
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Johnatan Alves de Oliveira

Identifying and Evaluating Hard Skills of Software Developers from Source
Code Analysis

Belo Horizonte
2023

Johnatan Alves de Oliveira

Identifying and Evaluating Hard Skills of Software Developers from Source
Code Analysis

Final Version

Thesis presented to the Graduate Program in Computer Sci-
ence of the Federal University of Minas Gerais in partial ful-
fillment of the requirements for the degree of Doctor in Com-
puter Science.

Advisor: Eduardo Magno Lages Figueiredo
Co-Advisor: Mauŕıcio Ronny de Almeida Souza

Belo Horizonte
2023

2023, Johnatan Alves de Oliveira.
Todos os direitos reservados

 Oliveira, Johnatan Alves de.

O48i Identifying and evaluating hard skills of software developers
 from source code analysis [recurso eletrônico] : / Johnatan
 Alves de Oliveira – 2023.
 1 recurso online (105 f. il., color.) : pdf.

 Orientador: Eduardo Magno Lages Figueiredo
 Coorientador: Maurício Ronny de Almeida Souza

 Tese (Doutorado) - Universidade Federal de Minas Gerais,
 Instituto de Ciências Exatas, Departamento de Ciências da
 Computação.
 Referências: f.95-105

 1. Computação – Teses. 2. Engenharia de Software – Teses.
 3. Engenheiros de software - Recrutamento - Teses. 4. Git
 (Arquivo de computador) – Teses. I. Figueiredo, Eduardo
 Magno Lages. II. Souza, Maurício Ronny de Almeida. III.
 Universidade Federal de Minas Gerais, Instituto de Ciências
 Exatas, Departamento de Computação. IV.Título.

CDU 519.6*32(043)

Ficha catalográfica elaborada pela bibliotecária Irénquer Vismeg Lucas Cruz
CRB 6/819 - Universidade Federal de Minas Gerais - ICEx

���������	��
�����	�
��

��	�
���	�����������
��
������	�
��	�	����	��	
����
��
������	
�	
��
���	��������	
	
��
������	��	���
�

������	
�	
��
���	��������
��
� !�"�#$�
�������%���
	��
��	��	����
&	��
�'����
��
����(��
����������
���
������
����
	�	�%���
)�&�	�	�
	����
��
�������	
 �*+*
,*-*.,/,0
*
012340,0
1*50
60.70
*809/.0,320
73.+:;<=,0
1*53+
�*.>32*+?0@A
�23-B
�,<02,3

0C.3
�0C*+
�/C<*/2*,3
�
�2/*.;0,32�*102;09*.;3
,*
�/D.7/0
,0
�391<;0EF3
�
��
�
�23-B

0<2=7/3
�3..G
,*
	59*/,0
�3<H0
�
�332/*.;0,32�*102;09*.;3
,*
�391<;0EF3
	15/70,0
�
���	
�23-B

0273
�I5/3
,*
�5/4*/20
�05*.;*�*102;09*.;3
,*
�/D.7/0
,0
�391<;0EF3
�
��
��23-B
	.,2J
�040570.;*
&320�*102;09*.;3
,*
�/D.7/0
,0
�391<;0EF3
�
��
��23-B
�/+7>*2
)3.0;0+
�*22*/20�*102;09*.;3
,*
�391<;0EF3
�
����23-B
�/20
'<5*+H0�*102;09*.;3
,*
�.-329K:70
*

0;*9K:70
	15/70,0

�
����
�23-0B
)<5/0.0
	54*+
�*2*/20�*102;09*.;3
,*
�.-329K:70
�
�����/3
L*53
&32/H3.;*M
NO
,*
P<5>3
,*
QOQRB

���������	
����

�	���������
�����	���	�������	�����	�����	�����������	 ��!�����	�������"#���	$�%������	��	&'(&)(*&*+�	,�	-./0&�	���1����	2��3���	�4��
�	
�	5�
�6��
�	���	1��

�������	
��7	08	
�	�������	�8	-&709+�	
�	-+	
�	��:��;��	
�	*&*&7���������	
����

�	���������
�����	���	<����	=�>�?@��"�	A����	 ��!�����	��	�����"#���$�%������	��	*'(&)(*&*+�	,�	-9/0)�	���1����	2��3���	�4��
�	
�	5�
�6��
�	���	1��

�����	��	
��7	08
�	�������	�8	-&709+�	
�	-+	
�	��:��;��	
�	*&*&7���������	
����

�	���������
�����	���	���@�	B�?��	��	C?�>����	D�?��"��	 ��!�����	��	�����"#���$�%������	��	*'(&)(*&*+�	,�	-./&'�	���1����	2��3���	�4��
�	
�	5�
�6��
�	���	1��

�����	��	
��7	08
�	�������	�8	-&709+�	
�	-+	
�	��:��;��	
�	*&*&7���������	
����

�	���������
�����	���	����E@��	F���G	��	<?H����	$��I��	J��K���	�L"�����	��+&(&)(*&*+�	,�	-./+&�	���1����	2��3���	�4��
�	
�	5�
�6��
�	���	1��

�����	��	
��7	08	
�	�������	�8-&709+�	
�	-+	
�	��:��;��	
�	*&*&7���������	
����

�	���������
�����	���	���@M��	NO��"��	���������	J��K���	�L"�����	��&0(&'(*&*+�	,�	-*/&*�	���1����	2��3���	�4��
�	
�	5�
�6��
�	���	1��

�����	��	
��7	08	
�	�������	�8-&709+�	
�	-+	
�	��:��;��	
�	*&*&7���������	
����

�	���������
�����	���	J���	P�?��I��	J��K���	�L"�����	��	--(&'(*&*+�	,�	-0/9Q����1����	2��3���	�4��
�	
�	5�
�6��
�	���	1��

�����	��	
��7	08	
�	�������	�8	-&709+�	
�	-+	
���:��;��	
�	*&*&7���������	
����

�	���������
�����	���	N�?����	<?>��	 �������	J��K���	�L"�����	��	-*(&'(*&*+�	,�-'/-)�	���1����	2��3���	�4��
�	
�	5�
�6��
�	���	1��

�����	��	
��7	08	
�	�������	�8	-&709+�	
�	-+
�	��:��;��	
�	*&*&7R	
����S��

�	
����	
��������	��
�	���	���1���

	��	����2T��/((���7�1�U7;�(���(�������

��V�W�����7�2�X
�
�Y
��������V���1����Z�
V��U
�V
�����V�W�����Y&�	��1���
�
�	�	�[
�U�	:���4�

��	\]̂]̂_]	��	�[
�U�	̀à	<<b�̂_cc7F�!��d�@��e	f�������	�8	*+&Q*7*9**0&(*&*+gQ- hij	�8	*9090'9

Acknowledgments

Essa tese de doutorado é o resultado de uma jornada de muito aprendizado, esforço e

dedicação. Gostaria de expressar meu profundo agradecimento a todos que contribúıram

para o sucesso da minha tese de doutorado. Neste momento especial, gostaria de agradecer

em particular:

Inicialmente, gostaria de expressar a minha gratidão a Deus por ter me concedido

o conhecimento, as oportunidades e as conquistas ao longo dessa jornada de pesquisa.

Sou grato pela inspiração, força e orientação divina que recebi em todos os momentos. Ao

meu professor orientador, Eduardo Figueiredo, que me acolheu desde o ińıcio da minha

jornada cient́ıfica e me guiou com sabedoria, paciência e inspiração ao longo de todo o

processo de pesquisa. Sua orientação foi essencial para o desenvolvimento deste trabalho e

para o meu crescimento como pesquisador. Sua experiência e conhecimento contribúıram

significativamente para a qualidade e profundidade desta tese. Ao professor coorienta-

dor, Mauŕıcio Souza, pelo apoio, orientação e valiosos insights ao longo do meu percurso

acadêmico. Aos funcionários da UFMG, em especial aos funcionários do PPGCC, pela

disponibilidade, eficiência e apoio durante toda a minha trajetória acadêmica. O trabalho

de vocês nos bastidores é fundamental para o bom funcionamento do programa e para o

sucesso dos alunos. Aos meus colegas de laboratório, pela colaboração, troca de ideias

e amizade ao longo desses anos. Suas contribuições foram valiosas para o amadureci-

mento das minhas pesquisas e para o ambiente estimulante em que pude desenvolver meu

trabalho. A minha mãe, Eliana de Fátima, e ao meu pai, João Matildes, por todo o

amor, apoio incondicional e pelos ensinamentos que moldaram minha personalidade e me

incentivaram a buscar sempre o melhor em todas as etapas da minha vida acadêmica.

Sou imensamente grato pela presença de vocês ao meu lado. À banca de avaliação, pela

disponibilidade em dedicar seu tempo para analisar e comentar minha tese. Suas ob-

servações e ideias proporcionaram valiosas contribuições para aprimorar e enriquecer este

trabalho. Às agências de fomento, como a CAPES e a FAPEMIG, pelo apoio financeiro

concedido, por meio de bolsas e projetos de pesquisa. A contribuição de vocês foi fun-

damental para viabilizar o desenvolvimento deste trabalho e para o avanço da ciência e

tecnologia em nosso páıs. A minha irmã, Daiany Oliveira, pelos ensinamentos, desabafos

e longas conversas motivadoras. Sua presença e apoio constante foram essenciais para

meu crescimento pessoal e para superar os desafios ao longo desta jornada acadêmica. Ao

meu irmão, Aldivon Ribeiro (em memória), que, mesmo que indiretamente, me ensinou

os desafios que a vida pode causar.

Por fim, gostaria de expressar minha gratidão a todos aqueles que, de alguma

forma, contribúıram para o meu crescimento acadêmico e pessoal ao longo dessa jornada.

Sou verdadeiramente grato por todo o apoio, incentivo e confiança depositados em mim.

“Success is not final, failure is not fatal: it is the courage to continue that counts.”

(Winston Churchill)

Resumo

O desenvolvimento de software é uma atividade cujo sucesso depende da qualidade e ex-

periência dos profissionais envolvidos. No entanto, avaliar de forma precisa a experiência

em engenharia de software pode ser um desafio, uma vez que é dif́ıcil mensurar as habili-

dades técnicas dos desenvolvedores de forma objetiva. Portanto, é fundamental contar com

frameworks, métricas, métodos e ferramentas avançadas para avaliar essas habilidades.

Neste contexto, propõe-se um framework para avaliar as habilidades de programação a

partir do código-fonte. O objetivo deste framework é fornecer uma representação cur-

ricular dos desenvolvedores, contendo informações sobre as linguagens de programação

utilizadas, especializações em back-end e front-end, testes de unidade, dados adicionais

sobre o desenvolvedor e bibliotecas utilizadas. O framework foi avaliado em três per-

spectivas: o perfil dos desenvolvedores, especialistas em bibliotecas e suporte aos recru-

tadores. Os resultados demonstraram que o framework é capaz de avaliar as habilidades

de programação dos desenvolvedores e auxiliá-los na autoavaliação de suas competências.

Adicionalmente, o framework pode ajudar os recrutadores a selecionar o profissional mais

adequado para projetos de software, com base nas habilidades necessárias para o projeto

em questão. Em resumo, o framework proposto oferece uma solução confiável, adaptável

e objetiva para avaliar as habilidades técnicas dos desenvolvedores de software. Com a

sua utilização, é posśıvel aprimorar a seleção e o desempenho dos profissionais envolvidos

no desenvolvimento de projetos de software.

Palavras-chave: Desafios de Recrutamento, Engenheiros de Software, GitHub, Hard

Skills

Abstract

Software development is an activity that heavily relies on its development workforce,

making the quality and experience of professionals a crucial factor for project success.

However, evaluating software engineering experience can be challenging as accurately

measuring developers’ hard skills is difficult. For this reason, it is essential to have frame-

works, metrics, methods, and advanced tools to assess developers’ abilities. In this con-

text, we propose a framework for computing programming skills from source code. This

framework aims to provide a curriculum representation for developers, with information

about programming languages, back-end and front-end profiles, unit testing, additional

developer data, and used libraries. Our framework was evaluated from three perspectives:

developer profiles, library experts, and support for recruiters. The results demonstrate

that the framework can compute developers’ programming skills and assist them in self-

assessing their abilities. Moreover, the framework can aid recruiters in selecting the most

suitable developer for software projects based on the required skills. In summary, our

framework offers a reliable, adaptable, and objective solution for assessing software devel-

opers’ hard skills. With its help, it is possible to enhance the selection and performance

of professionals involved in software development projects.

Keywords: Recruitment Challenges, Software Engineers, GitHub, Hard Skills

List of Figures

1.1 Step by Step . 17

2.1 GitHub Profile Example . 23

3.1 An Overview of the Framework . 29

3.2 Programming Skills Profiles Instance . 30

3.3 Library Instance . 31

3.4 Tech Skills Instance . 33

3.5 Tool Architecture Overview . 34

3.6 Tool to Compute Programming Skills . 35

4.1 Study Steps to Identifying Developer Profiles 39

4.2 Changed Files and the Respective Number of Changed Lines of Code for Fic-

titious Developers . 40

4.3 Steps to Select Developers from GitHub . 42

4.4 Overview . 46

4.5 Programming Language Skills . 48

4.6 Back-end & Front-end Skill . 49

4.7 Test Skill . 50

5.1 Study Steps to Identifying Library Experts . 57

5.2 Steps for Collecting Software Projects from GitHub 59

5.3 Number of Developers by Library . 60

5.4 Number of Commits per Library . 60

5.5 Number of Imports per Library . 61

5.6 Number of LOC per Library . 61

5.7 Tool to compute programming skills . 65

6.1 Study steps with Software Recruiters . 71

List of Tables

2.1 Metrics and Hard Skills by Authors . 25

4.1 Distribution of Programming Languages Based on Changed Files 40

4.2 Distribution of Programming Languages Based on Changed Lines of Code . . 41

4.3 Survey Questions . 43

4.4 Feedback Categories . 52

5.1 The Metrics Analysis as GQM method . 56

5.2 Library Descriptions . 59

5.3 Projects Selected for Analysis . 60

5.4 Survey Questions on the Use of the Libraries 62

5.5 Top 20% from Library Experts Selected to Answer the Survey 63

5.6 Level of Knowledge in Each Library . 64

6.1 Interview Questions . 74

6.2 Participant demographics . 76

6.3 Applicability of the framework Evaluated . 78

6.4 Category Visualization . 82

6.5 Category Lacking information . 86

Contents

1 Introduction 14

1.1 Problem and Motivation . 14

1.2 Goals . 15

1.3 Study Steps . 16

1.4 Results . 17

1.5 Publications . 18

1.6 Outline of the Thesis . 19

2 Background and Related Work 20

2.1 Hard Skills and Soft Skills . 20

2.2 Recruitment Process . 21

2.3 Using GitHub Data to Understand Software Developers 22

2.4 Related Work . 24

2.5 Concluding Remarks . 27

3 A Framework to Identify Programming Skills 28

3.1 Framework Overview . 28

3.2 Profile Instance . 30

3.3 Library Instance . 31

3.4 Tech Skills Instance . 32

3.5 A Tool to Support Programming Skill Identification 33

3.6 Concluding Remarks . 36

4 Identifying Developer Profiles 37

4.1 Goal and Research Questions . 38

4.2 Evaluation Steps . 39

4.3 Metrics used to Profile Instance . 40

4.4 Dataset . 41

4.5 Survey Design . 42

4.6 Data Analysis . 44

4.7 Overview Results . 46

4.8 Results for Programming Language Skills 47

4.9 Results for Back-end & Front-end Profiles 48

4.10 Results Test Development . 49

4.11 Feedback from Developers . 50

4.12 Threats to Validity . 52

4.13 Concluding Remarks . 53

5 Identifying Library Experts 55

5.1 Goal and Research Questions . 56

5.2 Evaluation Steps . 57

5.3 Metrics used to Library Instance . 57

5.4 Dataset . 58

5.5 Survey Design . 61

5.6 Overview . 62

5.7 Level of Activity . 64

5.8 Knowledge Intensity . 66

5.9 Knowledge Extension . 66

5.10 Threats to Validity . 67

5.11 Concluding Remarks . 68

6 A Study with Software Recruiters 69

6.1 Goal and Research Questions . 69

6.2 Evaluation Steps . 70

6.3 Metrics used to Tech Skills Instance . 71

6.4 Instrumentation . 72

6.5 Selection Subjects . 73

6.6 Interview with Recruiters . 73

6.7 Data Analysis . 74

6.8 Results for Participants’ Demographic Information 75

6.9 Results for Recruitment Channels . 76

6.10 Results for Applicability . 77

6.11 Alternative Visualization . 80

6.12 Miss Information . 84

6.13 Threats to Validity . 86

6.14 Concluding Remarks . 87

7 Conclusion 89

7.1 Thesis Recapitulation . 90

7.2 Contributions . 91

7.3 Future Work . 92

Bibliography 95

14

Chapter 1

Introduction

Software development is a human-intensive activity, which makes the success of soft-

ware projects highly influenced by the quality and expertise of their development work-

force [62, 85, 108]. Besides, software systems are complex engineering artifacts that de-

mand high technical specialization levels in different areas [85, 108]. These conditions

make IT companies focus on creating cross-functional teams with experts in several po-

sitions, such as databases, security, front-end design, back-end design, mobile apps, etc.

These companies increasingly use social coding platforms like GitHub to search for suit-

able candidates for their open positions [85]. However, finding developers with the right

skills for specific projects is not easy [85]. It is necessary to conduct a long process to

select developers, for example, including tests and interviews. Besides, in general, some

people avoid self-assess. On the other hand, some people are good to self-assess, but

they do not have good technical skills. Therefore, we need ways to support this task of

computing hard programming skills of developers. This chapter introduces this thesis.

We start by stating our problem and motivation in Section 1.1. Section 1.2 details our

goals and intended contributions. Section 1.3 presents the steps of this work. Section 1.4

presents a summary of the results obtained. Finally, Section 1.6 presents the outline of

this thesis.

1.1 Problem and Motivation

Software development is a highly technical activity that requires professionals per-

forming diverse roles in software projects, with skills and experience in many different

technologies, tools, and techniques [82]. Due to this reason, companies try to build teams

composed of developers with a wide diversity of skills. In the Software Engineering in-

dustry, with various open positions and not as many qualified candidates, extracting,

ranking, and selecting candidates with the right combinations of skills are essential tasks

for the success of software projects [33, 58]. Most strategies commonly used for selecting

1.2. Goals 15

candidates have limitations. One of these limitations is the source of information used

to identify developers hard skills. Many companies rely only on traditional curriculum

analysis, which may have inaccurate or outdated information. Besides, non-technical re-

cruiters may identify incorrect developer skills or other skills that are not the focus of

the organization. Hiring the wrong developer can lead to additional efforts and resources

to train the new employee or expending more time and resources to hire another one.

Moreover, wrong hiring decisions are a well-known risk factor for the success of a software

project [92]. Software developers have long been using social networking platforms, such

as LinkedIn, to showcase their technical skills. They also use other platforms that pro-

mote programming contests and serve as a form of recruiting for companies. Employers,

on the other hand, use information from social networking platforms to recruit develop-

ers [15, 53, 56]. However, the reliability and accuracy of the information provided in such

media are not guaranteed [17]. For instance, some individuals can overvalue their skills

and omit some skills in a self-authored curriculum.

Software repositories, such as GitHub1, have been mined for several reasons, such

as the extraction and analysis of software metrics [98] and the identification of reuse

opportunities [70]. GitHub, in particular, has contributed to the diffusion and publication

of open-source code projects that otherwise would not have existed [60]. Moreover, the

payoffs are substantial [19, 60]. Although software repositories can reflect the work of

software developers, few works [35, 45, 66, 102] have relied on software repository data

to identify the skills of developers. In this context, this thesis proposes and evaluates a

framework to compute programming skills based on the work that developers perform on

GitHub. The proposed framework relies on GitHub data to compute programming skills

of developers based on the actual contributions they make. Developers can produce a

variety of contributions to the platform, ranging from coding and testing to discussions

in forums and documentation of source code. From each type of developer contribution,

we can identify essential developer skills [35].

1.2 Goals

As previously mentioned, we lack a complete understanding on how to describe

hard skills from source code. Therefore, we propose a framework to help developers and

recruiters to assess hard skills from source code analysis. In this context, the general goal

of this thesis is to define, investigate, and evaluate this framework. The specific goals can

be divided into four:

1https://github.com

1.3. Study Steps 16

1. We aim to address the knowledge gap regarding programming skills derived from

source code. To achieve this goal, we developed a curriculum for developers based

on data that our framework provides. The generated curriculum can help developers

self-evaluate their programming skills and guide decision-making to improve hiring

processes for software projects, particularly from the viewpoint of recruiters.

2. We analyze hard skills from source code in specific libraries. The goal is to evaluate

the knowledge of developers from popular Java libraries. We intend to evaluate the

feasibility of finding library experts from the source code.

3. We plan to characterize hard skills from source code analysis. Particularly, this

thesis focuses on the hard skills of developers based on data from popular and

real projects hosted on GitHub. Besides Java projects, we also studied JavaScript,

Python, Go, C++, Ruby, PHP, TypeScript, C#, and C. These analyses were created

to generate the profile of developers in four categories: programming languages more

used, back-end or front-end profiles, unit tests, and extra data profile.

4. We evaluate the effectiveness of our framework in the context of software recruiting.

For this, we conducted interviews with 15 recruiters from three different countries.

1.3 Study Steps

Figure 1.1 presents an overview of the research conducted in this thesis. The

first step is present in Chapter 2. This step investigates literature (ad-hoc) concerning

techniques, methods, and tools for programming skills. After this research, we develop

the framework and tool to compute programming skills (Chapter 3). Next, we select

developers from GitHub to evaluate the framework proposed. In sequence, we evaluate

the framework with real developers from GitHub through a survey (Chapters 4 and 5).

Finally, in the last step, we conducted interviews with recruiters from three different

countries to evaluate the framework (Chapter 6).

1.4. Results 17

Figure 1.1: Step by Step

Source: Prepared by the author, 2023

1.4 Results

This section presents a summary of the results obtained. We develop a framework

to compute programming skills from source code analysis. We evaluate the framework

from three perspectives: 1) programming skills, 2) library experts and 3) recruiters.

From the first perspective, we promote an empirical study to identify developer

profiles. As a result, we obtained 54% precision to metric changed files versus 36% to

changed lines of code in relation to programming languages skills. To profile back-end

& front-end, we obtained 53% precision for changed files versus 45% for changed lines of

code. Finally, for the unit test, we observed precision of 45% for changed files versus 30%

for changed lines of code. Besides, we noted the necessity of detecting the source code of

tests to improve the detection of testing skills.

About the second perspective, we apply an empirical study in libraries. We select

the most popular Java libraries from GitHub. We used three metrics. 1) Number of

Commits, 2) Number of Imports, and 3) Lines of Code. As overall results, we observed

that about 88% of the library experts who answered the survey have high knowledge about

the evaluated libraries. In general, when applied solo, we concluded that the metrics could

not get good results. Therefore, these metrics need to apply combined to obtain the best

results and show the programming skills of developers.

Concerning the third perspective, we conducted a study with 15 software recruiters

from three different countries. The recruiters were asked to evaluate two resumes gener-

ated by the framework based on GitHub data. To create a realistic scenario, we presented

recruiters with a job opening adapted from a real job post on LinkedIn. The recruiters

were asked to evaluate whether the framework helped them understand the candidates’

profiles, or if it did not help at all. They were also invited to provide feedback on the

GitHub data and the resume generated by the framework. The results of the study showed

that recruiters found it easier to follow the data presented by the framework because they

did not have to manually search GitHub for information. Furthermore, they stated that

1.5. Publications 18

the resume generated by the framework could serve as the first round of candidate selec-

tion. This could potentially simplify the software developer selection process. Overall,

the study demonstrated the effectiveness of the framework and its potential to improve

the recruitment process for software development.

1.5 Publications

The results of this thesis generated the following publications:

• QUATIC’22 Oliveira, J., Souza, M., Flauzino, M., Durelli, R., and Figueiredo, E.

Can source code analysis indicate programming skills? survey with developers. In

Proceedings of the International Conference Quality of Information and Communi-

cations Technology, pages 156–171. Springer International Publishing, 2022.

• JSERD’21 Oliveira, J. A., Viggiato, M., Pinheiro, D., and Figueiredo, E. Mining

experts from source code analysis: An empirical evaluation. Journal of Software

Engineering Research and Development, 9(1):1:1 – 1:16, Feb. 2021.

• SBES’20 Oliveira, J., Pinheiro, D., and Figueiredo, E. Jexpert: A tool for library

expert identification. In Proceedings of the XXXIV Brazilian Symposium on Software

Engineering, SBES ’20, page 386–392. Association for Computing Machinery, 2020.

• SBQS’19 Oliveira, J., Viggiato, M., and Figueiredo, E. How well do you know

this library? Mining experts from source code analysis. In Proceedings of the XVIII

Brazilian Symposium on Software Quality, SBQS ’19, page 49–58. Association for

Computing Machinery, 2019.

• SBCARS’18 Santos, A., Souza, M., Oliveira, J., and Figueiredo, E. Mining soft-

ware repositories to identify library experts. In Proceedings of the VII Brazilian

Symposium on Software Components, Architectures, and Reuse, SBCARS ’18, page

83–91. Association for Computing Machinery, 2018.

We have submitted a paper to the Journal. However, from the writing date of this thesis,

we have not yet received approval from the paper.

1.6. Outline of the Thesis 19

1.6 Outline of the Thesis

We organized the remainder of this thesis as follows.

• Chapter 2 – this chapter provides basic concepts on hard skills, metrics, and models

to compute programming skills. Besides, we present the directly related works to

this thesis.

• Chapter 3 – this chapter provides presents the proposed framework, named FYI -

“For Your Information” to compute programming skills from source code.

• Chapter 4 – this chapter presents a study to identify developer profiles from GitHub.

• Chapter 5 – this chapter shows a study in Java libraries and evaluates the framework

developed to compute libraries experts.

• Chapter 6 – this chapter shows an empirical study with software recruiters.

• Chapter 7 – this chapter summarizes the conclusions we leveraged throughout this

thesis. It also outlines some ideas we find interesting to investigate in the future.

20

Chapter 2

Background and Related Work

Software development is a human-intensive activity, which makes the success of software

projects highly influenced by the quality and expertise of their development workforce.

Besides, software systems are complex engineering artifacts that demand high levels of

technical specialization in different areas. The source code can reflect the developers’

skills in programming languages, frameworks, and libraries, for example. This chapter is

distributed in the following way. Section 2.1 presents concepts about difference between

hard and soft skills. Section 2.2 explains the recruitment process. Section 2.3 investigates

the role of GitHub in the analysis of software developers and team behaviors. Section 2.4

presents the works that are closely related to this thesis. Finally, we report our final

remarks in Section 2.5.

2.1 Hard Skills and Soft Skills

Hard skills and soft skills are two crucial aspects of software development that

organizations consider while hiring software developers [87]. Software developers need

to have hard skills, which include technical know-how and aptitude in areas like pro-

gramming languages, software tools, and frameworks [3, 27]. For a software engineer to

properly carry out their daily job, these abilities are crucial. Technical interviews, coding

tests, and reviews of the developer’s contributions to open-source projects are frequently

used to assess hard skills. Soft skills, on the other hand, are the non-technical competen-

cies and character traits of a software development, including teamwork, communication,

problem-solving, and flexibility [3, 27]. Non-technical talents or soft skills include psy-

chological phenomena, including social interaction skills, communication, creativity, and

teamwork [40]. These abilities are also crucial to a software developer’s success and overall

effectiveness.

Although soft skills are relevant to selecting a developer candidate, our focus is

on hard skills in this work. Since evaluating soft skills is subjective, a face-to-face meet

2.2. Recruitment Process 21

is recommended to understand the candidates’ soft skills in more details. In contrast,

we can obtain extensive data about hard skills. They cover the theoretical fundaments

and practical experience one needs to complete the intended task [40]. Developers are

frequently viewed as technical people [40, 65]. As a result, their technical competency is

heavily stressed in both practical work and research studies.

2.2 Recruitment Process

Developers recruitment is defined as an employer’s actions that are intended to

1) bring a job opening to potential job candidates who do not currently work for the

organization, 2) influence whether these people apply for the job, 3) verify whether they

maintain interest until a job offer is made, and 4) influence whether a job offer is ac-

cepted [54]. The recruitment process for selecting a new software developer is a crucial task

for companies, as it determines the success of software development projects [54, 64, 67].

The process involves several strategies aimed at evaluating the hard and soft skills of

software developers. Some common strategies used in the recruitment process of software

developers include interviews and profile mining [54, 69]. Technical interviews are one

of the most common strategies used to evaluate the technical abilities of software devel-

opers [22, 54]. The interviews usually consist of coding challenges, algorithms, and data

structures, aimed at evaluating the candidate’s problem-solving and coding skills [21, 69].

Another strategy is GitHub Profile Mining [41].

GitHub is a Web-based platform for version control and collaboration that has

become the facto standard for software development professionals [49, 67]. Recruiters

can review a candidate’s GitHub profile to evaluate their coding skills, contributions to

open-source projects, and overall development activity [49]. In this study, we apply this

strategy based on a framework [74] that compute the hard skills. It is possible to conduct

or combine with other strategies, such as Behavioral Interviews. Behavioral interviews

are aimed at evaluating a candidate’s soft skills, such as communication, collaboration,

problem-solving, and adaptability [13, 67]. The interviews usually consist of questions that

require the candidate to provide examples of how they have handled difficult situations

in the past [13, 67].

Even when applying these strategies, the recruitment process of software developers

is challenge. One of the biggest challenges is evaluating the technical abilities of software

developers, as it requires a deep understanding of programming languages, tools, and

frameworks [5, 13]. Another challenge is the lack of qualified software developers, which

makes it difficult for organizations to find the right candidate [5]. The recruitment process

2.3. Using GitHub Data to Understand Software Developers 22

of software developers is a crucial task for organizations, and recruiters should use a

combination of strategies to evaluate the technical and interpersonal skills of software

developers. The use of profile mining, technical interviews, and behavioral interviews can

provide valuable insights into a candidate’s abilities and help recruiters make informed

decisions [4]. Despite the challenges, the recruitment process is essential for the success

of software development projects, and organizations should invest the necessary time and

resources to ensure they find the right candidate [4].

The hiring process might be straightforward, but the initial step finding potential

candidates can be extremely difficult due to technological advancements [4]. A company’s

bottom line may be significantly impacted by practical recruitment activities that make

it stands out and more desirable to prospective employees [54]. Software developers

can post and share their work in online areas thanks to social networking platforms, for

instance GitHub. These experts develop a reputation within a field of expertise, frequently

intending to find a job [54].

2.3 Using GitHub Data to Understand Software

Developers

The use of data from GitHub to understand how software developers work and

collaborate has become recurrent in software engineering studies [29, 30, 66]. Some studies

seek to understand the behavior of developers concerning their interaction with peers [78].

For example, studies try to find who are the developers with peaceful and those with

aggressive behavior and if these developers coexist productively in software development

projects [79]. Besides, some studies investigate developers forms of work [24, 29] and

seek to understand the emotional behavior of software developers [79]. Another topic

that raises the interest of researchers is how knowledge transference, transparency, and

collaboration happens in GitHub teams [25, 28]. Researchers [41] also study collaborative

development practices in commercial projects using GitHub. Finally, another subject of

study is how teams distributed in different geographic locations can be productive and

perform tasks with quality using social programming platforms [23, 50].

Figure 2.1 shows an illustration of the information interface from GitHub. This

platform provides an activity chart showing how many commits a user has made over the

previous year. This information is prominent on a user’s profile, but information about

the content of changes that a developer has made is significantly more challenging to ob-

tain [35]. Similarly, GitHub profiles link all projects that the user has contributed to or

2.3. Using GitHub Data to Understand Software Developers 23

forked. Nevertheless, they do not provide additional information about the contributions,

programming languages, back-end & front-end profile, unit test, and core libraries used.

The GitHub profiles can only be considered a signal of the developer’s interests. Inexpe-

rienced GitHub users might not be aware that the information on the user’s profile needs

to be verified by examining the user’s commits to identify their contributions [35, 53].

Many issues make it challenging to use GitHub profiles directly to assess programming

skills [35].

Figure 2.1: GitHub Profile Example

Source: Prepared by the author, 2023

To accurately represent a developer’s skills via the GitHub interface, a user needs

to select all projects to which the developer has contributed and manually verify the

contributions [35]. Programming languages for all projects need to be aggregated to get

an overview of the developer’s skills set. However, even a developer contributing to a

Python project may not have changed any Python code in their contributions. Therefore,

the developer’s skills need to be verified to individual commit level [35]. It is also non-

trivial to find developers using a particular programming language or library on GitHub.

GitHub provides an advanced search feature that allows users to find developers that use

a specific programming language. However, this does not indicate how much experience

a developer has in a language and what other languages they are experienced.

2.4. Related Work 24

2.4 Related Work

In this section, we provide a comparison of the related work by presenting a detailed

table that highlights the key differences among them. Table 2.1 serves as a resource for

understanding the distinctive characteristics of each approach. The ‘Author’ line indicates

the author of each study. The ‘Metrics’ line shows the metrics used in each study. The

‘Programming Language’ line presents the programming language investigated in each

study. The ‘Libraries’ line indicates the libraries evaluated in each study. The ‘Test’

line shows the studies focused on detecting unit tests. The ‘Back-end’ and ‘Front-end’

lines identify the types of technologies analyzed in these studies. Finally, the ‘Evaluation’

line provides the data used to evaluate each study. Notably, a common metric employed

across the related work mentioned in Table 2.1 is the Number of Commits. However,

our framework distinguishes itself as the sole solution capable of effectively detecting unit

tests among all the existing approaches. This unique capability positions our framework

as a tool for assessing the quality and robustness of software projects. By presenting

these comparative insights, we contribute to the existing literature by shedding light on

the distinctive features and benefits offered by our innovative framework.

Studies to identify and classify the knowledge of developers based on their con-

tributions to online platforms have gained relevance in the field of software engineer-

ing [8, 30, 66, 68, 88, 95]. The evaluation of such approaches is essential to guarantee

the quality of the analysis and to ensure the effectiveness of the specialist identification

methods. For instance, tags can be mined from the project’s READMEs and commit

messages. Just like we do in Chapters 4 and 5, some studies use questionnaires through

forms [88, 99] or choose to carry out such an assessment manually [96]. Others compare

current results to previous studies [57]. Researchers also performed automatic evaluations

comparing data extracted from GitHub with the content of responses made in Stack Over-

flow (Q&A) [26, 30, 66, 68, 88, 101]. Approaches to identify and extract technical skills,

known as hard skills, have gained prominence among research, often supported by tools

to perform the extractions [39, 44, 66]. For instance, Greene and Fischer [35] proposed

a tool named CVExplorer, which can be used to assist non-technical users in extracting,

filtering, and identifying developers according to technical skills (programming languages,

libraries, and frameworks) demonstrated across all of their open-source contributions, in

order to support more accurate candidate identification.

Constantinou and Kapitsaki [26] proposed an approach that extracts developers’

expertise in different programming languages, measuring commit activity on GitHub.

They consider both the quantity and the continuity of their contributions in isolate

projects over time. The authors [26] evaluated the generated developers’ expertise profiles

against recognized answering activity in Stack Overflow via a dataset of users that are

2.4. Related Work 25

Table 2.1: Metrics and Hard Skills by Authors

Author This work Montandon et al.[66].
Constantinou
and Kapitsaki[26]

Greene
and Fischer [35]

M
e
tr
ic
s

No. of Commits
No. of Imports
Lines of Code
Collaboration
Knowledge Amplitude
Knowledge Intensity
Code Proficiency
Experience

No. of Commits
No. of Imports
Code churn
No. of add library import
No. of days since the 1º commit
No. of days since the last commit
No. of days between commits
Average interval of the commits
No. of client projects

No. of Commits
Lines of Code

No. of Commits
Files Change

P
r
o
g
r
a
m

m
in

g
L
a
n
g
u
a
g
e

All programming
Languages

JavaScript
All programming
Languages

All programming
Languages

L
ib

r
a
r
ie
s

Detect all libraries
since uses the
import or require
statements

REACT
MONGODB
SOCKET.IO

Not found Not found

T
e
st Detect. However, need

of the folder test
in the project

Not found Not found Not found

B
a
c
k
-e
n
d

Yes Yes Not found Not found

F
r
o
n
t-
e
n
d

Yes Yes Not found Not found

E
v
a
lu

a
ti
o
n

T
y
p
e

Survey
Interview

Survey Experiment Experiment

P
a
rt
ic
ip
a
n
ts

Developers
Recruiters

Developers Developers Developers

D
a
ta
se
t

1,137 Developers
∼12,000 Repositories
9 Lib
15 Recruiters

575 developers 234 Developers 33 Developers

Source: Prepared by the author, 2023

active both in GitHub and Stack Overflow. As an outcome, each developer is a ranked

list of programming languages according to the expertise over time.

Approaches using machine learning techniques are also gaining space [32, 47, 48,

100]. Although the evaluated model is totally analytical, it is worth highlighting such

contributions. Montandon et al. [66] proposed an approach for identifying experts in

software libraries and frameworks among GitHub users by applying Machine Learning.

More specifically, the authors extended existing expertise identification approaches to

the context of third-party software components. However, their key hypothesis is: “when

maintaining a piece of code, developers also gain expertise on the frameworks and libraries

used by its implementation”. To validate this hypothesis, they [66] carried out unsuper-

2.4. Related Work 26

vised and supervised machine learning classifiers to identify experts in these libraries.

Both techniques were applied using features (e.g., number of commits on files, number

of client projects, etc.) extracted from selected GitHub users. Hauff and Gousios [36]

created a pipeline that use natural language processing to automatically match job ad-

vertisements to GitHub users. Their pipeline “translate” both the developer profile and

the advertisement into the Linked Open Data [14] space, where they can exploit the back-

ground information available in the Linked Open Data cloud to bridge the semantic gap.

Their pipeline is threefold [36]: (i) extraction of concepts from job advertisements and

social coding user data; (ii) weighting of concepts in such a way that more important

concepts receive higher weights; (iii) matching of the 2 (job and coding profile-based)

concept vectors.

Marlow and Dabbish [55] investigated how employers evaluate developers based on

their GitHub accounts, which give hints about their activities, talents, motivations, and

values. These indicators were thought to be more trustworthy than resumes. Open source

contributions, according to employers surveyed by Marlow and Dabbish [55], are a sign

that a developer has the correct values and is not just in the industry for the money. It

was also stated that contributions to high status projects showed some level of proficiency.

Similar research was done by Singer et al. [91]. However, they focused on the social

media accounts of developers in general. These include Stack Overflow, Twitter, Coder-

wall, and Masterbranch, as well as GitHub and other profile aggregators. They discovered

that some recruiters may find profiles challenging to comprehend or assess. A developer’s

public activities must always be judged against their actual artifacts, such as their code,

tests, documentation, or debates, in order to be truly evaluated. Furthermore, developers

assessed employers and organizations to ascertain their credibility and suitability as po-

tential partners. The majority of developers and recruiters are aware that a developer’s

lack of activity does not necessarily indicate something significant; they may simply be a

private developer or focus only on closed source projects.

Adnin et al. [1] presents the results of a study that examined employers’ expe-

riences in hiring computer science graduates for software startup companies. The re-

searchers conducted interviews with 23 employers from software businesses. The findings

indicate that employers face challenges in finding qualified individuals who possess the

necessary real-world experience and specialized skill sets required for startup positions.

The companies also highlighted the significance of soft skills, such as communication,

teamwork, and a strong willingness to learn.

Our study focuses on investigating the process of detecting experts in software de-

velopment, improving the recruitment process, and exploring the challenges and problems

of current methods. Unlike the related work mentioned, this study interviewed recruiters

of software developers in three countries: Brazil, the United States, and Canada. The

study aimed to gain insights into improving the detection of experts, creating a good cur-

2.5. Concluding Remarks 27

riculum, and addressing the challenges faced in the recruitment process. The proposed

methodology in this study can help to compute programming skills and can be used to

improve the recruitment process of the software developer.

Our work distinguishes itself from its counterparts in many aspects. We show in

Chapter 3 a framework that aims to compute programming skills, in general, independent

of programming language, classify the profiles in the back-end and front-end, programming

languages, libraries, and detect if a developer made a unit test. In related work [26, 35, 52,

66, 91], measures of lines of code written and file-specific experience pertain to expertise

within a specific project for a developer. In general, the related work does not provide

an enough overview profile of developer expertise that can be transferred among software

projects. Different of other work [26, 35, 52, 66, 91], we are able to compute skills in

many projects. While all of these approaches have a similar step in the same direction

as us, they provide a weaker link between developers and their technologies. By using

README, for example, CVExplorer [35] files rely on the primary source of developer

expertise, while we extract language-specific APIs from files a developer has modified.

2.5 Concluding Remarks

Technology has become the backbone of our everyday lives, and programmers are

needed to keep moving that technology forward. However, finding developers with specific

skills is challenging. It is also hard self-evaluation hard skills in programming. This way,

we need ways to compute programming skills from source code. This chapter described

the fundamental concepts used in this thesis and discusses some related works. Besides,

this chapter discussed the opportunities to use data from GitHub, its applicability, and

concepts about programming skills. Furthermore, we discussed the applications of work

related to the proposal of this chapter. In the next chapter, we present a framework to

compute programming skills.

28

Chapter 3

A Framework to Identify

Programming Skills

The number of projects and developers involved in open-source software has reached an

impressive scale [106]. For instance, GitHub reported that in 2019 alone, over 10 million

new developers joined and more than 44 million new projects were created [30]. GitHub

serves as a social platform that developers can use to showcase their work [70]. However,

identifying developers with the necessary skills for a software project can be a challenging

task. As a result, there is a need for methods, frameworks, metrics, and tools that can

support this process.

This chapter introduces FYI (For Your Information), a novel framework that em-

ploys static analysis to identify programming skills in the Git architecture. The framework

is designed to handle large systems that consist of hundreds of source elements, such as

files, lines of code, imports, packages, and classes, without compromising response time.

FYI is flexible and lightweight, providing developers with an efficient way to compute

programming skills from source code. We demonstrate the framework capabilities by

means of three instances: library experts, profiles, and tech skills. Section 3.1 provides

an overview of the framework, while Sections 3.2 to 3.4 show the three instances of the

framework. Finally, Section 3.5 presents a tool to support the framework.

3.1 Framework Overview

In this section, we present the components of the framework developed in this work.

Figure 3.1 provides detailed information about the framework architecture, illustrating

how the different components interact. Our comprehensive framework comprises five

components: Programming Language, Back-end & Front-end, Extra Profile Data, Test,

and Libraries. These components have been carefully designed and integrated to enable

the efficient computation of programming hard skills through source code analysis. The

3.1. Framework Overview 29

Programming Language component focuses on analyzing the language used in the source

code. It encompasses a wide range of programming languages, ensuring the framework’s

versatility and applicability across various development environments. The Back-end &

Front-end component analyzes the code pertaining to server-side and client-side devel-

opment. It considers the implementation of web services, APIs, database interactions,

and user interfaces to provide a holistic evaluation of a developer’s proficiency in both

back-end and front-end technologies.

The Extra Profile Data component leverages additional information about devel-

opers, such as their educational background, work experience, and contributions to open-

source projects. This supplementary data enrich the evaluation process, offering a more

comprehensive understanding of a developer’s capabilities beyond mere source code anal-

ysis. The Test component plays a crucial role in assessing a developer’s ability to design

and implement effective test cases. It evaluates the presence of unit tests. The Libraries

component examines the utilization of external libraries, within the source code. It consid-

ers how effectively developers leverage these resources to enhance productivity, implement

complex functionalities, and adhere to industry best practices. In addition to the core

components, our framework includes a module for repository cloning, which enables the

automated retrieval of source code repositories for analysis. This functionality streamlines

the process, saving time and effort in acquiring the necessary codebase for evaluation.

Furthermore, we have developed another module capable of generating a Devel-

oper’s Curriculum based on the comprehensive results obtained from the framework anal-

ysis. This module synthesizes the developer’s strengths, areas for improvement, and

notable achievements into a professionally crafted curriculum, providing valuable insights

for potential employers or collaborators. The integration and coordination of these com-

ponents within our framework offer a versatile platform to identify programming skills

through source code analysis. By leveraging the capabilities of this framework, stakehold-

ers in the software development industry can make informed decisions regarding developer

selection, skill enhancement programs, and project team formation.

Figure 3.1: An Overview of the Framework

Source: Prepared by the author, 2023

3.2. Profile Instance 30

3.2 Profile Instance

The Profile Instance serves as a valuable tool for identifying the programming

languages predominantly used by developers, enabling the assessment of their expertise

in commonly employed programming languages. In Figure 3.2, the components adopted

for this instance are highlighted. The Profile Instance extends its analysis to determine

developers’ inclination towards either back-end or front-end development, based on the

types of technologies they use. This capability provides valuable insights into a devel-

oper’s skills and preferences, facilitating more targeted evaluations and effective team

formations. One of the primary functionalities of this instance is the Programming Lan-

guage component, which identifies the programming languages most frequently used by a

developer. This information is crucial for evaluating a developer’s breadth of knowledge

and ability to work with diverse programming paradigms. The Back-end & Front-end

component examines the types of technologies utilized in the source code, such as server-

side, client-side libraries, and database interactions, providing valuable insights into the

developer’s focus and expertise in these specific areas. This information is important

for team formation and role assignment, ensuring a balanced skill set and compatibility

among team members. Additionally, the instance incorporates the Test component to

identify whether a developer has implemented unit test cases in their source code. Ana-

lyzing the presence of unit tests provides an indication of a developer’s commitment to

software quality and adherence to best practices [45]. This evaluation aspect is essential

for assessing a developer’s attention to detail, code maintainability, and overall software

reliability.

Figure 3.2: Programming Skills Profiles Instance

Source: Prepared by the author, 2023

3.3. Library Instance 31

3.3 Library Instance

In this section, we introduce the Library Instance, in Figure 3.3. The compo-

nents of this instance highlighted are discussed below. The Library Instance incorporates

the Programming Language component as mentioned in Section 3.2. Additionally, it in-

troduces the new component Libraries. This instance plays a crucial role in analyzing

developers’ projects by identifying the primary programming languages they use and the

libraries they are familiar with. By examining the codebase, the Library Instance provides

valuable insights into developers’ skill sets and proficiencies across various development

environments. Understanding the libraries that developers have mastered is essential for

making informed decisions regarding hiring new talent or forming effective development

teams. The identification process relies on the usage of the “import” keyword, commonly

employed in programming languages to incorporate functionalities from third-party li-

braries. Moreover, apart from identifying libraries, the Library Instance also recognizes

the programming languages that developers have worked with.

The identification and comprehension of developers’ preferred libraries and pro-

gramming languages bring about several significant advantages. Firstly, it enables orga-

nizations to assess the extent of developers’ knowledge and experience in utilizing essential

tools and resources within their respective ecosystems. Proficiency in widely adopted li-

braries indicates developers’ ability to leverage existing solutions, saving time and effort

in the development process while fostering efficiency and productivity. Moreover, famil-

iarity with popular libraries also implies a level of exposure to industry best practices,

as these libraries often embody established coding conventions, design patterns, and ar-

chitectural paradigms. This alignment with industry standards ensures that developers

can contribute effectively to projects, follow coding guidelines, and collaborate smoothly

within development teams.

Figure 3.3: Library Instance

Source: Prepared by the author, 2023

3.4. Tech Skills Instance 32

3.4 Tech Skills Instance

In this section, we present the Tech Skills Instance, as illustrated in Figure 3.4.

The components of this instance are discussed below. The Tech Skills Instance integrates

the components introduced in Sections 3.2 and 3.3. This instance also includes a new

component named Extra Profile Data. For this instance, we analyze developers’ projects,

extracting valuable information about their preferred programming languages and their

mastery of third-party libraries. However, what really sets this instance apart is its

ability to leverage additional data from external platforms, such as GitHub, to enrich

the analysis. The Tech Skills Instance goes beyond the surface-level analysis of code

repositories and incorporates metrics from platforms like GitHub. It considers factors,

such as the number of repositories they have, a more holistic view of their expertise and

reputation within the developer community. These additional data provide a context that

can help evaluate developers’ credibility, industry recognition, and level of engagement in

open-source projects.

Furthermore, the Tech Skills Instance offers a concise yet comprehensive summary

of developers’ hard skills. It goes beyond simply identifying the programming languages

they frequently use and explores further into their commitment and productivity. By

analyzing the frequency of their commits and the strict lines of code written per program-

ming language, a detailed understanding of their dedication, efficiency, and contribution to

projects is obtained [45]. This information proves valuable for team leaders and project

managers when making decisions related to resource allocation, project planning, and

identifying potential skill gaps within the team [36]. The insights provided by the Tech

Skills Instance have significant implications for various aspects of the software develop-

ment process. Firstly, they aid in the selection and evaluation of new developers, allowing

hiring teams to make informed decisions based on a comprehensive understanding of can-

didates’ technical skills and industry involvement. Additionally, the instance assists in

identifying areas where additional training or upskilling may be necessary, enabling com-

panies to invest in their existing talent and foster continuous professional growth. By

identifying developers’ strengths and weaknesses, the Tech Skills Instance facilitates ef-

fective team composition, ensuring the right balance of expertise and complementary skill

sets within development teams [45].

3.5. A Tool to Support Programming Skill Identification 33

Figure 3.4: Tech Skills Instance

Source: Prepared by the author, 2023

3.5 A Tool to Support Programming Skill

Identification

Accurate representation of developer expertise has always been an important re-

search problem [90]. Recruiters have hard work to select good developers with the right

skills. Now, we present a tool to support our framework presented in Section 3.1 to

compute programming skills from source code. This tool uses source code activities to

compute programming skills in four perspectives: i) programming languages, ii) back-end

& front-end profiles, iii) unit tests, and iv) libraries experts. In addition, this tool shows

details of the developer profile, for example, short bio. Our tool works with Git archi-

tecture projects to compute metrics. The tool uses static analysis, but it avoids building

the abstract syntax tree. Therefore, it reduces the response time when analyzing large

systems with hundreds of source elements, for instance, lines of code, imports, and classes.

Our framework needs to process the massive data. Therefore, we developed a tool

able to support the framework. Figure 3.5 presents an overview of the tool. The tool

is composed of five steps. Steps 2, 3 and 4 are three main modules: Activity Extractor,

Developer Data Analyzer, and Metric Collector, respectively. Step 1 – we select the

target repositories to compute the developers’ programming skills. Step 2 – the module

Activity Extractor is the first module used in the process, which receives as input the

projects mined from GitHub and stored locally. Step 3 – from the previous step, the

module Developer Data Analyzer computes all data about each developer. This module

is responsible for separating the number of commits to libraries from changes made for

source code, changed files, changed LOC, and all changes made by a specific developer. In

addition, this module is responsible to obtain the extra data profile, for example, short bio

and number of repositories available at GitHub. Step 4 – Metric Collector is responsible

for calculating some metrics. In this module, the tool computes the parameters according

3.5. A Tool to Support Programming Skill Identification 34

to the heuristic developed for each metric. Finally, the programming skills are generated

with developers’ names and skills. This way, the tool shows in Step 5 a CV for each

developer.

Figure 3.5: Tool Architecture Overview

Source: Prepared by the author, 2023

The tool was developed in Python, JavaScript, and React as a Web application.

Our tool relies on Git projects from GitHub to extract implementation references and

source code metrics to compute programming skills. Figure 3.6 (a) shows the main screen

to select the setup profile and metrics to compute programming skills. Note that our

tool computes programming skills, but the tool needs repositories to analyze. This tool

requires entering programming skills wanted by a user. For example, we wish to search

developers by technical skills: Java, Python, library Hadoop, a developer with a profile

turned to the back-end and able to write unit tests. Therefore, the tool computes the

programming skill from the dataset available. The tool does pick developers with these

skills if people check the checkbox back-end, front-end, and test (Figure 3.6(a)). If people

check libraries and programming languages, the tool shows in curricula the top-5 libraries

and programming languages most used by developers. Figure 3.6 (b) shows the developers

found1 and the option to select a specific developer or all developers to show CV. Finally,

Figure 3.6 (c) shows the curricula of a developer in detail. It presents the data about

top-5 programming languages, top-5 libraries, profile to back-end & front-end, and test.

1The developers presented are fictitious

3.5. A Tool to Support Programming Skill Identification 35

Figure 3.6: Tool to Compute Programming Skills

(a) Home Screen to Select Skills

(b) Developers Found

(c) Curriculum Details

Source: Prepared by the author, 2023

3.6. Concluding Remarks 36

3.6 Concluding Remarks

This chapter presents the FYI framework, which is designed to evaluate the pro-

gramming skills of software developers using data extracted from their GitHub reposito-

ries. The framework uses static analysis to identify hard skills, including programming

language, back-end and front-end profiles, tests, and libraries. The tool implements the

three instances of our framework: Profile instance, Library Instance and Tech Skills In-

stance. Chapter 4, we present an evaluation and proof of concept of the our framework

from the “Profiles” instance to compute the programming skills of developers.

37

Chapter 4

Identifying Developer Profiles

It is easier to identify experts, measure, and rank their skills in some fields when we have

objective measures to calculate the expertise. For example, time to run a marathon can

be used to rank experts. However, it is much more challenging to find reliable and ob-

jective metrics to measure expertise in software engineering. This way, we need advanced

metrics, frameworks, and tools as discussed in previous chapters. In addition, we need

to evaluate them. The activities of software development, traditionally, are considered

a collection of many tasks, such as design, coding, testing, and maintenance [99]. How-

ever, software development has evolved rapidly since the early 21st century [99]. It has

created various pathways for mastering and expertise, such as expertise in programming

languages (e.g., JavaScript, C/C++, Python, JavaScript, SQL), frameworks, and libraries

(e.g., Node.js, Angular.js, and Spark), technologies (e.g., internet of things, deep learning,

machine learning, computer vision, block-chain, quantum computing, cloud computing)

and databases (e.g., MySQL and PostgreSQL) [99].

As a result, we need to evaluate developers’ programming skills to provide reliable

methods and tools. In our case, to evaluate the framework presented in Chapter 3, we

select developers and their repositories from GitHub. We chose developers that made

at least 300 commits in the last three years, i.e., at least 100 commits per year, to get

active developers. Next, we clone their repositories, compute their programming skills,

and apply a survey to the target developers. We implemented two metrics from our

framework, (i) one based on Changed Files and (ii) the other based on Changed Lines of

Code, to compute programming skills. For each metric, we compute three programming

skills: Programming Language, Back-end & Front-end profiles, and Tests.

This chapter presents a proof of concept of the framework concerning profile identi-

fication, such as programming language, back-end & front-end, and unit test from source

code analysis. Note that, at this moment, we evaluate the Profile Instance of the frame-

work developed. This chapter is distributed the following way. Section 4.1 presents the

goal and research questions of this study. Section 4.2 presents the steps performed to eval-

uate the framework. Section 4.3 shows the metrics adopted to compute the hard skills for

the Profile Instance. Section 4.4 shows the dataset used. Section 4.5 presents the survey

design with details about the questions and target developers. Section 4.6 formulates the

4.1. Goal and Research Questions 38

hypothesis from our research questions. Sections 4.7 to 4.11 presents the results for four

research questions.

4.1 Goal and Research Questions

It is important to collect the developers’ perceptions of their programming skills to

get insights into the main strengths and weaknesses of the evaluated framework. There-

fore, we decided to perform an exploratory study as an online survey [42]. This type

of study is appropriate for approaching a large number of participants and allows the

collection of a wide range of data [42]. We performed the study following a predefined

protocol and documenting the results of each step. This allows the traceability between

our study goal, the research questions, the questionnaire design, and the collected data

from the participants. It also supports future studies that may aim at replicating. We

define the scope of our study following the Goal/Question/Metric (GQM) method [10].

Therefore, the scope of this study can be summed up as follows.

Analyze a framework that compute programming skills

for the purpose of evaluating its applicability

with respect to developers perception of their programming skills

from the point of view of the researchers and practitioners

in the context of source code analysis of open-source software projects.

In order to achieve this goal, we framed our research around the following research

questions (RQs).

RQ1 – What is the precision of the proposed framework to compute the programming

language skills of a developer?

RQ2 – What is the precision of the proposed framework to compute the back-end & front-

end profiles of a developer?

RQ3 – What is the precision of the proposed framework to compute the test development

skills of a developer?

RQ4 – What feedback do developers provide about source code analysis to compute pro-

gramming skills?

4.2. Evaluation Steps 39

4.2 Evaluation Steps

The main goal of our analysis is to gather data on various variables to investigate

the feasibility of assessing programming skills based on source code. Therefore, our study

involves evaluating the skills of real developers using the framework described in Chapter 3

and the metrics developed to quantify these skills as described in Section 4.3. In this

study, we look for the agreement of the developers regarding the results obtained from

this framework. To achieve this, we designed the study in four steps: (1) Metrics Selection,

(2) Dataset Collection, (3) Survey Design, and (4) Data Analysis. Figure 4.1 illustrates

each step, and in the following sections, we provide detailed explanations of the different

stages involved.

Figure 4.1: Study Steps to Identifying Developer Profiles

Source: Prepared by the author, 2023

Step 1 – Metrics Selection: In this step, we determine the metrics to be used in

the Profile Instance of the framework. The selection of these metrics can vary depending

on the specific context in which the framework is being employed. Section 4.3 presents

these metrics.

Step 2 – Dataset Collection: We randomly selected 1,137 developers from GitHub.

The inclusion criterion was that the developer had to have at least ten public repositories

because we needed vast source code data to be analyzed. As a result, we obtained a list

of 2,758 repositories to be analyzed. We present this step in Section 4.4.

Step 3 – Survey Design: We then conducted an empirical study through a survey

with the selected developers. We sent emails asking them their agreement with the esti-

mated programming skills computed by the framework evaluated in this study. This step

is presented in Section 4.5.

Step 4 – Data Analysis: We conducted a qualitative and quantitative data anal-

ysis of the results in this last step. In addition, we translate the RQ into hypotheses.

Section 4.6 shows this step.

4.3. Metrics used to Profile Instance 40

4.3 Metrics used to Profile Instance

In this section, we present the metrics used to compute the Profile Instance in

this study (see Section 3.2). These metrics can be changed according to the context of

use. The metrics used in this thesis are based on practical observations, empirical studies,

gray literature, and related work (see Chapter 2). We developed two metrics to compute

programming skills from source code: (i) one based on Changed Files and (ii) the other

based on Changed Lines of Code to compute programming skills. To illustrate how these

two metrics work, Figure 4.2 presents four fictitious developers (Mary, Ashley, John, and

Chris) and eight source code files they changed in a given period. The numbers describe

the number of changed lines of code. Mary changed all eight files and five lines of code

in the file “A.py.” John changed only five files and changed three lines of code (LOC) in

file “A.py.”

Figure 4.2: Changed Files and the Respective Number of Changed Lines of Code for
Fictitious Developers

Source: Prepared by the author, 2023

Concerning the metric based on Changed Files, we compute Programming Lan-

guages by the number of files changed that share the same file extensions. Considering

the example in Figure 4.2, Mary modified 3 Python, 2 Java, 2 CSS, and 1 HTML files.

Therefore, according to the Changed Files metric, her skill in programming languages is

distributed as follows: 37.5% Python, 25% Java, 25% CSS, and 12.5% HTML. Table 4.1

presents the output of this metric for the given example.

Table 4.1: Distribution of Programming Languages Based on Changed Files

Developer Python Java CSS HTML
Mary 37.5% 25% 25% 12.5%
Ashley 37.5% 25% 25% 12.5%
John 40% - 40% 20%
Chris 20% 40% 40% -

Source: Prepared by the author, 2023

4.4. Dataset 41

Similarly, the metric Changed Lines of Code considers the number of LOC added or

removed by a specific developer. Considering the same example of Figure 4.2, to calculate

Johns’ skill distribution in programming languages, we need to count the total number

of changed LOC for all files that share the same file extension. John, for instance, has a

skill distribution in programming languages as follows: 70% Python, 0% Java, 20% CSS,

and 10% HTML. Table 4.2 presents the output of this metric for the given example.

Table 4.2: Distribution of Programming Languages Based on Changed Lines of Code

Developer Python Java CSS HTML
Mary 58.82% 11.76% 17.65% 11.76%
Ashley 34.78% 30.43% 17.39% 17.39%
John 70% - 20% 10%
Chris 20% 50% 30% -

Source: Prepared by the author, 2023

We identify the profile of a developer, whether they are a back-end, front-end, or

full stack developer. One key aspect of determining the profile is analyzing the program-

ming languages utilized by the developer in their projects. For example, if a developer

predominantly uses Python, it indicates an inclination towards back-end development.

Conversely, if they frequently employ HTML and CSS, it suggests a focus on front-end

development. However, it is important to note that developers can also possess skills

in both areas, making them full stack developers. Additionally, we assess whether the

developer has implemented unit tests in their projects. This assessment is performed by

checking the presence of a dedicated test folder within the developer’s project structure.

By adopting this approach, we can evaluate the developer’s commitment to software qual-

ity and their adherence to best practices. The inclusion of unit tests in the project signifies

a developer’s attention to detail, code maintainability, and overall software reliability. To

measure these profile skills, we utilize two metrics: (i) Changed Files and (ii) Changed

Lines of Code.

4.4 Dataset

To create our dataset, we conduct a filtering process to select the developers. Fig-

ure 4.3 shows the steps performed. First, we select 2,000 developers randomly according

to trending GitHub1. Second, we made a filter by developers with the top-10 program-

ming languages2: JavaScript, Python, Java, Go, C++, Ruby, PHP, TypeScript, C#, and

1https://github.com/trending/developers
2https://madnight.github.io/githut/#/pull requests/2020/2

4.5. Survey Design 42

C. Besides, we selected the style sheet language CSS and HTML. Note that the program-

ming languages selected are among the top-10 most used from GitHub3. As a result of this

filtering step, we remove 300 developers and select 1,700 developers for the next criteria.

Third, we delete developers whose repositories have less than ten projects from the last

filter. Therefore, we removed 271 developers and selected 1,429 developers. Fourth, we

select from the previous step developers with at least 100 commits to projects. Conse-

quently, we discard 136 developers and select 1,293. In the fifth and last step, we select

developers with at least a thousand lines of code committed. That way, we eliminated 156

developers and obtained the 1,137 developers able to participate in our analysis. After,

we automatically cloned 2,758 repositories of these developers through Ghcloneall4. We

extracted from each commit: lines of code and files modified by the file extensions, such

as, .py, .java, and .css.

Finally, we computed the developers’ skills as described in Chapter 3. We obtained

110 responses from the survey (about 10% response rate). These repositories provide

the dataset with high variability in the size and complexity of projects, domains, and

technologies. Together, these repositories have a history of over 2.5 million commits,

measured at the moment of data collection, i.e., in August of 2020.

Figure 4.3: Steps to Select Developers from GitHub

Source: Prepared by the author, 2023

4.5 Survey Design

According to Easterbrook et al. [31], survey studies are used to identify the charac-

teristics of a population and are usually associated with the application of questionnaires.

Besides, surveys are meant to collect data to describe, compare or explain knowledge

3https://githut.info/
4https://pypi.org/project/ghcloneall/

4.5. Survey Design 43

[42, 80]. In this study, the survey is the primary empirical method used to collect data to

evaluate the framework for computing developers’ programming skills.

Target group – The survey is composed of developers from GitHub. Questionnaire

Structure – Based on our goal and research questions, we designed a questionnaire sup-

ported by a README file that explains the details of the study. Type of questions– The

questionnaire consists of a single answer. The goal of the questionnaire was to collect

the participant opinion of two mini curricula generated from our scripts based on the

Changed Files (Option A) and Changed Lines of Code (Option B) of our framework.

Each questionnaire item asked the participants to rate their agreement with the curricu-

lum items in their skills. The items used five Likert-scale options for answers: “Strongly

agree”, “Agree”, “Neither agree nor disagree”, “Disagree”, and “Strongly disagree”. The

questionnaire had no mandatory item.

Pilot study – We performed a pilot study with eight developers to assess the ques-

tions’ understandability and estimate the time required to answer them. We encouraged

the eight developers to take notes on any problems or doubts regarding the meaning of

the questions or their answers and track the time they spent filling out the questionnaire.

As a result, we changed one question classified as confused by two developers. Question-

naire length – The designed questionnaire includes up to five questions written in English

(Google Forms)5 as presented in Table 4.3. The time needed for answering the questions

of the questionnaire was between three and five minutes.

Table 4.3: Survey Questions

ID Questions
SQ1 Your GitHub Username:

Option A Option B

SQ2

With respect to programmings languages: we mined some
languages you are likely to know.
How much do you agree or disagree with the distributions
presented in Option A and Option B?

Likert-scale* Likert-scale*

SQ3
With respect to back-end and front-end: we mined your possible profile.
How much do you agree or disagree with the distributions presented
in Option A and Option B?

Likert-scale* Likert-scale*

SQ4
With respect to software test: we mined your likely knowledge.
How much do you agree or disagree with the distributions
presented in Option A and Option B?

Likert-scale* Likert-scale*

SQ5 Please leave any comments that you consider relevant to our research.

*Likert-scale options for answers: “Strongly agree”,“Agree”, “Neither agree nor disagree”, “Disagree”, and “Strongly
disagree

Source: Prepared by the author, 2023

5https://www.google.com/forms/

4.6. Data Analysis 44

4.6 Data Analysis

From the survey results, we performed quantitative and qualitative data analyses to

address the research questions. For research questions RQ1, RQ2, and RQ3, we conducted

a descriptive study of the data and statistical tests to identify the precision similarity

of both metrics. For the statistical tests, each research question was translated into

hypotheses.

Regarding RQ1, we defined the following hypotheses:

Null Hypothesis, H0RQ1: there is no difference in the precision of both metrics

regarding the programming language skills of a developer.

Alternative Hypothesis, H1RQ1: there is a difference between both metrics re-

garding programming language skills of a developer.

Then, our hypotheses can be formally stated as:

H0RQ1: xchangeF ile = xchangeLOC

and

H1RQ1: xchangeF ile <> xchangeLOC

Regarding RQ2, we defined the following hypotheses:

Null Hypothesis, H0RQ2: there is no difference in the precision of both metrics

regarding the back-end front-end skills of a developer.

Alternative Hypothesis, H1RQ2: there is a difference between both metrics re-

garding back-end & front-end skills of a developer.

Then, our hypotheses can be formally stated as:

H0RQ2: xchangeF ile = xchangeLOC

and

H1RQ2: xchangeF ile <> xchangeLOC

Regarding RQ3, we defined the following hypotheses:

4.6. Data Analysis 45

Null Hypothesis, H0RQ3: there is no difference in the precision of both metrics

regarding the test development skills of a developer.

Alternative Hypothesis, H1RQ3: there is a difference between both metrics re-

garding software testing skills of a developer.

Then, our hypotheses can be formally stated as:

H0RQ3: xchangeF ile = xchangeLOC

and

H1RQ3: xchangeF ile <> xchangeLOC

We perform statistical tests over the data in RQ1, RQ2, and RQ3. The indepen-

dent variables for the first three research questions are the Change Files and Change Lines

of Code. Precision is our dependent variable. We verify if answers from every case deviate

from normality using the Shapiro-Wilk test (p-value ranges from 0.7 to 0.9). Since nor-

mality was not always met, we used a Wilcoxon Signed-Rank Test with a 95% confidence

interval. We conducted a Wilcoxon signed-rank test [83] to check the significance of the

difference between the two paired groups. Because we are interested in the differences in

the values, we report the effect size with the median and mean differences. We use R to

conduct these analyses.

For RQ4, we used an approach inspired by the open and axial coding phases of

Ground Theory [93]. Two researchers analyzed the responses to open questions individ-

ually and marked relevant segments with “code” (tagging with keywords). Later, the

researchers compared their codes to reach a consensus and grouped them into relevant

categories. We examined the data line-by-line using the following questions as a lens

to identify codes (open coding) [93]: (1) What is this saying? What does it represent?

(2) What is happening here? (3) What is at issue here? (4) What is the participant

trying to convey? (5) What process is being described? Consequently, it is possible to

count the number of occurrences of codes and the number of items in each category to

understand what recurring aspects are pointed out by the participants and then discuss

possible lessons learned. The developers are our oracle to evaluate the framework. Then,

we compare the results provided by the framework with the answers from developers. For

this, we calculated the precision. The precision is the ratio tp
tp+fp

where tp is the number

of true positives and fp the number of false positives [89]. The precision is intuitively the

ability of the classifier not to label as positive an answer that is negative [89].

4.7. Overview Results 46

4.7 Overview Results

This section presents the summary of our quantitative results. At first, we present

an overview of results for the Changed Files and Changed Lines of Code metrics. Fig-

ure 4.4 shows the opinion of the developers of each metric used in our framework. In this

figure, we have three blocks, one for each evaluated programming skill. The first block of

charts represents programming language skills. The second block depicts the back-end &

front-end profiles. Finally, the last block shows the test skills. Note that, in this phase,

we did not evaluate the library skill. We conducted an independent evaluation of pro-

gramming skills with respect to a library in Chapter 5. Concerning the Changed Files

metric agreement, we observe in the programming language perspective that 27% of the

participants answered “strongly agree” and “agree”. On the other hand, in the Changed

Lines of Code, 14%, and 22% of the participants answered respectively “strongly agree,

and “agree”. Concerning disagreements, we have 12% and 18% to “strongly disagree”

and “disagree” with the Changed Files. While for Changed Lines of Code, we observe

18% and 19%, respectively, to “strongly disagree” and “disagree”. This way, we note

that the Changed Files, in general, are better evaluated by developers to capture their

programming language skills.

Figure 4.4: Overview

Source: Prepared by the author, 2023

Overall, we conclude that both metrics used to compute test skills in this study were

not the right way to compute test skills. Developers mostly disagree with both metrics

for the Test development. Amongst the other negative comments, we highlight one that

the developer reported: “I am a primarily front-end and JS expert, and I maintain 2

of the most popular testing frameworks in the world. Your mining needs a little work”.

4.8. Results for Programming Language Skills 47

This feedback confirms that both metrics fail to compute test skills for some developers.

Therefore, it is necessary to apply more efforts to develop new metrics, combine them,

and detect the source code of the test. One positive aspect of the presented results is

that there is a considerable percentage of developers who agree or strongly agree with

the framework’s ability to capture programming language skills using the Changed Files

metric. This indicates that the framework has the potential to be a useful tool for assessing

developers’ skills in this particular area.

4.8 Results for Programming Language Skills

This section analyses the results of our empirical evaluation to research question

one (RQ1).

RQ1 – What is the precision of source code analysis to compute the programming language

skills of a developer?

For RQ1, we found a statistically significant difference between Changed File and

Changed Lines of Code (p-value= 0.02423) with the Wilcoxon-Signed Rank test. This

result allows us to refute the null hypothesis. Therefore, the metrics Changed Files

and Changed Lines of Code are statistically different. To analyze the precision, we sum

“agree” with “strongly agree”. We obtained the 54% precision to Changed Files and

36% to Changed Lines of Code. To understand the factors leading a developer not to

agree, we create three categories: Hard Divergence, Soft Divergence, and Convergence.

The category Hard Divergence indicates the number of developers against one metric

and favorable to the other. The category Soft Divergence means that a developer agrees

or disagrees with a given metric and is neutral about the other. Finally, Convergence

indicates they share the same opinion (agree, disagree, or neutral) for both metrics. Our

focus is on Hard Divergence because our goal is to understand how the metrics differ.

Figure 4.5 presents the opinion of the developers into these three categories. In this

figure, we use three colors for Convergence: light grey (negative), dark gray (neutral), and

black (positive). “Hard Divergence” and “Soft Divergence” correspond to, respectively,

20% (22) and 33.64% (37) of the answers. Therefore, we can observe that 20% of the

developers agree with a metric and disagree with another, 33.64% agree with one and

are neutral with the other. The remainder of the answers (46.37%) shows Convergence,

where: 17.27% agree on neither of the two metrics, 24.55% agree with both metrics, and

4.55% are neutral towards both. Our qualitative analysis (SQ5) investigates patterns

of answers. We note that the metrics were discrepant in some causes. That is, they

presented a result different from the other. In some cases, the metrics present the same

4.9. Results for Back-end & Front-end Profiles 48

languages. However, a metric presented a different sorting (e.g., Java is 1 st according to

one metric and 3rd language according to the other metric). In general, the metric that

prioritizes the most mainstream languages from the viewpoint of a developer is that they

agree—for example, C++, JavaScript, and Java were considered mainstream languages.

On the other hand, when the metric ranks CSS and HTML above the other languages,

overall, the developers disagree with this metric.

Figure 4.5: Programming Language Skills

Source: Prepared by the author, 2023

RQ1 summary – We obtained 54% precision to Changed Files versus 36% to Changed

Lines of Code. However, it is possible to see that less than 20% strongly disagree with

both evaluated metrics. Moreover, concerning the programming languages, developers

tend a select the metric that prioritizes the mainstream languages—for example, Python,

JavaScript, and Java.

4.9 Results for Back-end & Front-end Profiles

This section analyses the results of our empirical evaluation to research question

two (RQ2).

RQ2 – What is the precision of source code analysis to compute the back-end & front-end

profiles of a developer?

To investigates RQ2, we conducted the same configuration presented in RQ1. The

Wilcoxon signed-rank test indicated p-value= 0.06896. Since the p-value is 0.06896, which

is greater than our 0.05 significance level, we could not reject the null hypothesis in this

case. Figure 4.6 shows the results of this research question. In this figure, we have the same

configurations presented previously. “Hard Divergence” and “Soft Divergence” correspond

4.10. Results Test Development 49

to 34.55% (38) and 25.45% (28) of the answers. On the other hand, “Convergence”

corresponds to 40% of the answers, where 15.45% (17) of the developers disagreed with

the metric. This way, to these developers, both metrics cannot represent their Back-end

and Front-end profiles. For this RQ, we obtained a precision of 53% to Changed Files

versus 45% to Changed Lines of Code. Therefore, we observe that Changed Files from

survey results obtained better precision than Changed Lines of Code.

Figure 4.6: Back-end & Front-end Skill

Source: Prepared by the author, 2023

RQ2 summary – Overall, the precision of the metric evaluated is medium for back-end &

front-end profiles. We obtained 53% precision to Changed Files versus 45% to Changed

Lines of Code.

4.10 Results Test Development

This section analyses the results of our empirical evaluation to research question

three (RQ3).

RQ3 – What is the precision of source code analysis to compute the Test development

skills of a developer?

To answer this research question, we investigate the test skills of developers com-

puted by the two metrics, Changed Files, and Changed Lines of Code. We used the same

configurations presented in the last research questions. The Wilcoxon signed-rank test

indicated p-value < 0.01. Since the p-value is smallest than the 0.05 significance level,

we reject the null hypothesis. Therefore, there is a difference between the two metrics

evaluated concerning test development skills. Figure 4.7 presents the results in the same

way as presented previously. From all skills evaluated, tests obtained the worst results.

4.11. Feedback from Developers 50

We compute 52.73% (58) of answers for Hard Divergence against 12.73% (14) for Soft

Divergence. From these results, we can observe that 17.27% (19) converge negatively

to both metrics. Therefore, to 19 developers, both metric cannot compute their skills in

tests. We also note that only 10.91% (12) of developers agree with both metrics evaluated,

and 6.36% (7) are neutral.

Figure 4.7: Test Skill

Source:
Prepared by the author, 2023

RQ3 summary – We obtained a precision of 45% to Changed Files versus 30% to

Changed Line of Code. We argue that the metrics alone may not precisely compute

programming skills for test development.

4.11 Feedback from Developers

This section analyses the results of our empirical evaluation to research question 4

(RQ4).

RQ4 – What feedback do developers provide about source code analysis to compute pro-

gramming skills?

To gather and synthesize such feedback, we employed an approach inspired by the

coding phase of ground theory (as discussed in Section 4.6). We grouped the identified

codes into eight categories (shown in Table 4.4): Imprecision of detected skills, Expertise

not captured, Lack of data from private repositories, Problems in presentation, Positive

feedback, Negative Feedback, and others. The most frequent feedback is related to Impreci-

sion of detected skills and to Expertise not captured, mentioned by 17 and 16 participants,

respectively. The first represents the developers’ feedback about misalignment identified

by the metric. That means imprecise detection of programming language, back-end &

4.11. Feedback from Developers 51

front-end, and test development. Seven participants expressed concerns about the devel-

oper’s lack of treatment regarding what was created in contrast to what was committed,

i.e., third-party code (e.g., automated code, code provided by frameworks, boilerplate

code) computed in the developer skills.

Six participants did not agree with the metric for calculating their front-end and

back-end profiles. Four participants pointed out problems in the metric for calculating

language skills, such as wrong recognition of languages. Two participants pointed crit-

icism towards the results of Test Development. The codes categorized as Expertise not

captured are mostly related to the absence of specific programming languages or testing

skills in the resulting curriculum. Eight participants indicated that the results did not

compute any testing skills. These comments helped us understand that the metric of sim-

ply considering directory path referencing to test is not enough to capture fragments of

codes that implement tests. Seven participants mentioned they missed specific languages

in their respective curricula. From these cases, 6 participants mentioned languages that

our scripts do not capture (e.g., R, Latex, and Swift). However, developers were also

missing languages the script was supposed to capture (HTML, TypeScript, and CSS).

Finally, one participant mentioned that the metric could not assess their front-end &

back-end orientation since they do not post it on GitHub.

Concerning Positive feedback, we have a favorable opinion of the developers about

the evaluated metric. Between these comments, we highlight one in particular, in which

the developer said that the metric has the potential to use in the industry if improved.

Another category we created was Problems in presentation. This category represents the

problems concerning the presentation of the curriculum. For instance, the type of charts,

layout, percentage, and text in the curriculum. This problem typically occurred when the

curriculum showed similar data for both metrics. The codes categorized as Lack of data

from private repositories indicate the observations of the developers about data not cap-

tured at private repositories. Some developers related that their skills were not computed

correctly because most of their source code is available in private repositories. Negative

Feedback reports comments from developers that did not like the results presented by

the metric. For example, a developer-related: “None of these results captures the useful

nuance”.

4.12. Threats to Validity 52

Table 4.4: Feedback Categories

Category #
Imprecision of detected skills 17
Expertise not captured 16
Other 6
Positive feedback 6
Problems in presentation 5
Lack data from private repositories 4
Negative Feedback 4
Time factor 3
Source: Prepared by the author, 2023

RQ4 summary – In general, we observe that the most frequent feedback is related to the

imprecision of detected skills and Expertise not captured.

4.12 Threats to Validity

As any empirical study, ours is also subject to several threats of validity. Therefore,

in this section, we detail the threats that may affect the validity of the study and how

they are handled.

Construct Validity refers to the extent the operational measures in this thesis

really represent what we intended to measure. Therefore, it is concerned with issues

that may arise due to improper design of the survey instrument, which may not correctly

measure what it is supposed to measure. We believe this issue has been mitigated since

the questionnaire was iteratively designed and updated by the authors based on well

known [104]. Further, we conduct a survey pilot to improve our survey before applying to

all developers. Self-selection is another threat. However, we try to select the biggest group

of developers from GitHub without evaluating the number of commits, amount of stars,

programming languages, and organizations. The use of generated distribution of skills

based on GitHub contributions as a proxy for general individual skill level evaluation is

a limitation. Professional experiences can be much broader than individual contributions

to open-source.

Internal Validity is related to uncontrolled aspects that may affect the results, such

as the subjects’ experience. We developed many steps to mitigate this threat: (i) Respon-

dents were assured of their anonymity to avoid evaluation apprehension; (ii) We sent an

email only to developers mined by GitHub; and (iii) All statements were not mandatory.

External Validity is related to the possibility to generalize our results. The sur-

4.13. Concluding Remarks 53

vey was answered by 110 subjects. This number might not be a representative sample.

However, our sample is diversified; the subjects have different programming experience

and work with freelancers or other companies. Therefore, we believe that these steps

contributed to obtaining a sample that is quite heterogeneous in terms of knowledge, job

role, profile, and company. The selected projects are also open source. It is possible that

closed-source projects developed within an industrial setting could have different prop-

erties, but several of the systems we include in our sample are developed by industry.

The participants were sampled by convenience. Therefore, generalizing the results to a

different population (e.g., software developers proprietary) poses a threat.

Conclusion Validity is related to the possibility of reaching incorrect conclusions

about observations due to errors, such as the use of inadequate statistical tests or mea-

sures. The participants did not answer the questionnaire honestly. Participants may feel

that they needed to provide positive feedback for better scores. This threat is minimized

by announcing that the questionnaire is not mandatory, so participants provide feedback

willingly and without pressure. In this study, we only used the absolute number and

percentages to compute programming skills. In addition, we only considered complete

responses in our analysis. Another threat is subjectivity. We manually interpret partic-

ipants’ feedback, and subjective or bias might be included during the experiment. This

threat is addressed by cross discussion among co-authors. Although we did not inform the

participants about our research goals, they were aware of being part of an investigation on

programming skills. Thus, there could be the risk of hypothesis guessing. It is noteworthy

that we did not use advanced techniques, such as GitHub Linguist, to detect the type of

programming language, for example. The reason is because our study aim to evaluate in

this first moment the feasibility of computing programming skills from the source code

analysis. In the future, we can use this technology to detect the primary programming

languages, source code generated automatically, and binary data.

4.13 Concluding Remarks

Contemporary software development demands breadth and in-depth knowledge for

a tremendously large set of technologies, tools, and practices. Retaining a competitive

development team becomes even more pronounced considering the rapid evolution of soft-

ware technologies and the continuous emergence of novel programming languages, frame-

works, and libraries. Considering that developers’ skills also evolve, project managers

face the challenge of tracking the kind and extent of knowledge within the development

team to map people to tasks efficiently. Therefore, it is essential to select right develop-

4.13. Concluding Remarks 54

ers to compose the time development. Identifying these developers is not easy, then it

is necessary methods able to compute programming skills from source code in order to

provide results must be reliable. This way, besides purpose a framework and metrics, we

conducted an evaluating of this framework with real developers from GitHub. In Chap-

ter 5, we depth our evaluation, focusing on compute libraries most used by developers, in

order to identify library experts.

55

Chapter 5

Identifying Library Experts

Identifying the third-party libraries in which a developer excels is crucial in the field of

software development. These libraries play a pivotal role in boosting productivity, facili-

tating rapid development, and delivering robust and reliable solutions. By identifying the

specific libraries that a developer has mastered, we gain valuable insights into their skill

set, expertise, and ability to effectively utilize external resources. This knowledge not only

helps in making informed decisions when hiring or forming development teams but also

enables us to allocate resources strategically and assign projects that align with the devel-

oper’s strengths. Moreover, understanding a developer’s proficiency in specific libraries

fosters more effective collaboration and knowledge-sharing within the team, fostering a

culture of continuous learning and innovation. Overall, identifying a developer’s expertise

in third-party libraries empowers organizations to build high-performing teams and deliver

exceptional software solutions that meet the demands of today’s dynamic technological

landscape [12, 63]. Expertise encompasses the characteristics, skills, and knowledge that

distinguish experts from novices and less-experienced individuals [63, 107]. Software de-

velopment is a complex activity as it relies on the knowledge of individuals, and each

software or new feature introduces new challenges. Therefore, it is crucial to identify

developers with multidisciplinary skills, although this task itself can be complex. This

chapter presents a proof of concept of the framework concerning the Library Instance.

This specific instance of the framework calculates the programming skills of developers in

relation to the most commonly used programming languages and libraries. Therefore, in

this study, we focus on computing the expertise of developers in Java-specific libraries.

This chapter is organized as follows. Section 5.1 presents the research questions

that guide this study. Section 5.2 describes the steps taken for the empirical evaluation.

Section 5.3 introduces the metrics adopted to compute hard skills in libraries within

our framework. Section 5.4 outlines the construction of the dataset used to evaluate

the framework. Section 5.5 presents the setup of the survey conducted, and Section 5.6

provides an overview of the results obtained from the developers who participated in the

survey. Sections 5.7 to 5.9 present the results of the empirical evaluation in response to the

research questions. Section 5.10 discusses the threats to validity and the corresponding

treatments. Finally, Section 5.11 concludes this chapter with our final remarks.

5.1. Goal and Research Questions 56

5.1 Goal and Research Questions

The primary goal of this study is to evaluate the applicability of the framework

to identify library experts from source code analysis. We are interested in whether the

framework can precisely identify experts in a specific library. We are also concerned with

assessing the relevance of the results provided by the framework. For this purpose, we

select the 10 most popular and standard Java libraries among GitHub developers. One

library was later excluded (Section 5.4) and, therefore, we evaluate the framework with

the 9 most popular libraries. To achieve this goal, we use the Goal-Question-Metric

framework to select measurements of source code. The GQM method proposes a top-

down approach to define measurement; goals lead to questions, which are then answered

with metrics [10].

Table 5.1 shows the GQM with the research questions and metrics investigated in

this study. Through RQ1, we are interested in investigating the efficiency of the number

of commits (metric) to indicate the level of activity of a developer in a specific library.

In other words, we aim to analyze the number of commits involving a specific library

performed by a developer to compute their level of activity in the library. With RQ2, we

aim at assessing the knowledge extension based on the number of imports to a specific

library. That is, from all imports made by a developer at the source code, we investigate

the number related to the specific library. Finally, the last research question (RQ3)

analyzes the knowledge intensity of the developers from the number of LOC related to the

library (metric). In this last question, we aim to evaluate the amount of LOC implemented

by a developer using a specific library. For this purpose, we evaluate the relation of total

LOC and LOC related to a specific library.

Table 5.1: The Metrics Analysis as GQM method

Questions Metrics
RQ1– How to evaluate the level of activity of a developer in
a library?

Number of Commits

RQ2– How to evaluate the knowledge extension of a developer
in a library?

Number of Imports

RQ3– How to evaluate the knowledge intensity of a developer
in a library?

Lines of Code

Source: Prepared by the author, 2023

5.2. Evaluation Steps 57

5.2 Evaluation Steps

This section describes the steps to evaluate the identification of library experts

from source code. To answer the research questions presented in Section 5.1, we designed

a mixed-method study composed of four steps: 1)Metrics Selection, 2) Dataset Collection,

3) Expert Identification, and 4) Survey Application. Figure 5.1 presents the steps of our

research, which are discussed next. For Metrics Selection (Section 5.3) we create metrics

to identify library experts. In the Dataset Collection (Section 5.4), we clone the projects

from GitHub. For Expert Identification, we compute the skills of developers based on

three metrics: Number of Commits, Number of Imports, and Lines of Code. Finally, we

performed a Survey. This survey was conducted to evaluate the accuracy of the framework

according to the responses of developers. Section 5.5 presents details about the survey.

Figure 5.1: Study Steps to Identifying Library Experts

Source: Prepared by the author, 2023

5.3 Metrics used to Library Instance

We adopted metrics to compute libraries experts. As cited in Chapter 3, these met-

rics were developed empirically and can be changed by users of the framework. For this in-

stance of the framework, we implement three metrics: Number of Commits, Lines of Code,

and Number of Imports. Number of Commits calculates the activity of each developer

through the number of commits using a particular library. Through this metric, it is possi-

ble to measure the amount of use of the library in a project that a specific developer works.

Number of Imports presents the intensity of use of a particular library. For this metric, we

count all imports to the library. Lines of Code has a heuristic to count the amount of lines

of code related to a specific library, as follows. First, we obtain the ratio of changed lines

of code by the number of all imports in the file. Then, we multiply the ratio by the num-

5.4. Dataset 58

ber of imports related to the library (LOC = # of LOC Altered by Commit
of All Imports X # of Library Imports).

The concept of skills is essential in the proposed framework because we aim to search

for professionals with specific skills and with different capabilities for each type of task

[6, 7, 18, 20, 38]. That is, a recruiter needs to have several dimensions of skills from each

candidate so that they can have a benchmark to select the most appropriate candidate

for the job [2, 51].

5.4 Dataset

To create our dataset, we select the 10 most popular and common Java libraries

among GitHub developers: Hibernate, Selenium, Hadoop, Spark, Struts, GWT, Vaadin,

Primefaces, Apache Wicket, and JavaServer Faces. The selection was made based on

a survey provided by Stack Overflow1 in 2018 with answers of over 100,000 developers

around the world. Table 5.2 summarizes the definitions of each library. All definitions of

the libraries were retrieved from Stack Overflow and their Web pages. We selected Java

because it is one of the most popular programming languages2 and there are many Java

projects available on GitHub.

Figure 5.2 illustrates the criteria for defining our dataset. We apply the following

exclusion criteria. 1) We excluded systems with less than 1 KLOC because we considered

them toy examples or early-stage software projects. 2) We removed projects with no

commit in the last 3 years because the developers may forget their code [46]. Finally, in

the last exclusion criteria, 3) we removed projects which did not contain imports related to

the selected libraries. Besides, we excluded all official projects of these libraries, because

we assume all developers of a library project are experts in the corresponding library. We

also removed libraries with less than 100 projects (the case of JavaServer Faces) because

we need a representative number of projects to evaluate our framework. We analyzed

only files with extension .java. Therefore, we end up analyzing 9 libraries in this study.

Table 5.3 shows the number of remained projects after each step in our filtering process.

From the dataset projects, we computed all commits with the libraries evaluated

in this study and identified 1.6 million different developers who made commits. Figure 5.3

shows the number of developers per library. The library, with more developers that made

commits, was Selenium. This library has 811,844 developers. In contrast, Apache Wicket

was the library with fewer developers, 5,440. It is important to say that these developers

made at least one commit for the respective library. However, we cannot consider them

1https://insights.stackoverflow.com/survey/2018#most-popular-technologies
2https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018

5.4. Dataset 59

Table 5.2: Library Descriptions

Library Description

Hibernate Hibernate is a library of object-relational mapping to object-oriented.

Selenium A test suite specifically for automating Web.

Hadoop A library that facilitates the use of the network from many computers to solve
problems involving massive amounts of data [97, 105].

Spark A general-purpose distributed computing engine used for processing and analyzing
a large amount of data

Struts It helps in developing Web-based applications.

GWT It allows Web developers to develop and maintain complex JavaScript front-end
applications in Java.

Vaadin It includes a set of Web components, a Java Web library, and a set of tools and
application starters. It also allows the implementation of HTML5 web user inter-
faces using the Java.

PrimeFaces A library for JavaServer Faces featuring over 100 components.

Apache Wicket A library for creating reusable components and offers an object-oriented method-
ology to Web development while requiring only Java and HTML.

JavaServer Faces A Java view library running on the server machine which allows you to write
template text in client-side languages (like HTML, CSS, JavaScript, etc.).

Source: Prepared by the author, 2023

Figure 5.2: Steps for Collecting Software Projects from GitHub

Source: Prepared by the author, 2023

all experts, since a single library use may not indicate high expertise.

Figures 5.4, 5.5, and 5.6 show an overview of the metrics computed to our dataset.

Figure 5.4 presents the results to Number of Commits per library. Figure 5.5 presents an

overview of metric Number of Imports per library. Finally, Figure 5.6 shows the results

of the metric Lines of Code per library. In general, Lines of Code (Figure 5.6) was the

metric that presented more variation in our dataset. For instance, GWT has developers

that wrote more than 130 KLOC. Similarly, for Hibernate, it is possible to see an outlier

5.4. Dataset 60

Table 5.3: Projects Selected for Analysis

Library #Projects Filtered Reimaned
Hibernate 31,134 26,020 5,114
Selenium 19,062 17,648 1,414
Hadoop 11,715 10,778 937
Spark 9,144 7,650 1,494
Struts 4,741 4,127 614
GWT 4,086 2,635 1,451
Vaadin 3,240 2,625 615
PrimeFaces 1,881 1,401 480
Apache Wicket 1,095 896 199
JavaServer Faces 120 120 -

TOTAL 86,218 73,900 12,318
Source: Prepared by the author, 2023

Figure 5.3: Number of Developers by Library

Source: Prepared by the author, 2023

developer who wrote more than 500 KLOC. In contrast, some developers wrote less than

10 lines of code, for example, to the library PrimeFaces.

Figure 5.4: Number of Commits per Library

Source: Prepared by the author, 2023

5.5. Survey Design 61

Figure 5.5: Number of Imports per Library

Source: Prepared by the author, 2023

Figure 5.6: Number of LOC per Library

Source: Prepared by the author, 2023

5.5 Survey Design

Survey studies are used to identify characteristics of a population and are usually

associated with the application of questionnaires [31]. Besides, surveys are meant to

collect data to describe and compare or explain knowledge [80]. We selected the library

experts with the best values in the evaluated metrics to validate them through a survey.

We designed and applied a survey with the top developers identified by our framework.

We selected developers with the top-20% highest values in at least two (out of three)

metrics. We created a questionnaire on Google Forms3 with two parts: the first one

was composed by 5 questions about the background of the expert candidates; the second

part also had 5 questions about the knowledge of the expert candidates regarding the

evaluated libraries. Table 5.4 contains the tag <libray name> meaning a specific library,

for instance, Hadoop. In addition, this table shows the possible answers to the survey.

To obtain the email used by the developer to perform the commits in the source

code, we used the Git-Blame4 tool. The emails were collected in order to send the survey.

We sent an email to developers asking them to assess their knowledge on each library.

For instance, the developers were invited to rank their knowledge (Table 5.4, SQ1) using

3https://www.google.com/forms/
4https://git-scm.com/docs/git-blame

5.6. Overview 62

a scale from 1 (one) to 5 (five), where (1) means no knowledge about the library; and (5)

means extensive knowledge about the library. Questions are not mandatory because they

may require knowledge on exceptional features of the library. Therefore, participants are

not forced to provide an answer when they did not remember a specific element of the

library, such as, time of development using the library and the approximate frequency of

commits that contains the library. The survey remained open for 15 days in January 2019.

In this section, we present the results of the accuracy evaluation based on a survey with

expert candidates in each library. The goal of this evaluation is to verify the precision of

the library expert identification. We empirically selected 1,045 developers among the top-

20% values in at least 2 metrics. The questionnaire was sent January 2019. After a period

of 15 days, we obtained 137 responses resulting in a response rate of about 15%. We asked

the 137 developers about their software development experience in general (background),

and the use of the specific libraries investigated in this thesis.

Table 5.4: Survey Questions on the Use of the Libraries

ID Questions

SQ1
How do you assess your knowledge in <libray name>?
() 1 () 2 () 3 () 4 () 5

SQ2
How many projects have you worked with <libray name>?
() 1 to 5 () 6 to 10 () 11 to 20 () More than 20 projects

SQ3
How many packages of <library name> have you used?
() A few () A lot

SQ4
How often do your commits include <libray name>?
() A few () A lot

SQ5

How much of your code is related to <libray name>?
() Few of my code is related to <libray name>
() My code is partially related to <libray name>
() Most of my code contains <libray name>

Source: Prepared by the author, 2023

5.6 Overview

In this section, we present an overview of some relevant findings. Table 5.5 presents

an overview of the experts’ candidates contacted to answer our survey. This table has the

following structure. The Library column indicates the name of the analyzed library. The

second Emails sent column shows the number of emails collected and sent to expert can-

didates. The Invalid email column presents the number of emails invalid which returned

by the server. The Remaining emails column indicates the number of valid emails. The

#Answers column shows the number of answers we obtained for each library. Finally, in

the last (%) column, we show the response rate of each library.

5.6. Overview 63

Table 5.5: Top 20% from Library Experts Selected to Answer the Survey

Library
Emails
sent

Invalid
email

Remaining
email

Answers %

GWT 160 18 142 31 22%
Hadoop 181 33 148 11 7%
Hibernate 155 10 145 16 11%
Spark 138 19 119 11 9%
Struts 42 2 40 9 23%
Vaadin 107 18 89 15 17%
PrimeFaces 30 1 29 9 31%
Wicket 23 2 21 8 38%
Selenium 209 31 178 27 15%
TOTAL 1,045 134 911 137 15%

Source: Prepared by the author, 2023

It is worth highlighting that half respondents are graduated in Computer Science

and 7% Ph.D. degree. Concerning time dedicated to software development, 47% have more

than 10 years of experience, and only 2% have less than 1 year of experience. Therefore,

we can conclude that, in general, the participants are not novices. Our study also shows

that a significant amount of expert candidates make commits when writing code related

to a specific library, perform many imports of particular libraries and write lines of code

in relation to the library. We support this affirmation through metrics, mainly a heuristic

that evaluates the amount of LOC written by a developer when it is performed a commit.

Table 5.6 shows the results about knowledge that surveyed developers claim to

have in each library. The developers were invited to rank their knowledge using a scale

from 1 to 5 , where (1) means no knowledge about the library; and (5) means extensive

knowledge about the library. If we analyze the data about the precision of the framework

from the sum of levels 3, 4 and 5 of Likert-type scale, we obtain on average 88.49%

of accuracy in relation the knowledge of the developers, i.e., identification is correct in

more than 88% of the cases. On the other hand, although a score three may represent

an acceptable knowledge, if we followed a more conservative criteria, only classifying as

library experts the developers that informed a higher (≥ 4) knowledge on the libraries,

we obtain, on average, 63.31% of precision. This way, we conclude that most of the

identified expert candidates identified by the framework contain high knowledge about

the evaluated libraries. In contrast, to a level of knowledge < 3, we achieved only 11.51%

of the developers, i.e., possibly the framework fails by selecting these developers.

Summary – About 88% of the library experts who answered the survey have a high knowl-

edge about the evaluated libraries.

5.7. Level of Activity 64

Table 5.6: Level of Knowledge in Each Library

Library
Likert scale

Total 3-4-5 4-5
1 2 3 4 5

GWT 1 1 4 9 16 31 94% 81%
Hadoop 0 1 3 4 3 11 91% 64%
Hibernate 1 3 6 3 3 16 75% 38%
Spark 0 1 4 2 4 11 91% 55%
Struts 2 2 1 4 0 9 56% 44%
Vaadin 0 2 5 3 5 15 87% 53%
PrimeFaces 0 0 4 4 1 9 100% 56%
Wicket 1 0 2 4 1 8 88% 63%
Selenium 0 1 4 13 9 27 96% 81%

Source: Prepared by the author, 2023

5.7 Level of Activity

This section analyses the results of our empirical evaluation to research question

one (RQ1).

RQ1– How to evaluate the level of activity of a developer in a library?

To answer this research question, we asked the library experts the following ques-

tion. “How often are your commits related to the <libray name> library”? Figure 5.7

shows the results to this question in the first line in each chart to each library. For most

libraries, the majority of the participants answered they made “few” commits using the

evaluated libraries. This way, if we evaluated the results obtained for this label, it is pos-

sible to see that from 137 experts, 54% made “few” commits. For instance, in the library

Hibernate, 87% of developers said they made few commits related to this library. Another

library that deserves special attention is Struts. In this library, 88% of the developers

responded that they made few commits. Regarding the label “a lot”, only 39% of experts

polled said they performed many commits. GWT was the library with a higher rate of

answers to this label (62%). Therefore, the numbers indicate that the metric Number of

Commits needs to be combined with other metrics to achieved conclusive results about

the skill from developers and even develop other metrics to identify the level of activity

ability.

RQ1 summary – A large proportion of library experts make “few” commits using the

library. Therefore, we concluded that the solo use of number of commits cannot identify

library experts.

5.7. Level of Activity 65

Figure 5.7: Results of the survey questions for each library

(a) GWT (b) Hadoop

(c) Hibernate (d) PrimeFaces

(e) Selenium (f) Spark

(g) Struts (h) Vaadin

(i) Wicket

Source: Prepared by the author, 2023

5.8. Knowledge Intensity 66

5.8 Knowledge Intensity

This section analyses the results of our empirical evaluation to research question

two (RQ2).

RQ2– How to evaluate the knowledge intensity of a developer in a library?

Regarding the number of imports to indicate a library expert, we ask the developers

the following question: “How often do you include an import of <libray name> library

in your commits?”. Figure 5.7 shows the results to this question from second line in

each chart to each library. We analyze the number of imports performed by developers.

The main reason for this analysis is to evaluate the feasibility of inferring the skills of

the developers from the types of imports performed. In general, the label “few” and “a

lot” are tied or with little difference between them. For example, Hibernate, Spark, and

PrimeFaces have practically tied. These libraries did not show significant differences; in

some cases, the difference was only of 1 absolute point. In only three cases, the label “a

lot” remained significantly higher: GWT (83%), Vaadin (67%) and Selenium (78%). From

137 experts, 68% said that they made “a lot of imports”. However, the number informed

by the experts indicates that this metric requires a combination with other metrics to

achieve better results, because 32% of experts said they made few imports to libraries

evaluated. Therefore, from the survey results, the metric Number of Imports, as well as

the metric Number of Commits, are not able to identify library experts, when we apply

one at a time.

RQ2 summary – The metric Number of Imports is not able to identify library experts,

when we use it alone. The imports achieved lower overall results in most cases.

5.9 Knowledge Extension

This section analyses the results of our empirical evaluation to research question

three (RQ3).

RQ3– How to evaluate the knowledge extension of a developer in a library?

In this research question, we analyze the developers skill from the number of LOC

related to library. We evaluate the number LOC implemented by a developer to specific

library. For this purpose, we asked the library experts from the survey the following

question. “How much of your code is related to the <libray name> library when you

5.10. Threats to Validity 67

perform a commit?”. Figure 5.7 shows the results to this question in the third line

in each chart to each library. The libraries GWT, Wicket, Selenium, and Hadoop, for

instance, obtained 74%, 71%, 70%, and 64% respectively to label “a lot”. We noted,

however, the label “a few” also remained at a high level in some cases, for instance, the

libraries Struts (88%) and Spark (55%). In fact, the library Hibernate remained tied to

labels “a few” and “a lot”. In general, from 137 experts, 39% said they write “a few” LOC

and 61% write “a lot” LOC with respect to libraries. Therefore, it is possible to infer that

the metric Lines of Code alone also does not provide indications about developer skills,

although this metric achieved better precision then the metric Number of Commits.

RQ3 summary – According to our analysis, the metric Lines of Code alone cannot

reliably provide indications about developers’ skills. However, it achieved in general,

results better than the metric Number of Commits.

5.10 Threats to Validity

We based our study on related work to support the evaluation of a strategy to

identify library experts. Regarding the assessment, we conducted a careful empirical

study to assess the efficiency of the strategy from software systems hosted from GitHub.

The strategy evaluated is able to analyze source code from platforms that follow the Git

architecture. However, some threats to validity may affect our research findings. The

main threats and respective treatments are discussed below [104].

Construct Validity is related to whether measurements in the study reflect real-

world situations [104]. Before running the strategy, we conducted a careful filtering of

software systems from GitHub repositories. However, some threats may affect the correct

filtering of systems, such as human factors that wrongly lead to the discard of a valid

system to be evaluated. Considering that the exclusion criteria to system selection were

applied in a manual process, we may have discarded interesting systems that we identified

as non-Java, for instance.

Internal Validity is related to uncontrolled aspects that may affect the strategy

results [104]. The strategy may be affected by some threats. To treat this possible

problem, we selected a sample of 5 software systems that contain the library Hadoop from

our dataset, with a diversified number of LOC. Then, we manually identified the number

of commits from the GitHub repository, the number of imports, and the number of LOC

codified to the specific library. We compared our manual results with the results provided

by the tool and observed a loss of 5% in metrics terms computed through the automated

5.11. Concluding Remarks 68

process. We believe that this error rate does not invalidate our main conclusions.

External Validity this validity is related to the possibility of generalizing our re-

sults [104]. We evaluated the strategy with a set of 16,703 software projects from GitHub.

Considering that these systems may not include all existing libraries, our findings may not

be generalized. Furthermore, we evaluated the strategy with an online survey with only

137 developers that implemented projects with the investigated libraries. We analyzed

the data with only 9 Java libraries. However, we chose the top libraries from the survey

reported by StackOverflow in 2018, with over 100,000 responses developers around the

world. This way, we believe these libraries can represent a reasonable option to evaluate

the framework.

Conclusion Validity this validity is a factor that can lead research to reach an incor-

rect conclusion about a relationship between observations [104]. Having a fair comparison

between programming skills from source code and real hard skills is challenging. We show

that source code presents data about the programming skills of developers. However, the

data can suffer interference. For example, other people made a commit by the developer.

Our study reveals a high dependency on hash commits. Although it is possible to find an

optimal threshold configuration to detect commits atypical.

5.11 Concluding Remarks

In this chapter, we presented an evaluation of our framework based on the Library

Instance. The framework developed aims to identify library experts from source code

in technologies that use the import keyword. At this stage, we evaluate the framework

composed of three metrics: i) Number of Commits, ii) Number of Imports and, iii) Lines

of Code. Besides, we evaluated our framework with nine Java Libraries: Hibernate, Se-

lenium, Hadoop, Spark, Struts, GWT, Vaadin, PrimeFaces, and Apache Wicket. We

conducted the empirical evaluation with real developers from GitHub. We concluded

that the metrics can be used to identify library experts but they need to be combine

with another for better results. In the next chapter, we present a study involving soft-

ware developer recruiters from three different countries: Brazil, Canada, and the United

States.

69

Chapter 6

A Study with Software Recruiters

The selection of competent software developers is crucial for ensuring the quality of soft-

ware products [4]. In the rapidly evolving field of software development, where technology

advancements and customer expectations continuously shape the landscape, identifying

skilled developers becomes imperative. The capability of developers directly impacts the

software development process, including requirements analysis, design, implementation,

and testing [67]. This chapter describes the study conducted to evaluate the Tech Skills

Instance by means of interviews with actual recruiters. The study utilizes the data gen-

erated by the Tech Skills Instance of our framework, which takes as input the developers’

repositories and computes their hard skills based on programming languages and libraries.

The Tech Skills Instance provides insights into the developers’ profiles using data mined

from GitHub. These data are processed to showcase the developers’ curricula.

This chapter is distributed the following way. Section 6.1 outlines the aims of our

study and the research questions we address. Section 6.2 presents the evaluation steps.

Section 6.3 presents the metrics used in this instance, which can be adapted according

to the goal of computing hard skills. Section 6.4 explains the instrumentation applied

during the interviews, including the adoption of concepts such as Focus Interview [16]

and Think Aloud [11]. Section 6.5 details the steps taken to select the participants, and

Section 6.6 provides a summary of the interviews. Section 6.7 presents the details about

data analysis. Section 6.8 shows the demographic information of recruiters. Sections 6.9

to 6.12 present the results. Section 6.13 discusses some limitations and threats to the

study. Finally, Section 6.14 concludes with our final remarks.

6.1 Goal and Research Questions

The main goal of this study is to understand the problems in hiring a new software

developer to fill a specific position from the point of view of recruiters. More specifically,

we would like to know if the selection of software developers is appropriate and how profile

6.2. Evaluation Steps 70

mining can help in this step. Since we are interested in comprehending the recruiters’

opinions about this process, we conducted exploratory interviews with them. This means

prospective recruiters can see a developer’s profile of projects listed on GitHub and a

history of their code-related actions over time on both these and other people’s projects.

We show below the four Research Questions (RQ) of this study.

RQ1- How do companies recruit software developers?

RQ2- What are the possible applications of the framework to mine a developer profile?

RQ3- How do the framework results complement GitHub information?

RQ4- What are the opportunities for improving the hiring process?

From the RQ1, our goal is to understand the strategies and processes used by

companies to recruit software developers. The answer to this question provides insights

into the frameworks used by companies to evaluate the hard skills of software developers,

such as technical interviews, behavioral interviews, and reviewing GitHub profiles. The

goal of RQ2 is to understand the feasibility of applying a new framework to complement

the process of selecting software developers. In other words, whether, for example, it is

possible to use other strategies to support the step of selecting new software developers.

RQ3 investigates ways to complement GitHub information, for instance, with summarized

profiles. For this, we investigate extras information from GitHub repositories. After, we

check whether these data can help recruiters to select a developer. The goal of RQ4 is to

identify areas for improvement in the framework used in this study and the hiring process.

The answer to this question provides insights into the limitations of the framework, areas

for improvement, and how the framework can be adapted to changing requirements and

technologies. The information obtained from this question can be used to make the

recruitment process more efficient and effective and to ensure that companies are hiring

the best software developers.

6.2 Evaluation Steps

This section describes the steps to answer the research questions presented in Sec-

tion 6.1. We designed a study composed of five steps: 1) Metrics Selection, 2) Instrumen-

tation, 3) Selection Subjects, 4) Interview with Recruiters, and 5) Data Analysis. Figure 6.1

shows the steps. In Step 1) Metrics Selection (Section 6.3), we adopt the metrics to iden-

tify hard skills from our framework. Step 2) Instrumentation (Section 6.4). describes the

6.3. Metrics used to Tech Skills Instance 71

instrumentation used to conduct the study. In Step 3) Selection Subjects (Section 6.5),

we investigate software developer selection with 2 randomly selected developers and re-

cruiters with at least 2 years of experience invited from LinkedIn and networking contacts,

speaking either Portuguese or English. Step 4) Interview with Recruiters (Section 6.6)

is responsible to describe the online semi-structured interviews with recruiters, focusing

on their use of GitHub during the hiring process. Step 5) Data Analysis (Section 6.7) is

responsible to compute the data about the interviews.

Figure 6.1: Study steps with Software Recruiters

Source: Prepared by the author, 2023

6.3 Metrics used to Tech Skills Instance

In this section, we provide an explanation of the metrics used to compute hard skills

for the Tech Skills Instance. While these metrics share similarities with those adopted

in previous studies (Chapters 4 and 5), there are some differences that we will discuss

here. The primary goal of this instance is to gather more detailed information about a

developer’s profile from their GitHub repositories. To achieve this, we rely on two key

metrics: Lines of Code and Number of Commits. As mentioned in Section 5.3, we have

previously used the metric Lines of Code, but for this instance, we have made certain

modifications. In this study, we employ a different approach to identify the programming

language used by a developer, based on the file extension and confirmation from Lin-

guist 1. Subsequently, we use Git Blame and Git Log to determine the number of Lines

of Code changed (added, removed, or updated) by a specific developer for a particular

programming language. This metric provides insights into the developer’s level of engage-

ment and activity in coding with a specific language. Additionally, we leverage the metric

Number of Commits to quantify the quantity of commits made by a developer in relation

to specific programming languages and the most commonly used libraries. To further

identify the main libraries used by a developer, we compute the frequency of “imports”

or “require” statements found in their code files. These keywords are typically used to

1https://github.com/github-linguist/linguist

6.4. Instrumentation 72

call third-party libraries, and by analyzing their presence, we obtain valuable insights into

the developer’s familiarity with different libraries and their level of expertise in utilizing

external resources.

6.4 Instrumentation

In this section, we describe the instrumentation used to conduct the study. We

create one fictitious job opportunities from open jobs on LinkedIn. Next, we randomly

select two developers from GitHub. However, each developer must have similar profile

concerning the programming languages (in this case, JavaScript). It is not mandatory that

the developers have the same programming skill level. We then compute the programming

skills of these two developers from the framework selected in this study [74] and generate

each developer’s CV. Before conducting the interview with recruiters, we select them.

We select recruiters with at least 2 years of experience invited from LinkedIn and our

networking contacts. Recruiters with more experience are often better equipped to identify

and evaluate the skills, qualifications, and cultural fit of potential candidates, resulting

in more successful hires. After that, we conducted a semi-structured interview with

recruiters. In this type of interview, open questions can be applied off-order. This way, the

participants can express themselves more freely and elaborate on their answers. To obtain

more details about the opinion of the recruiters, we adopt the think-aloud protocol [11,

34, 77].

Participants in think-aloud protocols speak their thoughts out loud as they carry

out a series of predetermined tasks [11, 34, 77]. In our case, we observe the use of GitHub

from the recruiters actions. Participants are invited to say whatever comes to mind as

they finish the activity. This could involve what they are seeing, contemplating, acting

upon, and feeling. For instance, when a recruiter looks at the developer’s repositories,

we need to understand the recruiter’s viewpoint. Making thought processes as explicit

as feasible throughout task execution allows observers to gain insight into participants’

cognitive processes rather than just their end product. Every verbalization is recorded,

transcribed, and examined. We also request that the interviewees share their screens

with us. This step is essential to view points evaluated by recruiters. Before starting the

recorder screen and voice, we solicit the consent of the interviewees to record. Finally,

we analyze the data generated by interviews using the open and axial coding inspired to

Grounded the Theory [37, 59, 94]. A replication package for this study is made available

at Zenodo [75].

6.5. Selection Subjects 73

6.5 Selection Subjects

This study relies on two profiles of developers and selected 17 recruiters to investi-

gate the software developers selection process. We selected two developers by which the

GitHub profiles had information about the developer which matches the job description.

We create one fictitious job opportunities from open jobs on LinkedIn. We also researched

LinkedIn by software recruiters to invite them for our interview. As a result, we invite 20

recruiters from our personal network and mined from LinkedIn of known.

To invite a recruiter, they need to have experience in at least two years as a

recruiter. This period is an important factor in being interviewed to be able to contribute

to the study. In addition, our participants to interview should speak one of the two

idioms, Portuguese or English. This is important for us to avoid language barriers and to

understand each other. To conduct an interview, we select two curricula generated from

GitHub data [74]. These curricula have the following data of the developer: 1) a short bio,

2) the number of repositories, 3) a bar chart with lines of code change by programming

language, 4) a bar chart with commits made by the developer to a specific programming

language, and 5) the number of import to most used APIs by programming language.

6.6 Interview with Recruiters

We used interviews for data collection conducted online in November and December

2022. We adopt the concept of Focus Interview [16]. This type of interview emphasizes the

interviewees subjective and personal responses, where the interviewer engages in eliciting

more information [9]. According to Merriam [61], interviews effectively elicit information

about things that cannot be observed. We used semi-structured interviews with open-

ended questions because this approach gathers richer responses compared to structured

interviews [84]. Interviewees: we contacted each participant by e-mail. Each interview

occurred in a private Google Meeting room. We asked the recruiters to describe a recent

past hire, focusing on how they used GitHub during the hiring process. We request what

information on the platform was relevant and what that information is saying about the

candidate.

Interviewees had to agree with the Informed Consent Form, which guarantees the

confidentiality of the data provided, the anonymity of the participants, and the right

to withdraw from the research at any moment. We collected data and enhanced the

6.7. Data Analysis 74

interview in two rounds. During the first round, we piloted the interview design with two

recruiters. We then discarded the pilots’ data. Through the pilot tests, we understood

that it was necessary to change some interview questions, enhance CVs of the developers,

and emphasize the focus on hard skills to conduct the interview. Therefore, our final pool

of interviews was composed of 15 recruiters because two were used in the study pilot.

Table 6.1 presents the Interview Questions (IQ) in detail. The first column indicates the

research questions used to create the interview question. The second column indicates

the number of IQs, and the last column presents the interview questions. Note that from

IQ1 to IQ4 are questions about data exclusive of GitHub. On the other hand, from IQ5

to IQ8 are questions about the framework data.

Table 6.1: Interview Questions

RQ IQ Interview Questions
RQ1 IQ1 How does the company evaluate a profile of a new software

developer to compose the team? What are the steps?
RQ1, RQ2 IQ2 Based on GitHub, how does the company evaluate the candi-

date’s skills? Can you compare Candidate 1 with Candidate 2
using GitHub data?

RQ1 IQ3 What the characteristics do you observe on these profiles of the
developers ?

RQ3,RQ4 IQ4 Which developers would the company choose between these
two developers? Why?

RQ3,RQ4 IQ5 From the PDF file of the mined profiles, what data do you
consider as important?

RQ3,RQ4 IQ6 From PDF file of the mined profiles, how do you compare the
two developers ?

RQ3,RQ4 IQ7 From PDF file of the mined profiles, what developer do you
choose for this job position? Why?

RQ3,RQ4 IQ8 From the PDF file of the mined profiles, what are the recruiter’s
observations? How can the PDF file help the recruiter to select
a software developer from GitHub?

Source: Prepared by the author, 2023

6.7 Data Analysis

We conducted a series of semi-structured interviews with 15 recruiters to identify

how activity traces are used and assessed to infer a developer’s abilities and personal

qualities by recruiters. When we finished all interviews, we compile the results. To

compile the results, we create a transcript of the interview and made highlights in crucial

6.8. Results for Participants’ Demographic Information 75

points about opinion and actions of the recruiters. In our analysis, we coded the interview

transcripts to identify the various ways in which profiles were employed during the hiring

process, as well as the diverse types of inferences drawn about individuals under evaluation

based on the GitHub environment.

Using HyperResearch [54], a qualitative analysis software tool, we identified rele-

vant sentences or broader segments in interview transcripts related to each research ques-

tion. We used open coding to analyze the interview transcripts. We start by reading the

transcripts, identifying key points, and assigned them a code (i.e., a 2–3 words statement

that summarizes the key point). In the context of this work, the 15 attributes identified

in the previous step were used as seeds for this analysis. By constantly comparing the

codes [94], we grouped them into four categories that gave a high-level representation of

the codes. This coding process was conduced by one researcher and constantly discussed

with other two researchers.

6.8 Results for Participants’ Demographic

Information

This section shows the demographic information of the interview participants. Ta-

ble 6.2 shows the 17 participants of this study, including two in the pilot. In the first

column, we present the participant ID. We remove the real name of participants to pre-

serve their identity. The second column shows the gender of the participants. The third

column shows the company size. We separate the data by company size into four groups:

a) Micro Enterprises: fewer than 10 people, b) Small Enterprises: between 11 and 50 peo-

ple, c) Medium-Sized Enterprises: between 51 and 250, and d) Large Enterprises: from

251 people or more. In the fourth column, we show the country of the recruiter company.

Finally, in the last column, we present the approximate number of employees in each

company. The last two rows of Table 6.2 present the demographic data about the pilot

study. In general, the companies of participants in the study are Large enterprises. For

instance, participant P1 from Brazil works in a company with ∼ 16,500 employees. In

contrast, we also interviewed recruiters from micro-enterprises, for instance, participant

PS2 (pilot study). Out of 15 participants, four are female.

6.9. Results for Recruitment Channels 76

Table 6.2: Participant demographics

Participant Gender Company Size Country Employees
P1 M Large Enterprises Brazil 16,500
P2 M Large Enterprises Canada 9,700
P3 M Large Enterprises Canada 9,700
P4 M Large Enterprises Brazil 8,452
P5 M Large Enterprises Brazil 5,571
P6 M Large Enterprises Brazil 4,000
P7 F Large Enterprises Brazil 3,600
P8 F Large Enterprises Brazil 2,990
P9 M Large Enterprises Brazil 2,990
P10 F Large Enterprises Brazil 2,990
P11 M Large Enterprises Brazil 2,788
P12 M Large Enterprises Brazil 1,873
P13 M Large Enterprises United States 500
P14 F Large Enterprises Brazil 174
P15 M Medium-Sized Enterprises United States 52

Pilot Study
PS1 M Large Enterprises Brazil 4,419
PS2 M Micro Enterprises Brazil 3

Source: Prepared by the author, 2023

6.9 Results for Recruitment Channels

In this section, we answer the RQ1: How do companies recruit software developers?

Our first research question focused on how recruiters use recruitment channels to

evaluate new candidates. We investigate the channels and strategies used to select soft-

ware developers from the interviews. In general, all interviewees believed that a GitHub

profile provided insight into an individual’s technical abilities and personal qualities more

reliably than resumes or code samples taken out of context. The GitHub profiles provide

recruiters with a history of individual contributions over time. In some situations, search-

ing for complementary information about the candidate from other channels, for instance,

LinkedIn, is necessary; for instance, when the candidate is junior and the GitHub profile

is clean or very simple. On the other hand, we observe that some companies like to re-

ceive curricula in PDF of a candidate and conduct a face-to-face interview. In the same

case, they provide a candidate with a fictitious programming problem. In this way, the

candidate needs to implement a source-code as a solution from a time and programming

language stipulated by the recruiters. In this case, the recruiter evaluates the source-code

quality. In general, according to interviewees, companies look at soft skills in the first

moment and then select a developer based on hard skills. Therefore, the soft and hard

skills are complementary.

6.10. Results for Applicability 77

Nevertheless, this situation depends on also the requirements of the open job. For

example, if the company searches for a junior developer, it is optional that this devel-

oper knows many technologies, such as Java, Python, JavaScript, and frameworks. On

the other hand, if the company is searching for a senior developer, this candidate needs

excellent soft and hard skills because, generally, this developer is more expensive and is

expected to have more experience. Besides, they will guide the team to solve a problem.

As an example to support this claim, recruiter P2 said:

[...] The best software developer is not someone mastering

JavaScript or React, for instance. The best software developer

is one who can contribute to the team. The best software de-

veloper needs a balance between soft and hard skills. The best

software developer needs to listen to the team for giving and

receiving help. To develop a software is hard then, we require

people with the same propose. As said the popular saying “one

bad apple can spoil the whole barrel”.

Finding a new software developer can be difficult, especially if the recruiter only

looks at the curricula and promote test with toy problems. During the recruitment pro-

cess, whether it’s done using paper or online platforms like LinkedIn, important factors

like cultural fit, communication skills, and cooperation skills can often be overlooked.

However, these factors are crucial for success in a collaborative work environment. Fur-

thermore, although source-code exams can give a candidate a look of their technical

proficiency, they might not fully capture their problem-solving abilities or their capacity

to design clear, maintainable code. To get a more thorough assessment of a candidate’s

prospective fit the business, it is crucial to combine these methodologies with other eval-

uations, like behavioral interviews and real-world projects.

RQ1 summary. We have observed that software developers need to balance both soft

and hard skills. Moreover, we have found that recruiters consider GitHub to be an

important platform for obtaining reliable information about job candidates.

6.10 Results for Applicability

In this section, we answer RQ2: What are the possible applications of the frame-

work to mine a developer profile?

Table 6.3 shows the computed coding to answer this question. It includes four

6.10. Results for Applicability 78

columns: Category, Codes, Participants, and Frequency. Category indicates a group

created to aggregate the similar codes. Codes are abstract models that emerge during

grounded theory analysis’s sorting and demonstration stages. They conceptualize the

integration of substantive codes as hypotheses of a theory. This study uses coding inspired

by grounded theory but does not necessarily apply all ground theory steps. Participants

indicates the number of participants that cited something related to the code. Finally,

Frequency shows the number of times a code was cited.

Table 6.3 shows four codes: 1) “Effort Reduction”, 2) “First Step to Filter”, 3)

“Rework” and 4) “Profile Type”. Concerning “Effort Reduction”, we identify from the

interviews with recruiters that it is necessary to optimize the process of recruiting a de-

veloper. Sometimes, there are many candidates for a job position. We identify this code

from the view point of the 13 (87%) participants with frequency of 17 occurrences. The

number of candidates can harder the selection process because it is expensive in time and

resources to interview them all. That is, the team needs to stop some tasks to help the

recruiter to select a new developer. Therefore, the hiring process may require less effort

to find a new candidate by using the framework to generate the CV of the candidates

from hard skills. The recruiter interviewed P1 said:

[...] GitHub is a rich source of data about candidates for job vacancies.

However, we need to spend time identifying the candidate’s hard skills,

for example, the primary programming language and whether the can-

didates know a specific API / framework. From the generated CV, we

reduced the work to identify the developer’s abilities. In addition, we are

able know more details about the candidate.

Table 6.3: Applicability of the framework Evaluated

Category Codes Participants (%) Frequency
Effort Reduction 13 (87%) 17
First Step to Filter 12 (80%) 14
Rework 8 (53%) 8
Profile Type 7 (47%) 7

Application

Total 46
Source: Prepared by the author, 2023

The code “First Step in Filtering” is about recruiters’ viewpoint of using the CV

as an instrument to pre-select the candidates. We observed that the recruiters usually

have a considerable effort to conduct the hiring process because, generally, there are many

candidates. Sometimes, to find a suitable candidate in a universe of twenty candidates,

for instance, is exhausting. This way, from the viewpoint of recruiters, it is possible to

reduce the effort by using the CV generated by the framework that computes hard skills.

The idea is to use the CV as a pre-selection of the candidates. This code was manifested

6.10. Results for Applicability 79

by 12 (80%) participants in 14 times. In that case, it is possible to adopt the framework,

but if the job opening is for a junior position, the recruiter needs to evaluate in more detail

because the GitHub profile of the candidate may be less important. In the following, we

quote recruiter P4.

[...] This CV can help us to pre-selecting the candidates. It is possible

to evaluate the developer from the specific hard skill as a target of our

interest, for example, knowing React. Therefore, the sector of the hu-

mans resource can be streamlined in search specific abilities and conduct

the filter to the next steps. As such, the recruiter needs less work to

conduct the process of selecting a new candidate.

The other code identified was “Rework”. This code summarizes the situation

required to restart the recruitment process. We note that 8 (53%) of the 15 recruiters

point out the problems and costs associated with the flawed selection process. Therefore,

it is necessary to be the most assertive as possible in selecting a software developer because

conducting the recruitment process again is expensive and exhausting. In addition, the

team generally needs to support the newly hired developer or offer training. This way,

the costs to the company can be high, because it may be necessary to fire the developer

and hire another. Through the framework, it is possible to help in the selection process

with more details about the candidate available from source-code analysis. In this way,

the recruiter has more data to decide about the software developer, for instance, the

candidate’s main programming language or knowing APIs. In the following, we show the

quote of recruiter P7.

[...] The selection process is challenging for us recruiters because we

need to select a developer to help our team. If we select wrong, we

will have problems in the future because it will be necessary to hire other

developers and restart the process. Therefore, this problem can delay the

project. The framework cannot substitute the face-to-face meeting or the

recruiter, but the generated CV can help to understand the developer’s

profile in more details.

The source-code available in GitHub can provide idea of the profile of the developer.

The code “Profile Type” indicates the suitability to back or front-end, for example. This

code was manifested by 7 (47%) participants in 7 times. We observe that recruiters

analyzing the CV generated by the framework had more details of the candidate. For

example, if a candidate like more Python or made more commits and wrote many lines

of code to SQL, then this developer has characteristics of the back-end and database

manager. These data could be obtained from GitHub without the mining framework.

6.11. Alternative Visualization 80

However, to investigate all repositories of a specific developer manually is very exhausting

to recruiter. Recruiter P6 said:
[...] Sometimes we need to look at many CVs by day. This way is

inevitable to lose some information. In addition, if we need deep infor-

mation into each developer’s repository manually, selecting a developer

will be more complicated. Therefore, sometimes we look at GitHub pro-

files in general, only the tip of the iceberg after selecting a candidate from

the best. We apply, for example, source-code tests to obtain more infor-

mation about the hard skill of the developer. This summarized PDF file

can help us in this step to avoid looking only at the tip of the iceberg.

From the CV, it is possible to understand the developer’s profile and

know if they can work with us. In addition, if the job requires a junior,

we immediately understand the deficiency of some technologies, and we

can provide training, for example. Therefore, the presented framework

can help decision to select a candidate.

RQ2 summary. Usually, recruiters need to evaluate many profiles of the candidates

for a job. This task is complex and extremely relevant to the selection of an excellent

developer for the team. Therefore, through the framework, it is possible to obtain more

details about each profile from GitHub. This way, the recruiter decision for a candidate

is better supported. In addition, the framework can be used as a first step to select a

developer and provide more details about them.

6.11 Alternative Visualization

In this section, we answer the RQ3: How do the framework results complement

GitHub information?

To respond to this research question, we asked the recruiters about the data in

the PDF file and GitHub. Table 6.4 shows the category Alternative Visualization. This

table presents the exact configuration of Table 6.3. The code Programming Language

represents the recruiters’ viewpoint about the details they did not observe on GitHub

but noted from the PDF file of mined profile. During the interview, recruiters analyzed

the developer’s programming language from repositories in GitHub. GitHub presents

the primary programming language of a repository. However, it does not present the

programming language that the developer used in their repositories. For instance, if a

developer creates a script only in Python, but the primary programming language of the

6.11. Alternative Visualization 81

repository is JavaScript, only observing the primary programming language informed by

GitHub is insufficient. That way, the recruiters praised the alternative visualization of

the programming language provided in the framework presented in the PDF file. This

code was manifested by 13 (87%) participants, 15 times. As an example, recruiter P15

said.

[...] In fact, it is more convenient to observe the programming

language that a specific developer uses with the PDF file. Be-

cause from the GitHub repository, we observe other program-

ming languages that are not the developer’s skills.

Another interesting code found was “Frequency of Commits”. This code was man-

ifested by 12 (80%) participants, 15 times. “Frequency of Commits” is presented in a

PDF file generated by the framework about the commits made by a specific developer

concerning a programming language. The “Frequency of Commits” made by a developer

can indicate the amount of work they are doing on a project for a specific a programming

language. However, it is essential to remember that quantity is not necessarily a direct

measure of the quality of work. Recruiter P11 said.

[..] The number of commits made by a developer can be visu-

alized from GitHub too. However, the PDF file complements

this view because it puts a bar chart with commits by program-

ming language side by side. This way is more convenient to

analyze.

“Time Experience” is a code concerning a developer’s period using GitHub. This

code was manifested by 11 (73%) participants, 13 times. “Time Experience” is data

essential to understand the knowledge of developers about the version control, for exam-

ple, Git. Note that these data are available from GitHub, but sometimes needs to be

highlighted to recruiters. From the PDF file, the recruiter notes these data and can be

associated with other data, for example, programming language, API, and frequency of

commits. The recruiter P9 said.

[...] These data is available on GitHub. However, from the

PDF file, it is possible to complement the data presented by

GitHub because it is possible to compare the period that the

developer used GitHub and the technologies adopted by them.

“API/Framework” is a code about the technologies developers use together with a

programming language, for instance, Hadoop. This code was manifested by 8 (80%) par-

ticipants, 12 times. GitHub shows a pool of data that sometimes can confuse the recruiter

and can be hard to be analyzed, for example, the API used by them. The PDF file shows

the API/Framework most used by developers from a specific programming language. The

6.11. Alternative Visualization 82

Table 6.4: Category Visualization

Category Codes Participants (%) Frequency
Programming Language 13 (87%) 15
Frequency of Commits 12 (80%) 15
Time Experience 11 (73%) 13
API / Framework 8 (53%) 12Alternative visualization
Repositories 7 (47%) 11
Pollution Profile 3 (20%) 3

Total 69
Source: Prepared by the author, 2023

use of API by a developer can indicate familiarity with the technologies. Developers often

use APIs and frameworks that they are familiar with, as this can help them work more

efficiently and produce higher-quality code. Familiarity with a particular API or frame-

work makes it easier for developers to find solutions to problems they encounter during

development. In addition, the recruiter can take these data to understand more about

the developer because the API can be associated with the application’s performance, for

example. The performance of an API or framework can significantly impact the overall

performance of the software application. Therefore, it is possible to check if a developer

knows API most adopted by the company. It is crucial to consider the speed and efficiency

of the API or framework used and ensure it meets the project’s performance requirements.

Recruiter P7 said.
[...] Recruiters face a non-trivial task when searching for spe-

cific APIs in source-code via import. As the framework shows

the mostly used API, it is more practical for a recruiter to un-

derstand what is being used and, if necessary, ask questions

to the developer. Since this import can be presented in many

files, and they must be opened individually, the process can be

time-consuming when made manually.

The code “Repositories” indicates the number of repositories of a developer. The

number of repositories a developer has on GitHub can be one factor to consider when

assessing their skills and experience. However, it should be evaluated alongside other

factors, including code quality and collaborative skills. This code was manifested by 7

(80%) participants 12 times. Recruiter P6 said.

6.11. Alternative Visualization 83

[...] It is easy to look at these data from GitHub. However,

combining these data with the level of commits by program-

ming language helps the recruiter analyze the developer’s pro-

file. Moreover, this mechanism in GitHub is not trivial. There-

fore, the data from the PDF file complements the data presented

in GitHub. These data is vital because the number of open-

source projects a developer has contributed to can positively

indicate their commitment to the community and willingness

to share knowledge and expertise. The developer is more com-

fortable working in a distributed environment and is skilled at

navigating open-source processes and tools.

“Pollution Profile” is a code about the presentation problems in GitHub. The

pollution of GitHub profiles refers to developers cluttering their profiles with unnecessary

pictures and emojis. While GitHub is primarily used for hosting and sharing code repos-

itories, many developers use their profiles to showcase their personalities and interests.

However, some developers take this to the extreme and fill their profiles with many images

and emojis, making it challenging to navigate and find relevant information. Addition-

ally, these unnecessary elements can slow down the page’s loading time and make it less

accessible. This practice harms the recruiter in finding the data about the developer.

This code was manifested by 3 (20%) participants 3 times. Recruiter P4 said.

[...] I think that the pollution of GitHub profiles to be a sig-

nificant problem in the candidate selection process. While I

appreciate that developers want to showcase their personality

and interests, excessive pictures and emojis on their GitHub

profiles can be distracting and make it difficult for me to eval-

uate their technical skills and experience. It can also slow

down the process of reviewing profiles, mainly if I am work-

ing with many candidates. Additionally, cluttered profiles can

make it challenging to find essential information, such as links

to code repositories, projects, and contributions to open-source

software. Therefore, I urge developers to keep their profiles

clean and straightforward, highlighting their technical accom-

plishments and experience clearly and concisely. This will

help them stand out as a serious candidate and increase their

chances of being selected for the next stage of the hiring process.

6.12. Miss Information 84

RQ3 summary. In general, the framework to summarize profiles is able to show

an alternative visualization of the data provided by GitHub. For example, pollution

profile was observed by the recruiters. The pollution profile refers to cluttered profiles

with unnecessary pictures and emojis, making it difficult to navigate and find relevant

information. The framework is able to filter out this problem.

6.12 Miss Information

In this section, we answer the RQ4: What are the opportunities for improving the

hiring process?

To respond to this research question, we asked the recruiters about the need for

more data from PDF generated by the framework. Table 6.5 shows the category “Lacking

Information”. This table presents the exact configuration of Table 6.4. We create a code

“Starts”. Stars on GitHub are a way for users to indicate that they liked a particular

project and follow its development. For software developers, having many stars in their

projects can indicate that their work is popular and well-received by the community and

can be a positive factor when looking for work or receiving contributions from other de-

velopers. In addition, stars also help make a project stand out on GitHub, making it more

visible to other developers looking for solutions to a particular problem or inspiration for

their own projects. This code was manifested by 11 (73%) participants, 12 times. In

general, the recruiters missed these data from the PDF file, as recruiter P6 said:

[...] I have the responsibility of looking for the best profession-

als for open positions. And, to evaluate a developer’s experi-

ence, in addition to analyzing the profile of the developer, it

is important to check other relevant data, such as the number

of stars that their projects have on GitHub. This information

can indicate the popularity and quality of the work done by the

candidate.

The code “Dev History” means the historical from GitHub of a developer, for

example, actual job, country of origin, and complete read-me. The PDF file limits the

developer’s text and does not present the data about the contact, for example, address

or country, when informed by the developer. This limitation from the viewpoint of the

recruiters could be better. This code was manifested by 5 (33%) participants 8 times.

Recruiter P8 said:

6.12. Miss Information 85

[...] For me it is interesting to understand the developer’s cul-

ture, and it is possible to see this from, for example, from the

country of origin. Another fascinating data is about the ac-

tual job position of the candidate. From this, it is possible to

know more details about the candidate. These data need to be

presented.

The code “Seeking Information” represents the necessity of the recruiter to search

for more details about the candidate from other social networking, by lack of data from

GitHub and PDF presented, for instance, research from LinkedIn. This code was mani-

fested by 5 (33%) participants in 6 times. The recruiter P6 said.

[...] Sometimes, GitHub does not have reliable data about the

candidate, for example, when they are a junior. Supplementing

a candidate’s profile with additional research, such as review-

ing their online presence, including their LinkedIn profile, is

essential. The framework could support this research to help

the recruiter.

The code “Followers” indicates a developer’s popularity and interest in their projects.

Generally, a higher number of followers means that a developer has a larger audience and

their work is well-regarded within the GitHub community. This code was manifested by

4 (27%) participants 4 times. The PDF file generated by the framework does not show

these data. From the viewpoint of the recruiters, these data are essential, mainly if the

job opening is for senior. Recruiter P3 said.

[...] The number of followers is a data relative but very im-

portant to analyze, mainly if the job opening is for a senior.

Overall, senior has the characteristics of a guide to the team,

and the number of followers could be a point of attention for

us.

From the interviews, we note the recruiters are interested in analyzing the source-

code about the add, delete, and changes made by a developer. This way, we create the

“Code Churn”. On GitHub, code churn is a metric that measures the number of changes

made to a source-code repository. This metric can be used to understand how the code

in a project changes over time, helping developers identify issues and opportunities for

improvement. This code was manifested by 2 (13%) participants 2 times. The PDF file

generated by the framework does not show this metric. Recruiter P14 said.

6.13. Threats to Validity 86

[...] I believe that Code Churn is a valuable metric for evalu-

ating the quality of a developer’s work on GitHub. Code churn

can help understand how code evolves over time, identify prob-

lems and opportunities for improvement, and even predict qual-

ity risks in software projects.

Table 6.5: Category Lacking information

Category Codes Participants (%) Frequency
Star 11 (73%) 12
Dev History 5 (33%) 8
Seeking Information 5 (33%) 6
Followers 4 (27%) 4

Lacking Information

Code Churn 2 (13%) 2
Total 32

Source: Prepared by the author, 2023

RQ4 summary. The recruiters reported the lacking of data from the PDF file, in-

cluding information on a developer’s popularity, historical data from GitHub, and data

about the developer’s contact information. The recruiters also expressed the necessity of

seeking information from other social networking sites when there is a lack of data from

GitHub and PDF. Overall, recruiters believe that improvements in the framework could

better support their recruitment processes by providing more comprehensive data about

developers on GitHub.

6.13 Threats to Validity

Due to some limitations and threats to the study validity, we need a cautious

interpretation of the results of the present study. The results could be different in other

geographical and cultural areas. Thus, further work is needed to replicate the results in

other geographical areas and software development. In the following, we present the main

threats to validity, organized in four typical groups [103].

Construct Validity. To answer our research questions, we asked recruiters open

questions. These questions may not cover all data about the recruitment process. How-

ever, we scheduled the interview sessions to be relatively long (forty minutes), making

sure that we gave the participants enough time to express their ideas and share their

thoughts. At the beginning of each interview section, we asked the participants to answer

the questions in their own words and provide as much detail as they feel is relevant to

6.14. Concluding Remarks 87

address each question. We also placed an open question at the end of the interview to

allow the participants to share any additional information about the topic.

Internal Validity. The framework we used in our study, as the interviews, can be

affected by bias and inaccurate responses. This effect could be intentional or unintentional.

We repeatedly and constantly used phrases to encourage the participants to provide their

honest opinions, using the phrase “based on your experience” in most of the questions.

We also indicated that the participants should “feel free to change/add/delete information

or not.” Sometimes, we also indicated that “there is no right or wrong answer; we are

interested in what you think and your perspective.” Using a study pilot, we also took

multiple steps to reduce potential confirmation bias [81]. We asked participants to describe

their examples of hiring a new software developer. Another threat to the validity of our

study is drawing conclusions based on recovered memories [43]. We are interested in

capturing recruiters’ opinions about what components constitute rationale, independently

of how accurate their memories are. We encouraged participants to take their time to

recall situations and to report the hire that mattered in their experience.

External Validity. Our studied recruiters may only partially represent part of the

employers’ population. To mitigate this threat, we recruited a diverse sample of the

population with diverse types and amounts of experience. In addition, our interviewees

are from three different countries: Brazil, Canada, and United States.

Conclusion Validity. The participation of the author who followed the Grounded

Theory procedures poses another threat. His beliefs might have caused some distortions

when interpreting the data. To mitigate this threat, the Grounded Theory coding activ-

ities were shared with other researchers. Moreover, the identification of the constructs

and the depicting of propositions were performed separately by the first author and other

researchers. In fact, three authors participated in the Grounded Theory procedures in-

dependently; then we merged their results to shape the theory. Thus, the contents were

compared and discussed by the researchers until reaching a consensus.

6.14 Concluding Remarks

In this study, we aimed to gain insight into the perceptions of software recruiters

from Brazil, United States, and Canada on detecting software experts, crafting an effective

resume, and the challenges and problems associated with current recruitment frameworks.

Through interviews with 17 recruiters from various organizations, we identified valuable

strategies to assess potential candidates and their skills. We highlighted the importance

of a well-crafted resume, which should include clear and concise information about the

6.14. Concluding Remarks 88

candidate’s experience, projects, and contributions. Our research also identified chal-

lenges recruiters face in evaluating candidates, such as assessing hard skills, needing more

standardization in the recruitment process, and time constraints. Our study provides

practical guidance for recruiters and developers to improve their recruitment processes

and increase their chances of success in the highly competitive software industry. In the

next chapter, we present the conclusion of this thesis.

89

Chapter 7

Conclusion

Software development competes to a critical role in today’s technological landscape, and

the success of projects heavily relies on the quality and experience of software develop-

ers. However, evaluating the software engineering experience and skills of developers can

present significant challenges. Accurately measuring their hard skills, such as program-

ming proficiency and knowledge of specific technologies, is a complex task. Selecting

highly skilled software developers can be a challenging task for recruiters. Traditional re-

sources, such as LinkedIn profiles and coding tests, have their limitations when it comes to

accurately assessing the developer’s abilities. One of the main challenges lies in effectively

evaluating a developer’s core skills solely based on these resources. Core skills encompass

the technical competencies and expertise that developers possess, which are essential for

successfully carrying out software development tasks. However, relying solely on LinkedIn

profiles or coding tests often fails to provide a comprehensive understanding of a devel-

oper’s true capabilities. LinkedIn profiles can be subjective and limited in showcasing a

developer’s actual coding proficiency, while coding tests typically assess only a specific

portion of a developer’s skill set. Consequently, recruiters face difficulties in accurately

assessing a developer’s core skills and making informed hiring decisions based on these

traditional resources. This highlights the need for alternative approaches that can delve

deeper into a developer’s technical abilities and provide a more comprehensive evaluation

of their core skills.

This chapter concludes the thesis by discussing the main contributions and prospect-

ing future works. Specifically, in Section 7.1, we revisit an overview of this thesis content

and its structure. We summarize the results and highlight the main contributions in

Section 7.2 while discussing future research in Section 7.3.

7.1. Thesis Recapitulation 90

7.1 Thesis Recapitulation

This thesis presents a framework to identify core skills of software developers

through source code analysis. For this purpose, three studies were conducted to evaluate

the framework, extensively analyzing scenarios involving core skills and the recruitment

process. In Chapter 2, the main concepts adopted in this thesis were presented. This

chapter served as a foundation for understanding the key principles and methodologies

used throughout the research. Additionally, a comprehensive review of the relevant lit-

erature in the field of identifying hard skills was provided. The chapter highlighted the

existing studies and approaches related to the identification of hard skills in software de-

velopment, offering insights into the current state of research and establishing the context

for the subsequent chapters.

In Chapter 3, we introduced the framework and three instances.Each of these three

distinct instances fulfills a specific purpose in evaluating software developers. The first

instance focuses on identifying the developer’s profile, providing insights into their skills,

programming languages, and areas of expertise. The second instance delves into the

developer’s proficiency in third-party libraries, analyzing their familiarity and utilization

of these resources. Lastly, the third instance leverages additional data from the GitHub

platform to enrich the developer’s profile with supplementary information. By combining

these three instances, the framework offers a comprehensive and multi-faceted approach to

assess and understand the skills of software developers to help in the recruitment process.

In Chapters 4 and 5, we conducted two proof-of-concept studies to validate the

effectiveness of the framework, focusing specifically on the Profiles and Library Experts

instances. These studies aimed to demonstrate the framework’s capability to identify de-

velopers’ profiles and assess their expertise in various programming languages, back-end,

front-end, unit test, and libraries. Additionally, in Chapter 6, we presented an empiri-

cal study involving software recruiters to evaluate the developed framework. This study

provided valuable insights into the practical utility of the framework in real-world recruit-

ment scenarios and validated its effectiveness in assisting recruiters in making informed

hiring decisions. The combination of these three chapters demonstrates the comprehen-

sive evaluation and validation of the framework, establishing its potential as a valuable

tool in the software development industry.

7.2. Contributions 91

7.2 Contributions

We summarize our contributions as follows:

• We have made a contribution to the field by developing a comprehensive framework

for assessing and computing hard skills based on source code analysis. This

framework offers support to the recruitment process, as it enables the identification

and evaluation of developers’ skills through the analysis of their Git repository

structures. By leveraging the information embedded in developers’ source code, the

framework provides a more accurate and objective assessment of their hard skills.

• We conducted a study involving library experts to evaluate the effectiveness of the

Libraries Experts instance in assessing the hard skills related to third-party

libraries. This study is important as it provides valuable insights into the frame-

work’s capability to accurately evaluate the hard skills of software developers when

working with these libraries. By assessing the developers’ proficiency and expertise

in utilizing libraries, the study contributes significantly to the validation and reli-

ability of the framework, ultimately promoting more informed hiring decisions and

enhancing the overall effectiveness of development teams.

• We conducted a study to evaluate the Profile instance of the developed framework,

focusing on assessing the hard skills of developers. This study provides a thorough

evaluation of developers’ profiles, including their proficiency in programming lan-

guages, their use of unit tests, and their preferences in terms of back-end, front-end,

or full-stack development. By evaluating these aspects, the study contributes to a

deeper understanding of developers’ hard skills and provides valuable insights for

effective team composition and skill matching. The findings from this study further

validate the Profile Instance and its relevance in assessing the diverse skill sets of

software developers.

• We conducted a study to evaluate the Tech Skill instance of the developed frame-

work, focusing on analyzing developers’ projects and extracting information about

their preferred programming languages and proficiency in third-party libraries. This

instance goes beyond code analysis by incorporating external data from platforms

like GitHub to enhance the analysis. Additionally, we conducted interviews with

recruiters to obtain insights into the limitations of the framework and understand

how it can support the recruitment process. This study sheds light on the effec-

tiveness of the Tech Skill Instance in assessing developers’ hard skills and provides

feedback for further improvement and refinement of the framework.

7.3. Future Work 92

• We designed and implemented a supporting tool that facilitates the configuration

and use of the framework instances. This tool serves as an interface for importing

the necessary data, such as source code repositories, and to run the framework

instance to generate the curricula.

• We have also contributed a set of key metrics that played a significant role in eval-

uating the studies conducted with the framework. These metrics, such as Lines of

Code, Number of Imports, and Number of Commits, offer valuable insights into de-

velopers’ coding practices and engagement within their projects. The Lines of Code

metric provides an understanding of the volume and complexity of developers’ code

contributions, highlighting their productivity and involvement in software develop-

ment tasks. The Number of Imports metric helps identify the libraries and external

dependencies utilized by developers, revealing their familiarity and proficiency in

leveraging third-party resources. Lastly, the Number of Commits metric offers in-

sights into developers’ commitment and frequency of contributions, highlighting

their level of engagement and activity within the development process. These met-

rics serve as fundamental building blocks for evaluating developers’ hard skills and

are instrumental in the empirical studies conducted within the scope of this research.

7.3 Future Work

Throughout this thesis, we have delved into the complexities and challenges as-

sociated with selecting software developers. We have explored the perspectives of both

recruiters and developers themselves, focusing on the evaluation of hard skills. Through

our investigations, we have identified new avenues of research that aim to enhance the

recruitment process. In the subsequent paragraphs, we will discuss these potential areas

of study, offering insights and prospects for further exploration.

Soft skill. Soft skills are essential for effective collaboration, communication with stake-

holders, and understanding user needs. They contribute to a positive work environment

and promote teamwork, creativity, and innovation. On the other hand, hard skills ensure

that developers have the technical knowledge and expertise required to carry out their

tasks effectively. While this thesis primarily focuses on the evaluation of hard skills, it is

equally important to investigate and understand the soft skills of software developers in

more detail. Future research could explore methodologies and frameworks to assess and

measure soft skills objectively. One way for assessing the soft skills of software develop-

7.3. Future Work 93

ers could be to use Artificial Intelligence (AI) to develop a chatbot-based system. This

chatbot could simulate typical teamwork and stakeholder communication scenarios. By

analyzing the developers’ responses and behaviors using natural language processing and

AI algorithms, the chatbot could evaluate their effective communication, problem-solving

abilities, teamwork, and adaptability. The system could present various scenarios, such

as conflict situations, team decision-making, requirement negotiations, or project presen-

tations. Through sentiment analysis, natural language processing, and machine learning

techniques, the system could assess the developers’ communication skills, problem-solving

abilities, and decision-making skills. Incorporating a scoring system that assigns weights

to different competencies would provide an overall score for the developers’ soft skills.

This approach would enable a more objective and standardized evaluation of developers’

soft skills, allowing for large-scale data collection for statistical analysis and comparison

across different profiles. However, it is important to note that assessing soft skills through

AI should be supplemented with other evaluation methods, such as behavioral interviews

and references, to obtain a comprehensive and accurate understanding of developers’ skills.

Instances of the framework. In addition to the existing instances of the framework,

there are several other potential instances that could be created to further enhance the

assessment of software developers’ skills. Some ideas for additional instances include:

Project Complexity Instance, Testing and Quality Instance, and Continuous Learning

Instance. Project Complexity Instance: could focus on evaluating developers’ ability

to handle complex software projects. It could analyze factors such as the size of the

codebase, the number of dependencies, the level of abstraction, and the use of design

patterns. By assessing how developers tackle complex projects, this instance could pro-

vide insights into their problem-solving skills, architectural understanding, and ability to

manage large-scale software systems. Testing and Quality Instance: could assess develop-

ers’ proficiency in writing unit tests, conducting code reviews, and ensuring code quality.

It could analyze metrics such as code coverage, adherence to coding standards, and the

presence of code smells or anti-patterns. By evaluating developers’ testing practices and

commitment to quality, this instance could provide valuable insights into their attention

to detail, software reliability, and ability to deliver robust and maintainable code. Con-

tinuous Learning Instance: could assess developers’ commitment to continuous learning

and professional development. It could analyze factors, such as their participation in

online courses, attendance at conferences, contributions to open-source projects, and en-

gagement in community forums. By evaluating developers’ efforts to stay updated with

the latest technologies and industry trends, this instance could provide insights into their

adaptability, eagerness to learn, and potential for growth.

Longitudinal Analysis. Another venue for future work could be to conduct longitudinal

7.3. Future Work 94

studies to track and analyze the growth and development of developers’ hard skills over

time. This could involve collecting data at different intervals and comparing the changes

in their skill profiles, providing insights into the effectiveness of learning and training

programs.

DevOps Integration. We can explore ways to integrate DevOps practices and principles

into the framework. DevOps focuses on the collaboration and integration between software

development and IT operations teams, emphasizing automation, continuous delivery, and

monitoring. Investigate how the framework can incorporate metrics and indicators that

assess developers’ proficiency in DevOps-related skills, such as infrastructure automation,

version control, continuous integration, and deployment processes. This integration can

provide a comprehensive assessment of developers’ abilities to work effectively in a De-

vOps environment and contribute to the continuous improvement of software development

practices.

95

Bibliography

[1] Adnin, R., Afroz, S., Ulfat, M., and Iqbal, A. A hiring story: Experiences of em-

ployers in hiring cs graduates in software startups. In Companion Publication of the

2022 Conference on Computer Supported Cooperative Work and Social Computing,

CSCW’22 Companion, page 126–129, New York, NY, USA, 2022. Association for

Computing Machinery.

[2] Ahmed, F., Capretz, L. F., Bouktif, S., and Campbell, P. Soft skills requirements

in software development jobs: a cross-cultural empirical study. Journal of systems

and information technology (JSIT), 2012.

[3] Al-Ani, B., Bietz, M. J., Wang, Y., Trainer, E., Koehne, B., Marczak, S., Red-

miles, D., and Prikladnicki, R. Globally distributed system developers: Their trust

expectations and processes. In Proceedings of the 2013 Conference on Computer

Supported Cooperative Work, CSCW ’13, page 563–574, New York, NY, USA, 2013.

Association for Computing Machinery.

[4] Amreen, S., Karnauch, A., and Mockus, A. Developer reputation estimator (dre). In

Proceedings of the 34th IEEE/ACM International Conference on Automated Soft-

ware Engineering, ASE ’19, page 1082–1085. IEEE Press, 2020.

[5] Assyne, N. Hard competencies satisfaction levels for software engineers: a uni-

fied framework. In Software Business: 10th International Conference, ICSOB

2019, Jyväskylä, Finland, November 18–20, 2019, Proceedings 10, pages 345–350.

Springer, 2019.

[6] Bailey, J. and Mitchell, R. B. Industry perceptions of the competencies needed by

computer programmers: technical, business, and soft skills. Journal of Computer

Information Systems, 2006.

[7] Bailey, J. L. and Stefaniak, G. Industry perceptions of the knowledge, skills, and

abilities needed by computer programmers. In Conference on Computer personnel

research (SIGCPR), 2001.

[8] Baltes, S. and Diehl, S. Towards a theory of software development expertise. In

Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering (ESEC/FSE), 2018.

Bibliography 96

[9] Bärring, M., N̊afors, D., Henriksen, D., Olsson, D., Johansson, B., and Larsson, U.

A vsm approach to support data collection for a simulation model. In Proceedings

of the 2017 Winter Simulation Conference, WSC ’17. IEEE Press, 2017.

[10] Basili, V., Caldiera, G., and Rombach, H. D. The Goal Question Metric Approach.

Online Technical Report, 1994.

[11] Behroozi, M., Parnin, C., and Brown, C. Asynchronous technical interviews: Re-

ducing the effect of supervised think-aloud on communication ability. In Proceedings

of the 30th ACM Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, ESEC/FSE 2022, page 294–305, New

York, NY, USA, 2022. Association for Computing Machinery.

[12] Bergersen, G. R., Sjøberg, D. I., and Dyb̊a, T. Construction and validation of

an instrument for measuring programming skill. IEEE Transactions on Software

Engineering, 40(12):1163–1184, 2014.

[13] Bhasin, T., Murray, A., and Storey, M.-A. Student experiences with GitHub and

stack overflow: An exploratory study. In 2021 IEEE/ACM 13th International Work-

shop on Cooperative and Human Aspects of Software Engineering (CHASE), pages

81–90. IEEE, 2021.

[14] Bizer, C., Heath, T., and Berners-Lee, T. Linked data: The story so far. In Semantic

services, interoperability and web applications: emerging concepts, 2011.

[15] Black, S. L., Washington, M. L., and Schmidt, G. B. How to stay current in social

media to be competitive in recruitment and selection. In Social Media in Employee

Selection and Recruitment. Springer, 2016.

[16] Bloor, M. Focus groups in social research. Sage, 2001.

[17] Brown, V. R. and Vaughn, E. D. The writing on the (facebook) wall: The use

of social networking sites in hiring decisions. Journal of Business and psychology

(JBP), 2011.

[18] Cappel, J. J. Entry-level is job skills: A survey of employers. Journal of Computer

Information Systems (JCIS), 2002.

[19] Capretz, L. F. and Ahmed, F. Making sense of software development and personality

types. IT professional, 2010.

[20] Cavaiani, T. P. Cognitive style and diagnostic skills of student programmers. Jour-

nal of Research on Computing in Education (JRCE), 2014.

Bibliography 97

[21] Cherubini, M., Venolia, G., DeLine, R., and Ko, A. J. Let’s go to the whiteboard:

How and why software developers use drawings. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’07, page 557–566, New

York, NY, USA, 2007. Association for Computing Machinery.

[22] Chinn, D. and VanDeGrift, T. Gender and diversity in hiring software professionals:

What do students say? In Proceedings of the Fourth International Workshop on

Computing Education Research, ICER ’08, page 39–50, New York, NY, USA, 2008.

Association for Computing Machinery.

[23] Constantino, K., Zhou, S., Souza, M., Figueiredo, E., and Kästner, C. Under-

standing collaborative software development: An interview study. In International

Conference on Global Software Engineering, ICGSE ’20, page 55–65, New York,

NY, USA, 2020. Association for Computing Machinery.

[24] Constantino, K., Belém, F., and Figueiredo, E. Dual analysis for helping develop-

ers to find collaborators based on co-changed files: An empirical study. Software:

Practice and Experience, 53(6):1438–1464, 2023.

[25] Constantino, K., Souza, M., Zhou, S., Figueiredo, E., and Kästner, C. Perceptions of

open-source software developers on collaborations: An interview and survey study.

Journal of Software: Evolution and Process, 35(5):e2393, 2023.

[26] Constantinou, E. and Kapitsaki, G. M. Identifying developers' expertise in social

coding platforms. In Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), 2016.

[27] da Silva, F. Q., Costa, C., França, A. C. C., and Prikladinicki, R. Challenges and

solutions in distributed software development project management: A systematic

literature review. In 2010 5th IEEE International Conference on Global Software

Engineering, pages 87–96, 2010.

[28] Dabbish, L., Stuart, C., Tsay, J., and Herbsleb, J. Social coding in github: trans-

parency and collaboration in an open software repository. In Conference on com-

puter supported cooperative work (CSCW), 2012.

[29] Destefanis, G., Ortu, M., Counsell, S., Swift, S., Marchesi, M., and Tonelli, R.

Software development: do good manners matter? PeerJ Computer Science, 2016.

[30] Dey, T., Karnauch, A., and Mockus, A. Representation of developer expertise in

open source software. In International Conference on Software Engineering (ICSE),

2021.

Bibliography 98

[31] Easterbrook, S., Singer, J., Storey, M.-A., and Damian, D. Selecting empirical

methods for software engineering research, pages 285–311. Springer London, 2008.

[32] Gaaloul, K., Menghi, C., Nejati, S., Briand, L. C., and Wolfe, D. Mining as-

sumptions for software components using machine learning. In Proceedings of

the 28th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, ESEC/FSE 2020, page

159–171, New York, NY, USA, 2020. Association for Computing Machinery. ISBN

9781450370431. doi: 10.1145/3368089.3409737. URL https://doi.org/10.1145/

3368089.3409737.

[33] Garcia, V. C., Lucrédio, D., Alvaro, A., de Almeida, E. S., de Mattos Fortes, R. P.,

and de Lemos Meira, S. R. Towards a maturity model for a reuse incremental

adoption. In Brazilian Symposium on Software Components, Architectures, and

Reuse (SBCARS), 2007.

[34] Gill, A. M. and Nonnecke, B. Think aloud: Effects and validity. In Proceedings

of the 30th ACM International Conference on Design of Communication, SIGDOC

’12, page 31–36, New York, NY, USA, 2012. Association for Computing Machinery.

[35] Greene, G. J. and Fischer, B. Cvexplorer: Identifying candidate developers by

mining and exploring their open source contributions. In International Conference

on Automated Software Engineering (ASE), 2016.

[36] Hauff, C. and Gousios, G. Matching GitHub developer profiles to job advertise-

ments. In Working Conference on Mining Software Repositories (MSR), 2015.

[37] Hoda, R. Decoding grounded theory for software engineering. In Proceedings of the

43rd International Conference on Software Engineering: Companion Proceedings,

ICSE ’21, page 326–327. IEEE Press, 2021.

[38] Huang, H., Kvasny, L., Joshi, K. D., Trauth, E. M., and Mahar, J. Synthesizing it

job skills identified in academic studies, practitioner publications and job ads. In

Special interest group on management information system’s conference on Computer

personnel research(SIGMIS CPR), 2009.

[39] Huang, W., Mo, W., Shen, B., Yang, Y., and Li, N. CPDScorer: Modeling and

evaluating developer programming ability across software communities. In Interna-

tional Conference on Software Engineering and Knowledge Engineering (ICISDM),

2016.

[40] Jia, J., Chen, Z., and Du, X. Understanding soft skills requirements for mobile

applications developers. In 2017 IEEE International Conference on Computational

https://doi.org/10.1145/3368089.3409737
https://doi.org/10.1145/3368089.3409737

Bibliography 99

Science and Engineering (CSE) and IEEE International Conference on Embedded

and Ubiquitous Computing (EUC), volume 1, pages 108–115, 2017.

[41] Kalliamvakou, E., Damian, D., Blincoe, K., Singer, L., and German, D. M.

Open source-style collaborative development practices in commercial projects using

GitHub. In International Conference on Software Engineering (ICSE), 2015.

[42] Kitchenham, B. A. and Pfleeger, S. L. Personal Opinion Surveys, pages 63–92.

Springer London, 2008.

[43] Koriat, A., Goldsmith, M., and Pansky, A. Toward a psychology of memory accu-

racy. Annual Review of Psychology, 51(1):481–537, 2000. PMID: 10751979.

[44] Kourtzanidis, S., Chatzigeorgiou, A., and Ampatzoglou, A. Reposkillminer: Identi-

fying software expertise from GitHub repositories using natural language processing.

In International Conference on Automated Software Engineering (ASE), 2020.

[45] Kourtzanidis, S., Chatzigeorgiou, A., and Ampatzoglou, A. Reposkillminer: Identi-

fying software expertise from GitHub repositories using natural language processing.

In Proceedings of the 35th IEEE/ACM International Conference on Automated Soft-

ware Engineering, ASE ’20, page 1353–1357, New York, NY, USA, 2021. Association

for Computing Machinery.

[46] Krüger, J., Wiemann, J., Fenske, W., Saake, G., and Leich, T. Do you remember

this source code? In International Conference on Software Engineering (ICSE),

2018.

[47] LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Nature, 521:436–444, 2015.

[48] Lee, J. H., Shin, J., and Realff, M. J. Machine learning: Overview of the recent

progresses and implications for the process systems engineering field. Computers

Chemical Engineering, 114:111–121, 2018. ISSN 0098-1354. FOCAPO/CPC 2017.

[49] Liang, J. T., Zimmermann, T., and Ford, D. Towards mining oss skills from GitHub

activity. In Proceedings of the ACM/IEEE 44th International Conference on Soft-

ware Engineering: New Ideas and Emerging Results, ICSE-NIER ’22, page 106–110,

New York, NY, USA, 2022. Association for Computing Machinery.

[50] Lin, B., Zagalsky, A., Storey, M.-A., and Serebrenik, A. Why developers are slacking

off: Understanding how software teams use slack. In Conference on Computer

Supported Cooperative Work and Social Computing Companion (CSCW), 2016.

[51] Litecky, C. R., Arnett, K. P., and Prabhakar, B. The paradox of soft skills versus

technical skills in is hiring. Journal of Computer Information Systems (JCIS), 2004.

Bibliography 100

[52] Manes, S. S. and Baysal, O. How often and what stackoverflow posts do develop-

ers reference in their GitHub projects? In Proceedings of the 16th International

Conference on Mining Software Repositories, MSR ’19, page 235–239. IEEE Press,

2019.

[53] Marlow, J. and Dabbish, L. Activity traces and signals in software developer re-

cruitment and hiring. In Conference on Computer Supported Cooperative Work

(CSCW), 2013.

[54] Marlow, J. and Dabbish, L. Activity traces and signals in software developer re-

cruitment and hiring. In Proceedings of the 2013 Conference on Computer Supported

Cooperative Work, CSCW ’13, page 145–156, New York, NY, USA, 2013. Associa-

tion for Computing Machinery.

[55] Marlow, J. and Dabbish, L. Activity traces and signals in software developer re-

cruitment and hiring. In Proceedings of the 2013 Conference on Computer Supported

Cooperative Work, CSCW ’13, page 145–156, New York, NY, USA, 2013. Associa-

tion for Computing Machinery.

[56] Marlow, J., Dabbish, L., and Herbsleb, J. Impression formation in online peer

production: activity traces and personal profiles in GitHub. In Conference on

Computer supported cooperative work (CSCW), 2013.

[57] Matturro, G. Soft skills in software engineering: A study of its demand by soft-

ware companies in uruguay. In International Workshop on Cooperative and Human

Aspects of Software Engineering (CHASE), 2013.

[58] McCuller, P. How to Recruit and Hire Great Software Engineers: Building a Crack

Development Team. Apress, USA, 1st edition, 2012. ISBN 143024917X.

[59] McDonald, D. W. and Ackerman, M. S. Expertise recommender: A flexible recom-

mendation system and architecture. In Proceedings of the 2000 ACM Conference

on Computer Supported Cooperative Work, CSCW ’00, page 231–240, New York,

NY, USA, 2000. Association for Computing Machinery.

[60] McDonald, N. and Goggins, S. Performance and participation in open source soft-

ware on GitHub. In Extended Abstracts on Human Factors in Computing Systems

(CHIEA), 2013.

[61] Merriam, S. B. and Tisdell, E. J. Qualitative research: A guide to design and

implementation. John Wiley & Sons, 2015.

[62] Meyer, A. N., Fritz, T., Murphy, G. C., and Zimmermann, T. Software devel-

opers’ perceptions of productivity. In Proceedings of the 22nd ACM SIGSOFT

Bibliography 101

International Symposium on Foundations of Software Engineering, FSE 2014, page

19–29, New York, NY, USA, 2014. Association for Computing Machinery. ISBN

9781450330565.

[63] Meyer, A. N., Barton, L. E., Murphy, G. C., Zimmermann, T., and Fritz, T. The

work life of developers: Activities, switches and perceived productivity. IEEE Trans-

actions on Software Engineering, 43(12):1178–1193, 2017.

[64] Meyer, A. N., Zimmermann, T., and Fritz, T. Characterizing software developers

by perceptions of productivity. In Proceedings of the 11th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement, ESEM ’17, page

105–110. IEEE Press, 2017.

[65] Mockus, A. and Herbsleb, J. Expertise browser: a quantitative approach to iden-

tifying expertise. In Proceedings of the 24th International Conference on Software

Engineering. ICSE 2002, pages 503–512, 2002.

[66] Montandon, J. E., Silva, L. L., and Valente, M. T. Identifying experts in software

libraries and frameworks among GitHub users. In International Conference on

Mining Software Repositories (MSR), 2019.

[67] Montandon, J. E., Silva, L. L., and Valente, M. T. Identifying experts in software

libraries and frameworks among GitHub users. In Proceedings of the 16th Interna-

tional Conference on Mining Software Repositories, MSR ’19, page 276–287. IEEE

Press, 2019.

[68] Montandon, J. E., Politowski, C., Silva, L. L., Valente, M. T., Petrillo, F., and

Guéhéneuc, Y.-G. What skills do it companies look for in new developers? a study

with stack overflow jobs. Information and Software Technology (IST), 2021.

[69] Muratbekova-Touron, M. and Galindo, G. Leveraging psychological contracts as an

hr strategy: The case of software developers. European Management Journal, 36

(6):717–726, 2018.

[70] Oliveira, J., Fernandes, E., Souza, M., and Figueiredo, E. A method based on

naming similarity to identify reuse opportunities. Revista Brasileira de Sistemas de

Informação (iSys), 2017.

[71] Oliveira, J., Viggiato, M., and Figueiredo, E. How well do you know this library?

Mining experts from source code analysis. In Proceedings of the XVIII Brazilian

Symposium on Software Quality, SBQS ’19, page 49–58. Association for Computing

Machinery, 2019.

Bibliography 102

[72] Oliveira, J., Pinheiro, D., and Figueiredo, E. Jexpert: A tool for library expert

identification. In Proceedings of the XXXIV Brazilian Symposium on Software En-

gineering, SBES ’20, page 386–392. Association for Computing Machinery, 2020.

[73] Oliveira, J., Souza, M., Flauzino, M., Durelli, R., and Figueiredo, E. Can source

code analysis indicate programming skills? survey with developers. In Proceed-

ings of the International Conference Quality of Information and Communications

Technology, pages 156–171. Springer International Publishing, 2022.

[74] Oliveira, J., Souza, M., Flauzino, M., Durelli, R., and Figueiredo, E. Can source

code analysis indicate programming skills? a survey with developers. In Vallecillo,

A., Visser, J., and Pérez-Castillo, R., editors, Quality of Information and Communi-

cations Technology, pages 156–171, Cham, 2022. Springer International Publishing.

[75] Oliveira, J., Souza, M., and Figueiredo, E. Evaluating a method to select soft-

ware developers from source code analysis, 2023. URL https://doi.org/10.5281/

zenodo.7739022.

[76] Oliveira, J. A., Viggiato, M., Pinheiro, D., and Figueiredo, E. Mining experts from

source code analysis: An empirical evaluation. Journal of Software Engineering

Research and Development, 9(1):1:1 – 1:16, Feb. 2021.

[77] Olmsted-Hawala, E. L., Murphy, E. D., Hawala, S., and Ashenfelter, K. T. Think-

aloud protocols: A comparison of three think-aloud protocols for use in testing data-

dissemination web sites for usability. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, CHI ’10, page 2381–2390, New York, NY,

USA, 2010. Association for Computing Machinery.

[78] Ortu, M., Adams, B., Destefanis, G., Tourani, P., Marchesi, M., and Tonelli, R.

Are bullies more productive?: empirical study of affectiveness vs. issue fixing time.

In Working Conference on Mining Software Repositories (MSR), 2015.

[79] Ortu, M., Destefanis, G., Counsell, S., Swift, S., Tonelli, R., and Marchesi, M. Ar-

sonists or firefighters? affectiveness in agile software development. In International

Conference on Agile Software Development, 2016.

[80] Pfleeger, S. L. and Kitchenham, B. A. Principles of survey research: Part 1: Turning

lemons into lemonade. Software Engineering Notes (SIGSOFT), 2001.

[81] Pohl, R. and Pohl, R. Cognitive Illusions: A Handbook on Fallacies and Biases in

Thinking, Judgement and Memory. Psychology Press, 2004.

[82] Radermacher, A., Walia, G., and Knudson, D. Investigating the skill gap between

graduating students and industry expectations. In International Conference on

Software Engineering (ICSE), 2014.

https://doi.org/10.5281/zenodo.7739022
https://doi.org/10.5281/zenodo.7739022

Bibliography 103

[83] Rosner, B., Glynn, R. J., and Lee, M. L. The wilcoxon signed rank test for paired

comparisons of clustered data. Biometrics, 2006.

[84] Rubin, H. J. and Rubin, I. S. Qualitative interviewing: The art of hearing data.

sage, 2011.

[85] Ruvimova, A., Lill, A., Gugler, J., Howe, L., Huang, E., Murphy, G., and Fritz, T.

An exploratory study of productivity perceptions in software teams. In International

Conference on Software Engineering (ICSE), pages 234–235. ACM, 2022.

[86] Santos, A., Souza, M., Oliveira, J., and Figueiredo, E. Mining software repositories

to identify library experts. In Proceedings of the VII Brazilian Symposium on Soft-

ware Components, Architectures, and Reuse, SBCARS ’18, page 83–91. Association

for Computing Machinery, 2018.

[87] Sarma, A., Chen, X., Kuttal, S., Dabbish, L., and Wang, Z. Hiring in the global

stage: Profiles of online contributions. In 2016 IEEE 11th International Conference

on Global Software Engineering (ICGSE), pages 1–10, 2016.

[88] Saxena, R. and Pedanekar, N. I know what you coded last summer. In Conference

on Computer Supported Cooperative Work and Social Computing (CSCW), 2017.

[89] Schütze, H., Manning, C. D., and Raghavan, P. Introduction to information re-

trieval. Cambridge University Press Cambridge, 2008.

[90] Silveira, K. K., Musse, S., Manssour, I. H., Vieira, R., and Prikladnicki, R. Confi-

dence in programming skills: Gender insights from stackoverflow developers survey.

In International Conference on Software Engineering (ICSE), pages 234–235. IEEE,

2019.

[91] Singer, L., Filho, F. F., Cleary, B., Treude, C., Storey, M.-A., and Schneider, K.

Mutual assessment in the social programmer ecosystem: An empirical investigation

of developer profile aggregators. In Conference on Computer supported cooperative

work - (CSCW), 2013.

[92] Sommerville, I. Software Engineering. Pearson, 2015.

[93] Stol, K.-J., Ralph, P., and Fitzgerald, B. Grounded theory in software engineering

research: A critical review and guidelines. In International Conference on Software

Engineering (ICSE), 2016.

[94] Strauss, A. L. and Corbin, J. M. Basics of qualitative research: techniques and

procedures for developing grounded theory. Sage Publications, Thousand Oaks, Calif,

1998.

Bibliography 104

[95] Tantisuwankul, J., Nugroho, Y. S., Kula, R. G., Hata, H., Rungsawang, A., Lee-

laprute, P., and Matsumoto, K. A topological analysis of communication channels

for knowledge sharing in contemporary GitHub projects. Journal of Systems and

Software (JSS), 2019.

[96] Teyton, C., Palyart, M., Falleri, J.-R., Morandat, F., and Blanc, X. Automatic

extraction of developer expertise. In International Conference on Evaluation and

Assessment in Software Engineering - (EASE), 2014.

[97] Tong, J., Ying, L., Hongyan, T., and Zhonghai, W. Can we use programmer’s

knowledge? fixing parameter configuration errors in hadoop through analyzing q

amp;a sites. In International Congress on Big Data (BigData Congress), 2016.

[98] Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Penta, M. D., Lucia, A. D., and

Poshyvanyk, D. When and why your code starts to smell bad. In International

Conference on Software Engineering (ICSE), 2015.

[99] Vadlamani, S. L. and Baysal, O. Studying software developer expertise and con-

tributions in stack overflow and GitHub. In International Conference on Software

Maintenance and Evolution (ICSME), 2020.

[100] Wan, C., Liu, S., Xie, S., Liu, Y., Hoffmann, H., Maire, M., and Lu, S. Automated

testing of software that uses machine learning apis. In Proceedings of the 44th Inter-

national Conference on Software Engineering, ICSE ’22, page 212–224, New York,

NY, USA, 2022. Association for Computing Machinery. ISBN 9781450392211. doi:

10.1145/3510003.3510068. URL https://doi.org/10.1145/3510003.3510068.

[101] Wan, Y., Chen, L., Xu, G., Zhao, Z., Tang, J., and Wu, J. SCSMiner: mining social

coding sites for software developer recommendation with relevance propagation.

World Wide Web (WWB), 2018.

[102] Wang, Z., Sun, H., Fu, Y., and Ye, L. Recommending crowdsourced software de-

velopers in consideration of skill improvement. In International Conference on Au-

tomated Software Engineering (ASE), 2017.

[103] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A.

Experimentation in software engineering. Springer Science & Business Media, 2012.

[104] Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Regnell, B., and Wessln, A.

Experimentation in Software Engineering. Springer Publishing Company, Incorpo-

rated, 2012.

[105] Ye, C. Research on the key technology of big data service in university library. In

International Conference on Natural Computation, Fuzzy Systems and Knowledge

Discovery (ICNC-FSKD), 2017.

https://doi.org/10.1145/3510003.3510068

Bibliography 105

[106] Zacchiroli, S. A large-scale dataset of (open source) license text variants. In

Proceedings of the 19th International Conference on Mining Software Reposito-

ries, MSR ’22, page 757–761, New York, NY, USA, 2022. Association for Com-

puting Machinery. ISBN 9781450393034. doi: 10.1145/3524842.3528491. URL

https://doi.org/10.1145/3524842.3528491.

[107] Zhou, M. and Mockus, A. Developer fluency: Achieving true mastery in software

projects. In Proceedings of the eighteenth ACM SIGSOFT international symposium

on Foundations of software engineering, pages 137–146, 2010.

[108] Zieris, F. and Prechelt, L. Explaining pair programming session dynamics from

knowledge gaps. In 2020 IEEE/ACM 42nd International Conference on Software

Engineering (ICSE), pages 421–432. IEEE, 2020.

https://doi.org/10.1145/3524842.3528491

	Introduction
	Problem and Motivation
	Goals
	Study Steps
	Results
	Publications
	Outline of the Thesis

	Background and Related Work
	Hard Skills and Soft Skills
	Recruitment Process
	Using GitHub Data to Understand Software Developers
	Related Work
	Concluding Remarks

	A Framework to Identify Programming Skills
	Framework Overview
	Profile Instance
	Library Instance
	Tech Skills Instance
	A Tool to Support Programming Skill Identification
	Concluding Remarks

	Identifying Developer Profiles
	Goal and Research Questions
	Evaluation Steps
	Metrics used to Profile Instance
	Dataset
	Survey Design
	Data Analysis
	Overview Results
	Results for Programming Language Skills
	Results for Back-end & Front-end Profiles
	Results Test Development
	Feedback from Developers
	Threats to Validity
	Concluding Remarks

	Identifying Library Experts
	Goal and Research Questions
	Evaluation Steps
	Metrics used to Library Instance
	Dataset
	Survey Design
	Overview
	Level of Activity
	Knowledge Intensity
	Knowledge Extension
	Threats to Validity
	Concluding Remarks

	 A Study with Software Recruiters
	Goal and Research Questions
	Evaluation Steps
	Metrics used to Tech Skills Instance
	Instrumentation
	Selection Subjects
	Interview with Recruiters
	Data Analysis
	Results for Participants' Demographic Information
	Results for Recruitment Channels
	Results for Applicability
	Alternative Visualization
	Miss Information
	Threats to Validity
	Concluding Remarks

	Conclusion
	Thesis Recapitulation
	Contributions
	Future Work

	Bibliography

