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Resumo

Nessa Tese são classificadas todas as curvas que são interseção
completas em espaços biprojetivos cujo feixe canônico é uma seção
hiperplana. Em seguida, estuda-se a geometria destas curvas no que
diz respeito à sua gonalidade e existência de sistema linear. Será
estabelicida uma cota inferior para a gonalidade de certas curvas que
são interseção completas em espaços biprojetivos, seguindo os passos
de Lazarsfeld para gonalidade de curvas de interseção completas em
espaços projetivos. Também são fornecidos alguns resultados sobre a
estratificação de Mukai do moduli de curvas de gênero pequeno.

Palavras chaves: Curvas, Intersecções completas, Sistemas lineares
& Gonalidade



Abstract

In this Thesis are classified all complete intersection curves in bipro-
jective spaces whose canonical sheaf is a hyperplane section. Then it is
studied the geometry of these curves with respect to their gonality and
existence of linear system. A lower bound for the gonality of suitable
complete intersection curves in biprojective spaces is provided, given
biproduct version of Lazarsfeld’s lower bound for gonality of complete
intersection curves in projective spaces. It also provides some results
concerning on Mukai stratification of the moduli of curves of small
genus.

Keywords: Complete intersection curves, Linear systems & Gonality



Contents

1 Introduction 10

2 Preliminaries 20
2.1 Divisor and Picard Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Linear Systems and Gonality of Curves . . . . . . . . . . . . . . . . . . . . 23
2.3 Some useful results on bundles . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 On the Gonality of CI Curves in Biprojectic Spaces 32
3.1 Curves whose canonical bundle is a hyperplane section . . . . . . . . . . . 33
3.2 On the Gonality of C.I. Curves in Biprojectic Spaces . . . . . . . . . . . . 41
3.3 On the locus of few CI curves in the biproduct . . . . . . . . . . . . . . . . 50

4 On Mukai stratum of genus 8 56
4.1 Tetragonal non bielliptic with a g26 . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Pentagonal with a non self-adjoint g27 . . . . . . . . . . . . . . . . . . . . . 60
4.3 Mukai Locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Future Developments 63

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



10

1| Introduction

Let C be a smooth complex projective curve. The gonality of C is the minimum degree of
a surjective morphism from C to the projective line,

gon(C) := min{k ≥ 1 |C k:1−−−→ P1}.

It is an invariant of a curve and measures how far the curve is from being rational. For
example, gon(C) = 1 if, and only if, C is a rational curve. We usually say that a k−gonal
curve is a curve whose gonality is k. A 2−gonal curve is a hyperelliptic curve.

There is significant interest in computing the gonality of various classes of curves. The
most general upper bound for the gonality of a smooth curve C of genus g is derived from
Brill–Noether theory [ACGH85], that is

gon(C) ≤
⌊
g + 3

2

⌋
.

It is well known that a projective plane curve of degree d has gonality exactly d− 1, and
the morphism that computes the gonality is obtained by a projection from a point on C,
as predicted by the classical Noether’s theorem, see Example 2.2.1 of this Thesis. In this
direction, Basili [Ba96] shows that the gonality of a smooth complete intersection space
curve C ⊂ P3 is also computed by projection from a line.

Concerning complete intersection smooth curves, Lazarsfeld, c.f. [Laz97, Exercise 4.12],
provides his famous lower bound.

Theorem 1.0.1 (Lazarsfeld). If C ⊂ Pn is a complete intersection smooth curve given by
the intersection of n− 1 hypersurfaces of degrees ai, i = 1, . . . , n− 1 with 2 ≤ a1 ≤ a2 ≤
an−1, then

gon(C) ≥ (a1 − 1)a2 · · · an−1.

A way to define the gonality of a possibly singular irreducible projective curve C is to
declare it to be the gonality of its normalization C̃, as in [HLU20]. Alternatively, and the
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definition that we assume in this Thesis, it is the smallest k for which there exists a g1k on
C, i.e. a torsion-free sheaf F of rank 1 on C of degree k and with dimH0(C,F) ≥ 2. The
notion of linear systems on singular curves is characterized by interchanging line bundles
by torsion-free sheaves of rank 1. Note that non-removable base points are allowed.

Regarding singular curves, Hartshorne and Schlesinger [HS11] generalized Basili’s results
to ACM curves that satisfy some assumption of generality. More recently, Hotchkiss,
Ching Lau, and Ullery [HLU20] study morphisms from complete intersection curves C ⊂
Pn, not necessarily smooth, to a projective space Pr that are given by a projection from
a linear subspace, their main result is the following.

Theorem 1.0.2 (Hotchkiss, Ching Lau and Ullery). Let C ⊂ Pn be a complete intersection
curve of type (a1, . . . , an−1) with

4 ≤ a1 ≤ · · · ≤ an−1.

For each 1 ≤ r < n, any morphism f : C → Pr such that

deg f ∗OPr(1) < deg C

is given by the projection of a (n − r − 1)-plane. Thus gon(C) = deg(C) − γ, where γ is
the maximum number of points on C contained in an (n− 2)-plane.

Concerning Deligne–Munford stable curves, Coelho and Sercio [CoSe21] established the
following result.

Theorem 1.0.3 (Coelho and Sercio). Let C be a stable curve.

1. If C is irreducible with δ nodes and its normalization C̃ admits a morphism of degree
k̃ to P1, then C admits a morphism to P1 of some degree k such that

k̃ < k < k̃ + δ.

2. If Ci, i = 1 . . . , ℓ are the irreducible components of the stable curve C and each Ci
admits a morphism Ci → P1 of degree ki, then there is a morphism C → P1 of degree
k, for some k satisfying

k1 + · · ·+ kℓ − δ < k < k1 + · · ·+ kℓ + δ − 2(ℓ− 1).

where δ is the number of external nodes of C.



1| Introduction 12

The importance of the gonality can also be noticed in understanding the ambient space
where a curve can be embedded. On one hand, it is well known that a non-hyperelliptic
smooth curve of genus g > 2 can be embedded by its canonical sheaf as a degree 2g − 2

curve in Pg−1. On the other hand, a classical result due to Bertini, c.f. [Sch86, Thm.
2.5], assures that any smooth k-gonal curve embeds in a (k− 1)-fold normal scroll. More
generally, an irreducible Gorenstein curve C can also be embedded as a canonical curve
in Pg−1 by its dualizing sheaf, and in a (k − 1)−fold scroll as well, where k stands for
the gonality of C. In this way, in [LMS19] the authors show that the canonical model, in
the sense of [KM09], of a singular irreducible non-Gorenstein curve embeds in a suitable
(k−1)-fold scroll, where k is the gonality of C. More recently, Contiero, Fontes, and Teles
generalize a result due to Schlessinger [Sch86], by showing that any tetragonal Gorenstein
curve C of genus g ≥ 6 is a complete intersection in its associated rational normal 3−fold
scroll, see [CFT22, Thm. 3.1].

An application of the notion of gonality is observed in the theory of moduli space of curves
as follows. Let us first consider a filtration of the moduli space Mg of smooth curves of
genus g ≥ 3, namely

Hg := Mg(2) ⊆ Mg(3) ⊆ . . . ⊆ Mg (⌊(g + 3)/2⌋) = Mg,

where Mg(k) is the space of curves admitting a g1k and has dimension 2g + 2k − 5. Note
that a curve C has gonality k, if it belongs to Mg(k) \ Mg(k − 1). The space Hg is
the space of hyperelliptic curves. The space of bielliptic curves Bg is the space of curves
admitting a map of degree 2 onto an elliptic curve, i.e. onto a curve of genus 1.

In a sequence of celebrate papers, Mukai [Muk92, Muk95] made a deep study of canonical
models of the non-hyperelliptic smooth curve of genus 7, providing a stratification of the
space of smooth curves with fixed gonality, giving necessary conditions for a smooth curve
to be in a suitable stratum. Next, we summarize the results presented in [Muk95] that
are relevant to this Thesis.

Theorem 1.0.4 (Mukai). Let C be a smooth curve of genus 7.

2-gonal: If C is hyperelliptic, then it is given by the zero locus of an isobaric form of
degree 16 in the weighted projective plane P(1 : 1 : 8).

3-gonal: If C is trigonal

3.1) and admits a unique g26, then its canonical model is a hypersurface of degree 9

in the weighted projective space P(1 : 1 : 3).
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3.2) and admits two g26, then its canonical model is a complete intersection of two
divisors of bidegrees (1, 1) and (3, 3) in P1 × P2.

4-gonal: If C is tetragonal curve

4.1) and bielliptic, then its canonical model is a complete intersection of two divisors
of degrees 3 and 4 in the weighted projective space P(1 : 1 : 1 : 2). Moreover,
C has infinitely many g26 and g14.

4.2) and non-bielliptic with a unique g26, then it is a complete intersection of two
divisors of degrees 3 and 4 in the weighted projective space P(1 : 1 : 1 : 2).

4.3) and admits two g26, then the canonical model of C is a complete intersection of
three divisors of bidegrees (1, 1), (1, 1) and (2, 2) in P2 × P2.

4.4) having no g26 with a unique g14, then its canonical model is a complete intersec-
tion of three divisors of bidegrees (1, 1), (1, 2) and (1, 2) in P1 × P3.

5-gonal: (Main Theorem, [Muk95]). A smooth curve of genus 7 is a transversal linear
section of the orthonormal Grassmannian X ⊂ P15 of dimension 10 if, and only if,
C has no g14. Moreover, the transversal linear subspaces that cut out C are unique
up to the action of SO(10).

In a later paper [MukId03], S. Mukai & M. Ide studied the canonical models of non-
hyperelliptic curves of genus 8, providing a stratification of M8 in terms of the gonality
and the existence of suitable linear systems on C.

Theorem 1.0.5 (Mukai–Ide). Let C be a smooth curve of genus eight.

2-gonal: If C is hyperelliptic, then it is given by an isobaric form of degree 18 in the
weighted projective plane P(1 : 1 : 9).

3-gonal: If C is trigonal, then it is a complete intersection in its respective 2-fold rational
normal scroll, that is either P1 × P1 or F2 := P(OP2 ⊕OP2(2)).

4-goal: If C is a tetragonal curve

4.1) and bielliptic, then it is a complete intersection of the two divisors S and
π−1(E7) in P(OS ⊕OS(−KS)). Here S is a del Pezzo surface in P7 containing
an elliptic curve E7, π : S → S is a double covering with E7 ∼ −KS and
C → E7 is also a double covering.

4.2) non-bielliptic and admitting a unique g26, then C is a complete intersection
given by the two divisors −1

2
KX and −KX in the blowpup X := BqP2 of P2 at



1| Introduction 14

a point.

4.3) not admitting a g26, then C is a complete intersection of four divisors of type
(1, 1), (1, 1), (1, 2) and (2, 2) in P1 × P4.

5-gonal: If C is a pentagonal curve

5.1) admitting a self adjoint g27, then C is a complete intersection of a weighted
projective Grassmannian G(2, 5) and a weighted projective space P(13 : 22).

5.2) with a non self adjoint g27, then it is a complete intersection in P2 × P2 of the
two divisors (1, 1), (1, 2) and (2, 1).

5.3) does not admitting a g27 if, and only if, there is a rank 2 bundle E over C,
generated by its global sections, such that det(E) = ωC and C is a transversal
section of the Grassmannian G(2, V ) ⊂ P(∧2V ).

It can be claimed that this Ph.D. Thesis was firstly inspired by the works of Mukai [Muk95]
and Mukai–Ide [MukId03], followed by the lower bound given by Lazarsfeld [Laz97]. At the
same time by the work due to Penev and Vakil [PeVa15], where the authors parameterize
each of Mukai’s stratum of M6 and then, through a theorem due to Vistoli [Vis87], show
that the Chow ring with coefficients in Q of each stratum inside M6 is tautological. Hence
the rational Chow ring of M6 is tautological as well. Therefore, the Mukai and Mukai–Ide
stratification of M7 and M8 can be relevant to the intersection theory of moduli spaces
of curves.

It is simple to conclude that a canonical curve of genus g ≥ 6 is not a complete intersection
in Pg−1. On the other hand, an important feature of Mukai and Mukai–Ide results lies in
the fact that canonical curves, with a given gonality, are realized as complete intersections
in suitable smooth projective varieties, especially in the product of projective spaces
Pr × Ps. The way the authors show their results is to take a grd on a curve C, given by
a divisor D on C and consider its Serre dual KC − D. Then they show that C can be
embedded in Pr × Ps, where s = h0(C,KC −D), and note that the canonical sheaf KC is
always a hyperplane section on Pr × Ps. Naturally, the following questions arise.

• Given a (big enough) positive integer g. What are the genus g complete intersections
curves in biprojective spaces whose canonical sheaves are hyperplane sections?

• What is the behavior of the gonality on complete intersection curves in Pn × Pm ?

This thesis is developed focusing on the above two questions. In the first section of
Chapter 2 we present some preliminary concepts on divisors, fixing some notation. The
Lefschetz hyperplane theorem 2.1.6 plays a central role to compute the Picard group of
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some varieties. In Section 2.2 we review linear systems on curves with special attention
to the gonality of curves. We recall the Brill–Noether theory and derive the well-known
upper bound for gonality, c.f. Corollary 2.2.5. The Castelnuovo–Severi inequality 2.2.2 is
also recalled because we used it a lot of times in this Thesis. At the end of this section,
we present the Lazarsfeld lower bound for the gonality of a complete intersection curve
in Pn, c.f. Theorem 2.2.6. In Section 2.3 of Chapter 2 we recall some required results on
the theory of bundles over varieties, in special over 3-folds. In particular, we recall the
Nakai–Moishezon criterion for ampleness, Theorem 2.3.2, Bogomolov instability theorem
2.3.4, and a generalization due to Miyaoka of Bogomolov instability, c.f. Theorem 2.3.5.

Chapter 3 is the main chapter of this Thesis, where we give a partial answer to the
above two questions. In Section 3.1 we address our study to complete intersection curves
in biprojective spaces, i.e. a smooth curve C ⊂ Pn × Pm given by n + m − 1 divisors
Di ∈ |OPn×Pm(ai, bi)|, and such that its canonical sheaf is a hyperplane section. Due to
the restriction on the canonical sheaf, we can provide that there is only a finite number
of classes of smooth complete curves in Pn × Pm, namely Theorem 3.1.1, that is

Theorem. If C is a complete intersection smooth curve in Pn × Pm of genus g, with
n+m ≥ 3 and whose canonical sheaf is KC = OC(1, 1), then m+ n ≤ 6, 5 ≤ g ≤ 11 and
C can be one of twenty one cases presented in Table 1.1.

The remaining Section 3.1 is devoted to studying the geometry of the curves in Theorem
3.1.1 with respect to gonality and the existence of suitable linear systems. Among the
results we mention the following:

Lemma. Let C ⊂ Pn1 × · · · × Pnk be a smooth complete intersection of genus g ≥ 5 with
multi-degree (d1, . . . , dk). If C is trigonal, then there is some i ∈ {1, . . . , k} such that
di ≡ 0 mod 3 and di ≥ 3ni.

Lemma. Let C ⊂ Pn1 × · · ·×Pnk be a bielliptic smooth curve of multi-degree (d1, . . . , dk).
If some ni ≥ 2, then di is even and di ≥ 2(ni + 1).

Theorem. There is no embedding u = (u1, u2) : C → P1×P4 of a bielliptic curve of genus
8 such that KC ∼= u∗(OP1×P4(1, 1)), u1(C) spans a P1 and u2(C) spans P4.

Several Remarks are also made on such curves in Pn × Pm. The results of Section 3.1 are
summarized in Table 1.2.

In Section 3.2 of Chapter 3 we provide a version of Lazarsfeld’s Theorem 2.2.6 to complete
intersection curves in the product of two projective spaces, whose proof is inspired by that
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# g divisors ambient bidegree of C
#1 5 (2, 3) , (1, 1) P1 × P2 (3, 5)
#2 6 (2, 1) , (1, 3) P1 × P2 (3, 7)
#3 6 (2, 2), (1, 2) P1 × P2 (4, 6)
#4 6 two (1, 1), one (1, 3) P1 × P3 (3, 7)
#5 7 (1, 1), (2, 1), (0, 3) P1 × P3 (3, 9)
#6 7 (1, 1), two (1, 2) P1 × P3 (4, 8)
#7 7 two (1, 1), (2, 1), (0, 3) P1 × P4 (3, 12)
#8 7 three (1, 1), one (0, 3) P1 × P4 (3, 9)
#9 7 (2, 2), (1, 1), (1, 1) P2 × P2 (6, 6)
#10 8 (1, 1), (2, 0), (1, 3) P2 × P2 (6, 8)
#11 8 (1, 1), (1, 1), (1, 2), (0, 2) P1 × P4 (4, 10)
#12 8 (2, 1), (1, 2), (1, 1) P2 × P2 (7, 7)
#13 9 (1, 1), (2, 1) (0, 2), (0, 2) P1 × P4 (4, 12)
#14 9 (2, 0), (0, 2), (2, 2) P2 × P2 (8, 8)
#15 9 (2, 0), (1, 2), (1, 2) P2 × P2 (8, 8)
#16 9 three (1, 1), two (0, 2) P1 × P5 (4,12)
#17 9 (1, 2), (1, 1), (1, 1), (1, 1) P2 × P3 (7, 9)
#18 10 (2, 0), (1, 1), (1, 1), (0, 3) P2 × P3 (6,12)
#19 11 four (1, 1), one (0, 2) P2 × P4 (8,12)
#20 11 five (1, 1) P3 × P3 (10,10)
#21 6 (0, 2), (3, 2) P1 × P2 (4, 6)

Table 1.1: CI curves in Pn × Pm with KC = OC(1, 1)
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# g divisors ambient bidegree of C gonality obs
#1 5 (1, 1), (2, 3) P1 × P2 (3, 5) 3
#2 6 (2, 1) , (1, 3) P1 × P2 (3, 7) 3
#3 6 (1, 2), (2, 2) P1 × P2 (4, 6) ? gon(C) ∈ {3, 4}
#4 6 two (1, 1), one (1, 3) P1 × P3 (3, 7) 3
#5 7 (1, 1), (2, 1), (0, 3) P1 × P3 (3, 9) 3
#6 7 (1, 1), two (1, 2) P1 × P3 (4, 8) 4
#7 7 two (1, 1), (2, 1), (0, 3) P1 × P4 (3, 12) 3
#8 7 three (1, 1), one (0, 3) P1 × P4 (3, 9) 3
#9 7 (1, 1), (1, 1), (2, 2) P2 × P2 (6, 6) ? gon(C) ∈ {3, 4}
#10 8 (1, 1), (2, 0), (1, 3) P2 × P2 (6, 8) 3
#11 8 (1, 1), (1, 1), (1, 2), (0, 2) P1 × P4 (4, 10) 4 non bielliptic
#12 8 (1, 1), (2, 1), (1, 2) P2 × P2 (7, 7) ? ∃ g27, α⊗2 ̸= KC
#13 9 (1, 1), (2, 1) (0, 2), (0, 2) P1 × P4 (4, 12) 4
#14 9 (2, 0), (0, 2), (2, 2) P2 × P2 (8, 8) 4 bielliptic, two g14
#15 9 (2, 0), (1, 2), (1, 2) P2 × P2 (8, 8) 4
#16 9 three (1, 1), two (0, 2) P1 × P5 (4, 12) 4
#17 9 (1, 1), (1, 1), (1, 1), (1, 2) P2 × P3 (7, 9) ?
#18 10 (1, 1), (1, 1), (0, 3), (2, 0) P2 × P3 (6,12) 3
#19 11 four (1, 1), one (0, 2) P2 × P4 (8, 12) ?
#20 11 five (1, 1) P3 × P3 (10, 10) 5 one or two g15
#21 6 (0, 2), (3, 2) P1 × P2 (4, 6) 3

Table 1.2: CI curves in Pn × Pm with KC = OC(1, 1)
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presented in [Laz97], using Miyaoka’s Theorem on rank two vector bundles over 3-folds
and Nakai–Moichezon’s criterion for ampleness. The two main results of this section are
the following

Theorem. Let C ⊂ Pn × Pm be a complete intersection smooth curve given by divisors of
bidegrees (ai, bi), i = 1, . . . , n+m− 1. Let us assume that (a1, b1) = (1, 1), a2b2 > 0 and
that the 3-fold Y0 given by the last n+m− 3 divisors defining C is such Pic(Y0) = Z×Z.
Picking up κ ∈ Q≥0 such that 2H1H2 ≤ H2

1 +H2
2 + 4κ, we obtain

gon(C) ≥ H1H2 − κ,

provided that

• a2 = b2 and H2
1 +H2

2 ≤ 4H1H2 or

• a2 ̸= b2 and (a2 − 1)H2
1 + (b2 − 1)H2

2 ≤ (min{3a2 + b2 − 4, 3b2 + a2 − 4})H1H2,

where H1 and H2 are hyperplane sections on a surface S ⊂ Y0 given by a divisor in
|OY0(a2, b2)|.

In addition, we also establish the following result:

Theorem. Let C ⊂ P1 × Pm be a complete intersection smooth curve given by divisors of
bidegrees (ai, bi), i = 1, . . . , n +m − 1. Assume that (a1, b1) = (0, 2), a2 ≥ 0, b2 ≥ 2 and
that the 3-fold Y0 given by the last n+m− 3 divisors defining C is such Pic(Y0) = Z×Z.
Let X ⊂ Y0 cutting the divisor of bidegree (a2, b2) and fix the hyperplane sections H1 and
H2 on X. If κ ∈ Q≥0 is such that H1H2 ≤ H2

2 + κ, then

gon(C) ≥ H1H2 − κ,

where H1 and H2 are hyperplane sections on a surface S ⊂ Y0 given by a divisor in
|OY0(a2, b2)|. In addition, if b2 ≤ a2, then we can take κ equals to zero.

In section 3.3 of Chapter 3 we provide a few results on the locus of complete intersection
smooth curves in the biprojective spaces with fixed genus and prescribed bidegrees. The
main results of this section are the following.

Theorem. A general trigonal curve of genus 10 is a complete intersection smooth curve
given by the divisors (2, 0), (1, 1), (1, 1) and (0, 3) on P2 × P3, as in case #18 of Table
1.1.

Theorem. A general trigonal curve of genus 8 is a complete intersection smooth curve
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# g divisors ambient bidegree of C gonality
⌊
g+3
2

⌋
#9 7 (1, 1), (1, 1), (2, 2) P2 × P2 (6, 6) 3 or 4 5
#12 8 (1, 1), (2, 1), (1, 2) P2 × P2 (7, 7) 4 or 5 5
#17 9 (1, 1), (1, 1), (1, 1), (1, 2) P2 × P3 (7, 9) 4 or 5 6
#19 11 four (1, 1), one (0, 2) P2 × P4 (8, 12) 5 or 6 7

Table 1.3: CI curves in Pn × Pm with KC = OC(1, 1)

given by the divisors (2, 0), (1, 1) and (1, 3) on P2 × P2, case #10 in Table 1.1.

Theorem. A general element of M(7,7)
8 has gonality 5 and at least eight g15, where M(d1,d2)

g

is the space of all smooth complete intersections curves in the biprojective space of genus
g and bidegree (d1, d2),

Due to the results of Sections 3.2 and 3.3, we can fill in some additional information on
the four missing cases in Table 1.2, that are summarized in Table 1.3.

In Chapter 4 we provide some results concerning Mukai’s stratification of genus 8 curves.
The results presented are far from being a final study, it can be seen as the starting point
to further works. We establish the following results.

Theorem. Let V be the blowup of P3 at a point and KV its the canonical sheaf. Assume
that C is a complete intersection smooth curve given by −1

2
KV and −KV . Thus C has

genus 8, does not admit any g13 and every g26 is linearly equivalent to OC(H − E). In
particular, C is tetragonal with a unique g26.

The last result of this Thesis is the following. Let V be a vector space of dimension 6.
Consider the Grassmanian G(2, V ) embedded via Plücker in P(∧2V ). The space of 7 of
linear sections is parameterized by G(7,∧2V ). In the same way that PGL(V ) acts on
G(2, V ), it determines an action on G(7,∧2V ).

Theorem. The natural map

ϕ : (G(7,∧2V ) \∆)/PGL(V ) −→ M8

is an open immersion (of Deligne-Mumford Stacks) whose image is MMu
8 . Here ∆ is

a divisor of G(7,∧2V ) corresponding to the singular locus. Here MMu
8 stands for the

subspace of M8 consisting of pentagonal curves without a g27.

In Chapter 5 we give some possible directions and problems for future developments.
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Throughout this Thesis, we work over the field of complex numbers C. Varieties are
assumed to be smooth and projective unless otherwise stated. In this chapter, we recall
the objects and results that are required for a better understanding.

2.1. Divisor and Picard Groups

Let X be a smooth projective scheme. We recall that a prime divisor on X is a closed
integral subscheme Y of codimension one. A divisor is an element of the free abelian
group DivX generated by the prime divisors. An element of DivX is usually denoted by

D =
∑

niDi,

where Di are prime divisors and ni are integers such that only finitely many are different
from zero. If all ni ≥ 0, we say that D is effective.

Let Y be a prime divisor on X and η its generic point. The local ring Oη,X is a discrete
valuation ring with a quotient ring K. We usually say that the discrete valuation νY is
the valuation of Y . Since X is separated, Y is uniquely determined by its valuation.

For a given f ∈ K∗ nonzero rational function on X, it is associated with the integer νY (f)
that is equal to zero for all except finitely many prime divisors Y . Hence we associated a
divisor to f by setting

div(f) :=
∑

Y is prime
νY (f).

A divisor which is equal to the divisor of a rational function is called a principal divisor.
The set of principal divisors forms a subgroup of DivX. The quotient of the group of
divisors by the principal divisors is called the divisor class group of X. We also call it the
Weill group of X.

Since not every scheme is regular in codimension one or projective, we need a more
comprehensive definition of divisor. Let X be a scheme, a Cartier divisor on X is a global
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section of the sheaf K∗/O∗, here K means the sheaf of total quotient rings of O and the
operation on the group is the multiplication of global sections. A Cartier divisor is a pair
{Ui, fi}, where {Ui} is an open cover of X and for each i an element fi ∈ Γ(Ui,K∗), such
that for each i, j , fi/fj ∈ Γ(Ui ∩ Uj,O∗). A Cartier divisor is principal if it is in the
image of the natural map Γ(X,K∗) −→ Γ(X,K∗/O∗). Two Cartier divisors are linearly
equivalent if their difference is principal.

Let X be a smooth projective variety and {Ui, fi} be a Cartier divisor of X. For each prime
divisor Y, take the coefficient of Y to be νY (fi), where i is any index for which Ui∩Y ̸= ∅.
If fi/fj is invertible on Ui ∩ Uj, then νY (fi/fj) = 0, in other words νY (fi) = νY (fj). So
we get a Weill divisor D =

∑
νY (fi)Y .

Proposition 2.1.1. Let X be a smooth projective variety. Then the group of Weill divisors
on X is isomorphic to the group of Cartier divisors. Furthermore, the principal Weill
divisors correspond to the principal Cartier divisors under this isomorphism.

We also recall that the Picard group of X is the group of isomorphism classes of line
bundles on X. Given a Cartier divisor onD = {Ui, fi} onX, we may associate an invertible
sheaf OX(D) on X that is defined by sub-OX-module of K generated by f−1

i on Ui.

Theorem 2.1.2. Let X be a smooth variety, the map

D 7−→ OX(D)

defines an isomorphism from Cl(X) to Pic(X)

Let L be a divisor, or an invertible sheaf, on X. We say that L is very ample if it induces
an embedding of X into the projective space P(H0(X,L)) given by global sections of L.
In addition, we say that L is ample if for every coherent sheaf F on X, there is an integer
n0 > 0 such that for every n ≥ n0, the sheaf F ⊗ L⊗n is generated by its global sections,
i.e. there is a index set I and a surjective morphism of sheaves⊕

i∈I

OX −→ F ⊗L⊗n.

Remark 2.1.1. Let D and L be coherent sheaves on X. If D is ample, then there exists
an integer n0 > 0 such that D ⊗ L⊗m is ample for all m ≥ n0.

Example 2.1.1. The simplest example of a very ample sheaf is to take X = Pn and
the sheaf of hyperplane sections L = OX(1). In addition, OX(r) is very ample for every
r > 0, inducing an embedding X −→ PN , where N is the dimension of the vector space
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of monomial forms of degree r in the variables X0, . . . , Xn, namely N =
(
n+r
n

)
.

Example 2.1.2. LetX = Pn×Pm andD = OX(a, b) be a divisor onX with a > 0 and b >
0. It follows that D is very ample, embedding X in PN , where N is given by the dimension
of the vector space of the monomial forms of bidegree (a, b), i.e Xr0

0 · · ·Xrn
n Y

s0
0 · · ·Y sm

m

where
∑
ri = a and

∑
si = b.

The next theorem gives an equivalent definition of ample divisor, a proof is in Hartshorne‘s
book [Hart77, p. 154].

Theorem 2.1.3. Let X be a scheme of finite type over a noetherian ring A and L an
invertible sheaf on X. Then L is ample if and only if L⊗m is very ample over SpecA for
some m > 0.

Theorem 2.1.4. Let A be a noetherian ring and X be a proper scheme over SpecA. For
each invertible sheaf L on X, the following are equivalent:

• L is ample.

• For each coherent sheaf F on X, there is a integer n0, depending on F , such that
for each i > 0 and each n ≥ n0, Hi(X,F ⊗ Ln) = 0.

Proof. See [Hart77, Proposition 5.4, pg. 229].

We include the proof of the following Proposition due to its simplicity, which also can be
found in [Hart77].

Proposition 2.1.5. Let f : Y −→ X be a finite morphism of complete schemes and L
an ample line bundle on X. Then the pullback f ∗L is also an ample line bundle on Y .

Proof. Let F be a coherent sheaf on Y . Since f is finite, we obtain that the following right
derived functor is null, Rjf∗(F ⊗ f ∗Lm) = 0, for j > 0 and f∗(F ⊗ f ∗Lm) = f∗F ⊗ Lm.
Hence H i(Y,F ⊗ f ∗Lm) = H i(X, f∗F ⊗ Lm) for all i > 0. Since f∗F is a coherent sheaf
on X, we finish the proof by applying Theorem 2.1.4.

Example 2.1.3. The inclusion Y ↪→ X morphism between two complete schemes Y and
X satisfies the conditions of the previous Proposition. Hence, if H and E are two ample
divisors on X, where dimX > 1 and H is smooth, then E|H is ample over H.

The following version of Lefschetz hyperplane theorem is present in Lazarsfeld’s book
[Laz04, Thm. 3.1.17] and can also be useful to compute the Picard group of some varieties.
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Theorem 2.1.6 (Lefschetz hyperplane theorem). Let X be a nonsingular irreducible pro-
jective variety of dimension n, and D be any effective ample divisor on X. Then the
restriction map

Hi(X,Z) −→ Hi(D,Z)

is an isomorphism for i ≤ n− 2 and injective for i = n− 1

Example 2.1.4. Setting i = n − 1 and X = P3 in the Lefschtez hyperplane theorem,
and taking the ample divisor Q ∼= P1 × P1 of the smooth quadratic surface in P3, we can
deduce the map

Hi(P3,Z) −→ Hi(Q,Z)

is not an isomorphism, because Pic(Q) = Z× Z while Pic(P3) = Z.

Example 2.1.5. Let X = Pn × Pm and Di ∈ |OX(ai, bi)|, i = 1, . . . , n +m− 1, divisors
on X with ai, bi > 0 for all i. Assuming that Xi =

⋂i
j=1Dj is smooth for all j < i,

the Example 2.1.3 and Lefschetz hyperplane theorem imply that Pic(Xi) = Z× Z for all
i ≤ n+m− 4.

2.2. Linear Systems and Gonality of Curves

We recall that a complete linear system on a nonsingular projective variety X is defined
as the set of all divisors linearly equivalent to some given divisor D0. Two divisors are
said to be linearly equivalent if their difference is a principal divisor. The complete linear
system associated with D0 is denoted by |D0| and forms a projective space. A linear
system is a subspace of a complete linear system.

It follows from the very definition that there is a 1 − 1 correspondence between the
complete linear system |D0| and the quotient of the global sections of D0 by the action of
the multiplicative group C∗, (H0(X,D0)− 0)/C∗. Hence

dim|D0| = dim(H0(X,D0))− 1.

If we assume that D0 is a degree d divisor on a smooth curve X of genus g with dim|D0| =
r, then we get a morphism of degree d from X to Pr, X → Pr. In this case, the complete
linear system is denoted by grd.

A point P ∈ X is a base point of a linear system D, if P ∈ Supp(D) for all D ∈ D. Here
Supp(D) stands for the union of all prime divisors of D.

The next theorem can be found in [Laz04].
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Theorem 2.2.1 (Asymptotic Riemann–Roch). Let X be an irreducible projective variety
of dimension n, and D and E two divisors on X. We have that

p(m) = χ(X,OX(mD + E)) =
(Dn)mn

n!
+

(Dn−1)(KX − 2E)mn−1

2(n− 1)!
+ . . .

is a polynomial of degree at most n = degX, where KX stands for the canonical divisor
on X.

Proof. The proof is done by induction on dimX = n. The case n = 1 is just the Riemann–
Roch theorem for curves. Let H be a very ample divisor on X, by Remark 2.1.1 and
Theorem 2.1.3 we can choose H such that D + H = G is very ample as well. From the
following two exact sequences

0 −→ OX(mD + E) −→ OX(mD +H + E) −→ OH(mD +H + E) −→ 0

and

0 −→ OX((m− 1)D + E) −→ OX(mD +H + E) −→ OG(mD +H + E) −→ 0,

we obtain that

χ(X,OX(mD +H + E)) = χ(X,OX(mD + E)) + χ(X,OH(mD +H + E))

and that

χ(X,OX(mD +H + E)) = χ(X,OX((m− 1)D + E)) + χ(X,OG(mD +H + E)).

Hence p(m) − p(m − 1) = χ(X,OG(mD +H + E)) − χ(X,OH(mD +H + E)). By the
induction hypothesis, p(m)− p(m− 1) is polynomial, then ∆(P (m)) = p(m)− p(m− 1)

is polynomial, which implies that p(m) is polynomial.

As we stated in the Introduction of this Thesis, the gonality of a smooth curve C of genus
g, is the smallest positive integer k for which there exists a surjective morphism from C
to P1, i.e

gon(C) = min{k | there is a g1k on C}.

In general, it’s not simple to compute the gonality of a given curve. However, the gonality
of a plane curve can be easily computed as follows.
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Example 2.2.1 (Gonality of plane curves). Let C ⊂ P2 be a plane curve of degree d > 1.
The gonality of C is equal to d− 1.

Taking the projection from a point on C, Bézout’s Theorem implies gon(C) ≤ d − 1.
Assume that gon(C) = k ≤ d− 1 and it is realized by the morphism f : C → P1. We also
can assume that C is non-hyperelliptic, thus the canonical sheaf KC ∼= OC(d− 3) embeds
C in Pg−1.

C //

f ��

ω

!!
P2 φ // Pg−1

P1

The canonical morphism ω factors over (d− 3)-fold Veronese φ, recall that the genus of a
plane curve of degree d is g = (d− 1)(d− 2)/2. Let us take p1, . . . , pk a fiber over f and
the divisor D := p1 + · · · + pk ∈ Pic(C). By the Riemann–Roch theorem we obtain that
h0(C, KC −D) ≥ (g − 1)− k, implying that φ(p1), . . . , φ(pk) are linearly independent in
Pg−1. We also can assume that φ(pi) = (xd−3

i : xd−4
i yi : · · · : yd−3

i ), inducing a k × (d− 2)

Vandermonde matrix. If k < d − 1 we obtain a contradiction, because the matrix has
rank k. Hence k = d − 1, and in this case, we obtain a (d − 1) × (d − 2) Vandermonde
matrix of rank d− 2, and we are done.

For the next example it is required the Castelnuovo–Severi inequality, whose proof can be
found in [ACGH85, Ex. VIII C 1] or in [Kani84, Corollary at p. 26].

Theorem 2.2.2 (Castelnuovo–Severi inequality). Let C be a curve of genus g with two
non-constant morphisms fi : C → Ci where Ci is a curve of genus gi. If f1 and f2 are
disjoint, i.e. they don’t factor over the same morphism h : C → C ′ with deg(h) > 1, then

g ≤ d1g1 + d2g2 + (d1 − 1)(d2 − 1),

where di = deg(fi).

Example 2.2.2. Let C ⊂ P1×P1 be a curve of genus g of bidegree (d1, d2), with d1 ≤ d2.
Assuming that d1 is a prime number, we show that gon(C) = d1. The first projection
provides a morphism π1 : C −→ P1 of degree d1. So gon(C) ≤ d1. If gon(C) = k < d1,
then there is a morphism f of degree k from C to P1. As π1 does not factor by f since d1
is prime, then by the Castelnuovo–Severi inequality, the morphism π1 × f : C → P1 × P1

gives g ≤ (d1 − 1)(k − 1), which is a contradiction, because g = (d1 − 1)(d2 − 1).

Let C be a smooth curve of genus g, and two integers r ≥ 0 and d ≥ 1, we set the well
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known Brill–Noether number

ρ(g, r, d) := ρ = g − (r + 1)(g − d+ r)

and the following two famous subvarieties of the Picard variety Pic(C), that parametrizes
special linear series on C, namely

W r
d (C) = {|L| | deg(L) = d and h0(L) ≥ r + 1},

whose support is the set of complete linear systems of degree d and dimension at least r
and

Gr
d(C) = {grd on C}

parametrizes linear series of degree d and dimension exactly r on C. The Brill–Noether
number is the expected dimension of the W r

d (C).

The following two main results, for this section, can be found in [ACGH85] and in [GHa80],
respectively.

Theorem 2.2.3 (Kempf and Fulton–Lazarsfeld). Let C be a smooth curve of genus g.
If the Brill–Noether number ρ ≥ 0 is non-negative, then Gr

d(C), and hence W r
d (C), are

non-empty. Furthermore, every component of Gr
d(C) has dimension at least equal to ρ.

The same is true for W r
d (C) provided r ≥ d− g.

Theorem 2.2.4 (Griffiths and Harris). If C is a generic curve, then Gr
d(C) is reduced and

all its components have the expected dimension ρ. In particular, Gr
d(C) is empty when

ρ < 0.

With the above two results, we can derive also a well-known upper bound for the gonality
of a smooth curve.

Corollary 2.2.5. For a projective smooth curve C of genus g > 1, we have

gon(C) ≤
⌊
g + 3

2

⌋
.

Proof. The result follows from the two previous theorems by noting that Gr
d(C) is non-

empty of dimension at least ρ if, and only if, the Brill–Noether number is greater than
zero.

In the following, we transcribe Lazarsfeld’s result on the gonality of a complete intersection
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curve exactly as it appears in the original paper. We believe that it’s appropriate to include
the steps presented in [Laz97, Exercise 4.12], because our two main results, Theorem 3.2.3
and Theorem 3.2.4 of Section 3.2 in Chapter 3, are inspired by Lazarsfeld’s ideas.

Theorem 2.2.6 (Lazarsfeld’s Theorem–Exercise 4.12). Let C ⊂ Pr be a smooth complete
intersection of hypersurfaces of degrees 2 ≤ a1 ≤ a2 ≤ · · · ≤ ar−1. Let L be a base-point
free line bundle on C, of degree d, with h0(C,L) ≥ 2. Then d ≥ (a1 − 1)a2 . . . ar−1.

Proof Idea. The idea of the argument is this: let S ⊂ C be a general complete intersection
surface of type (a2, . . . , ar−1). As in [Laz97, Exercise 3.18], one can associate to L a rank
two vector bundle F on S. One finds that if d < (a1 − 1)a2 . . . ar−1, then F is Bogomolov
unstable, c.f. Theorem 2.3.4 below. It is easy to get a contradiction provided one knows
that the destabilizing subsheaf is of the form OS(k), but this doesn’t seem to be guaran-
teed. To remedy this, instead of working on a surface we work on a complete intersection
threefold X ⊃ C, whose Picard group is controlled by the Lefschetz theorems. Related re-
sults, proved by more classical methods, appear in[CiLa90] and [Ba96], and the Theorem
also connects with some of the conjectures in [EiGrHa93]. Paoletti [Paol] has extended
the techniques of this exercise to deal with certain non-complete intersection curves. He
proves the striking result that under suitable numerical hypotheses, the gonality of a space
curve C ⊂ P3 is governed by its Seshadri constant, which roughly speaking measures how
positive the hyperplane bundle OP3(1) is in a neighborhood of C, see [Laz97, Section 5].

i) Put γ = a3a4 . . . ar−1, and let X ⊃ C be a general complete intersection threefold
of type (a3, . . . , ar−1). If r = 3 take X = P3 and γ = 1. Let f : Y → X be the
blowing-up of C, and let E ⊂ Y be the exceptional divisor, with π : E → C the
natural map. Consider on E the globally generated line bundle G = π∗L. Choosing
a base-point free pencil in Γ(E,G), we define in the usual way a rank two vector
bundle F on Y via the sequence

0 −→ F −→ O2
Y −→ G −→ 0.

Compute the Chern classes of F .

ii) Denote by H the pull-back to Y of the hyperplane divisor on X, and for 0 ≤ ε ∈ Q
consider the Q-divisor Dε = (a2 + ε)H − E. Show that D = D0 = a2H − E is
globally generated and that Dε is ample if ε > 0. Now assume that d < (a1−1)a2γ.
Prove then that for 0 < ε≪ 1

c1(F)2 − 4c2(F)Dε = (a1 − ε)a1a2γ − 4d > 0. (2.1)
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iii) Fixing ε for which equation (2.1) holds, an extension by Miyaoka of Bogomolov’s
instability theorem implies that there exists a rank one subsheaf L ⊂ F such that

(2c1(L)− c1(F))DεD > 0.

Show that one can assume that L is locally free and that the vector bundle map
L → F drops rank (if at all) on a codimension two subset Z ⊂ Y . Prove that
L = OY (−tH − E) for some integers t ∈ Z.

iv) Now let S ∈ |a2H − E| = |D| be a general divisor, so that S is isomorphic to a
complete intersection surface of type (a2, . . . , ar−1) through C. Setting F = F|S,
show that c2(F ) = d, and that the restriction to S of the subsheaf L→ F gives rise
to an exact sequence

0 −→ OS(−sH) −→ F −→ OS(s− a1)⊗ IW −→ 0,

where s = t + a1, and W ⊂ S is some finite subscheme. Use instability to prove
that 2s < a1. Then estimate c2(F ) to deduce that a1 < s + 1. But s > 0 since
h0(S, F ) = 0, and this gives a contradiction.

v) Prove that the inequality in the Theorem is the best possible, in the sense that for
any integers 2 ≤ a1 ≤ · · · ≤ ar−1, there exists a complete intersection curve C that
carries a base-point free pencil of degree (a1 − 1)a2 . . . ar−1.

2.3. Some useful results on bundles

In this section, we summarize some known results on the theory of vector bundles and
ample divisors that will be required later on to prove some main results of this Thesis.
Here the word bundle stands for a locally free coherent sheaf of finite rank over an algebraic
variety.

We start by recalling a very well-known criterion for ampleness due to Nakai, Moishezon,
and Kleimann. Before that, we need the following lemma.

Lemma 2.3.1. Let L be a globally generated bundle and ϕ : X −→ Pr the induced
morphism with ϕ = ϕ|L| and Pr = P(H0(X,L)). Then L is ample if and only if ϕ is a
finite morphism, or equivalently, if and only if

∫
C
c1(L) > 0 for every irreducible curve

C ⊂ X.
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Proof. By assumption L = ϕ∗OPr(1), and the Proposition 2.1.5 assures that if ϕ is finite,
then L is ample. Since the inclusion morphism is finite,

∫
C
c1(L) > 0 for every irreducible

curve C ⊂ X. Assuming that ϕ is not finite, there is a point p ∈ Pr such that ϕ−1(p) = Z

has positive dimension. Hence L restricts to a trivial line bundle on Z, because L is the
pullback of a hyperplane section. In particular, L|Z is not ample, and so by Proposition
2.1.5, L is not ample as well. And in this case, there is a curve C ∈ Z so

∫
C
c1(L) = 0.

Theorem 2.3.2 (Nakai–Moishezon–Kleiman). Let L be a line bundle on a projective
scheme X. Then L is ample if only if

∫
V
c1(L)

dim(V ) > 0 for any subvariety V ⊆ X with
dimV > 0.

Proof. Suppose there is a m which L⊗m is very ample and mdim(V ).
∫
V
c1(L)

dim(V ) =∫
V
c1(L

⊗m)dim(V ) is the degree of V in the projective embedding of X. That way we have
the first part.

Now suppose
∫
V
c1(L)

dim(V ) > 0 for every variety V ⊆ X with dim(V ) > 0. We can
assume without loss of generality X is reduced and irreducible. Let’s prove by induction,
if dim(X) = 1, then X is a curve and L has positive degree, which implies that L is ample.
Assume that the theorem is true for every projective scheme Y with dim(Y ) ≤ n− 1.

Write L = OX(D) for D ∈ Pic(X). We assert first H0(X,OX(mD)) ̸= 0 for m ≫ 0.
Indeed, by the asymptotic Rieman-Roch theorem χ(X,OX(mD)) = mnDn

n!
+ O(mn−1)

and Dn > 0 by assumption. By remark 2.1.1 we know that D is the difference between
two ample divisors, so we can write D = A−B. Considering the product of OX(mD−B)

with A and with B we get the two exact sequences:

0 −→ OX(mD −B)
.A−→ OX((m+ 1)D) −→ OA((m+ 1)D) −→ 0, (2.2)

0 −→ OX(mD −B)
.B−→ OX(mD) −→ OB(mD) −→ 0. (2.3)

By induction OA(D) and OB(D) are ample divisors, so choose m≫ 0 such that the higher
cohomology of both vanish, then

H i(X,OX(mD)) = H i(X,OX(mD −B)) = H i(X,OX((m+ 1)D))

for i ≥ 2. So form≫ 0 and i ≥ 2, hi(X,OX(mD)) are constant. Therefore χ(X,OX(mD)) =

h0(X,OX(mD))−h0(X,OX(mD))+C, where C is constant andm≫ 0. So by χ(X,OX(mD)) =

mnDn

n!
+O(mn−1), we get H0(X,OX(mD)) not vanish for m≫ 0. Without loss of gener-
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ality, we could replace D with mD, since D is ample if, only if, mD is ample. Therefore
we can suppose that D is effective.

The next step is to show OX(mD) is generated by its global sections if m≫ 0. We need
to show that no point of D is base point of |OX(mD)|. By the exact sequence

0 −→ OX((m− 1)D)
.D−→ OX(mD) −→ OD(mD) −→ 0. (2.4)

and by induction OD(D) is ample.Therefore OD(mD) is globally generated and, for suf-
ficiently large m, H1(X,OD(mD)) = 0. So the natural map

H1(X,OD((m− 1)D)) −→ H1(X,OD(mD))

is surjective and since these spaces are finite-dimensional, for m≫ 0 these maps must be
isomorphisms. Therefore, for m ≫ 0, the map H0(X,OX(mD)) −→ H0(X,OD(mD)) is
surjetive and since OX(mD) is globally generate, not point of Supp(D) is a base point of
|OX(mD)|.

To finish the proof, we use Lemma 2.3.1, since (mD.C) > 0 for every irreducible curve.

We also recall that a Q-divisor on X is an element of Div(X)⊗ZQ. If D is a Q-divisor on
X, we write D =

∑
riDi, where Di are prime divisors, ri ∈ Q and only finitely many ri

are different from zero. We say that D is effective if all ri ≥ 0. If all ri are integers, then
we may say D is an integral divisor. Two Q-divisors D1 and D2 are linearly equivalent if
there is an integer r such that rD1 and rD2 are integral and linearly equivalent as divisors
in Div(X).

Concerning the ampleness of Q-divisors we have the following.

Proposition 2.3.3. A Q-divisor D is ample if any one of the following three equivalent
conditions is satisfied:

a) D is of the form D =
∑
riDi where ri > 0 is a rational number and Di is an ample

integral divisor

b) There is a positive integer r > 0 such that rD is integral and ample.

c) DdimV · V > 0 for every irreducible subvariety V ⊂ X of positive dimension.

Let X be a smooth projective surface and E a vector bundle over X of rank 2. The bundle
E is Bogomolov unstable if there exists a finite sub-scheme Z ⊆ X and line bundles A
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and B on X such that the sequence

0 −→ A −→ E −→ B ⊗ IZ −→ 0

is exact, and
(A− B)2 > 0 and (A− B)H > 0

for all ample sheaves H on X.

Theorem 2.3.4 (Bogomolov’s Instability Theorem). Let E be a rank two vector bundle
on a smooth projective surface X. If c1(E)2 − 4c2(E) > 0, then E is Bogomolov unstable.
In particular, there is a saturated invertible subsheaf F ↪→ E with L = detE such

(2F − L)2 > 0 and (2F − L)H > 0,

for some ample divisor H. Here c1(E) and c2(E) stands for the Chern classes of E.

Miyaoka [Miy87] generalizes the Bogomolov instability theorem by considering a vector
bundle of rank two on a 3-fold variety.

Theorem 2.3.5 (Miyaoka’s generalization of Bogomolov’s theorem). Let E be a rank two
vector bundles on a smooth 3-fold variety. Given two divisors D and D′ with D globally
generated and D′ ample, if

(c1(E)2 − 4c2(E))D′ > 0,

then there is a rank one subsheaf L ⊂ E such that

(2c1(L)− c1(E))D′ ·D > 0.
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3| On the Gonality of CI Curves

in Biprojectic Spaces

This is the main chapter of the Thesis and where we study the geometry of curves that
are complete intersections in the biproduct of projective spaces in terms of their gonalities
and the existence of suitable linear systems. The main inspiration is the two main results
due to Mukai, c.f. Theorem 1.0.4, and Mukai & Ide, c.f. Theorem 1.0.5, where the
authors stratify the moduli space of smooth curves of genus 7 and 8 using gonality and
linear systems of higher rank. The curves that compound each stratum are curves whose
canonical models are realized as complete intersections in certain algebraic varieties, in
special the biproduct of projective spaces. So, we are studying the gonality of canonical
curves embedded in the biproduct of projective spaces. In this setting, another inspiration
is the lower bound for the gonality of complete intersection curves in projective spaces
due to Lazarsfeld, Theorem 2.2.6.

Just to make clear what a complete intersection curve means here, we state the following
definition.

Definition 3.0.1. Let Y = Pn1 × Pn2 × · · · × Pnk be a multi-projective space, with
n = n1 + · · ·+ nk and k ≥ 2. A smooth curve C is a complete intersection in X, when it
is integral, given by the intersection of exactly n− 1 divisors Dj ∈ |OY (aj1, aj2, . . . , ajk)|
and C is not degenerated, i.e. it is not contained in any hyperplane section of Y .

Remark 3.0.1. Let C be a complete intersection curve in Pn1 × · · · × Pnk , with k ≥ 1,
and take the projections πi : C → Pni for i = 1, . . . , k. Let us assume that C is not
hyperelliptic. Due to Definition 3.0.1, the image of C under each projection spans the
whole projective space Pni . Thus C is equipped with k distinct linear series gni

di
, with

di := deg(πi|C) deg(πi(C)), for i = 1, . . . , k.

We also assume the convention that deg(πi(C)) = 1 whenever ni = 1. The sequence of
integers (d1, . . . , dk) is the multi-degree of C.
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# g divisors ambient bidegree of C
#1 5 (2, 3) , (1, 1) P1 × P2 (3, 5)
#2 6 (2, 1) , (1, 3) P1 × P2 (3, 7)
#3 6 (2, 2), (1, 2) P1 × P2 (4, 6)
#4 6 two (1, 1), one (1, 3) P1 × P3 (3, 7)
#5 7 (1, 1), (2, 1), (0, 3) P1 × P3 (3, 9)
#6 7 (1, 1), two (1, 2) P1 × P3 (4, 8)
#7 7 two (1, 1), (2, 1), (0, 3) P1 × P4 (3, 12)
#8 7 three (1, 1), one (0, 3) P1 × P4 (3, 9)
#9 7 (2, 2), (1, 1), (1, 1) P2 × P2 (6, 6)
#10 8 (1, 1), (2, 0), (1, 3) P2 × P2 (6, 8)
#11 8 (1, 1), (1, 1), (1, 2), (0, 2) P1 × P4 (4, 10)
#12 8 (2, 1), (1, 2), (1, 1) P2 × P2 (7, 7)
#13 9 (1, 1), (2, 1) (0, 2), (0, 2) P1 × P4 (4, 12)
#14 9 (2, 0), (0, 2), (2, 2) P2 × P2 (8, 8)
#15 9 (2, 0), (1, 2), (1, 2) P2 × P2 (8, 8)
#16 9 three (1, 1), two (0, 2) P1 × P5 (4,12)
#17 9 (1, 2), (1, 1), (1, 1), (1, 1) P2 × P3 (7, 9)
#18 10 (2, 0), (1, 1), (1, 1), (0, 3) P2 × P3 (6,12)
#19 11 four (1, 1), one (0, 2) P2 × P4 (8,12)
#20 11 five (1, 1) P3 × P3 (10,10)
#21 6 (0, 2), (3, 2) P1 × P2 (4, 6)

Table 3.1: CI curves in Pn × Pm with KC = OC(1, 1)

3.1. Curves whose canonical bundle is a hyperplane

section

As can be read from Theorems 1.0.4 and 1.0.5, the canonical curves of genus 7 or 8 that
are complete intersections, c.i. for short, in the biproduct of projective spaces are such
that their canonical divisors are given by hyperplane sections. So we start by studying c.i.
curves C ⊂ Pn × Pm whose canonical sheaf is OC(1, 1). This condition on the canonical
sheaf imposes stronger conditions on C and on the ambient space Pn × Pm in a way that
only a finite number of cases are allowed.

Theorem 3.1.1. If C is a complete intersection smooth curve in Pn × Pm of genus g,
with n+m ≥ 3 and whose canonical sheaf is KC = OC(1, 1), then m+ n ≤ 6, 5 ≤ g ≤ 11

and C can be one of twenty one presented in Table 3.1.

Proof. Let us assume that C is given by m+n− 1 divisors Di ∈ |OPn×Pm(ai, bi)| and that
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ai ≥ ai+1. Since C is a complete intersection, its canonical sheaf is

KC = OC

(∑
ai − n− 1,

∑
bi −m− 1

)
.

By assumption KC = OC(1, 1), so we obtain

n+m−1∑
i=1

ai = n+ 2 and
n+m−1∑

i=1

bi = m+ 2. (3.1)

We also can assume that if some ai = 0 or bj = 0, then the corresponding bi ≥ 2 or aj ≥ 2,
otherwise C is degenerated. It follows from Equation (3.1) and the assumption ai ≥ ai+1,
that aj = 0 for j ≥ n+ 3.

Let an+2−k be the last term where ai ̸= 0, then we claim that ai = 1 for i ∈ {k+1, · · · , n+
2−k} and furthermore b1+· · ·+bn+2 ≥ n+2. Indeed, we can assume that k+1 ≤ n+2−k,
the proof is the same if we have the opposite inequality. If ak+1 ≥ 2, then

n+ 2 = a1 + · · ·+ ak+1 + ak+2 + · · ·+ an+2−k ≥ 2(k + 1) + (n+ 2− k − k − 1) = n+ 3,

which is an absurd, then ak+1 = 1 and by the assumption that ai ≥ ai+1 we get ai = 1

for i ∈ {k + 1, · · · , n+ 2− k}. Therefore bi ≥ 1 for i ∈ {k + 1, · · · , n+ 2− k} and since
bi ≥ 2 for i ≥ k + 1 we can see that

b1 + · · ·+ bn+2−k + bn+3−k + · · ·+ bn+2 ≥ (n+ 2− 2k) + 2(n+ 2− n− 2 + k) = n+ 2.

Let us assume that m ≥ 3. In this case, we obtain

bj ≥ 2 for j = n+ 3, . . . ,m+ n− 1 and n+ 2 + 2(m− 3) ≤
∑n+m−1

i=1 bi = m+ 2.

Hence n + m ≤ 6, and then there are only a finite number of cases to analyse, namely
P1 × Pm with 2 ≤ m ≤ 5, P2 × Pm with m = 2, 3, 4 and P3 × P3.

Let us start by analyzing P1×Pm. In this case we can assume that each bi ≥ 1, otherwise
the projection of C to P1 is just a point and then we can assume that C ⊂ Pm. If m = 3

and ai = 0, then bi > 2, otherwise C would be contained in a divisor of bidegree (0, 1) or
(0, 2) i.e C ⊂ P1 × P2 or P1 × P1 × P1 which contradicts C being complete intersection.
Hence by equation 3.1, we can determine all curves intersection complete in P1 × P3.

Now let us assume that C ⊂ P2×Pm, with 2 ≤ m ≤ 4. We claim that each ai ≤ 2. Let us
assume that a1 = 4, so bi > 1 for all i > 1, which implies m + 2 = b1 + · · · + bm+1 ≥ 2m
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and ai = 0, i = 2, . . . ,m + 1 i.e m ≤ 2 the only possible case is that C is the complete
intersection of divisor one divisor of bidegree (4, 0) and two divisor of bidegree (0, 2) in
P2 × P2, which is an absurd, because in this case dim(C) ≥ 2. If a1 = 3, then a2 = 1 and
ai = 0 for i > 2, and we get m ≤ 3 so there are only two possibilities: C is a complete
intersection of two divisor of bidegree (0, 2), one of bidegree (3, 0) and one of bidegree
(1, 1) in P2 × P3 or C is a complete intersection of one divisor of bidegree (3, b1), one of
bidegree (1, b2) and one of bidegree (0, b3) in P2 × P2, where b2 ≥ 1 and b3 ≥ 2. In both
cases g(C) > 3(m+ 1) which is a absurd.

Finally, lets us assume C ⊂ P3 × P3. By equation (3.1) the only possible solution is
ai = bi = 1.

Let’s finish our proof with an idea of how to produce the table 3.1. Most of the calculation
requires basic arithmetic, so let’s exemplify by fixing an ambient. Take X = P1 × P2 and
C = ∩2

i=1(aih + biH) a complete intersection curve of genus g in X. Since KC = h +H,
then g ≤ (n + 1)(m + 1) and deg(KC) = (h + H)(C) = 2g − 2, so in our example g ≤ 6

and deg(KC) = (h+H)((a1b2+ a2b1)hH + b1b2H
2) = a1b2+ a2b1+ b1b2, in this case C has

bidegree (b1b2, a1b2 + a2b1). By equation 3.1 we get

a1 + a2 = 3

b1 + b2 = 4,

If a1 = 0, then a2 = 3 and b1 > 1 (since C is complete intersection), in case b1 > 2

then deg(KC) = 12 (so g=7), which means that the only solution is (a1, b1) = (0, 2) and
(b1, b2) = (3, 2). Here C has bidegree (4, 6) and genus 6. If a1 = 1, then a2 = 2, b1
can’t be zero because C is a complete intersection and b2 can’t be zero otherwise the first
projection would be a point. That way we get the cases #1, #2 and #3 of table 3.1.

The next paragraphs and results are devoted to the study of the geometry, concerning
the existence of suitable linear systems and the gonality, of complete intersections curves
in Pn × Pm as in Theorem 3.1.1.

Lemma 3.1.2. Let C ⊂ Pn1 × · · · ×Pnk be a smooth complete intersection of genus g ≥ 5

with multi-degree (d1, . . . , dk). If C is trigonal, then there is some i ∈ {1, . . . , k} such that
di ≡ 0 mod 3 and di ≥ 3ni.

Proof. Let us assume that C is trigonal. The hypothesis is that g ≥ 5 implies a unique g13
by the Castelnuovo–Severi inequality. Thus the canonical model C ⊂ Pg−1 is contained
in a ruled surface S of degree g − 2 and its ruling cuts the g13.
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Set Y = Pn1 × · · · × Pnk . Since the Segre embedding ν : Y → Pr, r = −1 +
∏k

i=1(ni + 1),
of Y is cut out by quadrics, we have S ⊂ Y . Since the linear spaces contained in ν(Y )

are only the fibers of the k rulings of Y , there is i ∈ {1, . . . , k} such that the gni
di

factors
through the g13 and in particular di ≡ 0 (mod 3) and di ≥ 3ni with equality if, and only
if, either ni = 1 and the i-th projection πi induces the g13 or ni ≥ 2, πi(C) is a rational
normal curve and πi|C : C → πi(C) is the g13.

As an immediate consequence of Lemma 3.1.2 we obtain:

Corollary 3.1.3. Every curve occurring in #3 of genus 6, #6 of genus 7, #11 and #12

of genus 8, #14, #15 and #16 of genus 9 and #20 of genus 11 of Table 3.1 are non-
trigonal. In addition, the cases #6, #11 and #16 are equipped with a g14, Remark 3.0.1,
or by Castelnuovo–Severi inequality, they are tetragonal.

Remark 3.1.1. Follows from Remark 3.0.1 that a curve C as in cases #1, #2, #4, #5,
#7, and #8 are equipped with a g13. So they are trigonal.

Remark 3.1.2. By the Corollary 3.1.3 a curve C as in #14 and #15 are non-trigonal.
If we assume C as in #14, then C ∈ |OP1×P1(4, 4)|. Hence C is tetragonal with exactly
two g14’s. Now assume C as in case #15. Since the divisor of type (0, 2) corresponds to a
smooth conic, then the first ruling of P2×P2 induces a 4 : 1 morphism of C into a smooth
conic. Hence C is tetragonal.

Remark 3.1.3. Let C be a curve as in #10 or #18. Taking the divisor (2, 0), the first
projection π1(C) is a smooth conic and πi|C : C → π1(C) is a g13. Hence C is trigonal. By
the same argument and taking divisor (0, 2), the curve in case #21 is trigonal.

Remark 3.1.4. Let C be a curve as in case #9 where g = 7 and (d1, d2) = (6, 6). Since
a smooth plane sextic has genus 10, either C is trigonal or tetragonal.

Remark 3.1.5. Let C be a complete intersection in P2×P2 of the divisors (1, 1), (1, 2) and
(2, 1), case #12 of genus 8 in Table 3.1. By Remark, 3.0.1 C is equipped with two g27 and
none of them is self-adjoint. Otherwise, if α is a g27 with α⊗2 ∼= KC, then KC ∼= OC(2, 0),
contrary to the assumption that the canonical is a hyperplane section.

The proof of the next result can be found in [CKM92, Corollary 2.2.2].

Theorem 3.1.4 (Coppens, Keem and Martens). Let C → C ′ be a double covering of a
smooth curve C ′ of genus g′. A base point free linear system grd on C with d ≤ g − 1,
where g is the genus of C, is induced by C ′ if d ≤ 2− 2g′ or if r ≥ 2g′.
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Recall that a bielliptic curve is a smooth curve C admitting a degree two surjective mor-
phism π : C → E to an elliptic curve E. If g ≥ 6, it follows by the Castelnuovo–Severi
inequality that the morphism π is unique. The automorphism iC of C interchanging the
two points of each fiber of E over π is called the bielliptic involution. In this way its not
difficult to see that E is isomorphic to the quotient C/(iC). Taking a morphism ρ : E → P1

of degree two, we produce a 4 : 1 morphism ϕ : C → P1 that is the composition of π and
ρ.

C π

2:1
//

4:1

  
E

ρ

2:1
// P1

Remark 3.1.6. It follows from the Castelnuovo–Severy inequality that a bielliptic curve
does not admit a g13 neither is hyperelliptic. We conclude that every bielliptic curve is
tetragonal.

The next result provides a necessary condition for a curve described in Theorem 3.1.1 to
be bielliptic.

Lemma 3.1.5. Let C ⊂ Pn1 × · · · × Pnk be a bielliptic smooth curve of multi-degree
(d1, . . . , dk). If some ni ≥ 2, then di is even and di ≥ 2(ni + 1).

Proof. Let C ⊂ Pn1 × · · · × Pnk be complete intersection smooth curve and a double
covering π : C → C ′ with C ′ a smooth curve of genus q > 0. Fix a base point free grd on C.
If either d ≤ g − 2q or d ≤ g − 1 and r ≥ 2q, then the grd factors through π, c.f. Theorem
3.1.4. Now assume q = 1, i.e. assume that C is bielliptic. If either di = d3−i and ni ≥ 2 or
di < d3−i, then πi|C factors through π. Thus if ni ≥ 2, then deg(πi|C) is even, di is even
and di ≥ 2(ni + 1).

Corollary 3.1.6. It follows from Corollary 3.1.5 and Remark 3.1.6 that the possible biel-
liptic curves in Theorem 3.1.1 of Table 3.1 are among the cases #3, #6, #9, #11, #13,
#14, #15, #16, #19 and #20.

To prove of next Lemma, we need the classical extensions of Castelnuovo’s theorem for
curves in Pr due to Eisenbud and Harris [Ha82, Theorems 3.7 and 3.11].

Theorem 3.1.7 (Castelnuovo’s Theorem - Parte I). Let C be an irreducible non-degenerated
projective curve of degree d in Pr. Set m = ⌊d−1

r−1
⌋ and ε such that d = m(r − 1) + ε + 1.

The genus g of C satisfies

g ≤ π(r, d) :=

(
m

2

)
(r − 1) +mε
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and g = π(r, d) if and only if C is arithmetically Cohen–Macaulay.

Theorem 3.1.8 (Castelnuovo’s Theorem - Parte II). Let C be an irreducible non-degenerated
projective curve of degree d in Pr with r ̸= 5. If d ≥ 2r + 1 and the genus of C is π(r, d),
then C lies in a normal rational surface Scroll S. In addition, if S is smooth then the
class of C in S is given by

[C] = (m+ 1)H − (r − 2− ε)R

or when ε = 0

[C] = mH +R,

where H is the class of a hyperplane section and R is the class of a ruling on S.

Lemma 3.1.9. A curve C as in #20 of Table 3.1 is pentagonal with exactly two g15, if both
projections πi|C belong to |OP1×P1(5, 5)|, or just one g15, if both πi|C are in the Hirzebruch
surface F2.

Proof. From Lemma 3.1.2 it follows that C is non-trigonal. Now we will analyze three
cases. First, let us assume that both projections π1|C and π2|C are birational onto their
images. Thus πi(C) ⊂ P3 is an integral non-degenerate curve of degree 10 and arithmetic
genus at least 11. By Castelnuovo’s Theorems 3.1.7 and 3.1.8, πi|C is an embedding and
πi(C) is the complete intersection of an integral quadric surface T ⊂ P3 and a degree 5

surface S. First, assume that T is smooth. In this case πi|C ∈ |OP1×P1(5, 5)|, C is 5-gonal
and it has exactly two g15 by the Brill-Noether theory of curves on P1 × P1. Now assume
that T is a quadric cone. Since the complete intersection πi(C) = S ∩ T is smooth, S
does not contain the vertex of T . The minimal desingularization of T is the Hirzebruch
surface F2. By the Brill-Noether theory of curves on F2 the curve πi(C) is 5-gonal and it
has a unique g15. Thus either π1(C) and π2(C) are contained in a smooth quadric or both
are contained in a quadric cone. Both cases may occur with the following construction.
We fix an integral quadric surface T and take a smooth curve C which is the complete
intersection of T and a quintic surface. Then we embed C ⊂ P3 into P3 × P3 using the
diagonal embedding of P3 into P3 × P3.

Now assume that exactly one among π1|C and π2|C is not birational onto its image, say
deg(π1|C) > 1. Since C has bidegree (10, 10), we obtain deg(π1|C) = 2 and deg(π1(C)) = 5.
Thus π1(C) has geometric genus at most 2. The first case above applied for π2 gives that
C is 5-gonal, contradicting Castelnuovo-Severi inequality applied to the g15 and the degree
2 map C → D, where D is the normalization of π1(C). Hence this case did not occur.
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Finally we assume that neither π1|C nor π2|C are birational onto their images. Both have
degree 2 and their images have at most geometric genus 2. By the Castelnuovo-Severi
inequality π1|C and π2|C are the same, contradicting the assumption that C is embedded
in P3 × P3.

Remark 3.1.7. The above Lemma 3.1.9 and Remark 3.1.6 assure that a curve as in case
#20 is non-bielliptic.

For the next result, it is required another result due to Coppens and Martens, namely
[CM00, part (v) of Proposition 2.2], that assures the following:

Proposition 3.1.10. Let s(r) = s(r, C) be the minimal degree of complete, base point
free, and simple linear series of dimension r ≥ 2 on a smooth curve C. If C is a bielliptic
curve of genus g ≥ 4, then

s(r) = g + r − 1 for 2 ≤ r ≤ g.

Theorem 3.1.11. There is no embedding u = (u1, u2) : C → P1 × P4 of a bielliptic curve
of genus 8 such that KC ∼= u∗(OP1×P4(1, 1)), u1(C) spans P1 and u2(C) spans P4.

Proof. Let’s do by contradiction, start by taking the bundles L1 := u∗1(OP1(1)) and L2 :=

u∗2(OP4(1)). By assumption, we have h0(C, L1) ≥ 2, h0(C, L2) ≥ 5 and L2
∼= KC −L1. Set

a := deg(L1). Thus deg(L2) = 14 − a. Since C is bielliptic and g = 8, we obtain a ≥ 4,
and the double covering π : C → E is unique by the Castelnuovo–Severi inequality. In
particular, C is a double covering of a unique elliptic curve. Now we analyze the cases
when u2|C is birational onto its image and the case when it is not.

Assuming that u2|C is birational onto its image, it follows from Proposition 3.1.10, that
14− a ≥ 8 + 4− 1, providing a contradiction.

Now let us assume that u2|C is not birational onto its image. Note that 14 − a =

deg(u2) deg(u2(C)). Since u2(C) spans P4, deg(u2(C)) ≥ 4. Hence a = 4. Since C is
not hyperelliptic, u2(C) has positive geometric genus. Thus u2(C) is the curve E em-
bedded in P4 by a degree 5 complete linear system, and u2 is the composition of π with
this embedding. Write L2 = π∗(R2) with R2 ∈ Pic5(E). Since a = 4, L1 = π∗(R1) for
some R1 ∈ Pic2(E). Thus KC ∼= π∗(R) for some R ∈ Pic7(E). In characteristic not 2

this is impossible for the following reason. Since E has genus 1, h0(E,R) = 7. Since C
has genus 8, h0(C, KC) = 8. The Riemann-Hurwitz formula says that π is ramified at
14 distinct points, say p1, . . . , p14, and π∗(OC) ∼= OE ⊕ OE(−p1 − · · · − p14). Thus 8 =
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# g divisors ambient bidegree of C gonality obs
#1 5 (1, 1), (2, 3) P1 × P2 (3, 5) 3
#2 6 (2, 1) , (1, 3) P1 × P2 (3, 7) 3
#3 6 (1, 2), (2, 2) P1 × P2 (4, 6) ? gon(C) ∈ {3, 4}
#4 6 two (1, 1), one (1, 3) P1 × P3 (3, 7) 3
#5 7 (1, 1), (2, 1), (0, 3) P1 × P3 (3, 9) 3
#6 7 (1, 1), two (1, 2) P1 × P3 (4, 8) 4
#7 7 two (1, 1), (2, 1), (0, 3) P1 × P4 (3, 12) 3
#8 7 three (1, 1), one (0, 3) P1 × P4 (3, 9) 3
#9 7 (1, 1), (1, 1), (2, 2) P2 × P2 (6, 6) ? gon(C) ∈ {3, 4}
#10 8 (1, 1), (2, 0), (1, 3) P2 × P2 (6, 8) 3
#11 8 (1, 1), (1, 1), (1, 2), (0, 2) P1 × P4 (4, 10) 4 non bielliptic
#12 8 (1, 1), (2, 1), (1, 2) P2 × P2 (7, 7) ? ∃ g27, α⊗2 ̸= KC
#13 9 (1, 1), (2, 1) (0, 2), (0, 2) P1 × P4 (4, 12) 4
#14 9 (2, 0), (0, 2), (2, 2) P2 × P2 (8, 8) 4 bielliptic, two g14
#15 9 (2, 0), (1, 2), (1, 2) P2 × P2 (8, 8) 4
#16 9 three (1, 1), two (0, 2) P1 × P5 (4, 12) 4
#17 9 (1, 1), (1, 1), (1, 1), (1, 2) P2 × P3 (7, 9) ?
#18 10 (1, 1), (1, 1), (0, 3), (2, 0) P2 × P3 (6,12) 3
#19 11 four (1, 1), one (0, 2) P2 × P4 (8, 12) ?
#20 11 five (1, 1) P3 × P3 (10, 10) 5 one or two g15
#21 6 (0, 2), (3, 2) P1 × P2 (4, 6) 3

Table 3.2: CI curves in Pn × Pm with KC = OC(1, 1)

h0(E, π∗(π
∗(R)) = h0(E,R)+h0(E,R(−P1−· · ·−p14)). Since deg(R(−P1−· · ·−p14) = −7,

h0(E,R(−P1 − · · · − p14)) = 0, that provides a contradiction.

Remark 3.1.8. It follows from Theorem 3.1.11 and Remark 3.1.6 that a curve as in case
#11 of Table 3.1 is non-bielliptic.

Lemma 3.1.12. A smooth curve of genus 8 in P2×P2 given by divisors of bidegrees (2, 0),
(0, 2) and (2, 2), case #14 of Table 3.1, is bielliptic.

Proof. To see this we just have to consider the morphism π : C → E, where E is the
elliptic curve in the quadric surface P1 × P1 given by a divisor in |OP1×P1(2, 2)|.

We finish this section by collecting all the previous results and remarks on smooth curves
in the biproduct of projective spaces.

Theorem 3.1.13. The complete intersection smooth curves in Pn × Pm of genus g, with
n + m ≥ 3 and whose canonical sheaf is KC = OC(1, 1) are exactly those presented in
Table 3.2.
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Note that there are four missing cases in Table 3.2 that we are not able to manage. In
the next two sections, we try to handle these cases using another approach.

3.2. On the Gonality of C.I. Curves in Biprojectic

Spaces

Next, we provide an extension of Lazarsfeld’s Theorem 2.2.6 to complete intersection
curves in the product of two projective spaces, whose proof is inspired by that presented
in [Laz97], using Miyaoka’s Theorem on rank two vector bundles over 3-folds and Nakai–
Moichezon’s criterion for ampleness. We also must refer to the lecture notes by B. Ullery
[Ull17] on linear systems and positivity of vector bundles, these notes helped us to under-
stand the main Lazarsfeld’s techniques to show Theorem 2.2.6.

Since our curve C it is assumed to be in Pn × Pm, we have to impose some restriction on
the divisors providing C.

Definition 3.2.1. Let C be a complete intersection curve in a smooth variety Y , with
dimY = n, given by n − 1 divisors Di ∈ |OY(ai, bi)|. We say that the pair (C,Y) is
k-Lefschetz if the k-fold Y0 given by the divisors Di, for i = k, . . . , n − 1 is such that its
Picard group is isomorphic to the Picard group of Y ,

Pic(Y0) ∼= Pic(Y).

Example 3.2.1. The Lefschetz hyperplane theorem, c.f. Theorem 2.1.6, assures that a
complete intersection curve C in Pn×Pm given by n+m−1 divisors Di ∈ |OPn×Pm(ai, bi)|
with ai, bi > 0 for i = 1, . . . , n+m− 1 and the picard of three-fold generated for 2 ≤ k ≤
n+m− 2 is Z×Z, provided that the varieties given by any ℓ ≤ n+m− 2 divisors Di is
smooth. In this case (C,Pn × Pm) k-Lefschetz for any 2 ≤ k ≤ n+m− 2.

Remark 3.2.1. Let us fix a complete intersection curve C in Pn × Pm given by divisors
Di of bidegrees (ai, bi), with i = 1, . . . , n+m− 1, and assume that

a1 ≤ a2 and b1 ≤ b2.

Also assume that the 3-fold Y0 ⊃ C given by Di, i = 3, . . . , n+m− 1, is smooth, or more
generally that (C,Pn × Pm) is 3-Lefschetz. Hence

Pic(Y0) = Z× Z.
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We also fix the classes H1 = OY0(1, 0) and H2 = OY0(0, 1) in Y0.

Now let us take π : Y −→ Y0 the blow-up along C with exceptional divisor E. By abuse
of notation, we also denote π : E −→ C the restriction of π to E. Let B be a divisor
on C giving a non constant degree d morphism ψ : C −→ P1 and take its pullback to Y ,
L = π∗(B). Finally denote L = OY (B), where B is an effective divisor.

With the above notation and construction, we obtain an exact sequence

0 −→ F −→ O2
Y −→ L −→ 0, (3.2)

where F is rank 2 vector bundle over Y whose first Chern class is c1(F ) = −E, because
det(F ) = OY (−E). The second Chern class is c2(F ) = B. To show this we start by
taking the ideal exact sequence of E,

0 → OY (−E) → OY → OE → 0

and so −c2(OE) = c2(O−E)+c1(OY (−E))c1(OE) = 0−E2. Now, taking the pushforward
of the above ideal sequence we obtain

0 → OE → L → OB(L) → 0.

By Whitney formula, the total Chern class of L is ct(L) = (1+Et+Et2+. . . )(1−Bt2+. . . )
and so c2(L) = E2 −B. Now c2(F ) = −c1(F )c1(L)− c2(L) = E2 − E2 +B = B.

Let H1 and H2 be the pullback to Y of the two hyperplane sections on Y0. For each
rational number ϵ ≥ 0, let us consider the following two Q-divisors on Y :

Dϵ := (a2 + ϵ)H1 + (b2 + ϵ)H2 − E

and
D := a2H1 + b2H2 − E.

We have to notice that |D| = |V | with V ⊂ H0(Y,OY (a2, b2)) the locus containing C and
|D| is globally generated. To avoid a heavy notation, we use the same symbols H1, H2,
and E to denote their classes in the Chow ring of Y .

The next result can be found in Eisenbud–Harris 3264 book [EH16, Section 13.6.3] and it
will be useful to prove Lemma 3.2.2 below.

Lemma 3.2.1. Let X ⊂ Pn × Pm be a smooth 3-fold whose Picard group is Z× Z. If Y
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is the blow-up of X along a smooth curve C with exceptional divisor E, then in the Chow
ring of Y the following hold:

1. deg(H2
1 · E) = deg(H2

2 · E) = deg(H1 ·H2 · E) = 0,

where H1 and H2 are the pullback to Y of hyperplane sections h1 and h2 generating
Pic(X), and E is the class of the exceptional divisor;

2. deg(H1 · E2) = −d1 and deg(H2 · E2) = −d2, where di is deg(C · hi);

3. deg(E3) = −deg(NC/X), where NC/X stands for the normal sheaf of C ⊂ X.

Lemma 3.2.2. Dϵ is ample for every ϵ > 0.

Proof. The proof we will use is the Nakai–Moichezon’s criterion for ampleness, c.f. The-
orem 2.3.2. Then we have to show that

DdimX
ϵ ·X > 0

for every integral subscheme X.

Let us first assume that X is an integral curve on Y . If X is not contained in the
exceptional divisor E, then there is a hyperplane section on Y0 containing the image of X
and not containing C. Thus, pulling back this section we obtain ϵ(H1 +H2)X > 0. Then
we are able to choose a surface S ∈ |D|, away from E, such that Dϵ = S + ϵ(H1 +H2),
and X ̸⊂ S. Hence Dϵ · X > 0. Now let us assume that X ⊂ E. Then take a surface
S not containing X. In this case S ·X ≥ 0. If S ·X > 0 we proceed as before. Now, if
S ·X = 0, then X is a horizontal divisor on E, i.e. intersects every fiber of π : E → C.
In this case, we can choose a hyperplane section on Y0 intersecting C transversely. Taking
the pullback of this section we obtain again that ϵ(H1 +H2)X > 0, and we are done.

Now let us assume that X = aH1 + bH2 − cE is a surface that is given by the pullback of
a surface in Y0. We have to compute D2

ϵ ·X. To organize the computations, let us first
note that since C is a complete intersection of divisors of bidegrees (a1, b1) and (a2, b2) on
Y0, we have NC/Y0 = OC(a1, b1)⊕OC(a2, b2). By Lemma 3.2.1 item (3) we obtain

− deg(E3) = deg(NC/Y0) = deg(det(NC/Y0)) = d1(a1 + a2) + d2(b1 + b2). (3.3)

The second item of Lemma 3.2.1 assures that

deg(Hi · E2) = −di = − deg(C · hi),
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where h1 = OY0(1, 0) and h2 = OY0(0, 1) are hyperplane sections on Y0. Hence

d1 = a1a2H
3
1 + (a1b2 + a2b1)H

2
1H2 + b1b2H1H

2
2 (3.4)

and
d2 = a1a2H

2
1H2 + (a1b2 + a2b1)H1H

2
2 + b1b2H

3
2 . (3.5)

Going back to D2
ϵ ·X, by item (1) of Lemma 3.2.1, we may write

D2
ϵ ·X = ( (a2 + ϵ)H1 + (b2 + ϵ)H2 − E )2 · (aH1 + bH2 − cE)

= (aH1 + bH2)((a2 + ϵ)H1 + (b2 + ϵ)H2)
2

−2E(aH1 + bH2)((a2 + ϵ)H1 + (b2 + ϵ)H2)

+(aH1 + bH2)E
2 − cE( (a2 + ϵ)H1 + (b2 + ϵ)H2 )

2

+2cE2( (a2 + ϵ)H1 + (b2 + ϵ)H2 )− cE3

= (aH1 + bH2)((a2 + ϵ)H1 + (b2 + ϵ)H2)
2 + (aH1 + bH2)E

2

+2cE2( (a2 + ϵ)H1 + (b2 + ϵ)H2 )− cE3

Now, by items (2) and (3) of Lemma 3.2.1 and equation 3.3 we obtain

D2
ϵ ·X = (aH1 + bH2)((a2 + ϵ)H1 + (b2 + ϵ)H2)

2 − ad1 − bd2

−2c( d1(a2 + ϵ) + d2(b2 + ϵ) ) + c( d1(a1 + a2) + d2(b1 + b2) ).

Substituting the values of d1 and d2, equations 3.4 and 3.5, in the above expression of
D2

ϵ ·X, we get an expression with 48 terms. The way we choose to order this expression
is to consider D2

ϵ ·X as a polynomial in the indeterminate ϵ, say

D2
ϵ ·X = p2ϵ

2 + p1ϵ+ p0,

where in p0 is the constant term, and p1 and p2 collect the terms attached to ϵ and ϵ2. The
polynomial p0 has 26 terms, while p1 and p2 16 and 6 terms, respectively. We implemented
these computations in Maple software.

Thus we have

p2 = aH3
1 + 2aH2

1H2 + aH1H
2
2 + bH2

1H2 + 2bH1H
2
2 + bH3

2

and we easily conclude that p2 > 0, because it is assumed Pn × Pm with n +m > 2 and
a, b are two nonnegatives integers with a · b > 0.

Now we consider the polynomial p1 as a polynomial in the variable H1. The constant
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term and the coefficients attached to H1, H2
1 and H3

1 of p1 are, respectively

2b2(b− cb1)H
3
2 ,

(2b2(a− ca1) + 2(a2 + b2)(b− cb1))H
2
2 ,

(2a2(b− cb1) + 2(a2 + b2)(a− ca1))H2 and

2a2(a− ca1).

Recall it is assumed a2 ≥ a1 ≥ 0 and b2 ≥ b1 ≥ 0. Since C ⊂ Y0 is given by the intersection
of two divisors of bidegrees (a1, b1) and (a2, b2) and it is not a plane curve, it follows that
in the blowup Y0 the numbers (a − ca1) and (b − cb1) are both non negatives. Hence
p1 ≥ 0.

Let us also take p0 as a polynomial in H1, its constant term and its coefficients attached
to H1, H2

1 and H3
1 of p0 are, respectively

b2(b2 − b1)(b− cb1)H
3
2 ,

((a2(b2 − b1) + b2(a2 − a1)) (b− cb1) + b2(b2 − b1)(a− ca1))H
2
2 ,

((b2(a2 − a1) + a2(b2 − b1)) (a− ca1) + a2(a2 − a1)(b− cb1))H2 and

a2(a2 − a1)(a− ca1)

By our assumptions, we also conclude that p0 ≥ 0. Hence we have shown that

D2
ϵ ·X = p2ϵ

2 + p1ϵ+ p0 > 0

whenever X is the pullback of a surface in Y0. The remaining case in dimension two is
when X is the exceptional divisor. In this case, it is very simple to conclude that

D2
ϵ · E = d1(a2 − a1) + d2(b2 − b1) + 2ϵ(d1 + d2) > 0.

The computations to show that D3
ϵ > 0 are completely analogous. By considering it as a

polynomial in ϵ, the term of degree 3 is

H3
1 + 3H2

1H2 + 3H1H
2
2 +H3

2 ,

so it is positive. To prove that the coefficients attached to ϵi with i ≤ 2 are non-negative,
we proceed exactly as before, assuming that they are polynomials in H1. We do not
display this computation, because they are analogous to the previous case.

Note that in the proof of Lemma 3.2.2 the terms of the polynomials p1 and p0 are sym-
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metric, and are realized by the permutation cycles (a b), (a1 b1) and (a2 b2).

For future use, we have to make the following technical Remark.

Remark 3.2.2. Recall from Remark 3.2.1 that L = OY (B), with B an effective divisor, is
the pullback to Y of a line bundle on C providing a g1d. We will apply Miyaoka instability
theorem 2.3.5 by considering the 3-fold Y , the globally generated divisor D := a2H1 +

b2H2 − E and the ample divisor Dϵ := (a2 + ϵ)H1 + (b2 + ϵ)H2 − E.

We have to compute (c1(F )
2−4c2(F ))Dϵ = (E2−4B)Dϵ, where F is the rank two bundle

introduced in exact sequence 3.2. We can choose the hyperplane sections H1 and H2

avoiding the points of the g1d, i.e H1 ·B = H2 ·B = 0. Taking a divisor D0 = a2H1 + b2H2

such that B ·D = B · (D0 − E) = d, we obtain

(c1(F )
2 − 4c2(F ))Dϵ = (E2 − 4B)Dϵ

= E2(a2 + ϵ)H1 + E2(b2 + ϵ)H2 − E3 − 4d

= (a1 − ϵ)d1 + (b1 − ϵ)d2 − 4d.

Now consider the surface Z ⊂ Y0 given by the divisor of bidegree (a2, b2) on Y0. We can
write each di in terms of the surface Z, that is C = a1h1 + b1h2 in the Chow ring of Z,
where the hi = Hi|Z , and then di = hi · C. Hence we can write

(c1(F )
2 − 4c2(F ))Dϵ = a1(a1 − ϵ)h21 + b1(b1 − ϵ)h22

+[a1(b1 − ϵ) + b1(a1 − ϵ)]h1h2 − 4d
(3.6)

Now, if we assume that (c1(F )
2 − 4c2(F ))Dϵ > 0, then Miyaoka’s theorem assures that

there is a subsheaf L of F such that

(2c1(L)− c1(F )) ·Dϵ ·D > 0.

Next, we study the sheaf L. Arguing in terms of biduals, we can assume that L =

OY (−t1H1 − t2H2 − µE) is a line bundle in Y . We can assume that L drops rank on a
codimension 2 subset of Y , otherwise, if L −→ F does not drop rank along an effective
divisor, say A, we can change L for L(A) which drops rank.

Setting S = a2H1 + b2H2 − E and F ′ = F |S, we obtain

L|S = OS(−t1H1 − t2H2 − µE) = OS(−t1H1 − t2H2 − µC) = OS(−αH1 − βH2),
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where α = t1 + a1µ and β = t2 + b1µ. Then we get the exact sequence

0 −→ OS(−αH1 − βH2) −→ F ′ −→M ⊕ IW −→ 0

where M is a line bundle and W is finite. We know that

c1(F
′) = c1(F )|S = −a1H1 − b1H2

and using the exact sequence we obtain c1(M) = (α − a1)H1 + (β − b1)H2. Note that
c2(F

′) = c2(F )|S = d and then

c2(F
′) = −(αH1 + βH2)((α− a1)H1 + (β − b1)H2) + length(W ).

By construction H0(Y, F ) = 0. Since F −→ O2
Y drops rank along E, we have

0 −→ F ′ −→ O2
S −→ L −→ 0

and H0(S, F ′) = 0. By the inclusion L|S −→ F ′ and the fact that H0(S, F ′) = 0 we have
H0(S, L|S) = 0.

Hence we conclude that α ≥ 0 and β ≥ 0 and both can not be zero simultaneously. And
thus we finish the technical Remark, where the most important part is:

If (c1(F )2 − 4c2(F ))Dϵ > 0, then there exists L subsheaf of F , such that its restriction to
the surface S is L|S = OS(−αH1 − βH2) with α ≥ 0 and β ≥ 0 and both cannot be zero
simultaneously.

Now we are ready to establish the two main results of this section. For both proofs we
assume all the notation fixed in this section, in particular the Remarks 3.2.1 and 3.2.2.

Theorem 3.2.3. Let C = ∩n+m−1
i=1 Di be a complete intersection curve in Pn × Pm where

Di are divisors of bidegrees (ai, bi). Assume that C is a curve described in Remark 3.2.1
and with (a1, b1) = (1, 1). Taking κ ∈ Q≥0 such that 2H1H2 ≤ H2

1 +H2
2 + 4κ, where Hi

are restrictions of hyperplane to the surface ∩n−m−1
i=2 Di, we obtain

gon(C) ≥ H1H2 − κ

whenever:

• a2 = b2 and H2
1 +H2

2 ≤ 4H1H2 or

• a2 ̸= b2 and (a2 − 1)h21 + (b2 − 1)H2
2 ≤ (min{3a2 + b2 − 4, 3b2 + a2 − 4})H1H2.
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Proof. Let us assume that d is such that d < H1H2−κ. Let Y be the blow-up of the 3-fold
Y0 at C and F the respective rank two vector bundle. Denote D = a2h1 + b2h2 − E, we
know Dϵ = D+ ϵ(h1 + h2) is ample. It follows from the fact that 2H1H2 ≤ H2

1 +H2
2 +4κ

and Equation 3.6 that we can choose ϵ > 0 such that (c1(F )
2 − 4c2(F ))Dϵ > 0. Hence

Miyaoka Theorem for 3-folds applied to Dϵ and D assures that there is a subsheaf L of
F such that

(2c1(L)− c1(F ))DϵD > 0,

since L|D = OD(−α,−β), we obtain

(2c1(L)− c1(F ))DϵD =(1− 2α)[(a2 − 1 + ϵ)H2
1 + (b2 − 1 + ϵ)H1H2]+

(1− 2β)[(a2 − 1 + ϵ)H1H2 + (b2 − 1 + ϵ)H2
2 ] > 0

(3.7)

We can make computations in the original surface inside Y0, because they only depend
on Hi. Since the terms inside the brackets are always positive, we get 2α < 1 or 2β < 1.
From the fact that, H0(F ) = 0, we obtain α = 0 or β = 0. Let us assume that α = 0. By
the two distinct computations of c2(F ′), c.f. Remark 3.6, we obtain

(α− α2)H2
1 + (α + β − 2αβ)H1H2 + (β − β2)H2

2 ≤ d

and
(1− β)H1H2 + (−β + β2)H2

2 > κ ≥ 0,

Hence we get β > 1 and βH2
2 > H1H2. If a2 = b2 in equation 3.7, we obtain

H2
1 +H1H2 > (2β − 1)(H2

2 +H1H2).

Since β > 1 and βH2
2 > H1H2, we obtain H2

1 +H2
2 > 4H1H2, contradicting the first item

of the statement of the Theorem.

If a2 ̸= b2, then taking ϵ is sufficiently small in Equation 3.7, we obtain

(a2 − 1)H2
1 + (b2 − 1)H1H2 ≥ (2β − 1)[(a2 − 1)H1H2 + (b2 − 1)H2

2 ].

Again, since β > 1 and βH2
2 > H1H2, then (a2−1)H2

1 +(b2−1)H2
2 > (3a2+ b2−4)H1H2.

Now, if β = 0, then the right side is (3b2 + a2 − 4)H1H2, contradicting the second item of
the statement of the Theorem.

Note if our ambient is P1 × Pn, then H2
1 = 0, simplifying our computations. This is what

we do in the next theorem.
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Theorem 3.2.4. Let C = ∩n
i=1Di be a complete intersection curve in P1×Pn where Di are

divisors of bidegrees (ai, bi). Assume C satisfies the conditions of 3.2.1, and additionally
(a1, b1) = (0, 2). Taking X to be the surface ∩n+m−1

i=2 Di, with hyperplane sections H1 =

OX(1, 0) and H2 = OX(0, 1), if κ ∈ Q≥0 is such that H1H2 ≤ H2
2 + κ, then

gon(C) ≥ H1H2 − κ.

Moreover, if b2 ≤ a2, then we can choose κ equal to zero.

Proof. Following the above Theorem, let us assume that d < H1H2 − κ. Since H1H2 ≤
H2

2 + κ we can take ϵ such that (c1(F )
2 − 4c2(F ))Dϵ > 0. Hence Miyaoka’s theorem

applied to Dϵ and D assures that there is a subsheaf L = OY (−α,−β) of F such that

(2c1(L)− c1(F ))DϵD > 0,

Thus

(−2α)[(b2 − 1 + ϵ)H1H2] + (2− 2β)[(a2 − 1 + ϵ)H1H2 + (b2 − 1 + ϵ)H2
2 ] > 0, (3.8)

implying that β = 0. Since

2αH1H2 ≤ d < H1H2 − κ,

we obtain (1− 2α)H1H2 > κ ≥ 0, which is a absurd because α > 0.

If we assume b2 ≤ a2, since H1H2 = b2b3 . . . bn and H2
2 =

∑n
i=2 aib2 . . . bi−1bi+1 . . . bn, we

get H1H2 ≤ H2
2 , and we are done.

Corollary 3.2.5. Let C = ∩n+m−1
i=1 Di be a complete intersection curve in Pn × Pm where

Di are divisors of bidegrees (ai, bi). If the canonical sheaf of C is a hyperplane section,
KC = OC(1, 1), then there is a surface Z := ∩n+m−1

i=2 Di such that

H1H2 − 1 ≤ gon(C) ≤ H1H2,

where H1 and H2 are hyperplane sections of Z.

Proof. Taking the divisors exactly in the order that they appear in Table 3.2, the surface
Z = ∩n+m−1

i=2 Di works for almost all curves, except for the cases #9, #12, #17 and #19.

For the case #17. Let Y be a three-fold generated by two divisors of bidegrees (1, 1) and
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(1, 2), arguing in the same way as in example 2.1.5, we obtain Pic(Y ) = Z× Z, and then
pick the surface Z = D ∩ Y , where D has bidegree (1, 1). Thus H2

1 = 2, H2
2 = 4 and

H1H2 = 5. Now in Theorem 3.2.3 take κ = 1, then we get gon(C) ≥ H1H2 − 1. Taking
the first projection of P2 × P2, we get a g27 on C. Since C is not a plane curve, then the
divisor D = OC(1, 0) its not very ample, i.e there p, q ∈ C so D− p− q is a g15, that imply
gon(C) ≤ H1H2 = 5.

The case #19. We know that Pic(D) = Z×Z, where D is given by the divisor of bidegree
(0, 2), and by Lefschetz Theorems Pic(Y ) = Z× Z, where Y is given by three divisors of
bidegrees (1, 1), (1, 1) and (0, 2). Then we can argue as in the case #17.

Finally the cases #9 and #12. Like the previous cases, we use Theorem 3.2.3 for κ = 1

and κ = 3
2

respectively, so gon(C) ≥ H1H2 − 1 and taking projections, and the fact that
none of these curves is plane, we obtain gon(C) ≤ H1H2.

Remark 3.2.3. Using Theorem 3.2.3 we can compute the gonality of almost all curves in
Table 3.2. The only exception is case #2. But we can adapt the argument to achieve this
case too. The steps are simple, first, we need a curve like in remark 3.2.1. For example,
if ai > 0, bi > 0 and (a1, b1) = (1, 1), by Lefschetz Theorem Pic(Y ) = Z × Z, where
Y = ∩n+m−1

i=2 (ai, bi). Then compute H2
1 , H2

2 and H1H2 in Y , and finally pick the smallest
κ possible.

Using the results of this section we can update the information on curves in Pn × Pm

whose canonical sheaf is a hyperplane section in Table 3.3.

3.3. On the locus of few CI curves in the biproduct

In this section, we provide a few results on the locus of complete intersection smooth
curves in the biproduct with fixed genus and prescribed bidegrees. It is far from being
a final study, however, we believe that some results are interesting and they can be the
starting point for future developments. Let us start by fixing some notation.

Let M(d1,d2)
g be the space of all smooth complete intersections curves in the biprojective

space Pn × Pm of genus g and bidegree (d1, d2),

M(d1,d2)
g := {C ⊂ Pn × Pm | C is a ci , with g(C) = g and bidegree (d1, d2)}.

We also denote M(d1,d2)
g the image of M(d1,d2)

g in Mg, the moduli of smooth curves of genus
g. If there is no confusion when the invariant g, and (d1, d2) are totally clear, for short
we use M := M(d1,d2)

g and M = M
(d1,d2)
g .
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# g divisors ambient bidegree of C gonality
⌊
g+3
2

⌋
#1 5 (1, 1), (2, 3) P1 × P2 (3, 5) 3 4
#2 6 (2, 1) , (1, 3) P1 × P2 (3, 7) 3 4
#3 6 (1, 2), (2, 2) P1 × P2 (4, 6) 3 or 4 4
#4 6 two (1, 1), one (1, 3) P1 × P3 (3, 7) 3 4
#5 7 (1, 1), (2, 1), (0, 3) P1 × P3 (3, 9) 5 5
#6 7 (1, 1), two (1, 2) P1 × P3 (4, 8) 4 5
#7 7 two (1, 1), (2, 1), (0, 3) P1 × P4 (3, 12) 3 5
#8 7 three (1, 1), one (0, 3) P1 × P4 (3, 9) 3 5
#9 7 (1, 1), (1, 1), (2, 2) P2 × P2 (6, 6) 3 or 4 5
#10 8 (1, 1), (2, 0), (1, 3) P2 × P2 (6, 8) 3 5
#11 8 (1, 1), (1, 1), (1, 2), (0, 2) P1 × P4 (4, 10) 4 5
#12 8 (1, 1), (2, 1), (1, 2) P2 × P2 (7, 7) 4 or 5 5
#13 9 (1, 1), (2, 1) (0, 2), (0, 2) P1 × P4 (4, 12) 4 6
#14 9 (2, 0), (0, 2), (2, 2) P2 × P2 (8, 8) 4 6
#15 9 (2, 0), (1, 2), (1, 2) P2 × P2 (8, 8) 4 6
#16 9 three (1, 1), two (0, 2) P1 × P5 (4, 12) 4 6
#17 9 (1, 1), (1, 1), (1, 1), (1, 2) P2 × P3 (7, 9) 4 or 5 6
#18 10 (1, 1), (1, 1), (0, 3), (2, 0) P2 × P3 (6,12) 3 6
#19 11 four (1, 1), one (0, 2) P2 × P4 (8, 12) 5 or 6 7
#20 11 five (1, 1) P3 × P3 (10, 10) 5 7
#21 6 (0, 2), (3, 2) P1 × P2 (4, 6) 3 4

Table 3.3: CI curves in Pn × Pm with KC = OC(1, 1)
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Since M is an integral quasi-projective variety, we may apply the semicontinuity theorem
to study the gonality of an element of M. A non-empty open subset of V has the maximal
gonality among all X ∈ M.

For all integers d > 0 and 0 ≤ δ ≤ (d−1)(d−2)/2, let V (d, δ) denote the set of all degree
d integral plane curves with exactly δ ordinary nodes as only singularities,

V (d, δ) := {C ⊂ P2 | deg(C) = d, C nodal with δ ordinary nodes}.

Thus the normalization of any D ∈ V (d, δ) has geometric genus (d − 2)(d − 1)/2. The
algebraic set V (d, δ) is an irreducible variety of dimension

(
d+2
2

)
− 1 − δ, see [Ha86]. Its

closure in the Hilbert scheme of P2 contains the set W (d, δ) of all integral plane curves of
degree d and geometric genus (d− 2)(d− 1)/2− δ.

For the next we recall that for positive integers g, r, and d the number ρ(g, r, d) :=

(r + 1)d− rg − r(r + 1) stands for the Brill–Noether number.

Theorem 3.3.1. A general trigonal curve of genus 10 is a complete intersection smooth
curve given by four divisors of bidegree (2, 0), (1, 1), (1, 1) and (0, 3) on P2×P3, case #18

in Table 3.2.

Proof. We starting by noting that a trigonal smooth curve (X,R) of genus 10, where |R|
a g13, is in V10, if and only if KX − 2R is base point free. It also is well known that the
trigonal locus of smooth curves has dimension 21. Let C ⊂ P2×P3 be a trigonal complete
intersection smooth curve given by the divisors of bidegree (2, 0), (1, 1), (1, 1) and (0, 3).
We known that C is trigonal and the Castelnouvo–Severi inequality assures that there is a
unique g13, say |L|. If we assume that the embedding of C is the full canonical embedding
we also need to assume h0(C,OC(2, 0)) = 3, i.e. dim|2L| = 2. Even if we do not assume
the canonical embedding, the fact that π1|C is a 3 : 1 gives that we are using only |L|+ |L|
to map C inside P2 × P3. The pair of divisors (|2L|, |KC − 2L|) provides an embedding, if
and only if, KC − 2L is base point free and

dim|KC − 2L− p1 − p2| = dim|KC − 2L| − 2, (3.9)

for all p1, p2 ∈ C such that there is p3 ∈ C with p1 + p2 + p3 ∈ |L|.

By duality, the condition in Equation (3.9) is equivalent to dim|2L + p1 + p2| = dim|2L|
for all p1, p2 ∈ C such that there is p3 ∈ C with p1 + p2 + p3 ∈ |L|. Since |3L| is base
point free, this is the case if and only if dim|LR| = dim|2L|+ 1. Hence, dim|2L| = 2. In
summary, a trigonal smooth curve C of genus 10 can be canonically embedded in P2 × P3
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if, and only if, dim|3R| = 3. In particular, a general trigonal curve is as described in case
#18.

Following the same steps of Theorem 3.3.1, we are able to also establish the following.

Theorem 3.3.2. A general trigonal curve of genus 8 is a complete intersection smooth
curve given by divisors of bidegree (2, 0), (1, 1) and (1, 3) on P2 × P2, #10 in Table 3.2.

Let NC be the normal bundle of C in the multi-projective space Y := Pn1 × · · · × Pnk

and NC/PN the normal bundle of a curve in a projective space PN . It is known that for
a general curve we have h1(C,NC/PN ) > 0. So the set of all complete intersections curves
in PN with prescribed degrees of the hypersurfaces is smooth of dimension h0(C,NC/PN ).
There is a possibility that it remains true if we consider complete intersection curves in
Y instead of PN . Let (d1, . . . , dk) be the multidegree of C. Assume that C is the complete
intersection of n − 1 divisors Dj, 1 ≤ i ≤ n − 1, with Dj ∈ |OY (aj1, . . . , ajk)|. The
assumption that C is not contained in a smaller multiprojective space gives

∑k
i=1 aji ≥ 2

for all j. The normal bundle NC is a direct sum of n − 1 line bundles. Those normal
bundles with aji > 0 for all j, i and aji ≥ 2 for at least one (i, j) have h1 = 0. In all
cases which I saw so far (0, 2) or (0, 3) has degree > 2g − 2 and hence h1 = 0. The factor
OX(1, . . . , 1)) give 1 to h1, but it is easy to count the dimension they give; if there are
e ≥ 1 of them and N + 1 =

∏k
i=1(ni + 1), they give the dimension e(N + 1 − e) of the

Grassmannian G(e,N + 1) of e-dimensional linear subspaces of KN+1. We should do a
general proposition, if true. In single cases, it is easy.

To the variety V (d, δ), introduced above, is attached the morphism

pδ : V (d, δ) −→ Symδ(P2)

mapping a plane curve to the set of its nodes. The following result is due to Treger and
can be found in [Tre89, Theorem 3.9, item (i)].

Theorem 3.3.3 (Treger). Let δ ≤ (d− 1)(d− 2)/2 and (d, δ) ̸= (6, 9). The morphism

pδ : V (d, δ) −→ Symδ(P2)

maps V (d, δ) onto its image, and for a general C ∈ V (d, δ) the pre-image p−1
δ (pδ(C))

consists of a point.

Remark 3.3.1. A element of M(7,7)
8 is a curve like case #12 of table 3.2.1. Indeed, let C

be a complete intersection curve of X = Pn × Pm given by divisors Di of bidegree (ai, bi).
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A curve of bidegree (7, 7) in P1 × P1 has genus 36, so m > 1. Define h = OX(1, 0) and
H = OX(0, 1), so KC = (ah + bH)|C where a = −n − 1 +

∑
ai and b = −m − 1 +

∑
bi.

If C has bidegree (7, 7) and genus 8, then deg(KC) = (ah+ bH)C = 14, so the bidegree of
canonical sheaf of C is (2 − b, b) where b ∈ Z. If b = 1, the proof is done. Without loss
of generality suppose b > 1, then

∑
ai = n+ 3− b and

∑
bi = m+ 1 + b, if ai = 0, then

CH = (D1D2 · · · biH · · ·Dn+m−1)H = 7, and since bi > 1 we get bi = 7 so

m+ 1 + b = b1 + · · ·+ bn+3−b + bn+4−b + · · ·+ bn+m−1 ≥ 7(n+m− 1− (n+ 3− b)),

thus 6m ≤ 29 − 6b. As m > 1, it follows that b = 2, so KC = OC(0, 2), which implies
m = 2. If C is a curve of bidegree (7, 7) in P1 × P2, then Ch = b1b2 = 7 that means
b1 + b2 = 8, since KC = OC(0, 2) we get b1 + b2 = m+ 1 + b = 5. Lastly in P2 × P2 there
two case for curves with KC = OC(0, 2): C is given by two divisors of bidegree (1, 2) and
one of bidegree (1, 1) or C is given by two divisors of bidegree (1, 1) and one of bidegree
(1, 3) in both cases C it does not have bidegree (7, 7).

Theorem 3.3.4. A general element of M(7,7)
8 has gonality 5 and at least eight g15.

Proof. Let C a curve in P2 × P2 of genus 8 of of bidegree (7, 7). Since 7 is a prime, the
two projections, π1|C and π2|C, are birational onto their images and hence C is equipped
with at least 2 base point free g27, c.f. Remark 3.0.1. Thus πi(C) ∈ W (7, 8), i = 1, 2.
These two g27 are complete, because 7 is a prime and 6 is the maximal genus of a degree
7 non-degenerate space curve.

Let us assume that C is canonically embedded, say u = (u1, u2) : C → P2 × P2, and take
Li := u∗iOP2(1), with i = 1, 2, the two lines bundles associated. Call D1, D2 ⊂ P2 the
images associated to these g27’s. Since a smooth degree 7 plane curve has genus 15, each
Di is singular.

Since C it is assumed canonically embedded, we obtain L2
∼= KC − L1. Conversely each

degree 7 plane curve D ⊂ P2 with geometric genus 8 is associated to a base point free line
bundle L with h0(C, L) = 3, where C is its normalization, and Riemann–Roch theorem
implies h0(C,KC − L) = 3. If L is a theta-characteristic, i.e. if L⊗2 ∼= KC, then the
pair (L,KC − L) does not provides an embedding in P2 × P2, because |L| does not give
an embedding. If L is not a theta-characteristic, then L and KC − L give a morphism
f : C → P2 × P2 which is birational onto its image, but a priori it may be not injective or
ramified. The complete intersections give smooth examples by the Bertini theorem.

Since ρ(8, 1, 5) = 10− 8− 2 = 0 and ρ(8, 1, 4) = −2, Brill–Noether theory provides that a



3| On the Gonality of CI Curves in Biprojectic Spaces 55

general element of M8 has gonality 5 and that the set of all curves in M8 with gonality
smaller than 4 has codimension 2 in M8. Since ρ(8, 2, 7) = 21− 16− 6 = −1, the set of
all curves M8 with a g27 forms a hypersurface of M8. Note that M := M(7,7)

8 is irreducible
and hence we may compute its dimension at some C ∈ M contained in a smooth element Σ
of |OY (1, 1)|, where Y stands for P2×P2. Since dim|OY (1, 1)| = 8 and NC,Σ ∼= OC(2, 1)⊕
OC(1, 2), we obtain dimM = h0(C,NC), because NC ∼= OC(2, 1)⊕OC(1, 2)⊕OC(1, 1) and
hence h1(C,NC) = 1 and h0(C,NC) = 14 + 14 + 8 = 36.

From the fact that dimAut(P2 × P2) = 16 and that a curve has a unique canonical line
bundle, it follows that the image of M in M8 has dimension 20, while dimM8 = 21.
Hence a general element of M is 5-gonal.

The normalization map induces a morphism ϕ : V (7, 8) → M8. It is clear that projectively
equivalent plane curves have isomorphic normalizations. Thus all fibers of ϕ have dimen-
sion at least 8. Since dimV (7, 8)−8 ≤ 21 = dimM8, dimϕ(V (7, 8)) = dimV (7, 8)−8 = 20,
c.f. Theorem 3.3.3. Thus the normalization of a general D ∈ V (7, 8) gives the general
element of M. They have at least eight g15.

Remark 3.3.2. Due to Theorem 3.3.4, we expect that the gonality of any curve as in
case #12 of Table 3.3 is five.
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4| On Mukai stratum of genus 8

This thesis started with the project to study the rational Chow rings of M7 and M8 using
Mukai’s stratification. The main idea was to parameterize each Mukai stratum and then
show that its image in Mg is tautological. This is the way that Penev–Vakil [PeVa15]
choose to show that the rational Chow ring of M6 is tautological. In a very beautiful
paper, Canning & Larson [CanLar21] show that M7, M8, and M9 are tautological using a
different approach. Hence we moved our project to study projective curves in biprojective
spaces. But the problem on parameterize the Mukai strata remains.

The loci of hyperelliptic and trigonal curves are well understood for any genus, we refer to
[PeVa15]. The locus of bielliptic curves is a fascinating object of study, its image in Mg

and its Chow ring is far from being well understood for larger genus. Hence we address
the following loci in M8: tetragonal non-bielliptic locus with a g26, the Pentagonal locus
in M8 with a non self-adjoint g27 and the pentagonal locus without a g27. We also note, a
a priori, that these classes of curves in such Mukai’s strata are not realized as a complete
intersection in biprojective spaces.

The results presented here are far from being a final study of Mukai’s strata in genus 8,
but we believe that this Chapter can be the starting point to further works.

4.1. Tetragonal non bielliptic with a g26

Let C be a smooth curve, we define the index of Clifford of C by

Cliff(C) = min{deg(D)− 2(h0(C, D)− 1) | D ∈ Pic(C), h0(C, D) > 0 and h1(C, D) > 0}.

Let C be a tetragonal non-bielliptic curve of genus 8, equipped with a g26, say α and fix
its Serre dual β := KC ⊗ α−1, that is a g38. Note that both α and β are base point free
because Cliff(C) = 2. Let C be the image of ϕ|α| : C −→ P2. Thus C is a plane curve of
degree 6 without triple points and with two double points. Let us take π the composition



4| On Mukai stratum of genus 8 57

of two blow-ups at each double point of C,

B
π2−→ B1

π1−→ P2.

Let Ei be the exceptional divisors in each blow-up and h the pullback of a line. Hence C
belongs to the linear system |6h−2

∑2
i=1Ei| and KB = −3h+

∑2
i=1Ei. By the adjunction

formula KC = (KB + C)|C = (3h −
∑2

i=1Ei)|C = h|C + (2h −
∑2

i=1Ei)|C. Then α = h|C
and β = (2h−

∑2
i=1Ei)|C.

Now consider the morphism induced by β,

ϕ|β| : C −→ C8 ⊂ P3,

where C8 is a degree 8 curve in P3 with a double point q ∈ C8. Let us take V := BlqP3 the
blow-up of P3 at q, H the pullback of hyperplane in P3 and E the exceptional divisor. In
[MukId03], the authors show that C is the complete intersection of 2H −E ∼ −1

2
KV and

4H − 2E ∼ −KV .

Let us consider the opposite:

Assumption 1. Let V be the blowup of P3 at a point and KV its canonical sheaf. Let C
be a complete intersection smooth curve given by −1

2
KV = 2H−E and −KV = 4H−2E.

We know that, for n ≥ 2, the chow ring of blow up of Pn at a point is isomorph to
Z[H,E]/I, where I = (EH,Hn − (−1)nEn). In the Chow ring A∗(V ) we can write
[C] = 8H2 + 2E2, implying

KC = (2H − E)|C + (4H − 2E)|C − (4H − 2E)|C = (2H − E)|C,

and so deg(KC) = (2H −E)(8H2 +2E2) = 16H3 − 2E3 = 14 and g = 8. Since 2H −E is
very ample, it embeds V in P8 = P(H0(V,OV (2H−E))). The kernel of the the restriction
map

H0(V,OV (2H − E)) −→ H0(C,OC(2H − E)),

embeds C in P7 as a canonical curve.

Considering the exact sequence

0 −→ IC(H − E) −→ OV (H − E) −→ OC(H − E) −→ 0, (4.1)

by the vanishing H0(V, IC(H − E)) = 0, we conclude that h0(C,OC(H − E)) ≥ 3. Since
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C · (H −E) = (8H2 +2E2) · (H −E) = 6 in A∗(V ), we obtain that OC(H −E) is a g26 on
C.

Remark 4.1.1. Let π : V → P3 be the blowup of P3 at p0. We gonna call Y ⊂ V a surface
type 2H − E or (2H − E)-surface if [Y ] ∼ (2H − E) in Pic(V ). Let Γ = {p1, · · · , pd}
be distinct points in V , we say Γ imposes independent conditions on surfaces of type
2H−E whenever h0(V, IΓ(2H−E)) = h0(V,OV (2H−E))−d. We could see a element of
|2H −E| as a quadric passing through p0, let’s say F =

∑
ai,jX

ni
i X

nj

j where ni +nj = 2,
so "imposes independent conditions" means that the system {F (pk) = 0}1≤k≤d is linearly
independent. Thus, if every quadric passing through p0 that vanishes at d − 1 points
of Γ also vanishes at the other point, then Γ fails to impose independent conditions on
(2H − E)-surfaces.

The next Lemma is an adaptation of an exercise from [ACGH85, pg. 199], where it asks
to examine W r

d (C), where C is a smooth curve in P3 given by the intersection of a smooth
complete intersection of a smooth quadric a smooth quartic.

Lemma 4.1.1. Let π : V → P3 the blowup of P3 at p0, Γ = {p1, · · · , pd} be distinct points
in V and Γ′ = {p0, p′1, · · · , p′d},with π(pi) = p′i. Assume that 2 ≤ #Γ′ ≤ 6. If #Γ′ is 2 or
3, then Γ imposes independent conditions on surfaces of type 2H − E. If #Γ′ ≥ 4 and Γ

does not impose independent conditions on (2H − E)-surfaces, then either:

• Four points of Γ′ are collinear; or

• Six points of Γ′ are coplanar.

Proof. Let IΓ be the ideal sheaf at Γ, by the exact sequence

0 −→ IΓ(2H − E) −→ OV (2H − E) −→ OΓ −→ 0, (4.2)

we have h0(V, IΓ(2H−E)) ≥ h0(V,OV (2H−E))−d, to show that Γ imposes independent
conditions on (2H − E)-surfaces we have to show the opposite inequality. To do this we
construct quadrics through p0 and all other points except one.

If #Γ′ = 2 take quadric containing p0 and not containing p′1. If #Γ′ = 3 take a hyperplane
H1 containing p0, but not p′2 and a H2 containing p1, but not p′2, now just take the quadric
given by these two hyperplanes. The second part of the lemma follows by contrapositive.

• #Γ′ = 4. Let L be the line containing p0 and p′1. We can assume that p′3 is not
in this line. Take hyperplane H1 containing L, but not p′3 and H2 a hyperplane
containing p2, but not p′3.
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• #Γ′ = 5. We have two cases, three points are collinear or not. If so, let L be
the line containing these points and we can assume p′4 away from this line. Take a
hyperplane H1 containing L, but not p′4 and H2 a hyperplane containing the other
point away from L, but not p′4. Otherwise, take a hyperplane H1 containing p0 and
p′1, but not p′4 and H2 a hyperplane containing p′2 and p′3, but not p′4.

• #Γ′ = 6. Note that if three points are collinear, then the remaining are not. Then
take a hyperplane H1 containing the three points but not p′5 and hyperplane H2

containing the other two but not p′5. If any three points are not collinear, take H1

containing p0, p′1 and p′2, and we can assume p′5 away from this hyperplane. And so
take H2 containing p′3 and p′4, but not p′5.

In all of the cases above, the result follows by taking the quadric given by H1 and H2.

Theorem 4.1.2. If C is a curve as in Assumption 1, then C has genus 8, does not admit
any g13 and every g26 is linearly equivalent to OC(H − E). In particular, C is tetragonal
with a unique g26.

Proof. Take Γ = {p1, · · · , p6} ⊂ C. Taking the diagram

0 // H0(V, IS(2H − E)) //

��

H0(V,OV (2H − E)) //

��

H0(V,OS)

��
0 // H0(C, IS(2H − E) // H0(C,OC(2H − E)) // H0(C,OS)

we have that the morphism of the right column is an isomorphism and of the middle
column is surjective, implying that the morphism of the left column is surjective. Thus
given a grd on C, written as the sum of distinct points, it follows that the set of its
points does not impose independent conditions on surfaces of the type 2H − E. Let
D = p1 + · · ·+ p6 be a g26 on C. We can assume that all pi are distinct. Applying Lemma
4.1.1 for all D−pi, we obtain that the image of those points in P3 are in a plane containing
p0. Since C · (H − E) = 6, we have D ∼ OC(H − E).

Assume that C has a g13, again, write D = p1 + p2 + p3. If any of these points are in
E, then the first part of Lemma 4.1.1 implies that the set of points imposes independent
conditions on 2H − E. Then assume that these points are not in E. By Lemma 4.1.1,
these points are on the same line by p0, so they are on a plane passing through p0. Since
(H − E) · C = 6, follows that there is q ∈ C such that D + E|C + q = (H − E)|C. Since
2D is a g26, we obtain that 2D ∼ (H − E)C ∼ D + E|C + q, then D ∼ E|C + q, finishing
the proof.
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Next, we provide a way to parameterize tetragonal curves of genus 8 with a unique g26.

Let π : Y −→ P8 = P(V,H0(V,OV (2H − E))) be a bundle such that

π−1(D) =
H0(V,OV (4H − 2E))

< 2D >
,

for every D ∈ P8. Denote by ∆ the divisor in Y where the curves are nonsmooth and G

the subgroup of GL(4) fixing a point let’s say q, take Z = (Y \∆)/G. Denote G2
6 the space

of tetragonal non-bielliptic curves with a unique g26 in M8, so we get a natural morphism
G2

6 −→ Z.

4.2. Pentagonal with a non self-adjoint g27
Let C ⊂ P2 × P2 = X be a curve given by the intersection of three divisors of bidegrees
(1, 2), (2, 1) e (1, 1). We know from Chapter 3, c.f. Table 3.3, that C has gonality 4 or 5,
and that C admits a g27 non self-adjoint.

Let π : Y −→ P8 = P(H0(X,OX(1, 1))) be the rank 30 bundle where

π−1(H) =
H0(X,OX(1, 2))

< H.yi >
× H0(X,OX(2, 1))

< H.xi >
,

for every H ∈ P8, Since we can see H0(X,OX(1, 2)) is a vector space generated forms of
bidegree (1, 2) in xi and yi, then < H.yi > is a subspace of H0(X,OX(1, 2)). Denote ∆

the divisor in Y where the curves are non smooth and take V = (Y \∆)/(GL(3)×GL(3))

and dim(V ) = 38− 18 = 20.

Let G2
7 be the locus of pentagonal curves with a non self-adjoint g27 in M8. We know by

Theorem 1.0.5 that every C ∈ G2
7 is a complete intersection of divisors of bidegrees (1, 2),

(2, 1) e (1, 1) in X = P2 × P2. The place of curves with a g27 has dimension 20 in M8 and
since every curve of G2

7 is general, then dim(G2
7) = 20.

4.3. Mukai Locus

The Mukai Locus MMu
8 in genus 8, is the subspace of M8 consisting of pentagonal curves

without a g27. In this section we adapt the arguments used by Peneve–Vakil in [PeVa15]
to provide a parameterization of MMu

8 .

Let us first recall the Mukai–Ide results [Muk92] and [MukId03].

Theorem 4.3.1 (Mukai–Ide). A smooth curve C belongs to MMu
8 if and only if there
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is a vector bundle E of rank 2 on C, generated by its global sections with det(E) = KC,
such that C is a transversal section of the Grassmanian G(2, V ) ⊂ P(∧2V ). Here V :=

H0(C, E) and a transversal section means that there are hyperplanes sections Hi such that
C = G(2, V ) ∩H1 ∩ · · · ∩H7.

Remark 4.3.1. Since KG(2,V ) = OP(∧2V )(−6)|G(2,V ), it follows that KC = OP(∧2V )(1)|C.
Denoting by S the linear space generated by the hyperplanes Hi, we obtain an exact
sequence:

0 −→ S −→ ∧2V −→ Q −→ 0. (4.3)

Here Q is the quotient whose dimension is 8. By the above sequence S cut PQ ⊂ P∧2 V ,
and so C is non degenerate in PQ. We then identify PQ with PH0(C, KC), which implies
that Q differs from H0(C, KC) only by a scalar.

Let V be a vector space of dimension 6. Consider the Grassmanian G(2, V ) embedded via
Plücker in P(∧2V ). The space of dimension 7 of linear sections of G(2, V ) is parameterized
by G(7,∧2V ). In the same way that PGL(V ) acts on G(2, V ), it determines an action on
G(7,∧2V ).

Theorem 4.3.2. The natural map

ϕ : (G(7,∧2V ) \∆)/PGL(V ) −→ M8

is an open immersion (of Deligne-Mumford Stacks) whose image is MMu
8 . Here ∆ is a

divisor of G(7,∧2V ) corresponding to the singular place.

Proof. First note that the image of ϕ is MMu
8 . This fact follows from Mukai’s work

[Muk92]. If C is a Mukai curve, just apply the Theorem 4.3.1, for V = H0(C, E).

Now we have to show that ϕ is representable. Note that for each curve C, we have a
bundle E and an isomorphism class. In the work due to Mukai [Muk92], he proved that
the bundle E is unique up to isomorphism, so we just have to show that this isomorphism
is given by a scalar product.

Let L be a bundle giving a g15 and M = KC ⊗ L∨ its Serre dual, which is a g39. Let
α : E −→ E be an automorphism. So we have a diagram

0 // L β // E //

α
��

M // 0

0 // L // E //M // 0
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By [Muk92, Lemma 3.10], we obtain dimHom(L, E) ≤ 1, thus the inclusion L β−→ E is
unique up to scaling. Thus, by multiplying α by a suitable scalar we have

0 // L β //

=
��

E //

α
��

M // 0

0 // L β // E //M // 0

Finally, we can see that there is a unique (up to scalar) nontrivial extension of L by
M. To see this, just apply the functor Hom(−,M), in the above exact sequence and use
[Muk92, Lemma 3.6]. Using a suitable scalar change in M we finally obtain

0 // L β //

=
��

E //

α
��

M //

=
��

0

0 // L β // E //M // 0

So E is unique up to scalar. Since ϕ is a (representable) birational bijection onto its
image, and MM

8 is normal, it follows that ϕ is an isomorphism.
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5| Future Developments

In this chapter, we briefly provide some directions and problems that could possibly be
resolved in a couple of years.

Problem 1. We believe that it is simple to adapt our computations on Section 3.1 of
Chapter 3 to provide analogous results for multiprojective spaces Pn1 × · · · × Pnk with
k > 2.

Problem 2. Is it possible to obtain a simpler proof of Lemma 3.2.2, avoiding heavy
computations? Maybe a more geometrical one.

Problem 3. Is there a way to obtain a more general statement for Theorem 3.2.3, avoid-
ing the two technical assumptions?

Problem 4. Due to Lemma 3.1.12. What is the image of the locus of curves in P2 × P2

given by three divisors of bidegrees (2, 0), (0, 2) and (2, 2) inside the space Mbi
8 of bielliptic

curves of genus 8?

Problem 5. Is there a way to provide a lower bound for the gonality for c.i. curves in
Pn1 × · · · × Pnk with k > 2.

Problem 6. Is there a way to define a Mukai locus in Mg, for large g or any g ≥ 6, in
order to have an analogous of Theorem 4.3.2? For sure that the gonality of a curve in
this locus is equal to ⌊(g + 3)/3⌋. The main questions lies in what kind must be avoided.
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