
ON THE ROLE OF TACHOCLINES IN SOLAR AND STELLAR DYNAMOS

G. Guerrero
1
, P. K. Smolarkiewicz

2
, E. M. de Gouveia Dal Pino

3
, A. G. Kosovichev

4
, and N. N. Mansour

5
1 Physics Department, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil; guerrero@fisica.ufmg.br

2 European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX, UK; smolar@ecmwf.int
3 Astronomy Department, IAG-USP Rua do mato, 1226, São Paulo, SP, 05508-090, Brazil; dalpino@astro.iag.usp.br

4New Jersey Institute of Technology, Newark, NJ 07103, USA; sasha@bbso.njit.edu
5NASA, Ames Research Center, Moffett Field, Mountain View, CA 94040, USA; Nagi.N.Mansour@nasa.gov

Received 2015 July 15; accepted 2015 December 11; published 2016 March 3

ABSTRACT

Rotational shear layers at the boundary between radiative and convective zones, tachoclines, play a key role in the
process of magnetic field generation in solar-like stars. We present two sets of global simulations of rotating
turbulent convection and dynamo. The first set considers a stellar convective envelope only; the second one,
aiming at the formation of a tachocline, also considers the upper part of the radiative zone. Our results indicate that
the resulting properties of the mean flows and dynamo, such as the growth rate, saturation energy, and mode,
depend on the Rossby number (Ro). For the first set of models either oscillatory (with ∼2 yr period) or steady
dynamo solutions are obtained. The models in the second set naturally develop a tachocline, which in turn leads to
the generation of a strong mean magnetic field. Since the field is also deposited in the stable deeper layer, its
evolutionary timescale is much longer than in the models without a tachocline. Surprisingly, the magnetic field in
the upper turbulent convection zone evolves on the same timescale as the deep field. These models result in either
an oscillatory dynamo with a ∼30 yr period or a steady dynamo depending on Ro. In terms of the mean-field
dynamo coefficients computed using the first-order smoothing approximation, the field evolution in the oscillatory
models without a tachocline seems to be consistent with dynamo waves propagating according to the Parker–
Yoshimura sign rule. In the models with tachoclines the dynamics is more complex and involves other transport
mechanisms as well as tachocline instabilities.

Key words: stars: activity – stars: interiors – stars: magnetic field – Sun: interior – Sun: magnetic fields – Sun:
rotation

1. INTRODUCTION

One of the most challenging questions in astrophysics is the
origin of stellar magnetism. More specifically, we do not yet
know where inside stars the large-scale magnetic fields are
generated and sustained. The best astrophysics laboratory in
which to study stellar magnetism is our host star, the Sun. Its
magnetic field at photospheric levels can be observed in detail,
and is depicted in the well known time–latitude “butterfly”
diagram. It summarizes the cyclic properties of the surface
evolution of the field, its migration patterns, the periodicity of
magnetic activity, and polarity reversals. The morphology and
distribution of the field in deeper layers, unfortunately, still
elude any kind of observation. In other solar-like stars (in the
main sequence and with spectral types from F to M) the
observations of magnetic field are less detailed. Nevertheless,
cyclic magnetic activity, with periods between 5 and 25 years,
has been observed in a good sample of stars (Baliunas
et al. 1995). In the same work, the authors also reported
observations of flat, non-oscillatory, magnetic activity. A
general trend is that the strength of the magnetic field increases
with the rotation rate of the star. More recently, Petit et al.
(2008) have been able to infer the topology of the surface
magnetic field of four stars that could be classified as solar
twins (with stellar parameters close to those of the Sun). Their
results indicate that the toroidal field strength is proportional to
the rotation rate but the poloidal component anticorrelates with
it. All these observations allow us to look at stellar magnetism
from a broad perspective, that can add new constraints on the
underlying processes and ultimately lead to a better under-
standing of it.

From the theoretical point of view, the generation and
evolution of large-scale magnetic fields in stars (and other
cosmic objects) has been studied using the mean-field dynamo
theory (see Brandenburg & Subramanian 2005, for a complete
review). The mean-field induction equation implies that the
dominant term generating an azimuthal (toroidal) magnetic
field depends on gradients of the angular velocity, Bp( · ) W,
where Ω is the mean angular velocity and Bp is a pre-existing
large-scale poloidal field. The generation of the poloidal field
relies on the turbulent helicities, the so-called α-effect, a non-
diffusive contribution of the electromotive force whose
dependence on the convective turbulence and rotation is still
uncertain. Under appropriate conditions, the evolution of the
magnetic field in this theory is consistent with dynamo waves
that, according to the sign rule of Parker (1955) and Yoshimura
(1975), propagate in the direction of

s e , 1ˆ ( )a= W ´ f

where êf is the unit vector in the azimuthal direction. The
validity of this rule has been extensively tested in two-
dimensional kinematic mean-field models (see, e.g., Charbon-
neau 2010). For the solar rotation inferred from helioseismol-
ogy (Schou et al. 1998), the signs of the W components are
well known. The sign of α estimated for granular convection is
positive (negative) in the northern (southern) hemisphere.
These properties favor a dynamo process distributed over the
entire convection zone with the photospheric evolution shaped
by the near-surface shear layer (NSSL) (Brandenburg 2005;
Pipin & Kosovichev 2011). Alternative, flux-transport dynamo
models in which the surface evolution is shaped by the
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dynamics at the tachocline (and magnetic buoyancy) require
coherent meridional motions directed equatorward at or slightly
below the tachocline.

Different observational techniques have revealed a well-
organized, though fluctuating, poleward meridional flow at the
solar surface (e.g., Ulrich 2010; Hathaway 2012) with
amplitudes of about 15 m s−1. However, recent inferences
from helioseismology have determined the existence of two or
more cells in the radial direction (Schad et al. 2013; Zhao et al.
2013). Thus, the existence of a coherent equatorial flow, able to
transport the magnetic flux from the poles to the latitudes of
sunspot activity, is unlikely.

The sign rule for propagation of dynamo waves remains
valid also for mean-field models considering the dynamical
evolution of the α-effect (Guerrero et al. 2010). In these models
the kinetic component of the α-effect changes in time due to
the backreaction of the magnetic field on the plasma motion.
The magnetic α-effect depends on the distribution of the small-
scale current helicity, and is a consequence of the conservation
of magnetic helicity (Pouquet et al. 1976). It is regularly
assumed that it diminishes the inductive action of the kinetic
helicity (e.g., Sur et al. 2007; Guerrero et al. 2010; Mitra et al.
2011). For high magnetic Reynold numbers, this contribution
can lead to the total suppression of the dynamo action, so-
called catastrophic quenching, in the case when there is no
effective mechanism to remove the small-scale current helicity
(Guerrero et al. 2010). Recent works (Vishniac & Shapovalov
2014), and the results that will be presented here, indicate that
this is not necessarily the only case, and that the magnetic
contribution to the α-effect could be a source of magnetic field.
A similar idea is suggested by Bonanno (2013).

Several kinematic or dynamic mean-field models have
qualitatively reproduced the observed surface features of the
solar magnetic field (Dikpati & Gilman 2001; Chatterjee
et al. 2004; Guerrero & De Gouveia Dal Pino 2008; Pipin &
Kosovichev 2011, 2013). Based on these models, Jouve et al.
(2010) and Pipin (2015) have also studied dynamos for solar-
like stars with the aim of reproducing observed trends for
magnetic field strengths and cycle periods. Unfortunately,
parameters like helicity and/or turbulent diffusion, in general,
are poorly determined, and thus the physics of solar and stellar
dynamos cannot be described unambiguously by the mean-field
models. An alternative approach is provided by global 3D
magnetohydrodynamic (MHD) simulations. In this class of
modeling, even though the parametric regime is still far from
the conditions of stellar interiors, the physics is self-
consistently described and provides an important insight into
the turbulent dynamics and dynamo.

For instance, systematic hydrodynamic (HD) studies of
rotating turbulent convection, for the Sun and solar-like stars,
have found that the Rossby number, Ro u L2rms 0= W (where
0W is the frame rotation rate, L the characteristic large-scale

length of the flow, and urms the typical turbulent velocity),
characterizes the resulting mean flows (Gilman 1976; Glatz-
maier & Gilman 1982; Steffen & Freytag 2007; Käpylä et al.
2011; Matt et al. 2011; Guerrero et al. 2013; Gastine
et al. 2014; Featherstone & Miesch 2015). For large values
of Ro the models result in an antisolar differential rotation (with
faster rotating poles and a more slowly rotating equatorial
region), and a meridional circulation with single cells per
hemisphere. In the models with small values of Ro the
differential rotation is solar-like, and the meridional flow

consists of several circulation cells per hemisphere. The
transition between these regimes is sharp, occurring in a
narrow range of Ro. Several properties of the observed solar
differential rotation, like the latitudinal dependence of the
angular velocity, the tachocline (Ghizaru et al. 2010), and a
NSSL, although so far only at high latitudes (Guerrero
et al. 2013; Hotta et al. 2015), have been successfully
reproduced.
MHD global dynamo models, which have been developed

for more than a decade (e.g., Brun et al. 2004), have provided a
wide spectrum of results, but the understanding of the
dependence of the mean flows or magnetic fields on stellar
parameters is still incomplete. Furthermore, to our knowledge,
no MHD model so far has been able to reproduce the solar
differential rotation.
MHD simulations of fast rotating stars by Brown et al.

(2010) have been able to obtain large-scale dynamo action.
Their results revealed a steady magnetic field organized in the
shape of a torus, or wreaths, around the equator and with
opposite polarity accros the hemispheres. Non-oscillatory
dynamo solutions have also been obtained by Simitev et al.
(2015). Oscillatory dynamo solutions in the global MHD
models were first obtained by Ghizaru et al. (2010) using the
EULAG-MHD code with an implicit sub-grid scale (SGS)

formulation. Since then other groups have been able to simulate
magnetic cycles with the use of SGS turbulent models
(Augustson et al. 2013), or also in higher-resolution simula-
tions by considering only a fraction (a wedge) of the star
(Käpylä et al. 2012; Warnecke et al. 2014). Although the
dynamo regimes of these models are not the same, it is
noteworthy that the cycle periods obtained in the model of
Ghizaru et al. (2010) and the models of Käpylä et al. (2012),
Augustson et al. (2013), and Warnecke et al. (2014) are rather
different. As will be shown later in this paper, this difference
may be explained by the absence of a tachocline and a radiative
stable layer in the models of Käpylä et al. (2012), Augustson
et al. (2013), and Warnecke et al. (2014). By considering a
forcing function to impose a constant angular velocity at the
bottom of the domain, Browning et al. (2006) analyzed the
effects of a tachocline in convective dynamo simulations.
Although they found development of a strong toroidal
magnetic field at this imposed shear layer, they observed no
field reversals. Masada et al. (2013) explored the effects of
penetrative convection in spherical dynamo simulations. Due to
dissipative effects the tachocline obtained in their model is not
well-defined. However, they obtained a stronger and cyclic
large-scale toroidal magnetic field, demonstrating the impor-
tance of the stable layer in the storage of the magnetic field.
In this paper we compare 3D global MHD convective

dynamo simulations with different Ro for models with and
without the tachocline. Our goal is to compare the global
properties of the mean flows and the resultant magnetic
activity, and contrast them with observational signatures. Of
particular interest are the inductive and diffusive terms
resulting from the differential rotation and the collective effects
of turbulence. Altogether, this will allow us to elucidate the
importance of the tachocline in solar and stellar dynamos.

2. THE MODEL

We adopt a full spherical shell, 0 2 f p, 0  q p; the
radial domain has its bottom boundary at r R0.61b =  for the
models that develop a tachocline, and r R0.72b =  for the
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models without it, and the upper boundary at r R0.96t = .
Unlike Guerrero et al. (2013), where the anelastic equations of
Lipps & Hemler (1982) were employed, here we solve their
MHD extension (Ghizaru et al. 2010):

u 0, 2s· ( ) ( ) r =

u
u g B B

D

Dt

p
2

1
, 3

s s s0
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r m r

+ ´ = -
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where uD Dt t · = ¶ ¶ + is the total time derivative, u is
the velocity field in a rotating frame with

cos , sin , 00 ( )W q q= W - , p¢ is a pressure perturbation vari-
able that accounts for both the gas and magnetic pressure, B is
the magnetic field, and Θ

′ is the potential temperature
perturbation with respect to an ambient state eQ (see Section
3 of Guerrero et al. 2013, for a comprehensive discussion).
Furthermore, sr and sQ are the density and potential
temperature of the reference state, which is chosen to be
isentropic (i.e., constsQ = ) and in hydrostatic equilibrium;
g eGM r r

2ˆ= is the gravity acceleration, G and M are the
gravitational constant and the stellar mass, respectively, and 0m
is the magnetic permeability. The potential temperature, Θ, is
related to the specific entropy: s c ln constp= Q + .

The term tQ¢ represents the balancing action of the
turbulent Reynolds heat flux responsible for maintaining the
steady axisymmetric solution of the stellar structure (see
Section 1.2 and Annexe B in Cossette 2015, for details). In this
work the parameters of the ambient state are slightly different
from those in Equation (7) of Guerrero et al. (2013, Section
3.1). For the models including a tachocline, here we use the
polytropic indices mr = 2 and mcz=1.499978, together with
the transition width w R0.015t = . In the models without a
tachocline, the polytropic index is constant, mcz = 1.499985.
These values result in convective motions with similar Rofor
both types of models. The relaxation time of the potential
temperature perturbation for all models is τ = 1.036 ×
108 s (∼3.3 yr).

The equations are solved numerically using the EULAG-
MHD code (Ghizaru et al. 2010; Racine et al. 2011; Guerrero
et al. 2013; Smolarkiewicz & Charbonneau 2013), a spin-off of
the hydrodynamic model EULAG predominantly used in
atmospheric and climate research (Prusa et al. 2008). The time
evolution is calculated using a special semi-implicit method
based on a high-resolution, non-oscillatory forward-in-time
advection scheme known as Multidimensional Positive Definite
Advection Transport Algorithm (MPDATA; Smolarkiewicz
2006). The truncation terms in MPDATA evince viscosity
comparable to the explicit SGS viscosity used in large-eddy
simulation (LES) models (Elliott & Smolarkiewicz 2002;
Domaradzki et al. 2003; Margolin et al. 2006). Thus, the
results of MPDATA are often interpreted as implicit LES or
ILES (Smolarkiewicz & Margolin 2007).

For the velocity field we use impermeable, stress-free
conditions at the top and bottom surfaces of the shell, whereas
the magnetic field is assumed to be radial at these boundaries.
Finally, for the thermal boundary condition we consider zero

divergence of the convective flux at the bottom and zero flux at
the top surface.

3. RESULTS

We have performed two sets of simulations: (1) only for the
unstable stratified convection zone (CZ models), and (2) for the
convection zone with a convectively stable radiative zone at the
bottom of the domain (RC models). The first set does not
support the formation of a strong radial shear at the base of the
convection zone (the tachocline), and thus excludes it as a
source of magnetic field. The second set naturally leads to the
development of a tachocline and therefore to the B( · ) W
source of the toroidal field acting in the tachocline. The input
and resulting parameters of the models for three different
rotation rates, 0W (corresponding to different Ro)6 are
summarized in Table 1.

3.1. Dynamo Models without Tachocline

In Figure 1 we present, from left to right, the meridional
profiles of the differential rotation, meridional circulation, and
snapshots of the vertical velocity, ur, and the toroidal magnetic
field Bf resulting from the models (a) CZ01, (b) CZ02, and (c)
CZ03. The differential rotation and meridional circulation
correspond to averages over longitude and time (∼3 yr). The
instantaneous orthographic projections of ur and Bf allow us to
distinguish the character of the convective flow and the
distribution of the toroidal field for each model. Unlike our
previous purely hydrodynamic simulations, in which we found
a critical Ro value dividing the rotation profiles into solar-like
and antisolar rotation types (Guerrero et al. 2013), in the
present simulations with magnetic field all the models exhibit
the solar-like differential rotation, irrespective of Ro. This
property is related to the influence of the dynamo-generated
magnetic field on the fluid dynamics. Karak et al. (2015) have
found that for the MHD case the transition occurs at higher
values of Ro. For instance, model CZ01 shows iso-rotation
contours mainly aligned along the rotation axis (see
Figure 1(a)). In models CZ02 (Figure 1(b)) and CZ03
(Figure 1(c)) the rotation profile exhibits clear conical-shape
contours that resemble the rotation of the solar convection zone
inferred by helioseismology (Schou et al. 1998). During early
stages of the models’ evolution, when the influence of the
magnetic field is negligible, the rotation contours are aligned
along the rotation axis (the so-called Taylor–Proudman
balance), and then transformed into the conical-shape contours.
This indicates that both Reynolds and Maxwell stresses
contribute to the distribution of angular momentum. Later, it
is remarkable that even in model CZ03, in which the final
magnetic energy is 104 times smaller than the kinetic energy,
the rotation law departs from the Taylor–Proudman balance. A
detailed discussion of the angular momentum balance is out of
the scope of this paper and will be addressed in a subsequent
paper.
Another remarkable feature of models CZ02 and CZ03 is the

natural development of a well-defined NSSL. The radial shear
in this layer is negative and extends from the equator to the
poles as observed in the Sun. In agreement with the results
found in Guerrero et al. (2013), the NSSL arises from the

6 Since we change the value of Ro only by changing the value of the frame
rotation rate, we use both terms interchangeably to express the dependence of
the results on Ω0.
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appropriate choice of the ambient state, eQ , and the relaxation
time of the potential temperature perturbations, τ. As
mentioned above, these quantities differ from the ones used
in Guerrero et al. (2013) in such a way that Ro becomes larger
at the top of the domain (i.e., in a thin layer close to the surface
where the buoyancy force becomes much stronger than the
Coriolis force). Although the number of mesh points is not
sufficient to resolve supergranulation scales that may be
important for the formation of the solar NSSL, our model
succeeded in reproducing similar effects in the resolved scales.
Furthermore, the latitudinal angular velocity gradient in both
models corresponds well to the solar rotation, i.e.,

0.18eq p 0( )c = W - W W =W , where eqW is the equatorial
angular velocity, pW is the angular velocity at 60° latitude (both
quantities are computed from the temporally and azimuthally
averaged profile of Ω), and Ω0 is the angular velocity of the
reference frame.

As far as the meridional circulation is concerned, models
CZ01 and CZ02 show a multicellular pattern (second column
of Figures 1(a) and (b)), while model CZ03 shows a dominant
(counter)clockwise cell in the (northern) southern hemisphere
with a latitudinal velocity, u 12 m~q s−1 (about twice the
value of uθ in models CZ01 and CZ02). This cell is located near
the base of the convection zone. Another cell, with a smaller
velocity and opposite direction of circulation appears in the
subsurface layer (second column of Figure 1(c)).

An oscillatory large-scale dynamo action is observed in
models CZ01 and CZ02 as can be seen in Figures 2(a) and (b).
In both cases the toroidal magnetic field is generally symmetric
across the equator and reverses with a cycle period of ∼2 yr
(Table 1). For the model CZ02 we found a secondary ∼6 yr
cycle modulating the amplitude of the magnetic field. These
properties are at odds with the 22 yr solar cycle but in
agreement with other global models without a tachocline (e.g.,
Warnecke et al. 2014; Augustson et al. 2015). In the convection
zone the evolution of the magnetic fields is consistent with a
pattern of dynamo waves propagating from the bottom to the
top of the domain (Figures 2(a), (b)). At the surface the field
forms a 50  belt around the equator. The latitudinal migration
of the field is slightly poleward. The long-term evolution of the
simulations CZ01 and CZ02 indicates extended periods of
minimal or maximal activity (see for instance the extended

minimum in the northern hemisphere of the model CZ01 in
Figure 2(a) between 20 and 30 yr). The amplitude of the
dynamo-generated magnetic field depends on the rotation rate,
reaching ∼10% and ∼1% of the kinetic energy of the system,
for the models CZ01 and CZ02, respectively (see Table 1). In
model CZ03 (Figure 2(c)) the magnetic field grows exponen-
tially but saturates at ∼0.02% of the kinetic energy (see
Table 1). The magnetic field in this case is nearly steady. Its
time evolution shows periods when the field amplitude abruptly
decays, stays in a minimum state for some years, and then
quickly grows again to its saturation amplitude without polarity
reversals (Figure 2(c)). As indicated in Table 1, the growth rate
of the dynamo is proportional to the rotation rate.
The spatio-temporal evolution of the magnetic field in the

models can be interpreted in terms of its main sources
according to the mean-field dynamo theory, i.e., the α and Ω

effects. The profile of α is estimated by using the first-order
smoothing approximation (FOSA, see Brandenburg & Sub-
ramanian 2005 for details) as follows:

h h
3 3

, 6k m
c

k
c

c ( )a a a
t t

= + = - +

where H uc rmst = r is the turnover time of the convection,

H d drln s
1 r=r
- is the density length scale, and
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are the small-scale (note the prime over u and b) kinetic and
current helicities, respectively (the overbars denote azimuthal
and temporal averages over three years). As is common in the
mean-field dynamo theory, we present the source terms as
ratios between the induction and diffusion times:
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Table 1

Simulation Parameters and Outputs

Model
0W Ro Ra* urms

Ma (10–4) cW λ e eM K e eKf e ep K TM

CZ01 2W 0.030 1.29 55.12 3.85 0.09 2.26 0.098 0.080 0.018 2.26
CZ02 Ωe 0.067 5.16 60.91 4.25 0.17 0.65 0.010 0.009 0.001 2.21
CZ03 2W 0.150 20.65 67.18 4.69 0.18 0.56 2·10−4 2·10−4 1·10−5 L

RC01 2W 0.033 1.36 60.80 4.10 0.07 0.84 0.249 0.042 0.206 L

RC02 Ωe 0.069 5.45 62.27 4.30 0.05 0.85 0.184 0.163 0.020 34.5
RC03 2W 0.161 21.80 72.88 5.04 0.28 0.06 0.004 0.004 3·10−4 L

Note. gRa
c

s

r

1 e

P 0
2

* =
W

¶
¶
, where se is the specific entropy of the ambient state, urms is the volume-averaged rms velocity (in m s−1) in the unstable layer, u cMa rms s*= is

the Mach number, with c RTs r Rs 0.85∣* *g= =  being the sound speed at the middle of the unstable layer, Ro
u

L2

rms

0
=

W
, and eq p 0( )c = W - W WW , where

R , 0eq ( )W = W  and R , 60p ( )W = W  are the surface rotation rates at 0° and 60° in latitude, and Ω0 is the frame rotation rate expressed in terms of the solar rotation
rate Ωe. The growth rate of the magnetic field, λ, is given in Tesla yr−1. The kinetic and magnetic energy densities, in J m−3, are ue 2sK

2r= , Be 2M
2

0m= ,
e B 22

0m=f f , and e B B 2rp
2 2

0( ) m= + q . Finally, the full cycle period, TM, is expressed in years. Models starting with the letters CZ consider the convection zone
only, while models starting with RC include both radiative and convective zones. The number of grid mesh points is Nr=47, Nθ=64, and N 128=f for CZ models,
and Nr=64 for RC models.
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Figure 1. From left to right: mean profiles of the rotation rate and meridional circulation, and snapshots at r R0.95=  of the vertical velocity, ur, and the toroidal field,
Bf, for the simulated models (a) CZ01, (b)CZ02, and (c) CZ03. In the meridional circulation panels continuous (dashed) lines correspond to clockwise
(counterclockwise) circulation. The background filled contours show the latitudinal velocity, uq. The profiles of differential rotation and meridional circulation
correspond to mean azimuthal values averaged over ∼3 yr during the steady-state phase of the simulation.
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where t0h is the FOSA estimation of the turbulent magnetic
diffusivity,

u
1

3
, 9ct0 rms

2 ( )h t=

averaged over the entire convection zone, R0.72 
r R0.96  (the values of t0h are presented in Table 2).

In the top, middle, and bottom rows of Figure 3 we present
the normalized profiles of α, r¶ W, and r 1¶ Wq- , respectively,
computed from the simulation results. Figure 3(a) shows the
radial profiles of the kinetic and magnetic contributions to α
presented by dotted and dotted–dashed lines, respectively,
while the resultant α is shown with continuous lines. The
vertical profiles of the radial shear, Figure 3(c), are shown at
two different ranges of latitude: a higher latitude profile
(dashed lines) was computed by averaging over 60° and
80° latitude, and the lower latitude profile (continuous line)
was averaged between 20° and 40° latitude. Finally, the
latitudinal shear was also computed for two different ranges
of depths, Figure 3(e). The bottom profile (dashed line)
corresponds to an average over R r R0.72 0.77  , while
the top profile (continuous line) is an average over

R r R0.90 0.95  . Presenting these quantities as radial
profiles, instead of contours in the meridional plane, allows us
to straightforwardly compare the different dynamo models. The
red, blue, and green lines correspond to models 01, 02, and
03, respectively. Furthermore, Figure 3 allows us to directly
compare the CZ and RC models (to be discussed later), shown
in the left and right panels, respectively.

Before describing the evolution of the magnetic fields, it is
instructive to discuss how the source terms change as a
function of Ro. Table 2 presents the maximal absolute values of
the quantities depicted in Figure 3 (denoted with a subsscript
zero), as well as the maximal amplitude of the mean magnetic

field components at the surface level. (Some values at the
boundaries can be very large without really contributing to the
dynamo, so we have disregarded them.) In general, there are no
major differences between the profiles of the kinetic α-term,
Ck
a . In all cases it is positive in the bulk of the convection zone
and changes sign near the boundaries. The radius at which this
change of sign occurs is shallower (deeper) for the faster
(slower) rotating model. There is no clear relation between Ck

0a
and Ro; it is only noticeable, however, that the faster models,
CZ01 and CZ02, have larger kinetic helicity than the slower
model, CZ03. As for the the magnetic α-effect, we should first
notice that its amplitude is comparable to the kinetic α.
However, Cm

0a is inversely proportional to Ro. This is expected
since the models with faster rotation develop stronger magnetic
fields. Correspondingly, the total α-effect is inversely propor-
tional to Ro. For the models CZ01 and CZ02 the signs of Ck

a
and Cm

a in the middle of the convection zone are opposite. At
the top of the domain the two terms have the same sign, and
both contribute positively to the generation of magnetic field.
In model CZ03 the contribution of Cm

a is negligible, thus only
the kinetic helicity contributes to the field generation.
Regarding the rotational shear terms, we notice that for

larger values of Ro, the surface radial shear is stronger and the
latitudinal shear is weaker. Note that the latitudinal profile of
C qW (Figure 3(e)) for model CZ01 shows a strong shear at the
equator and the poles. This shear is reduced in models CZ02
and CZ03 as the vertical motions become more important.
These fast vertical flows, in turn, are less affected by the
Coriolis force, resulting in a strong radial shear in the NSSL.
The surface values of the magnetic field are also inversely
proportional to Ro, possibly indicating that their main source is
the latitudinal shear.
The evolution of models CZ01 and CZ02, presented in the

butterfly diagrams of Figures 2(a) and (b), is similar. They
exhibit branches of magnetic field migrating in latitude from

Figure 2. Time–latitude (left) and time–radius (right) diagrams of the toroidal magnetic field, Bf, for models (a) CZ01, (b) CZ02, and (c) CZ03. On the left, the
contours show Bf, in tesla, at r R0.95= . On the right, the contours are taken at 30° latitude. Only a fraction of time of the simulated statistically steady state is shown
in each plot.
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the equator toward the poles. This pattern agrees with the
Parker–Yoshimura sign rule, Equation (1), for positive values
of ra¶ W in almost the entire convection zone (see continuous
red and blue lines in Figures 3(a), (c)). In the vertical direction
the propagation of the magnetic field in the middle of the CZ
also agrees with Equation (1) for 0a¶ W >q . Because of the
large values ofC qW in model CZ01, the branches of toroidal field
show a large magnetic field strength from the bottom of the
convection zone to the top. In model CZ02, with a smooth
latitudinal shear the stronger vertical branches of Bf start at a
depth R0.85~  (compare the right panels of Figures 2(a) and
(b)). At the upper radial levels of model CZ02, the term a¶ Wq
becomes negative, and this should change the direction of
migration. However, at the latitude depicted in Figure 2, only a
slight change in the tilt of the branches is evident. The
morphology of the azimuthally averaged magnetic field of
model CZ02 is depicted in Figures 4(a)–(d). The filled contours
show the positive (yellow) and negative (blue) toroidal field
strength. The continuous (dashed) lines represent the clockwise
(counterclockwise) poloidal field lines. The four snapshots
cover one magnetic field reversal. In the same plot it can be
observed that the poloidal field follows a wave-like evolution
pattern similar to Bf. The pattern starts to develop at the bottom
of the domain at lower latitudes. As the cycle evolves it grows
and expands over the convection zone with the more intense
regions (the innermost contours) migrating poleward and
upward. In this case, however, the field is antisymmetric with
respect to the equator.

3.2. Dynamo Models with a Tachocline

In this section we present three models (RC01, RC02, and
RC03) with the tachocline. All of them have the same
stratification and differ only by the rotation rate, 0W . For all
these cases, the magnetic field evolves differently than in the
models CZ01, CZ02, and CZ03.

It is worth mentioning first that, due to the presence of the
tachocline, most of the magnetic field develops at the base of
the convection zone. Thus, the Maxwell stresses play an
important role in the downward transport of the angular
momentum. In Figure 5, panels (a), (b), and (c) show the
differential rotation (left column) and meridional circulation
(right column) profiles of models RC01, RC02, and RC03,
respectively. Model RC01 has the lowest value of Ro, thus it
has the strongest influence of the Coriolis force. This force
tends to homogenize the rotation of the convection zone with
that of the radiative zone. This happens in a region between

5~  and ∼80° latitude. However, zones with some radial and
latitudinal shears develop at the equatorial and polar latitudes.
In model RC02, both radial and latitudinal differential rotations
develop in larger zones. The intermediate latitudes are in iso-
rotation with the radiative zone.
The transport of angular momentum to the radiative zone

makes the stable layer rotate, on average (see Figure 5(b)),
faster than the frame. Hence, the equatorial acceleration of the
convection zone in the model RC02 is not as pronounced as in
the model CZ02. In the former case the angular velocity is
around 440 nHz, while in the latter case it reaches 500 nHz.
Consequently, the latitude of iso-rotation with the frame moves
up to ∼70°. In the model CZ02 it is located at ∼50° (the yellow
filled contours in Figures 1(b) and 5(b) correspond approxi-
mately to the frame rotation rate, Ω0).
Besides affecting the average profile of the differential

rotation (with respect to purely hydrodynamic models) the
magnetic feedback on the flow generates torsional oscillations
in the models where the dynamo is periodic (CZ02 and RC02).
The latitudinal morphology of the simulated oscillations
resembles the solar observations, but the amplitude of the
observed oscillations is a few times smaller. This might be a
consequence of a rather large α-effect such as found by Covas
et al. (2004). The origin of the torsional oscillations in our
simulations seems to be due to a modulation of the latitudinal
angular momentum transport mediated by the meridional
circulation and the magnetic torque (at equatorial latitudes).
A comprehensive discussion of these results is beyond the
scope of the current work and is presented in a separate paper
(G. Guerrero et al. 2016, in preparation).
An NSSL, more pronounced at higher latitudes, is also

observed in this model (RC01). In both RC01 and RC02 the
contours of rotation form conical shapes in the convection zone
(see the vertical dotted lines in Figure 5 as a guide to the eye).
Finally, in model RC03 there is a well-defined latitudinal
differential rotation in the bulk of the convection zone, and also
a NSSL is formed. The region of iso-rotation of the convection
zone with the radiative core occurs at higher latitudes (∼70°).
For this reason the radial shear at the equator, in the tachocline,
is stronger in model RC03 than in models RC01 and RC02.
The contours of model RC03 appear cylindrical, which is
surprising because in this model the influence of the Coriolis
force is smaller than in the other two cases. The rightmost
columns of Figure 5 show the convective structure, represented
by the vertical velocity and the distribution of the toroidal field
at r R0.95= .

Table 2

Dynamo Coefficients Computed from the Simulation Results

Model 10t0
9( )h Ck

0a Cm
0a C 0a C 10r

0
3( )W C 0

q
W Dr Dq max(Bf) max(Bq) max(Br)

CZ01 0.99 5.01 1.84 4.47 0.37 27.28 1.65 122.90 0.60 0.18 0.03
CZ02 1.09 5.38 1.28 5.00 1.62 14.75 8.10 73.75 0.61 0.13 0.06
CZ03 1.28 2.72 0.08 2,72 1.69 9.71 4.59 26.41 0.15 0.05 0.02

RC01 1.08 3.03 2.06 2.75 0.81 19.65 2.22 54.03 0.52(0.19) 0.10(0.80) 0.04(0.26)
RC02 1.12 2.80 1.52 2.72 1.67 13.33 4.54 36.25 0.22(0.94) 0.07(0.28) 0.03(0.24)
RC03 1.25 3.56 0.64 3.52 4.98 21.51 17.53 75.71 0.20(0.71) 0.04(0.37) 0.03(0.20)

Note. The dynamo numbers are computed with Equations (8) and (9). The subscript zero on Ca and CΩ refers to the maximum value of each quantity, while on th it
refers to its average over the CZ (in m s2 1- ). The dynamo numbers D C Cr

r
0 0= a W and D C C0 0=q a

q
W provide an indication of the dynamo efficiency when considering

the radial and the latitudinal shear, respectively. Finally, max(Bf), max(Bq), and max(Br) are the maximum absolute values of the large-scale components of the field at
r R0.95=  (the values in brackets are measured at r R0.72= ) in units of tesla.
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Figure 3. Magnetic field source terms (see Equations (8)–(9)) for models CZ (left panels) and RC (right). Panels (a) and (b) show the FOSA estimation for R t0a h .
Dotted and dotted–dashed lines represent the kinetic and magnetic contribution, respectively. The continuous line is the resultant, non-dimensional, total α-effect. The
profiles of α are latitudinal averages in the northern hemisphere. Middle and bottom rows show Rr

3
t0h¶ W  and r R1 3

t0h¶ Wq-
 , respectively. In panels (c) and (d)

continuous (dashed) lines indicate latitudinal averages at lower, 20°–40° (higher, 60°–80°), latitudes. (Note that in panel (d) the value of Rr
3

t0h¶ W  for the model
RC03 has been divided by 2.) In panels (e) and (f) continuous (dashed) lines are vertical averages in the top, R r R0.9 0.95   (bottom, R r R0.72 0.77  ),
of the domain. t0h is a radial average of th , defined in Equation (9), for r R0.72 .
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The meridional circulation is multicellular in all our models
with the tachocline. However, as expected, model RC03 has
larger meridional velocities than the other models and exhibits
a dominant counterclockwise (clockwise) cell in the northern
(southern) hemisphere. It is noteworthy that in all these models
a low-amplitude poleward flow develops in the upper part of
the convection zone at latitudes >30°. This can be noticed in
the second column of Figure 5 in the color-filled contours of
the latitudinal velocity, uq, as the blue and yellow regions in the
northern and southern hemispheres, respectively. The forma-
tion of this flow is likely due to the gyroscopic pumping
mechanism because of the negative gradient of angular velocity
(Miesch & Hindman 2011).

The third column of Figure 5 shows that the smaller
convective structures in our simulations are formed at higher
latitudes. In the equatorial band the structures are elongated,
resembling the so-called banana cells. Note that the vertical
domain of our simulations reaches up to R0.96 , and small-
scale structures are not resolved. We surmise that this is the

reason why NSSL and latitudinal meridional circulation only
appear above ∼30° latitude. Nevertheless, the meridional flow
structure qualitatively agrees with recent helioseismology
inversions made using data from the Solar Dynamics

Observatory (Schad et al. 2013; Zhao et al. 2013).
The magnetic field in these models evolves on longer

timescales than in the CZ models (see Section 3.3). The fast
rotating model, RC01, develops a magnetic field that oscillates
in amplitude but does not show clear polarity reversals. The
oscillation period is ∼10 yr (not included in Table 1 because it
does not correspond to magnetic field reversals). The topology
of the field consists of wreaths of toroidal field of opposite
polarity across the equator.
Model RC02 presents magnetic cycles with a full period of

∼30 yr. Unlike the solar magnetic field, in this model the
toroidal (poloidal) component of the magnetic field is
symmetric (antisymmetric) relative to the equator (see
Figures 6(b) and 7). Most of the magnetic energy in this case
is in the toroidal component of the field. In the simulation with
the slowest rotation rate (model RC03), the magnetic field is
nearly steady (as in CZ03) with a larger concentration of Bf in
a narrow region at the base of the convection zone at the
equatorial latitudes. The field at the surface has the same
polarity as at the bottom and is concentrated at higher latitudes.
An important disparity between the models RC and their

non-tachocline counterparts, models CZ, is the ratio between
their volume-averaged magnetic and kinetic energies, as can be
seen in Table 1. This difference is absent in the surface layers
where the two sets of models show magnetic fields of similar
magnitude (in fact, models CZ have slightly higher values, see
Table 2). In both CZ and RC cases, the amplitude of the surface
field correlates directly with the rotation rate. Nevertheless,
because of the radial shear at the tachocline, in the RC models
the maximum mean field in that region reaches ∼1 T (104G),
as evident in the right panels of Figure 6 and Table 2 (values in
parenthesis).
As for the turbulent coefficients in these models, there is a

clear correlation between the turbulent diffusion coefficient, t0h ,
and the rotation rate, indicating that rotation quenches turbulent
diffusion. However, while Ro changes by a factor of ∼5
between the faster and slower models, t0h changes by only a
factor of ∼1.15. Similar to the models CZ, there is no
correlation between the kinetic α-effect and the rotation.
Figure 3(b) shows that the radial profiles of Ck

a are roughly the
same for the three models. They have small positive values at
the radiative zone, reach a positive maximum in the middle of
the convection zone, and change sign near the upper boundary.
On the other hand, Cm

a changes proportionally to the rotation
rate. The sign of Cm

a at the tachocline is positive, and it is the
dominant term in the total α-effect in that region. In the lower/
middle part of the convection zone the sign ofCm

a is opposite to
Ck
a , but its amplitude is small. For models RC01 and RC02 in
the upper convection zone Cm

a is negative and, because of the
low density, reaches maximum values. Similarly to models CZ,
both Ck

a and Cm
a contribute to the field generation. For the

slowest rotating model, RC03, the contribution of Cm
a is

unimportant.
Models RC develop strong radial shear at the interface

between the radiative and convective layers (Figure 3(d)). This
radial shear anticorrelates with the rotation rate, i.e., the slower
the rotation rate, the largest the shear at the tachocline. Similar
to the solar case, the radial shear at the tachocline is negative at

Figure 4. Snapshots of the mean magnetic fields, Bf (color images), and
poloidal magnetic field (contour lines) for the model CZ02. Continuous
(dashed) lines represent clockwise (counterclockwise) magnetic field direction.
The time series covers one polarity reversal (half a dynamo cycle).
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the poles and positive at the equator. According to helioseis-
mology the Sun exhibits the strongest shear at the poles,
whereas all the models in this section have the strongest shear
at the equator. The profiles of r¶ W are fairly flat in the
convection zone and negative in the NSSL at high latitudes

(Figure 3(d)). As for the latitudinal differential rotation, the fast
rotating model shows a peak at low latitudes (between 15° and
40°) followed by a flat region of zero shear at middle latitudes,
and larger gradients of Ω at latitudes above 60° (see the red line
in Figure 3(f)). Models RC02 and RC03 have profiles that are

Figure 5. Same as Figure 1 but for the models (a) RC01, (b) RC02, and (c) RC03. For these cases the temporal average is over ∼10 yr during the steady-state phase of
the simulation.
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comparable at lower and middle latitudes. However, near the
poles, the profile of model RC03 shows a stronger latitudinal
shear.
The morphology of the steady magnetic field in models

RC01 and RC03 can be described in terms of the distribution of
its source terms. For model RC01, at the tachocline, both
sources of magnetic field are small; the dynamo results in a
steady field concentrated at the equator where ¶ Wq peaks (red
dashed line in Figure 3(f)). In this region the α-effect is
possibly dominant over the Ω-effect, yet the poloidal
component of the field is ∼4 times larger than the toroidal
one. In the upper convection zone, ¶ Wq has larger values at the
equator, which explains why the field is concentrated in a band
at ±30° latitude (Figure 6(a)). The field variations do not lead
to polarity reversals, perhaps because the field at the tachocline
remains steady. For model RC03 the field reaches its saturation
after t ; 340 yr with steady magnetic fields. Since in this case
¶ Wq reaches larger values at the poles, the toroidal magnetic
field is localized at polar latitudes.
Unlike the oscillatory models without the tachocline, CZ01

and CZ02, the migration of magnetic field in model RC02 with
the tachocline cannot be explained solely in terms of the
Parker–Yoshimura rule. Because of the long cycle period of
activity, other transport processes like the meridional circula-
tion or turbulent pumping can affect the evolution of the
magnetic field. At the tachocline the migration of the field can
be explained by the Parker–Yoshimura rule (Equation (1)). The
field developed at the poles migrates equatorward, and the field
developed at the equator migrates poleward. This migrating
process can be seen in Figures 7(a)–(d), which, similarly to
Figure 4, show half of the dynamo cycle with one magnetic
field reversal illustrated in four snapshots. These dynamo
waves result from a positive α and negative (positive) values of
r¶ W at higher (lower) latitudes. The upward radial migration
from r R0.75  to r R0.90  is also in agreement with
Equation (1) for 0a¶ W >q in this region. In the upper
convective layer, above r R0.90 , there is a region of strong
magnetic field, possibly resulting from the large negative radial

Figure 6. Same as Figure 2 but for the models (a) RC01, (b) RC02, and (c) RC03. The color scales show Bf in tesla.

Figure 7. Same as Figure 4 but for model RC02.
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shear. The latitudinal migration in this region, depicted in
Figure 6(b), shows two branches of slight equatorward
migration: one branch is located between 0° and ±30° latitude,
the other one above 50° latitude. According to Equation (1)
these branches would require negative values of s; however,
this does not agree with the profiles of α and r¶ W shown in
Figures 3(b) and (d) (blue lines). The most equatorial branch of
Bf coincides with a clockwise meridional circulation cell with
an equatorward flow at the surface (Figure 5(b)). However, it is
impossible to ensure that this is the case, due to the difficulty in
disentangling the local and non-local effects contributing to the
field migration.

3.3. What Process Governs the Cycle Period?

Perhaps the most interesting difference between the
oscillatory dynamo models CZ02 and RC02 is the timescale
of the magnetic cycles (i.e., the period of the magnetic polarity
reversals). As follows from the mean-field dynamo theory, the
magnetic field grows and decays according to the values of the
inductive and diffusive terms in the induction equation
(Brandenburg & Subramanian 2005). A longstanding problem
for mean-field dynamo modelers has been to reconcile the
theoretically expected value of the turbulent diffusivity, th , with
the observed cycle period. In the solar case a mixing-length
theory (MLT) estimation of th gives values 109~ m2 s−1,
which, in turn, results in dynamo cycles with periods of 2–8 yr
(Guerrero et al. 2009) instead of the observed 22 yr.
Nonlinearities in the dependence of the turbulent diffusivity
on the large-scale magnetic field, like the so-called η-quenching
mechanism, have been explored but did not solve the problem
(Rüdiger et al. 1994; Guerrero et al. 2009; Muñoz-Jaramillo
et al. 2011). The difference in cycle period between the two
types of models found in our simulations provides an
opportunity to explore this issue.

The radial profile of the turbulent diffusion coefficient, th ,
computed using Equation (9), for both models with the solar
rotation rate, CZ02 and RC02, is depicted in Figure 8. From
this figure and the values of t0h in Table 2, it can be seen that
the profiles and values of th in the convection zone match
closely in both models. Both cases correspond to a strongly
diffusive regime with 10t

9h  m2 s−1 (in agreement with the
MLT estimate). However, model CZ02 has a cycle period of
∼2 yr, while model RC02 has a full magnetic cycle period of
∼30 yr. Furthermore, in the same figure, the dashed lines

correspond to the turbulent diffusivity of the hydrodynamic
versions of the CZ02 and RC02 models. We notice that there is
no important diffusivity quenching due to the presence of the
saturated magnetic field except for a small fraction of the radius
nearby the tachocline where the diffusivity of the magnetic
model is smaller (see the region between the vertical dotted
lines in Figure 8).
This suggests that the cycle period in model RC02 may be

determined by the value of th in the region where most of the
magnetic field is produced and stored (i.e., at and below the
tachocline), which is mainly convectively stable. (Note that th
does not tend to zero in the radiative layer but to values around
∼106m2 s−1. This reveals that the magnetic field is inducing
turbulent motions in some fraction of the radiative interior.) To
verify if this is indeed the case, we have computed the ratio
between the diffusion times for models RC02 and CZ02, as
follows:

t

t
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where L R0.96 0.72CZ ( – )=  is the length scale of the
convective layer of model CZ02, and L R0.77 0.68RC ( – )= 
is the length of the region of model RC02 where most of
magnetic field is stored (see vertical dotted lines in Figures 3(a)
and (b)); t CZhá ñ and t RChá ñ are the radially averaged values of
the turbulent diffusivity over the same lengths. Interestingly,
this rough estimation agrees fairly well with the ratio between
the cycle periods of these two types of models.
It is striking that in model RC02 the magnetic field in the

turbulent convection zone, despite the larger local values of th ,
evolves on the same timescale as the magnetic field in the most
stable layer with lower diffusivity. If such a non-local
mechanism is operating in the Sun, it could explain the 22 yr
period of the solar magnetic cycle. This does not necessarily
mean, however, that the migration of sunspots observed at the
surface is shaped by the meridional circulation at the base of
the convection zone as assumed by most of the flux-transport
dynamo models. On the contrary, the dynamo in our
simulations operates over the entire convection zone, and
several processes could influence the generation and migration
of magnetic field (e.g., the near-surface rotational shear layer,
as argued by Brandenburg 2005; Pipin & Kosovichev 2011).

3.4. Tachocline Instabilities

From Figure 8 it is evident that turbulent motions must be
present in the stably stratified layer. Such motions increase the
turbulent diffusivity by more than one order of magnitude
compared to the pure hydrodynamic model RC02 (red dashed
line). The most probable origin of this hydromagnetic
turbulence in the stable layer is the development of MHD
instabilities at and below the interface between the convective
and radiative layers. It has been suggested that these turbulent
motions could be significantly helical such that, similarly to the
flow in the convection zone, they can result in a kinetic α-effect
(e.g., Dikpati & Gilman 2001). The analysis performed in
Section 3.2 indicates that the kinetic part of the α-effect in the
stable layer is small when compared with its values at the
convection zone. Nevertheless, the magnetic contribution to α
in the radiative zone is important, as evidenced in Figure 3(b).
The development of small-scale helical magnetic structures due
to instabilities could explain the existence of this magnetic α-

Figure 8. Vertical profiles of the turbulent magnetic diffusivity, th , for models
CZ02 (blue) and RC02 (red). The dashed lines show the profiles of th for the
hydrodynamic versions of models CZ02 and RC02.
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effect. This, in turn, leads to the generation of large-scale
magnetic field (Brandenburg & Subramanian 2005).

This section does not intend to explore in detail the
development of all possible tachocline instabilities in the
simulations presented here. Such analysis has recently been
performed by Lawson et al. (2015) for one of the EULAG-
MHD simulations (Passos & Charbonneau 2014). In this
section we briefly review the nature of such instabilities, try to
identify which of them could be operating in our simulations
based on a simple energy analysis, and discuss their
contribution to the dynamo mechanism.

Tachocline instabilities have been investigated extensively
over the past decades. They can be divided into four distinct
kinds according to the energy source (Arlt 2009): (a) shear-
driven instabilities; (b) baroclinic instabilities; (c) buoyancy-
driven instabilities; and (d) current-driven instabilities. The
shear-driven instabilities (e.g., Dziembowski & Kosovi-
chev 1987; Charbonneau et al. 1999; Dikpati & Gilman 2001)
are purely hydrodynamic. Due to the latitudinal shear at the
tachocline, small perturbations can destabilize the flow given
sufficiently strong shear, e.g., more than ∼30% difference
between the equator and the pole for a 2D analysis. The 3D
stability analysis of Arlt et al. (2005) has shown that the solar
tachocline should be nearly stable, in agreement with previous
results by Garaud (2001). In the simulations presented in
Section 3.2 the difference in the angular velocity between
equator and pole is less than 10% for the models RC01 and
RC02, and about 30% for the model RC03. It seems unlikely
that this kind of instability is developing in these simulations.
Baroclinic instabilities (b) are more complex in nature. If the
transition region from subadiabatic to superadiabatic is in
thermal wind balance, horizontal (azimuthal and latitudinal)
perturbation flows can gain some thermal energy and become
unstable. Recently Gilman (2015) has demonstrated that the
magnetic field has a stabilizing effect on these growing modes.
Buoyancy-driven instabilities (c) are presumably responsible
for the emergence of magnetic flux tubes. The buoyancy force
of low-density parcels of magnetized gas is responsible for
their emergence. For toroidal field ropes stored in a stable layer,
it is generally true that the magnetic field should surpass the
equipartition field strength (see Hughes 2007, and references
therein). This is not the case in the simulations above. Strong
flux concentration could be achieved in the case of very thin
flux tubes, which would require higher grid resolutions. The
current-driven instabilities (d) appear whenever there is a large-
scale current and their energy source is the large-scale magnetic
field. Instabilities of this kind could develop without rotation
(e.g., Tayler 1973; Bonanno & Urpin 2012) or with rotation
(Pitts & Tayler 1985), or also when the rotation is differential
(e.g., Arlt et al. 2005). These latter processes, often called
magneto-shear instabilities (Cally et al. 2003), destabilize
different configurations of toroidal magnetic bands either by
opening the magnetic field lines (the so-called clamshell
instability) or by tipping the axis of the magnetic field band. In
both cases non-axisymmetric magnetic field is expected to
develop out of the axisymmetric field lines. This instability
grows for different configurations of toroidal magnetic fields
and diminishes the shear. When a latitudinal shear profile and a
toroidal field configuration are left to evolve freely, the
instability decays after the saturation (Cally et al. 2003).
However, if the system is forced, as the solar tachocline should

be, both the shear and the magnetic field adjust to a new
equilibrium state (e.g., Miesch et al. 2007).
All the ingredients for the onset of the magneto-shear

instability are present in the simulations with a radiative zone
presented above (RC models). The differential rotation is
sustained by the Reynolds stresses and, depending on Ro, it
induces different configurations of toroidal fields (which in turn
react back, readjusting the shear). At some evolutionary stage
of the simulation the conditions for the development of the
instability are present, creating small-scale flows and magnetic
field in the stable layer. As a consequence, a new adjustment
should happen until the final steady state of the simulation is
achieved.
Following Miesch et al. (2007), we study the time evolution

of the different energy sources of the stable layer to verify the
existence, and relevance, of such a small-scale, non-axisym-
metric, magnetic field. The net energies are computed as
follows (Lawson et al. 2015):
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where TME, PME, and TKE are the axisymmetric toroidal and
poloidal magnetic energies and the azimuthal kinetic energy,
respectively. NAME and NAKE stand for non-axisymmetric
magnetic and kinetic energies. The resulting evolution profiles
are presented in Figure 9. The axisymmetric toroidal (poloidal)
magnetic and kinetic energies are depicted by the continuous
black (green) and red lines; the non-axisymmetric magnetic and
kinetic energies are shown by the dashed blue and orange lines.
The results indicate that all models develop non-axisymmetric
motions and magnetic field in the stable layer, but the energy
distribution is different from model to model. Models RC01
and RC02 reach a steady state after a few years of evolution. In
the first case the toroidal magnetic field is weak and erratic in
the radiative layer (see right panel of Figures 6(a) and 9(a)).
The weakness of this component of the field in the stable layer
probably results from the inhibition of penetrative convection
by the fast rotation. The poloidal field has larger energy, which
is consistent with the presence of a non-zero α-effect in this
region (red line in Figure 3(b)).
The case of model RC02 is more interesting since there is an

important mean oscillatory toroidal field. The non-axisym-
metric magnetic field is also oscillatory and exhibits a phase lag
with respect to the toroidal field (see the vertical dashed lines
indicating particular peak times for TME and NAME). This
behavior is similar to that obtained by Miesch et al. (2007) and
Lawson et al. (2015), who observe the growth and decay of
these quantities. Nonetheless, in these works the values of
NAME and TME are similar to each other and the phase lag is
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about 2p . In the model RC02 the toroidal energy is larger than
the turbulent magnetic energy. It is noteworthy that the mean
poloidal field oscillates with a 2p phase lag with respect to the
non-axisymmetric magnetic field (i.e., when the PME grows
the NAME decays). Note also that the PME is smaller than the
NAME, which is suggestive of a magnetic α-effect giving rise
to a large-scale poloidal magnetic field. The energy of the
turbulent motions oscillates with the same phase as the
turbulent field but with lower amplitude. Finally, note also
that the mean kinetic energy is larger than the toroidal energy;
the figure indicates acceleration and deceleration of the angular
velocity in phase with the toroidal magnetic field (G. Guerrero
et al. 2016, in preparation).

The model RC03 is the one that takes longer to reach a
steady state. Since this case is the one that exhibits more
variation, in Figure 9(c) we present the entire evolution of the

energies in the stable layer. The figure shows that the small-
scale non-axisymmetric components of the kinetic and
magnetic field energy develop after the development of the
toroidal field and that the evolution of these two quantities is
closely linked (see dashed lines). The mean toroidal kinetic
energy evolves together with the mean toroidal field. When
the non-axisymmetric modes develop, the toroidal kinetic
energy grows. We interpret this behavior as the inward
transport of angular momentum, which causes the stable
region to accelerate. The poloidal magnetic energy also
develops after the establishment of MHD turbulence in the
radiative zone. After around 350 years of evolution the
rotation seems to achieve a steady state. This modifies all the
other quantities, especially the mean poloidal energy, which
grows by about two orders of magnitude in a few years. Note
that the α-effect has important positive values in the entire

Figure 9. Volume integral of the different energies in the stable region for the models (a) RC01, (b) RC02, and (c) RC03). The toroidal magnetic energy (TME) is
shown in black, the toroidal kinetic energy (TKE) in red, the poloidal field energy (PFE) in green, the non-axisymmetric magnetic field (NAMF) with the dashed blue
line, and the non-axysymmetric kinetic energy (NAKE) with the dashed orange line. The dotted lines in the middle panels highlight the phase lag between the
axisymmetric and the non-axisymmetric quantities. In the bottom panel, the dotted line shows the point from which the butterfly diagram of Figure 6(c) was plotted.
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stable layer (see the profile of α for the model RC03, the
green line in Figure 3(b), which was computed in the final
phase of the evolution).

In general, it is evident that the dynamics of the convectively
stable stratified layer increases in complexity for models with
larger Ro. This, of course, means a dependence on the unstable
region where phenomena like penetrative convection or
turbulent pumping are established. The non-axisymmetric flow
and field seem to be contributing to the generation of poloidal
field. From the FOSA analyses presented above, it is the small-
scale magnetic field that is contributing through the magnetic
α-effect. The turbulent flows in the radiative zone increase the
turbulent diffusion in this region. For the oscillatory model
RC02, it defines the cycle period of the large-scale magnetic
field in the entire domain.

4. SUMMARY AND CONCLUSIONS

We have performed global 3D MHD simulations of
turbulent convection in rotating spherical shells using the
anelastic approximation. We have used the code EULAG-
MHD, which captures the contribution of the unresolved scales
via an implicit SGS model. The main goal of this work was the
comparison of the properties of global dynamos for models of
the convective envelope only (CZ models), and models that
include a part of the radiative core below the convection zone
(RC models). The stratification is set in such a way that Ro is
roughly the same in corresponding CZ and RC models. These
simulations aimed at contributing to a broader understanding of
the amplification and dynamics of large-scale magnetic fields in
the Sun and solar-type stars. Our main conclusions are
summarized and briefly discussed below.

The resulting differential rotation profile depends on the
balance between the Coriolis, buoyancy, and Lorentz forces.
All the cases presented here develop a solar-like differential
rotation (with faster rotation at the equator and slower rotation
at the poles). This result differs from the purely hydrodynamic
simulations for which the antisolar rotation type is found as a
robust feature of slowly rotating convection (Gilman 1976;
Glatzmaier & Gilman 1982; Steffen & Freytag 2007; Käpylä
et al. 2011; Matt et al. 2011; Guerrero et al. 2013; Gastine
et al. 2014).

Nevertheless, our results are in agreement with recent global
models that obtain the transition from antisolar to solar-like
rotation due to the presence of dynamo-generated magnetic
fields (Fan & Fang 2014; Simitev et al. 2015). Also, Karak
et al. (2015) have studied the dynamo action over a broad range
of Ro and found an antisolar rotation pattern in slowly rotating
stars. In our simulations, the slowest rotating models with

2W = W , CZ03 and RC03, develop a large-scale magnetic
field whose energy is several orders of magnitude smaller than
the kinetic energy. We did not obtain a regime in which the
rotation pattern switches from solar to antisolar.

The models without a tachocline develop substantial
latitudinal differential rotation. Tilted, conical, iso-rotation
contours are obtained for the models with relatively slower
rotation (i.e., models CZ02 and CZ03). The results reproduce
remarkably well the differential rotation in the solar convection
zone, with the equator-to-60° latitude difference, 0.18c ~W
(the same as in the Sun), and also reproduce the NSSL.

Because of the highly subadiabatic stable region, the
simulations including the upper part of the radiative interior
develop a tachocline, i.e., a rotational shear layer between the

radiative and convective zones. The model with faster rotation
( 2W = W), RC01, does not develop a NSSL. The more slowly
rotating models, which have a larger influence of the buoyancy
force, RC02 (W = W) and RC03 ( 2W = W ), do develop
a NSSL.
The meridional circulation in the models with a radiative

zone shows a poleward flow at latitudes >30° and a
multicellular pattern radially distributed. This last characteristic
resembles and theoretically supports recent helioseismology
results. It is noteworthy, however, that to date no global
simulation has been able to accurately reproduce both the solar
differential rotation and the meridional circulation. The
computational difficulties in simulating the processes in the
upper part of the convection zone are perhaps the reason for the
general lack of success.
Large-scale dynamo action is observed in all models. The

differential rotation, dynamo growth rate, and magnetic field
topology depend on Ro. The dynamo solutions include both
steady and oscillatory dynamo regimes. The ratio between the
magnetic and kinetic energies increases with the rotation rate,
i.e., the smaller Ro the larger e eM K (see Table 1). Our results
partially agree with those of Petit et al. (2008) since we observe
a linear dependence of the mean magnetic energy on the
rotation rate. Furthermore, in the fast rotating model with the
tachocline, RC01, the magnetic energy is deposited in the
poloidal magnetic field. Although most of this poloidal field is
concentrated at the tachocline, this is reminiscent of the
magnetic structure of fast rotating young stars, whose
observations indicate strong poloidal fields (Gregory
et al. 2012).
Using our simulations, we have computed the inductive and

dissipative terms of the mean-field induction equation. We
notice first that in both sets of dynamo models, the inductive
term due to the radial shear is inversely proportional to the
rotation rate. The shear is localized mainly in the boundary
layers, i.e., the interface between the radiative and convective
zones, and in the upper surface. On the other hand, the
inductive term due to the latitudinal shear in the simulations
without the tachocline is proportional to Ω0. In the models
RC01, RC02, and RC03, when the rotation is fast, ¶ Wq peaks at
the equator (RC01). When the rotation is slow, ¶ Wq peaks at the
poles (RC03).
The turbulent coefficients th and α were computed using the

FOSA approximation. We observe no dependence of the
kinetic counterpart of α, ka , on Ro. However, the magnetic
counterpart ma (Equations (6) and (7)) clearly anticorrelates
with Ro, i.e., the smaller Ro, the larger the magnetic field and,
thus, the larger the small-scale current helicity. Consequently,
the magnetic α-effect, computed here via the current helicity,
could work as an inductive term in the generation of magnetic
fields. This partially agrees with the results of Vishniac &
Shapovalov (2014) in the sense that both kinetic and magnetic
parts of the α-effect may act as a source of magnetic field.
In the oscillatory dynamo models without tachocline, CZ01

and CZ02, the evolution of the field is consistent with dynamo
waves propagating according to the Parker–Yoshimura sign
rule. This is not the case, however, for the tachocline model
RC02, in which the migration of the field can be explained by
this rule only in some regions. Because the evolution of the
field in this model is slow (on a timescale of ∼30 years), other
factors like the meridional circulation and/or turbulent
magnetic pumping, could be influencing the field transport.

15

The Astrophysical Journal, 819:104 (17pp), 2016 March 10 Guerrero et al.



Though the FOSA is the simplest form of computing the
mean-field coefficients, in general terms our 3D simulation
results give support to the mean-field dynamo theory as a
formalism to explain solar and stellar dynamos. A more
sophisticated technique, such as the test-field method (e.g.,
Schrinner et al. 2005; Brandenburg et al. 2008), could provide
a better inference of these coefficients and thus allow a better
analysis.

The cycle period for the models without tachocline, CZ01
and CZ03, is short (about two years) compared to the solar
cycle. In the slow and fast rotating tachocline models, RC01
and RC03, the dynamo regimes are stationary. However, in the
model RC02, with the solar rotation rate and the tachocline, the
field is oscillatory with a period of about 30 years. This
timescale is comparable with the solar cycle; however, unlike
in the Sun, the toroidal magnetic field is symmetric across the
equator.

In the RC models, a strong toroidal magnetic field generated
by the dynamo is concentrated at or below the interface
between the convective and radiative layers. This indicates that
the main source of the magnetic field is the radial shear at the
tachocline. This effect has enormous influence on the general
evolution of the models. First, this strong magnetic field
modifies the mean-flow profiles via the Maxwell stresses; and
second, because the field is deposited in a convectively stable
region, its evolution occurs on longer timescales than in the
models without the tachocline. Despite the field production
being distributed over the simulation domain, the dynamo
period is regulated by the diffusion time of the toroidal
magnetic field in the deeper, more stable layers. The deep
seated magnetic field seems to control the evolution of the
magnetic field in the rest of the convection zone. This result
could explain a longstanding problem in mean-field modeling,
i.e., the coexistence of a highly turbulent magnetic diffusivity,
of the order of 109m2 s−1, and the 22 yr cycle period of
the Sun.

The value of the magnetic diffusivity, and so of the diffusion
time, in the stable layer is a product of the small-scale motions
generated by MHD instabilities. We have studied the temporal
evolution of the mean axisymmetric, as well as the non-
axisymmetric, kinetic and magnetic energy components. This
temporal evolution suggests that once the toroidal field is
established due to the strong radial shear, magneto-shear
instabilities develop in the radiative zone, generating turbulent
motions and magnetic fields. The results support the idea of a
magnetic α-effect as a source of poloidal field. The turbulent
motions, on the other hand, enhance the magnetic diffusivity.
Therefore, the system adjusts itself to the new quantities until a
new steady state is reached. The dynamics in the stable layer
depends on Ro: slowly rotating models exhibit more complex
behavior and take longer to achieve a steady state. In model
RC02 the turbulent motions in the stable layer define the ∼30
yr cycle period. The solar model with the tachocline of Ghizaru
et al. (2010) uses a stratification that results in slower
convective, less penetrative, motions. For that reason the cycle
period is longer that the one found here. The difference in the
cycle period between models with and without tachocline, as
well as the development of a magnetic α-effect, suggest that the
instabilities in the tachocline might be of significant importance
in the solar dynamo.

One could ask why RC models do not exhibit the same
short-period dynamo that is observed in the CZ models due to

the latitudinal shear alone. The answer lies in the backreaction
of the magnetic field on the fluid dynamics via the Lorentz
force. This influence can be easily noticed by comparing the
profiles of Ω between the models CZ02 and RC02. In
numerical experiments, not presented here, we have verified
that the strength of the toroidal magnetic field (and thus its
influence on the flow) at the tachocline can be controlled by
varying different model ingredients. The radial shear source
term is particularly sensitive to the ambient state profile, Θe.
For instance, changes in parameters such as the thickness of the
transition between radiative and convective zones, the
amplitude of the thermal oscillations, or the adiabaticity of
radiative and convective layers could result in different rotation
and dynamo patterns. The solar values of these parameters are
not fully established. We should also stress that a better
understanding of the effects of the turbulent diffusion—in
particular, the feedback of the magnetic field upon this
diffusion—is still necessary (e.g., de Gouveia Dal Pino
et al. 2012; Karak et al. 2014; R. Santos-Lima 2015, in
preparation).
We conclude that tachoclines play an important role in solar

and stellar dynamos. Modelers should be careful when
interpreting results obtained in simulations that do not include
this rotational shear layer. From this work, several new studies
seem to be promising for the understanding of the solar/stellar
rotation and magnetism. For instance, a study of mean flows
and angular momentum balance for cool stars in the presence of
magnetic fields could help us to understand the cyclic and non-
cyclic stellar activity. Models without a tachocline, which
evolve on short timescales and could be interpreted more
easily, could help in the study of the origin of stochasticity and
intermittency in turbulent flows. This will provide new insights
into the physical origin of Maunder-like solar minima. The
results are also encouraging for the study of the evolution of
rotation and magnetism in young stars.
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