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Abstract: Background: Obesity leads to chronic low-grade inflammation, promoting detrimental

effects on bone. The consumption of virgin coconut oil (VCO) is associated with benefits related to

meta-inflammation. We evaluated the effect of VCO supplementation on osteopenia promoted by

diet-induced obesity in mice. Methods: Male BALB/c mice were fed a control (C) or highly refined

carbohydrate-containing (HC) diet for eight weeks. After that, the HC diet group was supplemented

with three doses of VCO for four weeks. Results: The HC diet increased the adiposity and leptin

levels associated with augmented systemic inflammatory cells improved with VCO supplementation.

The HC diet reduced the trabecular bone in the tibia, lumbar vertebrae, distal and proximal femur, as

well as the bone mineral density of the femur and alveolar bone. The VCO supplementation reverted

bone osteopenia by increasing the trabecular bone in different sites and improving femur and alveolar

bone microarchitecture. Although the reduced number of osteoblasts in the alveolar bone of the HC

diet group was not significantly enhanced by VCO supplementation, the reduced Alp expression in

the HC diet group was enhanced in the VCO group. These beneficial effects were associated with

lowering the Rankl/Opg ratio. Conclusion: VCO supplementation might be an effective strategy to

attenuate bone osteopenic effects induced by obesity.

Keywords: virgin coconut oil; high refined carbohydrate diet; obesity; bone loss; alveolar bone; metabolism

1. Introduction

Obesity is a systemic disease characterized by body fat accumulation that drives
chronic low-grade inflammation with increased production of proinflammatory cytokines
and reactive oxygen species. It also leads to other metabolic dysfunctions, including insulin
resistance, dyslipidemia, cardiovascular disease, and bone remodeling disorders [1–3].
Previous experimental and clinical studies have shown that obesity interferes with bone
organic matrix mineralization, leading to bone fragility and, consequently, a higher risk
of bone fractures [4–6]. Bone detrimental effects caused by obesity are observed not only
in long bones (i.e., femur and tibia) [4–9] but also in the alveolar bone [10–17]. Obesity-
increased alveolar bone loss is known to have an essential role in the development of
periodontitis [11,14–17], an infectious disease characterized by inflammation and destruc-
tion of tooth-supporting structures [16].

Current knowledge demonstrates that bioactive dietary substances promote the im-
provement of oxidative stress and inflammation seen in several undesirable health condi-
tions, including obesity [18], osteoporosis [19,20], and alveolar bone loss [21–23]. Hence,
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dietary strategies may help to promote beneficial effects and attenuate bone dysfunc-
tions induced by obesity. Virgin coconut oil (VCO) has become a food of interest as
a natural therapeutic product due to its antioxidant compounds [24–28] and medium-
chain fatty acids (fatty acids with 6–12 carbons) content [24]. VCO is obtained from
fresh, mature coconut kernel without heating or refining processes [24], which avoids
fat degradation and promotes higher retention of phenolic compounds and antioxidant
vitamins [24–26,28,29]. VCO supplementation has been shown to develop a series of body
health benefits, such as improvement of serum lipids [30–33], glycemic homeostasis [34],
and antioxidant status [27,28,30]. These effects seem to be due to its anti-inflammatory
properties [35] and body fat reduction [27,32]. Previous studies demonstrated that VCO
supplementation improved inflammation in ligature-induced periodontal disease [36],
maintained long bone microarchitecture in a model of estrogen-deficient rats [37], and
improved the antioxidant defense system in the tibia [38]. Altogether, VCO intake could be
correlated with beneficial bone effects and long bone remodeling. However, to the best of
our knowledge, studies evaluating the influence of VCO supplementation on alveolar bone
metabolism are absent.

In mouse models, the consumption of a high-carbohydrate diet (HC) causes obesity
and correlated comorbidities, such as inflammation, metabolic disturbance [39], and detri-
mental effects on long [40] and maxillary bones [41–43]. Previous data showed that VCO
supplementation improved obesity features such as a higher adiposity gain as well as
metabolic and inflammatory responses [30,32,34,43–46]. Although a study with rats fed
an HF diet and treated with VCO worsened metabolic changes compared with those that
received only the HF diet [47], we hypothesized that the amelioration in obesity caused
by VCO supplementation promotes benefits in bone health, increasing the perspective of
treatments for damaged bone caused by diet-induced obesity in humans. Therefore, the
purpose of the present study was to evaluate the impact of VCO supplementation on bone
detrimental effects induced by the HC diet in mice.

2. Materials and Methods

2.1. Mice and Diet

Male BALB/c mice (6–8 weeks of age—n = 40) were obtained from the animal care
center of Universidade Federal de Minas Gerais (Bioscience unit-CEBIO-UFMG). The
local Ethics Committee in Animal Experimentation approved the experimental protocol
(protocol no. 174/2012). Animals were maintained according to the ethical guidelines of
our institution and the Guide for the Care and Use of Laboratory Animals. All efforts were
made to minimize animal suffering and to reduce the number of animals used.

Mice were housed under standard conditions (25.4 ± 3.4 ◦C, with a light-dark cycle of
12 h–12 h) in separated and appropriate cages with free access to commercial chow and
tap water. The control diet consisted exclusively of a chow diet (PURINA-LABINA, São
Paulo, SP, Brazil) and its content was composed of 65.8% carbohydrate, 3.1% fat, and 31.1%
protein with 4.0 kcal/g. The HC diet contained 45% condensed milk, 10% refined sugar,
and 45% chow diet composed of 74.2% carbohydrate (at least 30% refined sugars, mostly
sucrose), 5.8% fat, and 20% protein with 4.4 kcal/g [39].

An organic VCO was obtained from Finococo® (Conde, Bahia, Brazil), identified,
stored under refrigeration (4–10 ◦C), and protected from light until it was used.

2.2. Experimental Design and Sample Collection

Mice were randomly assigned to two groups for eight weeks fed with either (i) a
control diet (C group, n = 8), or (ii) the HC diet (n = 32). After this period, animals fed with
the HC diet were redistributed equally into four groups. One group received the HC diet
(HC group, n = 8), and the other three groups received the HC diet supplemented with
VCO at 1000 mg/Kg (low dose of VCO—LVCO group, n = 8), 3000 mg/Kg (medium dose
of VCO—MVCO group, n = 8) and 9000 mg/Kg of body weight (high dose of VCO—HVCO
group, n = 8), as previously demonstrated [44]. We verified that the mean body weight was
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statistically not different for each experimental group before assignment to diet treatment.
This time point was chosen to start the supplementation as we previously demonstrated
the kinetic of metabolic and inflammatory alterations triggered by HC diet, and at this
period, the chronicity appears to have been established [39]. The supplementation was
adjusted weekly based on the changes in food intake and body weight for the following
four weeks, reaching twelve weeks as an experimental period for all groups [44].

Throughout the experiment, the weight of mice was measured once a week, and food
consumption was assessed twice a week. At the end of the dietary treatment, animals
were anesthetized with ketamine (130 mg/kg Body Weight) and xylazine (0.3 mg/kg
Body Weight) and euthanized with exsanguination. Epididymal (EAT), mesenteric (MAT)
and retroperitoneal (RAT) white adipose tissues were collected, weighed and stored
at −80 ◦C for further analysis. The adiposity index was calculated using the formula:
[(EAT + RAT + MAT) / body weight in grams] multiplied by 100. Blood was collected to
obtain serum which was used for later analysis. The fasting serum levels of leptin were
determined by enzyme-linked immunosorbent assay (ELISA, R&D systems Europe Ltd.,
Abington, UK). The assay was performed according to the procedures supplied by the
manufacturer. Samples of bones (maxilla, femur, lumbar vertebrae, and tibia) were obtained
and stored in 10% buffered formalin or stored at −80 ◦C.

2.3. Total and Differential Blood Cell Counts

Blood samples were taken from the animal’s tail, diluted in Türk’s solution, and a
Neubauer chamber was used to determine the total leukocyte count. Peripheral blood
smears were stained with May–Grünwald–Giemsa (Panoptic kit, Laborclin, Pinhal, Brazil)
and the differential white blood cell count was determined under oil immersion (1000X)
using standard morphologic criteria.

2.4. Histomorphometry of Bone Tissues

Histomorphometry analysis of bone tissues was determined as previously described [42].
Lumbar vertebrae (L1–L6) and long bone (femur and tibia) samples (n = 8 per group) were
fixed in 10% buffered formalin, decalcified in 14% ethylenediaminetetraacetic acid (pH 7.4)
for 21 days, washed, and embedded in paraffin. The proximal femur was sectioned in the
middle diaphysis, and all vertebral segments, femur, and tibia were sectioned longitudinally.
Thick sections (4 to 5 µm) were stained with Haematoxylin and Eosin and examined using
a light microscope. The percentage of trabecular bone was determined at 40x magnification
using an ocular micrometer containing a 121-point grid. Four fields were chosen right
below the epiphyseal plate in each bone.

Sections of the maxilla were also stained with Masson’s Trichrome. The osteoblast
number per bone perimeter (N.Oc/B.Pm) was determined using ImageJ software (NIH
Image, Bethesda, MD, USA). Osteoblast number and the trabecular bone perimeter were
quantified in the analysis region. Osteoblast density was calculated by dividing the number
of counted cells (#)/the perimeter of the trabecular bone (mm).

2.5. Micro-Computed Tomography Analysis

Micro-computed tomography (Micro-CT) analyses of maxillae and femur were deter-
mined as previously described [48]. Maxillae and femur samples (n = 5 per group) were
fixed in 10% neutral buffered formalin for 48 h and scanned using a micro-CT system
(Skyscan 1172 X-ray microtomography; Skyscan, Aartselaar, Belgium). The calibration
was carried out with known density calcium hydroxyapatite phantoms (Skyscan). High-
resolution images with an isotropic voxel size of 8.62 were acquired (50 kV, 0.5 mm alu-
minum filter), and the trabecular bone in the furcation area of upper first molars and the
metaphyseal region of femurs with a uniformly shaped region of interest were delineated.
The tissue was analyzed to determine the bone mineral density (BMD), percent of bone
volume/tissue volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N),
and trabecular bone pattern factor (Tb.Pf). Alveolar bone loss was measured as previously
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described [49] by determining the area between the cement–enamel junction (CEJ) and the
alveolar bone crest (ABC), (CEJ-ACB), in three-dimension images (Fiji—National Institute
of Health, Bethesda, MD, USA) of the first, second and third maxillary molars.

2.6. Mechanical Analysis

Mechanical analysis of the femur was determined as previously described [50]. Maxi-
mum load (Lmax) and stiffness (St) were determined by testing the right femur to fracture
in a universal testing machine (EMICs, DL 10000, Ribeirão Preto, Brazil) equipped with a
load cell of 500 N, and TESC software version 13.4 (EMIC) (São José dos Pinhais, PR, Brazil).
Femurs were tested by the three-point bending flexural test, with force applied at a speed
of 1.0 mm/min in the anterior–posterior direction. The gap between the two points was
8 mm, and a 2N preload was used for 30 s.

2.7. mRNA Extraction and qPCR in the Maxilla

For qPCR analysis, the periodontal ligament was removed, and the surrounding alve-
olar bone was used. Total RNA was extracted using Trizol reagent followed by column
purification (RNeasy Mini Kit; Qiagen, Valencia, CA, USA). According to the manufac-
turer’s instructions, the integrity of RNA samples was checked by analyzing 1 µg total
RNA on a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Complementary
DNA (cDNA) was synthesized from 2 µL RNA using the Quanti TectRT kit (Qiagen). The
target genes analyzed were: receptor activator of nuclear factor κB Rank (Tfnrsf11a), Rankl
(Tnfsf11), Opg (Tnfrsf11b), Runx2 and Alp, using Gapdh as the housekeeping gene.

2.8. Statistical Analysis

Results are expressed as means ± SEM and were analyzed using GraphPad Prism
version 5.0 (GraphPad Software, San Diego, CA, USA). All data were analyzed for nor-
mality of distribution using the Kolmogorov–Smirnov test and were found to be normal.
A comparison between two groups was performed using Student’s t-test, and multiple
comparisons were performed using one-way ANOVA with a Student–Newman–Keuls
posthoc analysis. The calculation of sample size was performed with Gpower Software, ver-
sion 3.1.9.7, (Franz Faul, Christian-Albrechts-Universität Kiel, Kiel, Germany). To calculate
the sample size, we used one-way ANOVA with 5 experimental groups, effect size = 0.75,
α error = 0.05, and statistical power = 0.95. The total sample size was 40 animals, with
8 mice in each group. All tests and analyses were performed by investigators blinded to
the procedures. Grubbs’ test was performed to determine outliers among the samples, and
values statistically lower than 0.05 were considered atypical and excluded from analyses.
Statistical significance was set at p < 0.05.

3. Results

3.1. VCO Supplementation Reverses the Obese Phenotype and the Appendicular and Axial Bone
Loss Induced by the HC Diet

Even though the body weight gain (data not shown) was similar between the groups,
the HC diet consumption increased the adiposity index and leptin serum levels. The
consumption of HC diet also promoted a higher number of leukocytes, mononuclear cells
and neutrophils in the blood (Table 1). On the other hand, VCO supplementation in all
administered doses reverted these effects (Table 1).

As VCO supplementation ameliorated the obese phenotype, we evaluated whether
this effect also occurred in appendicular and axial bones. HC diet-fed mice showed a
lower percentage of trabecular bone in the proximal femur (Figure 1A,B) and the tibia
(Figure 2A,B) compared with the control group (C). On the other hand, VCO supplementa-
tion at low (LVCO) and medium (MVCO) dosages led to an increase in trabecular bone
in these bone sites (Figures 1 and 2A,B). All the groups fed with VCO showed a higher
percentage of trabecular bone in the distal femur (Figure 1C,D) and lumbar vertebrae
(Figure 2C,D) compared with the HC group.
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Table 1. Analysis of local and systemic changes in control and obese mice treated with virgin

coconut oil.

C HC LVCO MVCO HVCO

Adiposity index (%) 1.6 ± 0.2 3.1 ± 0.3 * 1.8 ± 0.2 # 1.8 ± 0.1 # 1.7 ± 0.1 #
Serum leptin

(ng/mL)
0.4 ± 0.1 2.5 ± 0.5 * 0.8 ± 0.2 # 0.7 ± 0.2 # 0.8 ± 0.3 #

Leukocytes
(×105/mL)

90.5 ± 13.7 129.4 ± 23.8 * 62.6 ± 25.4 # 52.2 ± 18.5 # 58.3 ± 21.3 #

Mononuclear
(×105/mL)

62.0 ± 16.6 84.9 ± 14.2 * 47.6 ± 18.8 # 49.6 ± 7.4 # 27.7 ± 12.1 #

Neutrophil
(×105/mL)

24.5 ± 9.3 44.5 ± 10.5 * 23.7 ± 9.6 # 15.9 ± 5.5 # 30.5 ± 11.1 #

Mice fed a chow diet, high refined carbohydrate-containing (HC) diet, and HC diet supplemented with 1000 mg/kg
(LVCO), 3000 mg/kg (MVCO), or 9000 mg/kg (HVCO) of body weight of virgin coconut oil (VCO). Values are
means ± SEM (n = 8). * compared with the control (C) group (p < 0.05); # compared with HC group (p < 0.05).

Figure 1. Effect of the HC diet and VCO supplementation on the percentage of trabecular bone in the

proximal and distal femur. (A) The trabecular bone area and (B) histological sections of the proximal

femur (scale bars represent 100 µm). (C) The trabecular bone area and (D) histological sections of the

distal femur (scale bars represent 100 µm). Analyses were performed in mice fed a chow diet, high

refined carbohydrate-containing (HC) diet, and HC diet supplemented with 1000 mg/kg (LVCO),

3000 mg/kg (MVCO), or 9000 mg/kg (HVCO) of body weight of virgin coconut oil (VCO). Values are

means ± SEM (n = 8). * compared with the control (C) group (p < 0.05); # compared with HC group

(p < 0.05).

3.2. VCO Supplementation Improves Femur and Alveolar Bone Parameters

Aiming to better understand how VCO supplementation affects bone integrity, we
chose one bone site (metaphyseal region of the femur) to investigate femur quality using
micro-CT and mechanical analysis. Although there were no significant differences among
groups supplemented with low or medium dosages of VCO, in terms of the percentage of
trabecular bone in long bones (tibia and femur) and lumbar vertebrae, we chose only one
experimental group (MVCO: 3000 mg/kg BW dosage of VCO) to perform the analysis.
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Figure 2. Effect of the HC diet and VCO supplementation on the percentage of trabecular bone in

the tibia and lumbar vertebrae. (A) The trabecular bone area and (B) histological sections of the

proximal tibia (scale bars represent 100 µm). (C) The trabecular bone area and (D) histological sections

of lumbar vertebrae (scale bars represent 100 µm). Analyses were performed in mice fed a chow

diet, high refined carbohydrate-containing (HC) diet, and HC diet supplemented with 1000 mg/kg

(LVCO), 3000 mg/kg (MVCO), or 9000 mg/kg (HVCO) of body weight of virgin coconut oil (VCO).

Values are means ± SEM (n = 8). * compared with the control (C) group (p < 0.05); # compared with

HC group (p < 0.05).

HC diet-induced osteopenic effects (Figure 3A) on the femur were demonstrated by a
decrease in the following bone parameters: BMD (Figure 3B), BV/TV (Figure 3C), Tb.Th
(Figure 3D) and an increase in Tb.Pf (Figure 3F). VCO supplementation improved femur
microarchitecture compared with the HC group since it leads to a higher BMD (Figure 3A),
BV/TV (Figure 3C), and Tb.Th (Figure 3D). There was no statistically significant difference
among groups in the Th.N parameter (Figure 3E). A three-point bending flexural test
was performed to understand whether the HC diet-induced femur damage impacted
mechanical resistance. The maximum load to fracture (Figure 3G) and the femoral stiffness
(Figure 3H) were reduced in mice fed with the HC diet. VCO consumption did not prevent
the loss of mechanical resistance observed in mice fed the HC diet (Figure 3G,H).

The HC diet also negatively affected the alveolar bone in maxillae, as demonstrated by
a decrease in BMD (Figure 4A,B), Tb.Th (Figure 4F), and Tb.N (Figure 4G). Furthermore, an
increase in horizontal alveolar bone loss (Figure 4C,D) and TB.Pf (Figure 4H) in HC diet-fed
mice was also observed. The addition of VCO in the HC diet reversed the osteopenic
effects on the alveolar bone by promoting an increase in bone parameters, such as BMD
(Figure 4A,B) and Tb.Th (Figure 4F). Additionally, a reduction in horizontal alveolar bone
loss (Figure 4C,D) and TB.Pf (Figure 4H) was observed in the MVCO group compared with
the HC group. We also evaluated the number of osteoblasts in the alveolar bone. They
were reduced in mice fed an HC diet, and no alteration in the VCO supplementation group
was observed (Figure 4I,J).
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Figure 3. Micro-CT analysis of trabecular bone in the femur. (A) Representative femur images

(small red squares represent the analyzed region on micro-CT). (B) Bone mineral density (BMD),

(C) trabecular bone volume fraction (BV/TV), (D) trabecular thickness (Tb.Th), (E) trabecular number

(Tb.N), (F) trabecular pattern factor (Tb.Pf), (G) bone maximum load and (H) stiffness of femur in

mice fed chow diet (C), high refined carbohydrate-containing diet (HC), and HC diet supplemented

with 3000 mg/kg body weight of virgin coconut oil (MVCO). Values are means ± SEM (n = 5).

* compared with the control (C) group (p < 0.05); # compared with HC group (p < 0.05).

 

Figure 4. Micro-CT analysis of maxillary bone. (A) Bone mineral density (BMD), (B) representative

images of maxillary (small red squares represent the analyzed region on micro-CT). (C) Alveolar bone
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loss, (D) representative images of the maxilla (the area outlined of CEJ-ABC represents the area of

alveolar bone resorption). (E) Trabecular bone volume fraction (BV/TV), (F) trabecular thickness

(Tb.Th), (G) trabecular number (Tb.N), (H) trabecular pattern factor (Tb.Pf) of the maxilla, (I) os-

teoblast number per bone perimeter (ObN/BPm) and (J) representative images of osteoblasts in mice

fed a chow diet (C), high refined carbohydrate-containing diet (HC), and HC diet supplemented with

3000 mg/kg body weight of virgin coconut oil (MVCO). Values are means ± SEM (n = 5). * compared

with the control (C) group (p < 0.05); # compared with HC group (p < 0.05).

Moreover, an analysis of the molecules involved in bone remodeling was performed to
understand the mechanisms involved in the beneficial bone effects of VCO supplementation.
Although no significant differences in the expression of Opg (Figure 5A), Rank (Figure 5B),
and Rankl (Figure 5C) were found among groups, a higher Rankl/Opg ratio (Figure 5D)
was observed in the HC group when compared with the control group. Interestingly, VCO
supplementation was sufficient to decrease this ratio significantly (Figure 5D). Even though
the osteoblast markers demonstrated no alteration in Runx2 among the groups (Figure 5E),
the Alp expression was reduced in mice fed an HC diet, and VCO supplementation reversed
this parameter (Figure 5F).

 

κ
κ

Figure 5. Effect of dietary VCO supplementation in the mRNA expression in the maxilla. (A) mRNA

expression of Opg, (B) receptor activator of nuclear factor κB (Rank) and (C) receptor activator of

nuclear factor κB ligand (Rankl). (D) Rankl/Opg ratio. (E) Runx2 and (F) Alp. Analyses were

performed in mice fed a chow diet (C), high refined carbohydrate-containing diet (HC), and HC diet

supplemented with 3000 mg/kg body weight of virgin coconut oil (MVCO). Values are means ± SEM

(n = 5). * compared with the control (C) group (p < 0.05); # compared with HC group (p < 0.05).

4. Discussion

Specific dietary compounds are associated with beneficial effects on obesity and
bone health. VCO intake was associated with body health benefits due to its antioxidant
compounds and medium-chain fatty acids (MCFA) [24–28]. In the present study, we
evaluated whether VCO intake could help reduce the detrimental bone effects induced
by an HC diet intake in a mice model. Herein, our results clearly showed that VCO
supplementation promotes (i) amelioration of obese metabolic and inflammatory alterations
associated with (ii) a higher percentage of trabecular bone in the tibia, lumbar vertebrae,
distal and proximal femur; (iii) improvement in femur microarchitecture, and (iv) higher
alveolar bone mass and integrity associated with (v) a lower Rankl/Opg ratio in this bone
site and higher Alp expression.

Traditionally, obesity has been correlated with greater bone mass. It has been postu-
lated that a higher body weight could impose high mechanical stress on the long bones
and increase bone mass [40]. However, experimental and clinical studies on obesity [4–10]
have also shown an increase in factors that promote bone catabolism, such as proinflam-
matory cytokines. Therefore, the negative effect of obesity on bone remodeling appears
to outweigh the protective mechanical effect, which is supported by a high incidence of
deficient organic matrix mineralization, increased bone fragility, and higher risks of bone
fractures in individuals with obesity [5,6]. The higher production of inflammatory cytokines
mainly produced by immune cells in obesity could also negatively affect alveolar bone
remodeling [10–17]. Therefore, pharmacological and dietary strategies are desired to treat
obesity and bone dysfunction.
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Our research group previously showed that the HC diet promoted significant os-
teopenic effects in the femur and alveolar bones [43]. The most plausible explanation for
those detrimental bone effects are metabolic and inflammatory disturbances associated
with HC diet intake [39,40]. Herein, we confirmed the bone dysfunction induced by the
HC diet. The increased leukocyte rolling and levels of proinflammatory cytokines (IL-6 and
TNF-α) in adipose tissues, as well as an imbalance of serum concentrations of adipokines
(leptin and adiponectin), are outcomes of HC diet consumption [39,40] that could be related
with detrimental bone effects. The association between obesity and osteopenic effects
is partially explained by a common stem cell precursor leading to the differentiation of
adipocytes and osteoblasts. The balance of such differentiation is regulated by several
interacting pathways [7–9]. Halade et al. (2011) showed that an increased production of
inflammatory cytokines (such as IL-1β, IL-6, and TNF-α), as a result of obesity in mice,
promotes higher adipogenesis and lower osteoblasts differentiation in the femur [7]. These
effects were demonstrated by the up-regulation of Cathepsin k (an osteoclast gene marker)
and Rankl expression, and the down-regulation of Runx2/Cbfa1, a transcription factor for
osteoblasts differentiation. The detrimental effects of obesity on bone metabolism also affect
the alveolar bone. Fujita et al. (2015) showed that obesity triggers mandibular osteoporosis
and increases the risk of spontaneous periodontal disease in mice [11]. The enhancement of
neutrophil recruitment and oxidative stress, as well as a decrease in antioxidant enzymes
in gingival tissue, as a result of adiposity gain, promotes harmful effects on periodontal
health [29].

When considering bone alterations, our primary purpose was to investigate whether
dietary VCO could be an effective strategy to treat or attenuate some bone damage induced
by obesity. VCO promoted an increase in trabecular bone in the tibia, lumbar vertebrae,
proximal and distal femur and improved the femur microarchitecture. Additionally, VCO
intake contributes to long bone maintenance and a greater alveolar bone mass. The maxilla
integrity was enhanced by VCO supplementation once it increased BMD and Tb.Th.,
lowered alveolar bone loss and the Tb.Pf parameter. These effects were associated with a
lower Rankl/Opg ratio in the alveolar bone and increased Alp. One way to explain the
improvement in bone mass induced by VCO may be its beneficial effect on intermediary
metabolism and inflammation. Previous data from our group [43,44] and others [30,32,34]
showed that VCO supplementation promoted lower adiposity gain and the amelioration
of related metabolic and inflammatory disorders. Indeed, mice fed with VCO showed
lower proinflammatory cytokine levels and rolling leukocytes in epididymal adipose tissue.
VCO also promotes a reduction in systemic inflammation induced by obesity [44]. In this
study, we observed a reduced adipose tissue size associated with a lower leukocyte number
caused by VCO treatment. The lower inflammatory response in VCO-fed mice could be
due to its effect on adiposity since the expansion of visceral fat tissue leads to the higher
recruitment of leukocytes and a wide range of inflammatory mediators [1,2]. The significant
presence of phytochemicals (vitamin E, carotenoids, and polyphenols) in VCO [24–26,28,29]
may have contributed to the decreased lower inflammatory milieu in adipose tissue. These
beneficial effects of VCO over obesity may be associated with improved bone health in
VCO- fed mice shown herein.

Inflammation induces bone resorption and impairs osteoblastogenesis [7–9]. Thus,
controlling the inflammatory response may be essential to preventing detrimental bone
effects. Accordingly, Sugiura et al. (2012) showed that serum levels of antioxidants and
anti-inflammatory carotenoids are inversely associated with lower radial BMD in post-
menopausal female subjects [19]. Muhammed et al. (2013) demonstrated that tocotrienol
supplementation prevented osteoporotic bone loss in postmenopausal women, and this
effect was associated with lower levels of inflammatory cytokines [20]. Improvement of in-
flammation is also associated with greater alveolar bone integrity [21–23]. Supplementation
with Omega 3, a fatty acid known for its anti-inflammatory property, reduced alveolar bone
loss in rats with periodontitis [21]. Tomofuji et al. (2009) demonstrated that in rats with
periodontitis induced by ligature placement, cocoa intake prevented alveolar bone loss by
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reducing polymorphonuclear leukocyte infiltration and increasing antioxidant defense in
periodontal tissues [22,36].

Several studies associate VCO consumption with both antioxidant [24–28] and anti-
inflammatory [35] effects, which may explain the improvement of bone integrity shown
in the present study. Vysakh et al. (2014) demonstrated that the oral supplementation of
polyphenolics isolated from VCO in rats with inflammatory arthritis inhibits the expression
of inflammatory genes such as COX2, iNOS, TNF-α and IL-6 [35]. In a rat model of
osteoporosis, the bone histomorphometry of the femur showed that VCO supplementation
prevented bone loss, increased bone volume and trabecular number, and reduced trabecular
separation [37]. Abujazia et al. (2012) demonstrated that VCO supplementation prevented
lipid peroxidation and increased the antioxidant enzymes in the tibia of osteoporotic
rats, and these effects may be correlated with higher bone maintenance and integrity [38].
Additionally, the combined treatment of VCO with tocotrienol-rich fraction in osteoporotic
rats appears to be osteoprotective [51].

The major limitation of this study is the intervention duration. An experiment with
a more extended intervention period is required to better understand the systemic effect
of VCO on healthy bone. Additionally, the doses selected in this study follow previous
studies [28,31], and only low and medium dosages promote an increased percentage
of trabecular bone in all sites analyzed (tibia, distal and proximal femur and lumbar
vertebrae). Long-chain fatty acid (LCFA) may enhance osteoclastogenesis by the up-
regulation of Rankl [52]. Therefore, the overload of myristic, palmitic, and stearic (present
in approximately 30% of VCO) may have contributed to bone detrimental effects at a high
dosage of VCO.

Animal models represent an essential tool for studying the physiological and molec-
ular events in the development of obesity as they share similar global gene expression
patterns with obese humans [1–3,6]; therefore, they provide a basic, translational approach
in the preclinical setting in elucidating biochemical and physiologic processes. VCO sup-
plementation reverted the bone osteopenic phenotype by increasing the percentage of
trabecular bone in multiple bone sites, improving maxillary bone microarchitecture and
BMD. However, it is crucial to be cautious about translating animal study results into clini-
cal applications. Although this study elucidated the interesting and consistent beneficial
effects of VCO on bone dysfunctions in an animal model, it is necessary to perform clinical
studies to confirm these effects on human health. Therefore, clinical studies are required
before making recommendations for VCO supplementation.

5. Conclusions

Taken together, our data showed that VCO supplementation effectively improved
bone structure and prevented bone loss in long bones, lumbar vertebrae, and the max-
illary alveolar bone in mice fed with an HC diet. The beneficial effects of VCO on bone
microarchitecture may be associated with the promotion of lower adiposity and also the
improvement of related metabolic and inflammatory disorders. The significant contents
of polyphenols and vitamins in VCO, which exhibit antioxidant and anti-inflammatory
properties, may have contributed to greater bone integrity. Thereby, VCO supplementation
could be an exciting strategy to prevent bone detrimental effects induced by obesity and its
related comorbidities.
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