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Resumo

Esta dissertação explora o problema da Transferência Perfeita de Estado (PST) em grafos,

que tem implicações significativas na computação quântica. O objetivo é determinar

quais grafos permitem transferir perfeitamente o estado de um qubit (ou vértice) para

outro qubit em um determinado tempo. O texto apresenta uma introdução ao tema

utilizando técnicas de álgebra linear, discutindo condições necessárias e suficientes para

alcançar o PST e enfatizando a transferência de longa distância entre qubits. O objetivo

da otimização é minimizar o número de componentes quânticos necessários para alcançar

a transferência perfeita de estado.

Uma classe importante de grafos que admite PST são os caminhos com pesos. Para

o PST entre vértices nos extremos, o problema foi completamente resolvido explorando a

conexão desses grafos com polinômios ortogonais. No entanto, o problema se torna consi-

deravelmente mais complexo para vértices em outras posições, levando a novos resultados e

conexões explorados neste documento. Entre esses resultados, podemos citar uma fórmula

que relaciona, de maneira inédita, o polinômio extremo com outro polinômio arbitrário

em uma sequência de polinômios ortogonais; como criar uma sequência de polinômios

ortogonais que contenha outros dois dados; e como o PST em caminhos com pesos se

relaciona com o problema de Prouhet-Tarry-Escott, um problema em aberto na área de

teoria dos números.

Por fim, o documento apresenta uma abordagem para a construção de grafos com

PST, explorando caminhos ponderados e partições equitativas. Também são apresentados

novos teoremas nessa área, que têm relevância geral para a teoria dos grafos. Entre esses

teoremas, destaca-se um critério para dois grafos possúırem um quociente simetrizado em

comum; como as matrizes de partições equitativas se relacionam com matrizes projeti-

vas; e como o conjunto de partições equitativas se transforma quando o grafo original é

quocientado.

Palavras-chave: Teoria espectral de grafos. Transferência perfeita de estado. Partição

equitativa. Polinômios ortogonais.



Abstract

This thesis explores the problem of Perfect State Transfer (PST) in graphs, which has

significant implications in quantum computing. The goal is to determine which graphs

allow for perfect transfer of the state of one qubit (or vertex) to another qubit within a

certain time frame. The text provides an introduction to the topic using techniques from

linear algebra, discussing necessary and sufficient conditions to achieve PST, and empha-

sizing long-distance transfer between qubits. The optimization objective is to minimize

the number of quantum components required to achieve perfect state transfer.

An important class of graphs that admit PST is weighted paths. For PST be-

tween vertices at the endpoints, the problem has been completely solved by exploring

the connection of these graphs with orthogonal polynomials. However, the problem be-

comes considerably more complex for vertices in other positions, leading to new results

and connections explored in this document. Among these results, we can mention a for-

mula that uniquely relates the extreme polynomial to another arbitrary polynomial in

a sequence of orthogonal polynomials, how to create a sequence of orthogonal polyno-

mials containing two given polynomials, and how PST in weighted paths relates to the

Prouhet-Tarry-Escott problem, an open problem in number theory.

Finally, the document presents an approach to constructing graphs with PST, ex-

ploring weighted paths and equitable partitions. New theorems in this are also presented,

which have general relevance to graph theory. These theorems include a criterion for

two graphs to have a common symmetrized quotient, how equitable partition matrices

relate to projective matrices, and how the set of equitable partitions transforms when the

original graph is quotiented.

Keywords: Spectral graph theory. Perfect state transfer. Equitable partition. Orthog-

onal polynomials.



Notation
• R: an arbitrary commutative ring;

• R[t]: the ring of polynomials with coefficients in R;

• R[[t]]: the ring of generating functions with coefficients in R;

• σ(M) := {λ ∈ R : det(λI −M) = 0}: the spectrum of M ∈Mn(R);

• S1 := {z ∈ C; |z| = 1}: the unit circle in C;
• Mm,n(R): the R-module of m× n matrices with entries in R;

• Mn(R) := Mn,n(R);

• M∗ denotes the adjoint of M : the matrix transposed and point-wise conjugated;

• MT denotes the transpose of M ;

• Im or simply I: the identity m×m matrix;

• en: the vector with all entries 0, except the nth, which is 1;

• χS: the characteristic vector of S, that is
∑

r∈S er;

• 1: the vector with all entries 1;

• J : the matrix with all entries 1;

• ξ ∥ ζ: the vectors ξ and ζ are parallel;

• (X)R: forX ⊆M , whereM is a R-module, the R-module generated by the elements

of X. When X = {v1, . . . , vn}, we shall use only (v1, . . . , vn)R, and we may omit the

ring of scalars when it is clear; in particular, if R =M , (X)R is the ideal generated

by X;

• R[A]: for A ⊆M , whereM in a R-algebra, this denotes the R-sub-algebra generated

by A;

• V (X): the set of vertices of the graph X;

• E(X): the set of edges of the graph X;

• dX(a, b): the distance between the vertices a and b in the graph X;

• N(a, V ′): for a ∈ V (X) and V ′ ⊆ V (X), the number of edges incident to a with the

other vertex in V ′;

• rng f : the range of the function f ;

• ℜz and ℑz: respectively, the real part and imaginary part of z;

• res(f(z); z = z0): the residue of f at the point z0.
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Chapter 1

Introduction

1.1 Introduction to the problem

We can model a system of d qubits, which may or may not interact with each other,

using a graph with d vertices. In this graph, an edge represents an interaction between

two qubits.

In this system, the Hamiltonian, whose exponential describes the temporal evolu-

tion of the system, is given by the matrix:

H =
1

2

∑
ab∈E(X)

XaXb + YaYb,

where Xk corresponds to the operator that applies the Pauli matrix X =

(
0 1

1 0

)
to the

qubit in position k, and similarly for Yk and the Pauli matrix Y =

(
0 −i
i 0

)
. The given

Hamiltonian is a block matrix, and a detailed description and derivation using physical

principles can be found in [3, 5, 7].

However, the block of the Hamiltonian matrix H that corresponds to the pure

states of the qubits is determined by the adjacency matrix of the graph:

Aa,b =

1 a ∼ b

0 a ≁ b
.

Hence, a part of the quantum dynamics of the system can be described by the

matrix exponential eitA, as predicted by Schrödinger’s equation. For more details, see

[14,20].

A problem of great interest, particularly in quantum computation, is the following:

which graphs allow for a specific time at which the state of a given qubit (or vertex) a

can be perfectly transferred to another qubit b?

If such a time exists, we say there is Perfect State Transfer (PST) between a and

b (due to symmetry, we do not need to specify which vertex is the initial or the final). In
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Chapter 3, we approach this question using solely linear algebra techniques. We discuss

the necessary and sufficient conditions for achieving PST and explore various aspects of

this phenomenon, based on [11,18,19].

Our particular interest lies in achieving PST between two vertices far apart in

the graph. This capability would enable the transfer of qubit states between physically

separated regions of a quantum computer without any loss of information.

An optimization goal that we aim to achieve is to utilize the fewest possible quan-

tum components for transportation. In other words, we seek to construct a graph X with

the minimum number of edges or vertices while still having PST between vertices sepa-

rated by distance d. This problem is formalized and explored in Section 4.3. Within this

section, we present known lower bounds and upper bounds related to this optimization

problem.

Chapters 1, 2, and 3 provide a concise overview of the mathematical framework

necessary to understand the phenomenon of PST, based mainly on [11]. In the remaining

portion of this chapter, we will explore some critical well-known results in linear algebra.

Chapter 2 focuses on general results in spectral graph theory, while Chapter 3 specifically

addresses PST in graphs and introduces the main equivalence theorem, Theorem 3.10.

In Chapter 4, we delve into a discussion of graphs that exhibit PST, as well as

important classes of graphs that do not. Furthermore, we explore methods for constructing

new graphs with PST based on existing ones, based on [11,21]. It is worth noting that the

approach presented in this chapter may not be highly efficient, as it tends to increase the

distance between vertices with PST linearly while exponentially increasing the number of

vertices in the graph.

The remaining chapters, Chapter 5 and Chapter 6, introduce a novel approach to

constructing graphs with PST. In Chapter 5, we focus on characterizing weighted paths

that exhibit PST between their endpoints, a result attributed to [27]. Additionally, we

present a new analysis of the necessary and sufficient conditions for achieving PST between

an endpoint and an arbitrary vertex in a weighted path. In this chapter, we utilize the

theory of orthogonal polynomials as a tool and develop new formulas and results to aid

us in our objective.

In Chapter 6, our attention is devoted to the problem of constructing simple graphs

with PST based on a given weighted graph that already possesses PST. To tackle this

problem, we delve into the theory of equitable partitions. We explore results from [11,21]

and novel results. In this chapter, we not only prove new results that contribute to the

general algebraic theory of graphs but also offer insights relevant to the study of PST.
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1.2 Preliminary results

For the sake of self-containment, this section will encompass essential results and

definitions from linear algebra that are not directly related to combinatorics or graphs

but are crucial for understanding the thesis.

1.2.1 Matrices & self-adjointness

For a commutative ring R, we define the R-module Mm,n(R) as the set of m ×
n matrices with entries in R and point-wise sum and scalar multiplication. They are

isomorphic to the R-module of R-linear functions that map Rn into Rm (again, with

point-wise sum and scalar multiplication) by:

T 7→MT :=
(
Te1, T e2, . . . , T en

)
,

which also satisfiesMS◦T =MSMT with the usual matrix product. In general, Mm,n(R) ∼=
Rm·n, as R-modules.

Our central case of interest will be when R = C or R = R, despite having some

matrices over R[[t]] appearing in the text.

In the standard way, we can define the norm of a matrix as

∥M∥ = min
v ̸=0

∥Mv∥
∥v∥

,

where ∥·∥ is the Euclidean norm.

Besides the normal matrix product, we also have two other types of products:

Definition 1.1. Given two matrices A,B ∈Mm,n(R) we define their Schur product as

(A ◦B)a,b := Aa,bBa,b,

or, in other words, the point-wise product of the matrices. The new matrix has dimension

m× n.

Definition 1.2. Given two matrix A ∈ Mm,n(R), B ∈ Mp,q(R), we define their Kro-

necker product as

A⊗B :=


a1,1B a1,2B · · · a1,nB

a2,1B a2,2B · · · a2,nB
...

...
. . .

...

am,1B am,2B · · · am,nB

 .
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We also define the Kronecker sum of these matrices by:

A⊕B := A⊗ I + I ⊗B.

Both operations define a matrix of dimension mp× nq.

We list some properties of the three operations:

Proposition 1.3. The following identities are valid whenever the matrix product is well-

defined:

(1) The Schur product, Kronecker product, and Kronecker sum are associative and bilin-

ear;

(2) The Schur product is commutative;

(3) The Kronecker product and sum are not commutative, however, given m,n, p, q we

have permutations matrices P,Q such that P (A⊗ B)Q = B ⊗ A and P (A⊕ B)Q =

B ⊕ A for every A ∈Mm,n(R), B ∈Mp,q(R);

(4) (A⊗B)(C ⊗D) = (AC)⊗ (BD);

(5) (A⊗B) ◦ (C ⊗D) = (A ◦ C)⊗ (B ◦D);

(6) A⊗B = (A⊗ I)(I ⊗B);

(7) σ(A⊗B) = σ(A) · σ(B);

(8) σ(A⊕B) = σ(A) + σ(B);

(9) det(A⊗B) = det(A)m det(B)n, where m,n are the size of A,B;

(10) A,B are both invertible iff A⊗B is, in that case (A⊗B)−1 = A−1 ⊗B−1;

(11) (A⊗B)∗ = A∗ ⊗B∗;

(12) (A ◦B)∗ = A∗ ◦B∗;

(13) tr(A⊗B) = (trA)(trB);

(14) rk(A⊗B) = (rkA)(rkB);

(15) eA⊕B = eA ⊗ eB;
(16) rk(A ◦B) ≤ (rkA)(rkB);

(17) If A,B ≥ 0 then A ◦B ≥ 0 and det(A ◦B) ≥ detA detB;

(18) (A⊕B)n =
∑

r

(
n
r

)
An−r ⊗Br.

There are some important classes of matrices defined on Mn(C): M is self-adjoint

if M∗ = M ; M is called normal if MM∗ = M∗M ; M is orthogonal if MM∗ = I; and

M is positive semidefinite if v∗Mv ≥ 0 for each v, in which case we denote M ≥ 0, as

well as, M ≥ N if M −N ≥ 0.

The main theorem relating these concepts is:
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Theorem 1.4 (Spectral theorem). Let M ∈Mn(C). Then, M is normal iff it is possible

to write M as

M =
d∑

r=1

λrEr

where λr are the eigenvalues of M , d the number of distinct eigenvalues, and Er satisfies:

(1) E2
r = Er,

(2) Er = E∗
r ,

(3) ErEs = 0 for all r ̸= s,

(4)
∑
Er = I.

They are the orthogonal projectors onto the eigenspaces of M , which are pair-wise

orthogonal and sum to the whole space.

In this case, M is self-adjoint iff σ(M) ⊆ R, M is orthogonal iff σ(M) ⊆ S1, and

M ≥ 0 iff σ(M) ⊆ [0,∞).

We observe that as Mn(C) is a C-algebra, it is possible to evaluate polynomials

p =
∑
art

r ∈ C[t] over a matrix A, defined by p(A) :=
∑
arA

r. This application satisfies

some properties:

Proposition 1.5 (Functional calculus). The application

φM : C[t]→Mn(C)

p 7→ p(A)

is a C-algebra homomorphism. The range of φM is a subset of the matrices that commute

with M , being all these matrices iff M is non-derogatory (that is, its minimal polynomial

is equal to its characteristic polynomial).

Moreover, if M =
∑
λrEr is normal we have:

p(M) =
∑

p(λr)Er.

In particular, p(M) is normal. IfM is invertible (which is equivalent to 0 /∈ σ(M)),

we have

M−1 =
∑

λ−1
r Er.

In the case where f(z) =
∑
arz

r is an entire function, we can define:

f(M) :=
∑

arM
r =

∑
f(λr)Er,

which satisfies the same properties.

This result gives us the following proposition:
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Proposition 1.6. Let X be a graph with adjacency matrix A. Then for each spectral

projector Ej we have a polynomial f ∈ C[t] such that

f(A) = Ej

Proof. Proposition 1.5 gives us f(A) =
∑
f(λr)Er. We can use Lagrange’s interpolation

to construct a polynomial of value 0 in each λr for r ̸= j and 1 in λj.

We also have spectral knowledge on p(M).

Theorem 1.7 (Spectral mapping theorem). For any M ∈Mn(C) and p ∈ C[t] (or entire
function) we have:

σ(p(M)) = p(σ(M)),

σ(M∗) = σ(M)∗,

where σ(M)∗ denotes point-wise complex conjugation.

Another useful definition that will be related to connected graphs is

Definition 1.8. We say that a non-negative matrix M ∈ Mn(R) is irreducible if there

is no permutation P for which

M =

(
A B

0 C

)
,

where A and C are square matrices. Or, equivalently M is irreducible if for each a, b there

is some r for which (M r)a,b ̸= 0.

This is mainly used as a hypothesis for the next theorem. Perron and Frobenius

independently proved it in [15,23]. See [24] for a proof.

Theorem 1.9 (Perron-Frobenius). If M is non-negative and irreducible, then the eigen-

vector related to the largest absolute eigenvalue has only positive entries, is simple, and

its eigenvalue is also positive.

The number ρ(M) := maxλ∈σ(M) |λ| is called the spectral radius of M , and it is

equivalent to ∥M∥ when M is self-adjoint.
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Chapter 2

Algebraic combinatorics

This chapter, as well as chapter 3 and 4, primarily draws upon [11, 16, 18, 19]. It is

noteworthy that a comprehensive and refined elucidation of graph theory’s nomenclature

and fundamental principles can be found within [1, 18].

2.1 Spectral graph theory

We aim to see how to apply matrices and spectral theory in finite combinatorics,

mostly graphs. Firstly, we have our primary definition:

Definition 2.1. Let X be an arbitrary graph. We define the adjacency matrix A(X),

or simply A when it is clear, as the matrix with entries in V (X) defined by

Aa,b =

1 a ∼ b

0 a ̸∼ b
.

We will start by relating the matrix A and its powers to the combinatorial proper-

ties of the graph. One of the most important combinatorial propositions is the following:

Proposition 2.2. Let X be a graph. Then (Ar)a,b is the number of walks of length r from

a to b in X.

Proof. The proof is simple and follows by induction. For r = 0 (or 1), it is obvious. For

the inductive step, we have:

(AAr)a,b =
∑
x

Aa,x(A
r)x,b =

∑
x∼b

(Ar)x,b.

Thus, we are summing the number of r-walks from a to a vertex adjacent to b, which

concludes the proof.
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Corollary 2.3. For a graph X with adjacency matrix A, the distance between two vertices

in the same connected component can be calculated by:

dX(a, b) = min{r; (Ar)a,b ̸= 0}.

Corollary 2.4. X is connected iff A is irreducible.

With that in mind, we can define the generating function that counts walks in the

graph, given by the formula

W (X, t) :=
∑
r

trAr ∈Mn(C)[[t]].

We can verify by a direct multiplication that

W (X, t) = (I − tA)−1.

Using the natural isomorphism Mn(C)[[t]] ∼= Mn(C[[t]]), given by

φ : Mn(R)[[t]]→Mn(R[[t]]);

[tn]ϕ(f)a,b = ([tn]f)a,b;

∑
Ant

n 7→


∑

n(An)1,1t
n
∑

n(An)1,2t
n · · ·

∑
n(An)1,kt

n∑
n(An)2,1t

n
∑

n(An)2,2t
n · · ·

∑
n(An)2,kt

n

...
...

. . .
...∑

n(An)k,1t
n
∑

n(An)k,2t
n · · ·

∑
n(An)k,kt

n

 ,

we can make sense of expressions such as det(W (X, t)) ∈ C[[t]] and Wa,b ∈ C[[t]].
We finally observe that A is self-adjoint, and we can use the spectral theorem

(hence the name spectral graph theory).

It also follows from Proposition 1.5 that

Proposition 2.5.

W (X, t) =
∑ 1

1− tλr
Er,

W (X, t)a,b =
∑ 1

1− tλr
(Er)a,b.

Recall that the characteristic polynomial of a matrix is defined as follows:

ϕ(X, t) := det(tI − A) =
∏

(t− λr)mr ,

where mr is the multiplicity of λr. We have mr = dim colEr = trEr. These calculations

give us equality stated in the following proposition.
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Proposition 2.6. For a general graph, we have:

tr(W (X, t)) =
∑
r

mr

1− tλr
= t−1ϕ

′(X, t−1)

ϕ(X, t−1)
.

Proof. The first equality is already done. For the second, a direct differentiation gives us

the following:

ϕ′(X, t) = (
∏

(t− λr)mr)′ =
∑
r

mr(t− λr)mr−1
∏
s ̸=r

(t− λs)mr ,

Thus,
ϕ′(X, t)

ϕ(X, t)
=
∑
r

mr

t− λr
,

and a simple substitution t←[ t−1 allows us to conclude the result.

By definition, trW (X, t) is the generating function for the number of cycles in

X, whence we were able to recover some combinatorial information simply from the

characteristic polynomial ϕ(X, t). It is not possible to recover the whole graph X from

its characteristic polynomial, for there are distinct graphs with the same polynomial.

One example is the following pair of graphs, both of which have the same characteristic

polynomial:

This example is not an isolated case. For instance, Schwenk showed that almost no tree

is uniquely determined by its spectrum [26].

However, much information can be recovered from ϕ(X, t). For the next theorem,

we shall make use of Lagrange’s formula for determinant:

M · adj(M) = det(M)I,

which works for M ∈ Mn(R) for any ring R. When R = C[[t]] and M := (I − tA) =

W (X, t)−1 we conclude that

W (X, t) =
1

det(I − tA)
adj(I − tA).

We observe that, by definition, adj(I− tA)a,a = t det((I− tA)[a, a]), where M [a, a]

denotes the matrix M without the row and column a, which is equivalent to remove the

vertex a from the graph. Thus by replacing t←[ t−1 we have:
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Theorem 2.7. Denoting by X \ a the induced sub-graph obtained upon removing a from

X, we have:

t−1W (X, t−1)a,a =
ϕ(X \ a, t)
ϕ(X, t)

,

ϕ(X \ a, t)
ϕ(X, t)

=
∑
r

(Er)a,a
t− λr

,

(Er)a,a =
ϕ(X \ a, t)(x− λr)

ϕ(X, t)

∣∣∣∣
t=λr

.

Proof. The first equation can be derived from the previous observation. The second equa-

tion follows from Proposition 2.5, the first equation, and by performing the substitution

t←[ t−1. The last equation is obtained by a direct substitution.

We can utilize the characteristic polynomial to derive a formula for the off-diagonal

entries of the adjacency matrix. However, this requires additional effort. To begin, we

will start with some definitions.

Definition 2.8. Let a, b ∈ V (X). A non-returning walk from b to a is a walk from b

to a that uses b only once. The generating function on non-returning walks from b to a is

denoted by N(X, t)b,a.

An arbitrary n-walk from b to a consists of a non-returning walk from b to a of

length j followed by a walk from a to a of length k, such that k + j = n. Thus, by the

product convolution of generating functions, we have:

Proposition 2.9. For a, b ∈ V (X) distinct we have

W (X, t)b,a = W (X, t)a,aN(X, t)b,a.

Lemma 2.10. For a, b ∈ V (X) distinct we have

W (X, t)a,a −W (X \ b, t)a,a =
W (X, t)2a,b
W (X, t)b,b

.

Proof. A walk from a to a that uses the vertex b at least once can be decomposed uniquely

as a walk that goes from a to b, followed by a non-returning walk from b to a. In terms

of generating function, this gives us

W (X, t)a,a −W (X \ b, t)a,a = W (X, t)a,bN(X, t)b,a,

and the result follows using that W (X, t) is self-adjoint and the previous proposition.

Now we are ready to demonstrate the off-diagonal formula:
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Theorem 2.11. For a, b ∈ V (X) distinct vertices, we have

t−1W (X, t−1)a,b =

√
ϕ(X \ a, t)ϕ(X \ b, t)− ϕ(X \ ab, t)ϕ(X, t)

ϕ(X, t)
,

(Er)a,b =
(t− λr)

√
ϕ(X \ a, t)ϕ(X \ b, t)− ϕ(X \ ab, t)ϕ(X, t)

ϕ(X, t)

∣∣∣∣
t=λr

;

where X \ ab is the sub-graph induced in X by removing a, b.

Proof. By the previous lemma, we have

W (X, t)2a,b = W (X, t)a,aW (X, t)b,b −W (X \ b, t)a,aW (X, t)b,b,

replacing t←[ t−1, multiplying both sides by t−1 and using Theorem 2.7 we conclude the

first formula. The second follows from Proposition 2.5.

2.2 Cospectrality

In this section, we present a relaxation on the condition of perfect state transfer.

We shall define cospectrality as follows:

Definition 2.12. Two vertices a, b of a graph X are said to be cospectral if for every

k ∈ N the number of k-walks that start and end at a is equal to the number of k-walks

that start and end at b.

Now, we will define a tool that is useful for studying cospectrality and algebraic

combinatorics in general:

Definition 2.13. For a graph X with adjacency matrix A and a subset S ⊆ V (X) we

define the walk matrix relative to S as the matrix:

WS :=
(
χS Aχs A2χS · · · An−1χS

)
,

where χS is the characteristic vector of S.

We see that the columns of this matrix form a basis for the R[A]-module generated

by χS since ϕ(A) = 0, which gives us that for some f with maximum degree n − 1,

An = f(A). The walk modules on S help count the number of walks with vertices

belonging to S.

Now we are ready to enunciate the following theorem:
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Theorem 2.14. For a, b ∈ V (X) the following conditions are equivalent:

(1) a, b are cospectral (that is (Ak)a,a = (Ak)b,b for each k),

(2) (Er)a,a = (Er)b,b for each d,

(3) ϕ(X \ a, t) = ϕ(X \ b, t),

(4) W ∗
aWa = W ∗

bWb,

(5) the R[A]-modules generated by ea + eb and ea − eb are orthogonal,

(6) there is a symmetric matrix Q ∈Mn that commutes with A, Q2 = I and Qea = eb,

(7) there is a orthogonal matrix Q ∈Mn that commutes with A and Qea = eb.

Proof. (1) and (2) are equivalent by Proposition 2.5, (2) and (3) are equivalent for the

Theorem 2.7. For (4), we observe that

(W ∗
aWa)j,k = e∗a(A

j−1)∗Ak−1ea = (Ak+j−2)a,a,

thus (Ak)a,a = (Ak)b,b are equal for 0 ≤ k ≤ 2n − 2, but since Ak for k ≥ n is a linear

combination of I, A, ..., An−1 we conclude that (4) is equivalent to (1).

For (5), we have

⟨Ak(ea − eb), Aj(ea + eb)⟩ = (Ak+j)a,a − (Ak+j)b,b + (Ak+j)a,b − (Ak+j)b,a

= (Ak+j)a,a − (Ak+j)b,b,

thus Ak(ea − eb) ⊥ Aj(ea + eb) iff (Ak+j)a,a = (Ak+j)b,b and the equivalence follows.

For (5) =⇒ (6) we define Q as being the operator that is −I on the R[A]-module

generated by ea − eb and I on its orthogonal complement. Q2 = I and Q is symmetric.

For an arbitrary v ∈ Rn we have v = w1 + w2 with w1 in the module and w2 in its

complement; a simple calculation gives us that:

QA(w1 + w2) = Q(Aw1 + Aw2) = −Aw1 + Aw2 = AQ(w1 + w2),

where we used that the R[A]-module and its complement are A-invariant. The last con-

dition follows from (5)

Q(2ea) = Q(ea + eb + ea − eb) = ea + eb − (ea − eb) = 2eb.

It is clear that (6) =⇒ (7) and for (7) =⇒ (1) we have

e∗bA
kba = (Qea)

∗Ak(Qea)

= e∗aQ
∗AkQea

= e∗aQ
∗QAkea

= e∗aA
kea;

which concludes the proof.
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The condition (7) will also let us relate cospectrality with symmetries. First, we

shall define the most apparent type of symmetry on graphs:

Definition 2.15. A graph isomorphism between the graphs X and Y is a bijection

φ : V (X) → V (Y ), such that φ(x) ∼ φ(y) ⇐⇒ x ∼ y. When X = Y , we say that φ is

an automorphism.

The automorphisms form a group with the composition operation, which is called

the group of automorphisms of a graph, Aut(X). We observe that an X automorphism

is, in particular, a permutation on V (X). If there is an automorphism ϕ ∈ Aut(X) such

that ϕ(a) = b, we say that the vertices a and b are similar.

A permutation matrix, related to the permutation σ, is a the linear transfor-

mation P such that Pea = eσ(a), that is, Pr,s = 1 if σ(r) = s and zero otherwise. The

following proposition relates permutation matrices and automorphisms:

Proposition 2.16. A permutation on V (X) is an X-automorphism iff its permutation

matrix commutes with the adjacency matrix of X.

Proof. It is easy to see that the following sentences are equivalent:

• P is automorphism;

• P (a) ∼ P (b) ⇐⇒ a ∼ b;

• e∗aP
∗APeb = 1 ⇐⇒ Aa,b = 1;

• P ∗AP = A;

• PA = AP .

That is, when we see Aut(X) as matrices, it is equivalent to the intersection of the

centralizer of A with the permutation group. As every permutation matrix is orthogonal,

the following property follows from (7):

Proposition 2.17. If a and b similar, then they are cospectral.

2.3 Parallel Vertices

The following condition will also be necessary for PST:
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Definition 2.18. Two vertices a, b ∈ V (X) are parallel, denoted by a ∥ b, if the vectors

Erea and Ereb are parallel for each r. Recall that Er denotes the spectral projection onto

the λr-eigenspace.

This definition is purely algebraic, and we are still determining if some purely

combinatorial condition is equivalent to it, like the definition of cospectrality. There is no

straightforward relationship between two vertices being symmetrical in some sense and

them being parallel. A significant counterexample is provided by complete graphs, where

all vertices are similar and yet not parallel when we have more than 2 vertices.

Now we shall see another equivalent condition:

Theorem 2.19. For a, b ∈ V (X) the following conditions are equivalent:

(1) a ∥ b;

(2) All poles of the rational function ϕ(X \ ab, t)/ϕ(X, t) are simple.

Proof. By Cauchy-Schwarz, Erea and Ereb are parallel iff ⟨Erea, Ereb⟩2 = ∥Erea∥2∥Ereb∥2,
which is equivalent to (Er)

2
a,b = (Er)a,a(Er)b,b. The poles of ϕ(X \ ab) are simple iff we

have for each r

γ :=
(t− λr)2ϕ(X \ ab)ϕ(X, t)

ϕ(X, t)2

∣∣∣∣∣
t=λr

= 0,

(here we use that the zero of ϕ(X, t) =
∏
(t− λr) are precisely λr).

Thus, by using Theorem 2.11 we have

(Er)
2
a,b =

(t− λr)2(ϕ(X \ a, t)ϕ(X \ b, t)− ϕ(X \ ab, t)ϕ(X, t))
ϕ(X, t)2

∣∣∣∣∣
t=λr

=
(t− λr)2(ϕ(X \ a, t)ϕ(X \ b, t)

ϕ(X, t)2

∣∣∣∣
t=λr

− γ

= (Er)a,a(Er)b,b − γ

from where we conclude that a and b are parallel iff γ = 0.

A simple sufficient condition for two vertices being parallel is that all the eigenval-

ues of the graph are simple. We can say more

Proposition 2.20. All the vertices of X are pairwise parallel iff all the eigenvalues are

simple.

Proof. The eigenvalues are simple iff rkEr = 1 for all r; clearly, all vertices will be parallel

in this case. Conversely, if all vertices are parallel, we have Erej ∥ Erek for each j, k, which

implies that rkEr = 1.

The following definition will be very useful when studying PST, and the next

proposition will be used in the main theorem of the next section.
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Definition 2.21. The eigenvalue support of a vertex a is the set of eigenvalues λr

such that their related eigenspace projector satisfies (Er)a,a ̸= 0.

Proposition 2.22. We have colWa = colWb iff the a and b are parallel and have the

same eigenvalue support.

Proof. colWa is composed by vectors of the form p(A)ea, for some p ∈ R[t]. As Erp(A)v =

p(λr)v, we have Er(colWa) = (Erea). Also, I =
∑
Er allows us to conclude that colWa =

colWb iff Er(colWa) = Er(colWb) for each r. This happens iff (Erea) = (Ereb) for each

r, or, equivalently a and b are parallel with same eigenvalue support.

2.4 Strong cospectrality

The following definition combines parallel vertices and cospectrality:

Definition 2.23. We say that the vertices a, b ∈ V (X) are strongly-cospectral if for each

d we have Erea = ±Ereb.

Since (Er)a,a, = e∗aErea = ∥Erea∥ it is easy to see that a, b are strong-cospectral iff

they are cospectral and parallel. As was the case of the other sections, we have a theorem

of equivalences:

Theorem 2.24. For a, b ∈ V (X), the following conditions are equivalent:

(1) a, b are strongly-cospectral (that is, ∀r, Erea = ±Ereb);

(2) a, b are cospectral and parallel;

(3) ϕ(X \ a, t) = ϕ(X \ b, t) and the poles of the rational function ϕ(X \ ab, t)/ϕ(X, t) are
simple;

(4) W ∗
aWa = W ∗

bWb and colWa = colWb;

(5) The R[A]-module generated by ea+ eb and ea− eb are orthogonal and their direct sum

is the R[A]-module generated by ea;

(6) There is a symmetric matrix Q that is polynomial in A with Q2 = I and Qea = eb;

(7) There is a polynomial p ∈ R[t] such that p2(A) = I and p(A)ea = eb.
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Proof. (1) ⇐⇒ (2) was already discussed; (3) follows from Theorem 2.19. (4) follows

from condition (4) of Theorem 2.14 together with Proposition 2.22 and the fact that

cospectral vertices always have the same spectral support. The first part of (5) is already

proved in Theorem 2.14. As

eb =
1

2
((ea + eb)− (ea − eb)),

we have (ea + eb)R[a] ⊕ (ea − eb)R[A] = (ea)R[A] iff eb = p(A)ea which is equivalent to

colWa = colWb. It is clear that (6) and (7) are equivalent. At last, it is clear that (7)

implies colWa = colWb and condition (6) of Theorem 2.14. Now, suppose that a and b

are strongly cospectral and let Erea = σrEreb, with σr = ±1. Let p be the polynomial

such that p(λr) = σr where λr is the eigenvalue related to Er, and p(λr) = 1 when λr

is not in the eigenvalue support of a. It is clear that p2(λr) = 1 for each r, from where

p2(A) = I. It is also true that

p(A)ea = p
(∑

λrEr

)
ea

=
∑

p(λr)Erea

=
∑

σrErea

=
∑

Ereb

= eb,

which concludes the proof.
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Chapter 3

State transfer

3.1 The unitary group

We will now introduce the main subject of the thesis. For a graphX with adjacency

matrix A and Hamiltonian H (as defined in Section 1.1), we define its unitary group

as:

U(t) := eitH .

As we can see in [14, 20], this map gives us the solution to Schrödinger’s equation

and, therefore, provides us with the time evolution of a quantum system. Specifically,

at time t, the state of a system originally in the state ψ0 will be given by ψt = U(t)ψ0.

Here, these vectors are indexed by the subsets S ⊆ V (X), and the value |⟨S|ψt⟩|2 is

the probability of obtaining the qubits in S as 1, and the rest as 0, when the system is

measured at time t. We will denote |{a}⟩ =: |a⟩, and we observe that the submatrix with

singletons as entries is exactly eitA. For more details, see [3, 5, 7].

The map t 7→ U(t) gives us a group homomorphism with respect to addition in the

reals and matrix multiplication [14, 20]. It is worth noting that the eigenvalues of U(t)

are of the form eiλt for t ∈ R and λ ∈ σ(H), making U(t) unitary and justifying the name

unitary group.

As U(t) is orthogonal, we can see that if an entry in a U(t) has modulus one at

t = τ , the rest of the column must be zero. That is, if (eiτA)a,b = γ with |γ| = 1, then

U(τ)|a⟩ = γ|b⟩, from where:

γ⟨b|ψτ ⟩ = ⟨a|U(τ)∗|U(τ)|ψ0⟩ = ⟨a|ψ0⟩.

The above equation means that the probability of measuring the system in the

state |b⟩ at time τ is the same as that of obtaining the measure |a⟩ if measured at time

0 instead. This phenomenon is described as that there has been perfect state transfer

between vertices a and b.

This discussion leads us to a vital proposition (which we will use as a definition

from now on).
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Proposition 3.1. There is perfect state transfer (PST) between vertices a and b at time

τ iff |U(τ)a,b| = 1.

A priori, we should say that the PST occurs from a to b. However, as AT = A we

have (eitA)T =
∑
eitλrET

r = eitA. Hence (eitA)a,b = (eitA)b,a and there is PST from a to

b at time τ iff there is PST from b to a, in which case we say that there is PST between

these vertices.

3.2 Conditions for perfect state transfer

The results of the rest of the chapter are from [11].

We will now show three inequalities, for which, when equality holds in all of them,

it implies the existence of perfect state transfer.

|(eitA)a,b| ≤
∑
r

|(Er)a,b| (3.1)

≤
∑
r

√
(Er)a,a)

√
(Er)b,b (3.2)

≤

√√√√(∑
r

(Er)a,a

)(∑
r

(Er)a,a

)
(3.3)

= 1

Using Proposition 1.5 gives us the first inequality.

Proposition 3.2. Let X be a graph and Er be the idempotent of the spectral decomposition

of A(X). Then, we have

|(eitA)a,b| ≤
∑
|(Er)a,b|,

and equality holds iff there is a complex number γ such that

etλr = γσr, ∀r; (Er)a,b ̸= 0, (C1)

where σr is the sign of (Er)a,b
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Proof. It follows directly from

|(eitA)a,b| = |
〈
ea, e

itAeb
〉
|

= |
∑
r

〈
ea, e

itλrEreb
〉
|

= |
∑
r

eitλr(Er)a,b|

≤
∑
r

|(Er)a,b|.

As we used only the triangle inequality, equality holds iff all eitλr(Er)a,b are co-linear and

have the same direction , which is equivalent to the condition in the hypothesis.

The other two conditions for having equality were previously studied. Namely:∑
r

|(Er)a,b| =
∑
r

√
(Er)a,b

√
(Er)b,b ⇐⇒ a ∥ b; (C2)

∑
r

√
(Er)a,b

√
(Er)b,b = 1 ⇐⇒ a, b are cospectral. (C3)

The intermediary term has a definition of its own. We note that for any a ∈ V (X),

the numbers (Er)a,a are non-negative and sum up to one; thus, they define a discrete

probability measure, called spectral density of X with respect to a. We have proved

that a and b have the same spectral density iff they are cospectral.

Definition 3.3. Given two discrete probability densities, p, q, we define their fidelity as∑
r

√
prqr.

By Cauchy-Schwarz, the fidelity of two densities is a number in [0, 1] and is 1 iff

they are multiples of one another and thus the same. This proves (C3), and for (C2) we

have the following proposition:

Proposition 3.4. The fidelity of spectral densities of vertices a, b ∈ V (X) are bounded

bellow by
∑

r |(Er)a,b|. Equality holds iff a ∥ b.

Proof. It follows directly from Cauchy-Schwarz:

(Er)a,a(Er)b,b − ((Er)a,b)
2 = ∥Erea∥2∥Ereb∥2 − ⟨Erea, Ereb⟩2 ≥ 0.

Also, equality is obtained in the sum iff Erea is a multiple of Ereb for each r, which is the

definition of a, b being parallel.
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3.3 Periodicity condition

We say that the vertex a of X is periodic with period τ if U(τ)ea = ea.

An immediate consequence of having PST between vertices a and b at the time τ

is the following:

U(2τ)ea = U(τ)(U(τ)ea) = U(τ)eb = ea.

Thus, we conclude that a necessary condition for having PST involving a vertex a is that

ea is periodic.

Definition 3.5. We say that the ratio condition on the eigenvalue support of a holds

if for any four eigenvalues on the support λr, λs, λk, λl, with λk ̸= λl, we have:

λr − λs
λk − λl

∈ Q.

We shall now give a necessary and sufficient condition for a vertex to be periodic.

Proposition 3.6. A vertex a ∈ V (X) is periodic iff the ratio condition holds on the

eigenvalue support of a.

Proof. If the vertex a is periodic at time τ , we have(∑
r

eiτλrEr

)
ea = ea =

(∑
r

Er

)
ea,

multiplying both sides by the conjugate, we have(∑
r

eiτλrEr

)
eae

∗
a

(∑
r

e−iτλrEr

)
=

(∑
r

Er

)
eae

∗
a

(∑
r

Er

)
,

∑
r,s

eiτ(λr−λe)EreaeaEs =
∑
r,s

Ereae
∗
aEs,

and as the matrices {Ereae
∗
aEs}r,s are independent we conclude that, for λr, λs in the

eigenvalue support of a,

eiτ(λr−λs) = 1.

This is equivalent to

τ(λr − λs) = mr,s2π, mr,s ∈ Z.

Thus, by dividing, we shall get the ratio condition. For the converse, we observe that if

the ratio condition holds, we have

λr − λs
λk − λl

= mr,s,k,t ∈ Q.
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Taking M as the least common multiple of the divisors of {mr,s,k,l}r,s, where λk ̸= λl are

fixed, we have:

M
λr − λs
λk − λl

∈ Z, ∀r, s;

from where, X will be periodic on a with period

τ :=
2Mπ

λk − λl
.

We will present a criterion for the ratio condition to hold on a set of algebraic

integers. But we recall some concepts beforehand. We say that two reals a, b are algebraic

conjugates if there is an irreducible polynomial p ∈ Q[t] such that p(a) = p(b) = 0. The

numbers that are roots of monic polynomials with coefficients in Z are called algebraic

integers, and form a ring. All algebraic integers are either integers or irrational. A real

irrational number µ is said to be a quadratic integer if it is the root of a second-degree

monic polynomial in Z. This is equivalent [11] to having one of the following conditions

for a square-free ∆ > 1:

• µ = a+ b
√
∆ and ∆ ≡ 2, 3 mod 4;

• µ = 1
2
(a+ b

√
∆) with ∆ ≡ 1 mod 4 and a ≡ b mod 2.

The eigenvalues of a symmetric matrix with integer coefficients are the roots of a

monic integer polynomial. Thus, we can use the following theorem:

Theorem 3.7. Let S = {λ0, . . . , λd} be a set of real algebraic integers, closed under taking

algebraic conjugates, with d ≥ 3. Then, the ratio condition holds for S iff either holds

• The elements of S are integers.

• The elements in S are quadratic integers, and there is a square-free ∆ > 1, and

integers a, b0, . . . , bd such that λr =
1
2
(a+ br

√
∆).

Proof. A simple calculation shows us that we have the ratio condition if either holds. For

the converse, we observe that if two elements, λ0 and λ1, are integers, then

λr − λ0
λ0 − λ1

∈ Q,

and since the algebraic integers are either irrational or integers, we conclude that λr is an

integer. Thus, the first case holds.

Now, if there is at most one integer, we will show that (λ0−λ1)2 ∈ Z. By the ratio

condition, for each pair r, s we have ar,s ∈ Q such that

λr − λs = ar,s(λ0 − λ1),
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from where ∏
r ̸=s

(λr − λs) = (λ0 − λ1)d
2−d
∏
r ̸=s

ar,s.

Since the left side is fixed by any field automorphism of Q[λ0, . . . , λd], it must be an

integer; and as the product of the ar,s is rational, we have

(λ0 − λ1)d
2−d ∈ Q.

As λ0 − λ1 is algebraic integer, we have

(λ0 − λ1)d
2−d ∈ Z.

This means that (λ0 − λ1) is an integer multiple of a root of unity, and since the

set is closed under taking algebraic conjugates and has only real elements, we must have

that (λ0 − λ1) is a quadratic integer or integer. In both cases, it is an integer multiple of√
∆, for a square-free positive integer ∆. Since

(λr − λ0)2 = a2r,0(λ0 − λ1)2,

it follows that (λr−λ0)2 is rational and thus λr−λ0 is integer multiple of
√
∆r, where ∆r

is a square-free natural. Since the square-free part of (λr − λ0)2 is the same as (λ0− λ1)2

we have ∆r = ∆. Therefore, we have integers mr such that:

λr = λ0 −mr

√
∆.

When we sum all elements on S, we obtain

|S|λ0 −
√
∆
∑

mr =
∑

λr,

which is an integer since the sum of all roots of a polynomial corresponds to the opposite

of its term of the second largest degree. Therefore, we have λ0 ∈ Q(
√
∆) as well as the

other elements. Their rational parts are the same, for their difference is an entire multiple

of
√
∆.

Corollary 3.8. Let X be an integer-weighted graph and S be the eigenvalue support of

the vertex a. Then X is periodic at a iff one of the following holds

• The elements of S are integers.

• The elements in S are quadratic integers, and there is a square-free ∆ > 1, and

integers a, b0, . . . , bd such that λr =
1
2
(a+ br

√
∆).

Moreover, if eitAea is not constant, and taking ∆ = 1 if the eigenvalues are integers, we

conclude that the smallest period is

τ =
2π

g
√
∆
,
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where

g := gcd

{
λ− λr√

∆

}
λr∈S

,

for some arbitrary λ ∈ S.

Proof. If |S| = 1, then eitAea is constant up to a phase. S will be closed under algebraic

conjugation, since if λr and λs are conjugated then so are Er and Es and Erea = 0 iff

Esea = 0. If |S| = 2, its elements are integers or quadratic integers, satisfying one of the

conditions. For |S| ≥ 3, we use Proposition 3.6 and Theorem 3.7. If periodicity holds at

τ , we can write

τ = x
2π

g
√
∆
,

where x ∈ R. From the proof of Proposition 3.6, we see that

x
λ− λr
g
√
∆
∈ Z,

so with this choice of g, it follows that x is an integer, and also, this is the greatest value

that does so. Hence this period is minimal.

We observe that as bn are integers, we must have that

Corollary 3.9. If a ∈ V (X) is periodic, then the elements of the eigenvalue support of a

have a distance of at least 1 from each other.

A stronger result holds: if We have PST between a and b, then the values in its

support have distance at least
√
2. [13]

3.4 The equivalence theorem

We start with a definition of a norm on Q. Given t ∈ Q, we can write t = pα(r/s)

with r, s integers without the factor p. Then, we define the p-adic norm of t as

∥t∥p := p−α.

If we denote by λ0 the largest eigenvalue (which is also the norm of the matrix) of

a graph X, then by Perron-Frobenius, it must be in the eigenvalue support of each vertex.

The main theorem of perfect state transfer is

Theorem 3.10. Let a, b be vertices of a connected graph X and let S = {λ0, . . . , λk} be
the eigenvalue support of a. There is PST between a and b iff the three conditions are

satisfied:
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(1) a and b are strongly cospectral;

(2) The eigenvalues of S are either integers or quadratic integers; and moreover there are

integers ∆, p, q0, . . . , qk with ∆ > 0 and square-free such that

λr =
1

2
(p+ qr

√
∆);

(3) Let us denote by λ0 the spectral radius. There is a non-negative α such that

• (Er)a,b > 0 iff ∥(λ0 − λr)/
√
∆∥2 < 2−α;

• (Er)a,b < 0 iff ∥(λ0 − λr)/
√
∆∥2 = 2−α.

If the above conditions hold, the minimum period for PST between a and b is

τ =
π

g
√
∆
,

where

g := gcd

{
λ0 − λr√

∆

}
r=1,...,k

.

Proof. We already know that conditions (1) and (2) are necessary. Thus, we suppose that

they are satisfied and show that (3) is equivalent to having PST. (1) implies that the

eigenvalue support of a and b are the same, and (2) implies that if PST occurs, it must

be on half of the period, that is, for the chosen value for τ . We have

eiτAea = γeb ⇐⇒ ∀λr, eiτλrErea = γEreb.

As E0 has positive entries, this condition is equivalent to have γ = eiτλ0 and

eiτ(λ0−λr) = ±1,

where the sign is the sign of (Er)a,b. This expression is equivalent to having (λ0−λr)/g
√
∆

even if (Er)a,b > 0 and odd otherwise, which is equivalent to the condition stated in (3)

Corollary 3.11. If there is PST between a and b, and between b and c, we must have

a = c.

Proof. The time when we have PST does not depend on the vertex, only on its eigenvalue

support, which must be the same for a, b, c since they are (strongly-)cospectral.
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Chapter 4

Some graphs and PST

We have chosen to present some examples after discussing the basic properties so that

we can better analyze what is being illustrated in them. Let us begin with the simplest

case, the graph P2, which exhibits perfect state transfer between vertices. The existence

of PST can be deduced through a straightforward calculation using the adjacency matrix.

A =

(
0 1

1 0

)
, eitA =

∑
n

(it)n

n!
An.

Here, we can use that A2 = I to calculate the sum as

∑
n

(it)n

n!
An =

∑
2|n

(it)n

n!
I +

∑
2∤n

(it)n

n!
A =

(
cos t i sin t

i sin t cos t

)
,

hence there is perfect state transfer at time t = ±π
2
.

In general, we can repeat this argument to compute the unity group of a bipartite

graph. If we choose an appropriate order on the vertices, the adjacency matrix will be of

the form

A =

(
0 B

B∗ 0

)
,

from where a similar computation will give us:

eitA =

(
cos(t

√
BB∗) i sin(t

√
BB∗)B

i sin(
√
BB∗)B∗ cos(

√
tB∗B)

)
.

Analyzing under Theorem 3.10, the eigenvalues of P2 are ±1, hence simple. From

this and using that the vertices are similar, they must be strongly cospectral. Finally, the

last condition is satisfied since calling λ0 = 1 and λ1 = −1 we have E1 =

(
1 −1
−1 1

)
,

∥λ0 − λ1∥2 = 1
2
and (E1)0,1 < 0.

A similar analysis allows us to conclude that P3 has PST between the extremities.
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4.1 Some non-examples

4.1.1 Complete graph

At first, it would seem like we would have PST between any two vertices of Kn due

to their extreme symmetry. However, this cannot happen due to Corollary 3.11. Well, no

two vertices of Kn are even parallel.

The spectral decomposition of A(Kn) is

A = J − I = (n− 1)

(
1

n
J

)
− 1

(
I − 1

n
J

)
.

where (1/n)J is the projector onto 1, which is the Perron eigenvector of the graph, and

I − (1/n)J is the projector onto 1⊥. We could do a direct calculation to show that there

are no two strongly cospectral vertices if n > 2; instead, we shall use an already seen

proposition together with:

Proposition 4.1. Graph isomorphism preserves cospectrality, parallelism, and PST.

Proof. Let X, Y be graphs and φ : X → Y an isomorphism. Denoting by A and B their

adjacency matrices, respectively, and P the permutation related to φ, we have B = PAP ∗.

The spectra of A and B are the same; and if ξ is A-eigenvector related to λr, then Pξ

must be a B-eigenvector related to λr, for

BPξ = PAP ∗Pξ = P (Aξ) = λrPξ.

Thus, denoting by Er, Fr the spectral projectors of X, Y , respectively, we have:

Fr =
∑

(Pξ)(Pξ)∗ = P
(∑

ξξ∗
)
P ∗ = PErP

∗,

where the sum is over the eigenvectors related to λr.

From that, we conclude that

Erea = ±Ereb ⇐⇒ PErP
∗Pea = ±PErP

∗Peb ⇐⇒ Freφ(a) = Freφ(b).

Since P preserves angles, we have

Erea ∥ Ereb ⇐⇒ PErea ∥ PEreb

⇐⇒ PErP
∗Pea ∥ PErP

∗Peb

⇐⇒ Freφ(a) ∥ Freφ(b);
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Also,

∥e∗aeitAeb∥ = 1 ⇐⇒ ∥e∗aPP ∗eitAP ∗Peb∥ = 1

⇐⇒ ∥e∗φ(a)eitBeφ(b)∥ = 1.

which concludes the proof.

We can use this proposition to show that there are now two parallel vertices in

Kn (n > 2). If a, b are parallel in Kn, then each vertex must be parallel to each other,

and thus we would have to have simple spectrum by Proposition 2.20, which is absurd

since Kn (n > 2) does not have a simple spectrum. In particular, this shows us that

Proposition 2.17 does not generalize for parallelism.

Proposition 4.2. There is no pair of parallel vertices in Kn for n > 2. In particular, we

do not have strong-cospectrality or PST.

4.1.2 Paths

Another important class of graphs that we shall discuss is the path graphs. Is there

PST in Pd?

The answer will be negative for d > 3, as we will see ahead, but beforehand we

will see some properties of the graph. The adjacency matrix will be

Pd =



0 1

1 0 1

1 0
. . .

. . .
. . . 1

1 0


.

Denoting by

C :=



0 1

0 0 1

0 0
. . .

. . .
. . . 1

0 0


,

we have P = C + C∗. The effect of C on a vector is to shift its entries to the left (and

put a zero at the end), hence if we call ξ :=
(
ω ω2 · · · ωd

)
, where ωd+1 = −1, we
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shall have that Cξ = ωξ + ed. Using that C∗ is the right-shift and that ω = ω−1 we can

conclude that

C∗ξ = ωξ + e1,

C(−ξ) = −(Cξ) = −ωξ − ed,

C∗(−ξ) = −ωξ − e1,

from where

(C + C∗)(ξ − ξ) = (ω + ω)(ξ − ξ).

Thus, the eigenvalues of Pd are of the form ω + ω, if ωd+1 = −1, that is:

2ℜ(ω) = 2 cos

(
πk

d+ 1

)
, k = 1, . . . , d.

In particular, as they are distinct, Pd must have a simple spectrum, and all the

vertices must be parallel.

The matrix

R =



1

1

. .
.

1

1


is an automorphism on Pd, from where all the opposite vertices on the path are isomorphic,

thus cospectral and strongly cospectral.

The following proposition implies the nonexistence of PST in a class of paths. For

this, we make use of the lower bound of the Euler’s totient function

ϕ(n) ≥
√
n√
2
,

whose proof can be found on [22].

Proposition 4.3. For d ≥ 6, no vertex of Pd is periodic.

Proof. As σ(Pd) ⊆ (−2, 2), it suffices to show that the eigenvalue support of each vertex

has cardinality at least 5 and use Corollary 3.9. Each spectral projector is of the form

Er = (ξ − ξ)(ξ − ξ)∗,

from where

(Er)a,a = (2ℑ(ωa))2,

which is non-zero for every ω primitive (2d+2)-th root of unit. We have ϕ(2d+2) primitive

(2d + 2)-th roots. Using the above bound, we have ϕ(n) ≥ 5 for n ≥ 50. Moreover, we

can verify that ϕ(n) ≥ 5 for 13 ≤ n ≤ 50. This implies that for d ≥ 6, there is no periodic

vertex on Pd.
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There is no PST in Pd for d ≥ 4. We can check individually the remaining cases

or use a more general argument, specific for PST, as in [11].

4.2 How to construct new graphs

In this work, we shall see two ways of building new graphs, starting from other ones

that ensure some properties are kept. We have two main techniques: one will be using

Cartesian maps, which will be seen now, and the other is by using equitable partitions,

which will be postponed to Section 6.4.

The main tool in this section is the following

Definition 4.4. Let X, Y be graphs. We define the Cartesian product graph X□Y as

the graph in V (X)× V (Y ) where

(a, b) ∼ (a′, b′) ⇐⇒

a = a′, b ∼ b′

a ∼ a′, b = b′
.

Or, equivalently, as the graph whose adjacency matrix is given by

A(X□B) = A(X)⊕ A(Y ).

We denote by X□n the Cartesian product of X with itself n times.

Now we have the main theorem of the section.

Theorem 4.5. A necessary and sufficient condition for there to exist PST between (a, b)

and (a′, b′) in the graph X□Y with minimal time τ is that there exists PST between a and

a′ in X with minimal period τ1, and PST between b and b′ in Y with minimal period τ2,

such that τ1/τ2 = p/q with p and q odd and coprime integers. In that case, τ = τ1q = τ2p.

Proof. (⇒) If there is PST in X□Y at τ we have, using Proposition 1.3:

eiτXea ⊗ eiτY eb = eiτ(X⊕Y )(ea ⊗ eb) = ea′ ⊗ eb′ ,

from where

eiτXea = ea′ , eiτY eb = eb′ .

Now let us show that the minimum periods of the PST of a, a′ and b, b′ satisfy the

conditions. Denote by τ1 the minimal time on X and τ2 on Y . As τ is a period for PST

in a, a′ and b, b′ there must be odd positive integers k1, k2 for which

τ1k1 = τ = τ2k2
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from where we get that τ1/τ2 = k2/k1. The converse is immediate using Proposition

1.3.

Corollary 4.6. A necessary and sufficient condition for there to exist PST between (a, b)

and (a, b′) in the graph X□Y with minimal time τ is that a is periodic with minimal period

τ1; and there is PST between b and b′ in Y with minimal period τ2, such that τ1/τ2 = p/q

with p and q coprime and p odd. In that case, τ = τ1q = τ2p.

Corollary 4.7. If there is PST between a, b at minimal time τ in X, then there is PST

between (a, a, . . . , a), (b, b, . . . , b) in X□n at minimal time τ .

Another important information that we need to study the product of graphs is the

distance between vertices, which is easily computed by the following proposition.

Proposition 4.8. For a, a′ ∈ X and b, b′ ∈ Y we have

dX□Y ((a, b), (a
′, b′)) = dX(a, a

′) + dY (b, b
′).

Proof. It is clear that there is a path from (a, b) to (a′, b) of length dX(a, a
′), and similarly

for (a′, b) to (a′, b′), which gives us

dX□Y ((a, b), (a
′, b′)) ≤ dX(a, a

′) + dY (b, b
′).

For the converse, let d = dX□Y ((a, b), (a
′, b′)), and let A and B be the adjacency matrices

of X and Y , respectively. Then, we have:

0 < (A⊕B)d(a,b),(a′,b′) = (A⊗ I + I ⊗B)d(a,b),(a′,b′)

=

(∑(
d

r

)
(Ar ⊗Bd−r)

)
(a,b),(a′,b′)

=
∑(

d

r

)
(Ar

a,a′ ·Bd−r
b,b′ ),

which implies that Ar
a,a′ > 0 and Bd−r

b,b′ > 0 for some r ≤ d. Therefore, we have

dX(a, a
′) ≤ r and dY (b, b

′) ≤ d− r =⇒ dX(a, a
′) + dY (b, b

′) ≤ d.

We note that a simple combinatorial argument shows that |E(X□Y )| = |E(X)||V (Y )|+
|V (X)||E(Y )| and |V (X□Y )| = |V (X)||V (Y )|. Combining all the arguments, we see that

in the d-cube P□d
2 , the distance between two extreme vertices is d, and they have PST.

However, the number of edges in the n-cube is 2n−1n, which means that the number of

edges increases exponentially with respect to the distance of the vertices involved in PST.

The Cartesian products of paths give us an example of an infinite class of graphs with
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PST between vertices of any distance, but the number of edges explodes as the distance

increases.

In general, if a graph X has PST between vertices of distance d, then taking

the Cartesian product X□n yields graphs that have PST between vertices with distance

dn. However, the number of edges in X□n is exponential in n, specifically E(X)n =

O(E(X□n)). This topic will be revisited in the final chapter.

Another property that the Cartesian product preserves is cospectrality. We have

the main theorem:

Theorem 4.9. Suppose a1, . . . , an are cospectral vertices in X and b1, . . . , bm are cospec-

tral vertices in Y . Then the vertices (ar, bs) are cospectral in X□Y , for any 1 ≤ r ≤ n

and 1 ≤ s ≤ m. The same is valid by replacing the term cospectral with similar.

Proof. Let A =
∑
λrEr, and B =

∑
µsFs be the spectral decomposition of the adjacency

matrices of X and Y , respectively. By hypothesis (Er)aj ,aj is constant in j, as well as

(Fs)bj ,bj , thus (Er ⊗ Fs)(aj ,bk),(aj ,bk) is constant in j, k. We can write A⊕B as

A⊕B =
∑
r,s

(λr + µs)Er ⊗ Fs,

where Er ⊗ Fs are orthogonal projectors.

This may not be the spectral decomposition once we can have λr + µs = λr′ + µs′ .

However, the spectral projectors will be the sum of some Er⊗Fs, and their sum will also

be constant in the wanted entries.

The other part follows directly from the fact that if P and Q commute with A

and B, respectively, then P ⊗ Q, I ⊗ Q and P ⊗ I commute with A ⊕ B, together with

Proposition 2.16.

This theorem tells us that the Cartesian product of graphs preserves some combi-

natorial properties of the original graphs. We observe that σ(X□Y ) = σ(X)+σ(Y ), and

if we can ensure that σ(X) + σ(Y ) is simple, we can force X□Y to have several strongly

cospectral vertices.

4.3 Distance between vertices with PST and the

size of the graph

The main problem that motivated this thesis is the following:
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Problem 4.1. How to construct a simple graph X which possesses PST between two

vertices with distance d with the least number of edges.

We will denote

D(d) := min{|V (X)| : X has two vertices at distance at least d with PST}.

We observe that as |E(X)| is bounded by a polynomial on |V (X)|, they must have

similar asymptotic behavior. We chose to use |V (X)| in this definition since it is usually

easier to compute. The following result is due to Coutinho, [8]:

Theorem 4.10. We have the bound

D(n) > (n/3)3/2.

For this proof, we will need the following definition and lemma. The eccentricity

of a vertex a in a graph X is the maximum distance between a and another vertex. It is

denoted by ϵa. Then we have

Lemma 4.11. Let X be a graph with adjacency matrix A, and a ∈ V (X). Denote by Φa

the eigenvalue support of a. Then

εa + 1 ≤ |Φa|.

Proof. We can consider the subspace of Rn defined by:

Wa = ({Area}r) = ({Erea}r∈Φa),

which has dimension |Φa|. The support of Area contains the vertices at a distance r

from a and does not contain the vertices at a distance greater than r. Hence, the vectors

{Area}εa0 are independent, from where the lemma follows.

Lemma 4.12. Let X be a graph with |E(X)| = m with a ∈ V (X) periodic. Then(εa
3

)3
< 2m.

Proof. Let τ be the period of a, and let λ0, λ1, . . . , λn−1 be the eigenvalues of X ordered

in non-increasing absolute value. Since the diagonal of A2 contains the degree of each

vertex, we have:

trA2 = 2m =
n−1∑
r=0

λ2r.

From this, it follows that:

λ2r ≤
2m

r + 1
.
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Let k = ⌊ 3
√
2m⌋. We can observe that k ≤ n− 1. According to Corollary 3.9, the

distance between any two distinct eigenvalues in Φa is at least 1. Since:

Φa \ {λ0, . . . , λk} ⊆ [−|λk|, |λk|],

we can conclude that even in the worst-case scenario where λ0, λ1, . . . , λk−1 ∈ Φa, we still

have:

(|Φa| − k − 1) ≤ 2|λk|,

which implies:

|Φa| ≤ 2

√
2m

k + 1
+ k + 1 < 2

3
√
2m+

3
√
2m+ 1.

This inequality, along with the previous lemma, completes the proof.

Proof of Theorem 4.10. Now, the proof of the main theorem follows trivially from the

lemmas and the fact that |E(X)| ≤
(|V (X)|

2

)
< |V (X)|2

2
.

As far as our current knowledge extends, the lower bound presented for D(n) is

the best known. The example of P□n
2 demonstrates that D(2n) ≤ 2n. Moreover, utilizing

the results from Corollary 4.7 and Proposition 4.8, we can infer that D(kn) ≤ D(n)k.

Therefore, we have:

N := lim
log2(D(n))

n
= inf

log2(D(n))

n
.

Proof. Let an := log2(D(n)) and L = inf(an/n). Fix ϵ > 0. There exists N such that

aN/N < L + ϵ. Also, there is a value of J for which if k > J , then k+1
k

< 1 + ϵ. For

m > JN , we can write m = kN + r with r < N and k > J . Consequently, we have

am ≤ a(k+1)N ≤ (k + 1)aN , and since m > kN , we get:

am
m
≤ (k + 1)aN

kN
≤
(
k + 1

k

)
aN
N
≤ (1 + ϵ)(L+ ϵ) = L+ ϵ(1 + L+ ϵ).

Since ϵ > 0 is arbitrary, we can conclude that an/n tends to L, as desired.

The number N quantifies the exponential growth of D. Specifically, for α > 0, we

have D(n) = O(αn) iff N ≤ log2 α. Furthermore, D(n) exhibits sub-exponential growth

iff N = 0.

The graph P2 give us that N ≤ 1 and P3 implies N ≤ 1
2
log3(2) ≈ 0.792.

In Section 6, we will provide bounds for N to analyze its properties further.
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Chapter 5

Paths with weights

The smallest graph with vertices at a distance d is the path graph Pd. Ideally, we would

like to obtain PST using this graph. However, as seen in Subsection 4.1.2, path graphs

do not have PST, except for P2 and P3. To address this issue, we can add weights to

the edges of the path and then create a related simple graph that exhibits properties

similar to the weighted paths. This Chapter will explore how to construct weighted paths

with PST or other spectral properties. In Chapter 6, we will focus on solving the latter

problem.

A preliminary observation is that the concepts in which we are working naturally

extend to weighted graphs through the use of the adjacency matrix, which now contains

numbers in R instead of 0 or 1. Two vertices are considered cospectral if any of the

conditions outlined in 2.14 are met. Similarly, vertices are labeled as strongly cospectral

if they fulfill any of the conditions mentioned in 2.24. Additionally, the Hamiltonian and

PST can be defined using identical formulas on A(X).

Consequently, the validity of Theorem 3.10 remains intact even when applied to

weighted graphs, as its proof relies solely on linear algebra principles.

5.1 Orthogonal polynomials

In this section, we present a concise introduction to the topic of orthogonal poly-

nomials. We based mainly on [4], where there is a much deeper presentation of the theme.

We have many ways to define a bilinear application in R[t], considering it as an

R-vector space. Let ⟨·, ·⟩P be such a map. It is clear that {tn} forms a basis for the space
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and that for any p =
∑
art

r and q =
∑
brt

r we have

⟨p, q⟩P =
〈∑

art
r,
∑

bst
s
〉
P

=
∑
r,s

arbs ⟨tr, ts⟩P

=:
∑
r,s

arMr,sbs;

thus, considering the isomorphism inclusion R[t] ↪→ RN, given by tk ↪→ ek, we have

⟨p, q⟩P = p∗Mq. We observe that the polynomials correspond to vectors with bounded

support; hence, the sum is always finite and well-defined despite the matrix M possibly

having infinite non-zero entries.

We are particularly interested in the case in which the operator multiplication by

t, defined by p 7→ tp, is self-adjoint considering ⟨·, ·⟩P , which happens iff

⟨tr, ts⟩P =
〈
1, tr+s

〉
P ∀r, s,

and hence, by calling mr := ⟨1, tr⟩P , the matrix associated with the bilinear application

will be

Mr,s = mr+s,

M =


m0 m1 m2 · · ·
m1 m2 m3 · · ·
m2 m3 m4 · · ·
...

...
...

. . .

 .

In particular, M is self-adjoint, so the bilinear application is symmetric. We can

characterize the semidefinite bilinear applications by:

Theorem 5.1. Let ⟨·, ·⟩P be a bilinear application on R[t]. The following statements are

equivalent:

(1) The bilinear application is positive semidefinite, and the multiplication by t is self-

adjoint;

(2) The matrix related to the bilinear application is of the form

M =


m0 m1 m2 · · ·
m1 m2 m3 · · ·
m2 m3 m4 · · ·
...

...
...

. . .

 ;

and is positive and semidefinite;
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(3) The bilinear application is of the form

⟨f, g⟩P =

∫
fg dµ;

for some Borel measure µ.

The equivalence between (1) and (2) comes from the above discussion, and the

equivalence between (2) and (3) is known as the Hamburger moment problem and can be

found in [4].

Using this theorem, we have

⟨f, f⟩P = 0 ⇐⇒ f = 0 µ-a.e..

Recall that we say that f = 0 µ-almost everywhere, or µ-a.e., if µ(f−1({0}c)) = 0.

Moreover, we define the support of a measure as the set of points whose every neighbor-

hood has a positive measure.

When the support of µ is infinite, f = 0 µ-a.e. implies that f has an infinite

number of roots, which happens only when f = 0, and hence ⟨·, ·⟩P is an inner product.

The other case, which is the one to be analyzed, is when the Borel measure µ has

finite support. In this case, the measure is of the form

µ =
d∑

r=0

αrδλr , αr > 0;

for some d ∈ N, λr ∈ R; where δλr is the Dirac measure at λr, defined by

δλr(B) =

1 1 ∈ B

0 1 /∈ B
.

In this case, the bilinear form will be given by:

⟨f, g⟩P =
∑

αrf(λr)g(λr).

A polynomial p will have a null quadratic form iff λr is a root for each r. Hence,

⟨p, p⟩P = 0 is equivalent to ϕ :=
∏
(t−λr) | p, and from that, we conclude that the kernel

of the quadratic application is the ideal (ϕ)R[t].

In other words, the application ⟨·, ·⟩P is constant in the co-sets of R[t]/(ϕ), and
this allows us to project the function to the quotient

⟨·, ·⟩σ : R[t]/(ϕ)× R[t]/(ϕ)→ R,

⟨f + (ϕ), g + (ϕ)⟩σ = ⟨f, g⟩P .

The bilinear map ⟨·, ·⟩σ is an inner product on R[t]/(ϕ) ∼= Rd+1 where the index

r of λr goes from 0 to d. We remember that for a polynomial p =
∑
art

r of degree d,
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the property p(λr) = yr can be expressed as the following matrix equation involving the

Vandermond matrix of {λr}r, given by Vm,n = λn−1
m−1:

1 λ0 λ20 . . . λd0

1 λ1 λ21 . . . λd1

1 λ2 λ22 . . . λd2
...

...
...

. . .
...

1 λd λ2d . . . λdd


·



a0

a1

a2
...

ad


=



y0

y1

y2
...

yd


.

That is, the matrix associated to the inner product will be of the form

⟨p, q⟩σ = p∗V ∗∆V q,

where ∆ is the diagonal matrix with αr.

We observe that as deg(ϕ) = d + 1, the polynomials {1, t, t2, . . . td} form a ba-

sis, and thus we can use Hilbert-Schmidt to produce a basis of orthogonal polynomials,

{P0, P1, . . . , Pd} with deg(Pr) = r. This process determines the basis uniquely up to

multiplication by a scalar.

5.2 From orthogonal polynomials to tridiagonal

matrices

Let V be the quotient of the spaces of polynomials by a bilinear form that is

induced by a finite-supported measure. Call ⟨·, ·⟩σ the inner product induced on the

quotient. Suppose that we have an orthogonal basis {P0, P1, . . . , Pd} with deg(Pr) = r.

In particular, each Pr is orthogonal to every polynomial q with deg(q) < r and using that

⟨tPr, q⟩σ = ⟨Pr, tq⟩σ we have tPr orthogonal to every polynomial q with deg(q) < r − 1.

Writing tPr on this basis gives us

tPr =
∑
s

⟨tPr, Ps⟩σ
⟨Ps, Ps⟩σ

Ps,

but using the first observation, we have:

Proposition 5.2. We have sequences {ar}dr=0; {br}d−1
r=0 and {cr}dr=1 such that:

tPr = br−1Pr−1 + arPr + cr+1Pr+1, r = 0, 1, . . . , d− 1

Pr+1 =
1

cr+1

((t− ar)Pr − br−1Pr−1), r = 0, 1, . . . , d− 1.
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where we consider P−1 = b−1 := 0. We can compute these coefficients by

ar =
⟨tPr, Pr⟩σ
⟨Pr, Pr⟩σ

, r = 0, . . . , d,

br =
⟨tPr+1, Pr⟩σ
⟨Pr, Pr⟩σ

, r = 0, . . . , d− 1,

cr =
⟨tPr−1, Pr⟩σ
⟨Pr, Pr⟩σ

, r = 1, . . . , d.

Moreover cr+1br > 0, for r ≥ 0.

Proof. The first part of the proposition was discussed before. We need to prove that

cr+1br > 0.

We know that cr ̸= 0, for deg(tPr) = r + 1 and deg(Pr−1), deg(pr) ≤ r. We can

conclude what we want by doing the division

br
cr+1

=
⟨Pr+1, Pr+1⟩σ
⟨Pr, Pr⟩σ

> 0.

Proposition 5.2 can be rewritten as a matrix multiplication:

Corollary 5.3. The operator multiplication by t, in the basis {P0, . . . , Pd} is given by the

following tridiagonal matrix

T :=



a0 c1

b0 a1 c2

b1 a2 c3
. . .

. . .
. . .

bd−2 ad−1 cd

bd−1 ad


,

where the values for ar, br, cr are defined in Proposition 5.2. Moreover, the characteristic

polynomial of T is ϕ =
∏
(t− λr).

Proof. As td+1 ≡ −ϕ̃, where ϕ̃ := ϕ − td+1, the multiplication by t in the standard basis

{0, t, . . . , td−1, td} is given by (
t t2 . . . td −ϕ̃

)
,

which is the companion matrix of ϕ and has as characteristic polynomial ϕ. Here we are

using the abuse of notation

∑
art

r ↔


a0
...

ad

 .
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Let {P̃0, . . . , P̃d} be another basis of orthogonal polynomials with deg(P̃r) = r.

In this case, we will have non-zero constants γr such that P̃r = γrPr, and thus the new

tridiagonal matrix, representing the multiplication by t in this new basis, will be

T̃ =



ã0 c̃1

b̃0 ã1 c̃2

b̃1 ã2 c̃3
. . .

. . .
. . .

b̃d−2 ãd−1 c̃d

b̃d−1 ãd



= ΓTΓ−1 =



a0
γ0
γ1
c1

γ1
γ0
b0 a1

γ1
γ2
c2

γ2
γ1
b1 a2

γ2
γ3
c3

. . .
. . .

. . .
γd−1

γd−2
bd−2 ad−1

γd−1

γd
cd

γd
γd−1

bd−1 ad


, (∗)

where Γ is the diagonal matrix with γr as entries, corresponding to the matrix of change

of basis.

We observe that the diagonal of T̃ is the same for every orthogonal basis as well

as the product of b̃rc̃r+1. However, with an appropriate choice of the (γr)r, we can set,

for each pair (b̃r, c̃r+1), an arbitrary non-negative number for b̃r or c̃r+1, but once one is

chosen the other is uniquely defined.

Another important observation is that when we multiply each polynomial Pr by

the same constant, we have T̃ = T .

Some interesting choices for b̃r, c̃r are:

• c̃r = 1 for each r, in which case the polynomials P̃r are monic;

• c̃r+1 = b̃r for each r. In this case T̃ is self-adjoint and ∥Pr∥σ is constant in r;

• The vectors Pr are normal concerning the Euclidian norm, by doing Pr := P̃r/∥P̃r∥
for any sequence of P̃r.

Now, we will consider R[t] instead of the quotient. We will define cd+1 := 1,

c0 := P−1
0 and

Pd+1 := (t− ad)Pd − bd−1Pd−1.

In this case, we have the following result.

Proposition 5.4. Let T [r] be the main r × r-submatrix of T . Then:(
r∏

s=0

cs

)
Pr = det(tI − T [r]).
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In particular Pd+1 = (
∏
cr)ϕ. Moreover, the eigenvector related to λr is

ξr :=


P0(λr)

P1(λr)
...

Pd(λr)

 .

Proof. The proof uses induction on r. The base case is true because we defined c0 for it.

For r + 1, Lagrange’s formula gives us

det(tI − T [r + 1]) = (t− ar) det(tI − T [r])− crbr−1 det(tI − T [r − 1])

= (t− ar)

(∏
s≤r

cs

)
Pr − crbr−1

( ∏
s≤r−1

cs

)
Pr−1

=

(∏
s≤r

cs

)
((t− ar)Pr − br−1Pr−1)

=

( ∏
s≤r+1

cs

)
Pr+1.

For the eigenvector, fix a λr and let M be the matrix whose s-th line is the vector

Ps. We shall also use the identification
∑
art

r =
(
a0 a1 . . . ad

)
. If we call Λ =(

λ0r λ1r . . . λd−1
r

)∗
we have MΛ = ξr. By Proposition 5.2 and its generalization, we

have

TM =


tP0(t)

tP1(t)

. . .

tPd(t)− Pd+1(t)

 ,

thus, since Pd+1(λr) = 0,

Tξr = (TM)Λ =


λrP0(λr)

λrP1(λr)

. . .

λrPd(λr)

 = λrξr.

5.2.1 The inverse problem

Now, we will address the converse problem: given a tridiagonal matrix T , how can

we construct the polynomials P0, . . . , Pd and an inner product ⟨., .⟩σ such that the matrix
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of multiplication by t is T in this orthogonal basis? We cannot uniquely determine all

the polynomials since multiplying each Pr by a constant results in the same matrix T .

Therefore, we can fix an arbitrary value for P0. Additionally, T must satisfy the condition

of having brcr+1 > 0 for each r since it was a requirement for the matrix T . We can still

proceed with the construction even if T does not meet this condition, although in that

case, we will obtain a non-positive defined bilinear form.

Starting from P0 and T , we can use the recurrence relation on polynomials to

calculate all the other polynomials Pr. Now, we want to determine the inner product for

which the Pr are orthogonal and show that it can be expressed in the form

⟨p, q⟩σ =
∑

αrp(λr)q(λr),

which is equivalent to the existence of a positive diagonal matrix ∆ such that

⟨p, q⟩σ = p∗V ∗∆V q,

in which case, αr =
√
∆r.

We observe that ⟨·, ·⟩σ also cannot be determined uniquely, since by scaling the

inner product by a constant, ⟨·, ·⟩σ′ = θ ⟨·, ·⟩σ, we obtain the same values for ar, br, cr by

Proposition 5.2. Thus, we can fix a value for it, let us say ⟨P0, P0⟩σ =: η0 > 0. From that,

⟨Pr+1, Pr+1⟩σ =
br
cr+1

⟨Pr, Pr⟩σ ,

which we use to uniquely determine all the other values of ηr =: ⟨Pr, Pr⟩σ. The above

equation also implies that T is symmetric iff ηr = ηs for all r, s.

The inner product is already uniquely defined, for it is defined on the basis Pr by

⟨Pr, Ps⟩σ := ηrδr,s,

which ensures the orthogonality of the Pr.

However, we must still verify that the product will be in the desired form.

Let P =
(
P0 P1 . . . Pd

)
, using Proposition 5.4 we conclude that

V P =


ξ∗0

ξ∗1
...

ξ∗d

 .

Let D be the diagonal matrix such that DTD−1 is self-adjoint. If ξr is an eigenvector of

T , then Dξr will be an eigenvector of DTD−1. Thus, the matrix D(V P )∗ will have as

columns the eigenvectors of DTD−1, which are orthogonal and thus there is a diagonal

matrix H such that:

(D(V P )∗)∗D(V P )∗ = H,
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or, equivalently,

H−1/2(V P )DD(V P )∗H−1/2 = I,

D(V P )∗H−1/2H−1/2(V P )D = I,

P ∗V ∗H−1V P = D−2.

We can see from the equation ∗ that D has only to satisfy

D2
r+1 =

cr+1

br
D2

r .

Thus we can choose Dr = 1/
√
ηr and set αr = H−1

r , which concludes that the

inner product is indeed of the desired form. It is also easy to calculate H = V PD2P ∗V ∗,

which gives us a matrix way of obtaining the weights αr.

Another way to calculate αr is to observe that by Proposition 5.4 and the Spectral

Theorem, we have:

Er =
1

∥ξr∥2
ξrξ

∗
r ,

∑
r

Er = I,

(∑
r

Er

)
a,b

=
∑
r

Pa(λr)Pb(λr)

∥ξr∥2
= δa,b,

which gives us the weights

αr =
1

∥ξr∥2
,

where

ξr =


P0(λr)

P1(λr)
...

Pn(λr)

 ,

as expected, since the weights are the square of the values that normalize the eigenvectors

ξr.

5.3 Interlacing

Interlacing is a fundamental concept in linear algebra that plays a crucial role in

studying orthogonal polynomials. Let us begin with the basic definition:
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Definition 5.5. We say that two polynomials p, q ∈ R[t] with all real roots, λ1 ≤ · · · ≤ λn

and µ1 ≤ · · · ≤ µm, respectively, with n > m, interlace iff

λr ≤ µr ≤ λn−(m−r), r = 1, . . . ,m.

Moreover, we say that they strictly interlace if p, q are also coprime.

The main result involving interlacing, which can be found in [9], is:

Theorem 5.6 (Cauchy interlacing). Suppose that M is a self-adjoint matrix in Mn(C)
and S is a linear operator from Cm to Cn, where n > m. Assume that S∗S = Im, and

call N = S∗MS. Then, the characteristic polynomials of M and N interlace.

Corollary 5.7. Let {Pr} be an orthogonal polynomial sequence, with deg(Pr) = r. For

each r, Pr and Pr+1 strictly interlace. Moreover, Pr has all roots simple.

Proof. Theorem 5.6 with S =

(
Ir

01

)
and M = T [r + 1], together with Proposition

5.4, allow us to conclude that Pr and Pr+1 interlace.

If θ is a common root of Pr and Pr+1 then:

θPr(θ) = br−1Pr−1(θ) + arPrθ + cr+1Pr+1(θ),

which implies that θ is a root of Pr−1. Thus, repeating the argument, we would have that

θ is a root of P0, a contradiction.

For the last part, we observe that if Pr has θ as a double root due to interlacing,

Pr−1 would also have θ as a root, contradicting what we have just proved.

The following results of this section can be found in [11]:

Proposition 5.8. Let p, q ∈ R[t], be monic coprime polynomials with real roots λr and

µr, respectively. The following statements are equivalent:

(1) p, q strictly interlace and deg(p) = deg(q) + 1 = d+ 1;

(2) q/p has simple poles with positive residue;

(3) (q/p)′(t) < 0 (t ∈ R; t ̸= λr);

(4) (q/p)′(t) ≤ 0 (t ∈ R; t ̸= λr);

(5) (p/q)′(t) ≥ 1 (t ∈ R; t ̸= µr);

Proof. (1) =⇒ (2): Given λ0 < µ0 < . . . µd−1 < λd, where λr are the roots of p and µr

are the roots of q, the poles of q/p are λr, with residue given by

q(t)(t− λr)
p(t)

∣∣∣∣
t=λr

.
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Since the roots of p are simple, p changes sign at its roots and, being monic,

p(t) > 0 for t > λd. Therefore, p(λr + ϵ) is positive when r is of the form r = d − 2s

for some s ∈ N and is negative for the other values of r. On the other hand, a similar

analysis shows that q(λr + ϵ) > 0 for r of the form r = d− 2s and negative for the other

values.

(2) =⇒ (3) we observe that we can write q/p as a partial fraction

q

p
=
∑
r

cr
t− λr

,

and so

cr = res

(
cr

t− λr
, t = λr

)
= res

(∑
s

cs
t− λs

, t = λr

)
= res

(
q

p
, t = λr

)
> 0.

This equation implies (
q

p

)′

=
∑
s

−cs
(t− λs)2

< 0.

(4) =⇒ (1): as q/p is non-increasing, between two poles of the function, which

are the roots of p, the function must change sign. Thus, by continuity, there is zero of

q/p, which corresponds to a root of q.

Now that we have proved the equivalence of (1), (2), (3), (4) we move on to (5).

(5) =⇒ (4) follows from a simple calculation(
q

p

)′

=

(
1

p/q

)′

= − (p/q)′

(p/q)2
≤ − 1

(p/q)2
< 0

For (4) =⇒ (5), we first observe that

q2
(
p

q

)′

= p′q − pq′ = −p2
(
q

p

)′

.

Also, we have

p2
(
q

p

)′

= −
∑

cr
p2

(t− λr)2
.

Together with

q2 =

(∑
cr

p

t− λr

)2

,

we obtain the following formula:(∑
cr

p

t− λr

)2(
p

q

)′

=
∑

cr
p2

(t− λr)2
.

Since p and q are monic, we have
∑
cr = 1. Therefore, using Cauchy-Schwarz on

(
√
cr)r and

(
p
√
cr

t−λr

)
r
, we have(∑

cr
p

t− λr

)2

≤
∑

cr
p2

(t− λr)2
,

from where we conclude that (p/q)′ ≥ 1.
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Lemma 5.9. If p and q are monic strictly interlacing real polynomials with degrees d+1

and d, respectively, and both have real roots, then there exist real numbers α and β, and

a monic polynomial r of degree d− 1, such that β > 0 and

p = (t− α)q − βr.

Furthermore, r and q strictly interlace.

Proof. Using Euclidean division, we can obtain unique numbers α and β, as well as a

polynomial r with deg(r) < d, such that p = (t− α)q − βr. We aim to prove that β > 0

and r and q interlace.

Dividing by q we obtain
p

q
= t− α− β r

q
,

which implies

β

(
r

q

)′

= 1−
(
p

q

)′

.

Since we know that (p/q)′ ≥ 1, we have β(r/q)′ ≤ 0. As (r/q)′(t) < 0 for large t,

we can conclude that β > 0 and (r/q)′ ≤ 0 where it is defined. Therefore, as gcd(r, q) =

gcd(p, q) = 1, we can apply the equivalence in Proposition 5.8 to conclude what we

want.

This lemma allows us to conclude the following result, which will be useful later:

Proposition 5.10. If p and q are monic strictly interlacing polynomials of degree d+1 and

d, respectively, there exists a unique sequence of monic polynomials P0 = 1, P1, . . . , Pd−1

with increasing degree and an inner product on Rd+2 such that P0, P1, . . . , Pd−1, q, p are

orthogonal polynomials.

Proof. Based on what we have seen, our goal is to find numbers ar and br, with br > 0,

that satisfy Proposition 5.2, where we define cr = 1 as we are demanding all polynomials

to be monic.

Using Lemma 5.9, we can write p = (t − α)q − βr, where r is a polynomial of

degree d − 1 and α and β are unique numbers. Then we define ad := α, bd−1 := β, and

Pd−1 := r. Since q and r interlace and deg(r) = d − 1, we can continue the process and

obtain all the values of ar and br

It is important to note that Proposition 5.10 provides us with an algorithm to

construct the entire chain of polynomials rather than just establishing the existence of a

sequence.

An immediate consequence of this proposition, along with Theorem 5.6 and Propo-

sition 5.4, is that Lemma 5.9 is, in fact, an equivalent condition for interlacing.
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If q is the characteristic polynomial of a submatrix with characteristic polynomial

p, then p, q interlace by Theorem 5.6. However, if the matrix is tridiagonal, we can

ensure stronger conditions, such as the interlacing being strict, as seen in Corollary 5.7.

Another interlacing characteristic that is guaranteed by the matrix being tridiagonal is

the following:

Definition 5.11. Two polynomials p and q and deg(q) < deg(p), strongly interlace

they have real simple roots, and there exists at least one root of p in any closed interval

with extremities in two distinct roots of q.

This result is due to [4]:

Proposition 5.12. If a sequence of orthogonal polynomials with increasing degree con-

tains p, q, then p, q strongly interlace.

Proof. Without loss of generality, we can assume that deg(p) = d+ 1 and that the inner

product is supported on its roots. Let us suppose that for two roots of q, µ1, µ2, there is

no root λr of p. In this case, let us call

q̃ :=
q

(t− µ1)(t− µ2)
.

As deg(q̃) < deg(q) they must be orthogonal, hence

0 = ⟨q, q̃⟩σ =
∑

αr
q2(λr)

(λr − µ1)(λr − µ2)
,

for some constants αr > 0. Well, since there is no λr in between µ1 and µ2, the sign of

λr − µ1 and λr − µ2 must must be constant for all r. Thus, the sum on the right side is

strictly positive, which leads to a contradiction.

5.4 Weighted paths

In this chapter, we shall describe the occurrence of PST on positive-weighted path

digraphs, possibly with loops. A general weighted path is of the form

. . .

c1

b0

c2

b1

c3

b2

cd

bd−1

a0 a1 a2 ad
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and its adjacency matrix is

A(X) =



a0 c1

b0 a1 c2

b1 a2 c3
. . .

. . .
. . .

bd−2 ad−1 cd

bd−1 ad


.

We observe that for each positive tridiagonal matrix A, we have a weighted graph

whose adjacency matrix is A. This gives us a bijection between these two objects.

We can perform some arithmetical operations on the adjacency with PST, which

maintains the PST. As a result, we can assume that the graphs possess certain favorable

properties, as we can reconstruct graphs with these properties by performing operations

on well-behaved graphs.

Firstly, as eit(αT ) = ei(tα)T , we have PST in T iff we have one in αT , and also we

have

|(eit(µI+T ))a,b| = |(eitµIeitT )a,b| = |eitµ| · |(eitT )a,b| = |(eitT )a,b|,

that is, we can sum µI without changing the existence of PST.

That allows us to suppose that two eigenvalues are integers without loss of gen-

erality. Thus, we can also suppose that all the spectra are integers since we must have

the ratio condition on the eigenvalue support by Proposition 3.6. We can also suppose

that the spectrum has the greatest common divisor 1; otherwise, we can divide the whole

matrix by its greatest common divisor.

5.4.1 First case: PST between extremities

This subsection is motivated by [27].

When do we have PST between the extremities of the weighted path associated

with T?

The first step is to analyze cospectrality, which is done by the following theorem:

Theorem 5.13. Let T be a tridiagonal self-adjoint matrix with positive off-diagonal ele-

ments, and P̃r be the associated orthogonal monic polynomials obtained by

P̃r := det(tI − T [r]), P0 = 1.
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Denote

R :=



1

1

. .
.

1

1


.

Then the following are equivalent:

(1) The first and last vertices of the related path are strongly-cospectral;

(2) Each vertex of the related path is strongly cospectral to its opposite vertex;

(3) [T,R] = 0;

(4) P̃d(λr) = (−1)d−r.

Proof. We show that (1) =⇒ (3). Let us designate the first and last vertices as x and

y, respectively. We want to show that ar = ad−r and br = bd−r−1, which is equivalent

to [T,R] = 0. The number of 1-cycles in x is given by a0, and in y it is counted by ad.

Therefore, we have a0 = ad. Similarly, the number of 2-cycles in x is c1+b0+a
2
0 = 2b0+a

2
0,

and in y it is 2bd−1 + a2d, from where and b0 = bd−1.

Now, let us consider the absurd case where bk > bd−k, and let k be the smallest

value that satisfies this condition. Additionally, assume that ar = ad−r for all r ≤ k. In

this scenario, the total weight of the (2k)-cycles starting at x would be greater because

we would have the same cycles as in y, each with exactly the same weight except for the

weight of bk. Similarly, if ak > ad−k and ar = ad−r and br = bd−r for all r < k, we would

observe a greater total weight on the (2k + 1)-cycles starting at x. A similar argument

can be applied for the other cases when bk < bd−k or ak < ad−k.

Now, for (3) =⇒ (2), we observe that as T has simple eigenvalues we have

[T,R] = 0 iff there is a polynomial p such that p(T ) = R. Thus, we will have P (A)er =

Rer = ed−r, and (6) of Theorem 2.24 ensure us that er and ed−r are strongly cospectral.

For (4) ⇐⇒ (1), we first recall that Proposition 5.4 gives us

(Er)a,b =
Pa(λr)Pb(λr)

∥ξr∥2
,

where

ξr :=


P0(λr)

P1(λr)
...

Pd(λr)

 ,

and Pr is the normalized orthogonal polynomial, defined by Pr := (
∏r

s=1 cs)P̃r.
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Now, item (1) Theorem 2.24, tells us that we have (4) iff

(Er)0,0 = (Er)d,d,

which happens iff
P0(λr)

2

∥ξr∥2
=
Pd(λr)

2

∥ξr∥2
,

or, equivalently

Pd(λr)
2 = P0(λr)

2 = 1.

The fact that Pd has real zeros and |Pd(λr)| = 1 implies that Pd(λr) = (−1)d−r.

Now let us call 0, d the first and last vertex of the weighted path, respectively. We

shall now revisit Theorem 3.10 and see the conditions for having PST between 0 and d.

As

(Er)0,0 =
P0(λr)P0(λr)

∥ξr∥2
=

1

∥ξr∥2
> 0,

we see that the eigenvalue support of 0 is all the spectrum. Thus, to have condition (2),

we can assume without loss of generality that the spectrum is integer and coprime. Now,

for condition (3) we have

(Er)0,d =
P0(λr)Pd(λr)

∥ξr∥2
=

(−1)d−r

∥ξr∥2
.

Hence, λr must be alternating between odd and even. This way, we have an

algorithm to generate all the weighted paths with PST between the extremities, given by:

Theorem 5.14. The following algorithm generates all possible matrices of weighted (d+

1)-paths whose extremities have PST:

(1) Choose d+1 distinct integers (your favorite ones!) λ0 < · · · < λd, where λr ≡ r mod 2;

(2) Define Pd as the polynomial of degree d such that Pd(λr) = (−1)d−r;

(3) Call P̃d be the monic polynomial associated with Pd;

(4) Calculate P̃d−1, . . . , P̃1, P̃0 using the algorithm in Proposition 5.10;

(5) Calculate the values ar, br and construct a matrix T̃ (we already have cr = 1);

(6) Let T be the symmetric matrix obtained by conjugating T̃ by a diagonal (or by using

br = cr+1 =
√
b̃r);

(7) We may do operations of the form T + βI or αT for α, β ∈ R.

A natural question is whether there are other vertices with PST in a weighted path

with PST between extremities. The answer is positive:

Proposition 5.15. If there is PST between the extremities of a weighted path in time τ ,

then there is PST at time τ for any pair of symmetrical vertices.

Proof. We postpone the proof to after Proposition 5.16.
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5.4.2 Orthogonal polynomial sequence with fixed terms

This subsection is a generalization of the results from the previous one and is made

mainly of the original results that we obtained in our research.

Suppose we aim to achieve PST between vertices 0 and d − k in the d + 1 path.

We begin by assuming that we have the orthogonal polynomial is associated with the

vertex, denoted as Pd−k. We want to determine the properties that Pd−k must possess

in order to be part of a chain of d orthogonal polynomials, ensuring PST between 0 and

d − k, and also recover a sequence of orthogonal polynomials which contains both Pd−k

and Pd+1 as a last polynomial. We will approach the former task. We begin with the

following propositions, likely known in the theory, which establish a relationship between

the values of Pd and Pd−k. However, we could not find a reference, and the proof we

present is due to the author.

Proposition 5.16. Let P0, . . . , Pd be a sequence of monic orthogonal polynomials of in-

creasing degree, with inner product supported on the roots of Pd+1, also monic. Then, for

any 0 ≤ k ≤ d, if Pd−k does not share any root with Pd+1, we have:

Pd

Pd+1

=
d∑

r=0

(
d−1∏

s=d−k

bs

)
Pd−k(λr)

ϕk(λr)
· 1∏

s ̸=r(λr − λs)
· 1

(t− λr)
,

where

Ak :=


ad−k+1 1

bd−k+1 ad−k+1

. . . 1

bd−1 ad

 , ϕk(t) := det(tI − Ak), ϕ0 := 1.

Proof. We start by noticing that by multiplying both sides by Pd+1, we obtain that the

formula is equivalent to

Pd =
d∑

j=0

(∏d−1
s=d−k bs

)
Pd−k(λj)

ϕk(λj)
·
∏

s ̸=j(t− λs)∏
s ̸=j(λj − λs)

.

Since both sides of the equation are polynomials of degree d, we can prove equality

by showing that they are equal for the d+1 values of λj. Thus, by setting t = λr, we can

eliminate all terms in the sum except for the one where j = r, giving us

Pd(λr) =

(∏d−1
s=d−k bs

)
Pd−k(λr)

ϕk(λr)
.
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The equation can be rewritten as:

Pd(λr)ϕk(λr) =

(
d−1∏

s=d−k

bs

)
Pd−k(λr). (∗∗)

We will prove (∗∗) by induction on k. First, it is easy to see that for k = 1, (∗∗) is

(λr − ad)Pd(λr) = bd−1Pd−1(λr),

which is true since

(t− ad)Pd − bd−1Pd−1 = Pd+1,

and the roots of Pd+1 are precisely λr. For k = 0, we defined ϕ0 := 1. With that, (∗∗) is
satisfied.

For the induction, we note that by Lagrange’s formula, we have:

ϕk = (t− ad−k+1)ϕk−1 − bd−k+1ϕk−2, k ≥ 2.

Additionally, we can use the recursion relation given in Proposition 5.2 to obtain:

bd−kPd−k = (t− ad−k+1)Pd−k+1 − Pd−(k−2), k ≥ 2.

Now, by doing some manipulation:(
d−1∏

s=d−k

bs

)
Pd−k(λr) =

 d−1∏
s=d−(k−1)

bs

 bd−kPd−k(λr)

=

 d−1∏
s=d−(k−1)

bs

((t− ad−k+1)Pd−k+1 − Pd−(k−2)

)
= (λr − ad−(k−1))Pd(λr)ϕk−1(λr)− bd−(k−1)Pd(λr)ϕk−2(λr)

= Pd(λr)
(
(λr − ad−(k−1))ϕk−1(λr)− bd−(k−1)ϕk−2(λr)

)
= Pd(λr)ϕk(λr)

Proof of Proposition 5.15. We already have the condition (2) of Theorem 3.10 on the

eigenvalues and, by Theorem 5.13 cospectrality between vertices d− k and k. The same

proposition also implies that ϕr = Pr. We can use (∗∗) regardless of having distinct zeroes

of the polynomials, and using this formula, we conclude:

(Er)k,d−k = αPk(λr)Pd−k(λr)

= (αβ)Pd(λr)ϕd−k(λr)Pd−k(λr)

= (αβ)Pd−k(λr)
2Pd(λr)

where α = (
∑

s Ps(λr)
2)

−1
> 0 and β =

(∏d−1
s=d−k bs

)−1

> 0. This equality allows us

to conclude that (Er)k,d−k and Pd(λr) have the same sign in the spectral support of the

vertex, which is equivalent to condition (3) of Theorem 3.10 for k and d− k.
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The next two results are derived from the application of Proposition 5.16. The

accompanying proofs are original and likely contribute novel insights to the theory.

Theorem 5.17. Suppose Pd−k and Pd+1 are monic, coprime, strongly interlacing polyno-

mials of degrees d−k and d+1, respectively. Call λr the roots of Pd+1. Let ad−k+1, . . . , ad

and bd−k+1, . . . , bd−1 be sequences of real numbers, with br > 0.

Then, there exists a sequence of orthogonal monic polynomials P0, . . . , Pd with re-

spect to a measure supported on the roots of Pd+1, and with corresponding coefficients ar

and br, iff each interval (λr, λr+1) of roots of Pd+1 which does not contain a root of Pd−k

has a root of ϕk, which is defined as in Proposition 5.16.

Proof. The condition on the zeros is equivalent to having Pd−kϕk and Pd+1 coprimes and

interlacing. We observe that a sequence of orthogonal polynomials exists iff the value of

Pd defined by Proposition 5.16 interlaces Pd+1 since, in this case, we can define Pd by

these values and reconstruct the whole sequence using Proposition 5.10. The sequence

derived from Pd and Pd+1 must contain Pd−k, since its polynomial of degree d− k has the

same value at the points λr, by another use of 5.16.

By Proposition 5.8, Pd interlacing Pd+1 is equivalent to

res

(
Pd(t)

Pd+1(t)
, t = λr

)
> 0, ∀r,

which means (∏d−1
s=d−k bs

)
Pd−k(λr)

ϕk(λr)
· 1∏

s ̸=r(λr − λs)
> 0.

Notably, dividing both sides by
∏
bs does not affect the sign of the term since

br > 0. We can also multiply both sides by ϕk(λr)
2 without changing the inequality. The

value ϕk(λr) is not zero by 5.16 and Pd−k(λr) ̸= 0. This means that the above inequality

is equivalent to
Pk−d(λr)ϕk(λr)∏

s ̸=r(λr − λs)
> 0.

By hypothesis Pd−k(t)ϕk(t) interlaces Pd+1. Thus, by Proposition 5.8

res

(
Pd−k(t)ϕk(t)

Pd+1(t)
, t = λr

)
> 0,

which concludes what we wanted since

Pk−d(λr)ϕk(λr)∏
s ̸=r(λr − λs)

= res

(
Pd−k(t)ϕk(t)

Pd+1(t)
, t = λr

)
.

Let β :=
∏d−1

s=d−k bs. We observe that β is uniquely defined by Pd−k and ϕk since

there is only one value that makes the polynomial obtained by interlacing,
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Pd =
d∑

j=0

βPd−k(λj)

ϕk(λr)
·
∏

s ̸=j(t− λs)∏
s ̸=j(λj − λs)

,

monic. So, given a ϕk that satisfies Theorem 5.17, we can algorithmically restore the

sequence of orthogonal polynomials:

Theorem 5.18. Let Pd−k and Pd+1 be monic coprime strongly interlacing polynomials.

Also, suppose they have degrees d−k and d+1, respectively. Then a sequence of orthogonal

monic polynomials P0, . . . , Pd contains Pd−k, whose inner product is supported on the roots

of Pd+1. We can create such a sequence following these steps

(1) Choose k values µ0, . . . , µk−1 that lie in distinct intervals between two adjacent roots

of Pd+1 between which there are no roots of Pd−k. (We note that this can only be done

if Pd+1 and Pd−k strongly interlace);

(2) Let ϕk :=
∏k−1

r=0(t− µr);

(3) Call

P̃d =
d∑

j=0

Pd−k(λj)

ϕk(λj)
·
∏

s̸=j(t− λs)∏
s ̸=j(λj − λs)

,

and Pd the monic polynomial multiple of P̃d.

(4) Obtain the remaining values of P0, . . . , Pd−1 by applying the procedure in Proposition

5.10 to Pd and Pd+1.

Moreover, these steps cover all the possible ways of forming such a sequence of orthogonal

polynomials.

Corollary 5.19. If p and q are coprime polynomials that strongly interlace and do not

share common roots, then an orthogonal polynomial sequence contains both.

The additional hypothesis of Pd−k and Pd+1 not having roots in common is not a

problem when we want to force PST between vertices 0 and d−k. Using that (Er)d−k,d−k =

Pa(λr)
2/∥ξr∥2, we conclude that λr is in the support of d− k iff Pd−k(λr) ̸= 0. Hence, as

P0(λr) = 1 ̸= 0, we also must have Pd−k(λr) ̸= 0 if there is PST .

Corollary 5.20. Let Pd−k, Pd−l, Pd+1 polynomials with all real distinct roots and of degree

d − k, d − l and d + 1 respectively, such that gcd(Pd−k, Pd+1) = gcd(Pd−l, Pd+1) = 1.

Then, there exists a sequence of orthogonal polynomials containing Pd−k and Pd−j with

the inner product supported on the roots of Pd+1 iff there are polynomials ϕk, ϕl of degree

k, l respectively such that

(i) ϕkPd−k and ϕlPd−l interlace Pd+1;
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(ii) There is a constant c for which
Pd−k(λr)

ϕk(λr)
= c

Pd−l(λr)

ϕl(λr)
for each λr root of Pd+1;

Proof. Both Pd−k and Pd−l are in an orthogonal polynomial sequence with the last term,

respectively,

Pd =
d∑

r=0

βPd−k(λr)

ϕk(λr)
·
∏

s ̸=r(t− λs)∏
s ̸=r(λr − λs)

, P̃d =
d∑

r=0

β′Pd−l(λr)

ϕl(λr)
·
∏

s ̸=r(t− λs)∏
s ̸=r(λr − λs)

,

for suitable constants β, β′. By (ii), we conclude that Pd and P̃d are scalar multiples,

but since they are both monic, they must be equal. Hence, they determine the same

orthogonal polynomial sequence, which contains both Pd−k and Pd−l.

We can implement the last corollary as linear restrictions over vectors. We define

the variables xr := ϕk(λr) and yr := ϕl(λr). The second condition now becomes the linear

restriction:

arxr = bryr, ∀r,

where ar := 1/Pd−k(λr) and br := 1/Pd−l(λr) are given parameters.

The interlacing condition can be replaced by the demanding that xr, yr have ade-

quate signs: xrxr+1 < 0 iff there is a root of ϕk in (λr, λr+1) iff there are no roots of Pd−k

in (λr, λr+1). We can write that as

arar+1xrxr+1 < 0, r = 1, . . . , d− 1.

We do not need to impose this for yr since it will result from the other two re-

strictions. We also want deg(ϕk) = k, which can be checked by using interpolation and

computing the unique polynomial with degrees lesser than d + 1 that assume the values

of xr at λr. Similarly for deg(ϕl) = l.

We can apply Theorem 3.10 to establish conditions for having PST between vertices

0 and d− k in a weighted path. Condition (1) is equivalent to having |Pd−k(λr)| = 1 for

each r, by Lemma 5.22, which will be proved in the next section.

Condition (2) depends uniquely on the eigenvalue support of the vertices, which is

composed of integers by hypothesis. As for condition (3), we have∥λ0 − λr∥2 ≤ 1
2

λr ≡ λ0 mod 2

∥λ0 − λr∥2 = 1 λr ̸≡ λ0 mod 2.

We now observe that

(Er)0,d−k =
P0(λr)Pd−k(λr)

∥ξr∥2
,

which has the same sign as Pd−k(λr). Thus, we have conditions (1) and (3) iff Pd−k(λr) =

(−1)λr−λ0 . This restriction leads us to the following problem involving polynomials:
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Problem 5.1. Given k, d positive integers, with k ≥ d/2, which sequences of d integers

(if any) λ0 > λ1 > · · · > λd and a polynomial Pd−k satisfy:

(1) deg(Pd−k) = d− k;

(2) Pd−k(λr) = (−1)λr−λ0 ,

(3) Pd−k strongly interlaces λ0, . . . , λd;

(4) all roots of Pd−k are real.

For each choice of value for λr, the polynomial Pd−k is uniquely defined by (2).

However, the polynomial defined for an arbitrary sequence will not always have the right

degree nor satisfy (3) and (4).

We summarize the discussion in this section with a result similar to Theorem 5.14:

Theorem 5.21. The following steps generates all possible matrices of weighted d-paths

with PST between vertices 0 and d− k:

(1) Choose λr as in Problem 5.1;

(2) Compute the polynomial P̃d−k which satisfies the conditions of Problem 5.1;

(3) Calculate P̃d, . . . , P̃1, P̃0 using Theorem 5.18;

(4) Calculate the values ãr, b̃r and construct a matrix T̃ (we already have c̃r = 1);

(5) Let T be the symmetric matrix obtained by conjugating T̃ by a diagonal (or by using

br = cr+1 =
√
b̃r);

(6) We may do operations of the form T + βI or αT for α, β ∈ R.

5.4.3 Cospectrality in weighted paths

In this section, our focus shifts to a related yet somewhat weaker problem involving

two cospectral vertices within a weighted path. We initiate this discussion by establishing

a connection between cospectrality and orthogonal polynomials:

Lemma 5.22. Given a weighted path, the vertices a, b are cospectral iff

|Pa(λr)| = |Pb(λr)|, ∀r,

where Pr are the orthogonal monic polynomials related to the adjacency symmetric graph

T .



5.5. Conclusions 67

Proof. Using 2.14, a, b are cospectral iff (Er)a,a = (Er)b,b. The result follows from (Er)a,b =

(1/∥ξr∥2)Pa(λr)Pb(λr).

The following corollary is a known but unpublished result of Coutinho and Spier.

Nevertheless, this proof is originally ours.

Corollary 5.23. No pair of cospectral vertices are on the same half of a weighted-path

graph. The half includes the middle vertex when the path is odd.

Proof. We have a, b cospectral iff Pd+1 | P 2
a − P 2

b , from where

d+ 1 = deg(Pd+1) ≤ deg(P 2
a − P 2

b ) = 2max{a, b}.

Thus, we conclude that max{a, b} > d/2. That is, at least one vertex is in (d/2, d].

We cannot have both vertices in [d/2, d]; otherwise, a reflection of the path would give us

a path with two cospectral vertices in [0, d/2].

Corollary 5.24. No three vertices are cospectral to each other in a weighted graph.

Corollary 5.24 is a particular case of a stronger result: there is no tree with three

cospectral vertices [12].

The following lemma generalizes Lemma 5.22 when we are dealing with non-

normalized orthogonal polynomial sequences. It is particularly useful when computing

the related monic orthogonal polynomials.

Lemma 5.25. Given a sequence of orthogonal polynomials P0, . . . , Pd we have the vertices

a, b are cospectral in the symmetrized matrix T̃ related to these polynomials iff there is a

constant c > 0 such that

|Pa(λr)| = c|Pb(λr)|, ∀r.

Proof. Let P̃r denote the polynomial sequence related to the symmetrized matrix. We

want to show that Pa(λr)
2 = Pb(λr)

2. We observe that there are constants k1, k2 such

that Pa = k1P̃a and Pb = k2P̃b. From that we have P̃a(λr)
2 = k2P̃b(λr)

2 and in particular∑ 1

∥ξr∥2
P̃a(λr)

2 = k2
∑ 1

∥ξr∥2
P̃b(λr),

where k = ck2/k1. As
∑

1
∥ξr∥2 P̃a(λr)

2 =
∑

1
∥ξr∥2 P̃b(λr) = 1 we conclude that k = 1.

5.5 Conclusions

In this chapter, we studied orthogonal polynomials, focused on the finite dimension

space case, and how they are related to tridiagonal matrices and path graphs. We were
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motivated by the goal of finding PST in weighted paths since a path is the most efficient

way of creating a graph with the greatest diameter with a fixed number of vertices. As

there is no PST in regular paths, it was natural to study weighted paths and the theory

of orthogonal polynomials, which allowed us to provide a precise interpretation of the

quantum walk phenomenon. We proved an original result concerning how to create an

orthogonal polynomial sequence when given a term in the middle and the last one and

formulated clearly an open problem about the existence of polynomials for whose related

weighted path has PST between non-extremal vertices. We point out that this problem

has a connection to the Prouhet-Tarry-Escott problem [6], as forcing the polynomials to

have small degrees and interpolate integer points can be rewritten as finding two multi-set

integers whose powers sums are equal; as is shown in [6].

In the next chapter, we focus on the second task we induced earlier: recovering

simple graphs that preserve quantum walk properties of weighted paths.
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Chapter 6

Equitable partitions

Now that we have researched the problem of achieving PST in weighted graphs, we are

faced with another challenge: how can we construct a simple graph that exhibits a similar

quantum walk to the original weighted graph? To tackle this question, we will delve into

the study of equitable partitions and quotient graphs.

While their connection to PST is established in Proposition 6.7, equitable partitions

hold intrinsic value as a tool in graph theory.

Graphs with a certain degree of regularity possess particular partitions known as

equitable partitions. By utilizing a graph and its equitable partition, we can define a new

weighted graph called the symmetrized quotient graph. In various cases, this quotient

graph retains desired properties, including PST. Section 6.1 will define these concepts

and prove properties preserved in the quotient based on results and definitions from [11].

In 6.2, we will face the problem of determining the class of graphs that can be

quotiented into a given graph. We will characterize in matrix terms all graphs with

some quotient in common with an original theorem and compare this to the already-

known theory for another type of quotient, which can be found in [25], leading us also to

examine the structure that all the equitable partitions of a given graph exhibit.

In Sections 6.3 and 6.4, we focus on the inverse problem: given a graph, can we

determine another graph with the original one as a quotient? For this task, we use results

from [21]. While Section 6.3 presents general results, in the latter section, we explore how

to compute such graphs for a given path, which is particularly interesting to us.

6.1 Preliminary definitions

The definitions and results from this section are based on [11,18]. Let us start this

section by introducing a fundamental definition:

Definition 6.1. A partition of the vertex set of a graph X is a function π : V (X) →
[0, . . . , k − 1]. The set Cr := π−1(r) is called a cell of the partition, and we call the
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characteristic matrix of the partition the related |V (X)| × k matrix S̃ defined by

S̃ar =

1, π(a) = r

0, π(a) ̸= r
.

The normalized characteristic matrix, S, is obtained by scaling each column of S̃

such that their norm is 1.

We have

S∗S = I|π|,

and since SS∗ is idempotent, it must be the orthogonal projector onto colSS∗ = colS =

col S̃, which is the space of vectors with constant coordinates on the cells of π.

Definition 6.2. We say that a partition π of X is equitable iff N(a, Cr), (the number

of neighbors of a in Cr) depends only on r and π(a), that is

∀r, s a, b ∈ Cr =⇒ N(a, Cs) = N(b, Cs).

We note that we may have r = s.

Given an equitable partition π of X, we can define the quotient X̃/π as the directed

graph on the cells of π where the number of arcs from r to s is equal to the number of

neighbors that a vertex of Cr has in Cs. If we denote by B the adjacency matrix of X̃/π

then

Brs = N(a, Cs) =
N(Cr, Cs)

|Cr|
=
∑
k

AakS̃ks, for any a ∈ Cr .

The triangle has an equitable partition. We will represent different classes with

different colors in the graphs. One of the triangle’s equitable partitions and its related

quotients and matrices are

X = X̃/π= 21

1

S̃ =

1

1

1

 , S =

1
1√
2
1√
2

 .

This way, we have

AS̃ = S̃B.

Lemma 6.3. Let π be a partition of X with characteristic matrix S̃ and normalized matrix

S. The following are equivalent:
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(1) π is equitable;

(2) col S̃ is A-invariant;

(3) A and SS∗ commute.

Proof. We start by showing (i) ⇐⇒ (ii). Note that the space of vectors col S̃ is

composed of the elements that are constant on the cells of π. Hence, using the fact that

(AχCr)a = N(a, Cr), we conclude that χCr ∈ col S̃ for each r iff π is equitable. For

(2) ⇐⇒ (3), since SS∗ is a projector onto col S̃, A and SS∗ commute iff the range of A

is a subspace of col S̃, which is equivalent to col S̃ being an A-invariant subspace.

We note that A
(
X̃/π

)
is not necessarily self-adjoint, which leads us to define a

new matrix related to π.

Definition 6.4. We define the symmetrized quotient graph of X relative to π, de-

noted by X/π, as the graph whose adjacency matrix is

C := S∗AS,

where A is the adjacency matrix of X and S is the normalized characteristic matrix related

to π.

Equivalently, we can define the symmetrized quotient graph as the weighted graph

on the cells of π where ers has weight
√
BrsBsr, or, likewise

Crs :=
N(Cr, Cs)√
|Cr||Cs|

.

Here we are denoting

N(Cr, Cs) :=
∑
a∈Cr

N(a, Cs) = χ∗
Cr
AχCs ,

which is the number of edges that have one vertex in Cr and another in Cs, in the case

V1 ∩ V2 = ∅, or twice the number of edges that have both vertices in Cr, in the case

Cr = Cs.

As an example, for the triangle and the following equitable partition, we will have

the symmetrized quotient as below.

X = X/π=
√
2

1
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As S = S̃D, for the diagonal Dr = 1/
√
|Cr|, we must have

C = DS̃∗AS̃D

= DS̃∗S̃BD

= DS̃∗S̃DD−1BD

= S∗SD−1BD

= D−1BD,

from where C and B are conjugated by a positive diagonal. In fact, C is the only sym-

metric matrix conjugated to A by a positive diagonal.

We also have some information on the spectrum of C.

Proposition 6.5. Let π be an equitable partition over X. Then

σ(X/π) = {λ ∈ σ(X) : ξλ is constant on the cells of π},

where ξλ is an eigenvector related to the eigenvalue λ. Moreover, if λ ∈ σ(X) \ σ(X/π)
then for any eigenvalue ξλ we have∑

r∈Ck

(ξλ)r = 0 ∀k. (∗)

Proof. Suppose ξ is a λ-eigenvector of A. If SS∗ξ =: ζ ̸= 0, then

Aζ = ASS∗ξ = SS∗Aξ = λζ,

and thus ζ is also an eigenvector corresponding to λ. Moreover, S∗ζ is an eigenvector of

C because

CS∗ζ = S∗ASS∗ζ = S∗SS∗Aζ = λS∗ζ,

and as SS∗ζ = ζ, we have S∗ζ ̸= 0. Similarly, if ζ is an eigenvector of X/π corresponding

to λ, then Sζ is an eigenvector of X corresponding to λ, and as SS∗Sζ = Sζ we have

Sζ ∈ colSS∗. Since SS∗ projects onto the subspace of vectors that are constant on the

cells of π, this completes the first part of the proposition.

For the second part, if λ ∈ σ(X) \ σ(X/π), then for any eigenvector ξ related to

λ, we must have SS∗ξ = 0, meaning that ξ is orthogonal to colS. This is equivalent

to (∗).

The next lemma gives us information that links PST in X and X/π:

Lemma 6.6. Let π be an equitable partition of X, which has a cell consisting of a singleton

{a} := â. Let C be the adjacency matrix of X/π and b̂ the cell containing b ∈ V (X).

Then, for any time t:

(1) (eitA)ea is constant in the cells of π;
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(2) (eitA)a,b = (|b̂|− 1
2 )(eitC)â,b̂.

Proof. For (1), call S the normalized characteristic matrix of π. As {a} is a cell, we have

eitAea = eitASeâ.

Since colS is A-invariant, it must also be eitA-invariant, so any column of eitAS is constant

in the cells of π. In particular, eitAea is constant in the cells of π.

Now, for (2), since S∗S = I and SS∗ commutes with A, we have

S∗eitAS = eitS
∗AS = eitC ,

which allows us to use (1) and the fact that the columns of eitA sums to 1 to conclude

(2).

We can conclude from (2) of the previous lemma that:

Proposition 6.7. Let X be a graph with an equitable partition π, such that the cells of

a and b are singleton. Then, a and b have PST at time t iff â, b̂, in the symmetrized

quotient graph, have PST at time t.

6.2 Miscellaneous results

This section will present some original results concerning the symmetrized quotient

graph. Our main motivation stems from the theory of fractional isomorphism, which is

discussed in [25] and characterizes conditions for two graphs to have a non-symmetric

quotient in common. We shall begin by defining:

Definition 6.8. A non-negative matrix M is called doubly stochastic if 1∗M = 1
∗ and

M1 = 1.

The following theorem is due to [25], and the last item due to [17]:

Theorem 6.9 (Ullman). For two graphs X, Y , it is equivalent:

(1) There is a doubly-stochastic matrix M such that A(X)M =MA(Y );

(2) X, Y have some common equitable partition;

(3) X, Y have in common the coarsest equitable partition;

(4) D(X) = D(Y );
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(5) WX = PWY , for some permutation P .

The definition of coarsest will be seen later in this section, in Definition 6.12, while

the definitions necessary to understand item (4) of the Theorem above are beyond the

scope of this work. Nevertheless, it is worth mentioning that they are connected to the

Weisfeiler-Lehman algorithm to decide graph isomorphism. We point out that we still do

not have the analogous condition to this one for the upcoming Theorem 6.11.

Our main goal is to present similar conditions to the ones in the above theorem for

two matrices having a common symmetrized quotient graph. We start with some defini-

tions and lemmas arising from the fractional isomorphism theory, whose demonstration

can be found in [25].

A matrix M is called decomposable if, for some permutation P , we have

PMP ∗ =

(
A 0

0 B

)
,

where A,B are square matrices. If M is not decomposable, it is called indecomposable.

The proof of the following lemma can be found in [25].

Lemma 6.10. If M is non-negative, doubly stochastic, and indecomposable, then M is

irreducible.

We present our novel theorem, which gives us a criterion for two matrices to have

a common symmetrized quotient.

Theorem 6.11. Let X and Y be graphs with adjacency matrices A and B. There are

equitable partitions π1 in X and π2 in Y with equal symmetrized quotient graphs, that is

X/π1 ∼= Y/π2, iff there is a non-negative matrix M satisfying:

(1) Both MM∗ and M∗M are doubly stochastic.

(2) AM =MB.

Proof. Let R and S be normalized matrices related to equitable partitions of A and B,

respectively, satisfying the equation

S∗AS = R∗BR.

We have

(SS∗)ASR∗ = SR∗B(RR∗),

then

AS(S∗S)R∗ = S(R∗R)R∗B,
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hence

ASR∗ = SR∗B.

The matrix SR∗ is non-negative, as both R and S are non-negative. Furthermore, it

satisfies (2), since

(SR∗)∗SR∗ = R(S∗S)R∗ = RR∗,

and

SR∗(SR∗)∗ = S(R∗R)S∗ = SS∗,

which are both doubly stochastic, as they are projectors onto the vectors that are constant

on the partition classes, one of which is equal to 1.

Moving on to the converse, suppose a matrixM satisfying the theorem’s conditions

exists. In this case, MM∗ commutes with A since

AMM∗ =MBM∗ = (MBM∗)∗ =MM∗A.

From Lemma 6.10, we know that there exists some permutation P such that

MM∗ = P



S1

S2

S3

. . .

Sk


P ∗,

where Sr is irreducible. Let us denote

A = P


A11 A12 . . . A1k

A21 A22 . . . A2k

. . .

Ak1 Ak2 . . . Akk

P ∗,

with the same block sizes as P ∗MM∗P . The equation AMM∗ =MM∗A is equivalent to

SrArs = ArsSs ∀r, s.

Multiplying by 1 we get

SrArs1 = ArsSs1,

SrArs1 = Ars1,

and because Sr is irreducible, by Perron-Frobenius we have Ars1 = c1, which means that

these blocks form an equitable partition on A.
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In this partition, we will have that a and b are in the same cell iff they are in some

irreducible block of MM∗, that is, (MM∗)ka,b ̸= 0 for some k. Let us denote this cell of

the equitable partition by Cr and denote by χr its characteristic vector, that is

(χr)a =

1 a ∈ Cr

0 a /∈ Cr

.

We will demonstrate that M∗χr corresponds in some way to a cell of an equitable

partition in B.

We can use a similar argument to see that partitioning M∗M into classes of inde-

composable blocks results in an equitable partition. Now, we aim to show that M∗χr is

supported on one of these classes and is constant on its support.

To prove the first point, we will suppose that a and b are in the support of M∗χr

and prove that (M∗M)ka,b ̸= 0 for some k. The support is non-empty, for MM∗χr ̸= 0.

Using the decomposition in blocks, each 1-eigenvector ζ satisfies

P



S1

S2

S3

. . .

Sk


P ∗ζ = ζ,

from where each block of P ∗ζ is an eigenvector of Ss. As Ss is indecomposable, by

Perron-Frobenius, we must have that ζ is constant in these blocks. Hence, {χs}s forms

a basis for the 1-eigenspace of MM∗ and the related eigenprojector is
∑
αsχsχ

∗
s, for

αs = ∥χs∥−2 > 0. We have(∑
M∗αsχsχ

∗
sM
)
a,b
≥ αr (M

∗χrχ
∗
rM)a,b = αr(M

∗χr)a(M
∗χr)b > 0.

Now, let f =
∑
csx

s such that f(MM∗) =
∑
αsχsχ

∗
s. Suppose by contradiction

that a and b are not in the same indecomposable block of M∗M . This would imply that

((M∗M)s)a,b = 0 for any s > 0, whence

0 =
(∑

αs(M
∗M)s+1

)
a,b

=
(
M∗

(∑
αr(MM∗)s

)
M
)
a,b

=
(
M∗

(∑
αsχsχ

∗
s

)
M
)
a,b
,

a contradiction. Hence, we can conclude that both a and b belong to the same cell within

the equitable partition of B associated with M∗M . Let Cσ(r) represent the cell that

contains suppM∗χr, and let χσ(r) be its characteristic vector (we emphasize that this

notation is for a whole new class of vectors, whose entries are in the vertices of B, and not
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just a permutation of the indices on χr). Considering the expression (M∗M)(M∗χr) =

M∗(MM∗χr) = M∗χr, we observe that M∗χr is an eigenvector of M∗M , just like χσ(r).

If we examine the submatrix of M∗M with entries in Cσ(r), we notice that the restriction

of M∗χσ(r) to the entries of this submatrix remains an eigenvector within the submatrix.

This is because M∗χσ(r) is supported on Cσ(r). Furthermore, since this submatrix is

irreducible, the Perron-Frobenius theorem states that only one eigenvector has positive

entries (up to scalar multiplication). As 1 is also an eigenvector of this submatrix, we can

conclude that M∗χr ∥ χσ(r).

We will now demonstrate that the function σ : r 7→ σ(r) establishes an isomorphism

between the respective quotient graphs. Since
∑
χr = 1 and M∗

1 are supported on all

entries (if M∗ has a row equal to zero, then M∗M would not be doubly-stochastic), and

since M∗ is non-negative, it follows that all cells of the equitable partitions are covered

by {χσ(r)}r, or, in others words, σ is onto.

Also, σ is one-to-one, since:

χσ(r) = χσ(s) =⇒ M∗χr ∥M∗χs =⇒ MM∗χr ∥MM∗χs =⇒ r = s.

At last, we shall prove that it is an isomorphism. We begin by noting that

∥M∗χr∥2 = χ∗
r(MM∗χr) = χ∗

rχr,

from where
M∗χr√
χ∗
rχr

=
χσ(r)√
χ∗
σ(r)χσ(r)

.

Thus, a direct calculation gives us

χ∗
σ(r)√

χ∗
σ(r)χσ(r)

B
χσ(s)√
χ∗
σ(s)χσ(s)

=
χ∗
r√

χ∗
rχr

MBM∗ χs√
χ∗
sχs

=
χ∗
r√

χ∗
rχr

AMM∗ χs√
χ∗
sχs

=
χ∗
r√

χ∗
rχr

A
χs√
χ∗
sχs

or, likewise
N(Cσ(r), Cσ(s))√
|Cσ(r)||Cσ(s)|

=
N(Cr, Cs)√
|Cr||Cs|

,

which completes the proof that σ is an isomorphism.

A crucial observation is that M is not necessarily a square matrix, as the graphs

X and Y can have a different number of vertices and yet quotient into a common graph.
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Such an example would be

2

whose related matrices are
1 1 1 1

1

1

1

1


1

2
√
2


2 2

1 1

1 1

1 1

1 1

 =
1

2
√
2


2 2

1 1

1 1

1 1

1 1




1 1

1 1

1 1

1 1

 .

In general, it is easy to see that Kr,s and Kr′,s′ have a common symmetrized

quotient if rs = r′s′.

We may have different equitable partitions in the same graph. Some of them are

comparable, using the relation:

Definition 6.12. Let π, µ be two partitions of a graph. We say that µ is coarser than

π, and denote by π ≤ µ, when each cell of π is contained in some cell of µ. In this case,

we can also say that π is finer than µ.

Given two partitions, π, µ, there is the finest partition coarser than both, which is

said to be π join µ and is denoted by π ∨ µ. This partition can be defined by:

a ∼π∨µ b ⇐⇒ ∃x1, . . . , xr; a ∼π x1 ∼µ x2 · · · ∼π xr ∼µ b,

where a ∼ν b means ν(a) = ν(b) for a partition ν.

These definitions are for general partitions, not necessarily equitable ones. The

first result relating them to equitable partitions is the following proposition, from [25]:

Proposition 6.13. Suppose π, µ are equitable partitions of X. Then so is π ∨ µ.

Moreover, all graphs have a finest equitable partition, the trivial one (each cell

is a singleton). Also, joining all equitable partitions will give us the coarsest equitable

partition, which is unique. We can also prove that the equitable partitions of a graph

forms a lattice [25].

Definition 6.14. A lattice is a poset in which each pair of elements has a join and a

meet, (i.e., a supremum and an infimum).

From now on, we shall denote this poset by E(X). We need the following lemma,

whose proof can be found in [2].
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Lemma 6.15. An orthogonal projector P has non-negative entries iff rngP has a non-

negative orthonormal basis.

With that, we can relate projectors and equitable partitions by our novel theorem:

Theorem 6.16. Let X be a graph. The following function is a bijection

φ : E(X)→ P(X)

π 7→ Pπ := S(π)S(π)∗,

where P(X) is the set of all non-negative orthogonal projectors that commutes with A(X)

and has 1 in its range.

Moreover,

(1)

π ≤ µ ⇐⇒ Pπ ≥ Pµ ⇐⇒ rngPπ ⊇ rngPµ,

(2)

Pπ∨µ = PrngPπ∩rngPµ ,

(3)

A(X/π) = A(X)| rngPπ,

where we use as basis for rngPπ the columns of Sπ. Here, A(X/π) = A(X)| rngPπ means

the restriction of the linear transformation induced by multiplying by A to the subspace

rngPπ.

Proof. The range of φ is indeed in P(X). To see that φ is one-to-one, let π ̸= µ be

two equitable partitions of X. As they are different, we have some pair a, b for which

π(a) = π(b) and µ(a) ̸= µ(b) (or vice versa, but the other case is similar). This implies

that (Pµ)a,b = 0 ̸= (Pπ)a,b. Here we recall that it follows from the definition and a simple

calculation that

(Pπ)a,b =


1

|Cπ(a)|
, π(a) = π(b)

0, π(a) ̸= π(b).

Now, let P ∈ P(X) be arbitrary. Using Lemma 6.15, we have an orthonormal

basis ζr of non-negative vectors for rngP . As ζr are non-negative, we must have for r ̸= s

that supp ζr ∩ supp ζs = ∅ to ensure orthogonality. Also, each ζr must be constant in its

support since summing another ζs cannot alter the values in supp ζr, and there is some

linear combination of them which results in 1. Hence, we conclude that P = Sπ, where π

is the partition into {supp ζr}r. It must be an equitable partition, for it commutes with

A.

(1) follows from the fact that π ≤ µ iff colS(π) ⊇ colS(µ), combined with the

property rngPπ = colS(π).
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Based on (1), we can conclude that rngPπ∨µ is the largest vector space which is

contained in both rngPπ and rngPµ, and whose projector is also in P(X). The projector

onto rngPπ ∩ rngPµ is indeed in P(X) since it is the limit of non-negative operators that

commute with A: let P = limn(PπPµPπ)
n. P indeed exists and is a projector: all entries

of the Jordan matrix of PπPµPπ converge to zero, except the ones in the diagonal. It is

self-adjoint as it is the limit of self-adjoint operators, and rngP = rngPπ∩ rngPµ because

as PπPµPπ is a contraction, the fix points of the convergent are the same as the fixed

points of PπPµPπ, which are rngPπ ∩ rngPµ.

For (3), suppose S is m × n. S : Rn → Pπ is an isomorphism, since ⟨Sv, Sw⟩ =
v∗S∗Sw = v∗w and colS = rngPπ. Furthermore, the following diagram commutes

rngPπ rngPπ

Rn Rn

S∗

A| rngPπ

S∗

S∗AS

,

which concludes what we wanted. In rngPπ, we must use the basis colS, obtained as the

image of the canonical basis in Rn, to have equality in the matrices related to the linear

transformations.

For our following proof, we will return to the non-normalized quotient of graphs.

The quotients in the following theorem refer to the non-symmetrized digraph. This origi-

nal result demonstrates that its non-symmetrized quotient inherits the equitable partitions

of the initial graph.

Theorem 6.17. Let X be a graph on n vertices. Let µ ∈ E(X). Denote by S(π) the

non-normalized characteristic matrix of a partition π, in particular R := S(µ), and let D

be the diagonal matrix with Dr = 1/|µ−1(r)|. Define the function

φ : {π ∈ E(X) : µ ≤ π} → E(X/µ),

π 7→ DR∗S(π)

RM ←[ M,

where we are identifying a partition with its characteristic matrix. Then φ is an order-

preserving bijection, and we also have

(X/µ)/φ(π) ∼= X/π.

Proof. Fix some π ∈ E(X) and denote S := S(π). A direct calculation gives us that

(R∗S)r,s =
∑
a

Ra,rSa,s =

0 µ−1(r) ̸⊆ π−1(s)

|µ−1(r)| µ−1(r) ⊆ π−1(s)
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From where we see that DR∗S is the matrix related to the partition induced by S on the

classes of R. Another calculation gives us that

DR∗R = R∗RD = I,

from where RDR∗ is a projector onto the vectors constant on the classes of µ. Calling B

the adjacency matrix of X/µ and C the adjacency matrix of X/π we know that

AR = RB, AS = SC,

from where we want to show that

B(DR∗S) = (DR∗S)C,

which proves that DR∗S is the characteristic matrix of an equitable partition of B and

the compatibility of the quotients.

As µ ≤ π, the columns of S are on the range of RDR∗, hence

RDR∗S = S,

and thus

B(DR∗S) = (I)BDS∗R

= (DR∗R)BDS∗R

= DR∗(RB)DS∗R

= DR∗(AR)DR∗S

= DR∗A(RDR∗S)

= DR∗A(S)

= DR∗(AS)

= DR∗(SC),

concluding the first part of the proof. To see that φ is one-to-one, a simple calculation

gives us

DR∗S(π) = DR∗S(ν) =⇒ RDR∗S(π) = RDR∗S(ν) =⇒ S(π) = S(ν).

For each M that is a non-normalized matrix of an equitable partition of B, we

have BM =MC for some C. Applying R we get

(RB)M = RMC =⇒ ARM = RMC.

As each line of R has only one non-zero entry, we can also conclude that RM is

a matrix of 0’s and 1’s. Thus, it is an equitable partition of A. As DR∗RM = M , the

image of RM is indeed M , as we wanted.

We note that π ≤ ν iff rngS(π) ⊇ rngS(ν), and as the composition of functions

preserves the inclusion of their range, we conclude that φ preserves order.
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As an example of how the equitable partitions are inherited by the quotient graphs,

we can present the cube P□3
2 :

3

1

2

2

1

3

3

It would be desirable if Theorem 6.17 was true for the symmetrized quotient and

equitable partitions. However, it is not the case, as we can see in this simple example:

√
2

1

In C3, we have two equitable partitions: the one with a white cell and a black cell and the

coarser equitable partition, which possesses only one cell. However, when we quotient the

graph by the first partition, the quotient graph does not possess any non-trivial equitable

partition.

However, there is a particular case when the symmetrized equitable partitions do

pass to the quotient:

Proposition 6.18. Let µ ≤ π be equitable partitions of X, and denote P, S their respective

normalized partition matrices. Suppose that for each cell C of π, each cell of µ contained

in C has the same size. Then, the partition of X/µ into the cells induced by π is equitable.

Denoting it by ν, we have (X/µ)/ν ∼= X/π. Moreover, the normalized partition matrix of

ν is P ∗S.

Proof. We note that µ ≤ π iff PP ∗SS∗ = SS∗PP ∗ = SS∗. The matrix P ∗S has indeed
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orthonormal columns, for

(P ∗S)rs =
∑
a

Pa,rSa,s

=
|Cr ∩ C̃s|√
|Cr|

√
|C̃s|

=

0, Cr ∩ C̃s = ∅
1√

|C̃s|/|Cr|
, Cr ⊆ C̃s

.

As
⋃

Cr⊆C̃s
Cr = C̃s, each column has norm one. It is also constant because, by

hypothesis, |Cr| is constant within C̃s. Two columns are also orthogonal since Cr is

contained in only one cell of µ. Each characteristic vector of a class of π is constant in

the cells of µ. Thus, each column of S must be PP ∗-invariant, whence PP ∗S = S and

(P ∗S)∗P ∗AP (P ∗S) = S∗AS;

as we wanted. Moreover

P ∗A(PP ∗S)S∗P = P ∗A(S)S∗P

= P ∗A(SS∗)P

= P ∗(SS∗)AP

= P ∗S(S∗)AP

= P ∗S(S∗PP ∗)AP.

That is, P ∗SS∗P commutes with P ∗AP ; hence, it is an equitable partition.

6.3 Constructing graphs with equitable partition

The following result and notations are inspired by [21].

We start this section by introducing a concept that will help reconstruct graphs

from their quotient graph.

Definition 6.19. Let Q be a weighted digraph without loops and with natural-valued edges.

We say that w : V (Q) → N is a weight-function if for each pair of vertices (r, s) and

associated arc er,s it satisfies

(i) w(r)er,s = w(s)es,r,

(ii) w(s) ≥ er,s
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This definition comes from when Q = X̃/π, and w(r) = |Cr|. In this situation, it

is clear that conditions (i), (ii) are satisfied. Hence, if Q ∼= X̃/π for some X and π, there

is a weight function for Q.

As an example of a weight function, we can use the d-cube P□d
2 . It is possible to

partition the vertices of the cube into the classes

Cr := {a : d(a,O) = r}, O := (0, 0, . . . , 0).

We have d(a,O) = r iff there are exactly r entries in a of value 1. Hence |Cr| =
(
d
r

)
.

A vertex a ∈ Cr has exactly d− r neighbors in Cr+1, which are obtained by changing an

entry with value 0 to the value 1. Similarly, a vertex in Cr has r neighbors in Cr−1, this

time obtained by changing a 1 to a 0. Hence, {Cr} defines indeed an equitable partition,

and its quotient is naturally represented by the following digraph:

C0 C1 C2
. . . Cd

d

1

d− 1

2

d− 2

3

1

d

The related weight-function is w(Cr) =
(
d
r

)
.

The conditions on Definition 6.19 are also sufficient for Q being of the form Q ∼=
X̃/π.

Proposition 6.20. Given a graph Q with a weight-function w we can construct a graph X

which posses an equitable partition π : V (X)→ V (Q) such that |Cr| = w(r) and X̃/π ∼= Q.

Proof. We can explicitly construct X. Let Cr = {0, . . . , w(r)− 1}× {r} and for r < s we

define

(a, r) ∼ (b, s) ⇐⇒ ∃k, aer,s ≤ k < (a+ 1)er,s; a+ k ≡ b mod w(s).

Condition (ii) ensures that each vertex in Cr has exactly er,s neighbors in Cs since each

k in the above equation will correspond to a different vertex.

The edges from Cr to Cs form the set

{(0, 0), (0, 1), . . . , (0, er,s − 1), (1, er,s), . . . , (w(r)− 1, w(r)er,s − 1)}.

(Here, we omit the second coordinate r and s of the vertices and the second coor-

dinate is being taken modulo w(s)).

As w(s) | w(r)er,s this set covers each vertex of Cs exactly w(r)/w(s)er,s = es,r

times; or, in others words, each vertex in Cs has es,r neighbors in Cr.

Consider a weighted directed graph Q. We define the weighted graph Q̌ as the

symmetrization of Q, where V (Q̌) = V (Q) and the weight of the edge ab in Q̌ is equal

to the geometric mean of the arcs ab and ba in Q. It is worth noting that if X̃/π ∼= Q,

then X/π ∼= Q̌. This observation, along with Proposition 6.7, yields the following result:
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Proposition 6.21. Suppose Q is digraph with weight-function w such that Q̌ exhibits PST

between vertices a and b, and w(a) = w(b) = 1. Then, the graph obtained by Proposition

6.20 also possesses PST between the vertices associated with a and b. Moreover, the

number of vertices in the new graph is equal to the sum of the weights of the vertices in

Q.

This construction allows us to work with a given graph Q with weight function

w, which we know to have PST between vertices a, b with w(a) = w(b) = 1, and change

the values of its arcs and weight function without changing Q̌. This property leads to a

simplification rule:

Given a graph Q with weight function w, if we have for some pair of vertices a, b

an integer k such that k2 | w(a), k | eb,a and 2ea,b ≤ w(b) then we can make the following

substitution maintaining properties (i), (ii) and reducing the total weight of the graph:
w(a)←[ w(a)

k2

ea,b ←[ kea,b

eb,a ←[ eb,a/2

w(a) w(b) w(a)
k2

w(b)

ea,b

eb,a

kea,b

eb,a/k

In the d-cube, these conditions translate to finding values for r and k such that
k2 |

(
d
r

)
k | r + 1

2(d− r) ≤
(

d
r+1

)
More rules like this one can be found on [21], which we will not include here since

it would drift too far from the objective of focusing in PST on weighted paths.

6.4 Un-quotienting weighted paths

This section will show how to apply Proposition 6.21 when the graph is a weighted

path. Suppose that X is a weighted non-directed path with PST between extremities.

We will also assume that X has no loops, which is equivalent to assuming that ar = 0

on the related tridiagonal matrix. This will occur iff the eigenvalues of X are symmetric
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concerning the origin, and for that, we will also need the number of vertices on the graph

to be odd, let us say 2d+1 (or the spectrum to be semi-integers, but we are avoiding this

case). Then, X will be of the form

e1 e2 e3 · · ·
e2d

and will be uniquely defined by the sequence

e1, e2, . . . , e2d.

All the possible values for er can be retrieved algorithmically using Theorem 5.14.

Now, we want to obtain X a graph whose symmetrization is X, together with a weight

function w:

w1 w2 w3 . . . w2d+1

a1

b1

a2

b2

a3

b3

a2d

b2d

where

(1) ar ≤ wr+1;

(2) br ≤ wr;

(3) wrar = brwr+1;

(4) arbr = e2r;

(5) w1 = w2d+1 = 1;

(6) ar, br, wr ∈ Z.

Conditions (1) − (3) are the weight conditions, (4) tells us that the symmetriza-

tion of the digraph will result in its symmetrized version, and (5) tell us that the cells

corresponding to the extremities are indeed singletons.

Condition (3) give us that

wr+1 =
ar
br
wr,

which allows us to conclude by induction and using (5) that

wr+1 =
arar−1 · · · a1
brbr−1 · · · b1

.

We observe that given compatible values of ar and br, we can obtain new compatible

values ãr and b̃r by taking:

For ãr:

a1, . . . , ad, bd, bd−1, . . . b1;

For b̃r:
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b1, . . . , bd, ad, . . . , a1.

These new values for ãr, b̃r and w̃r :=
ã1 · · · ãr
b̃1 · · · b̃r

satisfy (1) ∼ (6), by use of Theorem

5.13. Furthermore, the weight of ãr and b̃r equals the original weight in the first half, and

the weight in the second half equals the weight in the first half. Therefore, we can assume

that the total weight of ãr and b̃r is less than or equal to the initial weight (if the weight

in the second half of ar and br is smaller than in the first half, we can perform a similar

reflected construction).

This argument allows us to assume that ad+r−1 = ar and bd+r−1 = bd, which lowers

the number of elements we want to compute. Also, the values of ar can be determined by

br since ar = e2r/br.

We can resume the problem:

Problem 6.1. Given the integer values e21, . . . , e
2
d, determine the sequence b1, . . . , bd ∈ N

which satisfies

(1) b1 = 1;

(2) e21 · · · e2r ≥ b21 · · · b2rbr+1, r = 1, . . . , d− 1;

(3) br|e2r, r = 1, . . . , d;

(4) b21 · · · b2r|e21 · · · e2r r = 1, . . . , d;

and minimize:

W =
e21 · · · e2d
b21 . . . b

2
d

+ 2

(
d−1∑
r=1

e21 · · · e2r
b21 · · · b2r

+ 1

)
.

For instance, in the (2d)-cube, we have the values e2r = (2d−r+1)r, and the values

br = r satisfies (1) − (4) of the above problem. For small values of d, they are not the

solution for Problem 6.1; however, it is still unknown whether the solution’s total weight

W also grows exponentially, as is the case of the total weight grows with these values of

br.
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Chapter 7

Conclusions

The main goal of the thesis was to work on the problem of Section 4.3, namely to obtain

bounds (or the exact value) for N. From the literature, we already know how to find all

weighted paths with PST between extremities, and given some weighted graphs, there

are known combinatorial ways to get a related simple graph. Our objective was to delve

deeper into these phenomena, which was done in the last two chapters.

In Chapter 5, we obtained a new way for obtaining weighted graphs with strongly

cospectral vertices, with Theorem 5.18. However, to apply it to construct a PST, as in

Theorem 5.21, we must first solve the algebraic Problem 5.1. This problem shows to be

quite hard to approach, and we do not expect to have a general answer for it any soon.

For instance, solving it for d = 2k + 1 would answer the Prouhet-Tarry-Escott problem,

an open problem in number theory that has been researched since the 1700s. For the

definition and results of this problem, see [6].

Despite Proposition 5.16 being enough to calculate orthogonal polynomials for the

case of PST between an extremity and another vertex, this formula cannot be used to

directly construct polynomials which determine paths with PST between two arbitrary

vertices: in this case, the spectral support of the vertex can be different from the spec-

trum, and this would imply that its related polynomial has some zero in common with

the Pd+1, case which Proposition 5.16 does not cover. We have approached this question

algebraically using the Christoffel-Darboux theorem and obtained a general formula; how-

ever, the generalization of the following propositions and corollaries is incomplete. We

are currently doing more profound research into these problems.

Chapter 6 was the link between the main problem and Chapter 5. In this chapter,

we obtained new results involving quotient graphs, including Theorem 6.11, which is a

generalization of a significant result with applications in the perfect state transfer the-

ory, besides the general theory of algebraic combinatorics. In the last two sections, we

approached the problem more directly and obtained conditions for constructing a simple

graph together with its weight (number of vertices).

Section 6.4 gives us a condition for having some graph that can be quotiented into

a given weighted path. These conditions are general, and they determine all graphs with

these properties. We have implemented Theorem 5.14 in Python and computed the values
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of e2r for a wide range of spectra. Moreover, we have made a greedy algorithm to estimate

the values of W in Problem 6.1. However, this approach has been proved inefficient, and

we could at most obtain the bound N ≤ 0.847.

For better approximations of N, we need a better optimization for solving Problem

6.1. The best bound for N was obtained using pseudo-equitable partition in hyper-cubes,

P□n
2 . Using pseudo-equitable partitions is another excellent option to explore for better

results, as has been done in [10,21].
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