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Resumo

A análise de dados funcionais espaciais (SFD) é um área da estat́ıstica emergente que

combina a análise de dados funcionais (FDA) e a modelagem de dependência espacial.

Diferentemente dos métodos estat́ısticos tradicionais que tratam os dados como valores

escalares ou vetores, a SFD considera os dados como funções cont́ınuas, permitindo uma

compreensão mais completa de seu comportamento e variabilidade. Essa abordagem é ad-

equada para analisar dados coletados ao longo do tempo, do espaço ou de qualquer outro

domı́nio cont́ınuo. A SFD é aplicada em vários campos, incluindo economia, finanças,

medicina, ciências ambientais e engenharia. Esta tese propõe novos modelos funcionais

Gaussianos que incorporam estruturas de dependência espacial, com foco em dados tendo

espaçamento irregular e que refletem curvas espacialmente correlacionadas. Os modelos

são baseados em expansões de base B-spline e Polinômios de Bernstein (BP) e utilizam

uma abordagem Bayesiana para estimar quantidades e parâmetros desconhecidos. A

tese explora as vantagens e limitações dos modelos baseados em B-spline e BP na cap-

tura de formas e padrões complexos, garantindo a estabilidade numérica. As principais

contribuições deste trabalho incluem o desenvolvimento de um modelo inovador voltado

para SFD usando estruturas B-spline ou BP, incluindo um efeito aleatório para tratar

de associações entre observações com espaçamento irregular, e um estudo de simulação

abrangente para avaliar o desempenho dos modelos em vários cenários. A tese também

apresenta duas aplicações reais relacionadas aos ńıveis de PM10 e Temperatura na Cidade

do México, demonstrando ilustrações práticas dos modelos propostos.

Palavras-chave: B-spline, Polinômios de Bernstein, Inferência Bayesiana, Processo Gaus-

siano, MCMC.



Abstract

Spatial Functional Data (SFD) analysis is an emerging statistical framework that com-

bines Functional Data Analysis (FDA) and spatial dependency modeling. Unlike tradi-

tional statistical methods, which treat data as scalar values or vectors, SFD considers

data as continuous functions, allowing for a more comprehensive understanding of their

behavior and variability. This approach is well-suited for analyzing data collected over

time, space, or any other continuous domain. SFD has found applications in various

fields, including economics, finance, medicine, environmental science, and engineering.

This thesis proposes new functional Gaussian models incorporating spatial dependence

structures, focusing on irregularly spaced data and reflecting spatially correlated curves.

The models are based on B-spline basis expansions and Bernstein Polynomials (BP) and

utilize a Bayesian approach for estimating unknown quantities and parameters. The the-

sis explores the advantages and limitations of B-spline-based and BP-based models in

capturing complex shapes and patterns while ensuring numerical stability. The main con-

tributions of this work include the development of an innovative model designed for SFD

using B-spline or BP structures, including a random effect to address associations be-

tween irregularly spaced observations, and a comprehensive simulation study to evaluate

models’ performance under various scenarios. The thesis also presents two real applica-

tions related to levels of PM10 and Temperature in Mexico City, showcasing practical

illustrations of the proposed models.

Keywords: B-spline, Bernstein polynomials, Bayesian inference, Gaussian Process, MCMC.
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Chapter 1

Introduction

Functional Data Analysis (FDA) (Ramsay and Silverman, 2002) is a robust statistical

framework that has gained significant attention recently for its ability to analyze and in-

terpret data that vary continuously over a given interval. Traditional statistical methods

often assume that observations are represented by scalar values or vectors, which may

not adequately capture many real-world datasets with complex and intricate nature. In

contrast, FDA treats data as functions, allowing for a more comprehensive understand-

ing of their behavior and variability. The fundamental idea behind FDA is to consider

each observation as a curve or function rather than a single data point. This approach is

well-suited for analyzing data collected over time, spatial dimensions, or any other contin-

uous domain. Examples of such data are in various fields, including economics, finance,

medicine, environmental science, and engineering. For a general introduction to FDA,

the reader is referred to Ramsay and Silverman (2005), Ferraty and Vieu (2006), and

Kokoszka and Reimherr (2017).

On the other hand, neighborhood dependency is a fundamental concept in analyz-

ing spatial data. It recognizes that observations within a spatial context are often interre-

lated, and the values observed at neighboring locations tend to be more similar than those

farther apart (Cressie, 1993; Banerjee et al., 2014). Incorporating spatial dependency into

statistical models is crucial for accurate inference and prediction, particularly in environ-

mental science, geostatistics (Diggle and Ribeiro, 2007), and epidemiology (Lawson, 2018,

2021).

The combination of FDA and spatial dependency modeling has given birth to an

intriguing and potent approach called Spatial Functional Data (SFD) analysis. Unlike

traditional FDA techniques, which treat observations solely as functions without con-

sidering their spatial locations, SFD considers spatial location an additional dimension.

This distinction is crucial as it recognizes the significance of spatial relationships in com-

prehending and modeling underlying processes. By integrating spatial information, SFD

enables researchers to explore spatial dependence and heterogeneity in functional data,

leading to a more profound understanding of spatial processes.

Numerous notable works demonstrate the extensive and diverse literature on SDF

analysis. For example, in their study on Oceanography, Nerini et al. (2010) proposed

a spatial functional linear model. Zhou et al. (2010) introduced mixed effects models
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for hierarchical functional data with spatial correlation. Giraldo et al. (2012) developed a

methodology for clustering spatially correlated functional data; see also, Jiang and Serban

(2012); Romano et al. (2017) for additional information. Staicu et al. (2010) proposed a

methodology for functional models with a hierarchical structure where the functions at

the lowest hierarchy level are spatially correlated. Delicado et al. (2010) and Mateu and

Romano (2017) have provided surveys of SFD, while Mart́ınez-Hernández and Genton

(2020) presented a review of complex and spatially dependent data. Moreover, Mateu

and Giraldo (2021) explored the intersection between geostatistics and functional data

analysis, featuring contributions from leading experts in the field.

Some references to SFD with a Bayesian perspective are Baladandayuthapani et al.

(2008) employed a Bayesian semi-parametric method using regression splines to handle

general between-curve covariance structures. Another study by Zhang et al. (2016) in-

troduced a functional conditional autoregressive (CAR) model for spatially correlated

data. Furthermore, Song and Mallick (2019) proposed novel models based on wavelets

for spatially correlated functional data. These models enable the regularization of curves

observed over space and the prediction of curves at unobserved sites. Finally, Rekab-

darkolaee et al. (2019) introduced a novel multivariate space-time functional model with

spatially varying coefficients.

In both the classical and Bayesian approaches, it is common to use nonparametric

methods to smooth functional data (Hollander et al., 2013). The term “nonparametric”

means that specific forms for the underlying functions describing the data are not assumed.

This approach allows for greater flexibility and the ability to capture complex patterns.

Some commonly used techniques in research for this purpose include Kernels (Wand and

Jones, 1994), Splines (De Boor, 2001), and Wavelets (Vidakovic, 2009).

The Kernels approach relies on kernel functions (probability density functions).

The shape of these functions determines the influence or weight assigned to each point

neighboring the point of interest during the smoothing process. However, Ramsay and

Silverman (2002) and Wand and Jones (1994) pointed out some limitations of Kernels,

such as the inability to characterize local features adequately. That is, they are not sen-

sitive enough to detect abrupt changes or specific details that may be present in certain

parts of the data. On the other hand, splines are polynomial functions defined in different

intervals (segments) that combine smoothly at junction points called knots; see details in

De Boor (2001). Splines offer a flexible approximation of observed functions and allow

smoothness control by choosing the degree of the polynomial and the number of segments.

However, it is essential to be careful when selecting the number and position of knots, as

this can be subjective and affect the quality of the fit. Finally, the Wavelet smoothing

method takes advantage of wavelet transforms to represent the original function at dif-

ferent scales and frequencies, which facilitates noise filtering and function approximation

at different levels of detail (Vidakovic, 2009). Wavelet smoothing methods are beneficial
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for capturing local and global features of the function. However, it is critical to choose

the wavelet and the level of decomposition correctly. Additionally, it is worth noting that

the number of observations must be a power of 2, and the spacing between them must be

equidistant for this method to work correctly.

The main objective of this thesis is to propose new functional Gaussian models

that incorporate a spatial dependence structure. In this context, the study is focused on

irregularly spaced data reflecting spatially correlated curves. The developed models are

based on fundamental mathematical tools, such as B-spline basis expansions (as described

De Boor, 2001) and Bernstein Polynomials (BP) (as discussed in Lorentz, 2012; Farouki

and Rajan, 1987, 1988). These methods offer flexibility to capture complex shapes and

patterns while ensuring numerical stability. As for the process of estimating the unknown

parameters of the models, a Bayesian approach is adopted. This decision is based on its

ability to incorporate prior information and consider uncertainty about unknown quan-

tities in the analysis. One key feature of the modeling structures is their capability to

integrate the association generated by the irregularly spaced discretely observed measure-

ments in each function.

B-spline-based models offer a more straightforward and robust approach (Aguilera

and Aguilera-Morillo, 2013) than other complex smoothing methods (Morris et al., 2003).

B-splines are represented by combining local basis functions, allowing each polynomial

segment to have a limited scope and only influence a local portion of the curve. The control

points, known as knots, do not directly manipulate the curves. Instead, they affect the

shape of the curve through their impact on the polynomial segments within their support

(Piegl and Tiller, 1996). While B-spline models have been extensively researched in the

context of SFD, for example, Giraldo et al. (2010), Giraldo et al. (2011), Giraldo et al.

(2012), Giraldo et al. (2012), Cortés-D et al. (2016), Aguilera-Morillo et al. (2017) and

Aristizabal et al. (2019), no previous studies have focused explicitly on non-equidistant

sample designs. On the other hand, BP is appealing for modeling and analyzing functional

data due to its flexibility in approximating continuous functions. These polynomials are

applied in various applications, such as density estimation (Tenbusch, 1994; Petrone, 1999;

Wang and Guan, 2019) and curve approximation using linear combinations of Bernstein

functions (Liang et al., 2022). The BP basis function is determined by its degree and

bounded domain, making it easier to apply and compute than other methods. It can

also capture complex shapes while ensuring good numerical behavior. However, their

application in SFD for equidistant or irregular sample designs still needs to be explored.

Imposing spatial dependence through an association between coefficients defining

a linear combination of variables is common in the literature. This idea will be applied in

this work but contextualized for basis expansions that structure the functional modeling.

In the context of spatial regression, it is possible to mention some studies as examples of

the application of a modeling approach that spatially correlates coefficients. Take a look
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at the following studies, Gelfand et al. (2003) build spatial modeling with spatially varying

coefficient processes. Reich et al. (2011) developed a Bayesian spatial model to predict

ozone under different meteorological conditions, and Fan and Huang (2022) presented

spatially varying coefficient models using reduced-rank thin-plate splines.

The main contributions of the present work are as follows:

• This proposal presents an innovative data management model explicitly designed for

SFD. The model integrates the B-spline or BP structure to model the mean; while

establishing a spatial dependence structure in the coefficients of the bases. Notably,

the use of the BP represents a significant and previously unexplored contribution in

the literature concerning the analysis of SFD.

• Inclusion of a random effect to address the associations between irregularly spaced

observations from the target functions. This effect exhibits an autoregressive struc-

ture, presenting a novel approach to analyzing SFD.

• Development of a comprehensive simulation study to evaluate the performance of

the models under different scenarios. The analysis is based on artificial data from

replicas in a Monte Carlo (MC) scheme. The presence of missing data is another

topic deserving attention in the study. Notably, the ability of the models to predict

missing values showcases another noteworthy contribution. In the literature review

conducted for this thesis, no studies were found that dealt with missing data using

the structure of the proposed model itself. The widely used strategy is imputing

missing observations before fitting the model.

• Exploration of two real applications related to levels of PM10 and Temperature in

Mexico City, using a data set covering the period between 2021 and 2022. Unlike

other studies in the literature that focus on different periods or conduct spatial

analysis in a functional regression setting with PM10 as a covariate explaining Tem-

perature, this work examines PM10 and Temperature separately within a spatial

functional model, accounting for irregularly spaced observations and utilizing B-

spline or BP structures. This represents another significant contribution to the field

of Statistics.

This work is organized as follows: In Chapter 2, some basic concepts fundamental

to the thesis development are discussed and explained. It will introduce the FDA, a pow-

erful and versatile technique for studying data presented as continuous functions instead

of point observations. In addition, it will delve into two essential mathematical tools for

functional analysis: B-spline basis functions and BP. These functions play a crucial role

in the representation and approximation of curves and surfaces, and their understanding

is vital to building adequate models in the study. Finally, discrepancy measures will be
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addressed to evaluate the similarity or distance between functions (estimated and tar-

get curves). Chapter 3 presents the proposed models that represent the central core

of the thesis. These models are specifically designed to address the presence of spatial

association in functional data, implying that spatial dependence patterns may influence

the observed functions. Incorporating this association is crucial for better understanding

functional data in contexts with irregular sample designs. Chapter 4, a rigorous simula-

tion study will be carried out to evaluate the performance of the proposed models under

different scenarios and conditions. Simulation is an essential tool to validate and calibrate

the models, allowing us to clearly understand how they behave against simulated data

with controlled characteristics.

Also, the procedures and criteria used to generate the simulated data will be de-

scribed, and the evaluation metrics used to compare and contrast the results obtained.

The findings of this simulation study will be crucial to support the appropriate choice of

models in real situations. Chapter 5, the proposed models are applied to two real data

sets. The data are carefully selected to represent different contexts and real-world issues

where FDA with spatial association and irregular samples is highly relevant. Chapter 6

serves as the final section, presenting the general conclusions drawn from the thesis work.

This chapter summarizes the most significant findings and emphasizes the contributions

made to SFD Analysis. Moreover, it outlines potential avenues for future research and

methodology development, creating exciting prospects for enhancing and applying the

proposed models to diverse types of functional data and specific contexts.
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Chapter 2

Background Functional Data

Analysis

One of the purposes of this work is based on the proper treatment of functional data.

Therefore, this chapter aims to introduce the related basic concepts. Section 2.1 presents

the general definition of functional data and how they can be represented mathematically,

for example, through linear combinations of known basis functions. Section 2.2 defines

the B-splines via the fundamental recurrence relation discovered by De Boor (1972) and

Cox (1972). Section 2.3 introduces Bernstein polynomials as a mathematical tool for

representing functional curves. Finally, Section 2.4 indicates discrepancy measurements

considered in the analysis.

2.1 Functional Data Representation

According to Ramsay and Silverman (2005), the functional data are usually dis-

creetly observed, although its inherent structure is functional. The observation of a func-

tion is determined by a set of Nj pairs (tjn, xjn), for n = 1, . . . , Nj, where tjn denotes

the argument, and xjn the observed functional value. In general, the construction of the

original functions starting from the observed data can occur separately or independently

for each function with the identifier j. The smoothness of a function is related to the

number of continuous derivatives it has; this assumption is usually necessary for applying

some multivariate analysis techniques.

Typically, the first step in working with functional data is to express them through

a basis expansion as follows:

xj(t) =
∞∑︂
r=1

θjrfr(t) ≈
K∑︂
r=1

θjrfr(t), j = 1, . . . ,m, (2.1)

where θjr, r = 1, . . . ,K are the coefficients of expansion, and {fr(t)}∞r=1 is a set of known

basis functions that are linearly independent. An approximate representation is usually

obtained by truncating this basis expansion in terms of a number K (positive integers)

of basis functions large enough to represent each curve accurately. This method allows

enough flexibility while providing computational efficiency. Furthermore, the dimension
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of the data only depends on the number of curves and the order k of the expansion. The

choice of the number K basis functions is fundamental and decisive for all subsequent

calculations. Small numbers of basis functions mean little flexibility and large numbers

result in flexibility but may induce overfitting.

Since the curves are observed with error, some smoothing technique is usually

performed to estimate the coefficients. Concerning the choice of a suitable basis, there

are multiple options depending on the characteristics of the sample curves, but the most

common are Fourier, B-spline, or Wavelet basis (Ramsay and Silverman, 2002; Vidakovic,

2009). In this Thesis, the study is focused on B-spline and BP. These choices were

motivated by the fact that the B-spline is widely used in the literature, and the BP is a

central novelty in the analysis.

2.2 B-splines Basis

A B-spline function can be defined as a piecewise polynomial that is joined by

interior knots ξ2, ξ3, . . . , ξl so that the function is continuous, and has a certain number of

continuous derivatives. An essential feature of B-splines is to simultaneously preserve the

flexibility of piecewise polynomials and achieve a certain degree of overall smoothness, with

its order of approximation not depending on the degree of the polynomial (Schumaker,

2007).

Definition 2.2.1 (Piecewise Polynomials). Let a = ξ1 < ξ2 <, . . . , < ξl < ξl+1 = b

and ∆ = {ξ1, ξ2, . . . , ξl, ξl+1}. The set ∆ partitions the interval [a, b] into l subintervals,

Ii = [ ξi, ξi+1 ), for i = 1, . . . , l − 1, and Il = [ξl, ξl+1]. Then the corresponding piecewise

polynomial function g(t) of order k is defined by

g(t) = pi(t), for t ∈ Ii, i =, 1, . . . , l, (2.2)

where, for i = 1, · · · , l, each function pi(t) is a polynomial defined in the interval Ii.

The concept of divided differences presented in De Boor (2001) is introduced to

define B-splines.

Definition 2.2.2 (Divided Differences). The n-th divided difference of a function g at

the points ξi, . . . , ξi+n is the leading coefficient (i.e. the coefficient of tn) of the unique

polynomial pn of order n + 1 which satisfies pn(ξi∗) = g(ξi∗), i∗ = i, . . . , i + n. It is

denoted by [ξi, . . . , ξi+n]g.

This definition has the following immediate consequences. If pi agrees with g at

ξ1, . . . , ξi for i = k and i = k + 1, then

pk+1(t) = pk(t) + (t− ξ1) · · · (t− ξk)[ξ1, . . . , ξk+1]g,
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therefore pk+1(t)− pk(t) is a polynomial of order k + 1.

Definition 2.2.3 (Normalized B-spline). Let ξ = {ξi} be a nondecreasing sequence, which

may be finite or infinite. The i-th normalized B-spline of order k for the knot sequence ξ

is defined by

Bi,k(t) = (ξi+k − ξi)[ξi, . . . , ξi+k](• − t)k−1
+ , ∀ t ∈ R, (2.3)

such that [ξi, . . . , ξi+k](•− t)k−1
+ represents the k-th divided difference of the function (•−

t)k−1
+ .

In Equation (2.3), The expression (ξi+k − ξi) is a normalization factor designed

to produce the identity
∑︁

i Bi,k(t) = 1, which asserts that the B-splines form a partition

of unity. Initially, the B-splines have been defined as a divided difference of the trun-

cated power base (Schoenberg, 1946), and later by the fundamental recurrence relation

discovered by De Boor (1972). The recurrence formula is used as it is the most useful for

computational implementation.

Definition 2.2.4 (Recurrence Relation). Let ∆ = {ξ1, . . . , ξl+1} be a nondecreasing se-

quence of real numbers. The i-th B-spline basis function of order k (degree k − 1 ), is

defined by

Bi,k(t) =
t− ξi

ξi+k−1 − ξi
Bi,k−1(t) +

ξi+k − t

ξi+k − ξi+1

Bi+1,k−1(t), (2.4)

where

Bi,1(t) =

⎧⎨⎩1 if ξi ≤ t < ξi+1,

0 otherwise.

In Equation (2.4), quotients of the form 0/0 are defined as zero. The Bi,k(t) are

piecewise polynomials, defined on the entire real line, generally only the interval [ξl, ξl+1]

is of interest. Computation of a set of basis functions requires the specification of a knot

vector ∆ and the order k. The choice of the knot vector influences the shape of the

functions defined by the recurrence relation.

The B-spline basis system has a property that is often useful: the sum of the B-

spline basis function values at any point t is equal to one. For example, in Figure 2.1, the

first and last basis functions are exactly one at the boundaries of the graph domain. This

is because all the other basis functions go to zero at these endpoints; for more information,

see De Boor (2001) and Ramsay et al. (2009).
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Figure 2.1: Cubic B-spline basis functions defined by the knot vector ∆ = {1, 2, 5, 7}
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Source: Prepared by the author

The Bi,k(t) functions have the following important properties:

• Non-negativity, Bi,k(t) ≥ 0 for all values of i, k and t.

• Compact support, that is, it is non-null in a small interval and zero outside this

interval.

• Differentiability, meaning that all derivatives of Bi,k(t) exist within [ξi, ξi+1 ), for

i = 1, . . . , l.

• Partition of unity,
∑︁

i Bi,k(t) = 1 for t ∈ [a, b].

Two aspects determine the approximation of a function by a B-spline curve: The order of

the polynomial segments and the knot sequence ∆. The number of parameters required

to define a B-spline function is the order plus the number of interior knots, k + l − 1.

Thus, any function can be expressed as

g(t) ≈ gk,∆(t) =
K=k+l−1∑︂

r=1

θrBr,k(t), (2.5)

where Br,k is the r-th B-spline basis function of order k and θr is the corresponding

coefficient.

2.3 Bernstein Polynomial Basis

Polynomials are an attractive class of functions for various scientific and engineer-

ing computations. They are concisely represented by coefficients on a suitable basis and
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are amenable to efficient evaluation by simple algorithms. The set of polynomials is closed

under the arithmetic operations of addition, subtraction, multiplication, differentiation,

integration, and composition.

The approximative capabilities of polynomials are also of great practical interest

in applications. Perhaps the most fundamental result in this context is the theorem of

Weierstrass, which is stated below (Davis, 1975):

Theorem 1. Let g be a real and continuous function defined on a compact interval [a, b].

Then for each ε > 0 there exists a polynomial p (which depends on ε) such that

|g(t)− p(t)| < ε for each t of [a, b]. (2.6)

In other words, it is possible to uniformly approximate any continuous function

g, defined on a polynomial’s closed interval [a, b]. An elegant constructive proof of this

theorem was published in 1912, in which Bernstein’s polynomial basis was first introduced;

for more details, see Bernstein (1912) and Lorentz (2012).

Definition 2.3.1 (Bernstein basis functions). Let p denote any non-negative integer, and

suppose [a, b] is a bounded interval in R. The polynomials

br,p(t) =

(︃
p

r

)︃(︃
t− a

b− a

)︃r (︃
1− t− a

b− a

)︃p−r

, for r = 0, . . . , p, (2.7)

are called the Bernstein polynomials of degree p (order p+ 1) with respect to the interval

[a, b].

Remark 2.3.1. The domain of the Bernstein basis polynomials can be defined on the

interval [0, 1] without loss of generality, replacing

x =
t− a

b− a
, a ≤ t ≤ b, (2.8)

or equivalently,

t = (b− a)x+ a, 0 ≤ x ≤ 1. (2.9)

By using (2.8), and (2.9), it is observed from (2.7) that

br,p(t) =

(︃
p

r

)︃
xr (1− x)p−r , for r = 0, . . . , p. (2.10)

Remark 2.3.2. For any non-negative integer p, and bounded interval [a, b] ⊂ R, the

corresponding Bernstein polynomials, as defined by (2.7), satisfy:
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a. Recursive generation. The basis of degree p may be generated from the basis of degree

p− 1

br,p(t) =

(︃
p

r

)︃(︃
t− a

b− a

)︃r (︃
1− t− a

b− a

)︃p−r

=

[︃(︃
p− 1

r

)︃
+

(︃
p− 1

r − 1

)︃]︃(︃
t− a

b− a

)︃r (︃
1− t− a

b− a

)︃p−r

=

(︃
p− 1

r

)︃(︃
t− a

b− a

)︃r (︃
1− t− a

b− a

)︃p−r

+

(︃
p− 1

r − 1

)︃(︃
t− a

b− a

)︃r (︃
1− t− a

b− a

)︃p−r

=

(︃
1− t− a

b− a

)︃[︄(︃
p− 1

r

)︃(︃
t− a

b− a

)︃r (︃
1− t− a

b− a

)︃p−r−1
]︄
+

t− a

b− a

[︄(︃
p− 1

r − 1

)︃(︃
t− a

b− a

)︃r−1(︃
1− t− a

b− a

)︃p−r
]︄

=

(︃
1− t− a

b− a

)︃
br,p−1(t) +

(︃
t− a

b− a

)︃
br−1,p−1(t). (2.11)

b.

br,p(a) =

⎧⎨⎩1 if r = 0,

0 otherwise,
and br,p(b) =

⎧⎨⎩1 if r = p,

0 otherwise.
(2.12)

c. The positivity and partition of unity properties on [a, b]

br,p(t) ≥ 0, r = 0, . . . , p and

p∑︂
r=0

br,p(t) = 1. (2.13)

d. Let πp be a finite-dimensional linear space, such that dim(πp) = p + 1. Then, the

polynomial sequence {br,p(t), r = 0, . . . , p} is a basis for πp.

An illustration of the Bernstein basis can be seen in Figure 2.2. The vector of

basis bp(t) = (b0,p(t), . . . , bp,p(t)) has a weight role, which varies with t, as shown in both

panels of Figure 2.2. Thus, the approximation of the target function g(·) is weighted by

p+ 1 values coming from the basis vector. It is clear that when p = 9, more information

is available to weigh the function values, resulting in a more accurate approximation.
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Figure 2.2: Illustration of Bernstein basis for p = 3 and p = 9.
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The Bernstein polynomial approximation of degree p to any continuous function

g(t) on the interval [a, b] is defined by sampling that function at the p + 1 equidistant

positions a + r
p
(b − a), for r = 0, 1, . . . , p, and blending the sampled values with the

Bernstein basis functions

BPp(g(t)) =

p∑︂
r=0

g

(︃
a+

r

p
(b− a)

)︃
br,p(t), (2.14)

where the {br,p(t)} are the basis functions defined in the Equation (2.7). Generally,

in applications, the function that models a data set is not known explicitly, so it is

necessary to replace the values of g
(︂
a+ r

p
(b− a)

)︂
with freely specified coefficients θr, for

r = 0, . . . , p, that can be used to manipulate the behavior of the polynomial intuitively

BPp(t) =

p∑︂
r=0

θrbr,p(t), t ∈ [a, b]. (2.15)

The expression (2.14) is called a Bernstein polynomial, while (2.15) is called a

polynomial in Bernstein form. Whereas the former refers to a polynomial approximation

of a given function g(t), the latter denotes a polynomial with arbitrary coefficients in the

Bernstein basis (Farouki and Rajan, 1987, 1988).

2.4 Measures of Discrepancy

The statistical characteristics of an estimator for a function at a specific point share

similarities with the conventional statistical attributes of an estimator for a single scalar
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parameter. The statistical properties involve expectations and other aspects of random

variables. In the following, when reference is made to an expectation (denoted as E(·))
or a variance (V(·)), it is important to note that these values are computed concerning

the (unknown) distribution of the underlying random variable. In practice, the empirical

distribution is considered to calculate these quantities.

Analyzing the performance of the function estimator requires the specification of

appropriate criteria to measure the error. When considering estimation at a single point

t, a natural measure is the mean square error (MSE), defined by

MSE (ˆ︁g(t)) = E (ˆ︁g(t)− g(t))2 . (2.16)

By elementary properties of mean and variance,

MSE (ˆ︁g(t)) = (E (ˆ︁g(t))− g(t))2 + V (ˆ︁g(t)) . (2.17)

This error criterion is often preferred to other criteria, such as mean absolute error (MAE),

defined by

MAE (ˆ︁g(t)) = E |ˆ︁g(t)− g(t)| . (2.18)

It is more difficult to do a mathematical analysis of the MAE than for the MSE. In

addition, it does not have a simple decomposition into other meaningful quantities like

the MSE, see Equation (2.17).

Instead of simply estimating g(t) at a fixed point, estimating the function over

the entire real line is often desirable, especially from a data analysis viewpoint. In this

case, the estimate is the function ˆ︁g(t), so it is necessary to consider an error criterion

that globally measures the distance between the functions ˆ︁g(t) and g(t). Generally, these

criteria can be defined as a norm of the function.

The Lp norm (Gentle, 2009; Wand and Jones, 1994) of the error is(︃∫︂
T

|ˆ︁g(t)− g(t)|p dt
)︃1/p

, (2.19)

where T is the domain of Y (true function). The estimator ˆ︁g(t) must also be defined over

the same domain. The integral may not exist.

Two useful measures are the L1 norm, also called the integrated absolute error

(IAE),

IAE (ˆ︁g(t)) = ∫︂
T

|ˆ︁g(t)− g(t)| dt, (2.20)

and the L2, also called the integrated squared error (ISE),

ISE (ˆ︁g(t)) = ∫︂
T

(ˆ︁g(t)− g(t))2 dt. (2.21)
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The L1 measure is invariant under monotone transformations of the coordinate axes.

However, the measure based on the L2 norm is not1. Another natural way to compare

estimators of functions is to use the expected value of previous measurements. The mean

integrated absolute error (MIAE) is

MIAE (ˆ︁g(t)) =E (IAE (ˆ︁g(t)))
=E

(︃∫︂
T

|ˆ︁g(t)− g(t)| dt
)︃
. (2.22)

The mean integrated squared error (MISE) is defined by

MISE (ˆ︁g(t)) =E (ISE (ˆ︁g(t)))
=E

(︃∫︂
T

(ˆ︁g(t)− g(t))2 dt

)︃
. (2.23)

Since the integrand is nonnegative, the order of integration and expectation in (2.22) and

(2.23) can be inverted to obtain the alternative forms.

MIAE (ˆ︁g(t)) = ∫︂
T

E |ˆ︁g(t)− g(t)| dt

=

∫︂
T

MAE(ˆ︁g(t)) dt, (2.24)

and

MISE (ˆ︁g(t)) =∫︂
T

E (ˆ︁g(t)− g(t))2 dt

=

∫︂
T

MSE (ˆ︁g(t)) dt. (2.25)

By using Equation (2.17) in Expression (2.25), it is obtained that

MISE (ˆ︁g(t)) =∫︂
T

[︁
(E (ˆ︁g(t))− g(t))2 + V (ˆ︁g(t))]︁ dt

=

∫︂
T

(E (ˆ︁g(t))− g(t))2 dt+

∫︂
T

V (ˆ︁g(t)) dt. (2.26)

The first and second integrals represent the integrated squared bias ISB (ˆ︁g(t)) and the

integrated variance IV(ˆ︁g(t)), respectively.
The measures presented in this section will be applied to evaluate the performance

of the proposed modeling against artificial data and in real applications developed later

in this thesis. Reference will be made to the nomenclatures (” acronyms”) in the chapters

where the data are explored.

Chapter 2 ends here with the basic definitions of B-spline, BP, and discrepancy

measures. The next chapter is the most important of the study, as it presents the proposed

models that will be studied in the thesis.
1In the simulation studies of this thesis (Chapter 4), transformations are not applied to the distances

di, which will be generated in the interval (0,1). A transformation is necessary for the real application
(Chapter 5), and then the ISE is not considered to evaluate results.
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Chapter 3

Spatially Dependent Functional Data

Model

In recent years, the explosion of data and the growing complexity of spatially related

information have given rise to innovative techniques that effectively capture the underlying

structures within datasets. One such powerful approach is the functional data model with

spatial dependence, which offers a unique framework for analyzing and interpreting data

exhibiting functional and spatial characteristics.

The traditional FDA methodology is primarily designed to handle data represented

as smooth curves or functions, typically observed over a continuous interval. It has proven

successful in diverse fields, including economics, biology, environmental sciences, and more

(Ramsay and Silverman, 2002; Ferraty and Vieu, 2006). However, as our understanding

of the interconnectedness of spatial data has deepened, the need to integrate spatial

dependencies into functional models has become increasingly evident. The functional

data model with spatial dependence addresses this requirement by accommodating the

inherent spatial relationships present in the data. Unlike standard FDA techniques that

often treat observations as independent, this model considers the spatial context of each

functional curve. By doing so, it leverages functional information and accounts for the

spatial structure, enabling the analysis of complex datasets that combine functional and

spatial aspects.

This chapter introduces a statistical functional model that utilizes a Bayesian hier-

archical structure to model spatially correlated curves effectively. These curves are obser-

vations collected at irregularly spaced discrete points within their respective domains. A

crucial aspect of this model is incorporating an autoregressive random effect component,

which accounts for the dependence arising from non-equidistant distances between the

data points. Two smoothing techniques have been incorporated into the structure of the

proposed model. First, there is the B-spline basis that is used generally in most of the

SFD research, e.g., Baladandayuthapani et al. (2008); Giraldo et al. (2012); Kokoszka

and Reimherr (2017); Aguilera-Morillo et al. (2017) and Aristizabal et al. (2019). Second,

there is the basis of BP, which is a little-explored tool when the functional forms of the

discrete data are unknown from different spatial locations.

The organization of this chapter is as follows: Section 3.1 describes the functional,
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statistical model, while Section 3.2 presents the Bayesian hierarchical structure. It ex-

plains how the Bayesian approach is utilized to model the data hierarchically. Bayesian

methods incorporate prior knowledge or beliefs about the parameters into the analysis,

allowing uncertainty quantification and more robust inference.

3.1 Statistical Model

A spatial functional process is described as
{︁
Xs : s ∈ D ⊂ Rd

}︁
, where Xs are the

functional random variables, located at location s in the d-dimensional Euclidean space,

usually d = 2 or 3. Each Xs is defined on the interval T = [a, b] ⊆ R and is assumed to

belong to a Hilbert space of square-integrable functions, that is, in

L2(T ) =

{︃
Xs : T −→ R, such that

∫︂
T

Xs(t)
2dt < ∞

}︃
,

with the inner product ⟨Xs, Xs∗⟩ =
∫︁
T
Xs(t)Xs∗(t)dt.

Let {Xs1(t), Xs2(t), . . . , Xsm(t)} be a sample of m non-independent curves that are

indexed by a common domain t ∈ T at each spatial location sj, j = 1, . . . ,m. In practice,

these functions are observed over a finite set of discrete points {ti, i = 1, . . . , n}, and the

measurements are often contaminated with noise. For a fixed site sj, it is assumed that

the following model generates the observed functions:

Ysj(ti) = Xsj(ti) + δi + ϵsj(ti), (3.1)

where δi represents a random effect and ϵsj(ti) are independent random errors for each

fixed ti, with mean zero E(ϵj(ti)) = 0 and common variance, unknown, V ar(ϵsj(t)) = τ .

In general, ϵsj(ti) is assumed to follow a Gaussian distribution. From now on, it will

be assumed that each realization Xsj(ti) of an underlying random function Xs(t); can

be expressed by a finite number of basis functions {f1(t), . . . , fk(t)} to get a reasonable

approximation. Then, each curve admits an expansion into this basis as follows

Xsj(ti) ≈
K∑︂

r=r∗
r∗∈{0,1}

θrjfr(ti), (3.2)

for K ∈ N, with θr,j’s, which are real random variables representing the basis coefficients.

Based on the works of Liu et al. (2017) and Aguilera-Morillo et al. (2017), to construct

the correlation between curves, θr,j’s are assumed to be associated across j for each r but

not across r, i.e., Cor(θr,j, θr,j∗) ̸= 0 for different locations {j, j∗} and for any given basis

function index r. One can specify a full spatial correlation structure between θr,j’s by

allowing for a non-zero covariance, e.g., Cov(θr,j, θr,j∗) = C(sj, sj∗) = C(h), for j ̸= j∗.

Note that the covariance function depends on the location sj and sj∗ only through the

Euclidean geographic distance h =∥ sj − sj∗ ∥∈ R.



3.1. Statistical Model 34

If Equation (3.2) is taken into account, then model (3.1) can be expressed as follows

Ysj(ti) =
K∑︂

r=r∗
r∗∈{0,1}

θrjfr(ti) + δi + ϵsj(ti). (3.3)

A commonly adopted framework in SFD is to consider that the discrete realizations

of the functional data at each location are collected at equally spaced points in the domain.

However, an important and relevant aspect of the methodological proposal of this thesis

is to work with the distances between non-equidistant measurement points, that is, di =

(ti − ti−1) ̸= (ti∗ − ti∗−1) = di∗ for some i ̸= i∗ ∈ {2, . . . , n}. For modeling convenience, a

transformation is applied to the scale of the functional domain T so that di ∈ (0, 1).

In the statistical model (3.3), the geographical positioning of the locations sj is

used to impose an association between the functional trajectories observed at nearby sites.

In addition to this spatial dependence, the modeling takes advantage of the distances

di to establish a similarity between the close discrete measurements of each function

Ysj(t) and thereby insert the dependence structure motivated by the irregular spacing

of the functional domain. This information is specified through a random effect δ =

(δ1, . . . , δn)
⊤, which has the following structure

δi = ϕiδi−1 + ϵδi with ϕi = Φ(4− 8di−1). (3.4)

In the above specifications, ϵδi , for i = 1, . . . , n, is a sequence of uncorrelated identically

distributed Gaussian random variables with zero mean and variance ν, and Φ(·) is the

Cumulative Distribution Function (CDF) of the Standard Normal whose values fixed in its

argument (4 and 8) allow controlling the impact of distance on the probability of ϕi, then

limdi→0 ϕi ≈ 1, limdi→1 ϕi ≈ 0 and ϕi = 0.5 for di = 0.5. This formulation was motivated

by the work of Mayrink and Gonçalves (2017), who used the CDF to explain (probit

link) the probability of having a Markov dependence on a Bayesian mixture model. In

addition, the authors use the probit structure ϕ due to the Gibbs sampling construction,

as it facilitates the calculations necessary to obtain the full conditional distributions.

Note that an autoregressive structure is defined to associate the random effects in

δ, i.e., that the level of relationship between δi and δi−1, concerning the positions ti and

ti−1 of the functional domain, is controlled by the coefficient ϕi ∈ (0, 1), see Figure 3.1.

Assume d0 = 0 (so ϕ1 = 1) and δ0 = 0, it implies that δ1 ∼ Normal(0, ν).
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Figure 3.1: Graph of the relationship between distances di and the weight ϕi, with 150
di’s generated from the Beta(1,2).

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

d

φ

Source: Prepared by the author

The configuration presented in Figure 3.1 considers several distances di distributed

over the entire interval (0, 1). This means a significant number of observed values will

be below and above the center point 0.5. The reader must know that when the practical

study focuses on distances less than or greater than 0.5, it is necessary to adjust the curve

in Figure 3.1 to represent a faster or slower decay. If this adjustment is not made, having

only large or small distances will result in strong or weak associations between the δi and

δi−1 effects, as determined by Equation (3.4). In the context of this thesis, one assumes

that the study covers distances spanning the entire interval (0, 1), and therefore any

adaptation to Equation (3.4) is left for future work. As for the ϕi-structure argument,

it was decided not to estimate the values of 4 and 8. This decision is based on the

consideration that if the values of di do not present a high variation, i.e., if the distances

between the observations of the series are concentrated in a small subinterval of (0, 1),

the model will lack the necessary information to estimate these values. This could result

in an identification problem and would not reflect the desired behavior, as illustrated in

Figure 3.1. In addition, it is decided not to establish a prior distribution for ϕ because

not only will the variability of ϵδi be taken into account, but also the variability of ϕ in

order to distort the relationship between δi and δi−1.

It is important to note that the modeling proposed in Equation (3.3) is not well-

explored in the FDA literature. Therefore, the main objective of this thesis is to study,

from a Bayesian approach, the smoothing and prediction performance of the model in

different scenarios, taking into account the spatial correlation and the dependence that

may exist between discrete observations, motivated by the irregular spacing over a small

sample of the functional domain.
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3.2 Bayesian Hierarchical Models

Consider that Ysj(ti) denotes the i-th discrete observation for the j-th curve, to-

gether with a collection {fr(ti)} of basis functions (B-spline or BP). Let θrj, δi and τ be

the list of model parameters indicated in Section 3.1. Then, the hierarchical structure of

the model can be expressed as follows:

• Observations: for i = 1, . . . , n and j = 1, . . . ,m

Ysj(ti)| θrj, δi, τ ∼Normal

⎛⎜⎝ K∑︂
r=r∗

r∗∈{0,1}

θrjfr(ti) + δi, τ

⎞⎟⎠ . (3.5)

For this work, the Gaussian covariance function (Banerjee et al., 2014), C(h) =

κ exp(−(φh)2), is used to build an isotropic spatial process in the m-order covariance

matrix, Σm, where κ represents the spatial variation, φ is the spatial decay parameter

fixed by the researcher. At the same time, h is the Euclidean distance between locations

sj and sj∗ . Note that if these locations are very close in the space Rd, the basis coefficients

are similar, i.e., curves with the same shapes and C(h) ≈ κ. Conversely, the larger the

distance between these locations, the higher the curve’s dissimilarity, and the closer to

zero is C(h).

The spatial association between locations is established through the adoption of

the following specifications:

• The multivariate prior of the coefficients

θr|µθr , κ ∼ Normalm (µθr1m,Σm) , with 1m = (1, . . . , 1)⊤ . (3.6)

In this case, θr = (θr1, . . . , θrm)
⊤ is a vector containing the values of the r-th coefficient at

the m locations, and µθr represents the means of the r coefficient of the basis functions.

Furthermore, the same set of means is used for each location j.

• Some hyper-prior distributions for the hyper-parameters µθr and κ > 0 are

µθr ∼ Normal (o, v) , for κ ∼ Gamma(aκ, bκ). (3.7)

The terms o ∈ R, v > 0, aκ > 0, and bκ > 0 are scalars to be defined by the analyst. The

full specification of the Bayesian model is completed with the priors:

• For δi, i = 2, . . . , n,

δi| δi−1, ν ∼ Normal (ϕiδi−1, ν) , (3.8)

with

δ1| ν ∼ Normal(0, ν), ϕi = Φ(4− 8di−1) and ν ∼ Gamma(aν , bν). (3.9)
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• For τ > 0,

τ ∼ Gamma(aτ , bτ ). (3.10)

The elements aν > 0, bν > 0, aτ > 0, and bτ > 0 are specified by the researcher.

The present chapter is complete with the full description of the proposed models

based on B-spline or BP. In the following chapter, a simulation study is developed to un-

derstand how the proposed models behave comprehensively. For this purpose, an artificial

environment is established to reproduce various scenarios, which allows us to evaluate the

performance of the models under different conditions.
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Chapter 4

Simulation Studies

The previous Chapter 3 presents methodologies for smoothing discretely observed mea-

surement data that exhibit spatial correlation. These techniques rely on the concept

that curves nearby often show similar behavior, allowing for incorporating spatial depen-

dence structure in the smoothing process. Moreover, these methods also consider the

influence or association between irregularly spaced observations within each curve when

fitting models to the data. In order to evaluate the performance of these methodologies

in real scenarios, it is necessary to test them on data where the correct answer is known.

The main objective is to determine the effectiveness of using the B-spline basis functions

and BP together with the autoregressive random effect component. Specifically, assessing

how well these techniques perform with varying levels of between-curve variability and

different types of spatial correlation (low, moderate, and high) is essential.

The proposed statistical model specification uses the Stan programming language

(Stan Development Team, 2023). Stan enables full Bayesian inference for continuous

variable models using Markov Chain Monte Carlo (MCMC) methods, specifically the No-

U-Turn sampler (NUTS), which is an adaptive form of Hamiltonian Monte Carlo (HMC)

(Hoffman and Gelman, 2014). In certain situations, NUTS is presented as a more efficient

and robust sampling method compared to the Gibbs or Metropolis-Hastings sampling

techniques (Metropolis et al., 1953; Hastings, 1970; Geman and Geman, 1984; Gelfand

and Smith, 1990). However, it is essential to note that Stan has a limitation: it does

not support inference for discrete parameters. While Stan can handle discrete data and

discrete data models like logistic regressions, it cannot perform inference for discrete

unknowns. Various interfaces are available to interact with Stan. The cmdstan interface

is used for the command line shell, pystan for Python (van Rossum, 2023), and rstan

or cmdstanr for R (R Core Team, 2023). The last-mentioned interface is considered to

implement the models proposed in this thesis.

This chapter is structured as follows. Section 4.1 explains the different configura-

tions for generating artificial datasets. The simulation results are then presented, focusing

on spatial dependence, random effects, prediction, and handling missing data in scenarios

with 150 observations in the series. Section 4.2, the simulation study considers func-

tional domains with 300 and 500 discretely observed measurements. Finally, additional

scenarios are introduced in Section 4.3, involving datasets generated for three different
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configurations of geographic location (varying the number of sites).

4.1 Simulation Study Part I

Suppose that 20 locations are established in the map, as shown in Figure 4.1, and

150 discretely observed data are obtained for each site. The measure of each observation

is related to a point ti, i = 1, . . . , 150, of the functional domain that is the same for each

location. Remember that the set of ti’s is considered irregularly spaced.

Figure 4.1: Grid of simulated locations.
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For the present simulation study, the distances between measurements are consid-

ered to be in the interval (0, 1) and are generated from a Uniform distribution, U(0, 1),

and from a Beta distribution, Beta(1, 2). The first option will induce a similar number of

small and large distances. In contrast, the second option will generate a more significant

number of small distances.

The inference results obtained with irregular spacing generated via the U(0, 1) are

generally similar to the conclusions obtained using the Beta(1, 2). Estimating the coeffi-

cients and variances was similar and showed no significant disadvantage when considering

distances from the Uniform or Beta. However, it was noticed that obtaining spacing from

U(0, 1) caused a loss of importance for the random effect δ, which was introduced to

incorporate associations between neighboring observations in the data series. This result

is reasonable since the Uniform generates fewer small distances than the Beta(1, 2); the

lower the number of small distances, the lower the dependency level. Considering this

mentioned behavior and aiming for a more concise and non-repetitive presentation, this

thesis will focus on the results obtained with spacing generated via the Beta(1, 2). Some

results obtained using U(0, 1) are shown in Appendix C.1 and C.2.
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Generating Artificial Data

To generate the artificial observations Ysj(ti), j = 1, . . . , 20, of the functional

datasets with different levels of variability and spatial dependence for each model, consider

the structures defined in Table 4.1.

Table 4.1: Description and notation of the models to be considered in the simulation study.
Assume that θBr,j and θBP

r,j are coefficients related to the B-spline and BP, respectively.

Notation Description Functional structure of the model

MB k,l; δ
B-spline of order k, subinterval
number l, and random effect δ. Ysj(ti) =

k+l−1∑︂
r=1

θBr,jBr,k(ti) + δi + ϵsj(ti).

MBP p; δ
BP of degree p, order p+ 1 and
random effect δ. Ysj(ti) =

p∑︂
r=0

θBP
r,j br,p(ti) + δi + ϵsj(ti).

The appropriate number of B-spline or BP basis to utilize in a given dataset de-

pends on various factors, including the data’s complexity and the desired modeling accu-

racy. While there is no fixed rule for determining the precise number of basis, following

some general guidelines can be helpful.

When using the B-spline, one can start with a small number of basis and gradu-

ally increase until a satisfactory approximation is achieved for the specific purpose. It is

possible to use techniques such as cross-validation to evaluate the model’s performance

with different numbers of basis and select the optimal number that minimizes error or

maximizes accuracy according to the evaluation criteria. For further information, please

refer to Ramsay and Silverman (2002) and Kokoszka and Reimherr (2017). On the other

hand, for the BP basis, the higher the value of p, the more flexibility one has to adjust

the function to be approximated. However, as p increases, the complexity of the result-

ing polynomials also increases, which can lead to numerical instability and require more

computational resources (Lorentz, 2012; De Villiers, 2012).

This section uses the models MB 4,4; δ and MBP 3; δ to generate artificial func-

tional datasets. The first model uses an order k = 4 and l = 4, which divides the

interval [a, b] (functional domain) into four sub-intervals. This model comprises 7 B-

spline basis functions along with the random effect component. In contrast, the second

model utilizes a degree of p = 3, involving four BP as the basis and the random ef-

fect. In the present study, it is essential to note that the model considered to generate

the data is the same one used to fit the data. Some variations include fitting the data

with/without the effect δi and with/without the spatial dependence. A central objective

here is to evaluate performance and to show that implementation is correct. Concern-

ing the coefficients θB and θBP of the basis expansions, these have been obtained from
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a multivariate Normal distribution θB
r = (θBr1, · · · , θBr20)⊤ ∼ Normal20

(︁
µθBr

120, Σ
)︁
and

θBP
r = (θBP

r1 , · · · , θBP
r20 )

⊤ ∼ Normal20
(︁
µθBP

r
120, Σ

)︁
. The values used for their correspond-

ing means are as follows:

• µθB1
= 5, µθB2

= 11, µθB3
= 6, µθB4

= 4, µθB5
= 6, µθB6

= 8, µθB7
= 10 and

• µθBP
0

= 5, µθBP
1

= 11, µθBP
2

= 6, µθBP
3

= 4.

The spatial structure of the data is determined by the matrix Σ and is defined using the

Gaussian covariance function C(h) = κ exp {−(φh)2}, where h =∥ sj − sj∗ ∥ represents

the Euclidean distance between points sj and sj∗ , with j, j∗ ∈ {1, . . . , 20}. To illustrate

different scenarios, consider two levels of variability (moderate with κ = 1, high with

κ = 2) and three levels of spatial correlation (low with φ = 2, moderate with φ = 1, and

high with φ = 0.5). The behavior of the covariance is shown in Figure 4.2.

Figure 4.2: Behavior of the Gaussian covariance function concerning the distance. Each
curve represents a combination (κ, φ).
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To explain the scaling established in this work for the three levels of correlation

controlled by the decay parameter φ, a constant distance of h = 1 with κ = {1, 2} is

first maintained. Then, the value of the Gaussian covariance function is calculated using

φ = 0.5. The result is compared with values obtained from the other two configurations.

A strong correlation can be identified when the association is twice the value obtained

with φ = 1 and 43 times greater than the value obtained with φ = 2 (lowest level). When

the association (φ = 1) is 20 times higher than the lowest level, it is considered a moderate

correlation.

An MC scheme will be explored in this study with 250 replications of the datasets.

It is important to highlight that the generated sets of coefficients for the B-spline basis
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expansions and BP are kept the same across all replications for each combination (κ, φ).

The component δi is specified according to the Equations (3.8) and (3.9), while ϵj(ti) ∼
Normal20 (020, I20) is a random error generated independently for each j = 1, . . . , 20 and

each fixed ti, i = 1, . . . , 150. The term 020 is a 20 × 1 null vector and I20 is a 20 × 20

identity matrix suggesting that τ = 1; see Equation (3.5).

Prior Specifications

Table 4.2 shows the values for the prior distribution for each unknown hyper-

parameter of the model. The choice of the value 0.1 for the first and third Gamma

distributions reflects the high uncertainty related to τ and κ. These values result in

Gamma distributions with a mean of 1 and a variance of 10. The second Gamma has

arguments aν and bν equal to 1, defining a mean and variance of 1. This more informative

specification is considered to avoid a situation where δi|δi−1 has a large variability, which

is problematic since the mean ϕiδi−1 becomes less important; see Equation (3.8). As for

the hyper-parameter µθr , a Normal prior with a mean of 0 and variance of 10 is proposed

to represent low certainty about the real values of the coefficient means.

Table 4.2: Prior specifications considered in the simulation study.

Hyper-parameter Prior Values for posterior inference
τ Gamma(aτ , bτ ) aτ = bτ = 0.1

ν Gamma(aν , bν) aν = bν = 1

κ Gamma(aκ, bκ) aκ = bκ = 0.1

µθr Normal(o, v) o = 0, v = 10

Again, for each of the proposed models and each of the κ with φ configurations

within each simulation scenario, the MC scheme includes 250 replicates. As estimators,

the posterior means are considered to summarize the inference results. The MCMC algo-

rithm with the HMC dynamics implemented in Stan is used to obtain the samples of the

posterior distributions. A total of 5,000 iterations are performed, discarding the first 2,500

observations (burn-in period) and taking the rest as samples. Only one chain is obtained

for each parameter. Convergence is achieved for all the chains visually inspected during

the study. In terms of mixing, the inspected MCMC chains suggested low autocorrelation.

4.1.1 Results of the Simulation Study Part I

Spatial Dependence

This simulation aims to prove the relevance of considering the spatial dependence between

curves corresponding to a fixed configuration of geographical locations, see Figure 4.1. As

for the generation of the artificial data, the steps described in Section 4.1 are followed
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(generate data with spatial dependence) so that they subsequently fit the proposed model

of the Equation (3.5), as well as the same model without the spatial structure (in this

case, the matrix built by the covariance function is replaced by the identity matrix) for

each MC dataset.

Once the smoothed curves are obtained from the proposed model with and without

the spatial dependence, proceed to calculate the IAE and ISE measurements that analyze

the goodness of fit of the trajectories in each of the 20 spatial locations for each of

the 250 replicates considered. After collecting this information, the following ratios are

determined:

Ratio(IAE) =
IAE

(︂ˆ︁Ysj(t)(Ind)

)︂
IAE

(︂ˆ︁Ysj(t)(Dep)

)︂ , Ratio(ISE) =
ISE

(︂ˆ︁Ysj(t)(Ind)

)︂
ISE

(︂ˆ︁Ysj(t)(Dep)

)︂ , (4.1)

where ˆ︁Ysj(t)(Dep) and ˆ︁Ysj(t)(Ind) represent the smoothed curves when spatial dependence

and independence are taken into account. When the expressions in (4.1) are analyzed, it

is observed that if the value of the numerator is less than that of the denominator (proper

fraction), the result is less than 1. On the contrary, if the numerator is larger than its

denominator (improper fraction), the resulting value is greater than 1, being is the desired

case for this simulation study since it means that there is a better approximation between

the smoothed curves and the target curves when the modeling takes into account the

spatial structure than without it on SFD sets.

In this subsection, recall that only the results of the datasets that come from the

irregular spacing of the measures of the functional domain of a Beta(1, 2) distribution

are presented, together with the fixed values of the parameters κ = {1, 2} and φ = 1

(spatial variation and spatial decay, respectively), because this is the most appropriate

configuration when modeling the different datasets for the simulation study. Additional

results involving φ = {0.5, 2} are detailed in Appendix A.1.

Figure 4.3 illustrates the results of the quotients in (4.1) corresponding to the

smoothing methods of the functional data (B-spline and BP). At first glance, it can be

seen that there is little difference between the two levels of spatial variability κ considered

for both the IAE and ISE ratios. In addition, no significant difference is detected between

the base functions (B-spline and BP). In Panels (a), (b), (c), and (d), it is observed that,

for all geographic locations corresponding to each curve, when B-splines are used, most of

the 250 values composing each boxplot are above 1; this indicates a better performance of

the smoothed trajectories when the spatial structure is considered in the proposed model

compared to the model without it. This suggests that spatial dependence is essential to

ensure a better fit. For the Panels (e), (f), (g), and (h) corresponding to the BP, it is

observed that in locations 2, 11, and 15, which are the curves that have few or no near

neighbors, the proposed model with the spatial structure presents about half of the MC

replicates higher values of the discrepancy measures concerning the model without the
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spatial dependence. However, for trajectories with several nearest neighbors, the model’s

performance with spatial dependence is better in most samples when compared to the

model without it.

Figure 4.3: Comparison of the IAE and ISE ratios of the B-spline and BP models with two
spatial variation parameter settings: κ = 1 and κ = 2, together with a decay parameter
φ = 1.
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Autoregressive Random Effect

In this simulation scenario, the objective is to test the importance of the random effect

δ, which is a component of the model proposed in Equation (3.5), and which allows the

insertion of the dependency motivated by the irregular distancing of the observations in

the functional domain.

The results presented here correspond to the artificial datasets generated from the

model shown in Chapter 3, considering the two smoothing methodologies (B-spline, BP),

with the following adjustments: the spatial decay parameter φ = 1, the variability levels

κ = {1, 2} and the irregular spacing of the observations given by a Beta(1, 2) distribution.

Additional results (not shown here) providing valuable information for understanding the

context and scope of the study are presented in Appendix A.2.

Tables 4.3 and 4.4 present the MIAE and MISE discrepancy measures of the curves

fitted using the models described in Table 4.1. The tables compare the performance of

these models with and without the random effect component. The comparison is made

for two variability options and the same spatial correlation value. The analysis reveals

that the MB4,4; δ and MBP3; δ perform better when the formats of the artificial curves
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are similar and close to each other (specifically, when κ = 1). In addition, functions

located close to each other on a spatial scale lend strength to each other for inference

purposes; for example, the smoothed curves in places 9 and 14 are close and have other

neighbors, the reason for which they have the lowest values for the discrepancy measures

mentioned above for the two models. In contrast, curves at distant locations without

nearby companions, such as 2 and 5, demonstrate higher MIAE and MISE metrics values.

In summary, both metrics used to assess the accuracy of the smoothed curves show

lower values when the random effect component is incorporated in the models (see columns

2-3 and 6-7 in both tables), in contrast to the models that exclude this component. In

the latter scenario, the values are significantly higher (see columns 4-5 and 8-9 in both

tables), suggesting that the curves move away from the target functions. This pattern

of behavior is repeated in both proposed models (B-spline and BP). It is important to

remember that a lower value indicates a more accurate fit in the context of discrepancy

metrics.

Table 4.3: Discrepancy measures for the smoothed curves using the MB4,4; δ and MB4,4; •,
with and without the random effect component, respectively.

MB4,4; δ MB4, 4; • MB4,4; δ MB4,4; •
MIAE MISE MIAE MISE MIAE MISE MIAE MISE

κ = 1, φ = 1 κ = 2, φ = 1

S1 0.187 0.055 0.718 0.789 0.192 0.057 0.719 0.792

S2 0.209 0.070 0.730 0.806 0.215 0.074 0.732 0.812

S3 0.191 0.057 0.724 0.795 0.195 0.059 0.726 0.798

S4 0.206 0.067 0.728 0.806 0.210 0.070 0.729 0.808

S5 0.216 0.074 0.733 0.816 0.220 0.077 0.734 0.819

S6 0.189 0.056 0.724 0.792 0.193 0.059 0.726 0.794

S7 0.197 0.061 0.726 0.796 0.203 0.065 0.729 0.798

S8 0.187 0.055 0.718 0.791 0.189 0.056 0.718 0.792

S9 0.180 0.051 0.717 0.787 0.182 0.052 0.718 0.787

S10 0.185 0.054 0.719 0.791 0.188 0.056 0.720 0.792

S11 0.200 0.063 0.727 0.803 0.204 0.066 0.729 0.806

S12 0.183 0.053 0.721 0.788 0.187 0.055 0.722 0.791

S13 0.185 0.054 0.722 0.790 0.188 0.056 0.724 0.791

S14 0.182 0.052 0.719 0.787 0.185 0.054 0.719 0.789

S15 0.204 0.066 0.726 0.797 0.213 0.072 0.729 0.804

S16 0.208 0.069 0.723 0.812 0.212 0.073 0.724 0.816

S17 0.195 0.060 0.723 0.793 0.201 0.064 0.725 0.797

S18 0.185 0.054 0.720 0.791 0.187 0.055 0.720 0.792

S19 0.187 0.055 0.723 0.792 0.191 0.058 0.724 0.794

S20 0.189 0.056 0.726 0.793 0.192 0.059 0.728 0.796
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Table 4.4: Discrepancy measures for the smoothed curves using the MBP3; δ and MBP3; •,
with and without the random effect component, respectively.

MBP3; δ MBP3; • MBP3; δ MBP3; •
MIAE MISE MIAE MISE MIAE MISE MIAE MISE

κ = 1, φ = 1 κ = 2, φ = 1

S1 0.178 0.050 0.756 0.886 0.181 0.051 0.757 0.888

S2 0.198 0.063 0.769 0.905 0.200 0.064 0.769 0.907

S3 0.179 0.050 0.757 0.888 0.182 0.052 0.757 0.890

S4 0.191 0.057 0.758 0.895 0.194 0.060 0.759 0.898

S5 0.192 0.058 0.758 0.896 0.195 0.060 0.759 0.898

S6 0.181 0.052 0.755 0.889 0.185 0.054 0.755 0.891

S7 0.186 0.054 0.759 0.890 0.189 0.057 0.761 0.892

S8 0.178 0.049 0.756 0.887 0.180 0.051 0.756 0.888

S9 0.175 0.048 0.758 0.886 0.175 0.048 0.758 0.886

S10 0.178 0.050 0.760 0.889 0.180 0.051 0.760 0.889

S11 0.190 0.057 0.755 0.901 0.192 0.058 0.756 0.901

S12 0.177 0.049 0.761 0.888 0.180 0.051 0.762 0.889

S13 0.177 0.049 0.759 0.886 0.179 0.051 0.760 0.887

S14 0.176 0.049 0.760 0.886 0.178 0.050 0.760 0.887

S15 0.192 0.058 0.759 0.894 0.197 0.061 0.761 0.897

S16 0.187 0.055 0.759 0.892 0.190 0.057 0.759 0.894

S17 0.184 0.053 0.759 0.890 0.187 0.055 0.759 0.891

S18 0.179 0.050 0.755 0.890 0.179 0.050 0.755 0.889

S19 0.179 0.050 0.762 0.888 0.181 0.051 0.762 0.889

S20 0.180 0.051 0.762 0.890 0.183 0.053 0.761 0.891

Prediction

This simulation study aims to predict functional data in areas where no observations

are available. For this purpose, a series of data observed at different geographic points

in a particular region is used. These datasets are then employed to build a model that

provides information about the behavior of these series in unsampled locations. See Figure

4.1 for the complete map. The datasets explored here are those with spatial dependence

evaluated in the first study presented in Subsection 4.1.1. In this particular study, the

observations from locations S4, S9, and S15 are assumed as missing. In other words, the

whole series related to these locations are ignored when fitting the models, but they are the

target for prediction. The same models and configurations used to generate the artificial

observations (as detailed in Section 4.1) are used to predict the values of the unobserved

curves. Therefore, it is sufficient to specify only the geographic coordinates of the locations
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where the series are not observed. This procedure is executed within the Stan, treating

the unobserved values as unknown quantities with defined prior specifications that align

with the model’s structure. In other words, when Ysj(ti) is missing, the expression in (3.5)

serves as a prior specification rather than a term forming the likelihood.

The results presented in Table 4.5 can be analyzed to determine the impact of the

proximity of observed curves on the trajectory of the predictions at unobserved locations.

By examining the MIAE and MISE from MC replications, it becomes evident that unob-

served sites surrounded by nearby neighbors exhibit a better fit to the target functions,

regardless of the level of spatial variability. This trend is demonstrated in the case of

location S9 displaying lower values. On the other hand, the somewhat isolated locations

S4 and S15 show inferior performance in their predictions, especially when there is high

variability (κ = 2) between the curves.

In summary, the prediction of curves at unsampled locations shows better per-

formance in both models (B-spline and BP) when nearby neighbors are present in the

surrounding areas, as they significantly influence the estimation process. This strategy

is based on the idea that trends observed in adjacent locations provide valuable infor-

mation about underlying patterns and behaviors, allowing for more accurate and reliable

estimates.

Table 4.5: Comparison of MIAE and MISE discrepancy measures for the prediction of
unobserved curves using the MB4,4; δ and MBP3; δ, with two configurations of the spatial
variation parameters: κ = 1 and κ = 2, together with a decay parameter φ = 1.

Artificial functional data Prediction model Location Measure of discrepancy
structure MIAE MISE MIAE MISE

κ = 1, φ = 1 κ = 2, φ = 1

MB4,4; δ MB4,4; δ

S4 0.277 0.119 0.306 0.144
S9 0.197 0.061 0.199 0.063
S15 0.258 0.104 0.319 0.156

MBP3; δ MBP3; δ

S4 0.237 0.088 0.255 0.103
S9 0.191 0.057 0.192 0.058
S15 0.267 0.113 0.318 0.159

Figure 4.4 shows results summarized from the MC scheme. The average of the

estimates obtained from each sample is considered to build the 95% Highest Posterior

Density (HPD) intervals (blue lines) and the estimated curve (red line). Note that average

intervals (region between blue lines) manage to capture the real trajectories (black line).

Furthermore, the average predicted curves for the locations S4, S9, and S15 are close

to their respective target functions (red and black lines are too close). This indicates

that good predictions are obtained even for location S15 having distant neighbors. When

comparing Panels (a) and (b), no strong distinction in terms of performance is detected
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between the B-spline and BP. For other cases (φ = {0.5, 2}), the results are presented

and explained in Appendix A.3

Figure 4.4: Target function (black solid lines), point-wise mean prediction curves (red
dashed line), and 95% point-wise mean HPD intervals (blue dashed line) of the estimated
curves for the MB4,4; δ (Panel a) and MBP3; δ (Panel b). Each model is evaluated with
two settings of the spatial variation parameters, specifically κ = 1 and κ = 2, and a decay
parameter φ = 1.

(a)

Curve 4

0

5

10

15

0 10 20 30 40

Domain t

P
re

d
ic

ti
o
n

Curve 9

0

5

10

15

0 10 20 30 40

Domain t

P
re

d
ic

ti
o
n

Curve 15

0

5

10

15

0 10 20 30 40

Domain t

P
re

d
ic

ti
o
n

κ = 1,   ϕ = 1

Curve 4

0

5

10

15

0 10 20 30 40

Domain t

P
re

d
ic

ti
o
n

Curve 9

0

5

10

15

0 10 20 30 40

Domain t

P
re

d
ic

ti
o
n

Curve 15

0

5

10

15

0 10 20 30 40

Domain t

P
re

d
ic

ti
o
n

κ = 2,   ϕ = 1

(b)

Curve 4

0

5

10

15

0 10 20 30 40

Domain t

P
re

d
ic

ti
o
n

Curve 9

0

5

10

15

0 10 20 30 40

Domain t

P
re

d
ic

ti
o
n

Curve 15

0

5

10

15

0 10 20 30 40

Domain t

P
re

d
ic

ti
o
n

κ = 1,   ϕ = 1

Curve 4

0

5

10

15

0 10 20 30 40

Domain t

P
re

d
ic

ti
o
n

Curve 9

0

5

10

15

0 10 20 30 40

Domain t

P
re

d
ic

ti
o
n

Curve 15

0

5

10

15

0 10 20 30 40

Domain t

P
re

d
ic

ti
o
n

κ = 2,   ϕ = 1

Source: Prepared by the author



4.1. Simulation Study Part I 49

Missing Data

This simulation study evaluates the proposed models’ performance in dealing with missing

data in the discretely observed measurement samples at different locations. In the previous

analysis, the whole series related to a location Sj is unknown. In contrast, the present

study assumes that a few observations are missing within one or more series. For this

purpose, the data from the previous scenario (prediction) are used, and some observations

are deleted randomly to create samples with missing data. It is essential to mention that

the configuration of the missing data positions is the same for all MC replications. The

study is designed with 450 missing values that should be estimated, representing 15% of

the 3,000 observations in each MC sample.

Figure 4.5 shows the mean 95% HPD intervals for the 450 missing data from the

MC datasets. The black points represent the average posterior estimate, and the true

observations are the red points. The graphs are ordered concerning the true values to

improve the visual analysis. Please note that these graphs do not represent a curve in

the functional domain. The full study covers 6 different scenarios (Beta distances), each

characterized by two levels of variability between the curves and three correlation values.

The proposed MB4,4; δ and MBP3; δ models are employed to fit the data in all cases. Only

four combinations involving B-spline, BP, and κ = {1, 2} are presented here, while the

other analyses (φ = {0.5, 2}) performed can be found in Appendix A.4.

Figures 4.5 (a) and 4.5 (b) show results from datasets generated and fitted using

the MB4,4; δ. It can be observed that the HPD intervals successfully capture the actual

values of the missing data. Although the intervals have some degree of uncertainty,

most averages of the mean posterior estimates from each MC replicate closely align with

the desired targets. However, two and three estimates, in particular, stand out in both

graphs. These values correspond to the curves at geographical positions 2 and 16 at

functional domain points 23 (curve 2), 141, and 150 (curve 16). A possible explanation

for this behavior is that these curves are relatively far away from their closest neighbors,

indicating that the spatial dependence is not strong enough to share strength during the

estimation process, especially when there is higher variability between the curves.

Figures 4.5 (c) and 4.5 (d) display the analyses for the data generated and fitted

with the MBP3; δ model. These graphs clearly illustrate that the average HPD intervals

effectively capture all the real values, and the averaged posterior mean estimates from

the MC scheme are close to the true magnitudes of the data. The posterior uncertainty

is similar across all panels, suggesting no significant difference between κ = 1 or 2 and

B-spline or BP.

In conclusion, the data imputation strategy of utilizing the B-spline and BP mod-

els has effectively yielded reliable results for point estimates. Furthermore, across all

evaluated scenarios, there’s a consistent pattern of similarity in the lengths of the mean
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Figure 4.5: Mean of the 95% HPD Intervals for the 450 missing data using the MB4,4; δ

and MBP3; δ. The actual values are the red dots, and the averages of the mean posterior
estimates from each MC replicate are the black dots. Each model is evaluated with two
settings of the spatial variation parameters (κ = 1 and κ = 2) and a decay parameter
φ = 1.
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intervals for each imputed value. This indicates a similar level of uncertainty in each case,

with no noticeable significant differences between them.

4.2 Simulation Study Part II

In this second part of the study, the configurations and structures used in Part I to

generate artificial data and estimate the parameters and hyper-parameters of the proposed

models are maintained. However, this time, the functional domain is expanded to 300

and 500 discrete points, which gives us more insight into the behavior of the underlying

functions in the data. In addition, the analysis focuses on only two variability levels:

κ = 1 and 2. Likewise, a decay parameter value of φ = 1 is used, which allows us to

attribute moderate correlations.

4.2.1 Results of the Simulation Study Part II

Figure 4.6 presents the IAE and ISE discrepancy measurement results for the 250

MC replicates. These measurements allow us to evaluate how close the smoothed (or

estimated) curves of MB4,4; δ are to the target curves. From the analysis of the results,
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some conclusions can be drawn. First, no significant differences are observed between

the results for the two levels of variation for each size of the functional domain. For

example, Panels (a) and (b), as well as (c) and (d), show similar behavior. Second, when

analyzing the sets of curves with a domain composed of 300 discrete observations, it is

observed that the interquartile range (IQR) in the boxplots is higher compared to the

results obtained for functions with a domain of 500 observations. This indicates higher

measurement variability when working with smaller datasets, which is an expected result.

Regarding the position of the medians, the majority of them are below the reference

values of 0.18 and 0.5 (represented by the red line arbitrarily defined to aid the visual

analysis) when the smoothed curves are based on a broader domain, as seen in Panels (c),

(d), (g), and (h). On the other hand, when the domain has fewer points (300), most of

the medians lie above the reference levels. This indicates that the estimated curves show

improved performance when a substantial amount of information is accessible.

Figure 4.6: Comparison of IAE and ISE discrepancy measures of the 20 estimated curves.
The MB4,4; δ is used with spatial variation parameter κ = 1 and κ = 2. In addition, a
constant value for the decay parameter φ = 1 and two sizes of measurements discretely
observed in the functional domain are used: n = 300 and n = 500.
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Figure 4.7 presents the results for the datasets generated and estimated using the

MBP3; δ model. The graphs show the variability differences (size of the boxplots) in the

discrepancy measures for the two levels of variation corresponding to each sample size.

To easily observe these differences, one can compare the box lengths on the panels, with

a slightly higher variability for κ = 2. This visualization provides valuable insights into

the model’s performance and how it responds to different levels of variation and moderate

spatial correlation for the given sample sizes. When analyzing the curves consisting of
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300 discrete observations, it is evident that the IQR is greater than the results obtained

for functions with a domain of 500 data. This indicates higher MC dispersion in the

measurements when working with smaller sizes, which is an expected result. In most

cases, the medians are below the arbitrary reference values of 0.18 and 0.5 (red line)

included to facilitate interpretation. However, it is essential to note that the medians

in Panels (c), (d), (g), and (h) have a lower value than the other graphs, indicating an

improvement in curve fitting. In summary, the behavior observed for the BP case is

similar to those observed for the B-spline.

Figure 4.7: Comparison of IAE and ISE discrepancy measures of the 20 estimated curves.
The MBP3; δ is used with spatial variation parameter κ = 1 and κ = 2. In addition, a
constant value for the decay parameter φ = 1 and two sizes of measurements discretely
observed in the functional domain are used: n = 300 and n = 500.
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Table 4.6 presents the MISE of the estimators for the 20 functions evaluated over

the entire common domain shared by these functions. This discrepancy measure can be

effectively decomposed into Integrated Variance (IV) and Integrated Squared Bias (ISB);

see Section 2.4. Such decomposition allows for a comprehensive and detailed analysis of

the variance and bias inherent in the functions smoothed by the MB4,4; δ and MBP3; δ

models. When analyzing the performance of the two fitting models with a sample size

of n = 300 in both cases of variation, it is highlighted that the smoothed curve of site

9 shows the lowest MISE value. Moreover, this curve exhibits a more accurate fit when

considering the variation of κ = 1. In contrast, the curves of sites 2 and 5 present the

highest values of both MISE and ISB in any of the scenarios studied. On the other hand,

by increasing the size of the discretely observed measurements to n = 500, it is observed

that the MISE and IV indices decrease even more in curves S9, S2, and S5 compared
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to the 300 discrete points of the previous functional domain. However, it is essential to

mention a case in which the smoothed curve of site 9, modeled by the MB4,4; δ, presented

an increase in the ISB value with the larger sample. In summary, the results show that all

the smoothed curves present a good fitting performance in both cases of variation. The

closeness between locations Sj is also beneficial in the estimation process. In addition,

it is observed that increasing the sample size to n = 500 achieves higher accuracy in the

models. These findings support the importance of considering an adequate sample size to

obtain more reliable estimates in model fit analysis.

Table 4.6: Results of the MISE, IV, and ISB discrepancy measures for the curves estimated
with the MB4,4; δ and MBP3; δ, with two levels of variation κ = 1 and κ = 2 and a fixed
value for the decay parameter φ = 1, in two sample sizes n = 300 and n = 500.

MB4,4; δ MBP3; δ

n Site MISE IV ISB MISE IV ISB MISE IV ISB MISE IV ISB

κ = 1, φ = 1 κ = 2, φ = 1 κ = 1, φ = 1 κ = 2, φ = 1

300 S1 0.05113 0.04494 0.00619 0.05265 0.04619 0.00646 0.04786 0.04198 0.00588 0.04863 0.04324 0.00538

S2 0.05861 0.05036 0.00825 0.06021 0.05230 0.00792 0.05264 0.04486 0.00778 0.05406 0.04709 0.00696

S3 0.05230 0.04444 0.00785 0.05371 0.04559 0.00812 0.04815 0.04132 0.00683 0.04915 0.04313 0.00602

S4 0.05689 0.04903 0.00786 0.05828 0.05088 0.00739 0.05178 0.04467 0.00711 0.05275 0.04589 0.00686

S5 0.05997 0.05156 0.00841 0.06126 0.05344 0.00781 0.05157 0.04500 0.00658 0.05392 0.04778 0.00615

S6 0.05083 0.04415 0.00667 0.05231 0.04558 0.00673 0.04824 0.04150 0.00674 0.04939 0.04309 0.00630

S7 0.05446 0.04846 0.00600 0.05647 0.05029 0.00617 0.05006 0.04419 0.00587 0.05120 0.04575 0.00545

S8 0.05036 0.04454 0.00581 0.05112 0.04530 0.00582 0.04736 0.04122 0.00614 0.04845 0.04280 0.00566

S9 0.04818 0.04281 0.00537 0.04865 0.04329 0.00537 0.04618 0.04031 0.00587 0.04679 0.04140 0.00539

S10 0.05050 0.04400 0.00651 0.05128 0.04464 0.00664 0.04744 0.04098 0.00645 0.04823 0.04222 0.00601

S11 0.05587 0.04744 0.00843 0.05765 0.04937 0.00828 0.05074 0.04274 0.00800 0.05289 0.04532 0.00757

S12 0.04992 0.04343 0.00650 0.05124 0.04433 0.00690 0.04753 0.04076 0.00677 0.04833 0.04218 0.00615

S13 0.05005 0.04439 0.00566 0.05116 0.04558 0.00557 0.04760 0.04169 0.00591 0.04839 0.04280 0.00559

S14 0.04877 0.04297 0.00581 0.04972 0.04383 0.00589 0.04644 0.04043 0.00601 0.04753 0.04184 0.00568

S15 0.05743 0.05067 0.00675 0.06001 0.05301 0.00700 0.05257 0.04602 0.00655 0.05305 0.04718 0.00587

S16 0.05945 0.04889 0.01056 0.06061 0.05095 0.00965 0.05056 0.04435 0.00621 0.05192 0.04601 0.00592

S17 0.05515 0.04839 0.00676 0.05743 0.05017 0.00726 0.04943 0.04358 0.00586 0.05102 0.04576 0.00527

S18 0.05005 0.04423 0.00581 0.05056 0.04498 0.00558 0.04709 0.04087 0.00623 0.04780 0.04243 0.00537

S19 0.05038 0.04373 0.00665 0.05149 0.04470 0.00679 0.04705 0.04096 0.00609 0.04814 0.04239 0.00575

S20 0.05112 0.04396 0.00715 0.05219 0.04506 0.00714 0.04822 0.04141 0.00681 0.04887 0.04254 0.00633

500 S1 0.04834 0.04227 0.00607 0.04924 0.04304 0.00620 0.04670 0.04064 0.00605 0.04671 0.04126 0.00545

S2 0.05365 0.04679 0.00686 0.05462 0.04802 0.00659 0.04971 0.04272 0.00700 0.05038 0.04443 0.00595

S3 0.04911 0.04204 0.00707 0.04986 0.04279 0.00707 0.04662 0.04030 0.00632 0.04716 0.04133 0.00582

S4 0.05216 0.04547 0.00669 0.05312 0.04658 0.00653 0.04950 0.04296 0.00654 0.04928 0.04320 0.00609

S5 0.05429 0.04680 0.00749 0.05493 0.04793 0.00700 0.04996 0.04351 0.00645 0.04954 0.04391 0.00563

S6 0.04833 0.04212 0.00621 0.04941 0.04316 0.00625 0.04708 0.04063 0.00645 0.04732 0.04145 0.00586

S7 0.05086 0.04502 0.00584 0.05217 0.04620 0.00597 0.04864 0.04252 0.00612 0.04847 0.04291 0.00556

S8 0.04798 0.04208 0.00590 0.04857 0.04259 0.00598 0.04654 0.04036 0.00618 0.04686 0.04103 0.00583

S9 0.04623 0.04079 0.00545 0.04659 0.04112 0.00546 0.04543 0.03951 0.00592 0.04537 0.04001 0.00536

S10 0.04791 0.04155 0.00636 0.04845 0.04199 0.00645 0.04628 0.04008 0.00620 0.04608 0.04049 0.00559

S11 0.05154 0.04404 0.00751 0.05247 0.04519 0.00727 0.04911 0.04191 0.00720 0.04878 0.04240 0.00637

S12 0.04770 0.04154 0.00617 0.04855 0.04213 0.00643 0.04656 0.04009 0.00647 0.04681 0.04082 0.00599

S13 0.04779 0.04215 0.00564 0.04857 0.04288 0.00569 0.04657 0.04039 0.00618 0.04672 0.04101 0.00571

S14 0.04695 0.04124 0.00571 0.04758 0.04183 0.00575 0.04579 0.03971 0.00608 0.04597 0.04045 0.00553

S15 0.05244 0.04609 0.00635 0.05377 0.04737 0.00640 0.04949 0.04301 0.00648 0.04939 0.04359 0.00580

S16 0.05330 0.04537 0.00793 0.05399 0.04667 0.00731 0.04886 0.04267 0.00619 0.04895 0.04333 0.00561

S17 0.05102 0.04474 0.00628 0.05239 0.04581 0.00658 0.04841 0.04246 0.00595 0.04862 0.04315 0.00547

S18 0.04745 0.04174 0.00571 0.04775 0.04217 0.00558 0.04590 0.03991 0.00599 0.04603 0.04060 0.00542

S19 0.04798 0.04182 0.00616 0.04867 0.04244 0.00623 0.04637 0.04023 0.00615 0.04636 0.04077 0.00559

S20 0.04811 0.04184 0.00627 0.04880 0.04253 0.00628 0.04686 0.04039 0.00648 0.04710 0.04096 0.00614
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4.3 Simulation Study Part III

Figure 4.8 illustrates three different scenarios of locations of observations for the

discrete functional data. For the first scenario, there are ten fixed spatial locations (Panel

a). The second scenario (Panel b) keeps the initial ten locations and adds ten new ones.

Finally, in the third scenario (Panel c), the number of sites increases to 40, of which 20

are the exact locations as in Panel (b).

The observations of each curve are related to a specific point t in the functional

domain, which is the same for all trajectories. In this case, the number of measure-

ments considered is n = 150, and the spacing between them has been generated from

the Beta(1, 2). The artificial data generation and fitting process are based on the same

configurations used in the first phase of the simulation study (Spatial dependence study

in Subsection 4.1.1). However, in this simulation phase, a single value of spatial variation

κ = 1 is considered, along with the three levels of correlation, which are controlled by the

decay parameter φ = {0.5, 1, 2}.

Figure 4.8: Grid of simulated locations.
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4.3.1 Results of the Simulation Study Part III

This subsection focuses on the (κ = 1, φ = 1) scenario. The results of the other

scenarios are presented in Appendix B. Figure 4.9 shows boxplots for the two discrepancy

measures, IAE and ISE, summarizing the 250 MC replicates. In this case, functional

data were generated and fitted using the MB4,4; δ model. By observing the left panels
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(10 sites), it can be noted that most of the boxplots show a moderate dispersion, except

for site 4, where a higher variability in the discrepancy indices is observed. Please note

that location S4 is somewhat isolated in the spatial configuration. The medians show a

tendency around the values 0.25 and 0.09 (scenario with 10 sites), which indicates that

these boxplots are at a higher level than those from the scenarios with 20 or 40 sites.

Outliers are present in some boxplots, except those related to sites 4 and 9. As the

number of locations increases, the number of near neighbors also increases. As a result,

the indices IAE and ISE decrease, suggesting an improved fit of the curves. Moreover,

the boxplots exhibit smaller dispersion, especially in the case of 40 sites.

Figure 4.9: Comparison of IAE and ISE discrepancy measures for functions estimated
using the MB4,4; δ. This analysis is conducted in different spatial configurations where the
number of sites is 10, 20, or 40.
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Figure 4.10 illustrates the results obtained from the MBP3; δ; data is generated

and fitted assuming this model. Initially, the measurements of the ten reference sites

displayed moderate variability, with median values of approximately 0.23 (IAE) and 0.09

(ISE). Additionally, a few outliers are observed. However, as the number of neighbors for

the reference locations increases, the IAE and ISE values in each replicate tend to decrease.

In addition, the MC dispersions become considerably lower. This trend is particularly

pronounced when there are 40 sites, resulting in medians around 0.14 for IAE and 0.03 for

ISE. These findings indicate a better performance of the smoothed curves. In conclusion,

when comparing the results from B-spline and BP, one can see similar behaviors; therefore,

no significant distinction is detected between these model versions.
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Figure 4.10: Comparison of IAE and ISE discrepancy measures for functions estimated
using the MBP3; δ model. This analysis is conducted in different spatial configurations
where the number of sites is 10, 20, or 40. The analysis is focused on the 10 red locations.
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To perform a detailed and general analysis of the 250 MC replicas, the MISE, IV,

and ISB measures are used, which can be found in Table 4.7. In these measures, it can be

observed that in the scenario of 10 sites (reference case) using model MB4,4; δ, the curve of

location 5 presents smaller measurements (MISE, IV, and ISB) compared to the others.

This indicates that the mean of the smoothed functions is closer to the target function,

and its variance is small, suggesting greater consistency and stability in the results of each

sample. Furthermore, the bias is low, meaning it tends to approximate the true function

without deviating. On the other hand, the curve of location 4 has the highest MISE value

along with the other indices, indicating that the smoothed functions have a higher error

and, therefore, are less accurate.

As the number of close neighbors increases for the 10 reference sites, a reduction

is observed in all measures (MISE, IV, and ISB) for all curve means. This suggests that

having multiple nearby trajectories improves the fit of the estimated functions. A clear

illustration of this is found in Figure 4.8 (c) for the scenario involving 40 sites. Here, it’s

evident that site 3 exhibits the lowest values for MISE, IV, and ISB, while site 10 displays

the highest. This distinction arises from the fact that site 3 has a more significant number

of nearby trajectories, whereas site 10 has fewer such trajectories.

In the case of model MBP3; δ, a similar analysis to the three scenarios considered

for model MB4,4; δ is conducted. In the first scenario, Figure 4.8 (a), by examining the

discrepancy measures in Table 4.7, it is observed that site 1 has the lowest value of the

indices while site 4 has the highest. In the second scenario, Figure 4.8 (b), performance
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changes are observed when ten additional geographic locations are included. The curves

for sites 9 and 4 are now identified as the best and worst performers, respectively. Lastly, in

the third scenario, Figure 4.8 (c), twenty new locations are added along with the previous

ones. In this case, the smoothed functions of site 3 indicate a better approximation to the

observed data, while site 7 presents the worst fit. This indicates that including nearby

neighbors in the estimation process leads to improvement.

Table 4.7: Comparison of the MISE, IV, and ISB discrepancy measures for curves esti-
mated using the MB4,4; δ and MBP3; δ. These models have a fixed decay parameter value
of φ = 1 and a level of variation κ = 1. The evaluation was done for three scenarios with
10, 20, and 40. geographic sites.

m = 10 m = 20 m = 40
Model Site MISE IV ISB MISE IV ISB MISE IV ISB

κ = 1, φ = 1

MB4,4; δ S1 0.09371 0.06874 0.02497 0.05404 0.04267 0.01138 0.03303 0.02684 0.00619

S2 0.09397 0.06854 0.02543 0.05739 0.04511 0.01228 0.03138 0.02710 0.00428

S3 0.09553 0.07655 0.01898 0.05117 0.04416 0.00701 0.02796 0.02568 0.00228

S4 0.10281 0.07845 0.02436 0.06159 0.04912 0.01247 0.03055 0.02725 0.00330

S5 0.08695 0.06802 0.01893 0.05270 0.04492 0.00777 0.03043 0.02673 0.00370

S6 0.09335 0.07068 0.02267 0.05598 0.04609 0.00989 0.03229 0.02774 0.00455

S7 0.08784 0.06878 0.01906 0.05308 0.04487 0.00822 0.03119 0.02800 0.00319

S8 0.10129 0.07683 0.02446 0.05353 0.04459 0.00893 0.02897 0.02580 0.00316

S9 0.09271 0.07013 0.02258 0.05310 0.04494 0.00816 0.02870 0.02612 0.00258

S10 0.09994 0.07004 0.02989 0.06398 0.04944 0.01454 0.03377 0.02810 0.00567

MBP3; δ S1 0.08895 0.07392 0.01504 0.04903 0.04239 0.00663 0.02774 0.02530 0.00245

S2 0.09100 0.07353 0.01747 0.05208 0.04341 0.00867 0.02934 0.02557 0.00377

S3 0.09450 0.07708 0.01741 0.04960 0.04204 0.00756 0.02684 0.02437 0.00247

S4 0.09745 0.07854 0.01892 0.05978 0.04636 0.01341 0.02882 0.02508 0.00374

S5 0.09088 0.07346 0.01742 0.05032 0.04342 0.00690 0.02780 0.02526 0.00255

S6 0.09312 0.07414 0.01899 0.05174 0.04425 0.00749 0.02851 0.02573 0.00278

S7 0.09076 0.07309 0.01767 0.05300 0.04315 0.00985 0.03087 0.02626 0.00461

S8 0.09715 0.07983 0.01732 0.05068 0.04294 0.00774 0.02759 0.02468 0.00291

S9 0.09000 0.07380 0.01620 0.04878 0.04223 0.00654 0.02722 0.02487 0.00235

S10 0.09521 0.07459 0.02062 0.05524 0.04661 0.00863 0.02925 0.02636 0.00289

Finally, the current chapter containing results based on artificial data is complete.

In the studies developed here, it was possible to verify the quality of the proposed models

to adjust functional datasets with spatial dependence and irregular spacing between ob-

servations. The next chapter shows a real analysis involving two datasets related to the

environmental variable.
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Chapter 5

Real Data Application

This chapter focuses on the presentation and exploration of two real applications that illus-

trate the modeling approach proposed in this thesis. Temperature and particulate matter

(PM10) are two interconnected aspects of environmental conditions that significantly im-

pact our daily lives. Temperature refers to the measure of heat in the atmosphere, while

PM10 is a component of atmospheric pollution with a crucial physical characteristic: its

diameter. Understanding the implications of these factors is vital as they can profoundly

affect our health and well-being.

Particulate matter, commonly called PM10, consists of tiny particles suspended in

the air. These particles have a diameter of 10 micrometers or less, making them small

enough to be inhaled. This characteristic poses a significant risk to human health as it

can penetrate deep into our respiratory system, causing damage to tissues and organs.

Moreover, PM10 can serve as a carrier for bacteria and viruses, potentially exacerbating

the spread of diseases.

Extensive research has established a positive relationship between exposure to

PM10 and various adverse health outcomes. Studies by Greenbaum et al. (2001) and Paldy

et al. (2006) have highlighted the association between PM10 exposure and an increased

risk of respiratory and cardiovascular diseases, cancer, influenza, and asthma. These

findings underscore the importance of monitoring and mitigating the levels of particulate

matter in the air we breathe.

Temperature, on the other hand, is a fundamental aspect of weather and climate. It

refers to the measure of hotness or coldness of the atmosphere, influenced by factors such as

solar radiation, air pressure, and wind patterns. Temperature variations have far-reaching

effects on human activities, ecosystems, and the overall functioning of the planet. Changes

in Temperature patterns, particularly global warming, have raised concerns worldwide.

Rising Temperatures can lead to heatwaves, droughts, and altered precipitation patterns,

impacting agricultural productivity, water resources, and human health. Heatwaves, in

particular, pose a significant risk to vulnerable populations, including the elderly and

those with underlying health conditions.

The main focus of this study does not involve evaluating the association between

temperature and PM10. These two variables will be explored separately in the analyses

using the proposed models for spatial functional data. The study of these data sets is
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divided into three parts. Section 5.1 explains the origin of the samples and the strategy

used to reorganize the functional domain. Section 5.2 provides a detailed description

of the data, which is crucial for statistical analysis and understanding the problem. In

Section 5.3, several models (B-spline or BP versions) are fitted and compared with each

other to determine a final result. All the fitted models employ four chains, with a burn-in

value of 2,500 and storage of 2,500 posterior values for each chain.

5.1 Data Origin

For two years, data on air quality in Mexico City was collected through a moni-

toring network. This data corresponds to consecutive hours, from 1:00 a.m. on January

1, 2021, to midnight, on December 31, 2022. The measurement was carried out at 22

environmental stations in different parts of the city, as shown in Figure 5.1 (a). These

stations are part of the air quality network known as RAMA (Red Automática de Moni-

toreo Atmosférico) and monitor particles up to 10 micrometers (µm) in size every hour,

among other things. The data can be accessed freely through the internet on a webpage1

maintained by the Mexico City government. The mentioned dataset, which includes the

period 2021− 2022 selected for this study, is just a tiny portion of the complete dataset

available at the provided address.

Figure 5.1: Map of Mexico City with the monitoring stations: (a) sampled sites of PM10
and (b) sampled sites of Temperature.

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

19

20

21

22

18.9

19.2

19.5

19.8

20.1

−99.75 −99.50 −99.25 −99.00 −98.75 −98.50

Longitude

L
a
ti
tu

d
e

a )

 1

 2

 3

 4

 5

 6

 7

 8  910

11

12

13

14
15

16

17

18

19
20

21

22

23

24

25

26

27

28

18.9

19.2

19.5

19.8

20.1

−99.75 −99.50 −99.25 −99.00 −98.75 −98.50

Longitude

L
a
ti
tu

d
e

b )

Source: Prepared by the author

1http://www.aire.cdmx.gob.mx

http://www.aire.cdmx.gob.mx
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Mexican Official Standard NOM-025-SSA1-2014 (Norma Oficial Mexicana) estab-

lishes the concentration limits for suspended particulate matter PM10 in ambient air to

protect the population’s health. It also provides the criteria for assessing such concentra-

tion. Specifically, it establishes a 24-hour average limit (acute exposure) of 75 g/m3 and

an average annual limit for chronic exposure of 40 g/m3. These values are considerably

higher than the World Health Organization (WHO) air quality guidelines, which establish

a limit of 50 g/m3.

The Temperature data in Mexico City were collected during the same period as the

PM10 data. These measurements were made at 28 stations belonging to the Meteorolog-

ical Monitoring Network REDMET (Red de Meteoroloǵıa y Radiación Solar), located in

different areas of the city and its surroundings; see Figure 5.1 (b). Some of these stations

are common with RAMA.

Functional Domain Reorganization

The PM10 and Temperature sets consist of 17,520 observations collected at discrete

equidistant time points (hours) for each station. However, both data sets have missing

values. Since this work focuses on samples with irregular distances between measure-

ment points in the domain, it is necessary to incorporate this feature naturally into the

mentioned data. To achieve this, the following steps are required:

• The total number of missing data per month for 2021 and 2022, which comprise the

study period for each sample, is analyzed separately. It is important to note that

the PM10 and Temperature datasets comprise 22 and 28 respective stations, each

with 8,760 hours recorded.

• Next, the quartiles are calculated for each year, which provides information on

the dispersion of the months with the least and most missing data. Based on

this, the pattern of distancing between the observations recorded for each month is

established, as shown in Table 5.1. Suppose a particular month has a percentage

of missing data between 25.1% and 50% of its hours. In that case, the analysis will

consider a spacing that summarizes the information for 48 hours (2 days).

Table 5.1: Ranking of the months with the most missing data

Classification of Recorded in intervals Domain in days
the months Hours

0%− 25% 24 1

25.1%− 50% 48 2

50.1%− 75% 92 4

75.1%− 100% 192 8
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• Once the above configuration is established, the median of the data recorded in

intervals of 24, 48, 96, and 192 hours is calculated to work with a functional domain

of days. The last day of the interval for which the summarization via median is

performed will be identified as the moment ti in the functional domain where the

observation is recorded. If only missing observations can be found within the interval

to be summarized, then the location ti will be considered a point with a missing

value. The presence o missing values in the series is not a problem for the proposed

models since they can handle this situation, as shown in Subsection 4.1.1.

After following these steps, the resulting samples contain curves with the same irregular

spacing configuration between discrete points in the domain. In addition, each station

in the monitoring network for PM10 and Temperature has 342 and 344 observations,

which include both observed and missing data. Note that these sizes of series in the

functional domain are higher than the value of 150 explored in the simulated study of

Chapter 4. Remember that the results indicated that better approximations are obtained

by increasing the amount of data in the functional domain; see Section 4.2.

5.2 Descriptive Analysis

Particulate matter - PM10

Here, the dataset consisting of 7,528 measurements of PM10 collected from 22 monitoring

stations is analyzed through descriptive statistics. Of these measurements, 18.5%(1,389)

are considered missing data, distributed among all stations, as shown in Table 5.2. Station

9 has the highest number of missing data points, 291, while Station 12 has the fewest,

with only 10 missing observations. Each station has 342 irregularly spaced measurements.

Figure 5.2 (a) shows that a spacing of 1 day is the most common among consecutive

observations in the functional domain. The configuration of 2 days is the second most

frequent, followed by a spacing of 4 days. As can be seen, the largest distance between

observations in this study involves 8 days. It is important to note that this spacing pattern

reflects the behavior of a Beta(1, 2), mentioned previously in Section 4.1.

Table 5.2: Number of missing data for each station.

Automatic Atmospheric Monitoring Network
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Missing data 42 36 18 71 62 117 50 31 291 40 86 10 77 44 36 44 73 39 32 83 38 69

Throughout the year, Mexico City undergoes significant fluctuations in PM10 con-

centration. Generally, the highest levels of particles are observed during the dry season,

which lasts from November to April. This corresponds to days 1 to 120, 305 to 485, and

670 to 730 of the two years considered in this application, as shown in Figure 5.2 (b).
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Figure 5.2: Descriptive analysis: (a) bar-plot of measurement spacing and (b) PM10
Curves concerning non-missing observations for each station.
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During this time, the absence of rainfall and stable atmospheric conditions contribute

to the buildup of pollutants in the city. On the contrary, the summer months, such as

June, July, and August (days 152 to 243 and 517 to 608), typically exhibit lower PM10

values. Throughout this season, the city benefits from enhanced dispersion of pollutants

due to favorable weather conditions, including stronger winds and increased solar radia-

tion. Moreover, rainfall also aids in purifying the air and reducing the concentration of

suspended particulate pollutants.

Table 5.3 presents descriptive statistics regarding the behavior of the PM10 vari-

able in Mexico City and its surrounding areas. Upon analyzing these statistics, various

ranges and levels of dispersion can be observed at each station. For instance, Station 22

exhibits the highest standard deviation (26.9), indicating high variability. On the other

hand, Stations 10 and 17 demonstrate low standard deviations (8.6 and 10.6, respectively),

suggesting lesser variability. Furthermore, the medians and means at most stations are

similar, implying that the distributions of the discrete data are likely symmetric or unaf-

fected by significant outliers. Regarding the minimum and maximum values, they provide

information about the range of the data. The stations with the lowest minimum value

are 5 and 10 (3.0), followed by 2 (4.0). In terms of the maximum value, Station 22 has

the highest maximum (159.5), followed by 5 (124.0) and 18 (123.0). Note that the PM10

values are always positive, and the smallest recorded value is 3.0, which is not very close

to zero.
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Table 5.3: Descriptive statistics of non-missing observations at each station.

Station Median Mean Standard Deviation Minimum Maximum Range

1 38.0 40.7 19.2 6.5 105.0 98.5

2 27.8 28.8 11.5 4.0 63.0 59

3 30.5 31.7 12.2 7.0 68.5 61.5

4 41.0 42.7 14.5 10.0 98.5 88.5

5 43.2 45.3 22.7 3.0 124.0 121

6 30.5 30.9 11.0 9.0 79.0 70

7 40.0 41.1 16.0 10.0 100.0 90

8 36.0 36.9 14.5 6.0 84.5 78.5

9 48.5 48.0 14.6 12.0 76.0 64

10 16.5 18.1 8.6 3.0 59.5 56.5

11 34.0 35.8 14.9 7.0 79.5 72.5

12 36.8 37.5 15.6 5.0 77.5 72.5

13 29.5 31.0 13.7 4.0 81.0 77

14 41.8 42.2 17.9 5.0 92.5 87.5

15 26.5 28.2 11.7 6.0 74.5 68.5

16 43.5 44.0 16.9 7.0 97.0 90

17 25.0 26.6 10.6 5.0 86.5 81.5

18 38.0 38.7 18.7 4.0 123.0 119

19 42.5 44.2 14.7 14.0 98.0 84

20 45.0 47.2 20.6 9.0 116.0 107

21 39.0 40.4 15.0 6.0 83.0 77

22 48.0 52.2 26.9 9.0 159.5 150.5

Temperature

For this application, 9,632 Temperature measurements are available from 28 stations in

Mexico City and its surroundings. Of these measurements, 1,564 data points are missing

(16.23% of the total), distributed among all stations, as shown in Table 5.4. Station 2

has the highest amount of missing data, with a total of 314, while Stations 24, 12, and 9

have 0, 1, and 1 missing data, respectively.

Each station provides 344 individual measurements, which are irregularly spaced

in time. The spacing pattern is similar to the previous application, where half of the

data is collected at one-day intervals, followed by two-day periods, until reaching a few

measurements taken in a maximum interval of 8 days. It is essential to mention that the

frequency varies slightly concerning the PM10 data. The spacing pattern of the observa-

tions can be considered almost the same between PM10 and Temperature; therefore, the

bar-plot is omitted (see Figure 5.2 (a)) again.
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Table 5.4: Number of missing data for each Temperature monitoring station.

Automatic Atmospheric Monitoring Network

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Missing data 22 314 60 29 83 129 47 120 1 11 6 1 11 53 34 55 48 20 31 110 24 128 14 0 6 102 35 70

Figure 5.3 shows the Temperature behavior in Mexico City. The months with the

highest values are April, May, and June, corresponding to days 91 to 181 and 456 to 546,

during spring and early summer. During this period, the Temperature ranges between

20 and 24 degrees Celsius. It is important to note that the city’s altitude, approximately

2,240 meters above sea level, moderates the climate and prevents Temperatures from

reaching extreme levels. On the other hand, the coldest months in the Mexican capital

are December, January, and February. Specifically, this period includes the dates from 1

to 59, 335 to 424, and 700 to 730. During these months, the minimum Temperatures can

drop below 10 degrees Celsius and occasionally even approach 0 degrees Celsius.

Figure 5.3: Temperature curves concerning non-missing observations for each station.
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Table 5.5 displays the statistical measures for the Temperature variable at each

station. Upon analyzing the data, one can observe that, in general, the stations exhibit

similar values for both the median and mean, indicating a relatively symmetrical distri-

bution. Regarding the standard deviation, Stations 7 (2.8), 20 (2.5), and 27 (2.4) have

the highest values, indicating more variability in the data. Conversely, Stations 6 (1.6)

and 5 (1.8) have the lowest standard deviations, indicating less dispersion. In addition,

the range provides information about the difference between the maximum and minimum

values in the data. Based on this, Station 7 (18.6) exhibits the highest range, indicating

a significant variation in the data. In contrast, Stations 6 (9.0) and 2 (9.2) have the

lowest ranges, suggesting less variability. It is worth noting that the last station has lim-
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ited information, with only 30 recorded observations. Please note that the Temperature

observations are positive, but a negative value is not unrealistic in this application.

Table 5.5: Descriptive statistics of non-missing observations at each Temperature moni-
toring station.

Station Median Mean Standard Deviation Minimum Maximum Range

1 15.2 15.1 2.0 7.9 20.0 12.2

2 11.6 11.6 2.1 6.4 15.7 9.2

3 10.9 10.5 2.2 3.6 15.3 11.7

4 17.0 17.2 2.0 11.4 23.1 11.7

5 16.3 16.3 1.8 10.2 21.2 11.0

6 13.4 13.5 1.6 8.6 17.5 9.0

7 15.4 15.1 2.8 2.9 21.4 18.6

8 15.5 15.5 2.0 9.6 20.8 11.2

9 18.2 18.3 1.9 13.1 24.0 10.9

10 17.6 17.6 2.0 11.5 23.3 11.8

11 17.1 17.3 1.9 12.2 22.6 10.5

12 10.5 10.0 2.1 5.1 15.4 10.3

13 17.0 17.2 2.1 12.2 22.3 10.1

14 17.3 17.5 2.1 12.2 23.5 11.2

15 16.8 17.0 1.9 11.8 22.8 10.9

16 16.8 16.9 2.1 10.6 22.5 11.9

17 14.7 14.8 2.0 10.2 21.0 10.8

18 17.2 17.3 2.0 12.2 23.4 11.2

19 15.9 16.1 2.1 10.6 22.0 11.4

20 13.2 13.6 2.5 7.1 20.6 13.5

21 17.2 17.4 2.1 11.9 23.4 11.5

22 14.4 14.8 2.0 10.4 21.3 10.9

23 15.7 15.6 2.0 8.0 21.5 13.5

24 16.3 16.5 2.1 11.2 22.5 11.3

25 15.9 15.9 1.9 9.8 22.0 12.2

26 16.9 17.0 2.0 12.0 23.2 11.2

27 15.6 15.7 2.4 8.1 22.5 14.4

28 17.0 17.1 1.9 12.3 22.4 10.1

5.3 Modeling Approaches

In order to perform the modeling of the PM10 and Temperature data, it is necessary

to reorganize the function’s domain because the original spacing is equidistant. Hence, the

initial step involves applying the strategy introduced in Section 5.1 to obtain irregularly
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spaced samples. Once the domain has been restructured, it is essential to note that

the proposed models assume di ∈ (0, 1). For this requirement, the distances between

adjacent time points are divided by the maximum separation distance between discrete

measurements, which in this case is 8 days. This new scaling is relevant for the random

effects component, δi, which exhibits an autoregressive structure.

In this section, the models mentioned in Table 4.1 are used to fit the two appli-

cations, PM10 and Temperature. The models’ structure comprises seven basis B-spline

functions and four basis BP, similar to the previous simulation study. Remember that

these choices configure models with the smallest number of basis explored in Chapter 4.

In addition, the modeling allows treating the missing values of the samples as a vector

of unknown parameters, which are estimated through the Bayesian approach with priors

defined by the distribution attributed to the observations. The imputation of missing

values is a crucial analysis step as it accounts for the uncertainty related to missing data

and improves the accuracy of model parameter estimates. The configuration of the pa-

rameters and hyperparameters and their prior distributions are identical to that used in

the simulation study. The imputation of missing values is a crucial analysis step as it

accounts for the uncertainty related to missing data and improves the accuracy of model

parameter estimates. The configuration of the parameters and hyperparameters and their

prior distributions are identical to that used in the simulation study.

A sensitivity analysis was conducted to find the best possible values for the Gaus-

sian covariance function’s decay parameter φ. This study closely examined the estimated

trajectories to determine the magnitudes and variabilities of the curves. The findings

revealed that values of 1 for PM10 and 1.2 for Temperature data were the most suitable

for fitting the observed data. For further information, please refer to Appendix D. The

spatial variation parameter κ is treated as unknown and estimated in the inference.

In order to evaluate the models using a higher number of basis functions, one set

of 13 is selected. This decision is based on maintaining a reasonable computational cost,

which is adequate for the execution of the MCMC on a standard computer. At the same

time, this number of bases makes it possible to maintain a complexity in the models that

do not hinder subsequent analysis. It is important to emphasize that the limitations of

not using a higher set of bases are related to computational complexity and numerical

accuracy.

To evaluate the performance of the models, the discrepancy index IAE is used for

the measurements discretely observed in each curve that make up the real datasets. Its

purpose is to measure the difference between the observed values and the values estimated

by the models over time. A lower IAE value indicates a better fit of the model to the

observed data. In addition, three measures are used in this work to compare and evaluate

the fitted models. These are the Deviance Information Criterion (DIC) (Spiegelhalter

et al., 2002), the Logarithm of Pseudo-Marginal Likelihood (LPML) (Gelman et al., 2013),
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and the Watanabe-Akaike Information Criterion (WAIC) (Watanabe and Opper, 2010).

The last two metrics are multiplied by -2 to standardize the measurements alongside the

DIC. These measures help us identify the best-fitted model among the options. The lower

the values of these metrics, the better the model performs in fit and overall performance

against the observed data.

Analysis of PM10 Data

Figure 5.4 displays the smoothed curves of each fitted model. Upon examining the panels,

it becomes apparent that most of the estimated functions follow the patterns of the target

function sample in Figure 5.2 (b). However, it is crucial to note that all models slightly

underestimate some observations with high PM10 levels, specifically in the range of 100 to

160. This discrepancy can be seen by comparing Figure 5.2 (b) with the panels in Figure

5.4. In addition, in each panel of Figure 5.4, it has been identified that some estimates

of the PM10 index are negative. This fact occurs only for Station 10 (red path). For

example, see Panels (a) and (b), which displays MB 4,l; δ with l = 4 and 10 subintervals

(7 and 13 bases). In this case, 7 and 6 negative values are estimated in (a) and (b),

respectively. On the other hand, model MBP p; δ (with degree p =4 and 13) shows 36 and

7 negative values with 4 and 13 BP as basis functions, respectively.

Figure 5.4: Smoothed PM10 curves (estimated). In Panels (a) and (b), MB 4,l; δ was
applied using 4 and 10 subintervals, respectively. In Panels (c) and (d), consider the
MBP p; δ with BP of degrees 3 and 12.
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The estimated negative PM10 values can be attributed to the observations being

close to zero. Several factors contribute to this proximity. Firstly, Station 10 is located
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on the outskirts of Mexico City in a rural area characterized by abundant vegetation and

a lack of public transportation flow or industrial activities. These conditions generally

result in lower levels of PM10 recorded at this particular station. Consequently, when

applying a Gaussian model to the data, it is highly probable to obtain negative values

under these circumstances. It is important to note that this does not imply that the

model is inappropriate. It is worth mentioning that most stations have PM10 values far

from zero, and this estimation issue does not occur for them. However, when using the

Gaussian model, the analyst should be aware of this problem when evaluating a series

with observations close to zero.

Figure 5.5 represents the distributions of the observed data from Stations 10 and

4. In contrast with Station 10, Station 4 is approximately located in the center of the map

with several neighbors around; see Figure 5.1 (a). As can be seen, the two histograms

have slightly different shapes, with Panel (a) indicating a distribution whose left tail is

closer to the threshold of 0 compared to the graph in Panel (b). Therefore, there will

be no issue of negative response estimation for most stations that exhibit a left-tailed

behavior similar to that of Station 4.

Figure 5.5: Comparison of PM10 levels at Stations 10 and 4.
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Table 5.6 displays the IAE discrepancy values for each fitted model. It is important

to note that this index is calculated based solely on the measurements observed at each

station. Upon comparing the performance of the curve sets, the following results emerge

for models MB 4,4; δ and MB 4,10; δ. Among the 22 curves estimated by MB 4,10; δ, 13 of

them exhibit a lower IAE index than the MB 4,4; δ. This indicates that these curves are

closer to the target functions. Conversely, for the MBP 12; δ, the results demonstrate that
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17 curves in the sample outperform the MBP 4; δ. Furthermore, when comparing these two

models, which exhibit the highest number of well-fitted curves, it becomes evident that

the MB 4,10; δ outperforms the MBP 12; δ in 17 instances with lower IAE measures. This

suggests a higher accuracy in the functional curves. In summary, the best fit is obtained

assuming a higher number of bases and, comparing the B-spline against BP; the B-spline

shows a better performance.

Table 5.6: IAE discrepancy measurement of the smoothed PM10 curves obtained from
the proposed models.

IAE IAE
Site MB 4,4; δ MB 4,10; δ MBP 3; δ MBP 12; δ

1 6.25 6.77 7.93 6.70

2 8.74 9.01 8.91 9.10

3 4.07 4.05 4.39 4.08

4 5.57 5.61 5.69 5.66

5 7.40 6.93 9.49 7.60

6 4.23 4.07 4.98 4.23

7 6.06 6.12 5.91 6.04

8 4.26 4.26 4.45 4.31

9 4.44 4.52 4.47 4.51

10 4.84 4.70 7.45 4.97

11 3.69 3.66 3.75 3.67

12 4.40 4.31 4.29 4.33

13 6.56 6.69 6.91 6.85

14 4.55 4.47 4.92 4.49

15 4.18 4.23 5.13 4.26

16 6.23 6.18 6.06 6.11

17 3.95 3.91 5.73 4.02

18 5.61 5.50 5.71 5.46

19 7.03 7.00 7.22 7.06

20 7.11 7.17 7.47 7.27

21 3.83 3.79 3.88 3.87

22 11.05 11.03 12.32 11.35

Table 5.7 displays each fitted model’s comparison measures (DIC, -2WAIC, and

-2LPML). The results from these three metrics indicate that the MB 4,10; δ better fits the

observed data compared to the MB 4,4; δ. Furthermore, when comparing MBP 3; δ and

MBP 12; δ, it is evident that MBP 3; δ exhibits the lowest values for WAIC and LPML,

suggesting a better performance of the simpler configuration. Now comparing B-spline

vs. BP with fewer basis functions (7 and 4, respectively), two of the three measures
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suggest that the model most adapted to the data uses BP of degree 3. On the other hand,

in the models with more basis functions (both with 13), all three measures indicate the

choice that employs B-splines.

Table 5.7: Comparison goodness-of-fit measurements concerning the PM10 data.

MB 4,4; δ MB 4,10; δ MBP 3; δ MBP 12; δ

DIC 56520.27 56074.51 57217.93 56200.36

WAIC 106020.59 104811.61 104810.23 107055.22

LPML 943216.38 877605.81 887727.91 954893.07

Analysis of Temperature Data

Figure 5.6 displays the smoothed curves for each fitted model. Each panel in the figure

illustrates how the trajectories align with the behavior of the target functions presented

in Figure 5.3. It is important to note that, according to Table 5.4, some functions are not

complete with 344 observed Temperature measurements. In other words, missing values

are present.

Analyzing the curves estimated by the models at Stations 3 and 12, represented by

the red trajectories, provides interesting insights. These stations are known for having the

lowest Temperature values during the considered periods. At Station 3, the Temperature

ranges between 3.6°C and 15.3°C, while at Station 12, it fluctuates between 5.1°C and

15.4°C, according to the observed data. This temperature pattern is unique to these

stations and not observed at other spatially distant locations. At those remote stations,

the Temperature varies between 11°C and 24°C, and the estimated curves exhibit similar

patterns, indicating a high level of spatial dependence due to their proximity. It is worth

noting that despite the significant distance between Stations 3 and 12, the estimated

curves at both locations share similar shapes.

In order to clearly understand the behavior of the curves in black in Figure 5.6, it is

essential to consider the specific locations of the monitoring stations in Mexico City. Most

of these stations are in urban areas characterized by heavy vehicular traffic, factories, and

a scarcity of green spaces. However, Stations 3 and 12 are in rural areas with ample vege-

tation, devoid of vehicular traffic, industrial activities, and significant population density.

Moreover, based on the latest report from SEDEMA (Secretaria del Medio Ambiente de la

Ciudad de México) in 2019, Station 3 recorded an average annual temperature of 11.2°C,
while Station 12 had an average of 10 °C. The suggested Gaussian models consider spatial

dependency and include a random effect with an autoregressive structure. This helps to

effectively deal with associations arising from geographic locations and uneven spacing

of observed data. This idea accurately represents the Temperature data, enabling the
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estimation process to yield curves that closely align with the target functions. A compre-

hensive analysis uses the IAE measure to evaluate the curve approximation performance.

Figure 5.6: Smoothed Temperature curves (estimated). In the case of Panels (a) and (b),
the MB 4,l; δ model was applied using 4 and 10 subintervals, respectively. On the other
hand, for Panels (c) and (d), the MBP p; δ model with BP of degrees 3 and 12 was used.
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Table 5.8 displays each fitted model’s IAE discrepancy measure values. This mea-

sure is calculated based on the observed data from each Temperature monitoring station.

The following results are observed when comparing different options for the number of

basis functions used in each model. In the Gaussian model with B-spline smoothing

methodology and l = 10 (where l is the number of subintervals dividing the function

domain), 19 out of 28 estimated curves have lower IAE values than the same model with

l = 4. On the other hand, in the Gaussian model using BP, degree 12 (thirteen basis

functions) has 20 IAE values lower than the model of degree 3. In summary, the higher

number of basis approximates the observed values better. Likewise, in comparing the

MB 4,4; δ and MBP 3; δ, the first model showed lower IAE index values in 20 curves than

the second model (with BP). Finally, when analyzing the models with more basis, it is

noted that the MB 4,10; δ outperforms the MBP 12; δ since the values of 17 IAE were lower

than the first model. In conclusion, these results indicate that a better approximation is

obtained using the model based on the B-spline structure.

When analyzing the smoothed curves in the peripheral (with very few neighbors)

areas of Mexico City, specifically in Stations 1, 12, 16, and 27, Table 5.8 shows that their

IAE values are not very high (compared to more centralized stations), despite being in

more isolated locations and without strong communication to seek information from the
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curves in the neighborhood. These values indicate that even though the nearest neighbors

are distant, each model accurately captures the information in the data, resulting in well-

behaved curves. Additionally, in areas where the functions are closer to each other in

spatial scale, such as Stations 4, 10, 11, 14, and 15, which have multiple nearest neighbors,

discrepancy measures of less than 0.5 are observed. This suggests that these curves share

similar characteristics with their neighbors and mutually benefit from each other during

the inference process. In other words, the proximity between functions at these locations

promotes consistency and accuracy in the obtained results.

Table 5.8: IAE discrepancy measurement of the smoothed Temperature curves obtained
from the proposed models.

IAE IAE
Site MB 4,4; δ MB 4,10; δ MBP 3; δ MBP 12; δ

1 0.52 0.51 0.52 0.51

2 1.37 1.21 1.53 1.23

3 0.87 0.84 0.95 0.86

4 0.43 0.45 0.45 0.45

5 0.58 0.54 0.66 0.58

6 0.73 0.74 0.70 0.78

7 0.92 0.90 1.13 0.89

8 0.77 0.74 0.73 0.73

9 0.85 0.86 0.83 0.86

10 0.32 0.31 0.33 0.32

11 0.35 0.35 0.40 0.35

12 0.75 0.73 1.04 0.75

13 0.60 0.58 0.66 0.59

14 0.33 0.33 0.37 0.34

15 0.38 0.42 0.40 0.40

16 0.61 0.62 0.62 0.63

17 0.49 0.50 0.48 0.50

18 0.91 0.89 0.87 0.87

19 0.56 0.58 0.56 0.59

20 2.52 2.64 2.57 2.68

21 0.49 0.47 0.50 0.50

22 0.51 0.48 0.51 0.49

23 0.78 0.73 0.80 0.73

24 0.44 0.44 0.47 0.44

25 0.50 0.50 0.50 0.49

26 0.62 0.60 0.63 0.59

27 0.64 0.62 0.64 0.63

28 0.71 0.69 0.76 0.68
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Note that the magnitudes of the IAE metric are smaller in the fitting for Tem-

perature data (Table 5.8) than for PM10 data (Table 5.6). Comparing Figures 5.2 (b)

and 5.3, notice that the scale on the vertical axis differs. The PM10 data oscillates more

strongly, reaching levels between 0 and 160. It is possible to observe a smoother behavior

in the Temperature series. This characteristic of lighter oscillation seems to have favored

the model in determining smaller IAE measures, which indicates a better approximation

between the observed and estimated values.

Table 5.9 shows the DIC, WAIC, and LPML measurements to evaluate the model’s

goodness of fit. Among the versions utilizing B-splines, the MB 4,10; δ stands out as the

top performer based on the WAIC and LPML criteria. For the models employing BP,

the WAIC and the LPML suggest that the MBP 12; δ provides the best fit. In conclusion,

the analyzed metrics suggest that the models that best fit the data are those with more

bases. However, the fits with fewer bases do not seem bad and have the advantage

of providing a more parsimonious structure and better computational ease to run the

MCMC. Now, considering the models that performed well in both cases mentioned earlier

(B-spline and BP), based explicitly on the DIC and WAIC metrics, it is concluded that the

preferred model, which accurately explains the observed Temperature data, is MB 4,10; δ.

It is essential to highlight that a slight difference is detected in this comparison, so the BP

cannot be judged as a less advantageous option. The reader should know that the BP has

a more straightforward structure, which only requires defining the degree. In contrast,

the B-spline requires specifying the order and the number of knots.

Table 5.9: Comparison measurements of fitted models concerning Temperature data.

MB 4,4; δ MB 4,10; δ MBP 3; δ MBP 12; δ

DIC 29363.50 30046.58 30109.26 30222.95

WAIC 55433.22 54257.99 57493.22 55645.21

LPML 719167.38 684983.10 839835.17 684203.48
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Chapter 6

Conclusions and Future Works

The main objective of this thesis was to propose new Gaussian functional models that

include a spatial dependence structure to handle functional data observed as irregularly-

spaced series in different geographical locations. The models developed were based on

mathematical tools, such as B-spline basis expansions, defined using the recurrence rela-

tion discovered by De Boor (2001), and BP, mathematically specified in a similar way as

described by Farouki and Rajan (1987). These methods offered flexibility to capture com-

plex shapes and patterns while ensuring numerical stability to allow estimation without

computational difficulties. A Bayesian approach was adopted to estimate the unknown

parameters of the models. This decision was based on its ability to incorporate prior

information and account for uncertainty in the analysis. One crucial aspect of the model

structures was their capacity to incorporate the association motivated by the irregular

spacing of the observed measurements for each function through a random effect δ with

an autoregressive structure. This means that each observation is influenced by its neigh-

bors. Including this effect represents one of the main contributions of this thesis, as it is

a novel, robust and promising approach to SFD analysis.

The proposed modeling was fitted via MCMC using the Stan platform. A thor-

ough simulation study assessed and compared the models’ performance under various

scenarios and configurations. The procedures and criteria for generating the simulated

data were described, along with the evaluation metrics used to compare and contrast the

results. The findings of this simulation study were essential in guiding the selection of

appropriate models for real-world situations. A highlight of the simulation study focuses

on the prediction and handling of missing data, achieving satisfactory performance for the

MB 4,4; δ and MBP 3; δ models. The results revealed that, at three levels of spatial correla-

tion considered (low φ = 2, moderate φ = 1, and high φ = 0.5), along with two levels of

variation (moderate κ = 1 and high κ = 2), prediction curves close to the target functions

were obtained, with low MISE values. This was especially evident when the functions

were located close to each other on a spatial scale, allowing them to share strength for

inference or prediction purposes. In addition, the posterior means were close to the true

values and showed little variability, suggesting increased confidence in the accuracy of the

estimates. These results in curve prediction and complete information management (with

Bayesian imputation) represent another significant contribution of this thesis for FDA
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analysis.

The proposed model with BP emerges as another valuable contribution from this

study, offering an innovative and efficient alternative compared to other approaches, es-

pecially in the face of B-splines. By introducing this new option in the modeling, the

need to worry about the number and location of the B-splines knots is eliminated, which

considerably simplifies both the implementation and the analysis of the process.

Concerning the applications discussed in this work lead to the following conclu-

sions. Thoroughly analyzing the fitted models, PM10 data has revealed several important

insights. The smoothed curves of each model, displayed in Figure 5.4, demonstrate that

most estimated functions closely follow the patterns of the set of target curves in Figure

5.2 (b). However, all models underestimate observations with high PM10 levels, specif-

ically from 100 to 160. Additionally, it has been identified that some estimates of the

PM10 index are negative in each panel of Figure 5.4, particularly for Station 10. This

phenomenon is attributed to the station’s location on the outskirts of a rural area with

minimal industrial activity and abundant vegetation. While this issue does not affect

most stations with PM10 values far from zero, it does underscore the importance of

considering the proximity to zero when applying Gaussian models to data with positive

domains. Finally, the model comparison results presented in Tables 5.6 and 5.7 shed light

on the performance of different fitted models. Notably, the MB,4,10; δ model demonstrated

superior performance based on various metrics, indicating its capability to better fit the

observed data compared to other configurations, including the MB,4,4; δ and MBP,12; δ.

Additionally, the comparison between B-spline and BP models revealed that, depending

on the number of bases, the choice of model varied, with B-splines excelling when a higher

number of basis were used and simpler BP models demonstrating better performance with

fewer bases.

On the other hand, by analyzing the smoothed curves obtained from the proposed

models fitted to Mexico City Temperature data, a clearer understanding of how tem-

perature patterns behave at different monitoring stations has been received. Particularly

Stations 3 and 12, in rural areas with unique environmental characteristics, exhibit distinct

temperature patterns compared to other locations. The Gaussian models (B-spline and

BP) effectively capture this behavior under moderate spatial dependency (φ = 1.2) and

with the association motivated by irregular spacing. The comparison of different model

configurations highlights the significance of the number of functional bases in achieving

better target curve approximation. Models with more bases generally exhibit improved

performance, accurately capturing trajectory changes. Notably, the B-spline-based model

MB,4,10; δ emerges as a preferred choice based on various goodness-of-fit metrics (IAE,

DIC, WAIC, and LPML), closely followed by the simpler structure of the BP model

MBP,12; δ.
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Future Works

As for future research opportunities, this thesis proposes a modeling approach that

can be extended in the following aspects:

• Evaluate other functional basis options in terms of inference and quality of fit. For

example, consider second-generation Wavelets (Sweldens, 1996), which allow work-

ing with irregular sample designs, while retaining the characteristics of traditional

Wavelets to adequately capture local behaviors that may occur in certain parts of

the data.

• Explore alternative covariance functions, such as the Matérn function. This func-

tion is handy for modeling the spatial correlation between two measurements taken

at different locations. Assume that the distance between observations i and j is

represented as d. The Matérn correlation can be defined as follows:

ρij = ρ(d; ζ, ν) =
1

2ν−1Γ(ν)

(︃
d

ζ

)︃ν

Kν

(︃
d

ζ

)︃
,

where Kν(·) denotes the modified Bessel function of the second kind of order ν. The

parameter ζ > 0 determines the rate at which the correlation decays to zero with

increasing d. The parameter ν > 0 controls the degree of smoothness. The ν is

an exciting element to allow the researcher to modify the smoothness level of the

covariance function, which can be helpful in some applications.

• Instead of using the discretized position ti in the functional domain to record the

measurement and di = ti+1 − ti (distance between the two positions ti+1 and ti),

it would be more convenient to consider tij (the i-th measurement position per-

formed at site j) and dij. In this variant, irregular spacing is allowed, which may

vary between locations. This extension would be exciting to improve the modeling

developed in this thesis.

• Develop a sensitivity analysis to investigate different priors specifications for the

parameters in the hierarchical model. In this case, one can consider distinct levels

of information, including informative, vague, or non-informative specifications.

• Exploring values other than 4 and 8 in the Expression (3.4) is an interesting aspect

for future studies.
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Appendix A

Simulation Study Part I: Extra

Results

Subsection 4.1.1 presents the results of the artificial data sets generated and fitted us-

ing the models proposed in Table 4.1. These data sets were created with two levels of

variability, denoted by κ = {1, 2} while maintaining a fixed correlation value of φ = 1.

Additionally, the irregular spacing of the functional domain was established using the

Beta(1, 2).

It is essential to highlight that our complete study encompasses various scenarios,

each having different levels of correlation, namely φ = 0.5 and φ = 2 representing high

and low spatial correlation, respectively. A detailed analysis is provided in this Appendix

to gain a comprehensive understanding of these additional scenarios.

A.1 Spatial Dependence

Figure A.1 shows that the results obtained are similar for the two levels of variabil-

ity chosen with each spatial correlation value and the two smoothing techniques. Note

also that by having a strongly associated set of curves regardless of whether the distances

of the geographic locations are close or distant, the correct proposed model fit results

in smoothed trajectories that are closer to the true ones than the model fit without the

spatial structure, see panels (a), (b), (e), and (f).

For SFD with a low level of spatial dependence, the distances of the curve locations

are an essential aspect since having several close neighbors results in better performance

of smooth trajectories in MC replicates when fitting the exposed model with the spatial

association than the model without it, see panels (c), (d), (g), and (f).
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Figure A.1: Comparison of the IAE and ISE ratios of the B-spline and BP models with
two spatial variation parameter settings: κ = {1, 2}, together with a decay parameter
φ = {0.5, 2}.
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A.2 Random Effect

Table A.1 shows the results of the MISE discrepancy measure for each fitting

model. First, it is observed that, both for variability values and for a high and low level

of spatial correlation, the performance of the functions is superior when the MB4,4; δ fit

model is considered. On the other hand, when the curves have a high spatial dependence

and similar formats, regardless of the distance of the locations, they present close or equal

values in the MISE measure, as occurs with the curves of the locations S12, S13, S14, S19

and S20. In the case of φ = 2, curves surrounding several close neighbors show better

performance in the two variability values considered.

Table A.2 shows the results of the MISE measure for the BP models with and

without the random effect component δ. For each scenario of variability and spatial

correlation, a behavior analogous to the previously analyzed results of the MB4,4; δ and

MB4,4; • fit models are observed.
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Table A.1: Discrepancy measures for the smoothed curves using the MB4,4; δ and MB4,4; •
models, with and without the random effect component, respectively. Each model is
evaluated with two settings of the spatial variation parameters, specifically κ = {1, 2},
together with a decay parameter φ = {0.5, 2}.

Local
MISE MISE MISE MISE

MB4,4; δ MB4,4; • MB4,4; δ MB4,4; • MB4,4; δ MB4,4; • MB4,4; δ MB4,4; •

κ = 1, φ = 0.5 κ = 2, φ = 0.5 κ = 1, φ = 2 κ = 2, φ = 2

S1 0.049 0.785 0.050 0.786 0.073 0.813 0.077 0.815

S2 0.059 0.793 0.062 0.797 0.077 0.815 0.082 0.819

S3 0.050 0.786 0.051 0.787 0.068 0.804 0.073 0.808

S4 0.055 0.790 0.059 0.794 0.074 0.808 0.079 0.813

S5 0.066 0.810 0.068 0.812 0.078 0.816 0.082 0.820

S6 0.049 0.785 0.049 0.785 0.069 0.802 0.074 0.806

S7 0.058 0.795 0.060 0.797 0.074 0.810 0.079 0.816

S8 0.050 0.788 0.051 0.788 0.066 0.805 0.070 0.809

S9 0.049 0.785 0.049 0.785 0.059 0.794 0.062 0.798

S10 0.049 0.785 0.050 0.785 0.066 0.801 0.071 0.807

S11 0.054 0.791 0.056 0.795 0.071 0.812 0.075 0.814

S12 0.047 0.783 0.048 0.784 0.070 0.812 0.074 0.816

S13 0.047 0.784 0.048 0.784 0.072 0.811 0.077 0.816

S14 0.047 0.783 0.047 0.783 0.066 0.804 0.070 0.808

S15 0.053 0.789 0.055 0.790 0.076 0.809 0.080 0.814

S16 0.057 0.797 0.059 0.799 0.072 0.807 0.077 0.811

S17 0.054 0.791 0.056 0.792 0.070 0.808 0.075 0.812

S18 0.048 0.784 0.049 0.785 0.064 0.798 0.069 0.803

S19 0.047 0.783 0.048 0.784 0.078 0.823 0.081 0.827

S20 0.047 0.783 0.049 0.785 0.079 0.823 0.082 0.828

Table A.2: Discrepancy measures for the smoothed curves using the MBP3; δ and MBP3; •
models, with and without the random effect component, respectively. Each model is
evaluated with two settings of the spatial variation parameters, specifically κ = {1, 2},
together with a decay parameter φ = {0.5, 2}.

Local
MISE MISE MISE MISE

MBP3; δ MBP3; • MBP3; δ MBP3; • MBP3; δ MBP3; • MBP3; δ MBP3; •

κ = 1, φ = 0.5 κ = 2, φ = 0.5 κ = 1, φ = 2 κ = 2, φ = 2

S1 0.047 0.884 0.048 0.885 0.064 0.906 0.066 0.908

S2 0.055 0.894 0.057 0.896 0.061 0.896 0.063 0.898

S3 0.047 0.885 0.048 0.885 0.057 0.895 0.059 0.897

S4 0.050 0.888 0.052 0.889 0.061 0.897 0.063 0.899

S5 0.059 0.904 0.059 0.904 0.064 0.904 0.065 0.905

S6 0.046 0.885 0.047 0.884 0.060 0.895 0.063 0.898

S7 0.051 0.890 0.053 0.891 0.063 0.903 0.066 0.906

S8 0.047 0.886 0.048 0.885 0.055 0.892 0.057 0.895

S9 0.046 0.884 0.047 0.884 0.052 0.888 0.054 0.891

S10 0.047 0.884 0.048 0.885 0.056 0.893 0.059 0.896

S11 0.052 0.893 0.054 0.896 0.057 0.893 0.059 0.895

S12 0.046 0.883 0.046 0.884 0.057 0.896 0.060 0.898

S13 0.046 0.884 0.047 0.885 0.059 0.896 0.061 0.898

S14 0.045 0.883 0.046 0.883 0.057 0.895 0.059 0.897

S15 0.050 0.887 0.051 0.888 0.062 0.898 0.065 0.901

S16 0.051 0.892 0.051 0.892 0.059 0.896 0.062 0.898

S17 0.050 0.888 0.051 0.888 0.059 0.896 0.061 0.898

S18 0.046 0.884 0.047 0.885 0.058 0.898 0.060 0.900

S19 0.046 0.884 0.046 0.884 0.061 0.900 0.063 0.903

S20 0.046 0.885 0.047 0.885 0.064 0.906 0.066 0.908
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A.3 Prediction

Figures A.2 (a) and A.3 (a) demonstrate that the trajectories estimated by the

proposed MB4,4; δ and MBP3; δ models (represented by the red line) closely align with the

actual curves (represented by the black line) when there is a strong correlation between

the curves. This consistency is observed irrespective of whether the unobserved locations

have close neighbors or if there is a significant level of spatial variability between the

functions. Conversely, in scenarios with low correlation, illustrated in Figures A.2 (b)

and A.3 (b), the proposed models provide accurate trajectory estimates for unobserved

locations with nearby neighbors. However, the prediction curves deviate from the target

functions at somewhat isolated sites. The discrepancy becomes more noticeable in the

panels of the curve S15, especially when the variability value is 2.

Misspecification

In Figures A.4 (a) and A.5 (a), it can be observed that when the sets of MC curves

exhibit high spatial dependence, the average predictions of the trajectories of unobserved

sites are not affected by an incorrect specification of the level of dependence. In this

case, even with weak correlation, the mean of the HPD intervals manages to capture the

target functions, and the estimated average curves by the proposed models approach their

targets.

In the panels of Figure A.4 (b), different behaviors can be observed when specifying

an incorrect level of strong dependence in MC sets with a weak association between their

curves. For location S9, which has not been observed but is surrounded by several nearby

neighbors, the HPD intervals’ mean successfully captures the curve’s true shape, and the

average prediction approaches its target. However, in the case of the peripheral location

S15, which has also not been observed, the mean of the HPD intervals fails to capture a

portion of the actual curve, and the estimates deviate slightly from the target, especially

when considering the variability of value 2. As for the model using BP, the plots in Figure

A.5 (b) show similar behavior to that explained above for the model using B-splines.
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Figure A.2: Target function (black solid lines), point-wise mean prediction curves (red
dashed line), and 95% point-wise mean HPD intervals (blue dashed line) of the estimated
curves for theMB4,4; δ model. The model is evaluated with two settings of spatial variation
parameters and decay parameters: Panel (a) κ = {1, 2} and φ = 0.5. Panel (b) κ = {1, 2}
and φ = 2.
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Figure A.3: Target function (black solid lines), point-wise mean prediction curves (red
dashed line), and 95% point-wise mean HPD intervals (blue dashed line) of the estimated
curves for theMBP3; δ model. The model is evaluated with two settings of spatial variation
parameters and decay parameters: Panel (a) κ = {1, 2} and φ = 0.5. Panel (b) κ = {1, 2}
and φ = 2.

(a)

Curve 4

0

5

10

15

0 10 20 30 40
Domain t

P
re

d
ic

ti
o

n

Curve 9

0

5

10

15

0 10 20 30 40
Domain t

P
re

d
ic

ti
o

n

Curve 15

0

5

10

15

0 10 20 30 40
Domain t

P
re

d
ic

ti
o

n

κ = 1,   ϕ = 0.5

Curve 4

0

5

10

15

0 10 20 30 40
Domain t

P
re

d
ic

ti
o

n

Curve 9

0

5

10

15

0 10 20 30 40
Domain t

P
re

d
ic

ti
o

n

Curve 15

0

5

10

15

0 10 20 30 40
Domain t

P
re

d
ic

ti
o

n

κ = 2,   ϕ = 0.5

(b)

Curve 4

0

5

10

15

0 10 20 30 40
Domain t

P
re

d
ic

ti
o

n

Curve 9

0

5

10

15

0 10 20 30 40
Domain t

P
re

d
ic

ti
o

n

Curve 15

0

5

10

15

0 10 20 30 40
Domain t

P
re

d
ic

ti
o

n

κ = 1,   ϕ = 2

Curve 4

0

5

10

15

0 10 20 30 40
Domain t

P
re

d
ic

ti
o

n

Curve 9

0

5

10

15

0 10 20 30 40
Domain t

P
re

d
ic

ti
o

n

Curve 15

0

5

10

15

0 10 20 30 40
Domain t

P
re

d
ic

ti
o

n

κ = 2,   ϕ = 2

Source: Prepared by the author



A.3. Prediction 88

Figure A.4: Target function (black solid lines), point-wise mean prediction curves (red
dashed line), and 95% point-wise mean HPD intervals (blue dashed line) of the estimated
curves for theMB4,4; δ model. The model is evaluated with two settings of spatial variation
parameters and decay parameters misspecification: Panel (a) κ = {1, 2}, and φ = 2 (real
value φ = 0.5). Panel (b) κ = {1, 2} and φ = 0.5 (real value φ = 2).
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Figure A.5: Target function (black solid lines), point-wise mean prediction curves (red
dashed line), and 95% point-wise mean HPD intervals (blue dashed line) of the estimated
curves for theMBP3; δ model. The model is evaluated with two settings of spatial variation
parameters and decay parameters misspecification: Panel (a) κ = {1, 2}, and φ = 2 (real
value φ = 0.5). Panel (b) κ = {1, 2} and φ = 0.5 (real value φ = 2).
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Figure A.6: Mean of the 95% HPD Intervals for the 450 missing data using the MB4,4; δ

(Panel (a)) and MBP3; δ (Panel (b)) models. The actual values are the red dots, and
the averages of the mean posterior estimates from each MC replicate are the black dots.
Each model is evaluated with two settings of the spatial variation parameters, specifically
κ = {1, 2}, and a decay parameter φ = {0.5, 2}.
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A.4 Missing Data

In Figures A.6 (a) and A.6 (b), it is evident that both model MB4,4; δ and model

MBP3; δ can obtain mean estimates that closely match the actual values of the missing

data for each curve, given a high correlation between the sets of curves, regardless of

spatial variability. However, in cases where samples exhibit weak spatial dependence,

model MB4,4; δ tends to estimate some missing observations further away from the actual

values, unlike Model MBP3; δ.

Misspecification

In Figures A.7 and A.8, the following can be observed: when the replicates show strong

spatial dependence but correlation effects are assumed to decrease rapidly as the distance

between curve sites increases (φ = 2) in the fitting models, it happens that the average

of the posterior mean estimates of the MC ensembles for the missing data of the curves

approaches the target values and the posterior uncertainty is not so high. On the other

hand, when samples have weak spatial dependence but a small value for the decay pa-

rameter is used (more distant data significantly influence the estimate), some average

estimates of the posterior means are found to be overestimated and underestimated. This

occurs in both fitting models, regardless of the level of spatial variability.

Figure A.7: Performance of the MB4,4; δ-fitting model when the degree of spatial depen-
dence of the smoothed curves is incorrectly specified.
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Figure A.8: Performance of the MBP3; δ-fitting model when the degree of spatial depen-
dence of the smoothed curves is incorrectly specified.
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Appendix B

Simulation Study Part III: Extra

Results

Figures B.1 and B.2 show the graphs representing the analysis of other values considered

for the decay parameter (φ = 0.5 and 2) in the proposed MB4,4; δ and MBP3; δ models.

These graphs reveal behavior and performance practically identical to those analyzed and

described in Chapter 4 for the value of φ = 1. As the number of sites increases, the

number of close neighbors also rises. Consequently, the ISE indices decrease, indicating a

closer fit of the curves. Furthermore, the boxplots exhibit reduced dispersion, particularly

noticeable when there are 40 sites.

Figure B.1: Comparison of IAE and ISE discrepancy measures for functions estimated
using the MB4,4; δ model. This analysis is conducted on ten common sites within the three
simulated location Grids. The model is evaluated with a configuration of the spatial
variation parameter and two values for the decay parameters: Panels (a), (b), and (c)
κ = 1, and φ = 0.5. Panels (d), (e), and (f) κ = 1, and φ = 2.
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Figure B.2: Comparison of IAE and ISE discrepancy measures for functions estimated
using the MBP3; δ model. This analysis is conducted on ten common sites within the three
simulated location Grids. The model is evaluated with a configuration of the spatial
variation parameter and two values for the decay parameters: Panels (a), (b), and (c)
κ = 1, and φ = 0.5. Panels (d), (e), and (f) κ = 1, and φ = 2.
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Appendix C

Simulation Study: Considering the

Distances of the Distribution U(0, 1)

C.1 Spatial Dependence

Figure C.1 illustrates the results of the quotients in (4.1) corresponding to the

smoothing methods of the functional data (B-spline and BP). At first glance, it can be

seen that there is little difference between the two levels of spatial variability κ considered

for the ISE ratio for both structures. However, it becomes evident that the outcomes

differ noticeably between the two basis functions. Notably, the B-spline approach excels

in capturing the spatial patterns within the data.

Figure C.1: Comparison of the IAE and ISE ratios of the B-spline and BP models with
two spatial variation parameter settings: κ = {1, 2}, together with three options for the
decay parameter φ = {0.5, 1.2}.
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C.2 Autoregressive Random Effect

Table C.1: Discrepancy measures for the smoothed curves using the MB4,4; δ and MB4,4; •
models, with and without the random effect component, respectively.

MISE MISE
MB4,4; δ MB4,4; • MB4,4; δ MB4,4; •

Site φ = 0.5 φ = 1 φ = 2 φ = 0.5 φ = 1 φ = 2 φ = 0.5 φ = 1 φ = 2 φ = 0.5 φ = 1 φ = 2

κ = 1 κ = 2

S1 0.050 0.056 0.074 1.091 1.094 1.120 0.051 0.059 0.078 1.092 1.098 1.121
S2 0.059 0.069 0.076 1.098 1.110 1.120 0.063 0.074 0.080 1.102 1.117 1.123
S3 0.051 0.058 0.071 1.091 1.100 1.113 0.052 0.061 0.075 1.092 1.104 1.116
S4 0.057 0.067 0.075 1.095 1.112 1.113 0.060 0.070 0.080 1.100 1.114 1.118
S5 0.067 0.075 0.076 1.120 1.126 1.120 0.069 0.077 0.079 1.121 1.127 1.122
S6 0.050 0.056 0.071 1.091 1.098 1.108 0.051 0.059 0.076 1.091 1.100 1.112
S7 0.059 0.063 0.078 1.103 1.102 1.118 0.061 0.067 0.083 1.104 1.104 1.125
S8 0.052 0.057 0.070 1.095 1.098 1.114 0.052 0.058 0.073 1.094 1.099 1.118
S9 0.049 0.052 0.060 1.090 1.092 1.100 0.050 0.052 0.063 1.091 1.092 1.104
S10 0.050 0.056 0.065 1.091 1.097 1.105 0.051 0.057 0.070 1.091 1.099 1.110
S11 0.055 0.065 0.075 1.097 1.112 1.123 0.057 0.069 0.079 1.101 1.115 1.125
S12 0.048 0.054 0.072 1.089 1.094 1.121 0.049 0.056 0.075 1.090 1.097 1.126
S13 0.049 0.055 0.072 1.089 1.096 1.116 0.050 0.057 0.076 1.090 1.097 1.121
S14 0.048 0.052 0.065 1.088 1.092 1.110 0.048 0.054 0.069 1.088 1.093 1.112
S15 0.055 0.068 0.078 1.095 1.103 1.114 0.057 0.074 0.083 1.097 1.109 1.119
S16 0.059 0.070 0.075 1.105 1.121 1.116 0.061 0.073 0.080 1.108 1.125 1.119
S17 0.056 0.062 0.073 1.098 1.101 1.117 0.058 0.066 0.076 1.099 1.104 1.120
S18 0.049 0.055 0.065 1.090 1.098 1.104 0.050 0.056 0.070 1.091 1.099 1.109
S19 0.048 0.055 0.077 1.088 1.097 1.132 0.049 0.058 0.079 1.089 1.099 1.133
S20 0.048 0.057 0.081 1.089 1.099 1.134 0.050 0.059 0.085 1.090 1.101 1.139

Table C.2: Discrepancy measures for the smoothed curves using the MBP3; δ and MBP3; •
models, with and without the random effect component, respectively.

MISE MISE
MBP3; δ MBP3; • MBP3; δ MBP3; •

Site φ = 0.5 φ = 1 φ = 2 φ = 0.5 φ = 1 φ = 2 φ = 0.5 φ = 1 φ = 2 φ = 0.5 φ = 1 φ = 2

κ = 1 κ = 2

S1 0.048 0.052 0.064 1.408 1.410 1.433 0.049 0.053 0.066 1.409 1.412 1.433
S2 0.055 0.061 0.061 1.417 1.430 1.418 0.057 0.062 0.063 1.419 1.431 1.420
S3 0.048 0.052 0.059 1.409 1.413 1.421 0.049 0.054 0.061 1.409 1.414 1.422
S4 0.052 0.059 0.062 1.412 1.421 1.420 0.054 0.061 0.064 1.414 1.423 1.423
S5 0.059 0.060 0.065 1.434 1.420 1.429 0.060 0.062 0.066 1.432 1.423 1.431
S6 0.048 0.052 0.061 1.410 1.413 1.419 0.048 0.054 0.064 1.409 1.415 1.422
S7 0.053 0.056 0.067 1.416 1.413 1.431 0.054 0.059 0.071 1.415 1.416 1.435
S8 0.049 0.052 0.058 1.411 1.411 1.417 0.049 0.053 0.060 1.410 1.412 1.421
S9 0.048 0.049 0.054 1.408 1.410 1.412 0.048 0.050 0.056 1.408 1.410 1.414
S10 0.049 0.052 0.057 1.408 1.415 1.416 0.049 0.053 0.060 1.409 1.415 1.419
S11 0.054 0.059 0.059 1.419 1.432 1.418 0.057 0.060 0.062 1.424 1.431 1.420
S12 0.047 0.051 0.060 1.407 1.413 1.423 0.048 0.053 0.063 1.408 1.414 1.425
S13 0.048 0.051 0.059 1.409 1.411 1.420 0.048 0.053 0.061 1.409 1.412 1.422
S14 0.047 0.050 0.058 1.406 1.410 1.420 0.047 0.051 0.060 1.407 1.411 1.422
S15 0.052 0.062 0.065 1.411 1.419 1.422 0.054 0.064 0.067 1.412 1.423 1.425
S16 0.053 0.056 0.061 1.421 1.415 1.422 0.054 0.058 0.064 1.421 1.417 1.423
S17 0.051 0.055 0.060 1.412 1.415 1.420 0.053 0.057 0.062 1.412 1.415 1.421
S18 0.048 0.052 0.059 1.409 1.417 1.423 0.049 0.052 0.061 1.410 1.415 1.425
S19 0.047 0.051 0.062 1.408 1.413 1.426 0.048 0.052 0.064 1.408 1.413 1.428
S20 0.048 0.052 0.066 1.409 1.414 1.434 0.048 0.054 0.068 1.409 1.415 1.437
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Appendix D

Sensitivity Study for Parameter φ:

PM10 and Temperature

A sensitivity study was conducted to select the appropriate value for the decay parameter

in the Gaussian covariance function. This structure is integrated into the MB4,4; δ and

MBP3; δ models, introducing a dependent relationship between the curves. Four alterna-

tives were evaluated for this study, represented by φ = {0.5, 1, 1.2, 2}. The final choice

of φ should be based on a balance between model fit and a sound understanding of the

underlying spatial processes in your data.

Figure D.1: Smoothed curves with the MB4,4; δ and MBP3; δ models for the PM10 data set
of Mexico City. Four options are considered for the decay parameter φ = {0.5, 1, 1.2, 2}.
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Figure D.2: Smoothed curves with the MB4,4; δ and MBP3; δ models for the Mex-
ico City Temperature dataset. Four options are considered for the decay parameter
φ = {0.5, 1, 1.2, 2}.
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In Figures D.1 and D.2, it is evident that the distances between stations do not

significantly influence when φ = 0.5, indicating a strong correlation. This is evident

because all the curves closely cluster together. However, when φ takes values of 1 and

1.2, one begins to observe that the curves are affected by the distance between locations.

In simpler terms, Curves at closely spaced sites exhibit similar behavior to those at distant

locations. Finally, when using a value of φ = 2 (weak correlation), It is evident that both

applications display a higher variability in their measurements, which is not consistent

with the characteristics of observed data.
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Appendix E

Extra Results of the Application

Figure E.1 displays the 95% HPD intervals for each posterior mean estimate (shown as

black dots) for the missing data in the 22 PM10 data series. It is observed that the

intervals are quite wide in both structures, B-spline or BP, indicating high uncertainty

in the estimates. Conversely, Figure E.2 shows that the HPD intervals for the missing

data in the 28 temperature series, which have narrower widths indicate a higher level of

accuracy in the estimation process. Note that this behavior is similar for both structures

(B-spline and BP).

Figure E.1: The 95% HPD Intervals for the 1,389 missing data using the MB4,4; δ (Panel
a), MB4,10; δ (Panel b), MBP3; δ (Panel c) and MBP12; δ (Panel d) models. The posterior
means estimators are the black dots. Each model is fitted to the PM10 set for Mexico
City.
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Figure E.2: The 95% HPD Intervals for the 1,564 missing data using the MB4,4; δ (Panel
a), MB4,10; δ (Panel b), MBP3; δ (Panel c) and MBP12; δ (Panel d) models. The posterior
means estimators are the black dots. Each model is fitted to the Temperature set for
Mexico City.
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