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Co-supervisors:
Prof. Dr. Pauline Catriona Haddow
Prof. Dr. Rasul Enayatifar

Belo Horizonte

2023



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Rezaei, Babak. 

R467c                  Combining genetic local search into multi-population evolutionary 
                     algorithms for the capacitated vehicle routing problem [recurso eletrônico] /  
                     Babak Rezaei. - 2023. 
                            1 recurso online (109 f. :  il., color.) : pdf. 

       
      Orientador: Frederico Gadelha Guimarães. 

                            Coorientadores: Pauline Catriona Haddow, Rasul Enayatifar.  

              
                            Tese (doutorado) - Universidade Federal de Minas Gerais, 
                      Escola de Engenharia.  
 
                            Bibliografia: f. 100-109. 
                            Exigências do sistema: Adobe Acrobat Reader. 
 

      1. Engenharia elétrica - Teses. 2. Veículos - Teses  3. Algoritmos 
genéticos - Teses. 4. Genética - Teses. 5. Algoritmos - Teses.  
6. Inteligência artificial - Teses. 7. Ciência da computação - Teses.  
8. Cálculos numéricos - Teses. I. Guimarães, Frederico Gadelha.  
II. Haddow, Pauline Catriona. III. Enayatifar, Rasul. IV. Universidade 
Federal de Minas Gerais. Escola de Engenharia. V. Título.       
                                                                                                        

                                                                                                                CDU: 621.3(043) 

            Ficha catalográfica elaborada pela bibliotecária Ângela Cristina Silva CRB/6 2361 
 Biblioteca Prof. Mário Werneck, Escola de Engenharia da UFMG 



01/09/2023 14)29SEI/UFMG - 2582207 - Folha de Aprovação

Página 1 de 2https://sei.ufmg.br/sei/controlador.php?acao=documento_imprim…980f8a75b6d56168af8c509286e31c4257afb76c2741b4f2a84b41ba087f

UNIVERSIDADE FEDERAL DE MINAS GERAIS
ESCOLA DE ENGENHARIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

FOLHA DE APROVAÇÃO

 

"COMBINING GENETIC LOCAL SEARCH INTO MULTI-POPULATION
EVOLUTIONARY ALGORITHMS FOR THE CAPACITATED VEHICLE ROUTING

PROBLEM"

 

BABAK REZAEI

 
            Tese de Doutorado submetida à Banca Examinadora designada pelo Colegiado do Programa de
Pós-Graduação em Engenharia Elétrica da Escola de Engenharia da Universidade Federal de Minas
Gerais, como requisito para obtenção do grau de Doutor em Engenharia Elétrica. Aprovada em 30 de
agosto de 2023. Por:
 

Prof. Dr. Frederico Gadelha Guimarães - Orientador
DCC (UFMG)

Prof. Dr. Pauline Catriona Haddow - Coorientadora
Department of Computer Science (Norwegian University of Science and Technology)

Prof. Dr. Rasul Enyatifar - Coorientador
Department of Computer Engineering (Islamic Azad University)

Prof. Dr. Gilberto Reynoso Meza
(PUC-PR)

Prof. Dr. Puca Huachi Vaz Penna
DECOM (UFOP)

Prof. Dr. Roberto Gomes Ribeiro
DECSI (UFOP)

Prof. Dr. Lucas de Souza Batista
DEE (UFMG)



01/09/2023 14)29SEI/UFMG - 2582207 - Folha de Aprovação

Página 2 de 2https://sei.ufmg.br/sei/controlador.php?acao=documento_imprim…980f8a75b6d56168af8c509286e31c4257afb76c2741b4f2a84b41ba087f

 
 

Documento assinado eletronicamente por Frederico Gadelha Guimaraes, Coordenador(a) de
curso de pós-graduação, em 01/09/2023, às 14:28, conforme horário oficial de Brasília, com
fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

A autenticidade deste documento pode ser conferida no site
https://sei.ufmg.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador
2582207 e o código CRC C0F4E6DA.

Referência: Processo nº 23072.252507/2023-01 SEI nº 2582207



To my beloved family,

To my wife and our wonderful children,

This achievement is not mine alone; it belongs to all of us. Thank you for standing by my

side, for believing in me when I doubted myself, and for being the source of my inspiration.

You are my rock, and I dedicate this thesis to you with all my love.

With deepest gratitude,

Babak



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my supervisors, Prof. Dr. Frederico
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RESUMO

O Problema de Roteamento de Véıculos (VRP) é um dos problemas mais significativos na

pesquisa operacional atualmente. O VRP tem uma ampla gama de campos de aplicação,

como transporte, loǵıstica, manufatura, sistemas de aux́ılio e comunicação. Para atender às

necessidades de diferentes cenários do VRP no mundo real, muitos modelos de VRP foram

desenvolvidos - sendo o CVRP (VRP capacitado) a forma clássica. Neste estudo, é proposto

inicialmente um algoritmo h́ıbrido (ICAHGS) para resolver o CVRP, combinando um ICA

(Algoritmo Competitivo Imperialista) refinado como o método evolucionário primário e de

múltiplas populações, e um algoritmo de Busca Genética H́ıbrida (HGS-CVRP) como uma

estratégia aprimorada de busca local e gerenciamento de população dentro do framework

do ICA. O ICAHGS foi comparado com diversos algoritmos de ponta da literatura. Os

resultados dessa comparação, que incluem tanto instâncias de referência clássicas quanto

aplicações do mundo real, demonstram o desempenho competitivo do algoritmo proposto.

Posteriormente, é introduzido o Algoritmo Genético de Ilhas com População Dinâmica e

HGS (DPIGA-HGS), que é um novo modelo h́ıbrido de metaheuŕıstica. O DPIGA-HGS

integra um modelo de ilhas especializado (DPIGA) e um HGS refinado como seu mecanismo

de busca local dentro de cada ilha. O objetivo principal do DPIGA-HGS é contribuir

para o avanço do campo, propondo uma nova variante do Algoritmo Genético de Ilhas e,

simultaneamente, alcançando resultados de otimização aprimorados em comparação com

o ICAHGS. Os resultados das análises comparativas revelaram o desempenho superior

do DPIGA-HGS quando comparado a outros algoritmos de ponta, incluindo o ICAHGS.

Através de múltiplos conjuntos de dados de referência, o DPIGA-HGS demonstrou sua

habilidade ao alcançar um número significativo de solução mais conhecida (BKS), superando

seus concorrentes em várias instâncias.

Palavras-chave: Problema de Roteamento de Véıculos, Computação Evolutiva, Algoritmo

Competitivo Imperialista, Pesquisa Genética Hı́brida, Algoritmo Genético de Ilha, Algo-

ritmo Genético Multi-populacional.



ABSTRACT

The Vehicle Routing Problem (VRP) is one of the most significant problems in operational

research today. VRP has a vast range of application fields such as transportation, logistics,

manufacturing, relief systems and communication. To suit the needs of different real-world

VRP scenarios, many models of VRP have been developed - CVRP (Capacitated VRP)

being the classical form. In this study, at first a hybrid algorithm (ICAHGS) for solving

CVRP is proposed, combining a refined ICA (Imperialist Competitive Algorithm) as the

primary evolutionary and multi-population method, and a Hybrid Genetic Search (HGS-

CVRP) algorithm as an enhanced local search and population management strategy within

the ICA framework. ICAHGS has been compared to several state-of-the-art algorithms

from literature. The results of this comparison, which include both classical benchmark

instances and real-world applications, demonstrate the competitive performance of the

proposed algorithm. Afterwards, Dynamic Population Island GA and HGS (DPIGA-HGS)

is introduced, which is a novel hybrid metaheuristic model. DPIGA-HGS integrates a

specialized island model (DPIGA) and a refined HGS as its local search engine within

each island. The primary objective of DPIGA-HGS is to contribute to the advancement of

the field by proposing a new variant of Island GA and simultaneously achieving improved

optimization results in comparison to ICAHGS. The results of the comparative analyses

revealed the superior performance of DPIGA-HGS when pitted against other state-of-the-

art algorithms, including ICAHGS. Across multiple benchmark datasets, DPIGA-HGS

showcased its prowess by achieving a significant number of BKS (Best Known Solution),

outperforming its competitors in various instances.

Keywords: Vehicle Routing Problem, Evolutionary Computation, Imperialist Competitive

Algorithm, Hybrid Genetic Search, Island Genetic Algorithm, Multi-Population Genetic

Algorithm.
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1 INTRODUCTION

1.1 Context and Motivation

The rapid increase in online shopping in our daily lives, requiring a large number of

package deliveries, has increased the demand for express transportation and a reduction of

transportation costs. Similar demands are placed on transportation systems for emergency

healthcare deliveries. Efficient routing is needed to meet such demands, by improving

transport allocation and scheduling. Thus, one of the most important problems and

success stories of operational research to date, is the vehicle routing problem (VRP), first

introduced by Dantzig and Ramser in 1959 (DANTZIG; RAMSER, 1959).

The Vehicle Routing Problem (VRP) is a combinatorial optimization problem that

aims to find the most efficient routes for a fleet of vehicles to deliver goods to geographically

dispersed customers. VRP has a broad range of applications in logistics, transportation,

and supply chain management. In logistics, it is used to optimize delivery routes from a

warehouse or distribution center to customers, taking into account factors such as vehicle

capacity, road network constraints, and delivery time windows. In transportation, it is

applied to optimize the routes of buses, taxis, and other public transportation vehicles to

minimize travel time and costs. VRP is also relevant to the design of efficient and cost-

effective supply chain networks, determining the most cost-effective mode of transportation,

routing and inventory management decisions. Additionally, it can be applied to disaster

relief operations and to optimize the routes of mobile sales or service teams (TOTH; VIGO,

2014).

1.2 Aim and Objectives

The primary objective of this research study is to develop a bio-inspired metaheuris-

tic algorithm that efficiently solves the Capacitated Vehicle Routing Problem (CVRP).

The performance of the algorithm will be evaluated by conducting experiments on several

standardized benchmarks. To fulfill the aim of this study, the following objectives have

been identified:

1. Algorithmic advancement: Develop and evaluate advanced metaheuristic algo-

rithms for solving combinatorial optimization problems, with a primary focus on

enhancing the performance and efficiency of CVRP solutions.

2. Performance assessment: Assess the effectiveness of the proposed algorithms in

terms of their ability to find high-quality solutions within reasonable computational



1.3. MAIN CONTRIBUTIONS 18

timeframes, considering both solution quality and efficiency.

3. Algorithm comparison: Conduct a comparative analysis of the proposed algo-

rithms against existing state-of-the-art methods to establish their competitiveness

and identify potential areas of improvement.

4. Algorithm applicability: Investigate the broader applicability of the developed

algorithms to address a range of vehicle routing and logistics optimization chal-

lenges, beyond CVRP, thereby contributing to the field of operational research and

transportation logistics.

1.3 Main contributions

The main contributions of this study include:

• Introducing two novel hybrid algorithms specifically designed for addressing the

CVRP, incorporating innovative strategies and techniques.

• introducing a novel variant of the island model, tailored to the specific requirements

and characteristics of the problem domain, thereby contributing to the advancement

of the field.

1.4 Research Questions

To accomplish the objectives of this research, the following research questions

should be answered:

1. How can an evolutionary algorithm be effectively integrated with the HGS local

search to enhance the solution quality and convergence speed for the CVRP?

2. How does the hybrid method compare to other state-of-the-art metaheuristics and

hybrid algorithms for the CVRP?

3. What are the advantages of incorporating a multi-population model in the hybrid

method for the CVRP compared to single-population approaches?

4. How does the hybrid method balance diversification and intensification strategies to

explore the solution space effectively and escape local optima in the CVRP?



1.5. THESIS OUTLINE 19

1.5 Thesis Outline

• Chapter 2: Background

This chapter presents the necessary background and fundamental concepts required

for understanding the research. It provides an overview of the topic and establishes

the foundation for the subsequent chapters.

• Chapter 3: Literature Review

The literature review chapter offers a comprehensive analysis of previous studies and

research conducted by other authors in the field. It discusses the existing literature,

identifies research gaps, and highlights relevant findings and methodologies.

• Chapter 4: ICAHGS approach

In this chapter, the first proposed hybrid model, ICAHGS, is introduced. The chapter

elaborates on the model’s design, including its components and algorithmic details.

The experimental results obtained from applying ICAHGS to different benchmarks

are presented and thoroughly analyzed.

• Chapter 5: DPIGA-HGS approach

This chapter presents the second proposed hybrid model, DPIGA-HGS. It provides a

detailed explanation of the model’s architecture, incorporating the specialized island

model and the HGS as its local search component. The experimental results obtained

using DPIGA-HGS are presented and analyzed.

• Chapter 6: Discussion and Conclusion

The final chapter concludes the thesis by summarizing the key findings, contributions,

and implications of the research. It also discusses potential areas for future exploration

and suggests possible avenues for further improvement and development of the

proposed hybrid models.
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2 BACKGROUND

In this chapter, the background work of this research and the basic information

that is required for this study will be discussed.

2.1 Vehicle Routing Problem (VRP)

2.1.1 What is VRP?

The Vehicle Routing Problem (VRP) was initially introduced by Dantzig and

Ramser in 1959 (DANTZIG; RAMSER, 1959). Their work presented a matching-based

heuristic for routing gasoline delivery trucks. Since its inception, the VRP has garnered

significant attention in the field of Operational Research (OR) due to its wide range of

practical applications in transportation, logistics, distribution, manufacturing, and other

domains.

The Vehicle Routing Problem (VRP) can be viewed as an extension or generaliza-

tion of the well-known Traveling Salesman Problem (TSP) (ROBINSON, 1949), which

is a classic problem in the field of operational research. The TSP aims to determine the

shortest route that visits all given points exactly once and returns to the starting point.

On the other hand, the VRP involves assigning routes to a fleet of vehicles, where each

vehicle must visit a specific set of nodes while minimizing the total cost of the operation.

Unlike the TSP, the VRP incorporates additional constraints and complexities related to

vehicle capacities, customer demands, and vehicle routing logistics.

2.1.2 Types of VRP variants

The original form of the VRP, known as the Capacitated VRP (CVRP), aims to

determine a set of routes for a fleet of identical vehicles in such a way that all customers

are served while minimizing the overall route cost. Each customer must be visited exactly

once, and only one route is assigned to each vehicle. Additionally, all vehicles start and

finish their routes at a central depot. The CVRP does not allow for splitting deliveries

among multiple vehicles. Each vehicle’s loading (capacity) and traveling distance must not

exceed their respective maximum allowable limits (AKPINAR, 2016).

To better align with real-life scenarios, additional constraints have been incor-

porated into the original VRP, leading to numerous variants. While not exhaustive, the

following classes highlight several of these variations. Figure 1 illustrates the hierarchy of

VRP variants.
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1. The Multi-depot Vehicle Routing Problem (MDVRP) is a variant of the original

VRP where multiple depots are available for vehicles to start and finish their routes.

Unlike the standard VRP where there is a single central depot, the MDVRP allows

for multiple depots from which vehicles can serve customers (MONTOYA-TORRES

et al., 2015).

2. The Pickup and Delivery Vehicle Routing Problem (PDVRP) is a type of VRP

where both deliveries and pickups need to be made between different locations.

Various subtypes of PDVRP exist, such as VRP with Backhauls (VRPB), VRP with

Clustered Backhauls (VRPCB), VRP with Mixed Backhauls (VRPMB), VRP with

Divisible Deliveries and Pickups (VRPDDP), and VRP with Simultaneous Pickups

and Deliveries (VRPSPD) (PARRAGH; DOERNER; HARTL, 2008; PARRAGH;

DOERNER; HARTL, 2006). In the VRPSPD, for example, vehicles perform customer

deliveries while also loading pickups simultaneously (MONTANé; GALVAO, 2006).

3. The VRP with Time Windows (VRPTW) is one of the most studied variants of VRP.

In this type, each customer specifies a specific time interval during which their order

must be delivered by a vehicle (BRANDãO, 2011). VRPTW can be categorized into

two types: the VRP with Soft Time Windows (VRPSTW) allows deliveries to be

made even after the time windows have passed, but with the imposition of a penalty

for late deliveries (IQBAL; KAYKOBAD; RAHMAN, 2015), while the VRP with

Hard Time Windows (VRPHTW) strictly prohibits any delays beyond the specified

time windows (MIRANDA; CONCEIçãO, 2016).

4. The Split Delivery VRP (SDVRP) is a variant of the original VRP that relaxes

the constraints regarding customer service. In SDVRP, customers’ orders can be

split and assigned to multiple vehicles on different routes, unlike the original VRP

where each customer must be served exactly once and by only one vehicle (SILVA;

SUBRAMANIAN; OCHI, 2015).

5. The Heterogeneous Fleet VRP (HFVRP) is a variant of the original VRP that

introduces the concept of multiple types of vehicles with varying loading capacities

(LEUNG et al., 2013).

6. The Periodic VRP (PVRP) is a variant of the VRP where customers have specific

service requirements within defined time periods. In the PVRP, customers are

first assigned to service patterns, which determine the days on which they require

deliveries. Subsequently, a separate VRP is solved for each day within the planned

time period, considering the delivery needs of all customers on that particular day

(GULCZYNSKI; GOLDEN; WASIL, 2011).

7. The Green VRP (GVRP): Alongside the objective of minimizing transportation costs,

the GVRP introduces the consideration of minimizing CO2 emissions for companies
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(LIN et al., 2014). This problem arises from the need to address environmental

concerns and promote sustainable transportation practices.

8. The Stochastic VRP (SVRP): In this variant, one of the parameters of the problem

is represented as a stochastic variable that follows a known or unknown probability

distribution. Different variations of SVRP include the VRP with stochastic demand

(VRPSD), the VRP with stochastic customers (VRPSC), the VRP with stochastic

demands and customers (VRPSDC), and the VRP with stochastic travel and service

times (VRPSTS) (MARINAKI; MARINAKIS, 2016).

9. The Open VRP (OVRP): In contrast to the original VRP, the vehicles in the

OVRP do not necessarily return to the central depot after completing their services

(MARINAKIS; MARINAKI, 2014).

There exist additional variants of the VRP that are not as prevalent as the

classes listed above. These include the Time-Dependent VRP (TDVRP), Multi-Trip VRP

(MT-VRP), Dynamic VRP (DVRP), VRP with Loading Constraints (VRPLC), Truck

and Trailer Routing Problem (TTRP), Multi-Compartment VRP (MCVRP), Fuzzy VRP,

and Site-Dependent VRP (SD-VRP), among others (LIN et al., 2014).

Figure 1 – Hierarchy of VRP variants
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2.2 CVRP formulation

CVRP is defined as a complete undirected graphG = (V,E). Set V = {0, 1, 2, . . . , n}
is a set of nodes where the single central depot is represented by node 0 and N =

{1, 2, . . . , n} is set of customers. The depot is a base for a fleet K = {1, 2, . . . , |K|}. Set
E = {e = {i, j} = {j, i} : i, j ∈ V, i ̸= j} is the edge set with nonnegative traveling cost

cij between nodes i and j for each {i, j} ∈ E. The fleet is assumed to be homogeneous i.e.

all |K| vehicles are available at the central depot, have the identical capacity Q > 0 and

all operate at equal cost. The objective is to determine the |K| vehicle routes in such a

way that (TOTH; VIGO, 2014):

• each route is started and finished at the central depot

• each customer n ∈ N is visited exactly once

• the vehicle capacity Q is not exceeded by the total demand of customers in each

single route

• the sum of the distances traveled by the vehicles to serve all the customers is

minimized.

Assuming such constraints, the objective function may be defined as Equation

(2.1).

objective function ≡ minimize(
∑
k∈K

∑
(i,j∈E)

cijx
k
ij) (2.1)

where for all {i, j} ∈ E, xij = 1 if a vehicle travels from i to j, otherwise xij = 0.

2.3 Solution algorithms for solving VRP

Given the complexity of the problem, there are two potential approaches for its

resolution: exact methods and approximate methods. Exact methods aim to obtain optimal

solutions and provide a guarantee of their optimality. However, for NP-complete problems,

exact algorithms are nonpolynomial-time algorithms (unless P = NP ). On the other hand,

approximate methods, also known as heuristic methods, generate solutions of high quality

within a reasonable time frame for practical applications. However, these methods do not

offer a guarantee of finding a globally optimal solution (TALBI, 2009). Figure 2 illustrates

the classification of algorithms that have been employed to address the Vehicle Routing

Problem (VRP) and its variations.
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2.3.1 Exact methods:

Within the class of exact methods, several classical algorithms can be identified.

These include dynamic programming, a family of algorithms known as branch and X

(branch and bound, branch and cut, branch and price), which were developed within the

operations research community, constraint programming, and a family of search algorithms

known as A* (A-star) and IDA* (iterative deepening algorithms), which were developed

within the field of artificial intelligence. These enumerative methods can be regarded as

tree search algorithms. The search process spans the entire search space of interest, and

the problem is solved by dividing it into simpler subproblems (TALBI, 2009).

Exact methods are suitable for solving small instances of challenging problems.

Due to the NP-hard nature of the Vehicle Routing Problem (VRP), exact methods are

unable to consistently solve instances with more than 200 customers (TOTH; VIGO, 2014).

It is important to note that the difficulty of a problem is not solely determined by the size

of the instance, but also by its structure. For a given problem, there may be small instances

that cannot be solved by an exact algorithm, while larger instances can be successfully

solved using the same algorithm (TALBI, 2009). Among the most successful exact methods

documented in the literature are the Branch and Bound algorithm (CHRISTOFIDES;

EILON, 1969) and the Branch-and-cut algorithm (LYSGAARD; LETCHFORD; EGLESE,

2004).

2.3.2 Heuristics and Metaheuristics

Heuristics are employed to find ”good” solutions for large-scale problem instances,

offering acceptable performance at reasonable costs across a wide range of problems.

Generally, heuristics do not provide an approximation guarantee for the solutions obtained.

These methods can be classified into two categories: specific heuristics and metaheuristics.

Specific heuristics are custom designed to tackle a particular problem or instance, while

metaheuristics are versatile algorithms that can be applied to solve various optimization

problems. Metaheuristics can be seen as high-level general methodologies that guide the

design of specific heuristics for solving particular optimization problems. Unlike exact

methods, metaheuristics enable the handling of large-scale problem instances by providing

satisfactory solutions within a reasonable timeframe. However, there is no assurance of

finding globally optimal or even bounded solutions (TALBI, 2009).

In recent years, researchers have proposed advanced mathematical programming

decomposition algorithms to address the Vehicle Routing Problem (VRP). However,

despite these efforts, only relatively small instances involving approximately 200 customers

can be optimally solved, and there is significant variability in the computation times.
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Figure 2 – Classification of VRP solution algorithms

In real-life scenarios, instances of the VRP are often large and require quick solutions

within predictable times, making efficient heuristics essential in practice. Moreover, due to

variations in the exact problem specifications across different settings, it becomes necessary

to develop heuristics that offer sufficient flexibility to handle diverse objectives and side

constraints. These concerns have been taken into account in the development of algorithms

in the past few years, highlighting the need for heuristics that strike a balance between

efficiency, flexibility, and problem complexity.

Heuristic algorithms can be broadly classified into three main categories: Construc-

tive heuristics, Two-Phase heuristics, and Local Improvement heuristics. These categories

encompass specific algorithms, as depicted in Figure 2.

Simple heuristics are primarily intended for constructing a single solution, whereas

local search procedures and metaheuristics analyze multiple solutions, either by generating

a sequence of solutions or by operating on a population of solutions. In addition to their

application in metaheuristics for initializing solutions, simple heuristics are commonly

employed in commercial VRP software to rapidly obtain feasible solutions of satisfactory
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quality. The popularity of simple heuristics can be attributed to their simplicity and their

adaptability to accommodate different types of constraints.

2.4 Heuristics

2.4.1 Constructive Heuristics

Nearest Neighborhood:Many constructive methods for the Capacitated Vehicle

Routing Problem (CVRP) are derived by adapting heuristics from the Traveling Salesman

Problem (TSP) to construct multiple routes. One of the simplest examples is the nearest

neighbor heuristic. There are two main approaches for constructing the routes: sequential

route building and parallel route building. In sequential route building, the process starts

from the depot, and a route is gradually expanded by adding the nearest unrouted customer,

provided that the customer’s demand is compatible with the remaining capacity of the

vehicle. Once no more customers can be added to the route, the vehicle returns to the

depot, and a new route is initiated. With this approach, the routes are constructed one by

one, sequentially. On the other hand, in parallel route building, the process begins from

the depot, and each emerging route (1, 2, . . . , |K|) serves the closest unrouted customer,

resulting in |K| routes each having one customer. Then, the |K| routes are iteratively

traversed again to accommodate their second customer, and so forth, until all customers

are assigned to routes (TOTH; VIGO, 2014).

Both approaches provide different ways of constructing routes in the CVRP,

and the choice between sequential and parallel route building depends on the specific

requirements and constraints of the problem at hand.

Insertion heuristics: Insertion heuristics in the context of the Vehicle Routing

Problem (VRP) involve initializing routes as empty loops starting from the depot, and then

gradually inserting customers one by one into these routes. This insertion process can be

performed either sequentially or in parallel, similar to the nearest neighbor algorithm. The

primary objective of each insertion is to minimize the increase in route length, following

the principle of cheapest insertion. The heuristic aims to identify the most cost-effective

position within the existing routes to insert each customer, considering factors such as

distance, travel time, or any other relevant cost metric. By minimizing the increase in route

length during the customer insertion process, these heuristics contribute to constructing

efficient and optimized solutions for the VRP (TOTH; VIGO, 2014).

Saving heuristics: In the Clarke and Wright heuristic, which is a type of saving

algorithm (CLARKE; WRIGHT, 1964), the initial solution is formed with n routes, each

containing only one customer, resulting in a complete but highly expensive solution. In

each iteration of the algorithm, possible mergers or concatenations between two routes are
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evaluated. The algorithm selects the merger that yields the largest positive saving or the

smallest negative cost variation. For two routes to be merged, their combined total load

must fit within the capacity of a single vehicle. The process of merging routes continues

until a single route, representing a Traveling Salesman Problem (TSP) tour, is obtained,

typically after n− 1 mergers. The merging process may also terminate if the merger of

any two remaining routes would violate the capacity constraint of the vehicles.

2.4.2 Two-Phase heuristics

Cluster First – Route Second (CFRS): These methods employ a two-step

approach to tackle the Vehicle Routing Problem (VRP). Initially, these methods create

clusters or groups of customers, where the total demand of each cluster fits the capacity

of a vehicle. Subsequently, a Traveling Salesman Problem (TSP) is solved for each cluster,

treating each cluster as a subset of customers assigned to a single vehicle.

An exemplary method that demonstrates the CFRS approach is the sweep heuristic

developed by Gillett and Miller (GILLETT; MILLER, 1974). In this heuristic, clusters

are defined as angular sectors centered on the depot. The sweep starts at a certain angle

and proceeds in a clockwise or counterclockwise direction, including customers within the

defined angular sectors into the same cluster until the vehicle capacity is reached. Once

the clusters are formed, a TSP is solved for each cluster individually.

Route First – Cluster Second (RFCS): These heuristics follow a different

approach compared to Cluster First - Route Second methods. In RFCS heuristics, the

first step involves relaxing the vehicle capacity constraint, allowing for a complete Touring

Salesman Problem (TSP) solution where all customers are visited in a giant tour. The

resulting giant tour includes all customers and does not consider vehicle capacity limitations.

In the second step, a splitting procedure called Split is applied to divide the giant tour

into multiple routes that satisfy the capacity constraints of the VRP.

In 2004, Prins introduced the idea of utilizing the Split procedure within a

memetic algorithm for the Capacitated Vehicle Routing Problem (CVRP), where the

candidate solutions are encoded as giant tours (PRINS, 2004). This innovation allowed

for the development of the first evolutionary algorithm capable of competing with the

state-of-the-art tabu search algorithms at that time.

2.4.3 Classical Improvements

Inter – Route: Inter-Route improvement moves play a crucial role in achieving

high-quality results in practice. These moves involve modifications between different routes

and are essential for optimizing solutions in the Vehicle Routing Problem (VRP) (TOTH;
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VIGO, 2014). The inter-route improvement moves include several classical operators

commonly used in the field. These operators consist of the following actions:

1. RELOCATE: This operator involves removing a consecutive sequence of k

customers from their current route and reinserting them elsewhere in a different route. It

allows for reorganizing the allocation of customers between routes.

2. SWAP: The SWAP operator swaps consecutive customers between different

routes. This exchange helps to improve the overall arrangement of customers among the

routes, potentially reducing total travel distances or balancing the workload across vehicles.

3. 2-OPT*: This operator focuses on modifying two edges from different routes.

It entails removing two edges and reconnecting them differently, resulting in a new

configuration. The objective is to optimize the connectivity and arrangement of customers

across routes.

These three types of moves, along with the well-known 2-OPT operator, are among

the most commonly used methods for inter-route improvement.

Intra – Route: Intra-Route improvement refers to the application of improvement

heuristics designed for the Traveling Salesman Problem (TSP) within each individual route

of the VRP. Any improvement heuristic that is originally designed for the TSP can be

adapted and applied as an intra-route improvement method in the VRP. One example

of an intra-route improvement heuristic is the λ−Opt exchange, which was proposed by

Lin (LIN, 1965). In the λ−Opt exchange, a specified number of edges, denoted by λ, are

removed from the route, and then replaced with λ other edges. This exchange helps to

optimize the ordering of the customers within a single route, aiming to improve the overall

route length and minimize travel distances.

2.5 Metaheuristics

Unlike exact methods, which are limited in their ability to handle large-scale

problem instances, metaheuristics offer a viable approach to tackling such challenges by

providing satisfactory solutions within a reasonable time frame. However, it is important

to note that metaheuristics do not guarantee finding global optimal solutions or even

bounded solutions. Nonetheless, metaheuristics have gained significant popularity in the

past two decades due to their efficiency and effectiveness in solving large and complex

problems (TOTH; VIGO, 2014).

Metaheuristics have found applications in various fields, including Engineering

design, Machine learning and data mining, System modeling, Planning in routing problems,

logistics, and transportation. Their versatility allows them to be adapted to different

problem domains, making them valuable tools for addressing a wide range of real-world
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problems. The success and widespread application of metaheuristics in various domains

highlight their ability to provide practical solutions when exact methods are impractical

or infeasible.

When designing a metaheuristic, it is crucial to consider two contradictory criteria:

exploration of the search space (diversification) and exploitation of the best solutions

discovered (intensification). These criteria are essential for effectively navigating the search

process.

During the intensification phase, the metaheuristic focuses on exploring promising

regions identified by the ”good” solutions obtained thus far. This involves conducting

a more thorough exploration within these regions in the hopes of finding even better

solutions. The objective is to exploit the potential of these regions to improve the quality

of the solutions.

On the other hand, diversification aims to ensure that the search process does not

become confined to a limited number of regions. It involves visiting non-explored regions

within the search space to achieve an even exploration of all regions. This prevents the

search from becoming biased towards a specific subset of the search space, enhancing the

chances of discovering new and potentially superior solutions.

By striking a balance between exploration and exploitation, metaheuristics can

effectively search the search space, combining the strengths of both approaches (TALBI,

2009). Figure 3 provides a graphical representation of these concepts and illustrates how

the metaheuristic navigates the search space, combining diversification and intensification

strategies.

Figure 3 – Two conflicting criteria in designing a metaheuristic (TALBI, 2009)

The past 15 years have witnessed significant advancements in Vehicle Routing

Problem (VRP) heuristics, primarily within the realm of metaheuristics. The evolution of

VRP heuristics can be best described by the concept of hybridization. This evolution has

occurred in three main aspects (TOTH; VIGO, 2014).

Firstly, new heuristics have emerged by combining different concepts that were

initially developed independently. These concepts often relate to search principles such as

simulated annealing, tabu search, variable neighborhood search, and genetic algorithms.

By integrating these different approaches, researchers have been able to create powerful

hybrid heuristics that leverage the strengths of multiple techniques.
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Secondly, successful VRP methods have incorporated various other strategies, such

as exotic large neighborhoods, exact mathematical techniques, decomposition approaches,

and cooperation schemes. These additions have enhanced the performance and solution

quality of the heuristics.

Thirdly, there has been a hybridization of scope, whereby researchers are now

developing flexible methods (e.g., Cordeau et al. (CORDEAU; LAPORTE; MERCIER,

2001), Vidal et al. (VIDAL et al., 2014), and Subramanian et al. (SUBRAMANIAN et

al., 2012)) that can be directly applied to solving a wide range of VRP variants without

major structural changes. These flexible methods can address different problem variations

efficiently, providing a versatile approach to VRP problem-solving.

Currently, metaheuristics for the VRP can be broadly classified into two main

categories: Local Search methods, which focus on exploring and improving individual

solutions, and population-based heuristics, which utilize a population of solutions to

navigate the search space and find high-quality solutions.

2.5.1 Local Search algorithms

Local search methods explore the solution space by moving at each iteration

from a solution to another solution in its neighborhood. As shown in Figure 2, this

category includes Tabu Search (TS), Simulated Annealing (SA), Variable Neighborhood

Search (VNS), Large Neighborhood Search (LNS), Iterated Local Search (ILS) and Greedy

Randomized Adaptive Search Procedure (GRASP) that are described briefly as following:

Simulated Annealing (SA): The simulated annealing (SA) algorithm for

combinatorial optimization was introduced by Kirkpatrick et al. in 1983 (KIRKPATRICK;

JR; VECCHI, 1983) and is inspired by the annealing process in metallurgy. It uses a

temperature parameter to control the acceptance of solutions that may worsen the objective

function. SA allows for exploration of the solution space and can escape local optima. A

well-known application of SA to the VRP is that of Osman (OSMAN, 1993).

Greedy Randomized Adaptive Search Procedure (GRASP): The GRASP

was initiated by Feo and Resende in 1989 (FEO; RESENDE, 1989). The GRASP principle

is to create a new solution at each iteration, independent of the following. For this purpose,

two stages are necessary: first, a solution is built using a randomized greedy algorithm and,

second, the obtained solution undergoes a local search. The best solution found through

the iterations is returned as the result.

Tabu Search (TS): Tabu Search (TS) was developed by Glover (GLOVER, 1986;

GLOVER, 1989; GLOVER, 1990) and has been widely applied to various combinatorial

problems. Unlike GRASP and SA, TS is a fully deterministic method in the context of

VRP. It has proven to be highly effective in solving difficult combinatorial problems and
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often produces very good solutions.

The fundamental principle of TS is to continue the local search even when a local

optimum is reached. This means that TS aims to thoroughly explore the neighborhood of

the current solution and make the best possible move, even if it results in a temporary

deterioration of the objective function. The key idea behind TS is to prevent revisiting

previously explored solutions using memories called tabu lists.

Tabu lists are used to record the recent history of the search and ensure that the

search process does not return to previously visited solutions. This memory mechanism

guides the search and promotes diversification by preventing cycling and forcing exploration

of new regions within the solution space.

In the context of the Vehicle Routing Problem (VRP), Taillard (TAILLARD,

1993) proposed the Tabu Search algorithm as a method specifically tailored to solve VRP

instances. TS has been successfully applied to VRP and has demonstrated its effectiveness

in finding high-quality solutions for vehicle routing problems.

Variable Neighborhood Search (VNS): The Variable Neighborhood Search

(VNS) and its simpler variant, the Variable Neighborhood Descent (VND), are highly

efficient and concise metaheuristics. These approaches are often utilized as replacements for

local search procedures within other metaheuristics. The concept of Variable Neighborhood

Search was introduced by Mladenović and Hansen (MLADENOVIć; HANSEN, 1997).

The main idea behind Variable Neighborhood Search is inspired by a straight-

forward principle: systematically changing the neighborhood each time a local search

algorithm fails to find an improvement in the current neighborhood. This process of

systematically exploring different neighborhoods allows for a more extensive search of the

solution space, potentially leading to better solutions.

In the context of VRP, Kytöjoki et al. (KYTöJOKI et al., 2007) successfully applied

VNS to tackle this problem. Their proposed algorithm incorporated seven frequently used

operators: 2-opt, Or-opt, and 3-opt as intra-route moves, and exchange, relocate, 2-opt*,

and cross-exchange as inter-route moves.

Iterated Local Search (ILS): Iterated Local Search (ILS) appeared in the

literature a few years before Variable Neighborhood Search (VNS) and was initially

introduced by Baum in 1986 under the name ”iterated descent” (BAUM, ). The ILS

approach involves searching the solution space by exploring the attraction basin around a

solution using local search before moving away from it using perturbation. ILS consists of

four main components: generation of an initial solution, local search, perturbation and,

acceptance criterion. Vansteenwegen et al. (VANSTEENWEGEN et al., 2009) proposed an

ILS approach for a specific vehicle routing problem called the Team Orienteering Problem

with Time Windows. In this problem, each customer is associated with a score, service
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time, and time window. The objective is to maximize the total score collected by a fixed

number of routes while respecting the time windows.

Large Neighborhood Search (LNS): The Large Neighborhood Search (LNS)

framework was introduced by Shaw in 1998 (SHAW, ). It is a search strategy that focuses

on exploring a large neighborhood of solutions, which increases the likelihood of finding

improved solutions compared to locally optimal solutions. LNS efficiently searches this

large neighborhood, enabling effective exploration of the solution space. The key idea

behind LNS is to decompose the original problem by unfixing certain decision variables,

resulting in a partial solution. By unfixing these variables, a neighborhood of solutions is

defined, which can be explored efficiently using a specific procedure such as a heuristic or

a mixed-integer programming (MIP) solver. This procedure rapidly searches the defined

neighborhood, aiming to find an improved solution.

If the procedure discovers an improved solution within the neighborhood, it

replaces the current solution, and a new large neighborhood is defined around this new

solution. This process of defining and searching large neighborhoods is repeated iteratively

until a stopping criterion is met, such as a maximum number of iterations or reaching a

desired solution quality.

2.5.2 Population-based algorithms

Population-based heuristics involve the evolution of a population of solutions,

where combinations and interactions among individuals aim to generate improved solutions.

This category encompasses various metaheuristics, including Genetic Algorithms (GA),

Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Evolutionary

Algorithms (EAs), Memetic Algorithms (MAs), Scatter Search (SS), and Path Relinking

(PR). Figure 2 illustrates the classification of these heuristics.

Genetic Algorithms (GAs): Genetic Algorithms (GAs) are population-based

metaheuristics that emulate biological evolution processes to solve problems and model

evolutionary systems. The concept of GAs was first introduced by Holland in 1973

(HOLLAND, 1973). The evolution process in GA comprises three major operators: selection,

crossover, and mutation.

In the selection step, two parents are chosen from the population, with a preference

given to the best parents based on their fitness. The parents are then subjected to the

crossover operator, which combines their genetic material to generate offspring solutions.

The purpose of crossover is to exchange genetic information and create diverse offspring.

Additionally, the mutation operator introduces random modifications to the child solution

with a certain probability, ensuring population diversity.

While pure GA implementations have demonstrated mixed results in various
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problem domains, notable success has been achieved in the vehicle routing problem with

time windows (VRPTW) in the works of (THANGIAH, 2019) and (POTVIN; BENGIO,

1996). These studies have specifically tailored the GA approach to address the challenges

posed by VRPTW.

A comprehensive description of the GA can be found in Section 2.7 of this chapter,

where the workings and intricacies of the algorithm are discussed in detail.

Memetic Algorithms (MAs): Memetic Algorithms (MAs), initially proposed

by Moscato (MOSCATO, 1989), represent more advanced versions compared to Genetic

Algorithms (GA) by incorporating a local search procedure for improving the performance

on various optimization problems. The inclusion of local search in MAs contributes to

intensification (MOSCATO, 1999), as the solutions resulting from crossover undergo a

local search before undergoing mutation.

An enhanced variant of MAs called Memetic Algorithm with Population Manage-

ment (MA—PM) was introduced by Sörensen and Sevaux in 2006 (SöRENSEN; SEVAUX,

2006). MA—PM incorporates a strategy to maintain population diversity by accepting

new solutions only if they exhibit sufficient dissimilarity from the existing solutions in the

population.

The first successful application of MAs to the Vehicle Routing Problem (VRP)

was proposed by Prins (PRINS, 2004). The method combines genetic operators such

as selection and crossover with an efficient local search procedure, which replaces the

conventional randomized mutation operator. This integration of different components

makes the MA approach highly effective for solving the VRP.

Scatter Search (SS): Scatter Search is a population-based metaheuristic that

incorporates diversification strategies similar to tabu search. In contrast to Genetic Algo-

rithms (GA), SS typically operates on a smaller set that contains a collection of good-quality

and diverse solutions. This approach, initially introduced by Glover in 1977 (GLOVER,

1977), maintains a pool of high-quality solutions encountered during the search process.

It also ensures diversity by including well-scattered solutions to facilitate exploration of

alternative regions when the optimization process becomes trapped in a local minimum.

One notable successful application of SS is proposed by Russel and Chiang

(RUSSELL; CHIANG, 2006) for addressing the vehicle routing problem with time windows.

Path Relinking (PR): Path Relinking is a metaheuristic approach that differs

from traditional genetic algorithms as it does not utilize crossover operators. Instead,

it focuses on utilizing two solutions from a population to generate new solutions. Path

Relinking is an evolutionary search strategy that explores the trajectory connecting two

high-quality solutions. The concept of Path Relinking was initially proposed by Glover as

a means to intensify tabu search or Scatter Search (GLOVER, 1997; GLOVER; LAGUNA;
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MARTI, 2000). Path Relinking can be considered an evolutionary method since it generates

new solutions by combining elements from existing solutions. However, unlike the genetic

algorithm’s family, randomness does not play a crucial role in generating offspring solutions.

Path Relinking generates new solutions by systematically exploring paths that connect

elite solutions, emphasizing the exploitation of promising regions within the solution space.

Path Relinking serves as a powerful tool for intensification, utilizing the trajectory between

high-quality solutions to guide the search process.

An application of Path Relinking in the context of the Capacitated Vehicle Routing

Problem (CVRP) was carried out by Ho and Gendreau (HO; GENDREAU, 2006). They

incorporated Path Relinking within a tabu search method specifically designed for the

CVRP.

Ant Colony Optimization (ACO): The Ant Colony Optimization (ACO)

approach (DORIGO; STUTZLE, 2004) draws inspiration from the social behavior of ants

and their pheromone-based strategies during food foraging. In the ACO algorithm, ants

initially deposit pheromone randomly to communicate and inform each other about food

sources. Over time, the amount of pheromone deposited on specific paths increases if

more ants follow those paths, while it diminishes if fewer ants pass through them. This

pheromone-based communication system enables efficient exploration and exploitation

of the solution space. ACO has emerged as one of the most widely used swarm-based

algorithms for solving combinatorial optimization problems. It is particularly well-suited

for problems where constructing a solution can be likened to creating paths within a given

graph, as is the case in vehicle routing problems.

In the context of the Capacitated Vehicle Routing Problem (CVRP), Bullnheimer

et al. (BULLNHEIMER; HARTL; STRAUSS, 1999) applied ACO to find optimal or

near-optimal solutions. By leveraging the graph-like nature of the problem and mimicking

the pheromone-based communication among ants, ACO offers a promising approach for

solving the CVRP.

Particle Swarm Optimization (PSO): Particle Swarm Optimization (PSO) is

a population-based metaheuristic that revolves around a group of individuals referred to

as particles. It was initially introduced by Kennedy and Eberhart in 1995 (KENNEDY, )

for continuous optimization problems and has since been adapted for discrete optimization

problems (KENNEDY; EBERHART, ). Each particle in PSO represents a potential

solution and moves within the search space with the objective of reaching the global

optimum. The learning process in PSO involves local interactions between the particles

within the swarm. Each particle maintains a memory of the best solution it has encountered

so far and can communicate with neighboring particles. Using this information, a velocity

is computed for each particle, which determines the adjustments made to its position in

the next iteration.
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The application of PSO to vehicle routing problems was first presented by Chen

et al. (CHEN; YANG; WU, 2006). In their work, they proposed a hybrid approach

that combines PSO with simulated annealing. Specifically, the TSP (Traveling Salesman

Problem) is solved using simulated annealing for each vehicle, while the assignment of

customers to vehicles is conducted within the PSO framework.

2.6 Imperialist Competition Algorithm (ICA)

ICA was introduced as a new evolutionary algorithm by Atashpaz-Gargari in 2007.

In contrast to other evolutionary algorithms, the ICA is based on the sociopolitical process

of imperialism (ATASHPAZ-GARGARI; LUCAS, ). As the original ICA, the algorithm is

defined as following steps:

Step 1: Create initial empires:

The initial population of size Npop provides an initial collection of countries. Nimp

of the most powerful countries (based on fitness value) are selected to form the initial

empires. The remaining Ncol of the countries (Ncol = Npop−Nimp) are regarding as colonies

that are divided amongst the Nimp empires such that the size of each empire – the number

of colonies assigned; is relative to its imperialist power (relative fitness) – see Figure 4.

As the color coding highlights, a larger star (higher imperialist power / fitness) has more

colonies.

Figure 4 – Initializing the empires (inspired by (ATASHPAZ-GARGARI; LUCAS, ))

Step 2: Assimilation: Moving colonies toward the imperialists:

The imperialist in each empire has the best fitness value in its corresponding

empire. Therefore, each one is acting as a “Local Optima” in their empires. In this step,

the imperialists start improving their corresponding colonies through crossover. The aim

of this step is to search for points in the solution space near the imperialist (local optima),
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providing improved fitness. Figure 5 illustrates the update process: where d is the distance

between the colony and its imperialist. The new position of the colony depends on x

(number of units to move) and θ (deviation from the direction to the empire). x is a

random variable with uniform distribution where x ∼ U(0, β × d) and β is greater than

1. θ, is a random number with uniform distribution (or any suitable distribution that

provides a random amount of deviation). Therefore, θ ∼ U(−γ, γ) where γ is a parameter

that adjusts the deviation from the original direction.

Step 3: Revolution: Revolve the colonies:

Revolution is equivalent mutation in a GA. The “Revolution Rate” is thus a

parameter that determines the percentage of the colonies that need to be revolved. First,

the number of the revolved colonies are calculated by Equation (2.2), then the Revolution

operator is applied to all the revolving colonies which are selected randomly.

NumOfRevolvedColonies = RevolutionRate×NumberOfColoniesOfEmpire (2.2)

Figure 5 – Colony movement towards its imperialist (inspired by (ATASHPAZ-GARGARI;
LUCAS, ))

Step 4: Possess Empires: Swapping the position of colony and imperialist:

Moving the colonies towards their corresponding imperialist causes the colonies

to reach new positions. Therefore, their new fitness value will be calculated. If one of the

colonies has better fitness value than its corresponding imperialist, their positions will be

exchanged as highlighted in Figure 6-(a) (before) and Figure 6-(b) (after) i.e. the colony

with the best fitness will become the new Imperialist.

Step 5: Total cost calculation:
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Figure 6 – a) Best colony and imperialist. b) After swap (inspired by (ATASHPAZ-
GARGARI; LUCAS, ))

The Total cost of each empire indicates the power of an empire, as shown in

Equation (2.3):

T.C.n = Cost(imperialistn) + ξmean{Cost(colonies of empiren)} (2.3)

where T.C.n is the total cost of the nth empire, and 0 < ξ < 1 is a parameter that

defines the contribution factor of colonies to the power of an empire. The Cost represents

the fitness function (or objective function).

Figure 7 – An overview of the imperialist competition (inspired by (ATASHPAZ-
GARGARI; LUCAS, ))

Step 6: Imperialist competition:

In this competition between empires, the weakest colony of the weakest empire is

selected for possession. An empire with more power has more likelihood to seize the colony.
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If an empire has no colonies left, the imperialist itself is selected as a colony for possession

and the empire ceases to exist. Figure 7 illustrates the imperialist competition where

the size of stars again reflects the power of the imperialists and where the yellow colony

represents the selected weakest colony. P1, P2 and P3 are the possession probabilities for

empires 1, 2 and 3 calculated based on total cost of each empire as follows:

N.T.C.n = T.C.n −maxi{T.C.i} (2.4)

PPn =

∣∣∣∣ N.T.C.n∑Nimp

i=1 N.T.C.i

∣∣∣∣ (2.5)

where N.T.C.n is the normalized total cost of the nth empire and T.C.n is the

total cost of the nth empire (see Equation (2.3)). If P = {P1, P2, P3} and R = {r1, r2, r3}
(uniformly distributed random numbers) then D = P −R = {P1 − r1, P2 − r2, P3 − r3}.
The empire whose relevant index in D is maximum, will be the winner of this competition.

Stopping conditions:

The above-mentioned steps (2 to 6) are repeated iteratively. The weaker empires

will collapse gradually by losing their colonies. Finally, only the most powerful empire will

remain and its imperialist that is the solution’s “Local Optima” i.e. it will be the best

individual.

2.7 Genetic Algorithm (GA)

The Genetic Algorithm (GA) is an evolutionary optimization algorithm rooted in

the principles of natural selection and biological reproduction. It draws inspiration from the

Darwinian theory of evolution and the concept of survival of the fittest. The development of

GA can be attributed to John Holland, a Professor of Electrical Engineering and Computer

Science at the University of Michigan, and his colleagues in 1960. Their groundbreaking

publication, ”Adaptation in Natural and Artificial Systems,” was released in 1975 by MIT

Press (HOLLAND, 1973). Subsequently, David E. Goldberg further extended and refined

the algorithm, publishing his book on genetic algorithms in 1989 (GOLDBERG D. E.,

1989).

Genetic algorithms replicate the evolutionary mechanisms that have occurred in

nature over millions of years. By incorporating principles from natural genetics, GA offers

a means to solve complex problems using simple techniques within a finite timeframe. It

leverages heuristics and historical information related to the problem domain to evolve

towards improved solutions. Mimicking the evolutionary behavior of humans, GA involves

the exchange of genetic material encoded as strings, tailored to the problem at hand

(WHITLEY, 1994).
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The simplicity and low computational complexity of GA have led to its widespread

application in various domains, including engineering design, business, finance, and other

complex scientific fields. GA’s ability to handle complex problems with straightforward

methods has made it an attractive choice in numerous practical applications.

2.7.1 Basics of Genetic Algorithm

The breakthrough in the development of the Genetic Algorithm (GA) occurred in

the 1960s when John Holland successfully devised codes to represent genetic information.

Initially, this approach employed binary strings, where each bit could denote a specific

characteristic or feature. A value of 1 indicated the presence of the characteristic, while 0

indicated its absence. The system was initially designed as a classifier, where the accuracy

of classification depended on the fitness value of the encoded string. Strings with higher

fitness values, corresponding to better classification results, would survive and be retained,

while strings with lower fitness values would perish. With each generation, the strings

undergo evolution, resulting in a population of strings with higher average fitness values,

indicating improved quality (MITCHELL, 1995).

At the core of the GA is the chromosome, which constitutes the basic genetic

material. The chromosome is composed of genes, and the alleles represent the different

values that genes can take on. Each gene is a fundamental element of the chromosome.

Figure 8 provides a visual representation of the essential components of the GA.

Figure 8 – a) Typical chromosome structure, b) Alleles, c) Binary encoded chromosome
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2.7.2 Genetic operators

The Genetic Algorithm (GA) encompasses three crucial operators that play a

pivotal role in its algorithmic design: selection, crossover, and mutation (REEVES, 2010).

Each of these operators is described in detail below:

Selection: is a fundamental operation within the Genetic Algorithm (GA) that in-

volves choosing individuals from the population for mating and reproduction through

recombination. The selection process incorporates a degree of randomness, as there is

no deterministic rule governing the selection of chromosomes for crossover or mutation.

Three commonly employed selection methods include roulette wheel selection, tournament

selection, and elitism (ABRAHAM; NEDJAH; MOURELLE, 2006).

Roulette wheel selection utilizes a rotating wheel divided into multiple regions,

with each region corresponding to an individual in the population (BODENHOFER, 2003).

The size of each region is proportional to the probability of selecting the corresponding

individual, which, in turn, depends on their fitness. This selection method allows for a

probabilistic approach to determine the parents for the next generation.

Tournament selection involves randomly selecting a subset of individuals from the

population (referred to as the tournament size). From this chosen subset, the individuals

with the highest fitness are selected as parents. This method creates a competitive

environment where individuals with higher fitness have a greater chance of being chosen

as parents.

Elitism is a selection strategy where the chromosome with the highest fitness value

is directly copied into the next generation. By preserving the fittest individual, elitism

ensures that their genetic material remains unaltered during the crossover or mutation

process.

Figure 9 – One-point crossover
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Crossover: is a vital operator within the Genetic Algorithm (GA) that generates offspring

from two selected parents for recombination. Crossover can take the form of one-point,

two-point, or multi-point operations.

In one-point crossover, a single bit in the two parent chromosomes is randomly

chosen, and the segments on either side of the crossover point are exchanged, resulting in

two offspring (Figure 9). This process facilitates the exchange of genetic material between

the parents and introduces diversity into the population.

Two-point crossover involves selecting two points within the parent chromosomes

randomly. The segment between these two points is then exchanged between the parents,

leading to the creation of two offspring (Figure 10). This type of crossover promotes the

mixing of genetic information from different regions of the parent chromosomes, aiding in

the exploration of the solution space.

Figure 10 – two-point crossover

The choice between one-point, two-point, or multi-point crossover depends on

the specific problem and the desired balance between exploration and exploitation of the

solution space. Each crossover method offers its own advantages in terms of the diversity

and quality of the offspring generated.

Mutation: is a crucial operator within the Genetic Algorithm (GA) where one or more

bits in the chromosome string are subject to flipping with a fixed probability known as the

mutation rate. This operation introduces diversity within the population and effectively

expands the search space. Figure 11 illustrates the process of mutation in a chromosome

encoded using binary representation.

During mutation, specific bits in the chromosome string are randomly selected and

inverted, leading to alterations in the genetic information. By introducing these random

changes, mutation serves as a mechanism to explore new regions of the solution space that
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Figure 11 – Mutation operator

may not be easily accessible through selection and crossover alone.

The mutation rate, typically defined as a small value, governs the probability of

a bit undergoing mutation. Higher mutation rates result in more extensive exploration,

while lower mutation rates prioritize exploitation of the existing genetic material.

2.7.3 Algorithm

The Genetic Algorithm (GA) is a population-based metaheuristic that combines

principles from natural selection and genetics. It aims to search for the optimal solution

within the search space by incorporating randomness in the exploration process. GA

operates as an iterative algorithm that converges towards an optimum solution over a

finite number of iterations, with candidate solutions evolving towards higher fitness or

quality in each iteration or generation. The termination of the algorithm occurs when

either the optimum solution is achieved (convergence), the maximum number of iterations

(generations) is reached, or a predefined stopping condition is satisfied.

The pseudocode for the common form of GA is presented in Algorithm 1. It

outlines the key steps involved in the GA algorithm, including the initialization of the

population, the evaluation of fitness, the iterative process of selection, crossover, and

mutation, and the subsequent update of the population based on the fitness of the offspring

generated.

2.8 Island Genetic Algorithm

Distributed Evolutionary Algorithms (EAs) are designed to distribute computing

tasks across multiple processors or computing nodes. Two common approaches used in

distributed EAs are the population-distributed model and the dimension-distributed model.

In the population-distributed model, individuals or subpopulations from the evolutionary

population are distributed among multiple processors or computing nodes. This allows

for parallel processing of the population. Several variants of the population-distributed

model exist, including the master-slave model, island model (or coarse-grained model),

cellular model (or fine-grained model), hierarchical model (or hybrid model), and pool
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Algorithm 1 Genetic Algorithm pseudo code

1: Select initial population of size N
2: Calculate the fitness values of the entire population
3: while ite ≤ MaxIter do
4: Selection: select parent for reproduction
5: Crossover: apply crossover on parents to produce offsprings
6: Mutation: apply mutation on selected chromosoms (optional)
7: Calculate fitness values of the population
8: Select members of the next generation based on fitness values
9: if termination condition met then
10: exit
11: else
12: continue
13: end if
14: end while
15: return chromosome with the best fitness

model. The master-slave model involves a central controller (master) that distributes tasks

to multiple processors (slaves) for evaluation and processing. The island model divides

the population into subpopulations that evolve independently on different processors,

occasionally exchanging individuals to maintain diversity. The cellular model further

divides the population into smaller groups (cells) that interact with neighboring cells

through local exchanges. The hierarchical model combines different levels of subpopulations,

where each level can have its own evolutionary dynamics. The pool model utilizes a shared

pool of individuals that processors can access and modify during the evolutionary process.

Figure 12 depicts the classification of Distributed Evolutionary Algorithms.

Figure 12 – Classification of Distributed EAs

The primary distinction between an island model and a single population model

lies in the division of individuals into islands. Islands interact through migration, which

serves as the sole means of communication between them. Migration plays a crucial role in

the island model, as without it, the islands would function as separate, independent runs.

Thus, the inclusion of migration is vital (CANTú-PAZ, 2001). The standard approach to

implementing migration involves sending a specific number of individuals (migration size)

at regular intervals (migration interval). These two parameters, migration size and interval,
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are considered the most significant migration parameters as they control the quantitative

aspect of migration, specifically the total number of individuals transmitted during the

execution of the evolutionary algorithm. While alternative models exist where migrations

are triggered based on certain criteria (BRANKE J., ), fixed schedules are more commonly

employed and easier to analyze. Figure 13 provides an illustrative example of the scheme

employed in the Island model, demonstrating the flow of migration between the islands.

Another crucial parameter in migration is the migration policy, which determines

the selection and replacement strategy for the individuals being sent between populations.

A common policy involves selecting the best individuals from the source population

and replacing the worst individuals in the target population. However, Cantú-Paz has

demonstrated that this approach results in an elevated selection pressure within the system

(CANTú-PAZ, 2001). Alternatively, the random-random policy can be employed, where

a random individual is chosen from the source population and replaces another random

individual in the target population. This policy helps avoid an increase in selection intensity,

making it suitable for investigating other migration parameters. It provides a more diverse

exploration of the solution space without imposing additional selection pressure. It is

worth noting that various other migration policies are also possible, depending on the

specific requirements and characteristics of the problem being addressed. The choice of the

migration policy should be carefully considered to strike a balance between maintaining

diversity and promoting effective information exchange between populations.

Figure 13 – an example of Island model GA scheme

The migration topology in the context of island models determines the pattern

of migration, specifying which islands send individuals to which other islands. Several

commonly used migration topologies include the array, ring, grid, star, and fully connected

topologies. In the array topology, islands are arranged in a linear structure, with each island



2.9. HYBRID GENETIC SEARCH FOR CVRP (HGS-CVRP) 45

having designated neighbors to which individuals can migrate. The ring topology forms a

circular structure, where islands are connected in a loop. In the grid topology, islands are

arranged in a two-dimensional grid, allowing for migration among neighboring islands in

horizontal and vertical directions. The star topology consists of a central island connected to

multiple satellite islands. Lastly, the fully connected topology establishes direct migration

links between all pairs of islands. The choice of migration topology influences the spread

and exchange of information among islands. Topologies with sparser connections, such

as the array or ring, result in slower dissemination of information across the system. In

contrast, topologies with denser connections, like the fully connected topology, facilitate

faster and more extensive information flow among islands.

2.9 Hybrid Genetic Search for CVRP (HGS-CVRP)

HGS-CVRP is a specialized version of the UHGA (Unified Hybrid Genetic Search)

for solving CVRP, through the introduction of the new neighborhood search, SWAP*

(VIDAL, 2022). Its search schema is the same as its original method (UHGA - (VIDAL et

al., 2012)) which is a combination of 3 strategies:

1. Combining crossover and a neighborhood-based search: Crossover improves

diversification through more exploration in the solution space and the neighborhood-

based search provides aggressive solution improvement.

2. A controlled exploration of infeasible solutions: which provides more explo-

ration in the areas close to the feasibility boundaries.

3. Advanced population diversity management strategies: which allows the

population to be diversified with high quality solutions.

As depicted in Figure 14, HGS-CVRP performs following the steps until a stopping

condition is met:

Step 1 – Parents Selection: To select each parent, binary tournament selection is

applied, returning an individual (solution) with the best fitness value of the tournament.

To calculate the fitness value, two parameters are considered: objective value and diversity.

Therefore, each individual has two ranking characteristics: in terms of solution quality and

in terms of diversity contribution. The fitness value is calculated based on a weighted sum

of these ranks.

Step 2 – Recombination: An ordered crossover (OX) is applied to the two selected

parents. Trip delimiters are then inserted by an efficient linear-time Split so as to make a
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Figure 14 – General structure of HGS-CVRP (inspired by (VIDAL, 2022))

complete CVRP solution. Ordered crossover (OX - (OLIVER; SMITH; HOLLAND, )),

includes 2 steps: 1) selecting a random slice of the first individual and then 2) completing

missing values by starting from the second cutting point and adding the sequence from

the second individual.

Step 3 – Local Search: The proposed local search is a neighborhood search including a

route improvement (RI) which is a combination of classical RI (Relocate, Swap, 2-Opt and

2-Opt*) and Swap*. Further, a Repair operation with 50% probability is applied to infeasi-

ble solutions to recover feasible solutions. In the classical form of the SWAP neighborhood,

2 customers are exchanged, aiming to make any intra-route or inter-route improvements.

However, SWAP* neighborhood exchanges 2 customers from 2 different routes without

an insertion in place. It means that one customer from route1 can be inserted into any

position of route2 and one customer from route2 can be inserted into any position of route1.

Step 4 – Population management: Each new individual produced is inserted in

the appropriate subpopulation - feasible or infeasible. If a subpopulation reaches the

maximum individuals, a Survivor selection is triggered. In addition, penalty parameters



2.9. HYBRID GENETIC SEARCH FOR CVRP (HGS-CVRP) 47

for solution infeasibility are adapted in this step.

For further details, see (VIDAL, 2022).
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3 LITERATURE REVIEW

The Vehicle Routing Problem (VRP) is widely recognized as one of the notable

success stories in the field of operations research. The VRP encompasses various ver-

sions and complexities, with the Capacitated Vehicle Routing Problem (CVRP) being

a fundamental and significant combinatorial optimization problem. The CVRP finds

extensive applications in numerous real-world scenarios, including but not limited to

food distribution, pharmaceutical distribution, urban bus routing, garbage collection,

transportation of hazardous materials, dairy industry (TARANTILIS; KIRANOUDIS,

2007), and distribution of ready-mixed concrete (SCHMID et al., 2010).

In the context of the Capacitated Vehicle Routing Problem (CVRP), the vehicles

are assumed to be identical and operate from a single central depot. The primary constraint

in the CVRP is the capacity limitation of the vehicles, while other factors such as time

windows or vehicle availability can be considered depending on the problem formulation.

The objective of the CVRP is to minimize the overall cost associated with serving all the

customers, which typically involves minimizing the total distance traveled or the number of

vehicles used. To address the CVRP, two major categories of optimization algorithms are

commonly employed: exact methods and heuristic algorithms (also known as approximate

algorithms) (TOTH; VIGO, 2014).

3.1 Exact methods

The Capacitated Vehicle Routing Problem (CVRP) is considered an extension of

the renowned Traveling Salesman Problem (TSP), which involves finding the minimum-cost

Hamiltonian circuit that visits a given set of points exactly once. Consequently, many

exact approaches for solving the CVRP have been developed based on the extensive and

successful research conducted for exact solutions of the TSP. Toth and Vigo (TOTH;

VIGO, 2014) have classified these approaches into three categories: Branch and Cut and

Price, Branch and Cut, and reduced set partitioning.

In the literature, several exact methods have emerged as highly successful in solving

the CVRP. These include the Branch-and-Cut algorithm (LYSGAARD; LETCHFORD;

EGLESE, 2004; AUGERAT et al., 1995; LETCHFORD; EGLESE; LYSGAARD, 2002),

Branch and Bound (CHRISTOFIDES; EILON, 1969), and the Branch-Cut-and-Price

method, which combines the principles of Branch and Cut with Lagrangean relaxation and

column generation techniques (FUKASAWA et al., 2006; BALDACCI; CHRISTOFIDES;

MINGOZZI, 2008; PECIN et al., 2017).
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3.2 Heuristic, Metaheuristic, and hybrid methods

Due to the NP-hard nature of the Capacitated Vehicle Routing Problem (CVRP),

exact methods face significant computational challenges when solving large-scale in-

stances. Achieving optimal solutions for CVRP instances using exact methods can be

time-consuming, especially when the number of customers exceeds 200 (UCHOA et al.,

2017). Therefore, researchers have turned to heuristic, metaheuristic, and hybrid approaches

to obtain satisfactory solutions within a reasonable time frame.

3.2.1 Heuristic approaches

In recent years, numerous sophisticated mathematical programming decomposition

algorithms have been proposed to address the Vehicle Routing Problem (VRP). Despite

these advancements, optimal solutions can only be obtained for relatively small instances,

typically involving around 100 customers, and the computation times exhibit significant

variability. However, real-life VRP instances often involve large-scale problem sizes and ne-

cessitate prompt solutions within predictable time frames. Consequently, efficient heuristic

approaches are indispensable in practical applications.

Moreover, the precise problem formulation of the VRP can vary across different

settings, introducing additional challenges. Consequently, the development of flexible

heuristics capable of accommodating diverse objectives and side constraints becomes

essential. To address these concerns, researchers such as Toth and Vigo (TOTH; VIGO,

2014) have focused on devising heuristics that exhibit robustness and adaptability to

various problem specifications.

The nearest-neighbor heuristic is one of the simplest constructive heuristics

employed in the Vehicle Routing Problem (VRP). This method begins at the depot and

incrementally expands a route by visiting the nearest unrouted customer, selected from

those compatible with the remaining capacity of the vehicle. Once no more customers

can be added, the vehicle returns to the depot, and a new route is initiated. Another

constructive approach, known as the Clarke and Wright algorithm (CLARKE; WRIGHT,

1964), focuses on route mergers. Initially, each customer is visited by a dedicated route.

The algorithm then evaluates potential mergers between pairs of routes and selects the

merger that yields the greatest cost savings.

In addition to these methods, insertion heuristics are also widely employed, with

the approach proposed by Mole and Jameson (MOLE; JAMESON, 1976) being a popular

example. Insertion heuristics construct a solution through successive insertions of customers,

guided by weighted insertion costs.

Two-phase methods are designed to tackle the Vehicle Routing Problem (VRP) by
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reducing it to a Traveling Salesman Problem (TSP). Cluster-first, route-second approaches

involve creating clusters of customers whose total demand fits within the vehicle capacity

and then solving a TSP for each cluster. Gillett and Miller’s heuristic (GILLETT; MILLER,

1974) provides an example of this method, where clusters are defined as angular sectors

centered on the depot. Fisher and Jaikumar’s method (FISHER; JAIKUMAR, 1981)

addresses a generalized assignment problem during the clustering phase. Another approach,

known as the petal heuristic (BALINSKI; QUANDT, 1964), constructs a large number of

routes and subsequently solves a set partitioning problem to select a subset of routes that

visit each customer exactly once. On the other hand, route-first, cluster-second heuristics

(BEASLEY, 1983; PRINS; LABADI; REGHIOUI, 2009) adopt a different strategy. They

relax the vehicle capacity constraints to solve a TSP, resulting in a route that covers

all customers, often referred to as a ”giant tour”. A splitting procedure is then applied

to divide the giant tour into capacity-feasible routes, transforming it into a valid VRP

solution.

An improvement procedure, also known as local search, begins with an initial

solution, denoted as s, typically obtained through a constructive heuristic. It focuses on

exploring a subset N(s) of solutions that are structurally close to s, referred to as the

neighborhood of s. In practice, N(s) is implicitly defined by a transformation s → s
′
,

known as a move, rather than explicitly generating all solutions in the neighborhood.

The moves have been initially defined for the Traveling Salesman Problem (TSP) and

can also be applied to each route in the Capacitated Vehicle Routing Problem (CVRP).

For example, one type of move is node relocation, where a customer is removed from

its current position and reinserted at a different position within a route. Another move

is node exchange, where the positions of two customers are swapped within a route.

The neighborhoods defined by these moves can be explored in O(n2) time complexity.

In addition to these basic moves, there are k − opt moves (LIN; KERNIGHAN, 1973),

which are more efficient. The k − opt moves involve removing k edges from a route and

reconnecting the resulting subsequences with k other edges, leading to potentially better

solutions.

The Or − opt move, proposed by Or (OR, 1976), involves relocating a contiguous

sequence of 1 to λ consecutive customers within a route. On the other hand, Osman

(OSMAN, 1993) introduced the λ− interchange move, which exchanges two sequences of

customers, each containing at most λ customers (the two sequences may have different

lengths). These moves provide additional flexibility and exploration capabilities in local

search algorithms for the Vehicle Routing Problem (VRP) and its variants.



3.2. HEURISTIC, METAHEURISTIC, AND HYBRID METHODS 51

3.2.2 Metaheuristic approaches

The local search heuristics for routing problems have evolved into metaheuristics,

which comprise a range of techniques aimed at escaping local optima and achieving

improved results within reasonable computation times, in comparison to exact algorithms.

Given the highly combinatorial nature of vehicle routing problems, local search procedures

are typically integral components of effective metaheuristics. However, there are a few

exceptions, such as simulated annealing, basic versions of genetic algorithms, ant colony

optimization, and particle swarm techniques, which do not explicitly incorporate local

search components.

Simulated annealing is now less commonly utilized for routing problems, despite

being one of the earliest metaheuristics introduced for the CVRP. Osman’s work in 1993

presented λ−interchange moves as part of simulated annealing (OSMAN, 1993). Although

effective implementations of simulated annealing for routing problems can still be found

occasionally, such as Lin and Yu’s work on the team orienteering problem (LIN, 2013) and

Lin et al.’s work on the TTRP with time windows (LIN; VINCENT, 2012). Deterministic

variants of simulated annealing have been more successful in recent years. For instance, Li

et al. (LI; GOLDEN; WASIL, 2005) proposed a record-to-record travel method specifically

for the CVRP, which has shown promise, especially in parallel implementations (GROëR;

GOLDEN; WASIL, 2011).

Variable neighborhood search (VNS) and its simpler variant, variable neighborhood

descent (VND), are metaheuristics known for their speed, efficiency, and simplicity. They

operate by exploring different neighborhoods of increasing sizes, with the underlying idea

that a local optimum in one neighborhood may not be optimal in others. VNS and VND are

frequently used to replace traditional local search algorithms within other metaheuristics.

In the context of the CVRP, iterated local search methods that incorporate VND have been

proposed (CHEN; HUANG; DONG, 2010), as well as for the CARP with split deliveries

(BELENGUER et al., 2010). Effective VNS algorithms have been developed for various

problems such as the open VRP (FLESZAR; OSMAN; HINDI, 2009), multi-depot VRP

(KUO; WANG, 2012), inventory routing problem (LIU; CHEN, 2012; POPOVIć; VIDOVIć;

RADIVOJEVIć, 2012), and CARP (HERTZ; MITTAZ, 2001; POLACEK et al., 2008).

Although these methods may be outperformed by more advanced metaheuristics, their fast

execution makes them valuable candidates for solving large-scale problems (KYTöJOKI et

al., 2007).

Similar to the aforementioned metaheuristics, the greedy randomized adaptive

search procedure (GRASP) (FEO; RESENDE, 1989) is not highly efficient when applied

to routing problems. This inefficiency can be attributed to its independent iterations,

where a solution is generated using a randomized greedy heuristic and then improved
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through local search. Although Marinakis proposed a basic version of GRASP for the

CVRP (MARINAKIS, 2012), more efficient variants have been developed by incorporating

additional components. For instance, the path relinking technique has been integrated into

GRASP for the LRP (PRINS; PRODHON; CALVO, 2006), two-echelon LRP (NGUYEN;

PRINS; PRODHON, 2012), and CARP (USBERTI; FRANçA; FRANçA, 2013). In another

study, Qu and Bard (QU; BARD, 2012) employed a large-neighborhood search as an

improvement procedure within a GRASP framework for a pickup and delivery problem.

Iterated local search (ILS) (LOURENçO; MARTIN; STüTZLE, 2010) and guided

local search (GLS) (KILBY; PROSSER; SHAW, 1999) are highly effective metaheuristics

when applied to vehicle routing problems. They operate by generating a sequence of

local optima through the iterative process of alternating between a local search and a

perturbation step. In the case of ILS, the solution is directly perturbed, while GLS perturbs

the edge costs, causing the local optimum to no longer be optimal under the modified

costs. Notable examples of their effectiveness include an ILS for the heterogeneous fleet

VRP (SUBRAMANIAN et al., 2012) and a GLS for the CARP (BEULLENS et al., 2003).

In the 1990s, tabu search methods emerged as highly effective metaheuristics

for solving vehicle routing problems. To minimize a penalized objective function, vehicle

capacity and time windows were frequently relaxed. Notable achievements were made

in various problem domains, such as the Capacitated Vehicle Routing Problem (CVRP)

(BARBAROSOGLU; OZGUR, 1999; REGO; ROUCAIROL, 1996; TOTH; VIGO, 2003),

the Vehicle Routing Problem with Time Windows (VRPTW) (CORDEAU; LAPORTE;

MERCIER, 2001), the Heterogeneous Fleet VRP (HFVRP) (BRANDãO, 2011), and the

CVRP and HFVRP with two-dimensional loading (LEUNG et al., 2013; LEUNG et al.,

2011). While these algorithms often employed classical moves, some innovations were

introduced. For example, Rego and Roucairol (REGO; ROUCAIROL, 1996) implemented

ejection chains, and Toth and Vigo (TOTH; VIGO, 2003) devised a granular tabu search

(GTS) that restricts moves to a small fraction of the edges (specifically, the cheapest ones),

which is dynamically adjusted throughout the algorithm.

Genetic algorithms (GAs) were introduced shortly after the initial metaheuris-

tics for vehicle routing, namely simulated annealing and tabu search. However, their

performance has been mixed, except in the case of the Vehicle Routing Problem with

Time Windows (VRPTW) (THANGIAH, 2019; POTVIN; BENGIO, 1996). In the study

presented in (THANGIAH, 2019), chromosomes were used to represent complete solutions,

where each chromosome comprised a list of customers assigned to successive routes, sepa-

rated by copies of the depot node. Crossover operations based on this encoding, such as

RBX (POTVIN; BENGIO, 1996), could generate offspring solutions with route violations in

terms of vehicle capacity. Although this problem could be resolved by relocating customers

to other routes, it led to a degradation in the genetic transmission of beneficial patterns
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from parents to children. Another factor contributing to these somewhat unsatisfactory

results was the absence of a local search component.

Significant progress in solving the Capacitated Vehicle Routing Problem (CVRP)

was achieved from 2003 onwards with the introduction of memetic algorithms (MAs), which

combine genetic algorithms with local search techniques applied to offspring solutions

with a certain probability. The pioneering work by Berger and Barkaoui (BERGER;

BARKAOUI, 2003) laid the foundation, although they still used complete solutions as

chromosomes. The challenge of capacity violations was addressed by Baker and Ayechew

(BAKER; AYECHEW, 2003). In their approach, each chromosome represents a partition

of customers into clusters. The decoding process involves solving a Traveling Salesman

Problem (TSP) for each cluster using a constructive heuristic followed by a local search

utilizing 2 − opt and λ − interchange moves. Prins (PRINS, 2004) pursued a different

strategy known as the route-first cluster-second approach, where vehicle capacities were

relaxed, enabling the use of chromosomes without route delimiters, similar to those used

in the TSP. Prins referred to these chromosomes as giant tours. A procedure called Split

was developed to derive an optimal solution to the CVRP from each chromosome, subject

to the prescribed sequence. Notably, classical TSP crossovers such as LOX and OX could

be readily applied in this context, providing an advantage in terms of algorithmic design

and reuse.

The memetic algorithm (MA) introduced by Prins marked a significant break-

through, surpassing the performance of tabu search methods. Following this success, several

other effective memetic algorithms were developed, employing the concept of giant tours,

for various vehicle routing problems. These include the Capacitated Arc Routing Problem

(CARP) (LACOMME; PRINS; RAMDANE-CHERIF, 2004), the multiperiod Location

Routing Problem (LRP) (PRODHON; PRINS, ), the multicompartment Vehicle Routing

Problem (VRP) (FALLAHI; PRINS; CALVO, 2008), a production-distribution problem

(BOUDIA; PRINS, 2009), and the cumulative CVRP (NGUEVEU; PRINS; CALVO, 2010).

Notably, Nagata and Bräysy (NAGATA; BRäYSY, 2009) proposed an innovative MA

for the CVRP that did not rely on giant tours. Their approach utilized a sophisticated

crossover operator known as edge assembly crossover, which demonstrated remarkable

effectiveness in solving the CVRP.

Ant colony optimization (ACO) is particularly suitable for problems that involve

constructing solutions by finding paths in a graph. In the context of routing problems,

ants can be employed to create routes by selecting arcs in a sequential manner, guided by

pheromone deposits and a nearest neighbor heuristic. Recognizing the potential of this

approach, Reimann et al. (REIMANN; DOERNER; HARTL, 2004) devised a clever strategy

where ants build routes through successive insertions, starting from loops around the depot.

By incorporating a local search procedure, their algorithm yields highly effective results
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for the Capacitated Vehicle Routing Problem (CVRP). Another noteworthy contribution

in the field of ACO algorithms is the work of Santos et al. (SANTOS; COUTINHO-

RODRIGUES; CURRENT, 2010), who developed an ACO algorithm equipped with local

search. This algorithm stands out as one of the top-performing metaheuristics for the

Capacitated Arc Routing Problem (CARP).

Particle swarm optimization (PSO) has gained attention in the field of vehicle

routing relatively recently, and its effectiveness has been demonstrated primarily through

hybrid approaches that combine it with other metaheuristics. In their work, Chen et

al. (KENNEDY; EBERHART, ) proposed a PSO algorithm for the Capacitated Vehicle

Routing Problem (CVRP) that focuses on assigning customers to vehicles, while the

actual routes are determined using a simulated annealing step applied to each vehicle.

Marinakis and Marinaki (MARINAKIS; MARINAKI, 2010) achieved even better results

by employing a more complex hybridization strategy that combines PSO with GRASP and

path relinking. Furthermore, two PSO algorithms specifically tailored for the CVRP with

stochastic demands have been developed (MARINAKIS; IORDANIDOU; MARINAKI,

2013; MOGHADDAM; RUIZ; SADJADI, 2012). These approaches reflect the ongoing

exploration of PSO’s potential for solving vehicle routing problems.

Imperialist Competitive Algorithm (ICA) (ATASHPAZ-GARGARI; LUCAS, )

is a social inspired evolutionary algorithm, achieving success in many applications areas:

image encryption (ENAYATIFAR; ABDULLAH; LEE, 2013), stock market forecasting

(SADAEI et al., 2016) and scheduling problem (AYOUGH; ZANDIEH; FARSIJANI, 2012).

Yousefikhoshbakht et al. (YOUSEFIKHOSHBAKHT; SEDIGHPOUR, 2013) solved the

Traveling Salesman Problem based on a refined ICA, applying order crossover in the

Assimilation step and two exchange moves in Revolution step.

3.2.3 Hybrid methods

Another direction in the field of solving the CVRP is the development of hybrid

methods that combine multiple components to enhance performance. It has been observed

that the most effective metaheuristics for the CVRP, such as memetic algorithms and

Evolutionary Local Search (ELS), incorporate a local search procedure (VIDAL et al.,

2012; NAGATA; BRäYSY, 2009; PRINS; SEVAUX; SÖRENSEN, 2004). In some cases,

this local search procedure is replaced with techniques like Variable Neighborhood Descent

(VND), Variable Neighborhood Search (VNS), or Large Neighborhood Search (LNS) to

enhance intensification.

However, many existing metaheuristics are limited to solving a single variant of the

routing problem, which hinders their integration into commercial software. The development

of methods capable of addressing multiple problem variants with a single algorithm is
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still in its early stages. Some notable examples of such methods include the Universal

Tabu Search Algorithm (UTSA) proposed by Cordeau et al. (CORDEAU; LAPORTE;

MERCIER, 2001), the Large Neighborhood Search (LNS) approach introduced by Pisinger

and Röpke (PISINGER; ROPKE, 2007), and the Hybrid Genetic Algorithm proposed by

Vidal et al. (VIDAL et al., 2012) for solving CVRP, Multi-Depot VRP (MDVRP), and

Periodic VRP (PVRP). Vidal et al. also proposed another GA-based approach for problems

with time windows (VIDAL et al., 2013). The Unified Hybrid Genetic Search (UHGA)

combines evolutionary search, local search, and population management to address the

MDVRP, PVRP, and MDPVRP. Sbai et al. proposed two metaheuristics for solving the

CVRP in a real-life case study, utilizing a GA combined with a specialized Variable

Neighborhood Search (VNS) (SBAI; KRICHEN; LIMAM, 2022). More recently, Vidal

proposed a Hybrid Genetic Search for CVRP (VIDAL, 2022), known as HGS-CVRP. The

overall methodology of HGS-CVRP is similar to UHGA, but it introduces an additional

neighborhood called SWAP* Neighborhood, which allows exchanging two customers from

different routes without requiring an insertion in place.
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4 ICAHGS APPROACH

In this study, a novel algorithm is proposed which aims to incorporate the benefits

of both ICA and HGS-CVRP approaches. Additionally, the algorithm incorporates various

modifications to both ICA and HGS-CVRP to further enhance its performance. Prior

to the detailed description of the proposed algorithm, the applied refinements will be

discussed in the following subsections.

4.1 Refined ICA

In order to enhance the adaptability and suitability of the ICA method for

addressing the CVRP problem, refinements have been applied to the original ICA.

4.1.1 Modified “Create initial empires”

Following the original ICA (see section 2.6), initialization of countries and their

assignment to colonies are based on randomly generated individuals. For CVRP such

individuals may be either feasible or infeasible solutions. Given that imperialists play

“Local Optima” roles in their corresponding empires, initialization needs to ensure that the

solutions assigned are in fact feasible solutions i.e. Nimp feasible solutions are generated.

Equations (4.1) and (4.2) are applied to calculate the number of colonies for each

empire based on their power (or fitness value). These two equations form a normalization

equation to ensure that more colonies belong to more powerful empires. It should be

noted that the value “1.3” is not part of the original ICA, However, it appears in the first

implementation of the algorithm in MATLAB (MATLAB. . . , ). Finally, the Total cost of

each empire is calculated, as before, by Equation (2.3).

maxPower = 1.3×MAX

(
Cost

(
imperialist1

)
, . . . , Cost

(
imperialistNimp

))
(4.1)

N.C.n = round

(
maxPower − Cost

(
imperialistn

)∑Nimp

i=1

(
maxPower − Cost

(
imperialisti

))
×Ncol

)
(4.2)

where N.C.n is the number of colonies of the nth empire, Ncol is the total number of

colonies and the Cost represents the fitness function (or objective function). Algorithm 2

represents the pseudo code for this step.
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Algorithm 2 Create initial empires

1: Genearte Nimp random feasible solutions
2: Calculate the number of colonies for each empire by Equations (4.1) and (4.2)
3: Generate N.C. random solutions (Feasible or Infeasible) for each empire
4: Calculate the Total cost of each empire using Equation (2.3)

Algorithm 3 AssimRevol (combined Assimilation and Revolution)

1: for each empire do
2: Calculate number of colonies to participate in AssimRevol by Equation (2.2) (the

minimum number of participated colonies is one)
3: for i = 1 to NumOfRevolvedColonies do
4: if AssimType = False then
5: do Crossover between random selected colonies
6: else
7: do Crossover between BestSolutionOverall and random selected colonies
8: end if
9: LocalSearch as Revolution operator by HGS-CVRP
10: Population management and Penalty management by HGS-CVRP
11: if BestSolutionOverall is not improved after nbIter iterations then
12: run Restartmechanism
13: end if
14: end for
15: AssimType = False
16: end for

4.1.2 Defining “AssimRevol” as a new step

The ”Assimilation” and ”Revolution” steps of the original ICA are combined and

refined to form a new step, “AssimRevol” as described in Algorithm 3. The crossover

between the imperialist and a colony (see section 2.6), is adjusted to be performed between

two random colonies from the same empire - selected by two Binary Tournament Selections.

Such increased randomness in the colony selection supports diversification – see section

2.5; avoiding premature convergence of the empires and thus aiming to have a positive

effect on the quality of solutions achieved.

Further, when triggered by multi-step restart mechanism (by setting AssimType =

True) - see section 4.2.1; crossover is applied to the Best Solution Overall and one randomly

selected colony so as to increase intensification – see section 2.5.

As indicated in line 1 of Algorithm 3, AssimRevol is performed for each empire.

The number of colonies to participate in the AssimRevol is calculated by Equation (2.2) –

see line 2. In lines 3 to 14 the adjustments to the selected colonies are described. First,

crossover is performed (lines 5 and 7) either between randomly selected colonies or between

the BestSolutionOverall” and randomly selected colonies, controlled by the parameter
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AssimType, line 4. Each colony generated from the crossover operator is passed to the

LocalSearch function, HGS-CVRP (lines 9 and 10). Revolution (mutation), population

management and penalty management are applied. In line 12, the RestartMechanism is

triggered in the case of no improvement in the BestSolutionOverall after nbIter iterations.

4.1.3 Removing the step “Possess Empires”

“Possess Empires” is step 4 in the original ICA where a colony and its imperialist

are exchanged when the colony has a better fitness value (see section 2.6). To avoid this

step, a simple representation change is needed where the imperialist and its colonies are a

sorted list, with the fittest colony being the imperialist.

4.1.4 Modified “Imperialistic Competition”

Randomized selection is applied to refine step 6 in the original ICA (see section

2.6) to increase diversification (see section 2.5). A random colony (rather than the weakest)

is selected from the weakest empire in addition to a randomly selected empire (rather

than the most powerful one). Further, when the weakest empire loses all its colonies, its

imperialist will be seized by a randomly selected empire (rather than the most powerful

one).

4.2 Refined HGS-CVRP

In order to enhance the performance of the HGS-CVRP method, the single-step

restart mechanism is replaced with a proposed multi-step restart mechanism.

4.2.1 Proposed multi-step restart mechanism

HGS-CVRP involves a complete restart after a predefined number of generations

given no improvement in the BestSolutionOverall. Such a complete restart requires time to

regain the fitness level at the point of restart and thus, a need for a more efficient solution

was recognized.

The multi-step restart mechanism proposed herein provides two types: Partially

and Totally (original). As shown in Figure 15, in RestartPartially, 25% of the colonies

(orange) will be kept and 75% of the colonies (blue) will be regenerated randomly. Further,

25% of the kept colonies (orange) will be selected randomly from Feasible solutions and

75% from Infeasible ones. Infeasible solutions have more potential to become new Feasible

solutions, while most of the Feasible solutions, at this stage, have similar fitness values.

As described in Algorithm 4 (lines 1-8), the number of resets and last reset value will be
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stored. The parameter number of resets defines whether RestartPartially will be performed

(line 10) or RestartTotally (lines 11 to 17). Lines 13-14 select how crossover should be

applied.

Figure 15 – The process of partially restart

Algorithm 4 The proposed multi-step restart mechanism

1: Define variable NumOfResets to track the number of resets for each empire
2: Define variable LastResetValue to keep the last imperialist’s fitness value when Restart

mechanism is started
3: if imperialistCost = LastResetV alue then
4: NumOfResets = NumOfResets+ 1
5: else
6: LastResetV alue = imperialistCost
7: NumOfResets = 1
8: end if
9: if NumOfResets = 1 then
10: run RestartPartially
11: else if NumOfResets = 2 then
12: run RestartTotally
13: if imperialistCost ̸= BestSolutionCost then
14: AssimType = True
15: end if
16: else if NumOfResets > 2 then
17: run RestartTotally
18: end if

4.3 ICAHGS approach

The proposed ICAHGS, seeks to exploit the advantages of both HGS-CVRP

and ICA in a single method. As stated, ICA shows strength in global search in its multi-

population structure whilst HGS-CVRP benefits from its population management, diversity

control and improved local search.
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Figure 16 provides an overview of the proposed ICAHGS algorithm. As shown,

ICA is the main algorithm – ICA Workspace; based on a refined ICA – see section 4.1.

Further, within each empire of the ICA Workspace, a refined HGS-CVRP manages the

colonies – see section 4.2. Algorithm 5 presents the ICAHGS algorithm, where the main

algorithm is the refined ICA and lines 7 to 12 apply the refined HGS-CVRP to the colonies.

Figure 16 – An overview of the proposed algorithm, ICAHGS

4.4 Experimental results

4.4.1 Experimental setup

The simulator was developed in C++ and compiled with g++ 7.5.0 on Linux

Ubuntu 18.04. All experiments were performed on an Intel(R) Core (TM) i5-4590T CPU

@ 2.00GHz with 12 GB RAM. To enable comparison of experimental results with Vidal’s

(VIDAL et al., 2012), the Tmax applied is scaled up by R = 2186/1646 where R is the

ratio of the single thread rating of CPUs (CPU. . . , ). Therefore, the new time limit will be

Tmax = TmaxV ×R seconds, where n is the number of customers and TmaxV = n× 240/100

is the suggested Tmax by Vidal.

To increase statistical significance, 10 independent runs with different seed numbers

are performed for each instance. Further, to measure the quality of solutions, the Gap of

each algorithm was calculated by Gap = (V alue−BKS)/BKS where V alue is the solution
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Algorithm 5 ICAHGS

1: Start
2: Create initial empires (Algorithm 2)
3: while stopping criterion is not met do
4: AssimRevol step:
5: for each empire in empires do
6: for each colony in Revolving Colonies do
7: Crossover OX
8: Local Search
9: Population management & penalties adaptation

10: if no improvement after nbIter iterations then
11: run Restart Mechanism
12: end if
13: end for
14: end for
15: Imperialistic competition - The gradual destruction of weaker empires
16: end while
17: Output the best-found solution
18: End

value provided by the proposed methods and BKS is the Best-Known Solution value for

instance, extracted from the CVRPLIB website (CVRPLIB. . . , ). Further, statistical tests

- t-tests and the Wilcoxon test, were applied where possible, provided in section 4.4.9.

4.4.2 Benchmarks

In this study, 140 benchmark instances, selected from the following benchmarks

are applied:

• Uchoa (UCHOA et al., 2017): This benchmark contains 100 instances from 100

to 1000 clients providing a wide range of CVRP characteristics. In this study, the

main experiments are performed on this benchmark, and are referred to X-instances.

• CMT (CHRISTOFIDES, 1979): CMT is another well-known benchmark in the

literature, containing 14 instances from 50 to 199 customers.

• Golden (GOLDEN et al., 1998): Golden is composed of 20 large-scale instances

using from 200 to 480 customers where some instances have constraints on the

maximum length of any route.

• LoggiBUD (LOGGI. . . , ): The Loggi Benchmark for Urban Deliveries provides

a real-world dataset - simulating the challenges of a large delivery company in the

last-mile step of its supply chain in Brazil’s largest cities. The 6 instances of the

DIMACS VRP challenge 2021 (DIMACS, ) were selected.
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4.4.3 Tuning the ICA parameters

Two subsets of the parameters “Initial Imperialists” (subset1 = [2, 3, 5]) and

“Revolution Rate” (subset2 = [0.4, 0.5, 0.6]) were experimentally defined. 5 random

instances from different client ranges of X-instances were selected and the ICAHGS was

performed for 10 independent runs with different seed numbers. The ξ (zeta) from the

original ICA and the HGS-CVRP parameters were kept unchanged from (MATLAB. . . , )

and (VIDAL, 2022), respectively. The average performance (Value) and average efficiency

(time) – in term of consumed CPU time in seconds; are presented in Table 1. The resulting

best values for “Initial Imperialists” (II) and “Revolution Rate” (RR) are 3 and 0.5,

respectively. The overview of the ICAHGS parameters is provided in Table 2.

Table 1 – Sweep of ICA Parameter

Cases X-n129-k18 X-n228-k23 X-n336-k84 X-n524-k153 X-n801-k40

II RR Value time Value time Value time Value time Value time

2 0.4 28940.0 10.20 25742.8 41.76 139269.7 637.02 154669.3 997.12 73431.3 2302.63

2 0.5 28940.0 10.20 25742.8 31.13 139193.7 841.64 154674.7 681.63 73459.6 2450.21

2 0.6 28940.0 9.65 25742.7 83.13 139246.3 959.12 154719.0 1128.96 73467.7 2049.22

3 0.4 28940.0 14.83 25742.7 165.01 139293.7 898.18 154689.0 1365.86 73547.0 1890.11

3 0.5 28940.0 13.35 25742.0 212.75 139186.3 787.86 154666.4 927.58 73414.3 1978.21

3 0.6 28940.0 18.03 25742.7 97.48 139275.7 381.11 154726.3 957.84 73586.0 2092.21

5 0.4 28940.0 24.72 25743.0 59.40 139385.0 670.66 154683.7 948.48 73432.5 2136.76

5 0.5 28940.0 24.92 25742.8 111.02 139270.7 733.09 154689.7 1149.70 73437.0 1997.55

5 0.6 28940.0 32.03 25742.7 167.63 139316.7 414.46 154746.8 889.11 73423.0 2526.59

Table 2 – The parameters of ICAHGS

Parameter name Additional comment Value

IC
A

p
ar
t Initial countries From the original HGS-CVRP 100

Initial imperialists From parameter tuning 3

Revolution Rate From parameter tuning 0.5

ξ (zeta) From the original ICA 0.3

H
G
S
-C

V
R
P
p
ar
t µ (miu) Minimum population size 25

λ (lambda) Generation size 40

nelite Number of elite solutions considered in the fitness calculation 4

nclosest Number of close solutions considered in the diversity-contribution measure 5

Γ Granular search parameter 20

ξRef Target proportion of feasible individuals for penalty adaptation 0.2

4.4.4 Refined ICA vs. original ICA

In order to assess the performance and efficiency of the proposed refined ICA

within ICAHGS, two approaches are considered: ICAHGS with the original ICA (see

section 2.6) and with the refined ICA (see section 4.1).
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The comparison is performed on 10 random benchmark instances and the results

are listed in Table 3. In the table, if BKS is reached, BKS is listed as the improvement;

otherwise, the % improvement is listed either with respect to the value achieved or to the

gap. If both versions achieved BKS i.e., no improvement is needed, the effect on time is

given.

The ICAHGS with refined ICA found 5 BKS. In 4 instances, both algorithms

achieved the BKS, but ICAHGS with refined ICA showed better efficiency. Moreover, for

X-n856-k95, the performance of ICAHGS with respect to the gap, has improved by more

than 50%.

Table 3 – Comparative results to analyze the refined ICA

Instances

ICAHGS with

original ICA

ICAHGS with

refined ICA
improvement

Best Gap time Best Gap time type percent

X-n106-k14 26362 0.00 162.45 26362 0.00 158.10 Time 2.68

X-n125-k30 55539 0.00 241.02 55539 0.00 20.70 Time 91.41

X-n261-k13 26558 0.00 537.42 26558 0.00 336.20 Time 37.44

X-n284-k15 20244 0.14 597.25 20215 0.00 853.60 BKS -

X-n317-k53 78361 0.01 468.53 78355 0.00 153.33 BKS -

X-n411-k19 19739 0.14 857.05 19712 0.00 1100.40 BKS -

X-n429-k61 65458 0.01 1303.23 65449 0.00 571.20 BKS -

X-n459-k26 24145 0.02 811.56 24139 0.00 1358.11 BKS -

X-n513-k21 24201 0.00 864.97 24201 0.00 128.30 Time 85.17

X-n856-k95 89016 0.06 2584.16 88990 0.03 2150.60 Gap 50.98

4.4.5 Analysis of multi-step restart mechanism (MSRM)

To study the effect of the multi-step restart mechanism (see section 4.2.1), the

performance and efficiency of ICAHGS without MSRM – allows total restart; and with

MSRM – allows both partial and total restart; were compared. The results for the same

10 random instances as in section 4.4.4, are reported in Table 4. In 5 instances, MSRM

has pushed the algorithm to find BKS. Furthermore, for X-n856-k95, a 40% performance

improvement is achieved. For 3 cases, where BKS was achieved in both approaches, the

efficiency has improved when applying MSRM.

4.4.6 ICAHGS versus HGS-CVRP on CMT and Golden benchmarks

To study the generality of the results, two further benchmarks are studied: CMT

(CHRISTOFIDES, 1979) and Golden (GOLDEN et al., 1998). The average and the best
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Table 4 – Comparative results to analyze the multi-step restart mechanism

Instances

ICAHGS

(without MSRM)

ICAHGS

(with MSRM)
improvement

Best Gap time Best Gap time type percent

X-n106-k14 26386 0.09 58.10 26362 0.00 158.10 BKS -

X-n125-k30 55539 0.00 21.20 55539 0.00 20.70 Time 2.40

X-n261-k13 26558 0.00 800.40 26558 0.00 336.20 Time 58.00

X-n284-k15 20244 0.14 181.10 20215 0.00 853.60 BKS -

X-n317-k53 78355 0.00 251.80 78355 0.00 153.33 Time 39.10

X-n411-k19 19718 0.03 277.42 19712 0.00 1100.40 BKS -

X-n429-k61 65487 0.06 818.20 65449 0.00 571.20 BKS -

X-n459-k26 24143 0.02 1464.40 24139 0.00 1358.11 BKS -

X-n513-k21 24201 0.00 127.23 24201 0.00 128.30 Time -0.80

X-n856-k95 89006 0.05 408.16 88990 0.03 2150.60 Gap 40.00

obtained results at Tmax from 10 independent runs are provided in the Table 6 (CMT) and

Table 7 (Golden). In Table 5, a summary of the gaps in the average values of solutions

among all instances of CMT and Golden benchmarks is presented, along with the number

of BKS instances discovered.

Both ICAHGS and HGS-CVRP found 13 BKS out of 14 instances of CMT and

the gap for the remaining instance (CMT5) is 0.01% - negligible for most applications.

For the golden dataset, ICAHGS achieved 8 BKS, compared to the 7 of HGS-

CVRP. Furthermore, considering Average and Best found solutions, ICAHGS performed

better for 10 and 8 instances, respectively – see Table 7. In addition, ICAHGS obtained

62% improvement for the Max. Gap of Best solutions and 39.1% for the Max. Gap of

Average solutions.

Table 5 – Comparative results between HGS-CVRP and ICAHGS on CMT and Golden
benchmarks

CMT Golden

HGS-CVRP ICAHGS HGS-CVRP ICAHGS

Min Gap 0.00 0.00 0.00 0.00

Avg Gap 0.0009 0.0009 0.18 0.14

Max Gap 0.0123 0.0123 0.92 0.56

Number of BKS 13 13 7 8
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Table 6 – Comparative results HGS-CVRP, ICAHGS and BKS for CMT benchmark

Instance
HGS-CVRP (2020) ICAHGS

BKS
Avg Gap Best Gap Avg Gap Best Gap

CMT1 524.61 0.00 524.61 0.00 524.61 0.00 524.61 0.00 524.61

CMT2 835.26 0.00 835.26 0.00 835.26 0.00 835.26 0.00 835.26

CMT3 826.14 0.00 826.14 0.00 826.14 0.00 826.14 0.00 826.14

CMT4 1028.42 0.00 1028.42 0.00 1028.42 0.00 1028.42 0.00 1028.42

CMT5 1291.45 0.01 1291.45 0.01 1291.45 0.01 1291.45 0.01 1291.29

CMT6 555.43 0.00 555.43 0.00 555.43 0.00 555.43 0.00 555.43

CMT7 909.68 0.00 909.68 0.00 909.68 0.00 909.68 0.00 909.68

CMT8 865.95 0.00 865.95 0.00 865.95 0.00 865.95 0.00 865.95

CMT9 1162.55 0.00 1162.55 0.00 1162.55 0.00 1162.55 0.00 1162.55

CMT10 1395.85 0.00 1395.85 0.00 1395.85 0.00 1395.85 0.00 1395.85

CMT11 1042.12 0.00 1042.12 0.00 1042.12 0.00 1042.12 0.00 1042.12

CMT12 819.56 0.00 819.56 0.00 819.56 0.00 819.56 0.00 819.56

CMT13 1541.14 0.00 1541.14 0.00 1541.14 0.00 1541.14 0.00 1541.14

CMT14 866.37 0.00 866.37 0.00 866.37 0.00 866.37 0.00 866.37

Table 7 – Comparative results HGS-CVRP, ICAHGS and BKS for Golden benchmark

Instance
HGS-CVRP (2020) ICAHGS

BKS
Avg Gap Best Gap Avg Gap Best Gap

Golden 1 5623.47 0.00 5623.47 0.00 5623.47 0.00 5623.47 0.00 5623.47

Golden 2 8436.24 0.38 8412.83 0.10 8417.20 0.15 8406.33 0.02 8404.61

Golden 3 11036.20 0.35 11036.20 0.35 11036.20 0.35 11036.20 0.35 10997.80

Golden 4 13624.50 0.26 13624.50 0.26 13624.50 0.26 13624.50 0.26 13588.60

Golden 5 6460.98 0.00 6460.98 0.00 6460.98 0.00 6460.98 0.00 6460.98

Golden 6 8412.90 0.15 8412.90 0.15 8412.90 0.15 8412.90 0.15 8400.33

Golden 7 10195.60 0.92 10195.60 0.92 10159.55 0.56 10132.90 0.30 10102.70

Golden 8 11635.30 0.00 11635.30 0.00 11635.30 0.00 11635.30 0.00 11635.30

Golden 9 580.39 0.12 579.71 0.00 580.30 0.10 579.71 0.00 579.70

Golden 10 737.83 0.33 736.60 0.16 737.39 0.27 736.00 0.08 735.43

Golden 11 913.80 0.20 913.14 0.13 913.60 0.18 913.06 0.12 911.98

Golden 12 1105.86 0.42 1104.95 0.34 1104.74 0.32 1103.34 0.19 1101.24

Golden 13 857.19 0.00 857.19 0.00 857.19 0.00 857.19 0.00 857.19

Golden 14 1080.55 0.00 1080.55 0.00 1080.55 0.00 1080.55 0.00 1080.55

Golden 15 1339.47 0.16 1339.07 0.13 1339.36 0.16 1337.84 0.04 1337.27

Golden 16 1614.80 0.22 1613.25 0.12 1614.50 0.20 1612.57 0.08 1611.28

Golden 17 707.76 0.00 707.76 0.00 707.76 0.00 707.76 0.00 707.76

Golden 18 995.13 0.00 995.13 0.00 995.13 0.00 995.13 0.00 995.13

Golden 19 1365.90 0.02 1365.63 0.00 1365.65 0.00 1365.60 0.00 1365.60

Golden 20 1818.68 0.06 1817.89 0.02 1818.37 0.04 1817.89 0.02 1817.59
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4.4.7 Evaluating ICAHGS against state-of-the-art algorithms on Uchoa benchmark

ICAHGS is compared to four state-of-the-art methods from the literature: Google

OR-Tools (GOOGLE. . . , ), KGLS (knowledge guided local search) (ARNOLD; SöRENSEN,

2019), SISR (slack induction by string removals) (CHRISTIAENS; BERGHE, 2020), and

HGS-CVRP (VIDAL, 2022). Google OR-Tools was selected as a baseline due to its

reputation as a reliable general-purpose tool in the field of operations research. The

remaining algorithms were chosen for their relevance and timeliness as representative

examples of current techniques in the field.

ICAHGS experiments were conducted on 100 benchmark instances from the Uchoa

benchmark. The average and best results reported in Vidal’ research (VIDAL, 2022), for

each state-of-the-art algorithm on X-instances, are provided for comparison.

Table 8 presents a detailed comparison of the obtained gaps in average solution

values for HGS-CVRP and ICAHGS whilst Table 9 summarizes the gaps in average

solution values across all instances, as well as the number of BKS instances found. A more

comprehensive presentation of the comparative results can be found in Table 10.

It is clear that ICAHGS achieved higher quality solutions in comparison with

its original algorithm (HGS-CVRP) and the remaining state-of-the-art algorithms. The

following improvements, compared to HGS-CVRP, may be noted:

• ICAHGS achieves 51 BKS, whilst HGS-CVRP achieves 44 i.e. a 15.9% comparison

(see Table 9).

• ICAHGS gains 14.3% and 27.3% improvement respectively for Max. and Avg. Gap

of Average solutions (see Table 8).

• In the case of small instances (first 50 instances), the ICAHGS obtains optimal

or near-optimal solutions, with 31.3% and 47.8% improvement over HGS-CVRP

respectively for Max. and Avg. Gap of Average solutions (see Table 8).

• In the case of large instances (last 50 instances), the ICAHGS achieves 14.3%

improvement for the Max. Gap and 23.7% for the Avg. Gap of average solutions

(Table 8)



4.4. EXPERIMENTAL RESULTS 67

Table 8 – Comparing Gaps of average solution values for HGS-CVRP and ICAHGS

Gaps
included

HGS-CVRP ICAHGS
improvement

instances (%)

Max Gap 100 0.56 0.48 14.3

Avg. Gap 100 0.11 0.08 27.3

Max Gap First 50 0.16 0.11 31.3

Avg. Gap First 50 0.023 0.012 47.8

Max Gap Last 50 0.56 0.48 14.3

Avg. Gap Last 50 0.198 0.151 23.7

Table 9 – Comparative results between different algorithms

OR-Tools KGLS SISR HGS-CVRP
ICAHGS

(2020) (2018) (2020) (2020)

Min Gap 0.38 0 0 0 0

Avg Gap 4.01 0.53 0.19 0.11 0.08

Max Gap 8.62 1.24 1.63 0.56 0.48

Number of BKS 0 6 21 44 51

When comparing the HGS based algorithms to other state of the art algorithms,

the following improvements may be noted:

• Both the HGS algorithms achieve more BKS than SISR (21 BKS) and KGLS (6) –

see Table 9. Further, it should be noted that OR-Tools did not achieve any BKS.

• The HGS algorithms achieve much lower Avg. Gap followed by SISR (0.19%), KGLS

(0.53%) and OR-Tools (4.01%).
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4.4.7.1 Evolutionary performance of ICAHGS and HGS-CVRP

Figure 17 compares the Best performance of ICAHGS and HGS-CVRP over time -

the same compiler and seed numbers are applied to each algorithm and Vidal’s source code

(VIDAL’S. . . , ) is applied for HGS-CVRP. As shown, ICAHGS quickly shows superior

performance to HGS-CVRP.

Figure 17 – Performance of ICAHGS and HGS-CVRP over time

Figures 18 to 21 highlight such performance over time for a) 2 cases of small

instances and b) 2 cases of large instances. The route of each vehicle in the best-found

solution by ICAHGS is displayed to the right of the evolutionary performance graphs.

As shown in Figure 18, both algorithms obtained the BKS at the same time given the

small size of the instance. However, as highlighted in Figure 19 and Figure 20, ICAHGS

achieved the best solutions in approximately half the time consumed by the HGS-CVRP

i.e. for both a small instance and also a large instance. However, in Figure 21, neither

algorithm could find the BKS. HGS-CVRP has obtained the Gap 0.06 after 1484 seconds

and then has stagnated. On the other hand, ICAHGS reached the Gap 0.06 in 332 seconds

i.e., four times faster; and improvement continues until a superior Gap of 0.03 is achieved.
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Figure 18 – Performance and best-found solution for X-n125-k30 (small)

Figure 19 – Performance and best-found solution for X-n261-k13 (small)

4.4.8 Real-world application

Solving a real-world problem is the ultimate goal for VRP algorithms. Thus IC-

AHGS is compared to HGS-CVRP on 6 instances of the LoggiBUD benchmark (LOGGI. . . ,

). The average and the best obtained results at Tmax from 10 independent runs are provided

in the Table 11. Table 12 provides a summary of the gaps in the average solution values

for both the HGS-CVRP and ICAHGS algorithms as well as the number of BKS achieved.

As shown, ICAHGS outperforms HGS-CVRP, achieving better performance in 5 out of

the 6 instances for average solutions and 4 out of 6 instances for best solutions.
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Figure 20 – Performance and best-found solution for X-n513-k21 (large)

Figure 21 – Performance and best-found solution for X-n856-k95 (large)

Table 11 – Comparative results HGS-CVRP, ICAHGS and BKS for Loggi Benchmark for
Urban Deliveries

Instance
HGS-CVRP (2020) ICAHGS

BKS
Avg Gap Best Gap Avg Gap Best Gap

Loggi-n401-k23 337231.8 0.08 337130 0.05 337153.2 0.06 337006 0.02 336946

Loggi-n501-k24 177506.2 0.02 177495 0.02 177505 0.02 177469 0.00 177466

Loggi-n601-k19 113309.4 0.14 113257 0.09 113270.2 0.10 113220 0.06 113155

Loggi-n601-k42 347092.8 0.01 347059 0.00 347081.2 0.01 347059 0.00 347059

Loggi-n901-k42 246614.8 0.08 246485 0.03 246661.8 0.10 246523 0.04 246418

Loggi-n1001-k31 286069.2 0.60 285743 0.49 285889.6 0.54 285649 0.45 284356

4.4.9 Statistical analysis

A t-test and the Wilcoxon test are both statistical tests that are used to compare

the means of two groups of data. A t-test, also known as Student’s t-test, is used to

determine whether there is a significant difference between the means of two groups of
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Table 12 – Summary of the results HGS-CVRP and ICAHGS on 6 instances of LoggiBUD
benchmark

HGS-CVRP ICAHGS

Min Gap 0.01 0.01

Avg Gap 0.16 0.14

Max Gap 0.60 0.54

Number of BKS 1 1

data (STUDENT, 1908). On the other hand, the Wilcoxon test is a non-parametric test

that is used when the data is not normally distributed or when the variances of the two

groups are not equal (WILCOXON, 1947).

In order to evaluate the performance of the ICAHGS algorithm in comparison

to state-of-the-art algorithms (OR-Tools, KGLS, SISR, and HGS-CVRP), both t-test

and Wilcoxon test were conducted on the average of solutions obtained from the Uchoa

benchmark (as presented in Table 10) - see Table 13. In the realm of statistical hypothesis

testing, the null hypothesis is formally characterized as the assertion that ”the population

means of two groups are equivalent.” In light of the computed p-value, which falls below

the conventional significance threshold of 0.05, the null hypothesis is decisively rejected.

This outcome signifies the existence of a statistically significant distinction between the

two sets of data under scrutiny. Thus, as shown, with ρ < 0.05, the ICAHGS algorithm

demonstrates significantly superior performance in comparison to the state-of-the-art

algorithms.

Table 13 – Comparative statistical results between ICAHGS and state-of-the-art algo-
rithms on Uchoa benchmark

p-values

ICAHGS & ICAHGS & ICAHGS & ICAHGS &

OR-Tools KGLS SISR HGS-CVRP

t-test <.001 <.001 <.001 <.001

Wilcoxon <.001 <.001 <.001 <.001

Table 14 – Statistical results between ICAHGS and HGS-CVRP

p-values

Benchmarks t-test Wilcoxon

Golden <.001 <.001

LoggiBUD .015 .019

CMT Nan Nan
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Table 14 presents the statistical analysis of ICAHGS performance compared to

HGS-CVRP on the Golden, LoggiBUD and CMT benchmarks. Considering the same

null hypothesis, ICAHGS shows a significant performance improvement over HGS-CVRP

on the Golden and LoggiBUD benchmarks. However, for the CMT benchmark, both

ICAHGS and HGS-CVRP were able to find almost all the BKS, resulting in no significant

performance difference. It should be noted that, due to the lack of data behind the results

for the state-of-the-art algorithms on these benchmarks, it was not possible to make any

statistical comparison.

4.4.10 Complexity analysis

Time complexity analysis is a fundamental concept in computer science and is

used to understand the performance of algorithms. It refers to the study of how the

running time of an algorithm scales with the size of the input data. In this section, the

time complexity of the proposed ICAHGS is compared to HGS-CVRP and the original

ICA.

As outlined in Algorithm 5, the AssimRevol step of ICAHGS involves two loops

for traversing empires and their colonies, during which OX Crossover, local search, and

population management (if necessary) are applied to each colony. On the other hand,

HGS-CVRP applies the same operations to each individual in the population, leading to

the same time complexity as ICAHGS given the same initial population size. Additionally,

ICAHGS includes the ”imperialistic competition” process, which occurs frequently but

does not contain any loops that would impact its time complexity calculations. It is worth

noting that each iteration of ICAHGS is equivalent to Pop×RR iterations of HGS-CVRP,

where Pop and RR refer to the initial population size and Revolution Rate, respectively.

ICAHGS with the original ICA and with the refined ICA, have the same time

complexity. However, ICAHGS with the refined ICA exhibits a shorter run time. The run

time for the original ICA can be calculated as O(Iter×Emp×Pop×(1+RR)), where Iter

is the maximum number of iterations, Emp represents the number of empires, Pop denotes

the number of colonies, and RR is the Revolution Rate. On the other hand, the run time

for the proposed ICAHGS with refined ICA is calculated as O(Iter × Emp× Pop×RR).

Given the same number of empires, colonies, and a Revolution Rate of 0.5 (as proposed in

the ICAHGS), ICAHGS with refined ICA is 3 times faster. This improvement is achieved

by combining the Assimilation and Revolution steps (see 4.1.2). In the original ICA,

all colonies within each empire participate in the Assimilation step. In contrast, only

Pop×RR colonies participate in the refined ICA.
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5 DPIGA-HGS APPROACH

In Chapter 4, the performance evaluation demonstrated the superiority of the

proposed ICAHGS (Imperialist Competitive Algorithm and Hybrid Genetic Search) over

the original HGS and other state-of-the-art algorithms. Building upon this success, the

focus of this chapter is to introduce a second approach called Dynamic Population Island

GA and HGS (DPIGA-HGS). DPIGA-HGS is a novel hybrid metaheuristic model that

combines a specialized island model (DPIGA) with HGS as its local search engine within

each island, with the following objectives:

1. To introduce a novel variant of the island model, tailored to the specific requirements

and characteristics of the problem domain, thereby contributing to the advancement

of the field.

2. To further enhance the quality of the solutions in comparison to ICAHGS, thereby

achieving even better optimization results.

5.1 Dynamic Population Island GA (DPIGA)

The proposed island model, drawing inspiration from the ICA, incorporates the

fundamental characteristics of classical island models, but it distinguishes itself through

its unique migration policy. As previously discussed in Section 2.8, the migration policy

plays a crucial role in determining the selection criteria for migrants and the strategy for

their replacement.

In the proposed DPIGA framework, during each migration interval, a single

random individual (referred to as the migrant) is selected from the Source-Island and

migrates to the Target-Island. The migrant is added to the population of the Target-Island,

while being simultaneously removed from the population of the Source-Island. The Source-

Island is identified as the island with the highest IslandSolution, which is calculated as the

average fitness value of all feasible solutions within that particular island. On the other

hand, the Target-Island is chosen randomly. This random selection of the target island

contributes to maintaining diversification within the algorithm. Algorithm 6 presents the

proposed migration policy.

To facilitate these migrations, a Fully connected migration topology is adopted,

enabling each island to send migrants to all other islands and receive migrants from them.

This fully interconnected topology facilitates efficient exchange of genetic information,

allowing for exploration and exploitation across the entire island population.
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Algorithm 6 proposed migration policy for DPIGA-HGS)

1: Select the island with the maximum IslandSolution as SourceIsland
2: Select one individual randomly from SourceIsland, as migrant
3: Select one island randomly as TargetIsland
4: Add the migrant to the population of the TargetIsland
5: Remove the migrant from the population of SourceIsland
6: if SourceIsland has no more individual in its population then
7: Remove SourceIsland from the model
8: end if

This migration scheme serves to gradually eliminate islands with the highest

IslandSolution as individuals migrate between islands. Once an island loses all of its

individuals, it is subsequently removed from the island model.

As the DPIGA is inspired by the ICA, specifically the refined version discussed

in Section 4.1, there are both similarities and differences between the two approaches. In

terms of similarities, the islands in DPIGA can be likened to the empires in the ICA, and

the migration process in DPIGA corresponds to the concept of ”Imperialistic competition”

in the ICA. However, several differences distinguish DPIGA from ICA, as outlined below:

1. In the ICA, the number of colonies in an empire is determined by the power of its

imperialist, whereas the initial population size of the islands in DPIGA is equal.

2. In the ICA, as discussed in Section 4.1, each empire must generate at least one

feasible solution corresponding to its imperialist. However, the proposed DPIGA

does not have such restrictions. The initial population in DPIGA can consist of

various solution types, including feasible, infeasible, or a combination of both.

3. In the ICA, the cost of an empire is directly influenced by its imperialist, taking into

account a small portion of the fitness value averages of its colonies (where 0 < ξ < 1).

In contrast, the proposed DPIGA incorporates the averages of fitness values of all

feasible solutions. As a result, DPIGA maximizes the contribution of all feasible

solutions.

5.2 Refined HGS-CVRP

As detailed in Section 4.2, the ICAHGS approach incorporates a multi-step restart

mechanism to improve the quality of solutions. Experimental results demonstrate the

beneficial impact of this modification on the obtained results. Leveraging the insights

gained from these experiments, a new multi-step restart mechanism is developed and

implemented in the DPIGA-HGS algorithm.
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5.2.1 proposed multi-step restart mechanism

When designing a metaheuristic, it is crucial to consider two conflicting objectives:

diversification and intensification (TALBI, 2009). The objective of the proposed multi-

step restart mechanism is to strike a balance between these two criteria by enhancing

intensification while preserving diversification. By incorporating this mechanism, the

algorithm aims to intensify the search by focusing on promising areas of the solution space,

while simultaneously ensuring diversity to explore different regions and avoid premature

convergence.

Similar to the proposed multi-step restart mechanism in ICAHGS (see section

4.2.1), the newly designed mechanism includes two types: Partially and Totally . However,

the application levels of these types differ from ICAHGS. The proposed restart mechanism

is outlined in Algorithm 7.

Algorithm 7 begins by creating and storing the number of resets and the last

reset value (lines 1-8). The parameter number of resets determines whether PartialRestart

will be performed (lines 10 and 12) or TotalRestart (line 14). PartialRestart consists of

two steps: 25% and 10%. In the first step, 25% of the population is preserved, while the

remaining 75% is regenerated randomly (line 10). This step is identical to the restart

mechanism in ICAHGS. Additionally, another PartialRestart is applied when a second

restart is required. In this step, 10% of the population is retained, and the remaining 90%

is regenerated randomly (line 12). Figure 22 and Figure 23 depict the PartiallyRestart

steps.

Figure 22 – The process of partially restart – Step 1

If no new solution is found after two PartialRestarts, a TotalRestart is triggered,

where the entire population is regenerated randomly (line 9). TotalRestart aims to increase

population diversity but may disrupt the balance between diversification and intensification.

To restore the balance, lines 10-15 of the algorithm introduce different crossover operations

when the number of restarts is even.
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Figure 23 – The process of partially restart – Step 2

Algorithm 7 The proposed multi-step restart mechanism for DPIGA-HGS

1: Define variable NumOfResets to track the number of resets for each island
2: Define variable LastResetValue to keep the last BestIslandSolution cost when Restart

mechanism is started
3: if BestIslandSolution = LastResetV alue then
4: NumOfResets = NumOfResets+ 1
5: else
6: LastResetV alue = BestIslandSolution
7: NumOfResets = 1
8: end if
9: if NumOfResets = 1 then
10: run RestartPartially(0.25)
11: else if NumOfResets = 2 then
12: run RestartPartially(0.10)
13: else
14: run RestartTotally
15: if NumOfResets%2 = 0 then
16: if BestIslandSolution ̸= BestSolutionOverall then
17: CrossType = True
18: else
19: CrossType = False
20: end if
21: else
22: CrossType = False
23: end if
24: end if

5.3 DPIGA-HGS approach

An overview of the proposed DPIGA-HGS algorithm is provided in Figure 24. The

algorithm employs an island model as the main evolutionary algorithm, which is based on

the proposed DPIGA method discussed in section 5.1. Within each island of the DPIGA

model, the individuals are managed by a refined HGS-CVRP, as described in section 5.2.
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The DPIGA-HGS algorithm is presented in Algorithm 8. In this algorithm, the

refined HGS-CVRP is applied to the individuals in lines 11-15, while the proposed migration

policy is implemented in line 18. During each iteration of the algorithm and for each island,

the number of mutated individuals (NumberOfMutatedIndv) is calculated based on the

mutation rate (line 5), and the crossover operator is applied in lines 6-10. Crossover is

performed either between randomly selected colonies or between the BestSolutionOverall

and randomly selected colonies, controlled by the parameter CrossType.

Figure 24 – An overview of the proposed DPIGA-HGS

5.4 Experimental results

In this section, the experimental results are presented and analyzed to compare the

performance of the two proposed algorithms: ICAHGS and DPIGA-HGS. To ensure fair

and consistent evaluation, the same benchmark instances are utilized for both algorithms.

However, it should be noted that while ICAHGS has been previously compared with

HGS-CVRP and other state-of-the-art algorithms, this section focuses solely on comparing

DPIGA-HGS with ICAHGS. It is important to highlight that the software and hardware

configurations remain unchanged throughout the experimentation process, ensuring that

both algorithms are assessed under identical environments.

5.4.1 Tuning the proposed IGA parameters

Two distinct subsets of parameters, namely ”Initial Islands” (subset1 = [3, 4, 5])

and ”Mutation Rate” (subset2 = [0.4, 0.5, 0.6]), were defined for experimental purposes.
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Algorithm 8 DPIGA-HGS

1: Start
2: Create initial population and islands
3: while stopping criterion is not met do
4: for each island in islands do
5: for ii = 1 to NumberOfMutatedIndv do
6: if CrossType = False then
7: do CrossOver between individuals
8: else
9: do CrossOver between BestSolutionOverall and a random selected individual

10: end if
11: Local Search
12: Population management & penalties adaptation
13: if no improvement after nbIter iterations then
14: run Restart Mechanism
15: end if
16: end for
17: end for
18: After a preset migration interval, perform Migration process
19: end while
20: Output the best-found solution
21: End

The DPIGA-HGS algorithm was executed for 10 independent runs, each with a different

seed number, utilizing the same problem instances as described in section 4.4.3. The HGS-

CVRP parameters were kept unchanged from (VIDAL, 2022). The average performance,

indicated by the Value, and the average efficiency (Time), measured in terms of consumed

CPU time, were calculated and documented in Table 15. The optimal values obtained for

the ”Initial Islands” (II) and ”Mutation Rate” (MR) parameters were found to be 4 and

0.5, respectively. The overview of the DPIGA-HGS parameters is provided in Table 16.

Table 15 – Sweep of DPIGA Parameter

Cases X-n129-k18 X-n228-k23 X-n336-k84 X-n524-k153 X-n801-k40

II RR Value time Value time Value time Value time Value time

3 0.4 28940.0 9.70 25743.0 70.90 139238.6 721.52 154737.1 860.78 73547.0 1965.59

3 0.5 28940.0 12.60 25743.0 49.92 139320.9 857.06 154680.4 909.87 73586.0 1970.08

3 0.6 28940.0 9.20 25742.0 277.80 139338.6 806.55 154694.1 1192.52 73452.5 2010.80

4 0.4 28940.0 17.42 25742.0 261.59 139254.2 711.24 154731.4 861.23 73457.0 2025.23

4 0.5 28940.0 7.98 25742.0 275.24 139191.3 705.14 154624.6 935.36 73450.1 2032.96

4 0.6 28940.0 24.86 25742.0 180.50 139223.4 808.84 154675.3 1217.40 73453.0 1850.58

5 0.4 28940.0 15.63 25743.0 64.63 139378.9 676.27 154749.6 1207.36 73512.5 1876.47

5 0.5 28940.0 32.34 25743.0 30.52 139274.4 911.61 154674.4 1029.19 73459.6 1841.05

5 0.6 28940.0 10.03 25742.0 154.47 139335.7 737.38 154684.5 1247.46 73526.3 1803.83
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Table 16 – The parameters of DPIGA-HGS

Parameter name Additional comment Value

D
P
IG

A Initial population From the original HGS-CVRP 100

Initial islands From parameter tuning 4

Mutation Rate From parameter tuning 0.5

H
G
S
-C

V
R
P

µ (miu) Minimum population size 25

λ (lambda) Generation size 40

nelite Number of elite solutions considered in the fitness calculation 4

nclosest Number of close solutions considered in the diversity-contribution measure 5

Γ Granular search parameter 20

ξRef Target proportion of feasible individuals for penalty adaptation 0.2

5.4.2 DPIGA vs. original IGA

In order to comprehensively evaluate the performance and efficiency of the proposed

DPIGA-HGS, a comparative analysis involving two distinct approaches is employed: the

IGAHGS with the original IGA (detailed in section 2.8) and refined HGS (described in

section 5.2), and the DPIGA-HGS itself, described in section 5.1.

The main difference between DPIGA and the original IGA lies in the employed

migration policy within DPIGA. To facilitate the assessment, the following migration

policy and parameters are adopted for the original IGA:

• One random individual will be migrated from each island to other islands.

• At the end of each migration interval and to maintain the equality of populations,

NumberOfIslands – 1 worst individuals (based on fitness value) will be removed

from the population of each island.

This comparative analysis is conducted on 10 randomly selected benchmark

instances (originating from section 4.4.4), and the resulting outcomes are documented in

Table 17. In the table, if BKS is reached, BKS is listed as the improvement; otherwise, the

% improvement is listed either with respect to the value achieved or to the gap. If both

versions achieved BKS i.e., no improvement is needed, the effect on time is given.

Through the implementation of DPIGA-HGS, a noteworthy accomplishment of

achieving 4 BKS instances is observed. Notably, in 5 instances, both the original IGA

and DPIGA-HGS achieved the BKS; however, the latter demonstrated better efficiency.

Additionally, for the X-n856-k95 instance, the performance of DPIGA-HGS, concerning

the gap metric, exhibited an improvement of over 56%.
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Table 17 – Comparative results to analyze the refined IGA

Instances

Original IGA

with refined HGS
DPIGA-HGS improvement

Best Gap time Best Gap time type percent

X-n106-k14 26362 0.00 213.26 26362 0.00 161.74 Time 24.16

X-n125-k30 55539 0.00 23.09 55539 0.00 16.04 Time 30.53

X-n261-k13 26558 0.00 614.83 26558 0.00 146.50 Time 76.17

X-n284-k15 20247 0.16 562.51 20215 0.00 701.41 BKS -

X-n317-k53 78355 0.00 372.89 78355 0.00 165.95 Time 55.50

X-n411-k19 19718 0.03 1148.24 19712 0.00 437.53 BKS -

X-n429-k61 65480 0.05 645.063 65449 0.00 1046.72 BKS -

X-n459-k26 24153 0.06 711.676 24139 0.00 502.31 BKS -

X-n513-k21 24201 0.00 180.649 24201 0.00 143.76 Time 20.42

X-n856-k95 89006 0.05 2147.907 88983 0.02 586.84 Gap 56.10

5.4.3 Analysis of multi-step restart mechanism (MSRM)

To investigate the impact of the proposed multi-step restart mechanism (MSRM),

as detailed in section 5.2.1, a comparative analysis of the performance and efficiency of

the DPIGA-HGS algorithm with and without the MSRM is conducted. The former allows

for both partial and total restarts, while the latter permits only total restarts. The results

of this assessment were obtained using the same set of 10 randomly selected instances, as

in section 5.4.2, and are presented in Table 18.

Notably, the integration of the MSRM led to significant improvements in 5

instances, resulting in the attainment of BKS. Moreover, in 4 instances where both

approaches achieved BKS, the application of MSRM further enhanced efficiency. However,

in the case of X-n856-k95, no additional improvement was observed, as both algorithms

had already reached the same solutions before incorporating the MSRM.

5.4.4 DPIGA-HGS versus ICAHGS on CMT and Golden benchmarks

To study the generality of the results, two further benchmarks were examined:

CMT (CHRISTOFIDES, 1979) and Golden (GOLDEN et al., 1998). Table 20 (CMT)

and Table 21 (Golden) provide the average and best results obtained at Tmax from 10

independent runs. In Table 19, a summary of the gaps in the average values of solutions

among all instances of CMT and Golden benchmarks is presented, along with the number

of BKS instances discovered.

A total of 13 BKS instances out of 14 were found by both DPIGA-HGS and

ICAHGS for the CMT dataset, with the gap for the remaining instance (CMT5) being
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Table 18 – Comparative results to analyze the multi-step restart mechanism

Instances

DPIGA-HGS

(without MSRM)

DPIGA-HGS

(with MSRM)
improvement

Best Gap time Best Gap time type percent

X-n106-k14 26378 0.06 221.58 26362 0.00 161.74 BKS -

X-n125-k30 55539 0.00 16.38 55539 0.00 16.04 Time 2.08

X-n261-k13 26558 0.00 323.52 26558 0.00 146.50 Time 54.72

X-n284-k15 20228 0.06 848.82 20215 0.00 701.41 BKS -

X-n317-k53 78355 0.00 208.52 78355 0.00 165.95 Time 20.41

X-n411-k19 19718 0.03 1008.44 19712 0.00 437.53 BKS -

X-n429-k61 65468 0.03 1260.94 65449 0.00 1046.72 BKS -

X-n459-k26 24163 0.10 1367.97 24139 0.00 502.31 BKS -

X-n513-k21 24201 0.00 158.24 24201 0.00 143.76 Time 9.15

X-n856-k95 88983 0.02 586.84 88983 0.02 586.84 - -

Table 19 – Comparative results between DPIGA-HGS and ICAHGS on CMT and Golden
benchmarks

CMT Golden

ICAHGS DPIGA-HGS ICAHGS DPIGA-HGS

Min Gap 0.00 0.00 0.00 0.00

Avg Gap 0.0009 0.0009 0.14 0.13

Max Gap 0.0123 0.0123 0.56 0.55

Number of BKS 13 13 8 8

0.01% - negligible for most applications.

Regarding the Golden dataset, 8 BKS were achieved by both algorithms. DPIGA-

HGS performed better for 5 and 1 instances in terms of Average and Best found solutions,

respectively (green cells in Table 21), while ICAHGS showed better Average for 2 instances

(red cells in Table 21). The differences between the obtained results were too small

and negligible for most applications, emphasizing the comparable performance of both

algorithms.

5.4.5 DPIGA-HGS versus ICAHGS on Uchoa benchmarks

DPIGA-HGS experiments were conducted on 100 benchmark instances from the

Uchoa benchmark (UCHOA et al., 2017) and obtained results were compared with ICAHGS

results detailed in section 4.4.7. A detailed comparison of the gaps in average solution

values for both ICAHGS and DPIGA-HGS is presented in Table 22. For a comprehensive

assessment of the performance of DPIGA-HGS against other state-of-the-art algorithms,

as detailed in Table 23, Table 23 provides a summary of the gaps in average solution values
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Table 20 – Comparative results ICAHGS, DPIGA-HGS and BKS for CMT benchmark

Instance
ICAHGS DPIGA-HGS

BKS
Avg Gap Best Gap Avg Gap Best Gap

CMT1 524.61 0.00 524.61 0.00 524.61 0.00 524.61 0.00 524.61

CMT2 835.26 0.00 835.26 0.00 835.26 0.00 835.26 0.00 835.26

CMT3 826.14 0.00 826.14 0.00 826.14 0.00 826.14 0.00 826.14

CMT4 1028.42 0.00 1028.42 0.00 1028.42 0.00 1028.42 0.00 1028.42

CMT5 1291.45 0.01 1291.45 0.01 1291.45 0.01 1291.45 0.01 1291.29

CMT6 555.43 0.00 555.43 0.00 555.43 0.00 555.43 0.00 555.43

CMT7 909.68 0.00 909.68 0.00 909.68 0.00 909.68 0.00 909.68

CMT8 865.95 0.00 865.95 0.00 865.95 0.00 865.95 0.00 865.95

CMT9 1162.55 0.00 1162.55 0.00 1162.55 0.00 1162.55 0.00 1162.55

CMT10 1395.85 0.00 1395.85 0.00 1395.85 0.00 1395.85 0.00 1395.85

CMT11 1042.12 0.00 1042.12 0.00 1042.12 0.00 1042.12 0.00 1042.12

CMT12 819.56 0.00 819.56 0.00 819.56 0.00 819.56 0.00 819.56

CMT13 1541.14 0.00 1541.14 0.00 1541.14 0.00 1541.14 0.00 1541.14

CMT14 866.37 0.00 866.37 0.00 866.37 0.00 866.37 0.00 866.37

Table 21 – Comparative results ICAHGS, DPIGA-HGS and BKS for Golden benchmark

Instance
ICAHGS DPIGA-HGS

BKS
Avg Gap Best Gap Avg Gap Best Gap

Golden 1 5623.47 0.00 5623.47 0.00 5623.47 0.00 5623.47 0.00 5623.47

Golden 2 8417.20 0.15 8406.33 0.02 8417.20 0.15 8406.33 0.02 8404.61

Golden 3 11036.20 0.35 11036.20 0.35 11036.20 0.35 11036.20 0.35 10997.80

Golden 4 13624.50 0.26 13624.50 0.26 13624.50 0.26 13624.50 0.26 13588.60

Golden 5 6460.98 0.00 6460.98 0.00 6460.98 0.00 6460.98 0.00 6460.98

Golden 6 8412.90 0.15 8412.90 0.15 8412.03 0.14 8404.20 0.05 8400.33

Golden 7 10159.55 0.56 10132.90 0.30 10158.07 0.55 10132.90 0.30 10102.70

Golden 8 11635.30 0.00 11635.30 0.00 11635.30 0.00 11635.30 0.00 11635.30

Golden 9 580.30 0.10 579.71 0.00 580.49 0.14 579.71 0.00 579.70

Golden 10 737.39 0.27 736.00 0.08 737.15 0.23 736.00 0.08 735.43

Golden 11 913.60 0.18 913.06 0.12 913.60 0.18 913.06 0.12 911.98

Golden 12 1104.74 0.32 1103.34 0.19 1104.10 0.26 1103.34 0.19 1101.24

Golden 13 857.19 0.00 857.19 0.00 857.19 0.00 857.19 0.00 857.19

Golden 14 1080.55 0.00 1080.55 0.00 1080.55 0.00 1080.55 0.00 1080.55

Golden 15 1339.36 0.16 1337.84 0.04 1339.36 0.16 1337.84 0.04 1337.27

Golden 16 1614.50 0.20 1612.57 0.08 1614.49 0.20 1612.57 0.08 1611.28

Golden 17 707.76 0.00 707.76 0.00 707.76 0.00 707.76 0.00 707.76

Golden 18 995.13 0.00 995.13 0.00 995.13 0.00 995.13 0.00 995.13

Golden 19 1365.65 0.00 1365.60 0.00 1365.65 0.00 1365.60 0.00 1365.60

Golden 20 1818.37 0.04 1817.89 0.02 1818.44 0.05 1817.89 0.02 1817.59

across all instances and the number of BKS instances found. Furthermore, a more in-depth

analysis of the comparative results between ICAHGS and DPIGA-HGS is presented in
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Table 24.

The superiority of DPIGA-HGS in terms of solution quality compared to IC-

AHGS and other state-of-the-art algorithms is evident. Several notable improvements over

ICAHGS are worth mentioning:

• DPIGA-HGS achieved a remarkable 8.9% advantage over ICAHGS concerning the

number of found, reaching an impressive total of 56 BKS compared to 51 BKS for

ICAHGS (see Table 23).

• DPIGA-HGS demonstrated significant improvements of 16.1% and 12.5% in the

Max. and Avg. Gap of Average solutions, respectively (see Table 22).

• Considering small instances (the first 50 instances), DPIGA-HGS yielded optimal or

near-optimal solutions, with 2.31% improvement in the Max. Gap and a noteworthy

19.81% improvement in the Avg. Gap of Average solutions relative to ICAHGS (see

Table 22).

• For large instances (the last 50 instances), DPIGA-HGS excelled with a 16.1%

improvement in the Max. Gap and an 11.94% improvement in the Avg. Gap of

average solutions when compared to ICAHGS (see Table 22).

Table 22 – Comparing Gaps of average solution values for ICAHGS and DPIGA-HGS

Gaps
included

ICAHGS DPIGA-HGS
improvement

instances (%)

Max Gap 100 0.48 0.41 16.1

Avg. Gap 100 0.08 0.07 12.5

Max Gap First 50 0.11 0.10 2.31

Avg. Gap First 50 0.012 0.009 19.81

Max Gap Last 50 0.48 0.41 16.10

Avg. Gap Last 50 0.151 0.133 11.94

Table 23 – Comparative results between different algorithms

OR-Tools KGLS SISR HGS-CVRP
ICAHGS DPIGA-HGS

(2020) (2018) (2020) (2020)

Min Gap 0.38 0.00 0.00 0.00 0.00 0.00

Avg Gap 4.01 0.53 0.19 0.11 0.08 0.07

Max Gap 8.62 1.24 1.63 0.56 0.48 0.41

Number of BKS 0 6 21 44 51 56



5.4. EXPERIMENTAL RESULTS 90

Table 24 – Comparative results between ICAHGS, DPIGA-HGS and BKS

Instance
ICAHGS DPIGA-HGS

BKS
Avg Gap Best Gap Avg Gap Best Gap

X-n101-k25 27591.0 0.00 27591 0.00 27591.0 0.00 27591 0.00 27591

X-n106-k14 26362.0 0.00 26362 0.00 26362.0 0.00 26362 0.00 26362

X-n110-k13 14971.0 0.00 14971 0.00 14971.0 0.00 14971 0.00 14971

X-n115-k10 12747.0 0.00 12747 0.00 12747.0 0.00 12747 0.00 12747

X-n120-k6 13332.0 0.00 13332 0.00 13332.0 0.00 13332 0.00 13332

X-n125-k30 55539.0 0.00 55539 0.00 55539.0 0.00 55539 0.00 55539

X-n129-k18 28940.0 0.00 28940 0.00 28940.0 0.00 28940 0.00 28940

X-n134-k13 10916.0 0.00 10916 0.00 10916.0 0.00 10916 0.00 10916

X-n139-k10 13590.0 0.00 13590 0.00 13590.0 0.00 13590 0.00 13590

X-n143-k7 15700.0 0.00 15700 0.00 15700.0 0.00 15700 0.00 15700

X-n148-k46 43448.0 0.00 43448 0.00 43448.0 0.00 43448 0.00 43448

X-n153-k22 21224.5 0.02 21220 0.00 21224.5 0.02 21220 0.00 21220

X-n157-k13 16876.0 0.00 16876 0.00 16876.0 0.00 16876 0.00 16876

X-n162-k11 14138.0 0.00 14138 0.00 14138.0 0.00 14138 0.00 14138

X-n167-k10 20557.0 0.00 20557 0.00 20557.0 0.00 20557 0.00 20557

X-n172-k51 45607.0 0.00 45607 0.00 45607.0 0.00 45607 0.00 45607

X-n176-k26 47812.0 0.00 47812 0.00 47812.0 0.00 47812 0.00 47812

X-n181-k23 25569.0 0.00 25569 0.00 25569.0 0.00 25569 0.00 25569

X-n186-k15 24145.0 0.00 24145 0.00 24145.0 0.00 24145 0.00 24145

X-n190-k8 16981.7 0.01 16980 0.00 16981.6 0.01 16980 0.00 16980

X-n195-k51 44225.0 0.00 44225 0.00 44225.0 0.00 44225 0.00 44225

X-n200-k36 58578.0 0.00 58578 0.00 58578.0 0.00 58578 0.00 58578

X-n204-k19 19565.0 0.00 19565 0.00 19565.0 0.00 19565 0.00 19565

X-n209-k16 30656.0 0.00 30656 0.00 30656.0 0.00 30656 0.00 30656

X-n214-k11 10860.0 0.04 10856 0.00 10856.0 0.00 10856 0.00 10856

X-n219-k73 117595.0 0.00 117595 0.00 117595.0 0.00 117595 0.00 117595

X-n223-k34 40437.0 0.00 40437 0.00 40437.0 0.00 40437 0.00 40437

X-n228-k23 25742.0 0.00 25742 0.00 25742.0 0.00 25742 0.00 25742

X-n233-k16 19230.0 0.00 19230 0.00 19230.0 0.00 19230 0.00 19230
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Continuation of Table 24

Instance
ICAHGS DPIGA-HGS

BKS
Avg Gap Best Gap Avg Gap Best Gap

X-n237-k14 27042.0 0.00 27042 0.00 27042.0 0.00 27042 0.00 27042

X-n242-k48 82771.8 0.03 82764 0.02 82771.3 0.02 82751 0.00 82751

X-n247-k50 37275.0 0.00 37274 0.00 37274.0 0.00 37274 0.00 37274

X-n251-k28 38684.0 0.00 38684 0.00 38684.0 0.00 38684 0.00 38684

X-n256-k16 18839.4 0.00 18839 0.00 18839.0 0.00 18839 0.00 18839

X-n261-k13 26558.1 0.00 26558 0.00 26558.0 0.00 26558 0.00 26558

X-n266-k58 75545.9 0.09 75525 0.06 75545.1 0.09 75478 0.00 75478

X-n270-k35 35303.0 0.03 35303 0.03 35302.5 0.03 35298 0.02 35291

X-n275-k28 21245.0 0.00 21245 0.00 21245.0 0.00 21245 0.00 21245

X-n280-k17 33513.9 0.03 33503 0.00 33512.2 0.03 33503 0.00 33503

X-n284-k15 20236.0 0.10 20215 0.00 20235.9 0.10 20215 0.00 20215

X-n289-k60 95251.7 0.11 95204 0.06 95245.7 0.10 95194 0.05 95151

X-n294-k50 47167.6 0.01 47161 0.00 47167.6 0.01 47161 0.00 47161

X-n298-k31 34231.0 0.00 34231 0.00 34231.0 0.00 34231 0.00 34231

X-n303-k21 21741.3 0.02 21738 0.01 21740.2 0.02 21738 0.01 21736

X-n308-k13 25864.4 0.02 25861 0.01 25862.1 0.01 25859 0.00 25859

X-n313-k71 94060.9 0.02 94044 0.00 94060.9 0.02 94044 0.00 94043

X-n317-k53 78355.0 0.00 78355 0.00 78355.0 0.00 78355 0.00 78355

X-n322-k28 29848.0 0.05 29834 0.00 29839.6 0.02 29834 0.00 29834

X-n327-k20 27539.2 0.03 27532 0.00 27532.9 0.00 27532 0.00 27532

X-n331-k15 31103.0 0.00 31102 0.00 31102.9 0.00 31102 0.00 31102

X-n336-k84 139195.8 0.06 139139 0.02 139191.3 0.06 139139 0.02 139111

X-n344-k43 42058.4 0.02 42055 0.01 42058.4 0.02 42055 0.01 42050

X-n351-k40 25933.2 0.14 25924 0.11 25933.2 0.14 25919 0.09 25896

X-n359-k29 51554.1 0.10 51515 0.02 51554.1 0.10 51515 0.02 51505

X-n367-k17 22814.0 0.00 22814 0.00 22814.0 0.00 22814 0.00 22814

X-n376-k94 147715.5 0.00 147713 0.00 147714.5 0.00 147713 0.00 147713

X-n384-k52 65983.4 0.07 65968 0.05 65983.4 0.07 65968 0.05 65938

X-n393-k38 38260.0 0.00 38260 0.00 38260.0 0.00 38260 0.00 38260
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Continuation of Table 24

Instance
ICAHGS DPIGA-HGS

BKS
Avg Gap Best Gap Avg Gap Best Gap

X-n401-k29 66190.2 0.05 66166 0.02 66190.2 0.05 66166 0.02 66154

X-n411-k19 19718.7 0.03 19712 0.00 19717.5 0.03 19712 0.00 19712

X-n420-k130 107838.0 0.04 107798 0.00 107822.5 0.02 107798 0.00 107798

X-n429-k61 65457.3 0.01 65449 0.00 65457.3 0.01 65449 0.00 65449

X-n439-k37 36395.5 0.01 36395 0.01 36394.6 0.01 36391 0.00 36391

X-n449-k29 55322.0 0.16 55280 0.09 55322.0 0.16 55280 0.09 55233

X-n459-k26 24162.4 0.10 24139 0.00 24147.2 0.03 24139 0.00 24139

X-n469-k138 222073.6 0.11 221987 0.07 222066.0 0.11 221897 0.03 221824

X-n480-k70 89498.5 0.06 89464 0.02 89466.0 0.02 89458 0.01 89449

X-n491-k59 66558.3 0.11 66520 0.06 66558.3 0.11 66556 0.11 66483

X-n502-k39 69237.3 0.02 69228 0.00 69233.6 0.01 69227 0.00 69226

X-n513-k21 24201.0 0.00 24201 0.00 24201.0 0.00 24201 0.00 24201

X-n524-k153 154666.4 0.05 154610 0.01 154624.6 0.02 154605 0.01 154593

X-n536-k96 95052.0 0.22 95014 0.18 95045.8 0.21 94988 0.15 94846

X-n548-k50 86741.9 0.05 86707 0.01 86729.3 0.03 86704 0.00 86700

X-n561-k42 42742.3 0.06 42723 0.01 42725.8 0.02 42719 0.00 42717

X-n573-k30 50796.2 0.24 50741 0.13 50796.0 0.24 50741 0.13 50673

X-n586-k159 190484.1 0.09 190405 0.05 190442.2 0.07 190395 0.04 190316

X-n599-k92 108652.1 0.19 108586 0.12 108619.3 0.16 108553 0.09 108451

X-n613-k62 59660.3 0.21 59627 0.15 59619.3 0.14 59558 0.04 59535

X-n627-k43 62271.1 0.17 62242 0.13 62270.4 0.17 62242 0.13 62164

X-n641-k35 63830.3 0.23 63741 0.09 63830.3 0.23 63763 0.12 63684

X-n655-k131 106808.1 0.03 106802 0.02 106794.7 0.01 106780 0.00 106780

X-n670-k130 146732.1 0.27 146624 0.20 146553.4 0.15 146452 0.08 146332

X-n685-k75 68320.8 0.17 68273 0.10 68313.1 0.16 68243 0.06 68205

X-n701-k44 82121.0 0.24 82032 0.13 82121.0 0.24 82058 0.16 81923

X-n716-k35 43481.1 0.25 43451 0.18 43474.1 0.23 43440 0.15 43373

X-n733-k159 136389.9 0.15 136314 0.09 136333.9 0.11 136267 0.06 136187

X-n749-k98 77532.1 0.34 77350 0.10 77532.1 0.34 77350 0.10 77269
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Continuation of Table 24

Instance
ICAHGS DPIGA-HGS

BKS
Avg Gap Best Gap Avg Gap Best Gap

X-n766-k71 114719.0 0.26 114646 0.20 114713.4 0.26 114670 0.22 114417

X-n783-k48 72736.2 0.48 72619 0.32 72668.8 0.39 72619 0.32 72386

X-n801-k40 73450.1 0.20 73393 0.12 73450.1 0.20 73380 0.10 73305

X-n819-k171 158503.1 0.24 158368 0.16 158384.7 0.17 158330 0.13 158121

X-n837-k142 194252.2 0.27 194087 0.18 194171.6 0.22 194087 0.18 193737

X-n856-k95 89024.7 0.07 88990 0.03 89017.2 0.06 88983 0.02 88965

X-n876-k59 99675.2 0.38 99521 0.22 99651.8 0.36 99521 0.22 99299

X-n895-k37 54070.5 0.39 53997 0.25 54041.7 0.34 53966 0.20 53860

X-n916-k207 329830.3 0.20 329671 0.15 329830.3 0.20 329671 0.15 329179

X-n936-k151 133085.7 0.28 133047 0.25 133056.9 0.26 133021 0.23 132715

X-n957-k87 85545.3 0.09 85513 0.06 85520.5 0.06 85502 0.04 85465

X-n979-k58 119244.2 0.23 119179 0.17 119245.9 0.23 119179 0.17 118976

X-n1001-k43 72651.5 0.41 72569 0.30 72648.7 0.41 72569 0.30 72355

Min Gap 0.00 0.00 0.00 0.00

Avg. Gap 0.08 0.05 0.07 0.04

Max Gap 0.48 0.32 0.41 0.32

No. BKS 34 51 38 56

5.4.5.1 Evolutionary performance of DPIGA-HGS and ICAHGS

Figure 25 presents a comparison of the Best performance between DPIGA-HGS

and ICAHGS over time, with the application of the same compiler and seed numbers to

each algorithm. The results clearly indicate that DPIGA-HGS outperforms ICAHGS in

terms of performance.

5.4.6 Real-world application

The primary objective of VRP algorithms is to solve real-world problems effectively.

To this end, the performance of DPIGA-HGS is compared to that of ICAHGS on 6 instances

of the LoggiBUD benchmark (LOGGI. . . , ). Table 25 presents the average and best results

obtained at Tmax from 10 independent runs. Furthermore, Table 26 offers a concise overview
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Figure 25 – Performance of DPIGA-HGS and ICAHGS over time

of the gaps in average solution values for both DPIGA-HGS and ICAHGS, along with the

number of instances where BKS were achieved.

The results clearly demonstrate the superiority of DPIGA-HGS over ICAHGS, as

evidenced by its better performance in all 6 instances concerning average solutions and in

3 out of 6 instances for best solutions, as indicated by the green cells in Table 25. Notably,

DPIGA-HGS even discovered a new BKS for Loggi-n901-k42, boasting an impressive

-0.03% gap when compared to its previously found BKS. These outcomes underscore the

effectiveness and capability of DPIGA-HGS in tackling the challenges posed by real-world

VRP instances, further solidifying its status as a promising optimization algorithm for

practical applications.
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Table 25 – Comparative results ICAHGS, DPIGA-HGS, and BKS for Loggi Benchmark
for Urban Deliveries

Instance
ICAHGS DPIGA-HGS

BKS
Avg Gap Best Gap Avg Gap Best Gap

Loggi-n401-k23 337153.20 0.06 337006 0.02 337148.40 0.06 337006 0.02 336946

Loggi-n501-k24 177505.00 0.02 177469 0.00 177501.60 0.02 177469 0.00 177466

Loggi-n601-k19 113270.20 0.10 113220 0.06 113248.70 0.08 113179 0.02 113155

Loggi-n601-k42 347081.20 0.01 347059 0.00 347064.30 0.00 347059 0.00 347059

Loggi-n901-k42 246661.80 0.10 246523 0.04 246541.60 0.05 246335 -0.03 246418

Loggi-n1001-k31 285889.60 0.54 285649 0.45 285630.50 0.45 285094 0.26 284356

Table 26 – Summary of the results ICAHGS and DPIGA-HGS on 6 instances of LoggiBUD
benchmark

ICAHGS DPIGA-HGS

Min Gap 0.01 0.01

Avg Gap 0.14 0.11

Max Gap 0.54 0.45

Number of BKS 1 2

5.4.7 Statistical analysis

The performance of the DPIGA-HGS algorithm was evaluated in comparison

to ICAHGS by conducting both t-tests and Wilcoxon tests on the average of solutions

obtained from all the tested benchmarks (refer to section 4.4.2). The results are presented

in Table 27. It was observed that the DPIGA-HGS algorithm demonstrated significantly

superior performance compared to ICAHGS on the Uchoa benchmark, with ρ < 0.05.

However, for the Golden, LoggiBUD, and CMT benchmarks, no significant performance

differences were found between the two algorithms.

Table 27 – Statistical results between DPIGA-HGS and ICAHGS on different benchmarks

p-values

Benchmarks t-test Wilcoxon

Uchoa <.001 <.001

Golden .736 .852

LoggiBUD .998 .999

CMT Nan Nan
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6 DISCUSSION AND CONCLUSION

6.1 Discussion

The CVRP is an important problem in the operational level of the supply chain

management, dealing with transportation plans and routing decisions. At the strategic

level, one has to deal with high level decisions related to the fleet size, operating with

own or leased fleet, defining the number and location of factories, facilities or distribution

centers, usually named as depots in the CVRP and multi-depot CVRP formulation.

In this study, two hybrid methods are developed to improve the quality of the

solutions for the CVRP problem and obtained results confirm this claim. CVRP is one

of the basic problems in the VRP domain. To make the CVRP more simplified, lots of

constraints are relaxed while they cannot be ignored in a real-world application; such as

fixed number of vehicles, distance between nodes which is calculated based on Euclidian

distance, hence ignoring traffic congestions, fixed capacity and cost for all the vehicles

and so on. All these constraints are the CVRP limitations when it comes to a real-case

application.

Nonetheless, despite the mentioned limitations, solving a standard CVRP optimally

or near to optimal might have a great impact on providing solutions for real cases based on

the CVRP. Since applications based on the CVRP are normally executed at operational

levels, the present research can play significant role in cost and time savings. Variants

of the standard setting can incorporate problem-specific constraints to the problem and

the proposed method can be easily adapted to these situations simply by making changes

in the fitness function. All the algorithm steps can be preserved with none or little

modifications. Depending on the application, a well suited VRP variant can be adopted

while its implementation might be affected by complexity of the proposed solution. It is

worth noting that most of the VRP variants are inherited from the CVRP by considering

different constraints and initial conditions.

6.2 Conclusion

In this study, at first a hybrid algorithm (ICAHGS) for solving CVRP is proposed,

combining a refined ICA and HGS-CVRP. As stated, HGS-CVRP has many advantages that

come from its population management, diversity control and improved local search. On the

other hand, ICA has a great ability in global search to find higher quality solutions. Thus,

their combination can improve local search and global search. The experimental results on

the Uchoa benchmark confirm that the combination of these algorithms results in a more
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powerful algorithm for CVRP. Further, where the multi-restart mechanism refinement

to ICA was unable to improve performance, in the instances where both ICAHGS and

HGS-CVRP achieved BKS, improved efficiency was achieved. Comparison with other

state-of-the-art algorithms confirmed ICAHGS superiority. Further experiments on the

CMT and Golden benchmarks provided for increased generality, confirming performance

improvement on other datasets. Finally, real-world testing on the LoggiBUD benchmark

further confirmed the enhanced performance achieved with ICAHGS.

In chapter 5 the second approach, Dynamic Population Island GA and HGS

(DPIGA-HGS) is introduced, which is a novel hybrid metaheuristic model. DPIGA-HGS

integrates a specialized island model (DPIGA) and a refined HGS as its local search

engine within each island. The primary objective of DPIGA-HGS is to contribute to the

advancement of the field by proposing a new variant of Island GA and simultaneously

achieving improved optimization results in comparison to ICAHGS. The DPIGA-HGS

algorithm has proven to be a highly effective and robust optimization approach in tackling

a diverse set of benchmark instances. Through an extensive evaluation process, which

encompassed a wide range of real-world problem scenarios, DPIGA-HGS demonstrated its

ability to consistently yield high-quality solutions. The results of the comparative analyses

revealed the superior performance of DPIGA-HGS when pitted against other state-of-

the-art algorithms, including ICAHGS. Across multiple benchmark datasets, DPIGA-

HGS showcased its prowess by achieving a significant number of BKS, outperforming

its competitors in various instances. Furthermore, DPIGA-HGS exhibited remarkable

adaptability across different problem sizes. For smaller instances, it achieved optimal or

near-optimal solutions, while maintaining competitive performance on larger instances,

as reflected in the maximum and average gap improvements. Moreover, the application

of the proposed multi-step restart mechanism (MSRM) further enhanced the algorithm’s

efficiency, leading to the discovery of additional BKS in several instances. Statistical

analyses, including the t-test and Wilcoxon test, corroborated the algorithm’s superior

performance on specific benchmark datasets, further validating its robustness and efficiency.

6.3 Published articles

This study has resulted in the publication of an article in the ”Applied Soft

Computing” journal, while the second article is currently under review. The published

article is as follows:

• Babak Rezaei, Frederico Gadelha Guimaraes, Rasul Enayatifar, Pauline C. Haddow,

Combining genetic local search into a multi-population Imperialist Competitive

Algorithm for the Capacitated Vehicle Routing Problem, Applied Soft Computing,

2023, 110309, ISSN 1568-4946, ⟨https://doi.org/10.1016/j.asoc.2023.110309⟩.

https://doi.org/10.1016/j.asoc.2023.110309
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6.4 Future directions

As this research has demonstrated the effectiveness of ICAHGS and DPIGA-HGS

in addressing various aspects of the Capacitated Vehicle Routing Problem (CVRP), it also

highlights several promising avenues for future research and development in the field of

metaheuristic optimization and logistics. The following future directions provide a roadmap

for enhancing the capabilities and applicability of these algorithms:

1. Extension to other VRP variants

• VRP with Time Windows (VRPTW): Extend the applicability of ICAHGS

and DPIGA-HGS to solve the Vehicle Routing Problem with Time Windows

(VRPTW). Investigate modifications and adaptations required to handle con-

straints related to time windows, where each customer must be served within a

specified time frame. Explore the integration of time window constraints into

the algorithms’ solution representation and optimization process. Conduct com-

prehensive experiments to evaluate the algorithms’ performance on VRPTW

instances.

• Pickup and Delivery VRP (PDVRP): Adapt ICAHGS and DPIGA-HGS to

address the Pickup and Delivery Vehicle Routing Problem (PDVRP). PDVRP

involves the transport of goods where each delivery is associated with a corre-

sponding pickup location. Develop solution representations and operators that

account for pickup and delivery pairs. Assess the algorithms’ ability to optimize

routes considering both pickup and delivery constraints.

2. Application to VRP with Drones (VRPD)

• Integration of drones: Explore the integration of unmanned aerial vehicles

(drones) into the routing process to address the Vehicle Routing Problem with

Drones (VRPD). Investigate how ICAHGS and DPIGA-HGS can be extended

to optimize routes that include drone-assisted deliveries. Develop algorithms

that determine when and where drones should be deployed to improve delivery

efficiency, reduce costs, and enhance service quality.

• Hybrid optimization: Combine the strengths of ICAHGS and DPIGA-HGS

with specialized algorithms designed for VRPD. Investigate hybrid optimization

approaches that leverage the algorithms’ capabilities to optimize ground vehicle

routes while concurrently optimizing drone routes. This integration can lead

to innovative solutions that harness the advantages of both ground and aerial

transportation.

3. Algorithmic enhancements
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• Parameter tuning: Further investigate parameter tuning strategies to optimize

the performance of both ICAHGS and DPIGA-HGS. Explore the effects of

different parameter settings on convergence, computational efficiency, and

solution quality. Employ advanced optimization techniques, such as auto-tuning

algorithms or machine learning-based approaches, to automatically adjust

parameters during runtime.

4. Scalability and Handling Large Instances

• Parallelization: Investigate techniques for parallelizing ICAHGS and DPIGA-

HGS to efficiently solve larger problem instances. Leverage multi-core pro-

cessors or distributed computing resources to improve scalability. Develop

load-balancing mechanisms to ensure efficient resource utilization in parallel

implementations.

5. Innovative migration policies

• Dynamic migration: Design dynamic migration policies that adapt based on

island performance, solution quality, or other relevant metrics. Explore strategies

for varying migration frequencies, sizes, or topologies during the optimization

process. Investigate how dynamic migration can improve convergence speed

and solution quality.
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Dispońıvel em: ⟨https://www.sciencedirect.com/science/article/pii/S0305054803001588⟩.

PRINS, C.; LABADI, N.; REGHIOUI, M. Tour splitting algorithms for vehicle routing
problems. International Journal of Production Research, v. 47, n. 2, p. 507–535, 2009.
ISSN 0020-7543.

PRINS, C.; PRODHON, C.; CALVO, R. W. Solving the capacitated location-routing
problem by a grasp complemented by a learning process and a path relinking. 4OR, v. 4,
p. 221–238, 2006. ISSN 1619-4500.
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