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Resumo

Recentemente, as redes neurais profundas têm sido amplamente utilizadas para resolver
uma variedade de problemas em diferentes áreas. Por exemplo, as redes neurais convolu-
cionais mudaram completamente o cenário da Visão Computacional, alcançando resulta-
dos notáveis em tarefas como classificação de imagens e detecção de objetos. No entanto,
para se obter bons resultados, é necessária uma grande quantidade de dados rotulados
para treinar estas redes, o que constitui um dos principais obstáculos na sua adoção, uma
vez que coletar e rotular esta grande quantidade de dados pode consumir muito tempo
e recursos. Portanto, os métodos de adaptação de domínio usam dados rotulados que já
estão disponíveis em um domínio de origem diferente, mas semanticamente relacionado,
para treinar um modelo que possa fazer previsões corretas sobre os dados nos quais esta-
mos interessados, o domínio de destino, evitando assim o alto custo de rotulagem. Este
trabalho apresenta duas novas abordagens para melhorar ainda mais o desempenho de
adaptação em domínios visuais na tarefa de classificação de imagens. Além disso, tam-
bém realizamos um estudo de caso para investigar a viabilidade de realizar adaptação
de domínio em um cenário do mundo real, considerando a tarefa de detecção automática
do uso de Equipamentos de Proteção Individual com redes neurais convolucionais. Ex-
perimentos demonstram que nossas abordagens propostas são capazes de melhorar os
resultados dos seus métodos base e fornecer insights significativos para trabalhos futuros
sobre adaptação de domínio.

Palavras-chave: Adaptação de Domínio. Transferência de Aprendizado. Aprendizado
de Máquina. Aprendizado Profundo. Visão Computacional. Processamento Digital de
Imagens.



Abstract

Recently, deep neural networks have been extensively used to solve a variety of problems
in different areas. For instance, convolutional neural networks have completely changed
the landscape of the Computer Vision field by achieving remarkable results in tasks such
as image classification and object detection. However, to obtain good results, a large
amount of labeled data is necessary to train these networks, thus constituting one of the
main obstacles in their adoption, as gathering and labeling this large amount of data can
be very time and resource consuming. Therefore, domain adaptation methods leverage
labeled data that are already available from a different, but semantically related, source
domain to train a model that can correctly make predictions on the data in which we are
interested, the target domain, thus skipping the high labeling cost. This work presents
two new approaches for further enhancing the adaptation performance on visual domains
in the image classification task. Furthermore, we also conduct a case study to investi-
gate the viability of performing domain adaptation in a real-world scenario considering
the task of automatic Personal Protective Equipment usage detection with convolutional
neural networks. Experiments demonstrate that our proposed approaches are able to im-
prove their baseline results and provide meaningful insights for future works on domain
adaptation.

Keywords: Domain Adaptation. Transfer Learning. Machine Learning. Deep Learning.
Computer Vision. Digital Image Processing.
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Chapter 1

Introduction

In recent times, the development of smart computer systems that automate tasks in
different areas has been on the rise. Examples of these systems can be found throughout
the modern world, such as self-driving cars, recommendation engines on online stores, and
smart surveillance setups. Machine learning models and algorithms are extensively used
to power those systems, providing ways to extract knowledge from large data sets that
are then used to automate various tasks [45].

Many real-world applications are based on visual data, such as images and videos.
Hence, computer vision techniques are also employed in combination with machine learn-
ing in order to successfully extract the information from this kind of data. One such
application is image classification, in which the computer system must be able to cor-
rectly classify an image based on what it depicts. In practice, such a system can be
used to automatically organize images of a store’s catalog or to automate the sorting of
documents in a government department.

Currently, the main machine learning model employed by intelligent systems is the
Deep Neural Networks. These networks are modeled based on how the human brain is
structured and are able to achieve remarkable results, which can even be super-human
levels in some scenarios [16]. Convolutional Neural Networks (CNNs) are a variant of
deep neural networks devised to work on visual data and are extensively used in different
computer vision applications [44]. Figure 1.1 illustrates how a deep neural network can
perform image classification by assigning class labels to the input picture based on what
it depicts.

Figure 1.1: Deep Neural Network for image classification.

In order for a neural network to achieve great results in the task being performed,
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it must be trained on a large data set. During this training, learning algorithms are
employed to optimize the network’s inner parameters so that it is able to extract the
knowledge that is embedded in the data, thus learning how to perform the task. The
training of neural networks constitutes one of the greatest obstacles in the development
of a smart system, as gathering, organizing, and labeling the large amount of data that is
needed during this procedure is very time and resource consuming [32, 44]. For instance, in
the previously presented image classification task, in order to train the network, one would
need a large data set containing pairs of images and labels, where each label indicates the
class portrayed in each image. Labeling these data is a very demanding task, as a human
operator needs to manually assign the label for each picture, thus significantly impacting
the time and cost of the development of the smart system [44]. This manual labeling
procedure is illustrated in Figure 1.2.

Figure 1.2: Manually labeling training instances.

A possible way to bypass this obstacle is to train the neural network using anno-
tated data that are already available from different, but semantically related, domains
and tasks. This is a viable solution as large amounts of data from different domains and
with different characteristics are available on the Internet and in public repositories due
to the big data phenomenon of the past decades [44].

An issue with the aforementioned solution is that, in most scenarios, the data that
are available and will be used during training, the source domain data, and the data
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on which the model will be used to make predictions, the target domain data, will have
different characteristics, in what is known as Domain Shift. In visual data, this shift
can be observed in the difference in the characteristics of the images, such as quality,
illumination, and pose [44].

Figure 1.3 shows an example of the domain shift in an image data set, in which
the source domain images are taken from an online store catalog, while the target images
are taken with a digital camera in an office. The visual differences between the images,
like their quality, the presence of background, and the pose/orientation of the object,
illustrate the shift across the domains. Note that even though the data distributions are
different, the images in each column are semantically related, as they represent the same
object category: bike, monitor, and scissors, respectively.

Figure 1.3: Example of domain shift.

(a) Samples from the Source domain.

(b) Samples from the Target domain.

Images extracted from the Office-31 data set [37].

The shift in the data distribution will severely impact the performance on target
samples of a model trained using only source domain data, as the assumption made
by most machine learning algorithms that the training and test data are independent
and identically distributed will not hold [16]. Even deep neural networks, which have
great generalization capacity and learn more transferable features when compared to
other learning methods, suffer from this shift in the distributions, as the deep features
will eventually transition from general to specific in the higher layers of the network,
diminishing their transferability [4, 44].
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Domain Adaptation (DA) methods offer a solution to the domain shift problem,
allowing for an effective transfer of the source domain knowledge into the target domain.
These methods propose changes to the network’s architecture and training procedure to
circumvent the negative effects of the data shift, hence adapting the knowledge embedded
in the data across the domains. The main goal of DA is to achieve a great performance
in target data without the need to label a large number of samples, thus skipping the
previously mentioned high labeling cost and making the development of smart systems
more accessible.

In the literature, the DA task is categorized based on the level of divergence be-
tween the domains and the availability of labeled data in the target domain [32, 44].
Concerning the level of divergence, the different DA scenarios can be divided into homo-
geneous, in which the input space has the same dimensionality in both source and target
domains, and the number of classes and each class concept does not change between the
domains; and heterogeneous, in which the input and label spaces can be different across
the domains. Note that heterogeneous DA is a more general setting in which there are no
restrictions on how the domains can diverge, while in homogeneous DA the dimension-
ality of both input and output spaces do not vary between the domains. Hence, in the
homogeneous setting, the domain shift is restricted to a shift in the data distributions,
making the adaptation task more tangible [16].

The different DA settings can be further categorized based on the availability of
data in the target domain: in unsupervised DA, there are no target labeled samples and
adaptation is done using only target unlabeled samples and the source labeled ones; in
a semi-supervised setting, it is assumed that a small amount of target labeled samples is
available and it is used together with the unlabeled ones during the adaptation procedure;
finally, there is supervised DA, which is similar to the semi-supervised setting, but there
are no target unlabeled samples, hence adaptation is done using only the source domain
data and the few target labeled samples that are available. Notice that in all these
scenarios it is assumed that a large amount of source labeled data is available and that
in the semi-supervised and supervised settings, the amount of target labeled samples
available is not enough to train the model from scratch, hence adaptation from source
data is still required.

In this work, an overview of commonly used approaches for performing DA using
convolutional neural networks is presented and two new methods that build upon previous
literature works for solving the DA task with visual domains are proposed. One of these
approaches leverages dimensionality reduction and better use of the data available in each
domain to increase the efficacy and robustness of the adaptation procedure, thus leading
to better performance on the target domain data. The second approach improves the
adversarial framework for DA by incorporating the source ground-truth labels and target
estimated pseudo-labels into the domain discrimination procedure, leading to class-aware
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domain confusion. The approaches proposed in this work tackle specifically the image
classification task and the homogeneous and unsupervised DA scenario. Experimental
results show that the proposed methods were able to enhance the baseline classification
accuracy on target data in commonly used DA benchmarks.

Furthermore, we also conducted a study case to investigate the viability of perform-
ing unsupervised DA in a real-world setting. To this end, we experiment with training
convolutional neural networks to perform automatic Personal Protective Equipment usage
detection by using labeled data captured in a simulated environment and unlabeled data
captured using surveillance cameras in a real-world workshop where actual workers are
performing their usual routines.

1.1 Motivation

As noted in the previous section, the big data phenomenon of the recent decades
made large collections of data readily available online. Therefore, DA methods that can
robustly and effectively leverage these data while training a model for a target task are
very desired, as they would eliminate the high cost of manually labeling samples, which
constitutes one of the main obstacles in the development of smart systems.

Many methods that deal with the DA problem in the context of image classifi-
cation with deep convolutional neural networks have been proposed in the literature in
recent years. Although some of these approaches achieve great results in many com-
monly used data sets and test configurations, experiments show that there is still room
for improvement.

The methods [14, 9, 29, 40] that currently have the overall best results still cannot
achieve a great classification accuracy on the target samples in some data sets, especially
when the domains are very dissimilar. For instance, these methods failed to consistently
achieve a high classification accuracy in all settings of the Office-Home data set [43], one of
the main benchmark data sets used to evaluate DA performance for image classification.
This can cast doubts on the robustness of performing DA in a production setting, as it
would make the resulting smart system unreliable.

Given the aforementioned reasons, in this work new methods that build upon past
literature works that address the adaptation problem with visual data are proposed and
experimented with, aiming at improving the performance on target data, particularly in
the scenarios in which the existing DA methods do not achieve good results, thus making
the overall adaptation more robust.
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1.2 Objectives

This work targets the DA problem in the homogeneous and unsupervised scenario
for the image classification task. The main goal is to propose modifications to existing
literature methods to enhance their robustness and effectiveness while performing adap-
tation from source to target data. Additional objectives include:

• provide an overview of the most commonly used approaches for performing DA with
visual data;

• evaluate the methods proposed in this work with commonly used DA benchmark
data sets;

• experiment with performing DA in a real-world setting by conducting a case study
in which data from a simulated source domain is adapted to a real target one.

1.3 Scientific Contibutions

This work contributes to the Domain Adaptation and Transfer Learning research
topics by proposing two new approaches that enhance the adaptation performance of
their baselines by improving the robustness of the pseudo-labeling strategy for DA and
by exploring the concept of class-aware domain discrimination. Besides improving upon
the baseline results, our proposed approaches also provide meaningful insights for future
works on DA with visual data.

We have presented one of the approaches proposed in this work in the paper titled
Analyzing the Effects of Dimensionality Reduction for Unsupervised Domain Adaptation
that was accepted and presented in the Technical Sessions of SIBGRAPI 2021, the 34th
Conference on Graphics, Patterns and Images [27].

Finally, this work also presents the results of a case study that investigates the
viability of performing domain adaptation in a real-world setting by adapting data from a
simulated data set to a real one for performing automatic Personal Protective Equipment
(PPE) detection with deep convolutional neural networks.



1.4. Work Organization 18

1.4 Work Organization

In Chapter 2, the main approaches that deal with the DA problem are described,
along with examples of methods previously proposed in the literature. In Chapter 3,
a formal definition of the DA problem is presented together with a description of the
baseline method for the approaches proposed in this work. In Chapter 4, our proposed
approaches are described in detail. In Chapter 5, the conducted experiments and their
results are presented and discussed, and also the results of the PPE detection case study
are presented. Finally, in Chapter 6, the conclusions of this work and insights for future
works are presented.
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Chapter 2

Related Work

Several methods that deal with the homogeneous and unsupervised domain adaptation
problem on visual data have been proposed in the literature. [44] suggested that these ap-
proaches can be summarized in three main categories: Discrepancy-based, Reconstruction-
based, and Adversarial-based. All these methods share the same goal, which is to diminish
the effects of the domain shift by introducing domain-invariability in the training of the
model. However, they differ on how this invariability is achieved. In the following sections,
each of these approaches is discussed and some methods based on them are described.

2.1 Discrepancy-based Approaches

Discrepancy-based methods adapt the models with fine-tuning and regularization
terms that measure the discrepancy between the distributions [44]. In [25], the authors
proposed the Deep Adaptation Networks (DAN), in which a regularizer term based on the
multiple kernel Maximum Mean Discrepancy (MK-MMD) is added to the higher layers of
the network, which are generally less transferable. The MK-MMD is formalized to jointly
maximize the two-sample test power and minimize the Type II error, hence the added
regularizer term matches the shift in marginal distributions across the domains during
training. One of the main weaknesses of DAN is that it assumes that the conditional dis-
tributions are the same between the domains, which can be false in real-world applications,
thus leading to a less effective adaptation. Some methods use different discrepancy met-
rics other than the MK-MMD, such as Deep CORAL, another discrepancy-based method
proposed by [39], which aligns the second-order statistics between the domains based on
a Coral loss that is given by the Frobenius norm of the difference between the covariance
matrices of the source and target data.

One of the main challenges of the unsupervised scenario is that the target data
conditional distribution cannot be directly estimated, as there are no target labels. Due
to this restriction, many methods, such as the previously mentioned DAN [25], will in-
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correctly assume that there is no shift in the conditional distribution between source
and target data. To this end, some discrepancy-based methods will use pseudo-labeling
heuristics to be able to align the conditional distributions. Pseudo-labeling consists of
developing a strategy to automatically assign labels to target unlabeled samples. These
pseudo-labeled samples can then be used to compute a discrepancy metric or to fine-tune
the network’s weights to implicitly align the distributions. A disadvantage that comes
with this approach is that the pseudo-labels can be incorrectly assigned, which could
lead to a worse performance after the adaptation. Therefore, methods that employ a
pseudo-labeling strategy must implement ways to suppress the negative effect introduced
by wrongly assigned pseudo-labels.

In [49], the authors expanded the idea behind DAN [25] by using pseudo-labels to
compute a conditional MMD metric to align both marginal and conditional distributions.
In [15], the authors used the K-Means clustering algorithm to assign the pseudo-labels
based on the target samples’ feature representation. The clusters are initialized with
the class centroids computed using source data. Then, the assigned pseudo-labels, which
are given by the cluster assignments, are filtered based on the distance to the group
center and the number of samples in each group. The filtered pseudo-labels are then used
in a Contrastive Domain Discrepancy (CDD) metric that is based on the MMD and is
designed to align the distributions by taking into account the inter-class and intra-class
discrepancies across the domains.

In [14], the authors proposed a method that also uses pseudo-labels to perform
the adaptation. Their goal was to adapt the model from a class-conditioned domain
alignment perspective in order to address the challenge of within-domain class imbalance
and between-domains class distribution shift. To this end, they used an implicit class-
conditioned alignment that removed the need for explicit pseudo-label-based optimization,
as the pseudo-labels are instead implicitly used to sample class-conditioned data in a way
that aligns the joint distribution between features and labels.

Category Contrast (CaCo), introduced by [12], explores the idea of instance con-
trast for unsupervised DA, in which a dictionary look-up task trains a visual encoder
by matching encoded queries and keys. CaCo builds category-aware and domain-mixed
dictionaries by assigning pseudo-labels for the target unlabeled samples, which allows
learning invariant representations within and across the source and target domains. Dur-
ing training, a new category contrastive loss between target queries and dictionary keys is
minimized, which will pull close samples from the same category and push away those of
different categories. This learning objective will ultimately lead to category-discriminative
yet domain-invariant representations, thus achieving the adaptation goal.

[29] introduced CoVi, a Contrastive Vicinal space-based DA method that enhances
the discrepancy-based strategy by leveraging the vicinal space from the perspective of self-
training. CoVi estimates pseudo-labels for the target unlabeled images and explores the
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"equilibrium collapse of labels" between vicinal instances, as defined by the authors. To
this end, the proposed method divides the vicinal space into a contrastive and a consensus
space, based on an entropy maximization point (EMP) that is estimated with a new EMP-
Mixup algorithm inspired by the minimax strategy. Ultimately, CoVi will alleviate the
inter-domain discrepancy in the contrastive space and will simultaneously resolve intra-
domain categorical confusion in the consensus space, thus improving the overall robustness
of the adaptation procedure.

In summary, discrepancy-based DA methods leverage different distribution dis-
crepancy metrics and techniques, such as target pseudo-labeling, to introduce domain-
invariability by aligning the data distributions across the domains.

2.2 Reconstruction-based Approaches

Reconstruction-based methods use a reconstruction task in a multi-task setting to
ensure feature invariance. As image reconstruction is an unsupervised task, it can be ac-
complished without the target labels. In [6], the authors proposed the Deep Reconstruction-
Classification Networks (DRCN). DRCN consists of two pipelines with a shared feature
encoder: a label prediction one, which is trained using source domain supervision, and
an image reconstruction one that reconstructs the target images. The features produced
by the encoder network are fed into both pipelines and the whole network is trained
in an end-to-end fashion, with the reconstruction task introducing feature invariability
throughout the training.

The Deep Separation Networks (DSNs), proposed by [1], explicitly model both
private and shared components from each domain by using three separate encoders, one
shared between the domains and a private one for each domain. A shared decoder net-
work learns to reconstruct samples from both domains by using both private and shared
representations. Soft subspace orthogonality constraints are used to push apart the pri-
vate and shared representations, while a similarity loss keeps the shared representations
similar. Finally, the label classifier is trained on the shared representation using source
supervision, and prediction is done by feeding the classifier with the feature produced by
the shared encoder.

Overall, reconstruction-based approaches are able to improve the model’s perfor-
mance on target data. However, by introducing an image reconstruction task, the training
of the neural network becomes more challenging and resource-consuming.
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2.3 Adversarial-based Approaches

Adversarial-based methods are built upon the concept of domain confusion, that
is, the inability to distinguish between the domains [44]. To achieve this confusion, they
incorporate a domain discriminator network that classifies the samples based on their do-
main to the original model, creating an adversarial training framework. [5] proposed the
Domain Adversarial Neural Network (DANN), in which the adversarial max-min objec-
tive is directly implemented with a gradient reversal layer that multiplies the discrimina-
tor’s gradient by a negative constant during backpropagation. This effectively makes the
feature extractor produce more domain-invariant features in order to maximize the clas-
sification loss of the discriminator. The whole network is trained jointly, in a multi-task
end-to-end fashion, with the domain classification task executed by the domain discrimina-
tor and the label prediction task performed by the classifier network. In [41], Adversarial
Discriminative Domain Adaptation (ADDA) is proposed. In ADDA, the adversarial ob-
jective is implemented using a GAN-like loss with real and fake labels instead of using
a gradient reversal layer. Furthermore, ADDA uses separate feature extractors for each
domain, which enables them to learn domain-specific characteristics more freely.

Some adversarial-based methods use a generator task in addition to the discrimi-
nator one in a configuration similar to the Generative Adversarial Networks (GANs) [7].
The GANs are comprised of a generator network, which generates fake images, and a
discriminator network, which discriminates the images between real and fake. These net-
works are trained adversarially so that the generator can produce convincing images. The
goal of these methods is to generate synthetic samples with target domain characteristics
that share labels with source samples, thus obtaining pairs of synthetic images and their
respective labels in an unsupervised manner. For instance, [24] proposed CoGAN, which
consists of a pair of GANs, where each will produce synthetic images from a single domain.
The weights of the initial layers of both generative networks and the final layers of both
discriminators are shared between the GANs. This weight-sharing lets CoGAN achieve
a domain-invariant feature space in both networks. After training, pairs of images that
share the same label will be produced by CoGAN, where one image has the characteristics
of the source domain and the other has those of the target domain. The synthetic and
labeled images can then be used to train a model for classifying target samples.

[31] proposed the Conditional Domain Adaptation Generative Adversarial Network
(CoDAGAN) for performing DA considering the image segmentation task, specifically for
segmenting medical X-ray images, where there are usually many samples available for
training, but only a few of them are actually labeled, constituting an ideal scenario for
unsupervised and semi-supervised DA. CoDAGAN uses an encoder-decoder network that
performs image translation and an adversarial discriminator that classifies the images
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between real and synthetic. Adaptation is achieved by leveraging the common isomorphic
representation created by the encoder-decoder architecture, which allows multiple related
data sets to be used conjointly during training, hence leading to overall better results.

[22] proposed 3C-GAN, a method that also uses a generator network to produce
synthetic data from the target domain’s data distribution to deal with the unsupervised
domain adaptation problem in a setting in which the source data are not available dur-
ing adaptation, instead only the network’s pre-trained weights are provided. Therefore,
3C-GAN uses the target unlabeled samples to train a generator network that generates
images conditioned both on the target data distribution, via the GAN discriminator, and
a random label. In order to incorporate semantic meaning in the generated images, the
classification loss of the synthetic image applied to the pre-trained classifier is embedded
into the generator’s loss, causing the generated images to portray the random labels fed
to the generator. The produced pairs of images and labels are then used to fine-tune the
classifier network for the target data.

[48] introduced the Spectral Unsupervised Domain Adaptation (SUDA) method,
which learns domain-invariant spectral features through an adversarial objective. SUDA
uses a spectral transformer network to create spectral views of each image, in which the
inter-domain discrepancies are reduced by enhancing domain-invariant feature compo-
nents. To find such components, SUDA leverages contextual information with a novel
Adversarial Spectrum Attention (ASA), in which domain-variant feature components are
suppressed via an adversarial loss with a domain discriminator. ASA takes the Fast
Fourier Transform spectral representation of each image decomposed into N components
using a band pass filter as input and outputs a recomposed spatial-space image, which
is then forwarded to a discriminator that classifies each sample based on its domain. By
employing this attention mechanism, SUDA is able to learn domain-invariant spectral
features, which allow it to achieve great accuracies in the target domain.

2.4 Hybrid Approaches

Some domain adaptation methods combine the aforementioned approaches in hy-
brid architectures with the goal of achieving even greater performance. For instance,
some methods combine the discrepancy-based approach with a dimensionality reduction
strategy. Joint Distribution Adaptation (JDA), proposed by [26], aims to jointly align
both marginal and conditional distributions between the source and target domains by
integrating the Maximum Mean Discrepancy (MMD) metric with the Principal Compo-
nent Analysis (PCA) algorithm for dimensionality reduction. This allows the creation of
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a feature representation that is effective for calculating the distribution differences across
the domains. [13] also proposed a method that integrates the MMD metric with a dimen-
sionality reduction strategy. Their goal is to build a latent space in which the MMD value
between the source and target data is as small as possible while maintaining the local
geometry properties of the source domain. In OTDR, proposed by [21], a dimensionality
reduction framework similar to PCA is combined with an optimal transport strategy in
a two-stage solution. In the first stage, the samples’ features are transformed to a lower
dimensional space in which the intradomain dispersion is maximized and the source in-
traclass compactness is minimized. In the second stage, an optimal transport plan based
on the Wasserstein distance is learned, which transports the source samples to the target
domain while keeping local information, thus maintaining the class discriminability of the
source data.

Recently, [40] proposed Safe Self-Refinement for Transformer-based Domain Adap-
tation (SSRT), which integrates a transformer network to the adversarial framework for
performing DA. Visual transformers process an image by transforming it into a sequence
of tokens and using global self-attention to build and refine this tokenized representa-
tion. In SSRT, a visual transformer is incorporated into the adversarial framework for
DA, as the authors sustain that such networks can produce strong transferable feature
representations, leading to a more effective adaptation.

The Robust Spherical Domain Adaptation (RSDA) method proposed by [9] com-
bines the adversarial and discrepancy-based approaches by using both a domain discrim-
inator and a pseudo-labeling technique. RSDA uses Gaussian-uniform mixture models
to estimate the probability of a given pseudo-label being correctly assigned to a target
sample based on the distance between the feature representation of each sample and the
class centroid in a spherical space. After estimating the pseudo-labels and the mixtures’
parameters, the network is trained in a multi-task setting with the label prediction loss
for source samples, the adversarial loss of the domain discriminator, and the proposed
robust pseudo-label loss that takes into account the estimated correct pseudo-labeling
probabilities for the target samples.

RSDA achieves great results in the main DA benchmarks and is the baseline for
our proposed approaches. In this work, we modify some aspects of the original RSDA’s
training procedure and network architecture to improve the robustness of the estimated
pseudo-labels and how they are used, thus leading to better accuracy on target data.
Further explanation of how RSDA operates and the enhancements that this work proposes
are presented in the following chapters.
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Chapter 3

Theoretical Framework

This chapter presents the definitions of the image classification task, the unsupervised
domain adaptation problem, and the baseline of the methods proposed in this work.

3.1 Image Classification with Convolutional Neural

Networks

Image classification is one of the main tasks in Computer Vision and can be used
in a variety of scenarios and applications [2]. The goal is to associate correct labels
to images based on what is depicted on them. More formally, we are looking for a
model h that receives an image x as input and is able to correctly associate a label
ŷ = h(x), ŷ ∈ {1, 2, 3, .., k}, where ŷ indicates the class, from a total of k classes, that
is portrayed on image x. The list of classes will vary depending on the application: it
can be a list of product categories that are sold in an online store, or it can be a list of
animal species that are in a zoo. Notice that, even though this task may seem simple, it
is the building block for solving more complex Computer Vision problems, such as object
detection, image segmentation, and super-resolution technology [2].

Most image classification methods are comprised of two steps: feature extraction
and classification. The first one consists of transforming the input images into a feature
space, in which the semantic characteristics of the pictures will be more prominent. In
the classification stage, class labels are assigned to each image feature.

Before neural networks, manually-designed algorithms, also called handcrafted,
such as the Scale Invariant Feature Transform (SIFT) [28] and the Oriented FAST and
Rotated BRIEF (ORB) [36], were used for feature extraction and representation [30].
Each step of these algorithms was carefully elaborated in order to extract as much knowl-
edge from the picture elements and overcome variations in scale and illumination [30].
For the classification step, traditional machine learning algorithms were used, like the
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Support Vector Machine (SVM) [3], which took the extracted feature or some interme-
diary representation, such as the Bag of Visual Words (BOVW), as input and outputted
the predicted class for each image. Although these methods that used handcrafted fea-
ture extraction techniques and traditional classification algorithms were able to achieve
good results in some tasks, they showed a poor generalization ability, which led to lower
accuracy, especially on more challenging data sets [30].

To overcome the limitations of the traditional approaches for image classification,
researchers started employing neural networks to solve this task. Although Artificial
Neural Networks are not a novel concept, being first proposed in the 1950s [35], only in
recent years has it become possible to use them practically in real-world applications, due
to the rapid development of more powerful hardware components. This is mainly because
these networks mimic the way in which neurons are connected in a biological brain, which
in turn creates a very complex model that needs a lot of computing power to execute [30].

For image classification, a special type of neural network, the Convolutional Neural
Network (CNN), is employed. The modern framework of CNNs was first introduced
by [20] and took inspiration from how biological vision works [8]. At its center is the
convolutional layer, which allows the extraction of abstract features from the image pixels.
These features are then combined through the multiple layers of the network to achieve
more high-level representations of what is depicted on the image, allowing these networks
to learn how to perform tasks with remarkable results [30, 16]. Many CNN architectures
have been proposed, such as LeNet-5 [19], AlexNet [17] and VGGNet [38]. Currently, the
architectures that achieve the highest results employ a residual learning technique, which
improves the network’s ability to learn, such as the ResNet [10] and the DenseNet [11].

Regardless of the CNN’s architecture, it needs to be trained to learn how to classify
the images. During this training, an optimizer algorithm, such as the Stochastic Gradient
Descent (SGD), and a loss function, such as the Cross-entropy loss, are used to optimize
the network’s inner parameters using the available data. The goal is to minimize the
classification error on the training images so that the final model is able to assign the cor-
rect labels to each image. A common challenge found while training is model-overfitting,
that is, the model’s incapacity to generalize for images outside the training set. When
a network is overfitted, it will not be able to perform the classification effectively, even
though a high accuracy may be achieved in the training images. The main causes for it
are the high complexity of the network’s architecture and a limited data set, which may
not represent the real distribution of the target images [2]. Some techniques can be used
to overcome this issue, such as using simpler network architectures, different activation
functions, or the previously mentioned residual learning. However, the main procedure
to detect and possibly overcome overfitting is to split the data set into a training and a
test set. The main idea is to train the model using only the training set and validate the
classification accuracy in the test set. This way, if overfitting happens, one will notice the
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bad performance on the test set. The split between training and test data can be done
using random sampling or techniques such as cross-validation.

The main assumption that is made during the model’s training is that the training
data and the data on which the model will be used to make predictions, the test data,
are independent and identically distributed, in what is commonly known as the i.i.d.
assumption. The current algorithms that are used to train the CNNs only work if this
assumption holds true. Therefore, if there is a bias in the training set that does not exist
in the real data distribution, it will severely impact the model’s performance at test time.
The aforementioned train/test split technique may help to guarantee that this assumption
holds if the split is done in a truly random way, which may help identify hidden bias in the
data, especially if the model is trained multiple times with different splits. Nevertheless,
the i.i.d. assumption still requires the data set used for training and validating the model
to be carefully constructed in order to avoid the introduction of biases or any kind of shift
across the data distributions.

In summary, deep convolutional neural networks are currently the machine learn-
ing models that achieve the highest accuracy in the image classification task [2]. Their
ability to learn complex representations of the patterns in an image allows them to obtain
remarkable results. However, to train these networks, a large amount of data, which must
be correctly labeled and representative of the real data distribution, has to be collected,
organized, and processed. The gathering and labeling of this large amount of data are
very time and resource-consuming, thus constituting one of the major constraints on the
development of smart systems that use neural networks for image classification.

3.2 Domain Adaptation Definition

As discussed in the previous section, labeling the large amount of data that is
necessary to train the Convolutional Neural Networks is one of the major challenges for
the development of smart systems that perform image classification. Therefore, domain
adaptation methods offer a solution to allow for data that are already available and labeled
to be used to train models for performing different, but semantically-related tasks. These
methods will look for ways to effectively transfer knowledge from one domain to another,
thus eliminating the need to label a new large set of data and reducing the costs of
developing a smart system.

A domain D = (X, Y, p) is defined as a combination of an input space X, an output
space Y , and an associated probability distribution p and the domain adaptation problem
consists of, given a source domain S = (Xs, Y s, ps) and a target domain T = (X t, Y t, pt),
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training a model h(x) that is able to correctly make predictions on target data x ∈ X t

[32, 16]. This problem can be divided into different categories based on the level of
divergence between the domains and the availability of labeled data, as proposed by [33]
and [44].

The setting in which the input spaces and output spaces are the same across the
domains, i.e., Xs = X t and Y s = Y t, is referred to as Homogeneous Domain Adaptation.
Note that in this setting, for a classification task, it is assumed that each class represented
in Y s and Y t has the same semantic meaning in both domains and that only the probability
distributions ps and pt vary across the domains. On the other hand, if the input and
output spaces are different across the domains, i.e., Xs 6= X t or Y s 6= Y t, then it is called
Heterogeneous Domain Adaptation and constitutes a more general scenario, where the
domains may vary significantly. For instance, in the heterogeneous setting, one may want
to adapt knowledge from a text domain to a visual one, as is done by [50].

According to the availability of labeled data from the target domain, we can further
categorize the domain adaptation problem into [44]:

• Unsupervised Domain Adaptation: there are no labeled samples available in the
target domain. Therefore, the model is trained using only source labeled data
({(xsi , ysi )}ns

i=1, where xsi ∈ Xs and ysi ∈ Y s) and target unlabeled data ({xtuj }ntu
j=1,

where xtuj ∈ X t);

• Semi-supervised Domain Adaptation: a small number of labeled target data is avail-
able, in addition to the target unlabeled data. Note that it is assumed that the
amount of unlabeled data is far greater than the amount of labeled data. In this
setting, the adaptation procedure uses the source labeled data ({(xsi , ysi )}ns

i=1, where
xsi ∈ Xs and ysi ∈ Y s) together with target unlabeled ({xtuj }ntu

j=1, where xtuj ∈ X t)
and labeled samples ({(xtlk , ytlk )}ntl

k=1, where x
tl
k ∈ X t, ytlk ∈ Y t and ntl � ntu);

• Supervised Domain Adaptation: only a small number of labeled target data is avail-
able. Note that, different from the semi-supervised scenario, there are no target
unlabeled samples. Therefore, the training of the model is done with the source
labeled data ({(xsi , ysi )}ns

i=1, where xsi ∈ Xs and ysi ∈ Y s) and the few target labeled
samples available ({(xtlk , ytlk )}ntl

k=1, where x
tl
k ∈ X t, ytlk ∈ Y t and ntl � ns).

This work focuses on the homogeneous and unsupervised setting.
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3.3 Robust Spherical Domain Adaptation (RSDA)

In this section, the Robust Spherical Domain Adaptation (RSDA) method, the
baseline for the new approaches proposed in this work, is described. RSDA was proposed
by [9] and is based on the adversarial framework for domain adaptation, which was first
introduced by [5] and is presented in Figure 3.1. In this framework, a domain discriminator
Gd classifies the features produced by the feature extractor Gf based on their domain,
and a Gradient Reversal Layer, which is added just before this domain classifier, directly
implements the min-max adversarial goal by multiplying Gd’s gradient by a negative
factor. Throughout the complete network’s training, this adversarial game will make
the feature extractor Gf produce more domain-invariant features, as those will impair
the domain classifier’s ability to discriminate across the domains, thus maximizing its
loss due to the introduced gradient reversal. This domain-invariability promoted by the
adversarial goal will ultimately lead to better image classification accuracy on the target
data.

Figure 3.1: The DANN adversarial framework for DA.

Figure adapted from [5].

RSDA expands the adversarial framework by introducing a new robust pseudo-
label loss formulation. This loss weights the classification error of the target pseudo-
labeled samples based on a correct pseudo-labeling probability, which is estimated using
a Gaussian-uniform mixture model. This makes adaptation more robust by filtering out
wrongly assigned pseudo-labels. Furthermore, RSDA also transforms the features pro-
duced by the feature extractor network into a spherical, l2-normalized, space, which the
authors sustain makes adaptation easier.
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Figure 3.2: Baseline RSDA method.

Figure extracted from [9].

An overview of the complete RSDA architecture is presented in Figure 3.2. In
summary, RSDA trains a network comprised of a feature extractor F , a classifier C, and
a domain discriminator D using the following spherical adversarial training loss:

L = Lbas(F,C,D) + Lrob(F,C, φ) + γLent(F ), (3.1)

where the basic loss Lbas is based on the adversarial loss of DANN [5] and is given by the
sum of the cross-entropy loss of the source samples’ classification and the adversarial loss
of the domain discriminator:

Lbas(F,C,D) = Lsrc(F,C) + λLadv(F,D), (3.2)

where λ is a negative constant. As previously mentioned, the adversarial goal is achieved
by inverting the discriminator’s classification loss using a Gradient Reversal Layer, a direct
implementation of the min-max objective of the adversarial framework as was originally
proposed by [5]. By inverting this gradient, the feature extractor will be stimulated to
produce more domain-invariant features, as these will impair D’s ability to discriminate
between the domains, maximizing its loss.

The proposed robust pseudo-label loss Lrob is defined as:

Lrob(F,C, φ) =
1

N0

Nt∑
j=1

wφ(xtj)J (C(F (xtj)), ỹ
t
j), (3.3)

where N0 =
∑Nt

j=1wφ(xtj), J is the mean absolute error and wφ(xtj) is given by

wφ(xtj) =

γj, if γj ≥ 0.5

0, otherwise
, (3.4)

where γj = Pφ(zj = 1|xtj, ỹtj) is the correct labeling probability associated with the target
sample xtj and the pseudo-label ỹtj. The pseudo-labels are assigned based on the output of
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the classifier C trained in the previous stage of RSDA and the correct labeling probability
γj is estimated by the Gaussian-uniform mixture model for the assigned class, using the
mixture parameters φỹtj = (πỹtj , σỹtj , δỹtj). Note that there is one mixture for each of the
K classes and that they operate independently. Each mixture takes as input the cosine
distance between the spherical feature representation f tj of xtj produced by F and the
centroid Cỹtj of the features of all target samples assigned to the same class:

dtj = dist(f tj , Cỹtj) (3.5)

The posterior correct labeling probability is then given by the mixture model:

Pφ(zj = 1|xtj, ỹtj) =
πỹtjN

+(dtj|0, σỹtj)
πỹtjN

+(dtj|0, σỹtj) + (1− πỹtj)U(0, δỹtj)
(3.6)

where N+ and U are the Gaussian and the Uniform components of the mixture, respec-
tively, and πỹtj , σỹtj , and δỹtj are the mixture parameters estimated with an Expectation-
Maximization algorithm. zj ∈ {0, 1} is a random variable that indicates whether the
pseudo-label ỹtj was correctly assigned to the target sample xtj.

The assumption made by [9] is that samples with a smaller distance to the class
centroid in the spherical feature space have a higher probability of being correctly as-
signed. The Gaussian component of the mixture models the samples that are closer to
the centroid, while the Uniform one models the samples that are further away, assigning
a lower probability to them.

The training of the network, as defined by [9], is comprised of a number of stages
that is defined via a new hyper-parameter. In the initial stage, F , C, and D are optimized
using only the basic loss Lbas, without using any pseudo-labels. After that, each stage
has two main steps:

1. First, the weights of F and C that were trained in the previous stage are frozen and
the pseudo-labels are assigned to all target samples based on the output of C. F is
used to obtain the feature representation of the target samples and the parameters
of the mixture models are estimated using an Expectation-Maximization algorithm;

2. Then, the weights of F and C are unfrozen and the complete network is trained again
using the estimated pseudo-labels and their respective correct labeling probability
in the complete loss formulation L, as defined in Equation 3.1.

The authors of RSDA sustain that the proposed robust-pseudo label loss and the
transformation of the features produced by F into a spherical space are responsible for
the results achieved in the experiments with commonly used benchmark data sets for
domain adaptation, in which RSDA obtained a higher accuracy than other adversarial-
based methods in almost all configurations.
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In this work, we propose some modifications to the original RSDA method with
the goal of further improving its robustness during the estimation of the correct pseudo-
labeling probabilities with the Gaussian-uniform mixture models, thus enhancing the
target classification accuracy. We also propose incorporating a multi-class discriminator
into the adversarial framework of RSDA. These changes are detailed and discussed in the
following chapters.
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Chapter 4

Methodology

In this work, we propose two new approaches for performing domain adaptation with
visual data in an unsupervised setting. The first one is described in Section 4.1 and
enhances the pseudo-labeling strategy of Robust Spherical Domain Adaptation (RSDA)
[9] by combining it with a dimensionality reduction strategy and better use of the source
and target domain data. The second one is described in Section 4.2 and builds upon the
concept of a multi-class domain discriminator network to introduce class-aware domain
confusion to further improve the final adaptation performance.

4.1 Enhancing Pseudo-label Robustness

As presented in Chapter 2, a common approach for performing DA on visual data
is to develop a strategy to automatically assign labels to the target domain’s unlabeled
images. These pseudo-labeled samples can then be used during the network’s training
to enhance its classification accuracy in the target domain. The main issue with this
approach is guaranteeing that the pseudo-labels assigned to each sample correspond to the
actual class portrayed in the image, i.e., the pseudo-labels are correct. As in most scenarios
this can not be guaranteed, DA methods have to proactively deal with these wrongly
assigned pseudo-labels, as they can negatively impact the adaptation performance.

The Robust Spherical Domain Adaptation (RSDA) method, introduced by [9] and
described in Section 3.3, deals with the wrongly assigned target pseudo-labels by proposing
a new loss formulation that takes into account the correct labeling probability of the target
samples, which is estimated using Gaussian-uniform mixture models based on the distance
between the sample and the class centroid in a spherical feature space. The main goal of
RSDA is to improve the overall robustness of the adaptation procedure by filtering out
target samples that may be incorrectly pseudo-labeled based on this estimated correct
labeling probability.

We propose two modifications to RSDA’s training procedure, specifically by en-
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hancing the estimation of the correct labeling probability introduced by [9], with the goal
to further improve its robustness, thus enhancing the overall adaptation performance:

• We change how data from the source domain are handled during the estimation of
the parameters of the Gaussian-uniform mixture models, based on the hypothesis
that the source ground-truth labels can serve as anchors to the true-class meanings
during this procedure;

• We apply a dimensionality reduction algorithm to the feature representation of
the samples before computing the class centroid distances that are used during
the estimation of the correct labeling probability, based on the hypothesis that
transferability could be more easily achieved in lower-dimensional spaces.

In the following sub-sections, the proposed enhanced pipeline for estimating the
correct labeling probability for target samples and the hypotheses that guided it are
described in detail.

4.1.1 Source Labeled Data as Anchors During the Estimation of

the Mixture Model’s Parameters

In the unsupervised DA scenario, only source labeled samples and target unlabeled
ones are available to train the model. As previously discussed, by using a pseudo-labeling
strategy, we can obtain labels for the target samples that can be used during training.
In the original RSDA [9] method, the pseudo-labels ỹtj are assigned based on the output
of a class classifier network C that is initially trained using the adversarial framework
proposed by [5], which does not use pseudo-labels. Then, these pseudo-labeled target
samples are used to estimate the parameters of K Gaussian-uniform mixture models, one
for each class from a total of K classes, that predict the probability of a pseudo-label
being correctly assigned to a target sample. This correct labeling probability Pφ is given
by the respective mixture model

Pφ(zj = 1|xtj, ỹtj) =
πỹtjN

+(dtj|0, σỹtj)
πỹtjN

+(dtj|0, σỹtj) + (1− πỹtj)U(0, δỹtj)
, (4.1)

where dtj = dist(f tj , Cỹtj) is the cosine distance between the latent representation f tj of the
j-th target sample and Cỹtj is the feature-space centroid of the assigned class ỹtj. The
parameters φ = {πk, σk, δk}Kk=1 for each of the K mixture models are estimated using
an Expectation-Maximization (EM) algorithm that is derived based on the definition of
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the Gaussian-Uniform mixture model presented in Equation 4.1. During this estimation,
the target domain samples are grouped based on the assigned pseudo-labels, and the
centroid for each class is computed. Then, the distance between each sample’s feature
representation and its class centroid is calculated. Finally, these distances {dtj|ỹtj = k} are
inputted to the EM algorithm, which will estimate the parameters of the k-th mixture
model, related to the k-th class.

Notice that in the original formulation of RSDA, only the features from target
samples are used to compute the distances that are inputted to the EM algorithm. This
can lead to some issues during the estimation of the mixture’s parameters, as the correct
labeling probability given by the mixture model will lose its meaning if enough target
samples have wrongly assigned pseudo-labels and create a cluster in the feature space.
These incorrect clusters would result in a loss of concept problem that would not be
captured during the network’s training, as ground-truth target labels are not available.
This scenario is illustrated in Figure 4.1, where all the target samples that were assigned
to a given class are plotted in a 2-dimensional feature space with a circle, if the pseudo-
label is correct, i.e., these samples really are from the assigned class, or an x, which
indicates that they were assigned the wrong pseudo-label. Notice that when the centroid
for this class is computed, the red dot in the figure, many incorrectly-labeled samples
will have a small distance to it, causing the mixture model to estimate a high correct
labeling probability for them, even though they are incorrect, thus negatively impacting
the adaptation performance.

Figure 4.1: Failed correct labeling probability estimation.
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The described issue can undermine the robustness and effectiveness of the adap-
tation, as the wrong pseudo-labeled samples would not be filtered out during training.
Therefore, in this work, we propose a modification to the original RSDA procedure in
order to mitigate this problem by incorporating the source samples as anchors to the true
class meanings. This way, even if a great number of target samples are not correctly
pseudo-labeled, the estimation of the mixture’s parameters would not suffer a great im-
pact as the ground-truth labels of the source samples would balance out the impact of
the incorrectly-assigned target pseudo-labels.

The proposed source anchors are implemented by using data from both source and
target domains during the estimation of the mixture’s parameters: the EM algorithm now
receives as input the distances calculated from the feature representation of the samples
from both domains. As the ground-truth labels of the source samples are known, the
estimation of the mixture’s parameters becomes more robust, thus making the previously
presented deviation caused by incorrectly pseudo-labeled target samples more unlikely.
This is illustrated in Figure 4.2. Notice how, with the addition of the labeled source data
(represented by the squares in the figure), the class centroid shifts towards the correctly
labeled samples. Therefore, even though there are still many target mislabeled samples,
the distance calculation and the subsequent correct labeling probability estimation will
still be able to filter out most of these incorrectly-labeled target samples, thus improving
the overall adaptation robustness.

Figure 4.2: Source samples as class anchors.

The use of data from both domains is possible due to the domain invariance pro-
moted by the adversarial domain discriminator D, which was first proposed by [5] and
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is also employed by the original RSDA method. This discriminator takes the features
produced by the feature extractor F and classifies them based on which domain they are
from, creating a binary classification task that is trained along with the other components
of the RSDA architecture in a multi-task end-to-end setup. Feature domain-invariance is
achieved with the adversarial game played between D and F , in which D has to be able
to correctly identify the domain of each feature and F has to produce domain-invariant
features in order to impair D’s ability to discriminate the samples between the domains.
This adversarial min-max objective is implemented directly via a Gradient Reversal Layer
added just before the initial layer of D, as originally proposed by [5]. Throughout the
training, the adversarial objective will make the features produced by F more domain-
invariant by introducing domain confusion. This enables the use of the source samples in
the estimation of the mixture’s parameters, as we can assume that the distribution shift
between the source and target features will diminish as the training progresses due to the
domain invariability introduced by D.

In summary, we propose that both labeled data from the source {(xsi , ysi )}Ns
i=1 and

pseudo-labeled data from the target {(xtj, ỹtj)}}Nt
j=1 domains should be used when esti-

mating the correct labeling probability for the target samples with the Gaussian-uniform
mixture models. This will avoid a class-concept shift problem, as we sustain that the
ground-truth labels of the source samples will serve as anchors to the true class meanings.

4.1.2 Dimensionality Reduction

As presented in Chapter 2, many methods employ a dimensionality reduction strat-
egy in their solutions to the DA problem [26, 13, 23, 21]. The main assumption made
by these methods is that adaptation can be more easily achieved in a lower-dimensional
space. Many of them will use some kind of distribution discrepancy metric, such as the
Maximum Mean Discrepancy (MMD), to explicitly model the distribution gap between
the domains, so that the reduced feature space can be built in a way that minimizes the
domain shift in the lower-dimensional representations.

Based on the aforementioned works and following the assumption that adaptation
can be more easily achieved in lower dimensional spaces, we also propose incorporating a
dimensionality reduction strategy to the RSDA [9] method. To this end, we transform the
image features f produced by the feature extractor F to a reduced space by applying a
dimensionality reduction algorithm, and then use these lower-dimensional representations
ri when estimating the correct labeling probability for the target samples.

The transformation of the image features to a lower-dimensional representation
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for estimating the mixture’s parameters is guided by the hypothesis that semantic-related
information would be privileged in the image representations in a reduced space. Being
that we consider the homogeneous DA scenario, in which the label space is the same
across the domains and the domain shift is caused by the difference in image conditions,
privileging information related to the semantic structure of the problem should lead to
a more robust estimation of the correct labeling probability, as the class centroids would
be more precise to each class meaning, thus enhancing the accuracy of the estimation
performed by each Gaussian-uniform mixture model.

We experiment with different dimensionality reduction algorithms and configura-
tions. The obtained results are presented and discussed in the following chapters. Note
that, different from the aforementioned literature methods, we do not explicitly model the
distribution discrepancy between the domains while creating the reduced representations.
Instead, we rely on the domain invariability introduced by the domain discriminator D
during training and use common dimensionality reduction algorithms, such as Principal
Component Analysis (PCA) [34] and Partial Least Squares (PLS) [46], to obtain the
reduced representations. This is done mainly to evaluate the efficacy of employing a
dimensionality reduction strategy without explicitly calculating the distribution discrep-
ancy across the domains, as this discrepancy is already implicitly modeled by the domain
discriminator and the adversarial framework for DA.

With the addition of the dimensionality reduction strategy, the estimation of the
correct labeling probability can be summarized in the following steps:

1. Given the samples x and their feature representation f , a dimensionality reduction
algorithm is applied to f , generating the reduced representations r.

2. Then, the distance d between each representation r and the respective reduced-space
class centroid Crk is calculated with respect to each sample.

3. Next, the calculated distances d are used in the EM algorithm to estimate the
parameters for the mixture model for each class.

4. Finally, the correct labeling probability γ is estimated for the target samples using
the Gaussian-uniform mixture models and the parameters estimated by the EM
algorithm.



4.1. Enhancing Pseudo-label Robustness 39

4.1.3 Enhanced Correct Labeling Probability Estimation

Pipeline

The complete procedure to estimate the correct pseudo-labeling probability for the
target samples, updated with the proposed enhancements, is presented in the diagram in
Figure 4.3. The features {f si } and {f tj} for the source and target samples, respectively, are
obtained by applying the feature extractor F trained on the previous iteration of RSDA
to the images from each domain, {xsi} and {xtj}. Then, the pseudo-labels ỹtj of the target
samples are assigned based on the output of the classifier C, which was also trained on
the previous iteration of RSDA. The dimensionality reduction algorithm is then applied
on {f si } and {f tj} to obtain the reduced representations {rsi } and {rtj} of each sample.
Note that the source ground-truth labels and target pseudo-labels can be used during this
step in some algorithms, such as in the Partial Least Squares (PLS) one.

Figure 4.3: Enhanced correct labeling probability estimation pipeline.

After the reduced representations are obtained, the estimation follows the same
steps as originally proposed in RSDA [9]: the centroids for each class are computed
with respect to the reduced representations and the distances {dsi} and {dtj} (dsi ∈ R
and dtj ∈ R) between each reduced feature and its respective class centroid, based on
the ground-truth labels for source samples and on the pseudo-labels for target ones, are
calculated. These distances are then inputted to the EM algorithm, as devised by [9],
to estimate the parameters {πk, σk, δk}Kk=1 for each Gaussian-uniform mixture model.
Finally, these mixture models are used to estimate the correct pseudo-labeling probability
{γj} for the target samples, which will then be used during training in the robust pseudo-
label loss formulation.

The complete steps of the RSDA training procedure updated with our proposed
enhancements are presented in Algorithm 1. Note that the previously discussed changes
are made to the estimation of the correct labeling probabilities of the target pseudo-
labeled samples and that the training of the feature extractor F , classifier C, and domain
discriminator D is performed using the original loss formulation, as proposed by [9] and
[5].
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Algorithm 1 Modified RSDA Training Procedure.
1: procedure Train(F,C,D)
2: Optimize F , C and D using the Basic Loss Lbas (Equation 3.2) for Nepochs epochs.
3: for stage = 1 to Nstages do
4: ỹtj, γj = GetCorrectLabelingProbability(F,C)
5: Unfreeze and randomly reinitialize the weights of F , C, and D.
6: Train F , C and D with the L loss (Equation 3.1), for Nepochs epochs.

7: procedure GetCorrectLabelingProbability(F,C)
8: Freeze the weights of F and C.
9: Obtain the features f si and f tj produced by F for all source xsi and target xtj

samples.
10: Assign the pseudo-labels ỹtj based on the output of C.
11: Run a dimensionality reduction algorithm on f si and f tj to obtain the reduced

features rsi and rtj.
12: Compute the centroid Ck for each class k = {1, 2, . . . , K} in the reduced space.
13: Compute the distances dsi and dtj between each reduced feature and the respective

class centroid (ground-truth labels for source samples and pseudo-labels for target
ones).

14: Run the EM algorithm, as defined in [9], to obtain the parameters πk, σk, and δk
for each of the k mixture models.

15: Estimate the correct labeling probability for the target samples γj with the
Gaussian-uniform mixture models.

return the estimated pseudo-labels ỹtj with their respective correct labeling prob-
ability γj.

4.2 Multi-class Domain Discriminator

One of the best-performing strategies for DA consists of an adversarial framework
with a discriminator that will classify the samples based on their domain. This discrimina-
tor will be trained via an adversarial objective in which it will get better at discriminating
the samples, while the feature extractor network will also get better at producing more
domain-invariant features, thus diminishing the effects of the data shift between the source
and target domains. This strategy for DA was made popular by [5] with their proposal
of the Domain Adversarial Neural Network (DANN), in which the min-max adversarial
objective is directly implemented using a Gradient Reversal Layer, and the whole network
is trained in an end-to-end fashion, as discussed in Chapter 2.

The discriminator network is usually comprised of a set of fully-connected layers
that take the feature vector produced by the feature extractor network as input and
perform a binary classification task by outputting the probability of the sample being
from the source or target domains. The Gradient Reversal Layer (GRL) proposed by
[5] multiplies the discriminator’s gradient by a negative factor during backpropagation,
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Figure 4.4: Proposed multi-class discriminator architecture.

thus inverting it. As during training the overall network error will be minimized, the
discriminator error will actually be maximized due to the gradient inversion performed
by the GRL. This adversarial objective will translate to more domain-invariant features, as
these will lead to higher domain confusion, i.e., the inability of the discriminator network
to correctly classify the samples based on their domain [5].

Some methods propose changes to how this discriminator network is structured.
For instance, [18] propose that the discriminator should classify the samples into k + 1

classes rather than the original binary classification: the source samples will be classified
into one of the k classes based on their ground-truth labels and the target ones will be
classified into an additional class representing the Other Domain. The authors sustain
that this allows for better use of the label information during the adaptation procedure,
thus leading to better performance on target data.

Based on the multi-class discriminator concept, we propose leveraging the pseudo-
labels estimated in RSDA [9] to incorporate the class information into the domain dis-
crimination process. Originally, RSDA uses the same adversarial framework as proposed
by [5]: a single binary domain classifier, and no class-label information is used in the
adversarial loss, which takes into account only the domain label. As class labels are
available for both domains due to the pseudo-label estimation for the target samples, we
propose changing the original binary discriminator of RSDA to two separate multi-class
discriminator networks:

• a Source Discriminator, which will classify the source samples based on their
ground-truth labels and will assign all target samples to an extra Other Domain
class;

• a Target Discriminator, which will classify the target samples based on their
pseudo-labels and will assign all source samples to the extra Other Domain class.

In this configuration, there will be two separate discriminator networks, each with
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k + 1 classes: the k classes from the original image classification problem, plus an extra
Other Domain class. Both discriminators will receive the feature vectors produced by the
feature extractor network for samples from both domains and both discriminators will
be connected to a Gradient Reversal Layer (GRL), which will implement the adversarial
objective. This setup is illustrated in Figure 4.4.

During training, each discriminator will have its adversarial loss calculated sepa-
rately: Lsadv and Ltadv for the source and target discriminators, respectively. In order to
incorporate these losses into the original RSDA loss formulation presented in Equation
3.1, Lsadv and Ltadv should be aggregated. We propose using a dynamic linear operation
to sum these losses together during training:

Ladv = ωLsadv + (1− ω)Ltadv, (4.2)

where ω is a weight that will select which loss will have a higher influence on the complete
adversarial loss.

At the start of the training ω = ωo = 1, meaning that only the source discrimi-
nator’s loss will be taken into account in the complete loss formulation. Then, in each
following training epoch, ω will be decreased until reaching a final value ω = ωf in the last
epoch. ωf is a new hyper-parameter that must be manually set by the user. ω will have
linear decrements in each epoch, and the actual value of this delta will be determined by
the number of training epochs and the value of ωf :

ωn+1 = ωn −∆ω

∆ω =
ωf − ωo
E − 1

,
(4.3)

where n is the current epoch and E is the total amount of epochs.
Equations 4.2 and 4.3 were devised with the goal to give a higher importance to the

source discriminator at the beginning of the training and balancing the discriminators’
losses throughout the epochs by iteratively decreasing the source discriminator’s impor-
tance while also increasing the target discriminator’s one. This is done primarily to avoid
any negative effects that may be caused by the inherent error associated with the target
pseudo-labels. By starting out with a higher importance on the source discriminator,
the network will be able to better capture the correct class information embedded in the
source samples and then slowly incorporate the information from the target pseudo-labels.

As the correct pseudo-labeling probabilities estimated by the Gaussian-uniform
mixture models are also available, the classification error of the pseudo-labeled samples
on the target discriminator is weighted by this estimated correct labeling probability. This
allows for more robust training, as it will reduce the negative influence of wrongly-assigned
pseudo-labels.
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The main motivation behind the proposal of this multi-class discriminator setup
is the hypothesis that performing the domain discrimination on a local, class-based, level
will result in a class-aware domain confusion that will ultimately lead to better adapta-
tion results. The original binary discriminator as proposed by [5] does not leverage the
class information and performs domain discrimination on a global level. This will lead
to domain-invariability, but it may also have a negative impact on the feature’s discrim-
inability for the original classification task. Therefore, we sustain that incorporating class
labels in this procedure using the estimated pseudo-labels for the target samples may lead
to an overall better adaptation, as the domain-invariability will be introduced while also
maintaining the class structures necessary for successfully performing the original image
classification task.
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Chapter 5

Experimental Results

In this chapter, the results achieved with the approaches proposed in this work are pre-
sented and discussed. We also present the results from our case study on performing
domain adaptation in a real-world setting.

5.1 Experimental Setup

We first describe the setup employed during our experiments with the methods
proposed in this work. This includes the data sets, neural network architecture, hyper-
parameters, and other training configurations that were used.

Data Sets

We evaluate the proposed approaches presented in Chapter 4 using the Office-
31 [37] and Office-Home [43] data sets, which are common benchmark data sets used
throughout the DA literature.

The Office-31 data set contains 4,110 images of 31 object categories commonly
found in an office environment. These images are distributed across 3 domains: Amazon,
DSLR, and Webcam. The Amazon domain consists of images scrapped from the online
store, hence the pictures usually do not have a background and have more uniform illumi-
nation and quality. The DSLR and Webcam domains are comprised of images taken in an
actual office with a DSLR camera and a webcam, respectively. Therefore, the images from
these two domains have complex backgrounds and also have more variation in quality and
overall conditions, such as illumination and the object pose. Some sample images from
this data set are presented in Figure 5.1.
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Figure 5.1: Sample images from the Office-31 data set [37].

Figure adapted from [47].

Figure 5.2: Sample images from the Office-Home data set [43].

Figure extracted from [43].

The Office-Home data set is similar to the Office-31 one, but is bigger and more
challenging. It has 15,500 images of 65 object categories divided into 4 domains: Artistic,
Clipart, Product, and Real-World. The Clipart domain stands out, as it is comprised of
vector drawings of objects, making it very different than the images in the other domains.
The Product and Real-World domains are very similar to the Amazon and DSLR domains
of Office-31, respectively. The Art domain consists of images that contain some post-
processing and other visual artifacts that give them a unique style. Figure 5.2 contains
some images from these 4 domains. Note that there is a big data shift across these domains
for images in the same class, which can be perceived in the difference in image conditions
and in the structure of each object itself.

We follow the standard unsupervised DA evaluation protocol for these data sets, in
which the maximum accuracy achieved on target data is reported by varying the source-
target pairs to cover all possible combinations in the data set. Furthermore, all the
available data on both source and target domains are used during training, except for
the target ground-truth labels. The maximum test accuracy achieved during training is
reported by comparing the model’s prediction for all target samples against the target
ground-truth labels.
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Implementation details

The proposed approaches were implemented using the PyTorch Python library,
based on the code distributed by the authors of RSDA [9]. As in the original RSDA
method, we also use the ResNet-50 [10] architecture with weights pre-trained on ImageNet
as the feature extractor F . For the classifier C and domain discriminator D, we use the
same spherical layers and activation functions described in the original RSDA paper [9],
with a bottleneck dimension of 256. All hyper-parameters, including the network learning
rate and the ones related to the Expectation-Maximization algorithm, are defined as in
the original RSDA paper [9], so we can correctly evaluate the impact of the proposed
enhancements.

Dimensionality Reduction

In order to evaluate the proposed addition of a dimensionality reduction step to
the correct labeling probability estimation pipeline, we use two popular algorithms:

• Principal Component Analysis (PCA) [34], which reduces the dimensionality of data
while also preserving the data’s variance by finding principal components, i.e., the
dimensions with a higher variance;

• Partial Least Squares (PLS) [46], which builds a lower-dimensional space by taking
into account both the data and the labels by finding the multidimensional direction
in the data space that will better explain the variance in the label space.

Both algorithms take the 256-dimensional feature vector produced by the feature
extractor F and reduce it before calculating the centroid distances in the reduced feature
space, as described in Chapter 4. For PLS, we experiment with different settings of output
dimensions. For PCA, the dimensionality is reduced until a threshold of 95% of explained
variance is met. We use the PCA and PLS implementations available in the scikit-learn
Python package. We chose these two popular dimensionality reduction algorithms to easily
incorporate this step into the original correct labeling probability estimation pipeline of
[9]. Note that we also did not change the bottleneck dimensionality to not interfere with
the network’s ability to perform the original image classification task.
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5.2 Enhancements to Pseudo-label Robustness

We first experiment with the enhancements to the correct labeling probability
estimation pipeline, as described in Section 4.1. The results achieved for all the Source-
Target pairs in the Office-31 and Office-Home1 data sets are reported in Tables 5.1 and
5.2, respectively. We report the average classification accuracy and its standard deviation
achieved on the target data with each method in three independent runs. In the first three
rows, we present the baseline results for a no-adaptation scenario, in which the network
is trained using only source-domain data, for the DANN [5] method, which is the baseline
for RSDA, and the original RSDA method as proposed by [9], respectively.2 Then, in the
next two rows we present the results achieved with the incorporation of a dimensionality
reduction algorithm into the correct labeling estimation pipeline (where c is the number of
output dimensions when using the PLS algorithm). In the next row, the results achieved
using data from both domains in this estimation are reported. Finally, in the last two
rows, we present the results with the fully modified pipeline with the use of data from
both domains and the addition of the dimensionality reduction step.

Analyzing the results in Tables 5.1 and 5.2, we can see that the introduction of
a dimensionality reduction step to the correct labeling estimation pipeline resulted in a
small improvement in the model’s performance on target data in most scenarios, with the
PLS algorithm having a slight advantage over the PCA one. In some scenarios, however,
there was a small reduction in the achieved accuracy, which is probably due to the loss of
information implicated by the lower dimensionality. Regarding the use of data from both
domains in the correct labeling probability estimation, the results indicate that this change
was able to considerably improve the target accuracy in most scenarios, with a gain of
up to 4 percentage points. However, even as the addition of the dimensionality reduction
alone was not able to significantly improve the baseline results, when it was combined
with the use of data from both domains in the fully enhanced correct labeling probability
estimation pipeline proposed in this work, we get an even greater improvement on the
adaptation result, increasing up to 7 percentage points when compared to the results
achieved by the baseline RSDA method.

In the fully enhanced correct labeling estimation pipeline, we can see that bet-
ter target accuracies were achieved using the PLS dimensionality reduction algorithm in
most scenarios. This is probably due to PLS taking into account the label information,
ground-truth labels for source samples and pseudo-labels for target ones, when creating
the reduced space. This shows that leveraging semantic class information has a positive

1Office-Home domain names have been shortened for better visualization: Art (Ar), Clipart (Cl),
Product (Pr), and Realworld (Rw).

2We report the results achieved with the implementation made available by the RSDA authors.
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Table 5.1: Target classification accuracy on the Office-31 data set with the enhanced
correct labeling estimation pipeline

Method Amazon-DSLR Amazon-Webcam DSLR-Amazon DSLR-Webcam Webcam-Amazon Webcam-DSLR

No Adapt (ResNet-50 [10]) 80.0±3.6 79.6±0.3 59.5±2.4 91.4±1.1 61.9±0.9 99.0±0.8

DANN [5] 79.7±0.4 82.0±0.4 68.2±0.4 96.9±0.2 67.4±0.5 99.1±0.1

RSDA [9] 90.6±0.1 92.0±0.7 72.3±1.1 97.6±0.2 75.7±0.5 100.0±0.0

RSDA + PCA 89.4±0.2 92.2±0.1 72.0±0.8 98.1±0.1 74.5±0.1 100.0±0.0

RSDA + PLS (c = 10) 90.0±0.3 93.8±0.2 71.0±0.3 97.9±0.2 75.0±0.4 100.0±0.0

RSDA + BOTH 93.0±0.3 93.4±0.3 75.8±0.5 98.7±0.5 77.5±0.8 100.0±0.0

RSDA + BOTH + PCA 92.3±0.3 93.0±0.9 75.9±0.4 99.2±0.1 77.9±0.1 100.0±0.0

RSDA + BOTH + PLS (c = 10) 93.4±0.2 93.8±0.4 79.3±0.4 99.2±0.1 78.8±0.4 100.0±0.0

Table 5.2: Target classification accuracy on the Office-Home data set with the enhanced
correct labeling estimation pipeline

Method Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr

No Adapt (ResNet-50 [10]) 36.4±0.4 58.3±0.8 68.7±0.6 44.1±2.0 52.1±1.1 55.8±1.6 46.1±1.2 32.6±0.8 67.0±1.0 63.0±0.5 40.7±1.3 74.1±0.7

DANN [5] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8
RSDA [9] 51.1±0.6 73.5±0.4 78.3±0.2 62.5±0.4 70.1±0.3 73.3±0.4 61.8±0.5 50.6±0.7 79.4±0.3 72.3±0.4 55.6±0.5 82.8±0.6

RSDA + PCA 50.9±0.3 73.6±0.4 78.7±0.4 62.4±0.8 71.9±0.4 73.8±0.5 62.6±0.2 50.7±0.1 79.1±0.3 72.1±0.2 55.7±0.5 82.7±0.4

RSDA + PLS (c = 20) 52.1±0.2 74.1±0.3 79.1±0.3 63.9±0.4 71.6±0.3 74.9±0.3 63.3±0.1 51.1±0.2 79.6±0.1 72.4±0.5 54.1±0.2 83.6±0.3

RSDA + BOTH 52.6±0.2 74.9±0.5 80.6±0.3 64.4±0.4 74.6±0.4 74.7±0.1 66.1±0.4 52.6±0.1 80.5±0.1 73.3±0.4 56.1±0.2 84.1±0.2

RSDA + BOTH + PCA 54.1±0.4 75.5±0.2 80.9±0.4 65.1±0.5 75.3±0.2 75.1±0.5 66.3±0.8 53.6±0.4 80.9±0.1 73.7±0.2 58.2±0.3 84.3±0.3

RSDA + BOTH + PLS (c = 20) 54.8±0.3 75.9±0.3 81.1±0.1 66.3±0.5 75.1±0.2 75.4±0.4 67.2±0.1 53.4±0.3 80.6±0.2 73.9±0.1 57.8±0.2 84.7±0.2

impact when creating the reduced feature representations, leading to better adaptation.
By taking a look at the more challenging scenarios, such as the DSLR-Amazon and

the Webcam-Amazon ones in the Office-31 data set and the ones involving the Clipart
domain in the Office-Home data set, we can see that the proposed enhancements were
also able to improve the overall results achieved on these harder settings. Specifically,
in the Art-Clipart and Product-Clipart settings, in which the baselines have their worst
results, our proposed enhancements were able to improve the baseline RSDA’s accuracy
by up to 3.7 percentage points.

In order to better understand how the size of the reduced space impacts the overall
results, we perform an experiment varying the output dimensions of PLS. In Tables 5.3
and 5.4, the target classification accuracies obtained with different PLS output dimensions
c = 10, 15, 20, 25 are presented.

Note that in the Office-31 data set, Table 5.3, the best accuracy was achieved
using 10 dimensions, while in the Office-Home data set, Table 5.4, a higher number of
dimensions, 20, achieved the best results. This illustrates how the Office-Home data set
is more challenging than the Office-31 one, due to its higher number of classes and the
more diverse collection of images. Therefore, more information is necessary to effectively
perform the correct labeling probability estimation, requiring more dimensions. Note,
however, that with more dimensions, c = 25, there is a slight decrease in the performance
achieved in the Office-Home data set, indicating that a lower-dimensional space allows
for a better estimation of the correct labeling probability, as long as there are enough
dimensions to carry the semantic class-related information.

Figure 5.3 presents the t-SNE [42] visualizations of the features produced by the
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Table 5.3: Varying PLS output dimensionality in the enhanced correct labeling estimation
pipeline - Office-31 results

Amazon-DSLR Amazon-Webcam DSLR-Amazon DSLR-Webcam Webcam-Amazon Webcam-DSLR

c = 10 93.4±0.2 93.8±0.4 79.3±0.4 99.2±0.1 78.8±0.4 100.0±0.0

c = 15 92.5±0.2 93.1±0.3 78.4±0.2 99.1±0.1 78.1±0.5 100.0±0.0

c = 20 91.9±0.3 93.2±0.2 78.1±0.4 99.1±0.2 77.6±0.3 100.0±0.0

c = 25 92.1±0.1 92.8±0.2 77.9±0.3 99.0±0.2 77.8±0.9 100.0±0.0

Table 5.4: Varying PLS output dimensionality in the enhanced correct labeling estimation
pipeline - Office-Home results

Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr

c = 10 53.1±0.2 74.8±0.3 80.1±0.3 65.7±0.2 73.4±0.3 74.8±0.1 65.3±0.8 53.1±0.2 81.1±0.5 72.1±0.3 57.2±0.1 84.1±0.3

c = 15 53.7±0.3 75.1±0.1 80.6±0.2 65.9±0.3 74.4±0.8 75.2±0.3 65.8±0.5 52.9±0.1 80.5±0.2 72.8±0.2 57.7±0.1 84.6±0.1

c = 20 54.8±0.3 75.9±0.3 81.1±0.1 66.3±0.5 75.1±0.2 75.4±0.4 67.2±0.1 53.4±0.3 80.6±0.2 73.9±0.1 57.8±0.2 84.7±0.2

c = 25 54.2±0.2 75.5±0.2 81.1±0.2 66.1±0.3 76.1±0.2 75.1±0.2 66.9±0.2 52.5±0.2 80.5±0.2 73.2±0.3 57.1±0.2 83.3±0.2

feature extractor network F after the complete training procedure in the DSLR-Amazon
scenario for both the original RSDA method and the enhanced one. The source samples
are shown in red and the target ones in blue. Notice how the proposed enhancements led to
features with better inter-class separability in both source and target domains, illustrated
by the lower amount of points in the low-density areas between each class cluster. These
observations corroborate that the proposed modifications to the original RSDA method
resulted in an even more robust calculation of the correct labeling probabilities, which in
turn led to better classification results, as presented in the previous tables.

In summary, the overall analysis of the achieved results shows that the proposed
enhanced pipeline for estimating the correct labeling probabilities, with the addition of a
dimensionality reduction step and the use of data from both domains in the Expectation-
Maximization algorithm, led to an improvement over the original method, thus indicating
that the hypotheses that guided these modifications hold true. These results then demon-
strate that it is beneficial for DA that we make effective use of the available data in
both source and target domains and that the transformation of the features to a lower
dimensional space can indeed lead to a more robust adaptation of the semantic knowledge
across the domains.
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Figure 5.3: Feature t-SNE visualization.

(a) Baseline RSDA [9].

(b) RSDA with the proposed enhanced correct labeling
probability estimation pipeline.
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5.3 Multi-class Discriminator Results

In this section, the results achieved with the multi-class discriminator architecture
described in Section 4.2 are presented and discussed. The classification accuracy obtained
in the target domain by replacing the original adversarial loss of RSDA [9] with the
proposed multi-class discriminator one for each Source-Target pair in the Office-31 and
Office-Home data sets are presented in Tables 5.5 and 5.6, respectively. We present the
target classification accuracy obtained for different values of ωf = 0.0, 0.25, 0.5, 0.75, 1.0.
As described in Section 4.2, ωf is a hyper-parameter that controls the importance given
to the source and target discriminators. As ωf increases, the overall importance given
to the target discriminator throughout the training decreases. Therefore, in the scenario
with ωf = 0.0, the target discriminator will have a higher importance at the end of the
training than when ωf = 1.0, in which only the source discriminator will be taken into
account as the target one will have a weight of 0.0 throughout the whole training.

Table 5.5: Target classification accuracy on Office-31 data set with the proposed multi-
class discriminator

Amazon-DSLR Amazon-Webcam DSLR-Amazon DSLR-Webcam Webcam-Amazon Webcam-DSLR

No Adapt (ResNet-50 [10]) 80.0±3.6 79.6±0.3 59.5±2.4 91.4±1.1 61.9±0.9 99.0±0.8

DANN [5] 79.7±0.4 82.0±0.4 68.2±0.4 96.9±0.2 67.4±0.5 99.1±0.1

RSDA [9] 90.6±0.1 92.0±0.7 72.3±1.1 97.6±0.2 75.7±0.5 100.0±0.0

RSDA + Multi-class Discriminator (ωf = 0.0) 91.1±0.1 92.1±0.3 71.5±0.1 97.1±0.2 74.2±0.2 100.0±0.0

RSDA + Multi-class Discriminator (ωf = 0.25) 92.1±0.2 93.1±0.4 72.2±0.3 97.8±0.3 75.4±0.2 100.0±0.0

RSDA + Multi-class Discriminator (ωf = 0.5) 92.2±0.1 93.4±0.2 73.2±0.3 98.2±0.1 76.8±0.3 100.0±0.0

RSDA + Multi-class Discriminator (ωf = 0.75) 92.7±0.2 94.1±0.3 74.1±0.4 98.9±0.1 77.9±0.3 100.0±0.0

RSDA + Multi-class Discriminator (ωf = 1.0) 91.9±0.2 92.6±0.2 73.1±0.2 97.9±0.1 76.1±0.1 100.0±0.0

Table 5.6: Target classification accuracy on Office-Home data set with the proposed multi-
class discriminator

Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr

No Adapt (ResNet-50 [10]) 36.4±0.4 58.3±0.8 68.7±0.6 44.1±2.0 52.1±1.1 55.8±1.6 46.1±1.2 32.6±0.8 67.0±1.0 63.0±0.5 40.7±1.3 74.1±0.7

DANN [5] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8
RSDA [9] 51.1±0.6 73.5±0.4 78.3±0.2 62.5±0.4 70.1±0.3 73.3±0.4 61.8±0.5 50.6±0.7 79.4±0.3 72.3±0.4 55.6±0.5 82.8±0.6

RSDA + Multi-class Discriminator (ωf = 0.0) 50.4±0.1 71.9±0.2 77.8±0.3 62.1±0.2 69.7±0.2 72.3±0.1 61.6±0.2 49.8±0.1 79.2±0.2 71.8±0.1 55.2±0.2 81.7±0.3

RSDA + Multi-class Discriminator (ωf = 0.25) 50.8±0.3 72.1±0.4 78.4±0.1 62.5±0.4 70.4±0.2 72.8±0.2 61.9±0.2 50.2±0.3 79.5±0.1 71.9±0.2 55.7±0.3 82.2±0.2

RSDA + Multi-class Discriminator (ωf = 0.5) 51.2±0.3 73.4±0.2 78.7±0.2 63.2±0.3 71.9±0.1 73.9±0.1 63.1±0.4 51.5±0.2 79.7±0.3 72.2±0.2 56.1±0.4 82.7±0.3

RSDA + Multi-class Discriminator (ωf = 0.75) 52.1±0.2 74.4±0.2 79.5±0.2 64.1±0.3 72.5±0.3 74.7±0.5 64.2±0.2 52.9±0.3 80.2±0.2 72.4±0.1 56.4±0.3 83.2±0.2

RSDA + Multi-class Discriminator (ωf = 1.0) 51.3±0.2 73.8±0.2 78.6±0.2 63.6±0.4 72.1±0.1 74.1±0.2 63.3±0.2 51.7±0.2 79.7±0.2 72.1±0.2 55.9±0.2 82.8±0.1

The results in Tables 5.5 and 5.6 indicate that the proposed multi-class discrim-
inator architecture is able to improve the baseline RSDA results in all tested scenarios
when ωf = 0.75, i.e., when we give higher importance to the source discriminator but
still take the target one into consideration. Note, however, that when we increase the
importance given to the target discriminator by decreasing ωf , the method achieves con-
siderably lower accuracies, sometimes even worse than the baseline RSDA, especially when
ωf = 0.0. This may be explained by the inherent error embedded in the pseudo-labels
that are used in the target discriminator. Even though the correct labeling probabilities
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Figure 5.4: Varying ωf for Office-31’s Webcam-Amazon setting.
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Figure 5.5: Varying ωf for Office-Home’s Art-Clipart setting.
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are used to weight the classification error in the target discriminator, the results show
that the imprecision associated with the pseudo-labels still causes a negative impact on
the training procedure. By reducing the overall importance of the target discriminator in
the ωf = 0.75 scenario, we can balance the loss in performance due to using the pseudo-
labels with the gain caused by class-aware domain discrimination, hence leading to better
results. Note, however, that when we fully remove the target discriminator’s influence by
setting ωf = 1.0, we get lower results than with ωf = 0.75, thus indicating that using the
pseudo-labeled target samples in the adversarial domain discrimination loss does, in fact,
contributes positively to the adaptation.

To better evaluate the impact of the ωf parameter, we experiment with a larger
range of values for some scenarios. In Figures 5.4 and 5.5, the accuracy achieved using
different values of ωf are reported. In these graphics, we can clearly see how the accuracy
behaves as we modify the value of ωf : as we increase ωf , the accuracy also increases
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Table 5.7: Target classification accuracy on Office-31 data set combining the enhanced
RSDA correct labeling estimation pipeline (PLS, c = 10) and the multi-class discriminator

Amazon-DSLR Amazon-Webcam DSLR-Amazon DSLR-Webcam Webcam-Amazon Webcam-DSLR

No Adapt (ResNet-50 [10]) 80.0±3.6 79.6±0.3 59.5±2.4 91.4±1.1 61.9±0.9 99.0±0.8

DANN [5] 79.7±0.4 82.0±0.4 68.2±0.4 96.9±0.2 67.4±0.5 99.1±0.1

RSDA [9] 90.6±0.1 92.0±0.7 72.3±1.1 97.6±0.2 75.7±0.5 100.0±0.0

Enhanced RSDA 93.4±0.2 93.8±0.4 79.3±0.4 99.2±0.1 78.8±0.4 100.0±0.0

Enhanced RSDA + Multi-class Discriminator (ωf = 0.0) 92.6±0.3 93.2±0.2 78.8±0.3 98.9±0.1 77.1±0.2 100.0±0.0

Enhanced RSDA + Multi-class Discriminator (ωf = 0.25) 92.9±0.5 93.5±0.2 79.1±0.2 99.1±0.2 77.5±0.2 100.0±0.0

Enhanced RSDA + Multi-class Discriminator (ωf = 0.5) 93.2±0.4 94.2±0.3 79.3±0.3 99.3±0.1 78.9±0.3 100.0±0.0

Enhanced RSDA + Multi-class Discriminator (ωf = 0.75) 93.8±0.2 94.6±0.1 79.7±0.3 99.5±0.1 79.2±0.2 100.0±0.0

Enhanced RSDA + Multi-class Discriminator (ωf = 1.0) 93.5±0.3 94.1±0.2 79.2±0.1 99.3±0.1 78.9±0.4 100.0±0.0

Table 5.8: Target classification accuracy on Office-Home data set combining the enhanced
RSDA correct labeling estimation pipeline (PLS, c = 20) and the multi-class discriminator

Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr

No Adapt (ResNet-50 [10]) 36.4±0.4 58.3±0.8 68.7±0.6 44.1±2.0 52.1±1.1 55.8±1.6 46.1±1.2 32.6±0.8 67.0±1.0 63.0±0.5 40.7±1.3 74.1±0.7

DANN [5] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8
RSDA [9] 51.1±0.6 73.5±0.4 78.3±0.2 62.5±0.4 70.1±0.3 73.3±0.4 61.8±0.5 50.6±0.7 79.4±0.3 72.3±0.4 55.6±0.5 82.8±0.6

Enhanced RSDA 54.8±0.3 75.9±0.3 81.1±0.1 66.3±0.5 75.1±0.2 75.4±0.4 67.2±0.1 53.4±0.3 80.6±0.2 73.9±0.1 57.8±0.2 84.7±0.2

Enhanced RSDA + Multi-class Discriminator (ωf = 0.0) 54.2±0.2 76.2±0.2 79.9±0.1 66.2±0.3 74.1±0.2 73.9±0.4 66.3±0.1 53.1±0.2 79.8±0.3 72.7±0.2 57.1±0.3 83.9±0.2

Enhanced RSDA + Multi-class Discriminator (ωf = 0.25) 54.6±0.4 76.8±0.3 80.2±0.2 66.9±0.4 74.8±0.1 74.9±0.3 66.9±0.2 53.3±0.1 80.2±0.2 73.1±0.3 57.4±0.2 84.2±0.1

Enhanced RSDA + Multi-class Discriminator (ωf = 0.5) 54.3±0.4 77.1±0.3 80.5±0.0 67.1±0.6 75.5±0.1 75.6±0.2 67.5±0.3 53.6±0.3 80.3±0.1 73.5±0.2 57.7±0.3 84.5±0.2

Enhanced RSDA + Multi-class Discriminator (ωf = 0.75) 54.9±0.3 76.8±0.5 81.2±0.5 67.0±0.2 76.1±0.4 76.0±0.2 67.8±0.7 54.1±0.3 80.9±0.2 73.9±0.4 58.1±0.2 84.9±0.2

Enhanced RSDA + Multi-class Discriminator (ωf = 1.0) 54.4±0.2 76.4±0.2 79.7±0.2 66.6±0.1 75.4±0.2 75.5±0.3 67.3±0.2 53.2±0.2 80.7±0.1 73.6±0.2 57.6±0.1 84.8±0.2

until achieving a maximum value between ωf = 0.7 and ωf = 0.8. Then, the accuracy
drops sharply as we completely remove the target discriminator’s influence on the complete
adversarial loss when ωf = 1.0. These results corroborate the previously made observation
that the negative influence of wrongly assigned pseudo-labels and the positive effect of
class-aware domain discrimination including target samples seems to balance out resulting
in an overall better adaptation when ωf ∼ 0.75.

We also run experiments combining the proposed enhanced correct labeling esti-
mation pipeline described in Section 4.1 and the multi-class discriminator architecture.
The results are presented in Tables 5.7 and 5.8, where we compare the baselines against
the combined method.

The addition of the multi-class discriminator architecture to the enhanced RSDA
pipeline was able to further increase the target classification accuracy by a slight margin
in most scenarios. We can also see the same pattern regarding the ωf parameter, in
which we get better results with a higher value of ωf . These results show that, while
each enhancement can considerably improve the target accuracy over the baseline RSDA
method, the combination of both enhancements does not result in a big improvement
over the results achieved by each one separately. Therefore, this indicates that there may
be other ways to better incorporate the more robust correct pseudo-labeling probability
estimation into the multi-class discrimination architecture, in order to bypass the negative
effects of wrongly assigned pseudo-labels. Nevertheless, the overall results suggest that
both approaches could indeed improve the results achieved by the baseline RSDA method.
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5.4 Case Study: Domain Adaptation for Automatic

PPE Detection

Domain adaptation methods can be leveraged in real-world scenarios to greatly
reduce the development cost of smart systems, by allowing semantically-related data that
are already available to be used to train machine learning models. To test the effectiveness
of performing DA in a real-world setting, we conduct an experiment based on automatic
Personal Protective Equipment (PPE) usage detection.

PPEs, such as hard hats, vests, and protection glasses, are a fundamental part
of work safety as they protect workers against serious injuries that may be caused by
workplace accidents. Therefore, their use is mandatory in places such as construction sites,
oil platforms, and factories. Enforcing PPE usage can be a tedious task for managers and
work safety professionals, as there are usually many workers on a job site, and checking
if each one of them is using all the required PPEs takes a lot of time. To this end, a
smart system can be used to automate this task, by processing images captured from
surveillance cameras placed across the site and automatically detecting which workers are
not wearing the full set of required PPEs.

As much as a smart system that is able to automatically and accurately check
for PPE usage is very desired, gathering and labeling the data for training the machine
learning models that would perform this detection is a very time and resource-consuming
task: one would need to record many hours of footage at each work-site where the system
would be active and then manually label each image based on the PPEs that each subject
is wearing. This will be a huge obstacle in the development of such a system. Therefore, a
solution would be to apply a DA method to adapt data that are already available to avoid
having to collect and label multiple data sets, thus skipping the previously mentioned high
cost.

To explore the DA solution in the aforementioned scenario, we created a test setup
consisting of surveillance images from two different data sets:

• Simulation: images captured with surveillance cameras in a simulated work en-
vironment, in which test subjects wear different PPE combinations and perform a
pre-defined routine in front of the cameras;

• Real: images captured with surveillance cameras installed in a real workshop, where
actual workers are performing their duties as usual. These images were recorded
over multiple weeks and no intervention was made to the workers’ usual day-to-day
tasks.
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Figure 5.6: Sample images from the Simulation data set.

Figure 5.7: Sample images from the Real data set.

Some images from these data sets are presented in Figures 5.6 and 5.7. Notice how
there is a considerable difference in image conditions between the simulated environment
and the real one. Furthermore, we can see from these samples that the real data set
contains a lot more variation in the worker’s pose and the aspects of each PPE, as these
images were collected in an uncontrolled environment with the workers going through
their usual day-to-day routines without any kind of intervention.

The main goal of this case study is to train a PPE detection model using labeled
data from the simulated environment and unlabeled data from the real domain, thus sim-
ulating a real application of unsupervised DA. To this end, we train models for detecting
two types of PPE: hard hat and vest. The model should take an image of the worker, as
shown in Figures 5.6 and 5.7, and perform a binary classification task by outputting 0 if
the PPE is not present and 1 if it is. The amount of images in each class in each data set
is presented in Tables 5.9 and 5.10.

For this experiment, we evaluate the adaptation performance of the original RSDA
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Table 5.9: Number of images with and without Hard hat in the Simulated and Real
data sets

Simulated Real

With Hard hat 5000 15000
Without Hard hat 5000 15000

Table 5.10: Number of images with and without Vest in the Simulated and Real data
sets

Simulated Real

With Vest 2500 15000
Without Vest 2500 15000

[9] method and the enhanced version with the changes discussed in Chapter 4, by compar-
ing the achieved target accuracy to that of a no-adaptation scenario, in which the model
is trained using only simulated data and tested on the real data.

We use the ResNet-50 [10] architecture with weights pre-trained on ImageNet as
the feature extractor network and we use the same protocol used for the Office-31 and
Office-Home data sets: all labeled source data and all unlabeled target data are used
during training and we evaluate the model on all target data using the ground-truth
labels.

We first evaluate the accuracy achieved on each data set in a traditional machine
learning setup, in which we train the neural network using only labeled data from each
domain. Therefore, there is no mix between data from different data sets, that is, each
one is trained separately and no transfer or adaptation is performed. These results are
presented in Table 5.11. Notice how we are able to achieve high accuracies in both data
sets, with a slightly lower accuracy on Real data, due to the higher variety present in this
domain, which makes classifying its samples harder than the Simulated ones.

Table 5.11: Classification accuracy achieved with traditional training

Hard hat Vest

Simulated 98.7±0.1 97.4±0.2

Real 97.6±0.1 95.3±0.1

Then we experiment with actually performing the adaptation from the source
Simulated domain to the target Real one. The adaptation results are summarized in
Table 5.12, where we report the accuracy achieved on target data, i.e., the Real data set
images, after training the model using the labeled Simulated images and the unlabeled
Real ones. By analyzing these results, we can see that the original RSDA method as
proposed by [9] was able to considerably improve the accuracy over the no-adaptation
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Table 5.12: Classification accuracy on Real data set images after performing the adap-
tation task Simulated→Real

Hard hat Vest

No Adapt (ResNet-50 [10]) 68.2±0.2 54.9±0.2

RSDA [9] 73.8±0.2 60.2±0.3

Enhanced RSDA (PLS, c = 20) 75.6±0.3 62.3±0.2

Enhanced RSDA (PLS, c = 20) + Multi-class Discriminator (ωf = 0.75) 76.9±0.1 62.9±0.3

scenario. We can also see that the accuracy obtained with the Vest PPE is significantly
lower than the one achieved for the Hard hat. This can be explained by the higher variety
of vest types that exist on the Real data, as is illustrated by the samples in Figure 5.7,
and also by the lower amount of images available in the Simulated domain, as shown in
Tables 5.9 and 5.10.

Nevertheless, the enhancements proposed in this work were also able to further
improve the target domain accuracy in this real-world example. When compared to the
original RSDA baseline, the method including the proposed enhancements to the correct
labeling estimation pipeline and the multi-class discriminator architecture was able to
improve the target accuracy by up to 3 p.p., thus showing how the proposed enhancements
could in fact improve the overall robustness of the original RSDA method.

However, even though the results show that DA methods can improve the accu-
racy over a no-adaptation scenario, the efficacy of such approaches decreases as the data
shift across the domains increases. This is evidenced by the lower overall results achieved
for the Vest PPE, where, as previously mentioned, we have lower data variety in the
Simulated data set, leading to a larger data shift when compared to the Real domain’s
data distribution. Furthermore, when comparing the adaptation results to those of the
traditional learning setup in Table 5.11, we notice a considerable gap between the accura-
cies, with the traditional setup achieving upwards of 30 more percentage points than the
adaptation-based approach. This shows that even though the experimented DA methods
can improve the results over a no-adaptation scenario, actually labeling the target data,
hence dealing with the associated high labeling cost, and performing a traditional training
procedure still leads to far greater results.

In summary, this case study shows that DA methods can be leveraged in real-world
scenarios to improve the performance on target data, with a considerable improvement
over a no-adaptation scenario. However, it also shows that these methods still cannot
achieve the same results as in a traditional learning setup that uses actual target labeled
data. Therefore, when developing a smart system that relies on machine learning models,
one must ponder the savings of skipping the high labeling cost by adapting available
data and the associated reduction of the system’s overall accuracy caused by the lack of
ground-truth target labeled data.
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5.5 Discussion

Overall, the experimental results show that our proposed changes to the RSDA [9]
method could consistently improve the accuracy achieved on target data in the commonly
used Office-31 and Office-Home benchmark data sets. The better use of the available data
by incorporating the source labeled samples in the correct labeling probability estimation
pipeline allied with the addition of a dimensionality reduction step before calculating the
sample class centroid distance in the feature space was able to considerably improve the
results achieved by the baseline method by up to 7 percentage points. These results
indicate that exploring ways to better incorporate the available data in the source and
target domains can, in fact, lead to better adaptation.

Furthermore, the proposed multi-class discriminator architecture could also im-
prove the baseline results, showing that taking the label information, including the pseudo-
labeled target data, into consideration while performing the domain discrimination can
introduce a class-aware domain confusion, which will ultimately lead to better accuracy
on the target domain. The incorporation of this multi-class discriminator architecture
into the RSDA method with our enhancements to the correct labeling estimation pipeline
further improved the results over the baseline, albeit by a small margin, indicating that
future works can explore better ways to incorporate the correct labeling probability into
the multi-class discriminator architecture to achieve even greater results.

Since RSDA was first introduced by [9], other methods that also build upon the
adversarial framework and the pseudo-labeling strategy for DA have been proposed. Re-
cently, [29] proposed CoVi, in which the vicinal label space is leveraged for an even more
robust use of the source labels and target pseudo-labels. [40] enhanced the adversar-
ial framework by integrating it with a visual transformer network, which processes the
images via a tokenized representation and refines the extracted features using global self-
attention. In Tables 5.13 and 5.14, we compare the results achieved by our baselines, our
proposed enhancements (using PLS, with c = 10 for Office-31 and c = 20 for Office-Home,
and ωf = 0.75 for both data sets), and these recently introduced methods. Note that our
proposed enhancements to RSDA still beat the results achieved by CoVi [29] in some set-
tings from both data sets. However, SSRT, with its use of a modern visual transformer,
was able to greatly improve the results in all settings from these data sets, especially in
the hardest ones of Office-Home.

The results achieved by the newer methods show that research on the DA topic is
progressing very rapidly, as there is a great desire to have a robust method that is able to
leverage the large publicly-available data repositories for training deep learning models.
Nevertheless, the enhancements proposed in this work still provide meaningful insights
that can further improve the DA performance of these newer methods:
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Table 5.13: Target classification accuracy on Office-31 data set for different methods
(highest accuracy in bold, second-best is underlined)

Method Amazon-DSLR Amazon-Webcam DSLR-Amazon DSLR-Webcam Webcam-Amazon Webcam-DSLR

No Adapt (ResNet-50 [10]) 80.0±3.6 79.6±0.3 59.5±2.4 91.4±1.1 61.9±0.9 99.0±0.8

DANN [5] 79.7±0.4 82.0±0.4 68.2±0.4 96.9±0.2 67.4±0.5 99.1±0.1

RSDA [9] 90.6±0.1 92.0±0.7 72.3±1.1 97.6±0.2 75.7±0.5 100.0±0.0

Enhanced RSDA 93.4±0.2 93.8±0.4 79.3±0.4 99.2±0.1 78.8±0.4 100.0±0.0

Enhanced RSDA + Multi-class Discriminator 93.8±0.2 94.6±0.1 79.7±0.3 99.5±0.1 79.2±0.2 100.0±0.0

CoVi [29] 98.0±0.3 97.6±0.2 77.5±0.3 99.3±0.1 78.4±0.3 100.0±0.0

SSRT [40] 98.6 97.7 83.5 99.2 82.2 100.0

Table 5.14: Target classification accuracy on Office-Home data set for different methods
(highest accuracy in bold, second-best is underlined)

Method Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr

No Adapt (ResNet-50 [10]) 36.4±0.4 58.3±0.8 68.7±0.6 44.1±2.0 52.1±1.1 55.8±1.6 46.1±1.2 32.6±0.8 67.0±1.0 63.0±0.5 40.7±1.3 74.1±0.7

DANN [5] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8
RSDA [9] 51.1±0.6 73.5±0.4 78.3±0.2 62.5±0.4 70.1±0.3 73.3±0.4 61.8±0.5 50.6±0.7 79.4±0.3 72.3±0.4 55.6±0.5 82.8±0.6

Enhanced RSDA 54.8±0.3 75.9±0.3 81.1±0.1 66.3±0.5 75.1±0.2 75.4±0.4 67.2±0.1 53.4±0.3 80.6±0.2 73.9±0.1 57.8±0.2 84.7±0.2

Enhanced RSDA + Multi-class Discriminator 54.9±0.3 76.8±0.5 81.2±0.5 67.0±0.2 76.1±0.4 76.0±0.2 67.8±0.7 54.1±0.3 80.9±0.2 73.9±0.4 58.1±0.2 84.9±0.2

CoVi [29] 58.5 78.1 80.0 68.1 80.0 77.0 66.4 60.2 82.1 76.6 63.6 86.5
SSRT [40] 75.1 88.9 91.0 85.1 88.2 89.9 85.0 74.2 91.2 85.7 78.5 91.7

• strategies that leverage both source labeled data and target pseudo-labeled data can
lead to better adaptation;

• performing DA in lower dimensional feature spaces can improve the adaptation
performance;

• and, finally, incorporating class-aware domain confusion into the adversarial frame-
work for DA can also contribute to better performance on the target domain.

Furthermore, we also demonstrated through our case study that DA methods can
also be leveraged in real-world applications, such as the PPE detection example that we
explored. The results from the case study showed that our proposed enhancements to
RSDA could also improve the baseline results in this real-world setting. However, they
also exposed some challenges for performing DA in a production setting, such as the
considerably lower accuracy achieved over the traditional learning setup, in which labels
are available, demonstrating that there is still a necessity to improve the performance
and robustness of DA in order for it to be a complete replacement for labeling data in a
real-world setting. As previously mentioned, our work provides meaningful directions for
future works to further improve their adaptation performance so that, as research on the
DA topic progresses, we may be able to avoid the high labeling cost without causing a
big impact on the model’s accuracy in real-world scenarios.
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Chapter 6

Conclusions and Future Works

In this work, we explored the Unsupervised Homogeneous Domain Adaptation problem
for image classification, in which a machine learning model that will classify images from a
target domain is trained using labeled data from a semantic-related source domain. This
allows training a model without having to label a large number of samples, thus skipping
that high labeling cost, which constitutes one of the main obstacles in the development
of machine learning-powered smart systems.

We provided an overview of commonly used approaches for dealing with domain
adaptation and proposed two new methods that enhanced the Robust Spherical Domain
Adaptation (RSDA) baseline, introduced by [9], by improving its adaptation perfor-
mance and robustness: we introduced an enhanced correct labeling probability estimation
pipeline that incorporated a dimensionality reduction step and better use of the available
data in each domain to further enhance the robustness of the target pseudo-labels. In ad-
dition, we also proposed a multi-class discriminator architecture to the domain adaptation
adversarial framework that leveraged ground-truth labeled source samples and pseudo-
labeled target ones to introduce class-aware domain confusion to the extracted image
features, leading to an improved adaptation.

Both methods introduced in this work were able to improve the classification accu-
racy on target data over the baseline RSDA, indicating that the proposed changes could
successfully enhance the robustness of the overall adaptation procedure. Furthermore,
the achieved results also demonstrated that exploring better ways to leverage the pseudo-
labeled target data, as we did in our proposed approaches, can indeed translate into a
more effective transfer of the knowledge from the source domain to the target one.

We also demonstrated through a case study that our proposed domain adaptation
methods could also enhance the classification accuracy in the target domain in a real-
world setting, although there is still a considerable accuracy gap when compared to the
results obtained with the traditional learning procedure, which requires the target data to
be completely labeled. Therefore, one should weigh the savings that come from using an
adaptation method to skip the high labeling cost against the hit in the model’s accuracy
caused by the lack of target labeled data.

Domain adaptation is currently a very actively researched topic, and progress is
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being made rapidly. Nevertheless, domain adaptation methods still need to be more ro-
bust to be effectively employed in real-world applications. Our work makes contributions
towards this goal by proposing enhancements that, besides improving our baseline re-
sults, also provide meaningful insights for further enhancing the adaptation performance.
Specifically, future works can combine our proposed enhanced correct labeling probabil-
ity estimation pipeline with novel concepts in the machine learning literature, such as
visual transformers, which produce powerful feature representations and can ultimately
lead to better performance on the target data. Furthermore, future methods can look for
alternative ways to introduce class-aware domain confusion in the features produced by
the neural network, based on the intuition that aligning the features across the domains
while also taking into account the class information can result in better adaptation, as
demonstrated by our second proposed method. Exploring different weighting strategies
or even different architectures for each discriminator can lead to an even more effective
domain confusion, hence better overall adaptation.
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