f28 5.73e+02 (±4.29e−01)(−) 5.71e+02 (±9.31e−01)(8.81e−04) 5.71e+02 (±9.19e−01)(3.73e−04)
f29 7.48e+02 (±3.58e+00)(−) 7.69e+02 (±2.19e+00)(4.03e−03) 7.90e+02 (±3.11e+00)(2.03e−08)
f30 6.23e+02 (±1.44e+00)(−) 6.69e+02 (±2.83e+00)(4.05e−11) 6.38e+02 (±1.44e+00)(2.50e−03)

C
om

putationalexperim
ents

on
C

E
C

’2014
specialsession

and
com

petition
96

TABLE A.4: Average error on D = 100. Numbers in bold highlight represent the strategies with the lowest average error. Numbers in parentheses represent the
standard error and the p-value, respectively.

Fun. DDMS-TEDA FIXED-BEST PROBA-BEST

f1 0.00e+00 (±0.00e+00)(−) 0.00e+00 (±0.00e+00)(1.00e+00) 0.00e+00 (±0.00e+00)(1.00e+00)
f2 0.00e+00 (±0.00e+00)(−) 0.00e+00 (±0.00e+00)(1.00e+00) 0.00e+00 (±0.00e+00)(1.00e+00)
f3 0.00e+00 (±0.00e+00)(−) 0.00e+00 (±0.00e+00)(1.00e+00) 0.00e+00 (±0.00e+00)(1.00e+00)
f4 9.34e+01 (±2.50e+00)(−) 8.70e+01 (±1.38e+00)(5.00e−06) 8.68e+01 (±4.57e+00)(5.45e−05)
f5 2.04e+01 (±1.33e−02)(−) 2.00e+01 (±1.69e−04)(2.46e−13) 2.00e+01 (±3.46e−04)(6.98e−06)
f6 7.01e+00 (±6.11e−02)(−) 4.59e+01 (±2.91e−01)(0.00e+00) 4.58e+01 (±6.20e−01)(0.00e+00)
f7 0.00e+00 (±0.00e+00)(−) 2.53e−03 (±2.73e−04)(5.00e−06) 5.39e−03 (±6.62e−04)(0.00e+00)
f8 2.86e−01 (±1.33e−02)(−) 0.00e+00 (±0.00e+00)(0.00e+00) 4.52e−01 (±1.17e−01)(1.88e−01)
f9 4.08e+01 (±4.02e−01)(−) 1.05e+02 (±8.85e−01)(0.00e+00) 1.09e+02 (±1.70e+00)(0.00e+00)
f10 5.52e+01 (±2.94e−01)(−) 1.23e−02 (±9.50e−04)(0.00e+00) 8.47e−02 (±1.08e−02)(1.39e−14)
f11 9.62e+03 (±2.30e+01)(−) 8.57e+03 (±2.63e+01)(5.14e−11) 9.46e+03 (±7.27e+01)(1.23e−01)
f12 3.33e−01 (±2.06e−03)(−) 1.04e−01 (±1.47e−03)(1.39e−14) 1.41e−01 (±2.35e−03)(1.29e−04)
f13 2.11e−01 (±5.07e−04)(−) 3.42e−01 (±2.86e−03)(0.00e+00) 3.19e−01 (±3.15e−03)(7.33e−05)
f14 1.05e−01 (±6.07e−04)(−) 1.14e−01 (±6.00e−04)(1.29e−04) 1.28e−01 (±6.27e−04)(0.00e+00)
f15 1.23e+01 (±1.61e−01)(−) 2.03e+01 (±2.99e−01)(4.05e−08) 2.18e+01 (±4.41e−01)(1.66e−09)
f16 3.76e+01 (±4.11e−02)(−) 3.59e+01 (±5.49e−02)(4.27e−13) 3.65e+01 (±1.24e−01)(1.29e−04)
f17 2.23e+03 (±2.01e+01)(−) 3.78e+03 (±2.94e+01)(1.41e−10) 3.95e+03 (±7.92e+01)(6.66e−16)
f18 2.15e+02 (±6.50e−01)(−) 2.35e+02 (±1.91e+00)(1.66e−09) 2.32e+02 (±1.47e+00)(1.46e−07)
f19 1.04e+02 (±2.61e−01)(−) 9.06e+01 (±1.31e+00)(1.33e−15) 1.05e+02 (±1.22e+00)(4.82e−01)
f20 3.42e+01 (±2.54e−01)(−) 1.54e+02 (±2.19e+00)(0.00e+00) 1.38e+02 (±2.50e+00)(1.62e−06)
f21 6.60e+02 (±9.26e+00)(−) 1.81e+03 (±2.83e+01)(3.67e−12) 1.77e+03 (±2.58e+01)(3.11e−11)
f22 8.88e+02 (±1.22e+01)(−) 8.49e+02 (±8.26e+00)(8.75e−04) 1.10e+03 (±2.27e+01)(1.29e−04)
f23 1.23e+02 (±0.00e+00)(−) 1.23e+02 (±0.00e+00)(1.00e+00) 1.40e+02 (±3.44e+00)(1.30e−12)
f24 3.71e+02 (±1.02e−01)(−) 3.76e+02 (±3.50e−01)(3.96e−05) 3.79e+02 (±3.97e−01)(1.41e−13)
f25 2.01e+02 (±8.84e−04)(−) 2.01e+02 (±1.19e−03)(5.09e−04) 2.01e+02 (±1.27e−03)(1.67e−12)
f26 1.00e+02 (±1.32e−03)(−) 1.00e+02 (±3.62e−03)(0.00e+00) 1.00e+02 (±3.47e−03)(2.16e−12)
f27 4.00e+02 (±3.75e−05)(−) 4.00e+02 (±2.17e−04)(0.00e+00) 4.00e+02 (±2.56e−04)(0.00e+00)
f28 8.31e+02 (±1.85e+00)(−) 1.03e+03 (±4.92e+00)(0.00e+00) 1.04e+03 (±9.38e+00)(0.00e+00)
f29 7.13e+02 (±1.36e+00)(−) 8.19e+02 (±7.51e+00)(7.33e−05) 9.83e+02 (±2.41e+01)(0.00e+00)
f30 2.15e+03 (±1.26e+01)(−) 3.12e+03 (±1.96e+01)(4.55e−15) 3.31e+03 (±3.45e+01)(0.00e+00)

Computational experiments on CEC’2014 special session and competition 97

A.2 DDMS-TEDA vs. Sequential EAs

Tables A.5, A.6, and A.7 show the count of wins, ties, and losses for DDMS-TEDA when com-

pared to Sequential EAs (SHADE, L-SHADE and SHADE-ILS) in scenarios with 50 and 100

variables. SHADE-ILS (Molina et al., 2018) is a more recent improved version of SHADE that

incorporates an Iterative Local Search that combines the exploration power of a contemporary

DE algorithm with the exploitation ability of several local search methods.

The parameter settings of SHADE, L-SHADE and SHADE-ILS are the same as those used in

their original papers (Tanabe and Fukunaga, 2013, 2014, Molina et al., 2018).

The results show that DDMS-TEDA is significantly better than Sequential EAs in more than

two-thirds of the functions, and the count of wins is much larger than the count of losses in both

scenarios.

TABLE A.5: Counts of wins, losses and ties of DDMS-TEDA vs. SHADE according to signifi-
cance of Dunn’s test.

D = 50 D = 100
DDMS-TEDA U SM H C Tot. U SM H C Tot.

wins 0 9 6 7 22 0 13 5 4 22
losses 0 2 0 0 2 0 0 1 1 2
ties 3 2 0 1 6 3 0 0 3 6

TABLE A.6: Counts of wins, losses and ties of DDMS-TEDA vs. L-SHADE according to
significance of Dunn’s test.

D = 50 D = 100
DDMS-TEDA U SM H C Tot. U SM H C Tot.

wins 0 9 6 7 22 0 12 5 4 21
losses 0 4 0 0 4 0 1 1 1 3
ties 3 0 0 1 4 3 0 0 3 6

TABLE A.7: Counts of wins, losses and ties of DDMS-TEDA vs. SHADE-ILS according to
significance of Dunn’s test.

D = 50 D = 100
DDMS-TEDA U SM H C Tot. U SM H C Tot.

wins 0 8 2 5 15 0 12 5 4 21
losses 0 3 2 1 6 0 1 1 1 3
ties 3 1 3 2 9 3 0 0 3 6

In general, distributed approaches tend to be more efficient than sequential ones, mainly be-

cause inter-island communication can help the population within the island to escape from local

minimums.

Computational experiments on CEC’2014 special session and competition 98

The error values (f(x) − f(x∗)) are given in Tables A.8 and A.9 for 50 and 100 variables,

respectively. The numbers in parentheses represent the standard error and the p-value of each

algorithm, respectively. We added a bold highlight to the strategies that obtained the lowest

average error for each function.

Table A.8 shows that the DDMS-TEDA achieves the first position in 24 functions when D = 50.

Besides, it outperforms other algorithms in 19 functions. Table A.9 shows the corresponding

results on D = 100. For the average performance, it achieves the first position in 27 functions

and outperforms the other ones in 21 functions.

Putting the type of test function into perspective, none of the strategies had difficulty in op-

timizing the unimodal instances (f1–f3). In other functions (f4–f30), DDMS-TEDA had good

performance mainly when the number of variables is equal to 100.

Considering SHADE-ILS was the best one among sequential methods, we can assume that

DDMS-TEDA tends to improve the performance of EAs since it was able to overcome

SHADE-ILS in most functions even running L-SHADE on the islands.

C
om

putationalexperim
ents

on
C

E
C

’2014
specialsession

and
com

petition
99

TABLE A.8: Average error on D = 50: DDMS-TEDA vs. Sequential EAs. Numbers in bold highlight represent the strategies with the lowest average error.
Numbers in parentheses represent the standard error and the p-value, respectively.

Fun. DDMS-TEDA SHADE L-SHADE SHADE-ILS

f1 0.00e+00 (±0.00e+00)(−) 0.00e+00 (±0.00e+00)(1.00e+00) 0.00e+00 (±0.00e+00)(1.00e+00) 0.00e+00 (±0.00e+00)(1.00e+00)
f2 0.00e+00 (±0.00e+00)(−) 0.00e+00 (±0.00e+00)(1.00e+00) 0.00e+00 (±0.00e+00)(1.00e+00) 0.00e+00 (±0.00e+00)(1.00e+00)
f3 0.00e+00 (±0.00e+00)(−) 0.00e+00 (±0.00e+00)(1.00e+00) 0.00e+00 (±0.00e+00)(1.00e+00) 0.00e+00 (±0.00e+00)(1.00e+00)
f4 1.36e+01 (±1.10e+00)(−) 3.04e+01 (±4.18e−02)(4.18e−03) 2.97e+01 (±3.11e−02)(2.49e−03) 2.19e+01 (±8.12e−02)(1.03e−03)
f5 2.02e+01 (±3.09e−03)(−) 2.03e+01 (±2.46e−03)(2.18e−01) 2.01e+01 (±9.56e−04)(1.65e−04) 2.01e+01 (±1.14e−03)(8.18e−05)
f6 1.27e−05 (±9.58e−07)(−) 1.29e+01 (±1.33e−07)(1.65e−04) 3.20e−01 (±3.83e−02)(1.65e−04) 1.28e+01 (±1.07e−01)(1.41e−07)
f7 0.00e+00 (±0.00e+00)(−) 5.91e−03 (±9.21e−08)(3.18e−14) 5.42e−03 (±0.00e+00)(2.19e−14) 5.42e−03 (±0.00e+00)(2.19e−14)
f8 1.04e−08 (±7.86e−10)(−) 0.00e+00 (±0.00e+00)(9.92e−13) 0.00e+00 (±0.00e+00)(2.19e−14) 0.00e+00 (±0.00e+00)(1.98e−14)
f9 1.42e+01 (±1.63e−01)(−) 3.17e+01 (±3.37e−01)(0.00e+00) 3.11e+01 (±4.98e−01)(0.00e+00) 3.13e+01 (±2.18e−01)(0.00e+00)
f10 2.85e−01 (±3.09e−03)(−) 5.67e−03 (±3.40e−01)(5.14e−03) 1.86e−03 (±2.86e−01)(1.65e−04) 1.91e−03 (±2.11e−01)(1.73e−04)
f11 2.68e+03 (±2.62e+01)(−) 4.22e+03 (±2.13e+01)(7.31e−08) 3.51e+03 (±5.04e+01)(1.65e−04) 3.66e+03 (±1.98e+01)(8.21e−04)
f12 1.60e−01 (±1.13e−03)(−) 1.59e−01 (±1.74e−03)(7.91e−01) 1.58e−01 (±2.52e−03)(5.69e−01) 1.58e−01 (±1.99e−03)(4.78e−01)
f13 1.17e−01 (±1.17e−03)(−) 2.92e−01 (±1.76e−03)(0.00e+00) 2.90e−01 (±2.07e−03)(0.00e+00) 2.91e−01 (±2.06e−03)(0.00e+00)
f14 2.59e−01 (±4.76e−04)(−) 3.58e−01 (±6.79e−03)(0.00e+00) 3.52e−01 (±2.04e−03)(0.00e+00) 3.19e−01 (±1.75e−03)(0.00e+00)
f15 4.69e+00 (±2.45e−02)(−) 6.66e+00 (±4.59e−02)(0.00e+00) 6.58e+00 (±4.88e−02)(0.00e+00) 5.40e+00 (±3.58e−02)(0.00e+00)
f16 1.57e+01 (±2.44e−02)(−) 1.74e+01 (±2.49e−02)(1.22e−06) 1.74e+01 (±8.90e−02)(1.27e−06) 1.69e+01 (±3.86e−02)(7.35e−05)
f17 3.48e+02 (±8.77e+00)(−) 1.45e+03 (±2.07e+01)(0.00e+00) 1.44e+03 (±2.20e+01)(0.00e+00) 9.92e+02 (±1.86e+01)(0.00e+00)
f18 9.00e+01 (±4.33e−01)(−) 1.62e+02 (±2.23e+00)(0.00e+00) 1.60e+02 (±9.66e−01)(0.00e+00) 9.01e+01 (±5.66e−01)(2.17e−01)
f19 8.57e+00 (±9.36e−02)(−) 1.03e+01 (±1.55e−01)(1.16e−04) 1.01e+01 (±4.23e−02)(1.65e−04) 7.99e+00 (±1.29e−01)(1.24e−02)
f20 8.06e+00 (±1.18e−01)(−) 5.19e+01 (±1.26e+00)(0.00e+00) 5.17e+01 (±1.96e−01)(0.00e+00) 7.93e+00 (±1.36e−01)(1.87e−01)
f21 3.57e+02 (±4.74e+00)(−) 1.49e+03 (±2.01e+02)(0.00e+00) 1.51e+03 (±8.62e+00)(0.00e+00) 3.61e+02 (±6.21e+00)(3.72e−01)
f22 1.36e+02 (±1.84e+00)(−) 3.49e+02 (±5.33e+00)(0.00e+00) 3.52e+02 (±6.44e+00)(0.00e+00) 1.15e+02 (±6.42e+00)(2.45e−03)
f23 1.24e+02 (±0.00e+00)(−) 1.24e+02 (±0.00e+00)(1.00e+00) 1.24e+02 (±0.00e+00)(1.00e+00) 1.24e+02 (±0.00e+00)(1.00e+00)
f24 2.70e+02 (±8.38e−02)(−) 2.80e+02 (±1.61e−01)(0.00e+00) 2.80e+02 (±1.35e−01)(0.00e+00) 2.75e+02 (±3.62e−02)(0.00e+00)
f25 2.00e+02 (±2.19e−04)(−) 2.00e+02 (±1.16e−03)(8.54e−09) 2.00e+02 (±1.37e−03)(1.30e−09) 2.00e+02 (±1.04e−03)(4.66e−08)
f26 1.00e+02 (±6.96e−04)(−) 1.00e+02 (±2.99e−03)(9.26e−12) 1.00e+02 (±1.52e−03)(7.71e−13) 1.00e+02 (±1.29e−03)(6.62e−12)
f27 4.00e+02 (±3.21e−05)(−) 4.00e+02 (±1.40e−04)(6.64e−05) 4.00e+02 (±4.79e−05)(1.00e−04) 4.00e+02 (±2.31e−05)(1.23e−02)
f28 5.73e+02 (±4.29e−01)(−) 6.06e+02 (±1.29e+00)(9.39e−08) 6.06e+02 (±1.02e+00)(1.11e−07) 5.58e+02 (±1.28e+00)(9.14e−03)
f29 7.48e+02 (±3.58e+00)(−) 8.86e+02 (±8.10e+00)(0.00e+00) 8.94e+02 (±6.27e+00)(0.00e+00) 7.94e+02 (±2.42e+00)(0.00e+00)
f30 6.23e+02 (±1.44e+00)(−) 9.62e+02 (±1.16e+01)(0.00e+00) 9.60e+02 (±4.77e+00)(0.00e+00) 6.45e+02 (±3.80e+00)(0.00e+00)

C
om

putationalexperim
ents

on
C

E
C

’2014
specialsession

and
com

petition
100

TABLE A.9: Average error on D = 100: DDMS-TEDA vs. Sequential EAs. Numbers in bold highlight represent the strategies with the lowest average error.
Numbers in parentheses represent the standard error and the p-value, respectively.

Fun. DDMS-TEDA SHADE L-SHADE SHADE-ILS

f1 0.00e+00 (±0.00e+00)(−) 0.00e+00 (±0.00e+00)(1.00e+00) 0.00e+00 (±0.00e+00)(1.00e+00) 7.93e−06 (±0.00e+00)(1.39e−14)
f2 0.00e+00 (±0.00e+00)(−) 0.00e+00 (±0.00e+00)(1.00e+00) 0.00e+00 (±0.00e+00)(1.00e+00) 0.00e+00 (±0.00e+00)(1.00e+00)
f3 0.00e+00 (±0.00e+00)(−) 0.00e+00 (±0.00e+00)(1.00e+00) 0.00e+00 (±0.00e+00)(1.00e+00) 0.00e+00 (±0.00e+00)(1.00e+00)
f4 9.34e+01 (±2.50e+00)(−) 1.09e+02 (±2.65e+00)(6.95e−04) 1.09e+02 (±1.28e+00)(6.69e−04) 1.06e+02 (±2.94e+00)(9.11e−03)
f5 2.04e+01 (±1.33e−02)(−) 2.05e+01 (±4.67e−03)(4.25e−04) 2.05e+01 (±1.85e−04)(3.85e−04) 2.05e+01 (±4.25e−03)(4.01e−04)
f6 7.01e+00 (±6.11e−02)(−) 3.90e+01 (±1.53e−01)(1.01e−04) 3.91e+01 (±2.77e−01)(1.29e−04) 3.87e+01 (±1.89e−01)(9.92e−03)
f7 0.00e+00 (±0.00e+00)(−) 5.48e−03 (±3.80e−04)(0.00e+00) 5.29e−03 (±2.26e−04)(0.00e+00) 5.25e−03 (±3.59e−04)(0.00e+00)
f8 2.86e−01 (±1.33e−02)(−) 2.97e−08 (±5.86e−09)(3.57e−04) 2.59e−08 (±0.00e+00)(6.32e−05) 2.50e−08 (±5.38e−09)(3.36e−06)
f9 4.08e+01 (±4.02e−01)(−) 9.43e+01 (±4.86e−01)(2.01e−04) 9.43e+01 (±7.49e−01)(1.29e−04) 9.40e+01 (±4.42e−01)(7.65e−03)
f10 5.52e+01 (±2.94e−01)(−) 7.78e−01 (±3.66e−02)(8.14e−03) 7.92e−01 (±9.44e−04)(1.29e−04) 7.68e−01 (±3.15e−02)(5.13e−03)
f11 9.62e+03 (±2.30e+01)(−) 1.14e+04 (±1.62e+01)(7.12e−07) 1.14e+04 (±2.96e+01)(7.47e−07) 1.13e+04 (±1.43e+01)(6.34e−07)
f12 3.33e−01 (±2.06e−03)(−) 3.70e−01 (±1.68e−03)(1.76e−04) 3.70e−01 (±1.48e−03)(1.29e−04) 3.69e−01 (±1.16e−03)(9.33e−03)
f13 2.11e−01 (±5.07e−04)(−) 3.48e−01 (±2.01e−03)(0.00e+00) 3.47e−01 (±2.45e−03)(0.00e+00) 3.45e−01 (±2.25e−03)(0.00e+00)
f14 1.05e−01 (±6.07e−04)(−) 1.31e−01 (±4.84e−04)(0.00e+00) 1.31e−01 (±6.11e−04)(0.00e+00) 1.31e−01 (±4.45e−04)(0.00e+00)
f15 1.23e+01 (±1.61e−01)(−) 2.69e+01 (±1.99e−01)(0.00e+00) 2.70e+01 (±2.65e−01)(0.00e+00) 2.68e+01 (±1.98e−01)(0.00e+00)
f16 3.76e+01 (±4.11e−02)(−) 3.94e+01 (±2.21e−02)(3.86e−05) 3.94e+01 (±5.01e−02)(7.33e−05) 3.94e+01 (±2.03e−02)(5.34e−05)
f17 2.23e+03 (±2.01e+01)(−) 3.87e+03 (±3.81e+01)(0.00e+00) 3.86e+03 (±2.95e+01)(0.00e+00) 3.84e+03 (±3.64e+01)(0.00e+00)
f18 2.15e+02 (±6.50e−01)(−) 4.24e+02 (±1.16e+01)(0.00e+00) 4.06e+02 (±2.07e+00)(0.00e+00) 4.10e+02 (±1.39e+01)(0.00e+00)
f19 1.04e+02 (±2.61e−01)(−) 1.01e+02 (±1.09e+00)(5.23e−03) 1.01e+02 (±1.16e+00)(4.16e−03) 1.01e+02 (±1.02e+00)(6.43e−03)
f20 3.42e+01 (±2.54e−01)(−) 1.56e+02 (±1.54e+00)(0.00e+00) 1.54e+02 (±2.61e+00)(0.00e+00) 1.53e+02 (±1.45e+00)(0.00e+00)
f21 6.60e+02 (±9.26e+00)(−) 3.57e+03 (±5.51e+02)(0.00e+00) 3.30e+03 (±3.46e+01)(0.00e+00) 3.35e+03 (±4.58e+02)(0.00e+00)
f22 8.88e+02 (±1.22e+01)(−) 1.27e+03 (±9.70e+00)(9.45e−15) 1.27e+03 (±9.57e+00)(8.10e−15) 1.27e+03 (±8.81e+00)(7.45e−15)
f23 1.23e+02 (±0.00e+00)(−) 1.22e+02 (±0.00e+00)(2.23e−03) 1.22e+02 (±0.00e+00)(2.23e−03) 1.22e+02 (±0.00e+00)(2.23e−03)
f24 3.71e+02 (±1.02e−01)(−) 4.04e+02 (±2.41e−01)(8.45e−06) 4.04e+02 (±3.36e−01)(9.44e−06) 4.04e+02 (±2.32e−01)(7.34e−06)
f25 2.01e+02 (±8.84e−04)(−) 2.01e+02 (±2.52e−03)(1.00e+00) 2.01e+02 (±1.17e−03)(1.00e+00) 2.01e+02 (±2.46e−03)(1.00e+00)
f26 1.00e+02 (±1.32e−03)(−) 1.00e+02 (±2.24e−03)(1.00e+00) 1.00e+02 (±2.99e−03)(1.00e+00) 1.00e+02 (±1.96e−03)(1.00e+00)
f27 4.00e+02 (±3.75e−05)(−) 4.00e+02 (±1.31e−04)(1.00e+00) 4.00e+02 (±1.93e−04)(1.00e+00) 4.00e+02 (±1.41e−04)(1.00e+00)
f28 8.31e+02 (±1.85e+00)(−) 8.71e+02 (±4.99e+00)(3.23e−04) 8.64e+02 (±6.23e+00)(1.29e−04) 8.65e+02 (±3.18e+00)(1.56e−04)
f29 7.13e+02 (±1.36e+00)(−) 9.04e+02 (±8.55e+00)(3.78e−15) 8.96e+02 (±7.81e+00)(1.33e−15) 8.90e+02 (±8.87e+00)(8.56e−14)
f30 2.15e+03 (±1.26e+01)(−) 2.88e+03 (±2.12e+01)(6.43e−05) 2.89e+03 (±2.31e+01)(9.66e−05) 2.87e+03 (±2.04e+01)(4.67e−05)

Computational experiments on CEC’2014 special session and competition 101

A.3 DDMS-TEDA vs. Recent Sequential EAs

We have also compared DDMS-TEDA against some recent sequential EAs, namely

L-SHADE-EpSin (Awad et al., 2016), FLDE (Tan et al., 2021), MSHCSA (Zhang et al., 2019a),

and ADECSA (Wang et al., 2022).

L-SHADE-EpSin is an algorithm which uses a ensemble sinusoidal approach to automatically

adapt the values of the scaling factor of the DE (Awad et al., 2016). The approach consists of

a mixture of two sinusoidal formulas: a non-adaptive sinusoidal decreasing adjustment and an

adaptive history-based sinusoidal increasing adjustment. The idea is to find an effective balance

between the exploitation of the already found best solutions, and the exploration of non-visited

regions. The work demonstrated the efficiency and robustness of the L-SHADE-EpSin to ob-

tain better results when compared to L-SHADE algorithm and other state-of-the-art algorithms.

FLDE is an DE-based algorithm which applies an adaptive mutation strategy based on fitness

landscape (Tan et al., 2021). First, the algorithm analyzes the fitness landscape features of

each benchmark function. Then, the relationship between three mutation strategies and fitness

landscape features is trained by random forest (RF) offline. Finally, the trained RF is used

to predict which mutation strategy should be utilized to perform mutation operator for each

problem during the evolutionary process. The authors showed that FLDEwas highly competitive

when compared with others DE algorithms.

MSHCSA is an algorithm that proposes a modified combinatorial recombination to bring diver-

sity to the population and avoid premature convergence (Zhang et al., 2019a). A success-history

based adaptive mutation strategy is introduced to form a selection algorithm that improves the

search ability. The mutation operator is also modified and analyzed through experimental com-

parison. To cope with the stagnation, the gene knockout strategy is proposed. The experimental

results showed that MSHCSA is quite competitive when compared with some state-of-the-art

algorithms.

The recent work presented in Wang et al. (2022) propose an improved clonal selection algo-

rithm called an adaptive clonal selection algorithm with multiple differential evolution strategies

(ADECSA). The algorithm has three features: (1) an adaptive mutation strategy pool based on its

historical records of success is introduced to guide the immune response process effectively; (2)

an adaptive population resizing method is adopted to speed up convergence; and (3) a prema-

ture convergence detection method and a stagnation detection method are proposed to alleviate

premature convergence and stagnation problems in the evolution by enhancing the diversity of

the population. The experimental results showed that ADECSA has the best overall performance

compared with other clonal algorithms and DE-based algorithms.

Computational experiments on CEC’2014 special session and competition 102

The error values (f(x) − f(x∗)) are given in Tables A.10 and A.11 for 50 and 100 variables,

respectively. The numbers in parentheses represent the standard error of each algorithm. The

results of the L-SHADE EpSin, FLDE, MSHCSA, and ADECSA are extracted from Tan et al.

(2021) and Wang et al. (2022), respectively. We added a bold highlight to the strategies that

obtained the lowest average error for each function.

Table A.10 shows that DDMS-TEDA wins on 18 functions when compared with DE-based

algorithms (L-SHADE EpSin and FLDE) with 50 variables. DDMS-TEDA is overcome by

L-SHADE EpSin or FLDE in 9 occasions. Table A.11 shows the corresponding results with

100 variables. For the average performance, it outperforms other DE-based algorithms in 19

functions. These results demonstrate that DDMS-TEDA has the potential to improve L-SHADE

and make it outperforms recent DE-based sequential algorithms.

When compared with recent clonal selection algorithms (MSHCSA and ADECSA), DDMS-TEDA

wins on 13 and 11 functions considering 50 and 100 variables, respectively. Regarding the recent

ADECSA, which demonstrated excellent performance in (Wang et al., 2022) when compared

with DE-based and clonal selection algorithms, DDMS-TEDA loses on 12 and 16 functions and

wins in 13 and 11 functions, considering 50 and 100 variables, respectively. Again, these results

show the potential of DDMS-TEDA to improve the performance of L-SHADE.

The results demonstrate that the DDMS-TEDA can promote better performance of evolutionary

algorithms within a distributed model. In future work, we want to test it using more recent opti-

mizers, such as L-SHADE EpSin, FLDE, and ADECSA, in order to validate this hypothesis.

C
om

putationalexperim
ents

on
C

E
C

’2014
specialsession

and
com

petition
103

TABLE A.10: Average error on D = 50: DDMS-TEDA vs. some recent sequential EAs. Numbers in bold highlight represent the strategies with the lowest average
error. Numbers in parentheses represent the standard error.

Fun. DDMS-TEDA
L-SHADE EpSin
(Awad et al., 2016)

FLDE
(Tan et al., 2021)

MSHCSA
(Zhang et al., 2019a)

ADECSA
(Wang et al., 2022)

f1 0.00e+00 (±0.00e+00) 0.00e+00 (±0.00e+00) 0.00e+00 (±0.00e+00) 0.00e+00 (±0.00e+00) 1.05e+03 (±1.87e+03)
f2 0.00e+00 (±0.00e+00) 1.57e+00 (±1.93e+00) 0.00e+00 (±0.00e+00) 2.51e−07 (±1.77e−07) 3.31e−08 (±9.65e−08)
f3 0.00e+00 (±0.00e+00) 0.00e+00 (±0.00e+00) 0.00e+00 (±0.00e+00) 0.00e+00 (±0.00e+00) 0.00e+00 (±0.00e+00)
f4 1.36e+01 (±1.10e+00) 5.14e+01 (±4.43e+01) 5.77e+01 (±5.05e+01) 2.72e+01 (±8.12e−01) 5.30e+01 (±4.83e+01)
f5 2.02e+01 (±3.09e−03) 2.52e+01 (±6.44e+00) 1.14e+01 (±2.61e+00) 2.00e+01 (±2.44e−04) 2.02e+01 (±1.35e−01)
f6 1.27e−05 (±9.58e−07) 9.16e−07 (±1.07e−06) 0.00e+00 (±0.00e+00) 5.09e+01 (±1.79e+00) 3.46e−02 (±1.29e−01)
f7 0.00e+00 (±0.00e+00) 7.66e+01 (±6.06e+00) 6.32e+01 (±1.71e+00) 0.00e+00 (±0.00e+00) 0.00e+00 (±0.00e+00)
f8 1.04e−08 (±7.86e−10) 2.63e+01 (±6.59e+00) 1.13e+01 (±2.14e+00) 3.26e+01 (±3.80e+00) 0.00e+00 (±0.00e+00)
f9 1.42e+01 (±1.63e−01) 0.00e+00 (±0.00e+00) 0.00e+00 (±0.00e+00) 7.68e+01 (±8.82e+00) 2.28e+01 (±9.51e+00)
f10 2.85e−01 (±3.09e−03) 3.20e+03 (±3.40e+02) 3.04e+03 (±3.37e+02) 1.51e+03 (±2.24e+02) 4.77e−02 (±1.65e−01)
f11 2.68e+03 (±2.62e+01) 2.14e+01 (±2.09e+00) 4.92e+01 (±1.07e+01) 5.79e+03 (±4.10e+02) 3.64e+03 (±5.63e+02)
f12 1.60e−01 (±1.13e−03) 1.48e+03 (±3.65e+02) 2.33E+03 (±5.97E+02) 6.82e−01 (±1.02e−01) 1.84e−01 (±7.37e−02)
f13 1.17e−01 (±1.17e−03) 6.94e+01 (±3.45e+01) 6.86e+01 (±3.24e+01) 2.84e−01 (±2.99e−02) 1.73e−01 (±2.49e−02)
f14 2.59e−01 (±4.76e−04) 2.65e+01 (±2.49e+00) 3.02E+01 (±3.47E+00) 2.22e−01 (±4.02e−02) 1.81e−01 (±2.54e−02)
f15 4.69e+00 (±2.45e−02) 2.56e+01 (±4.06e+00) 4.07e+01 (±1.01e+01) 9.19e+00 (±1.24e+00) 5.16e+00 (±5.11e−01)
f16 1.57e+01 (±2.44e−02) 2.75e+02 (±9.97e+01) 3.92e+02 (±1.20e+02) 2.03e+01 (±3.24e−01) 1.66e+01 (±1.01e+00)
f17 3.48e+02 (±8.77e+00) 2.77e+02 (±7.31e+01) 2.49e+02 (±7.94e+01) 2.64e+03 (±2.99e+02) 4.70e+02 (±1.87e+02)
f18 9.00e+01 (±4.33e−01) 2.43e+01 (±2.12e+00) 4.52e+01 (±1.46e+01) 7.78e+01 (±1.02e+01) 2.17e+01 (±6.91e+00)
f19 8.57e+00 (±9.36e−02) 1.74e+01 (±2.47e+00) 2.70e+01 (±9.17e+00) 1.96e+01 (±1.56e+00) 8.45e+00 (±1.40e+00)
f20 8.06e+00 (±1.18e−01) 1.14e+02 (±3.55e+01) 1.63e+02 (±6.98e+01) 4.89e+01 (±5.76e+00) 8.63e+00 (±2.46e+00)
f21 3.57e+02 (±4.74e+00) 2.27e+02 (±7.06e+00) 2.14e+02 (±2.29e+00) 1.50e+03 (±2.48e+02) 4.06e+02 (±1.49e+02)
f22 1.36e+02 (±1.84e+00) 1.59e+03 (±1.67e+03) 1.13e+03 (±1.65e+03) 4.63e+02 (±1.32e+02) 1.09e+02 (±8.99e+01)
f23 1.24e+02 (±0.00e+00) 4.39e+02 (±6.90e+00) 4.31e+02 (±3.74e+00) 3.37e+02 (±2.85e−13) 2.00e+02 (±0.00e+00)
f24 2.70e+02 (±8.38e−02) 5.13e+02 (±5.59e+00) 5.09e+02 (±2.60e+00) 2.64e+02 (±3.30e−01) 2.00e+02 (±2.45e−13)
f25 2.00e+02 (±2.19e−04) 4.80e+02 (±1.08e+00) 4.83e+02 (±5.90e+00) 2.00e+02 (±1.59e−02) 2.00e+02 (±0.00e+00)
f26 1.00e+02 (±6.96e−04) 1.20e+03 (±1.19e+02) 1.18e+03 (±4.45e+01) 1.00e+02 (±2.83e−02) 1.00e+02 (±2.45e−02)
f27 4.00e+02 (±3.21e−05) 5.25e+02 (±9.21e+00) 5.24e+02 (±8.85e+00) 1.73e+03 (±3.70e+01) 2.00e+02 (±8.34e−10)
f28 5.73e+02 (±4.29e−01) 4.59e+02 (±1.19e+01) 4.59e+02 (±3.81e−02) 3.57e+02 (±4.41e−01) 2.00e+02 (±0.00e+00)
f29 7.48e+02 (±3.58e+00) 3.53e+02 (±9.78e+00) 3.48e+02 (±9.74e+00) 2.29e+02 (±8.98e−01) 2.00e+02 (±0.00e+00)
f30 6.23e+02 (±1.44e+00) 6.58e+05 (±7.24e+04) 6.14e+05 (±4.38e+04) 9.58e+02 (±1.77e+02) 2.00e+02 (±0.00e+00)

C
om

putationalexperim
ents

on
C

E
C

’2014
specialsession

and
com

petition
104

TABLE A.11: Average error on D = 100: DDMS-TEDA vs. some recent sequential EAs. Numbers in bold highlight represent the strategies with the lowest average
error. Numbers in parentheses represent the standard error.

Fun. DDMS-TEDA
L-SHADE EpSin
(Awad et al., 2016)

FLDE
(Tan et al., 2021)

MSHCSA
(Zhang et al., 2019a)

ADECSA
(Wang et al., 2022)

f1 0.00e+00 (±0.00e+00) 0.00e+00 (±0.00e+00) 0.00e+00 (±0.00e+00) 9.95e+04 (±4.26e+04) 1.40e+05 (±4.94e+04)
f2 0.00e+00 (±0.00e+00) 3.57e+11 (±6.18e+11) 2.35e+11 (±5.10e+11) 2.46e+00 (±1.21e+00) 4.60e−03 (±4.99e−03)
f3 0.00e+00 (±0.00e+00) 0.00e+00 (±0.00e+00) 0.00e+00 (±0.00e+00) 6.59e−07 (±3.64e−07) 0.00e+00 (±0.00e+00)
f4 9.34e+01 (±2.50e+00) 1.99e+02 (±8.30e+00) 2.01e+02 (±7.59e+00) 8.44e+01 (±6.18e−01) 1.82e+02 (±2.97e+01)
f5 2.04e+01 (±1.33e−02) 5.59e+01 (±9.91e+00) 3.55e+01 (±5.58e+00) 2.00e+01 (±1.87e−03) 2.05e+01 (±1.74e−01)
f6 7.01e+00 (±6.11e−02) 6.02e−05 (±2.18e−05) 0.00e+00 (±0.00e+00) 1.29e+02 (±2.61e+00) 5.07e−01 (±6.34e−01)
f7 0.00e+00 (±0.00e+00) 1.62e+02 (±7.91e+00) 1.41e+02 (±5.48e+00) 0.00e+00 (±0.00e+00) 0.00e+00 (±0.00e+00)
f8 2.86e−01 (±1.33e−02) 5.35e+01 (±5.39e+00) 3.55e+01 (±3.64e+00) 2.36e+02 (±1.64e+01) 8.78e−06 (±1.78e−05)
f9 4.08e+01 (±4.02e−01) 0.00e+00 (±0.00e+00) 0.00e+00 (±0.00e+00) 3.17e+02 (±1.82e+01) 4.78e+01 (±1.66e+01)
f10 5.52e+01 (±2.94e−01) 1.03e+04 (±5.21e+02) 1.07e+04 (±4.74e+02) 1.11e+04 (±5.54e+02) 1.13e+00 (±5.21e−01)
f11 9.62e+03 (±2.30e+01) 4.92e+01 (±3.02e+02) 4.34e+02 (±1.31e+02) 1.69e+04 (±5.54e+02) 1.01e+04 (±1.10e+03)
f12 3.33e−01 (±2.06e−03) 4.62e+03 (±6.48e+02) 2.34e+04 (±8.91e+03) 1.33e+00 (±1.34e−01) 3.31e−01 (±4.74e−02)
f13 2.11e−01 (±5.07e−04) 1.25e+02 (±3.65e+01) 5.61e+02 (±2.73e+02) 3.67e−01 (±3.12e−02) 3.05e−01 (±2.58e−02)
f14 1.05e−01 (±6.07e−04) 4.97e+01 (±8.17e+00) 2.45e+02 (±3.34e+01) 3.12e−01 (±9.89e−02) 2.19e−01 (±1.63e−02)
f15 1.23e+01 (±1.61e−01) 8.99e+01 (±2.83e+01) 2.37e+02 (±6.18e+01) 3.00e+01 (±1.84e+00) 1.54e+01 (±9.47e−01)
f16 3.76e+01 (±4.11e−02) 1.82e+03 (±2.36e+02) 1.53e+03 (±2.50e+02) 4.35e+01 (±4.63e−01) 3.84e+01 (±6.95e−01)
f17 2.23e+03 (±2.01e+01) 1.32e+03 (±1.74e+02) 1.24e+03 (±1.26e+02) 5.87e+03 (±6.98e+02) 2.99e+03 (±5.52e+02)
f18 2.15e+02 (±6.50e−01) 7.79e+01 (±1.99e+01) 1.97e+02 (±3.95e+01) 2.82e+02 (±9.44e+01) 1.46e+02 (±2.39e+01)
f19 1.04e+02 (±2.61e−01) 9.55e+01 (±6.05e+00) 1.68e+02 (±1.52e+01) 4.31e+01 (±3.35e−01) 8.89e+01 (±1.33e+00)
f20 3.42e+01 (±2.54e−01) 1.08e+03 (±2.16e+02) 1.59e+03 (±1.70e+02) 2.18e+02 (±1.49e+01) 3.16e+01 (±5.79e+00)
f21 6.60e+02 (±9.26e+00) 2.77e+02 (±6.94e+00) 2.60e+02 (±4.13e+00) 4.76e+03 (±3.41e+02) 6.30e+02 (±2.55e+02)
f22 8.88e+02 (±1.22e+01) 1.04e+04 (±5.30e+02) 1.14e+04 (±6.65e+02) 1.53e+03 (±3.35e+02) 9.52e+02 (±2.50e+02)
f23 1.23e+02 (±0.00e+00) 5.98e+02 (±7.69e+00) 5.68e+02 (±7.79e+00) 3.45e+02 (±1.05e−12) 2.00e+02 (±0.00e+00)
f24 3.71e+02 (±1.02e−01) 9.17e+02 (±1.34e+01) 9.14e+02 (±8.57e+00) 3.84e+02 (±2.91e+00) 2.00e+02 (±2.45e−13)
f25 2.01e+02 (±8.84e−04) 6.84e+02 (±4.34e+01) 7.34e+02 (±4.18e+01) 2.01e+02 (±1.70e−01) 2.00e+02 (±0.00e+00)
f26 1.00e+02 (±1.32e−03) 3.11e+03 (±1.22e+02) 3.34e+03 (±1.07e+02) 1.00e+02 (±2.89e−02) 1.00e+02 (±2.45e−02)
f27 4.00e+02 (±3.75e−05) 5.89e+02 (±1.31e+01) 6.40e+02 (±2.17e+01) 3.71e+03 (±5.61e+01) 2.00e+02 (±7.83e−10)
f28 8.31e+02 (±1.85e+00) 5.25e+02 (±2.20e+01) 5.24e+02 (±1.36e+01) 4.04e+02 (±5.30e+00) 2.00e+02 (±0.00e+00)
f29 7.13e+02 (±1.36e+00) 1.12e+03 (±1.49e+02) 1.32e+03 (±1.95e+02) 2.43e+02 (±4.22e+00) 2.00e+02 (±0.00e+00)
f30 2.15e+03 (±1.26e+01) 2.46e+03 (±1.44e+02) 2.41e+03 (±1.78e+02) 2.85e+03 (±2.73e+02) 2.00e+02 (±0.00e+00)

Bibliography

Abdelhafez, A., Alba, E., and Luque, G. (2019). Performance analysis of synchronous and

asynchronous distributed genetic algorithms on multiprocessors. Swarm and Evolutionary

Computation, 49:147–157.

Ali, M. Z., Awad, N. H., and Suganthan, P. N. (2015). Multi-population differential evolution

with balanced ensemble of mutation strategies for large-scale global optimization. Applied

Soft Computing, 33:304–327.

Ali, M. Z., Awad, N. H., Suganthan, P. N., and Reynolds, R. G. (2016). An adaptive multi-

population differential evolution with dynamic population reduction. IEEE transactions on

cybernetics, 47(9):2768–2779.

Angelov, P. (2014). Outside the box: an alternative data analytics framework. Journal of Au-

tomation Mobile Robotics and Intelligent Systems, 8(2):29–35.

Apolloni, J., Garcı́a-Nieto, J., Alba, E., and Leguizamón, G. (2014). Empirical evaluation of

distributed differential evolution on standard benchmarks. Applied Mathematics and Compu-

tation, 236:351–366.

Apolloni, J., Leguizamón, G., Garcı́a-Nieto, J., and Alba, E. (2008). Island based distributed

differential evolution: an experimental study on hybrid testbeds. In 2008 Eighth International

Conference on Hybrid Intelligent Systems, pages 696–701. IEEE.

Arabas, J. and Opara, K. (2019). Population diversity of nonelitist evolutionary algorithms in

the exploration phase. IEEE Transactions on Evolutionary Computation, 24(6):1050–1062.

Araujo, L. and Merelo, J. J. (2010). Diversity through multiculturality: Assessing migrant choice

policies in an island model. IEEE Transactions on Evolutionary Computation, 15(4):456–

469.

Awad, N. H., Ali, M. Z., and Suganthan, P. N. (2018). Ensemble of parameters in a sinusoidal

differential evolution with niching-based population reduction. Swarm and evolutionary com-

putation, 39:141–156.

105

Bibliography 106

Awad, N. H., Ali, M. Z., Suganthan, P. N., and Reynolds, R. G. (2016). An ensemble sinusoidal

parameter adaptation incorporated with l-shade for solving cec2014 benchmark problems. In

2016 IEEE congress on evolutionary computation (CEC), pages 2958–2965. IEEE.

Bezerra, C. G., Costa, B. S. J., Guedes, L. A., and Angelov, P. P. (2016). A new evolving

clustering algorithm for online data streams. In 2016 IEEE Conference on Evolving and

Adaptive Intelligent Systems (EAIS), pages 162–168. IEEE.

Cabrera, D. M. (2016). Evolutionary algorithms for large-scale global optimisation: a snapshot,

trends and challenges. Progress in Artificial Intelligence, 5(2):85–89.

Chen, C., Yan, Y., and Liu, Q. (2022). An adaptive differential evolution with extended historical

memory and iterative local search. Applied Soft Computing, 125:109203.

Chen, S., Montgomery, J., and Bolufé-Röhler, A. (2015). Measuring the curse of dimensionality

and its effects on particle swarm optimization and differential evolution. Applied Intelligence,

42(3):514–526.

Črepinšek, M., Liu, S.-H., and Mernik, M. (2013). Exploration and exploitation in evolutionary

algorithms: A survey. ACM Computing Surveys (CSUR), 45(3):35.

De Falco, I., Scafuri, U., Tarantino, E., and Della Cioppa, A. (2007). A distributed differential

evolution approach for mapping in a grid environment. In 15th EUROMICRO International

Conference on Parallel, Distributed and Network-Based Processing (PDP’07), pages 442–

449. IEEE.

Dinno, A. (2015). Nonparametric pairwise multiple comparisons in independent groups using

dunn’s test. The Stata Journal, 15(1):292–300.

Drugan, M. M. (2019). Reinforcement learning versus evolutionary computation: A survey on

hybrid algorithms. Swarm and evolutionary computation, 44:228–246.

Duarte, G. R., de Castro Lemonge, A. C., da Fonseca, L. G., and de Lima, B. S. L. P. (2021).

An island model based on stigmergy to solve optimization problems. Natural Computing,

20(3):413–441.

Eiben, A. E. and Smith, J. E. (2015). Introduction to Evolutionary Computing. Springer Pub-

lishing Company, Incorporated, 2nd edition.

Ge, Y.-F., Yu, W.-J., Lin, Y., Gong, Y.-J., Zhan, Z.-H., Chen, W.-N., and Zhang, J. (2017).

Distributed differential evolution based on adaptive mergence and split for large-scale opti-

mization. IEEE transactions on cybernetics, 48(7):2166–2180.

Gong, Y.-J., Chen, W.-N., Zhan, Z.-H., Zhang, J., Li, Y., Zhang, Q., and Li, J.-J. (2015). Dis-

tributed evolutionary algorithms and their models: A survey of the state-of-the-art. Applied

Soft Computing, 34:286–300.

Bibliography 107

Halim, A. H., Ismail, I., and Das, S. (2021). Performance assessment of the metaheuristic

optimization algorithms: an exhaustive review. Artificial Intelligence Review, 54:2323–2409.

Hassanat, A., Almohammadi, K., Alkafaween, E., Abunawas, E., Hammouri, A., and Prasath,

V. S. (2019). Choosing mutation and crossover ratios for genetic algorithms—a review with

a new dynamic approach. Information, 10(12):390.

Hu, X.-M., He, F.-L., Chen, W.-N., and Zhang, J. (2017). Cooperation coevolution with fast

interdependency identification for large scale optimization. Information Sciences, 381:142–

160.

Ishimizu, T. and Tagawa, K. (2010). A structured differential evolution for various network

topologies. International Journal of Computers and Communications, 4(1):2–8.

Jia, Y.-H., Chen, W.-N., Gu, T., Zhang, H., Yuan, H.-Q., Kwong, S., and Zhang, J. (2018).

Distributed cooperative co-evolution with adaptive computing resource allocation for large

scale optimization. IEEE Transactions on Evolutionary Computation, 23(2):188–202.

Jian, J.-R., Zhan, Z.-H., and Zhang, J. (2020). Large-scale evolutionary optimization: a sur-

vey and experimental comparative study. International Journal of Machine Learning and

Cybernetics, 11(3):729–745.

Karafotias, G., Hoogendoorn, M., and Eiben, Á. E. (2014). Parameter control in evolution-

ary algorithms: Trends and challenges. IEEE Transactions on Evolutionary Computation,

19(2):167–187.

Karniadakis, G., Karniadakis, G. E., and Kirby II, R. M. (2003). Parallel scientific computing

in C++ and MPI: a seamless approach to parallel algorithms and their implementation,

volume 1. Cambridge University Press.

Kazimipour, B., Li, X., and Qin, A. K. (2013). Initialization methods for large scale global op-

timization. In 2013 IEEE Congress on Evolutionary Computation, pages 2750–2757. IEEE.

LaTorre, A., Muelas, S., and Peña, J.-M. (2015). A comprehensive comparison of large scale

global optimizers. Information Sciences, 316:517–549.

Li, J. and Gonsalves, T. (2022). Parallel hybrid island metaheuristic algorithm. IEEE Access,

10:42268–42286.

Li, J.-Y., Du, K.-J., Zhan, Z.-H., Wang, H., and Zhang, J. (2022). Distributed differential evolu-

tion with adaptive resource allocation. IEEE transactions on cybernetics.

Li, L., Fang, W., Wang, Q., and Sun, J. (2019). Differential grouping with spectral clustering

for large scale global optimization. In 2019 IEEE Congress on Evolutionary Computation

(CEC), pages 334–341. IEEE.

Bibliography 108

Li, X., Tang, K., Omidvar, M. N., Yang, Z., Qin, K., and China, H. (2013). Benchmark functions

for the cec 2013 special session and competition on large-scale global optimization. gene,

7(33):8.

Liang, J. J., Qu, B. Y., and Suganthan, P. N. (2013). Problem definitions and evaluation criteria

for the cec 2014 special session and competition on single objective real-parameter numeri-

cal optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou

China and Technical Report, Nanyang Technological University, Singapore, 635.

Lopes, R. A. and de Freitas, A. R. (2017). Island-cellular model differential evolution for large-

scale global optimization. In Proceedings of the Genetic and Evolutionary Computation Con-

ference Companion, pages 1841–1848.

Lopes, R. A., Silva, R. C., and de Freitas, A. R. (2021). An abstract interface for large-scale

continuous optimization decomposition methods. In Proceedings of the Genetic and Evolu-

tionary Computation Conference Companion, pages 1267–1274.

Lorion, Y., Bogon, T., Timm, I. J., and Drobnik, O. (2009). An agent based parallel parti-

cle swarm optimization-appso. In 2009 IEEE Swarm Intelligence Symposium, pages 52–59.

IEEE.

Lynn, N., Ali, M. Z., and Suganthan, P. N. (2018). Population topologies for particle swarm

optimization and differential evolution. Swarm and evolutionary computation, 39:24–35.

Mahdavi, S., Shiri, M. E., and Rahnamayan, S. (2015). Metaheuristics in large-scale global

continues optimization: A survey. Information Sciences, 295:407–428.

Maia, J., Junior, C. A. S., Guimarães, F. G., de Castro, C. L., Lemos, A. P., Galindo, J. C. F.,

and Cohen, M. W. (2020). Evolving clustering algorithm based on mixture of typicalities for

stream data mining. Future Generation Computer Systems, 106:672–684.

McGinley, B., Maher, J., O’Riordan, C., and Morgan, F. (2011). Maintaining healthy population

diversity using adaptive crossover, mutation, and selection. IEEE Transactions on Evolution-

ary Computation, 15(5):692–714.

Mei, Y., Omidvar, M. N., Li, X., and Yao, X. (2016). A competitive divide-and-conquer al-

gorithm for unconstrained large-scale black-box optimization. ACM Transactions on Mathe-

matical Software (TOMS), 42(2):1–24.

Meng, Q., Wu, J., Ellis, J., and Kennedy, P. J. (2017). Dynamic island model based on spectral

clustering in genetic algorithm. In 2017 International Joint Conference on Neural Networks

(IJCNN), pages 1724–1731. IEEE.

Bibliography 109

Molina, D., LaTorre, A., and Herrera, F. (2018). Shade with iterative local search for large-scale

global optimization. In 2018 IEEE congress on evolutionary computation (CEC), pages 1–8.

IEEE.

Omidvar, M. N., Li, X., Mei, Y., and Yao, X. (2013). Cooperative co-evolution with differen-

tial grouping for large scale optimization. IEEE Transactions on evolutionary computation,

18(3):378–393.

Omidvar, M. N., Li, X., and Yao, X. (2021a). A review of population-based metaheuristics

for large-scale black-box global optimization—part i. IEEE Transactions on Evolutionary

Computation, 26(5):802–822.

Omidvar, M. N., Li, X., and Yao, X. (2021b). A review of population-based metaheuristics

for large-scale black-box global optimization—part ii. IEEE Transactions on Evolutionary

Computation, 26(5):823–843.

Omidvar, M. N., Yang, M., Mei, Y., Li, X., and Yao, X. (2017). Dg2: A faster and more

accurate differential grouping for large-scale black-box optimization. IEEE Transactions on

Evolutionary Computation, 21(6):929–942.

Peng, F., Tang, K., Chen, G., and Yao, X. (2009). Multi-start jade with knowledge transfer

for numerical optimization. In 2009 IEEE Congress on Evolutionary Computation, pages

1889–1895. IEEE.

Piotrowski, A. P. and Napiorkowski, J. J. (2018). Step-by-step improvement of jade and shade-

based algorithms: Success or failure? Swarm and evolutionary computation, 43:88–108.

Piotrowski, A. P., Napiorkowski, J. J., and Kiczko, A. (2012). Differential evolution algorithm

with separated groups for multi-dimensional optimization problems. European Journal of

Operational Research, 216(1):33–46.

Price, D. and Radaideh, M. I. (2023). Animorphic ensemble optimization: a large-scale island

model. Neural Computing and Applications, 35(4):3221–3243.

Saw, J. G., Yang, M. C., and Mo, T. C. (1984). Chebyshev inequality with estimated mean and

variance. The American Statistician, 38(2):130–132.

Smit, S. K. and Eiben, A. E. (2009). Comparing parameter tuning methods for evolutionary

algorithms. In 2009 IEEE congress on evolutionary computation, pages 399–406. IEEE.

Storn, R. and Price, K. (1997). Differential evolution–a simple and efficient heuristic for global

optimization over continuous spaces. Journal of global optimization, 11(4):341–359.

Sudholt, D. (2015). Parallel evolutionary algorithms. In Springer Handbook of Computational

Intelligence, pages 929–959. Springer.

Bibliography 110

Sudholt, D. (2020). The benefits of population diversity in evolutionary algorithms: a survey of

rigorous runtime analyses. In Theory of Evolutionary Computation, pages 359–404. Springer.

Sun, Y., Kirley, M., and Halgamuge, S. K. (2017). A recursive decomposition method for large

scale continuous optimization. IEEE Transactions on Evolutionary Computation, 22(5):647–

661.

Sun, Y., Li, X., Ernst, A., and Omidvar, M. N. (2019). Decomposition for large-scale opti-

mization problems with overlapping components. In 2019 IEEE congress on evolutionary

computation (CEC), pages 326–333. IEEE.

Sun, Y., Omidvar, M. N., Kirley, M., and Li, X. (2018). Adaptive threshold parameter estimation

with recursive differential grouping for problem decomposition. In Proceedings of the genetic

and evolutionary computation conference, pages 889–896.

Tan, Z., Li, K., and Wang, Y. (2021). Differential evolution with adaptive mutation strategy

based on fitness landscape analysis. Information Sciences, 549:142–163.

Tanabe, R. and Fukunaga, A. (2013). Success-history based parameter adaptation for differential

evolution. In 2013 IEEE congress on evolutionary computation, pages 71–78. IEEE.

Tanabe, R. and Fukunaga, A. S. (2014). Improving the search performance of shade using linear

population size reduction. In 2014 IEEE congress on evolutionary computation (CEC), pages

1658–1665. IEEE.

Thukral, A. K., Bhardwaj, R., Kumar, V., and Sharma, A. (2019). New indices regarding the

dominance and diversity of communities, derived from sample variance and standard devia-

tion. Heliyon, 5(10):e02606.

Wang, T.-C., Lin, C.-Y., Liaw, R.-T., and Ting, C.-K. (2019). Empirical analysis of island model

on large scale global optimization. In 2019 IEEE Congress on Evolutionary Computation

(CEC), pages 342–349. IEEE.

Wang, Y., Li, T., Liu, X., and Yao, J. (2022). An adaptive clonal selection algorithm with

multiple differential evolution strategies. Information Sciences, 604:142–169.

Weber, M., Neri, F., and Tirronen, V. (2009). Distributed differential evolution with explorative–

exploitative population families. Genetic Programming and Evolvable Machines, 10(4):343.

Yang, M., Li, C., Cai, Z., and Guan, J. (2014). Differential evolution with auto-enhanced popu-

lation diversity. IEEE transactions on cybernetics, 45(2):302–315.

Yang, M., Omidvar, M. N., Li, C., Li, X., Cai, Z., Kazimipour, B., and Yao, X. (2016). Efficient

resource allocation in cooperative co-evolution for large-scale global optimization. IEEE

Transactions on Evolutionary Computation, 21(4):493–505.

Bibliography 111

Yang, Z., Tang, K., and Yao, X. (2008). Self-adaptive differential evolution with neighborhood

search. In 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on

Computational Intelligence), pages 1110–1116. IEEE.

Zhan, Z.-H., Shi, L., Tan, K. C., and Zhang, J. (2022). A survey on evolutionary computation

for complex continuous optimization. Artificial Intelligence Review, 55(1):59–110.

Zhang, C., Chen, J., and Xin, B. (2013). Distributed memetic differential evolution with the

synergy of lamarckian and baldwinian learning. Applied Soft Computing, 13(5):2947–2959.

Zhang, J. and Sanderson, A. C. (2009a). Adaptive differential evolution: A robust approach to

multimodal problem optimization. Berlin Springer.

Zhang, J. and Sanderson, A. C. (2009b). Jade: adaptive differential evolution with optional

external archive. IEEE Transactions on evolutionary computation, 13(5):945–958.

Zhang, W., Gao, K., Zhang, W., Wang, X., Zhang, Q., and Wang, H. (2019a). A hybrid clonal

selection algorithm with modified combinatorial recombination and success-history based

adaptive mutation for numerical optimization. Applied Intelligence, 49:819–836.

Zhang, X.-Y., Gong, Y.-J., Lin, Y., Zhang, J., Kwong, S., and Zhang, J. (2019b). Dynamic

cooperative coevolution for large scale optimization. IEEE Transactions on Evolutionary

Computation, 23(6):935–948.

	1 Introduction
	1.1 Presentation
	1.2 Motivation
	1.3 Objectives
	1.4 Contributions
	1.5 Organization of the text

	2 Distributed evolutionary algorithms to improve exploration and exploitation
	2.1 Exploration and exploitation of search space
	2.2 Improving exploration and exploitation with distributed EAs
	2.3 Large-scale global optimization problems
	2.4 Final discussion

	3 Cooperative co-evolution distributed evolutionary algorithms for large-scale global optimization problems
	3.1 General structure of a CCEA
	3.2 Optimization separability
	3.3 Decomposition methods
	3.3.1 Differential Grouping (DG)
	3.3.2 Differential Grouping 2 (DG2)
	3.3.3 Recursive Differential Grouping (RDG)

	3.4 Final discussion

	4 Diversity-driven migration strategy (DDMS)
	4.1 Assessing the loss of diversity
	4.1.1 Measuring premature convergence
	4.1.2 Measuring stagnation

	4.2 Determining migratory frequency
	4.3 Evolving subpopulation
	4.3.1 DE
	4.3.2 JADE
	4.3.3 SHADE

	4.4 Final discussion

	5 TEDA-based approach to defining the migratory policy
	5.1 Defining migratory policy
	5.2 TEDA
	5.3 Adapted TEDA-Cloud
	5.4 Final discussion

	6 Computational experiments
	6.1 Test instances
	6.2 Experimental design
	6.3 Implementation details
	6.4 Performance of the proposed algorithms
	6.5 Proposed mechanism’s effectiveness
	6.5.1 Effective moves after migration
	6.5.2 Convergence
	6.5.3 Diversity

	6.6 Results on moderate-scale optimization problems

	7 Final remarks
	7.1 Overall conclusions
	7.2 Further works

	A Computational experiments on CEC’2014 special session and competition
	A.1 DDMS-TEDA vs. Traditional migration strategies
	A.2 DDMS-TEDA vs. Sequential EAs
	A.3 DDMS-TEDA vs. Recent Sequential EAs

	Bibliography

