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Abstract This paper analyzes Brazilian nominal yield curves based on a functional data
analysis framework. Specifically, we use functional principal component analysis to
describe sources of variability in yield curves and their related level, slope, and curva-
ture. We also present a functional linear regression model to investigate macroeconomic
determinants of the yield curves. We conclude that level shocks strongly explain vari-
ability in interest rate curves. Slope changes are the second-largest source of variability.
The slope of the yield curve is negatively affected by the nominal exchange rate and
Selic reference rate, and positively affected by Brazil’s risk and industrial capacity uti-
lization. We also infer that the following explanatory variables: expected inflation, Selic
reference rate, Brazil risk, and industrial capacity utilization, all have positive effects on
the level of the yield curves. The variables Selic, Brazil risk, and the nominal exchange
rate positively impact curvature. The yield curve is negatively impacted by industrial
capacity utilization and expected inflation.
Keywords: Functional data analysis; Functional principal component analysis; Term
structure of interest rate.
JEL Code: G1, G12.

1. Introduction

The term structure of interest rates (TSIR) is a crucial tool to guide the
decision-making process of investors, regulators, risk managers, and others.
The database analyzed in this paper can be viewed as observations of a single
random function, since the term structure of interest rates defines a relation
between the yield of a bond and its maturity. The term structure of interest
rates and its sources of variability provide essential information about mon-
etary policy, interest rate risk factors, and fixed-income trading decisions. It
is also important to understand the dynamics of bond portfolio management,
derivatives pricing, and risk management, among other objectives. Recently,
modeling of TSIR evolution has been an active area of research. Many au-
thors seek components, typically additive, answerable for well-defined char-
acteristics of the interest rate curves (Cox et al., 1985). A seminal paper on
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this topic is that of Litterman and Scheinkman (1991). Using principal com-
ponent analysis, the authors identify three components that explain around
98% of the variability of US bond prices. These components affect move-
ments in the interest rate curves’ level, slope, and curvature.

Term structure models adopted by major central banks can be classified as
parametric and spline-based models, according to the Bank for International
Settlements (BIS, 2005). Almeida and Faria (2014) find that parametric mod-
els fit the yield curve in a parsimonious way. Such methods are typically used
in macroeconomic studies, in which smoothness and the ability to capture
common movements are as important as model accuracy. This class of models
includes the three-factor exponential model of Nelson and Siegel (1987), its
four-factor extension proposed by Svensson (1994), and their corresponding
dynamic extensions proposed by Diebold and Li (2006) and Pooter (2007).

Spline-based models are made up of several low-order polynomials, which
are smoothly linked over the range of maturities. Therefore, splines might es-
timate a larger number of parameters, with the correspondent fitting curves
being less smooth than standard models. Important benchmarks in this class
include McCulloch (1975) and Vasicek and Fong (1982). More recent exten-
sions include the penalized spline models of Waggoner (1997) and Chava and
Jarrow (2004).

The analysis in this paper is similar to that of Litterman and Scheinkman
(1991), and we also estimate a functional linear regression model to inves-
tigate the macroeconomic determinants of the yield curves for Brazil. One
innovation on Litterman and Scheinkman (1991) is to consider the set of ob-
servations as points of a smooth function. The real-valued covariates for the
functional regression model include (a) industrial capacity utilization, (b) ex-
pected inflation (Broad National Consumer Price Index - IPCA), (c) Selic
overnight interest rate of reference, (d) variation of the logarithm of the nom-
inal exchange rate(BRL/USD) (nominal exchange rate, hereafter), and (e)
Brazil risk (EMBI+). Our approach is to use functional principal component
analysis (PCA) to identify the yield curves’ level, slope, and curvature. We
then compute the scores of the yield curves on each principal component,
and use these scores to assess the relation of level, slope, and curvature to
macroeconomic variables.

The main difference between Litterman and Scheinkman (1991) and this
paper is that noise present in the data is corrected by imposing smoothness
restrictions in the estimation. From an economic perspective, Inoue and Rossi
(2019) point out that applying functional data models to term structure and its
associated shift provides a more general way to study the impact of monetary
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policy shocks. Actually, the scalar shocks considered (exogenous movement
in the short-term interest rate, forward guidance, and others) can lead to an
exogenous shift in the entire yield curve associated with unexpected monetary
policy decisions.

Our proposed framework follows a typical analysis of functional data.
It begins by using smoothing techniques to represent each observation as a
functional object. This first procedure can correct potential problems induced
by measurement errors and other types of local disturbances. This is not the
case when observations of the yield curves are treated as a multivariate data
set (models for repeated measures, longitudinal data of mixed effects, and
structural equations). As observed by Levitin et al. (2007), we then set aside
the original data, and use the estimated curves for the functional regression
model. More specifically, we use cubic spline interpolation to obtain monthly
yield curves. After that, the curves form the set of dependent variables in a
functional linear regression model with the covariates mentioned above.

The set of dependent variables is composed of curves from January 4,
2010 to December 20, 2018, obtained from Bloomberg. The basic elements
of our database are the interest rates of interbank deposits. Price quotations
are expressed as a percentage rate per annum, compounded daily, based on
a 252-day year. The contracts are those expiring for t = 1,2, . . . ,39 months
ahead.

We find that a large source of the variability in interest rate curves is due
to level shocks. Moreover, it is not affected by the nominal exchange rate.
All other variables: expected inflation, Selic reference rate, Brazil risk, and
industrial capacity utilization, are positively related to the yield curves’ level.
Similar results for Brazilian yield curves are presented by Fernandes et al.
(2020).

Slope changes are the yield curves’ second-largest source of variability.
The slope is not associated with expected inflation. The relation between
scores on the second principal component and macroeconomic variables is
negative for the nominal exchange rate and expected Selic. This means that
higher values of the latter variables are related to lower scores, that is, lower-
sloped curves. On the other hand, the relationship is positive for Brazil’s risk
and industrial capacity utilization.

The Selic overnight reference rate, Brazil risk,1 and the nominal exchange

1Brazil risk expresses the credit risk that foreign investors are subject to when investing in the
country. The EMBI+ (Emerging Markets Bond Index Plus), calculated by J.P. Morgan Chase
Bank, is a weighted index composed of external debt instruments actively traded and denomi-
nated in dollars from governments of emerging countries. Its calculation is a weighted average
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rate positively affect the yield curvature. Meanwhile, industrial capacity uti-
lization and expected inflation negatively affect curvature. In other words,
higher values of the last two variables are associated with lower scores of the
third principal component (curves with lower second derivative).

This paper is organized as follows. The second section deals with the
methodology of functional models, while also detailing underlying theory. In
the third section, we provide descriptive statistics of the databases and the
analysis of principal components for the yield curves. The fourth section
is devoted to the results of the functional linear regression model of the yield
curves against macroeconomic covariates and the traditional linear regression
of the scores on the principal functional components against macroeconomic
covariates. Our conclusions are presented in the fifth section.

2. Empirical model

To deal with functional data, we must create a suitable representation of
each functional object. Here, we use a cubic spline. In the mathematical
appendix, we present important considerations. Each vector in Rn is a column
vector.

2.1 Functional linear model

Let us consider yyy := {yt}t∈Z wherein2 each yt is a real-valued random
function3 with common domain (0,N]. More specifically, yt is the yield curve
for month t and domain (0,39]. Set ucit the industrial capacity utilization,
ipcat the average expected inflation, selict the Selic interest rate, exrt the
nominal exchange rate, and brt the Brazil risk. Define4 Ft as the information
generated by {ucit , ipcat ,selict ,exrt ,brt}. We assume that

E(yt(n)|Ft) = µ(n)+β1(n)ucit +β2(n)ipcat

+β3(n)selict +β4(n)exrt +β5(n)brt
(1)

where µ(n) is a function that plays the same role as the constant in traditional
regression models and the functions β1(n), β2(n), β3(n), β4(n), and β5(n) are
coefficients related to each variable.

of the daily returns paid by these securities applied to the previous day’s index.
2When there is no ambiguity, we omit the variable ω from yt for the sake of simplicity.
3That is, interest rates are given as a Carathéodory function y : Ω× (0,N]→ R where Ω is an
underlying probability space. See appendix for more details.

4Ft is also known as the σ -algebra generated by ucit , ipcat , selict , exrt , and brt .
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2.2 Functional principal component analysis

Functional principal component analysis is a key technique to explore
features characterizing functions, mainly when the variance-covariance and
correlation functions can be challenging to interpret. For RK-valued data, the
principal component analysis is based on the spectral decomposition of the
underlying covariance matrix. This is also the case for functional data. More
specifically, we determine a set of functions that capture, in decreasing order,
the sources of variability of the data (Hall, 2011).

Given the functional decomposition (see (4) in the appendix for more
details)

ỹ(ω,n) =
I

∑
i=1

φi(ω) fi(n) for all n ∈ (0,N]

and an observation of T realizations of ỹ, say {ỹ(ωn,n)}t≤T , let Φ be the
T × I-matrix with column vectors

(
φi(ωt)−∑t≤T φi(ωt)/T

)
t≤T for each i ∈

{1, . . . , I}. Then a direction ρ̄ ∈ RI which maximizes variability satisfies

ρ̄ = argmax{ρ>Φ
>

Φρ : ρ ∈ RI and ρ
>

ρ = 1}.

Consider (λi)i≤I the eigenvalues of Φ>Φ with (λi)i≤I satisfying λk ≥ λκ for
k ≤ κ ≤ I with {vi}i≤I their respective orthonormal basis of eigenvectors.
Write V as the I× I matrix with columns {vi}i≤I . Then each ρ ∈ Rn with
ρ>ρ = 1 can be written as5 ρ = V ρ̇ where ρ̇>ρ̇ = 1. Write Dλ as the I× I-
diagonal matrix with (λi)i≤I into its diagonal. Thus, given ρ ∈RI with ρ>ρ =
1, we get

ρ
>

Φ
>

Φρ = ρ̇
>V>Φ

>
ΦV ρ̇ = ρ̇

>V>V Dλ ρ̇ = ρ̇
>Dλ ρ̇ = ∑

i≤I
ρ̇

2
k λi ≤ λ1.

Therefore ρ̇ = (1,0, . . . ,0) and ρ =V ρ̇ = v1 is the direction which maximizes
variability. Finally, define ŷ1(n) = ∑k∈I v1k fk(n) as the estimated functional
principal component. Furthermore, considering now the orthogonal space
spanned by (vi)i>ι for ι > 1, then we obtain an analogous ι-maximal vari-
ability with correspondent functional component ŷι(n) = ∑k≥ι vιk fk(n).

2.3 Permutation test

In this paper, we deal with a regression setting where the variations of a
functional response are explained by a group of real-valued covariates. Cardot
et al. (2004) propose a procedure to check if a real-valued group of covariates

5Note that V−1 =V>.
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has an effect on a functional response yt(n). Let ŷt(n) = E(yt(n)|Ft) and
y(n) = 1

T ∑
T
t=1 yt(n), according to Ramsay and Silverman (2005), the func-

tional version of the univariate F-statistic is given by

F(n) =
∑

T
t=1(ŷt(n)− y(n))2/(K−1)
∑(yt(n)− ŷ(n))2/(T −K)

(2)

where K is the number of real-valued covariates and T is the total number of
observed dependent curves.

3. Database

Table 1 presents descriptive statistics of the yield curves. The average
curve is typically upward-sloping, the average rate for 1 month ahead is
10.29%, and for 39 months ahead is 11.48%. This reflects the increasing
term premia. The yield curve volatility decreases with maturity. The standard
deviation is 2.54% for 1 month ahead and 1.76% for 39 months ahead.

In Figure 1, we observe the term structure of interest rate curves obtained
from cubic spline interpolation for December 2009, June 2010, June 2012,
December 2005, and June 2016. It shows that the shape and position of the
yield curves vary substantially over time. The visual overhaul of the curves
allows us to affirm that they move along the vertical axis (level displacement)
and present a particular concavity and slope change. For instance, the June
2012 curve is less sloped than December 2019. Furthermore, the December
2019 curve is concave, but this is not true for June 2010.

Figures 2 to 4 show the functional mean curve of the interest rate plus/mi-
nus a suitable multiple of the first three principal components. The trick of
adding/subtracting the principal components to the average was initially used
by Ramsay and Silverman (2005), and it is an essential aid to interpreting
principal components.6 It allows us to understand the effect of each principal
component on the average. They are responsible for 95%, 4%, and 0,4% of
variability, respectively. The first principal component shows that much of the
variability of the interest rate curves’ average is roughly due to vertical dis-
placements. Such displacements do not affect the shape of the curve. Months
with large scores on the second principal component show their first matu-
rities with interest rates lower than the mean, and the opposite for long-term
maturities (interest rates greater than the mean). This behavior corresponds to
a change in the slope of the interest rate curve. Months with high coordinates

6More details on functional principal component analysis are given by Ramsay and Silverman
(2005). We use the R package’s command pca.fd to estimate the functional principal components.
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Table 1
Descriptive statistics for nominal yield curves observed
from January 2010 to December 2018 (% per annum)

maturity mean max min s.d.

1 10.29 14.26 6.34 2.54
2 10.29 14.34 6.33 2.55
3 10.30 14.50 6.27 2.56
4 10.32 14.67 6.24 2.57
5 10.32 14.83 6.22 2.56
6 10.34 15.02 6.22 2.57
7 10.35 15.17 6.21 2.55
8 10.38 15.35 6.21 2.54
9 10.41 15.50 6.23 2.55
10 10.43 15.62 6.27 2.51
11 10.46 15.72 6.29 2.50
12 10.50 15.79 6.32 2.50
13 10.56 15.85 6.30 2.47
14 10.60 15.94 6.73 2.43
15 10.62 16.00 6.49 2.48
16 10.71 16.13 6.48 2.44
17 10.72 15.91 6.96 2.35
18 10.74 15.66 6.72 2.34
19 10.86 16.32 6.75 2.35
20 10.83 16.06 7.27 2.18
21 10.89 15.84 7.00 2.19
22 11.01 16.47 7.25 2.23
23 10.96 16.14 7.50 2.07
24 11.01 15.96 7.70 2.09
25 11.14 16.53 7.71 2.11
26 11.09 16.18 7.83 1.97
27 11.14 16.09 7.82 2.00
28 11.28 16.63 7.84 2.01
29 11.20 16.20 7.98 1.89
30 11.24 16.20 7.93 1.92
31 11.37 16.69 7.97 1.93
32 11.28 16.22 8.11 1.81
33 11.34 16.27 8.01 1.84
34 11.46 16.70 8.08 1.86
35 11.37 16.23 8.23 1.76
36 11.40 16.33 8.11 1.80
37 11.53 16.71 8.19 1.80
38 11.44 16.24 8.38 1.71
39 11.48 16.37 8.21 1.76
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Figure 1
Yield curves obtained through spline interpolation
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in this component present more sloped curves. The third principal component
shows a change in the curvature of the mean interest rate curve.

Table 2 has descriptive statistics for the covariates considered here. Av-
erage inflation expectation (Broad National Consumer Price Index - IPCA)
accumulated rate for the next 12 months (% a.a.). The Selic overnight in-
terest rate of reference (% a.m). The variation of the logarithm of the nom-
inal exchange rate (BRL/USD). The measure of Brazil’s risk is the EMBI+
(Emerging Markets Bond Index Plus); the unit of measure for this index is the
base point, with ten base points equal to 0.1%. Industrial capacity utilization
(%) is a proxy for Brazil’s real economic activity.

Table 2
Descriptive statistics for covariates

covariate mean max min s.d.

expected inflation (% per annum) 5.40 7.29 3.40 0.90
Selic interest rate (Over/Selic - (% per month) 0.82 1.22 0.47 0.20
nominal exchange rate −0.24 0.11 −25.06 2.41
Brazil risk (EMBI+) 146.27 531.29 253.33 77.66
industrial capacity utilization (%) 80.42 85.00 74.90 2.73
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Figure 2
The mean yield curve added(+) to and subtracted(−)

from the first principal component
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Figure 3
The mean yield curve added(+) to and subtracted(−)

from the second principal component
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Figure 4
The mean yield curve added(+) to and subtracted(−)

from the third principal component
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4. Regression results

Figures 5 to 9 show estimated coefficients for each explanatory variable.
Since our coefficients are functions with the same domain as the yield curves,
they can capture changes in the dependent variable’s level, slope, and curva-
ture. Nevertheless, in this approach, it is impossible to specify which variable
most affects each component of the yield curve. Apart from the nominal ex-
change rate coefficient, the estimated coefficients are positive. For the Selic
specifically, the result aligns with the expectation hypothesis. The coefficient
is decreasing through the maturities, indicating that long-term maturities are
weakly related to current values of Selic, compared with short-term maturi-
ties.

Our results allow us to claim that higher values of the variation in the
current nominal exchange rate reduce the slope of the yield curves, that is,
the term premia. The coefficient associated with the nominal exchange rate is
negative for most yield curve domains, and more intense for long-term matu-
rities. In the next section, we show the relationship between macroeconomic
variables and the components of the term structure of the interest rate. Our
results show that the nominal exchange rate is related only to the yield curve’s
slope for a 5% level of significance.
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The positive relation between the Brazil risk and yield curve reflects the
fact that in the face of a higher level of risk, investors demand a higher level of
compensation (Fernandes et al., 2020). The macroeconomic literature points
out the existence of inertia in economic activity (Franses and Paap, 2004).
Thus, current values of industrial production should be more strongly related
to long-term-maturity interest rate, as we find here.

We expect an inverse relationship between expected inflation (IPCA) and
interest rates, since lower interest rate levels should increase real activity, im-
plying higher prices. However, the Brazilian monetary authority has used
interest rates to keep inflation on target since implementing an inflation tar-
geting regime on June 1, 1999. This use of the interest rates explains the
positive coefficient of expected inflation.

Figure 10 shows the pointwise values of the observed F-statistic and the
pointwise 0.95 quantiles of the distribution induced by the null hypothesis.
The model is pointwise statistically significant (at a 5% level) to explain the
variability of the term structure. The observed F-statistic to access the over-
all7 significance of the model is 12.23, and the 0.95 quantile of the null dis-
tribution is 0.13.

Figure 5
The estimated coefficient for the Selic reference rate
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7More details about the F-type test for overall significance of the model can be found in Ramsay
and Silverman (2005) and Zhang (2014)
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Figure 6
The estimated coefficient for industrial capacity utilization
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Figure 7
The estimated coefficient for expected inflation (IPCA)
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Figure 8
The estimated coefficient for the nominal exchange rate
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Figure 9
The estimated coefficient for the Brazil risk
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Figure 10
Permutation test for the coefficients of
the functional linear regression model
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4.1 Regression results for term structure of interest rate components

Figure 11 shows curves selected according to their scores on the first, sec-
ond, and third principal components. The maximum(minimum) on the first
principal component corresponds to a high(low)-level curve. Higher(lower)
scores are associated with high(low) sloped curves for the second principal
component. Concave functions present lower scores in the third principal
component. That is, the second derivative of the curve is increasing with the
score. To understand the relation between level, slope, and curvature and the
macroeconomic covariates, we conduct a traditional linear regression of each
set of scores on the set of macroeconomic covariates.

The nominal exchange rate does not affect the level of the yield curves.
All other variables, such as expected inflation, Selic interest rate, Brazil risk,
and industrial capacity utilization, are positively related to the term structure
of the interest rate.

The yield curve slope correlates significantly with the risk premium, so
the results presented here can be extended to the latter. Concerning the Selic
reference rate and nominal exchange rate, the relation is negative (Fernandes
et al., 2020). Larger values of these variables are related to smaller scores
corresponding to lower sloped curves. In contrast, the slope increases with
Brazil’s risk and industrial capacity utilization. Notably, the negative sign of
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Figure 11
Curves selected according to their scores on the

first, second, and third principal components
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the Selic reference rate coefficient means that agents demand higher risk pre-
miums in the face of low Selic reference rate values. Nevertheless, we could
also expect the opposite, since a low Selic reference rate would be related to a
favorable macroeconomic scenario. It positively affects the agent’s expecta-
tions, so they would not require a higher risk premium. The Brazilian Central
Bank has used the Selic reference rate since 2008/2009 to keep inflation on
target, so the current low values of the Selic reference rate can be related to
high inflation levels and recession scenarios in the future. It justifies the neg-
ative sign of the Selic reference rate. The Brazil risk coefficient signal is in
line with expectations, since a higher Brazil risk should be related to a higher
risk premium. Additionally, higher levels of industrial capacity utilization
increase inflation expectations and pressure to increase the risk premium.

Traditionally, the curvature of the yield curve is related to an anticipation
of economic contraction. Expected inflation and industrial capacity utiliza-
tion negatively affect the curvature of the yield curve. This means that larger
values of these variables are related to lower scores on the third principal
component, curves with lower second-order derivatives (concave curves). On
the other hand, the Selic reference rate, the nominal exchange rate, and Brazil
risk positively affect the curvature of the yield curve. Higher values of the
latter variables induce comparatively flat curves that correspond to the antic-
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ipation of an economic contraction.

Table 3
Linear regression of the principal components against covariates

covariate estimate s.d. t-stat. p-value

PCA 1 - level

intercept −24.8520 4.8310 −5.1443 0.0000
expected inflation 0.4634 0.1476 3.1389 0.0022
Selic interest rate 6.6021 0.6435 10.2600 0.0000
nominal exchange rate −0.3541 0.2472 −1.4323 0.1551
Brazil risk 0.0578 0.0138 4.1769 0.0001
industrial capacity utilization 0.1808 00.0594 3.0457 0.0030

PCA 2 - slope

intercept −6.3030 1.8075 −3.4872 0.0007
expected inflation −0.0434 0.0552 −0.7861 0.4336
Selic interest rate −1.7234 0.2408 −7.1584 0.0000
nominal exchange rate −0.2216 0.0908 −2.4415 0.0163
Brazil risk 0.0317 0.0051 6.2467 0.0000
industrial capacity utilization 0.0826 0.0222 3.7194 0.0003

PCA 3 - curvature

intercept 1.2066 0.4504 2.6790 0.0086
expected inflation −0.0659 0.0138 −4.7868 0.0000
Selic interest rate 0.0875 0.0600 1.4580 0.1479
nominal exchange rate 0.0386 0.0230 1.6796 0.0961
Brazil risk 0.0053 0.0013 4.0895 0.0001
industrial capacity utilization −0.0141 0.0055 −2.5557 0.0121

5. Concluding remarks

In this paper, through functional principal component analysis, we iden-
tify that the significant source of variability (around 95%) of yield curves
is due to level displacements. Using a functional linear regression model, we
present the coefficients for the macroeconomic variables: (a) industrial capac-
ity utilization, (b) expected inflation (Broad National Consumer Price Index
- IPCA), (c) Selic Over (d) the nominal exchange rate(BRL/USD), and (e)
Brazil risk (EMBI+). In the functional linear regression model approach, it
is not possible to specify which variable most affects each component of the
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yield curve. To understand the relation between level, slope, and curvature
and the macroeconomic covariates, we conduct a traditional linear regression
model of each set of scores on principal components over the set of macroe-
conomic covariates.
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A. Mathematical appendix

Suppose that time is defined in the interval (0,N] endowed with the stan-
dard Lebesgue measure λ characterizing smoothness and that uncertainty is
represented by a probability space (Ω,ρ,S ) where ρ is the objective proba-
bility governing uncertainty and S its information sigma-algebra. Consider
C2((0,N],R) as the set of all twice differentiable functions with domain (0,N]
and codomain R. Clearly, C2((0,N],R) is a vector space.A1 A smooth func-
tional data could be summarized by a measurable map y : Ω× (0,N]→ R
such that y(ω, ·) ∈ C2((0,N],R) for each ω ∈ Ω. Write SF as the set of all
such maps. Given an observation of ω ∈ Ω, we could also observe the func-
tion ỹω : (0,N]→ R defined by ỹω = y(ω, ·). This is the precise definition of
a random function, and we will denote it shortly by ỹ or ỹ(n) instead of ỹω or
ỹω(n) when there is no ambiguity.

The model embodies two types of data. The first is a functional data
denoted by y∈ SF representing the interest rates and maturities of the contracts
on each day. This variable is observed over a partition 0 = n0 < n1 < · · · <
nI = N of (0,N]. The second is denoted by measurable real-valued functions
x = (x1, . . . ,xK) defined on (Ω,ρ,S ) and representing the control variables.
As we observe discrete values of y, we build the estimation in two stages. In
the first stage, we use a smoothing metric to estimate y, and in the second
we perform an OLS estimation between the random variables y(n) and x(n)
for each n in the usual way. The tradeoff between smoothness and bias on an
efficient fit may be addressed through the following problem of minimization.
Given a realization ω ∈Ω then we observe the values ẏi = y(ω,ni) for all i≤ I
and solve

ỹ(ω,n) = argmax
f∈C2

(
(0,N],R

)
{

∑
i∈I

(ẏi− f (ni))
2 +σ

∫
(0,N]

( f ′′(n))2
λ (dn)

}
. (3)

where σ is the smoothness parameter. The first term in (3) is a measure of
goodness of data fit to the function f , and the second is related to the smooth-
ness penalty of the estimated function, weighted by the curvature f ′′. The
positive constant σ is the smoothing parameter. Large values of σ produce
smoother curves. It can be shown (Wahba, 1990) that the unique function ỹ
which minimizes (3), for a fixed σ , is a natural cubic spline with knots at
the ni for i ≤ I. Although each solution ỹ of (3) depends randomly on each
realization (ẏi)i≤I , there is a deterministic spline basis { fi}i≤I ⊂ SB(M) and

A1See Charalambos and Aliprantis (2013) or Royden and Fitzpatrick (1988) for detail about vector
spaces.
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time independent random coefficients {φi}i≤I such that ỹ can be decomposed
in the following way:

ỹ(ω,n) =
I

∑
i=1

φi(ω) fi(n) for all n ∈ (0,N]. (4)

Therefore, the estimation can be thoroughly defined in terms of realizations of
the random coefficients {φi}i≤I . The functions fk obtained from a minimiza-
tion of the induced estimation metric is a cubic spline (Reinsch, 1967). Thus
we can work on the subset of cubic splines on C2(0,N) as detailed below.

The decomposition of random functions in terms of splinesA2 can be sum-
marized as the following for variables and parameters of the functional model.
A spline is a function f : (0,N]→ R, piecewise polynomial. Each spline f
is associated to the fixed partition 0 = n0 < n1 < · · · < nI < nI = N in such
a way that the restriction of f to each [ni,ni+1] and i ∈ {0,1, . . . ,I} is a poly-
nomial fi. The degree of the spline f , denoted by m, is the greatest degree
of the f ′i s. We also impose that f and its M− 1 first derivatives are contin-
uous. The points n0,n1, . . . ,nI are called knots of the spline f . A spline is
called natural when both f0 and fn are polynomials of degree one. We call
the vector space of all splines with degree M by S(M) and S(3) the set of
cubic splines. Clearly, S(M) is a vector subspace of C2((0,N],R) and has
finite dimensionA3. Indeed, consider Indi : (0,N]→{0,1} the indicator func-
tion on the interval [ni,ni+1] for all i ≤ I. Then S(M) is generated by a fi-
nite spline basis SB(M)⊂C2((0,N],R) of some fixed linear combinations of
functionsA4 f : (0,N]→ R that can be written for some m ∈ {0,1,2, . . . ,M}
and i ∈ {0,1, . . . ,I} as f (n) = nmIndi(n) for all n ∈ (0,N].

For the second stage of estimation, define E[z] =
∫

Ω
z(ω)ρ(dω) and con-

sider the space of all z : Ω→ R with E[z] = 0 and E[z2] < ∞. Let us call
this space L2(Ω,ρ,S ). It is easy to see that L2(Ω,ρ,S ) is a Hilbert space
under the inner product 〈z,ż〉 = E(zż). The norm is defined in the standard
way ||z||= 〈z,z〉.

Given a linear independent random vector x : Ω→RK with x=(x1, . . . ,xK)
there exists an orthonormal basis x̂ = (x̂1, . . . ,x̂K), spanning the vector sub-

A2For further details see, for example, Green and Silverman (1993) and De Boor (1978).
A3More precisely, S(M) has dimension at most M(I+1). A vector subspace of a finite-dimensional

vector space has finite dimension. For example, if S(M) does not have finite dimension, then one
can obtain a linear independent subset of S(M) with m > M(I +1) elements that is a contradic-
tion.

A4The space S′(M) generated by the set of such functions f : (0,N]→ R is finite dimensional and
S(M) is a vector subspace of S′(M).
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space generated by x and the conditional expectationA5 of y(n) over x is given
by (Billingsley, 2008)

E[y(n)|x̂] = 〈y(n),x̂1〉x̂1 + · · ·+ 〈y(n),x̂K〉x̂K.

Therefore, since there exists a k× k real-valued matrix mapping x̂ on x then
there exist constants (α1(n), . . . ,αK(n)) such that

E[y(n)|x](ω) = α1(n)x1(ω)+ · · ·+αK(n)xK(ω). (5)

Define ε : Ω → R by ε(ω,n) = y(ω,n)− E[y(n)|x](ω). Then E(ε) = 0,
〈ε,xk〉= 0 for all k ≤ K and the true random variables satisfy

y(ω,n)=α1(n)x1(ω)+ · · ·+αK(n)xK(ω)+ε(ω,n) for all (ω,n)∈Ω×(0,N].
(6)

Even if y and x are not centralized variables we can rewrite the conditional
expectation (5) as

y(ω,n) = µ(n)+β1(n)x1(ω)

+ · · ·+βK(t)xK(ω)+ ε(ω,n) for all (ω,n) ∈Ω× (0,N].

A5We write y(ω,n) shortened to y(n) to simplify.
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