
UNIVERSIDADE FEDERAL DE MINAS GERAIS

Escola de Engenharia

Programa de Pós-Graduação em Engenharia Elétrica

Priscila Fernanda da Silva Guedes

EFFICIENT FOURTH-ORDER FIXED-STEP RUNGE-KUTTA DISCRETIZATION SCHEME

FOR NONLINEAR SYSTEMS IN FLOATING-POINT AND POSIT ARITHMETIC

Belo Horizonte

2023

Priscila Fernanda da Silva Guedes

EFFICIENT FOURTH-ORDER FIXED-STEP RUNGE-KUTTA DISCRETIZATION SCHEME

FOR NONLINEAR SYSTEMS IN FLOATING-POINT AND POSIT ARITHMETIC

A thesis presented to the Graduate Program in Electrical En-

gineering (PPGEE) of the Federal University of Minas Gerais

(UFMG) in partial fulfillment of the requirements to obtain the

degree of Doctor in Electrical Engineering.

Advisor: Prof. Dr. Eduardo Mazoni Andrade Marçal

Mendes

Co-Advisor: Prof. Dr. Erivelton Geraldo Nepomuceno

Belo Horizonte

2023

Guedes, Priscila Fernanda da Silva.
G924e Efficient fourth-order fixed-step runge-kutta discretization scheme for
 nonlinear systems in floating-point and posit arithmetic [recurso eletrônico]
 / Priscila Fernanda da Silva Guedes. - 2023.
 1 recurso online (73 f. : il., color.) : pdf.

 Orientador: Eduardo Mazonni Andrade Marçal Mendes.
 Coorientador: Erivelton Geraldo Nepomuceno.

 Tese (doutorado) - Universidade Federal de Minas Gerais,
 Escola de Engenharia.

 Bibliografia: f. 66-73.
 Exigências do sistema: Adobe Acrobat Reader.

 1. Engenharia elétrica - Teses. 2. Sistemas dinâmicos - Teses. 3.
Runge-Kutta, Fórrmulas de - Teses. 4. Lorenz, Equações de - Teses. 5.
Computação - Matemática - Teses. 6. Sistemas de tempo discreto -
Teses. I. Mendes, Eduardo Mazoni Andrade Marçal. II. Nepomuceno,
Erivelton Geraldo. III. Universidade Federal de Minas Gerais. Escola de
Engenharia. IV. Título.

 CDU: 621.3(043)

 Ficha catalográfica elaborada pela Bibliotecária Roseli Alves de Oliveira CRB/6 2121
 Biblioteca Prof. Mário Werneck, Escola de Engenharia da UFMG

03/10/23, 09:24 SEI/UFMG - 2678398 - Folha de Aprovação

https://sei.ufmg.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=2891710&infra_sistema… 1/1

UNIVERSIDADE FEDERAL DE MINAS GERAIS
ESCOLA DE ENGENHARIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

FOLHA DE APROVAÇÃO

"EFFICIENT FOURTH-ORDER FIXED-STEP RUNGE-KUTTA DISCRETIZATION SCHEME FOR NONLINEAR SYSTEMS IN
FLOATING-POINT AND POSIT ARITHMETIC"

Priscila Fernanda da Silva Guedes

 Tese de Doutorado subme�da à Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação
em Engenharia Elétrica da Escola de Engenharia da Universidade Federal de Minas Gerais, como requisito para
obtenção do grau de Doutor em Engenharia Elétrica. Aprovada em 02 de maio de 2023. Por:

Prof. Ph.D. Eduardo Mazoni Andrade Marçal Mendes
DELT (UFMG) - Orientador

Prof. Dr. Erivelton Geraldo Nepomuceno

Coorientador - (Depto. of Electronic Engineering
(Maynooth University - Ireland)

Prof. Dr. Danton Diego Ferreira

Departamento de Automá�ca (UFLA)

Prof. Dr. Márcio Júnior Lacerda
Departamento de Engenharia Elétrica (UFSJ)

Prof. Dr. Janier Arias García

DELT (UFMG)

Prof. Dr. Leonardo Antônio Borges Torres
DELT (UFMG)

Documento assinado eletronicamente por Frederico Gadelha Guimaraes, Coordenador(a) de curso de pós-
graduação, em 02/10/2023, às 18:34, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto
nº 10.543, de 13 de novembro de 2020.

A auten�cidade deste documento pode ser conferida no site h�ps://sei.ufmg.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador 2678398 e o código CRC
EB0150B7.

Referência: Processo nº 23072.225517/2023-66 SEI nº 2678398

To my family.

Acknowlegements

Initially, I’d like to thank my family for their support and understanding throughout this period.

To my advisor, Eduardo, I would like to thank you for giving me this opportunity and for your

teachings, guidance and patience over these years.

I would also like to thank my co-advisor, Erivelton, for their dedication, patience and valuable con-

tributions, which were very important in defining the direction of this work.

To my colleagues, Alesi, Caio and Pedro, thank you for the discussions and the good moments during

the doctorate.

I would also like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

for the financial support during the doctoral period and PPGEE/UFMG.

“I would rather have questions that can’t be answered than answers that can’t be questioned."

Richard Feynman

Resumo

Pesquisadores têm estudado sistemas dinâmicos não lineares em diversas áreas da ciência e da en-

genharia. Utilizando para entender seu comportamento, descrito por equações diferenciais, um método

de discretização para análise numérica. Um dos métodos mais citados e conhecidos para investigar tais

sistemas é o método Runge-Kutta de quarta ordem. Embora o poder e o avanço computacional tenham

crescido rapidamente nas últimas décadas, problemas embarcados e de grande escala têm motivados

pesquisas significativas para melhorar a eficiência computacional.

Poucos estudos focaram na limitação da precisão finita em esquemas de discretização devido a efeitos

de arredondamento na representação de números de ponto flutuante. Normalmente, os resultados do

método de discretização são considerados como verdadeiros para as pesquisas, sem se importar com a

limitação computacional de representar esses termos. Portanto, o primeiro resultado desta pesquisa é

um esquema computacional para a discretização efetiva de sistemas dinâmicos não lineares. Usando

um teorema, mostra-se que os termos de alta ordem no método Runge-Kutta de quarta ordem podem ser

desprezados sem perda de precisão. Esta abordagem foi aplicada a sistemas bem conhecidos na literatura,

nomeadamente o sistema Rössler, as equações de Lorenz e o sistema Sprott B. Observou-se uma redução

significativa no número de operações matemáticas e no tempo de simulação desses sistemas, mantendo

a precisão, a observabilidade dos sistemas dinâmicos e o Maior Expoente de Lyapunov.

Posteriormente, houve a necessidade de aplicar o resultado apresentado a uma outra computação

Ou, de maneira mais geral, aritmética de número universal, que é uma alternativa à aritmética de ponto

flutuante. Portanto, o teorema aplicado à aritmética de ponto flutuante foi alterado com a precisão da

aritmética de Posit para obter o resultado efetivo da discretização ao usar a aritmética de Posit. Da

mesma forma, observou-se uma redução significativa no número de operações matemáticas, com redução

de 98,57% das operações paras as equações de Lorenz, preservando as características dos sistemas.

Além disso, com a crescente preocupação com os fatores climáticos, principalmente a pegada de

carbono, tornou-se imperativo desenvolver algoritmos mais eficientes que possam resolver problemas

com uma pegada de carbono menor. Com o teorema proposto aplicado ao método de discretização

de Runge-Kutta de quarta ordem para obter uma discretização efetiva resultando em uma redução dos

monômios, dos números de operações e do o tempo de simulação, há uma redução significativa na sua

pegada de carbono, sem sacrificar as características dos sistemas. Em particular, as equações de Lorenz

obtiveram uma redução de aproximadamente 99% na pegada de carbono utilizando a aritmética Posit.

Palavras-chave: Sistema Dinâmicos não-lineares, Discretização, Método de Runge-Kutta de Quarta

Ordem.

Abstract

Researchers have been studying nonlinear dynamical systems in several fields of science and engi-

neering. Using to understand their behavior, described by differential equations, a discretization method

for numerical analysis. One of the most widely cited and well-known methods for investigating such

systems is the fourth-order Runge-Kutta method. Although computational power and advancement have

grown rapidly in recent decades, large-scale and embedded problems have motivated significant research

to improve computational efficiency.

Few studies have focused on the limitation of finite precision in discretization schemes due to round-

ing effects in the representation of floating-point numbers. Typically, discretization method results are

considering as true for the researches, without caring about the computational limitation of represent-

ing these terms. Therefore, the first result of this research is a computational scheme for the effective

discretization of nonlinear dynamic systems. Using a theorem, it is shown that high-order terms in the

fourth-order Runge-Kutta method can be neglected without loss of precision. This approach was applied

to well-known systems in the literature, namely the Rössler system, the Lorenz equations, and the Sprott

B system. A significant reduction was observed in the number of mathematical operations and simula-

tion time of these systems while maintaining the accuracy, observability of dynamical systems, and the

Largest Lyapunov Exponent.

Subsequently, there was a need to apply the presented result to another arithmetic computation known

as Posit arithmetic. Or more generally, universal number arithmetic, which is an alternative to floating-

point arithmetic. Therefore, the theorem applied to floating-point arithmetic was altered with the pre-

cision of Posit arithmetic to obtain the effective result of discretization when using Posit arithmetic.

Similarly, a significant reduction was observed in the number of mathematical operations, with a re-

duction of 98.57% of operations for the Lorenz equations, while preserving the characteristics of the

systems.

Furthermore, with the growing concern about climate factors, particularly the carbon footprint, it has

become imperative to develop more efficient algorithms that can solve problems with a smaller carbon

footprint. With the proposed theorem applied to the fourth-order Runge-Kutta discretization method to

obtain an effective discretization resulting in a reduction of the monomials, the number of operations,

and the simulation time, there is a significant reduction in its carbon footprint without sacrificing sys-

tem features. In particular, the Lorenz equations achieved an approximately 99% reduction in carbon

footprint using Posit arithmetic.

Keywords: Nonlinear Dynamical Systems, Discretization, Fourth Order Runge-Kutta Method.

List of Symbols

𝑥𝑘+1 Recursive function;

N Set of natural numbers;

∈ It is an element of;

R Set of real numbers;

Z+ Set of non-negative integer numbers;

R+ Set of non-negative real numbers;

𝑥𝑘 Output obtained from iteration 𝑘 of a map;

�̂�𝑖,𝑘 Element of the pseudo-orbit of 𝑖, corresponding to iteration 𝑘;

𝐼 Interval;

± More or less;

𝑆 Significant or Mantissa;

× Indicates multiplication;

𝐵 Adopted basis;

𝐸 Exponent;

𝑏0 Hidden bit;

𝑏𝑛 Bits of the signifier;

𝑝 System accuracy;

𝜖 Machine epsilon;

ℓΩ,𝑘 Lower Bound Error;

𝑠 sign.

List of Abbreviations

UFMG Universidade Federal de Minas Gerais.

IEEE Institute of Electrical and Electronics Engineers.

IEEE 754 Standard for Binary Floating-Point Arithmetic.

LLE Largest Lyapunov Exponent.

LBE Lower Bound Error.

RK4 Fourth Order Runge-Kutta.

Contents

1 Introduction 16

1.1 Motivation . 18

1.2 Objectives . 19

1.3 Thesis outline and contributions . 19

2 Theoretical Foundation 20

2.1 Dynamic Systems . 21

2.1.1 Continuous Dynamic Systems . 21

2.1.2 Discrete Dynamic Systems . 21

2.1.3 Recursive Functions . 21

2.1.4 Interval Extensions . 21

2.1.5 Orbits and Pseudo-Orbits . 22

2.1.6 Lyapunov Exponent . 23

2.1.6.1 Wolf’s Algorithm . 23

2.1.6.2 Rosenstein’s Algorithm . 24

2.1.6.3 Mendes and Nepomuceno’s Algorithm 24

2.2 Observability of Dynamical Systems . 26

2.3 Fourth-Order Runge-Kutta Method . 28

2.4 Arithmetic Computing . 31

2.4.1 IEEE 754 Floating Point Standard . 32

2.4.1.1 Representation of Numbers on the Computer 32

2.4.1.2 Computational Representation in Different Formats of the IEEE 754

Standard . 33

2.4.1.3 Accuracy of a Floating Point System 33

2.4.1.4 Rounding . 34

2.4.1.5 Computational Errors . 35

2.4.2 Universal Number (Unum) . 35

2.4.2.1 Unum Type I and Type II . 35

2.4.2.2 Posit . 36

2.5 Green Algorithm . 38

3 Simulation of continuous-time systems using RK4 and floating point arithmetic (IEEE -

754) 39

3.1 Rössler System . 44

3.2 Lorenz Equations . 50

3.3 Sprott B . 52

3.4 Discussion . 54

4 Simulation of continuous-time systems using RK4 and Posit arithmetic 56

4.1 Rössler System . 58

4.2 Lorenz Equations . 60

4.3 Sprott B . 62

4.4 Discussion . 63

5 Conclusion 64

Bibliography 66

16

CHAPTER 1

Introduction

Most real systems can be described by nonlinear continuous-time models, that in turn, may be written

as a set of differential equations. For a better computational analysis and understanding of their behav-

ior, discretization methods that transform these continuous-time systems into discrete-time systems are

required. Once they are fully determined, they are almost always used in computational systems [1–6].

In the literature there are several methods of discretization, some better known and others not so much.

Methods based on the expansion of the Taylor series, such as Euler, Heunn and Runge-Kutta [7, 8] are

among the most known methods, with the fourth-order Runge-Kutta being the most cited in the literature

[9–14].

In Euler’s method there is a truncation of the Taylor series after the first term [7]. Heunn’s method,

when compared to Euler’s method, performs an extra evaluation of the function, that is, it performs a

second-order approximation, obtaining more accurate results than Euler’s method [7]. One of the most

used numerical integration methods is the fourth-order Runge-Kutta, in which there are four evaluations

of the function in each step [7, 8]. Other methods use information from the previous steps to obtain

higher-order approximations, notably the Adams – Bashforth and Adams – Bashforth – Moulton methods

[7, 15]. There are also non-standard methods, such as the Monaco and Normand-Cyrot method, which is

based on representing the solution of the system in terms of the Lie exponential expansion [16] and the

Mickens method that uses finite differences in building the model [17].

Numerical methods for nonlinear dynamical systems are expected to be accurate and efficient for

most or preferably all solutions [18]; otherwise, a technique is unreliable and therefore unlikely to be

used in applications, even if any alternative is not as accurate and efficient [18]. In other words, a method

must be robust.

There is no doubt that great advances have been made in the simulation of nonlinear dynamical sys-

tems. However, concerns about finite precision effects are still present in the literature [4, 5]. Computers

Guedes, P. F. S.

17

have properties and characteristics that result in inaccurate numerical simulations. Nepomuceno [19]

shows that the logistic map simulation may not converge to the exact fixed point due to a computer limi-

tation. This limitation comes from the finite representation of real numbers, as computers are not capable

of representing all real numbers. If an initial condition is represented, after some mathematical opera-

tions, the result may no longer be representative, so the computer rounds off each computational step,

accumulating the error in the outcome [4]. Similar results can be found in [20], where rounding errors are

under investigation in the simulations, but using a method based on range extension. Nepomuceno et al.

[21] used the lower bound error to simulate a chaotic system with lower and upper bounds. It has been

demonstrated that the widths of these limits do not diverge, which is an advantage compared to other

techniques based on arithmetic intervals [22]. Several works have been dedicated to the investigation of

the finite precision effects of the computer [4, 5, 19, 23–27].

With the advancement of research, new ideas emerge as a replacement for existing ones or simply

to complement the ideas already presented. The same happened with floating-point arithmetic; which

is governed by the IEEE (Institute of Electrical Engineering and Electronics) 754 standard for floating-

point arithmetic [28, 29], which presents rules and standards to be followed by computer and software

manufacturers in the computation treatment of floating point numbers [30].

Gustafson [31] developed an arithmetic as a replacement for floating-point arithmetic, called univer-

sal number (Unum). In particular, Posit - Unum type 3 is claimed as a possible replacement for floating

point arithmetic. Posit arithmetic offers some benefits over floating point numbers, including better dy-

namic range and accuracy in the same bit field and more accurate arithmetic calculations [32]. As it is

a new arithmetic, some studies using Posit compare their results with those presented by the IEEE. In

[33] there was a comparison of the precision representation, dynamic range and performance of imple-

mented Posit FPU (Floating-Point Unit) with IEEE 754 floating-point IP cores. Posit exhibits superiority

in precision representation and dynamic range than IEEE 754, and through further optimization of the

implementation, Posit can be a good candidate for floating-point IP cores. In [34] a comparative study

of the robustness of the 32-bit representations for Posit and IEEE-754 for machine learning was carried

out. It was shown that in 100% of the machine learning applications tested, the accuracy of the imple-

mented systems in Posit it is greater than in floating point. In [35], it was shown, by studying a neural

networks, that the use of Posit numbers allowed for the training of more complex neural networks while

still achieving similar precisions to floating point format.

The advancement of science has brought forth new developments, both in the form of new tools and

technologies, such as Posit, as well as new concerns. One of these concerns is the issue of climate change.

Guedes, P. F. S.

1.1. MOTIVATION 18

Numerous human activities, such as data centers and other sources of large-scale computing, contribute

significantly to greenhouse gas emissions, making it imperative to find ways to reduce these emissions.

In [36], software was developed to calculate the emission of greenhouse gases, without altering the

algorithms of the simulations, by estimating the emission based on the characteristics of the simulations

and the simulation time.

Quantitative estimates of the carbon footprint of urban ecosystems are crucial for developing low-

carbon policies to mitigate climate change. In [37], a model of the carbon footprint in conceptual design

based on indeterminate numbers was presented, demonstrating the effectiveness of carbon footprint cal-

culation. The authors of [38] reviewed over 195 studies related to urban carbon footprint and carbon

footprint. The ongoing problem of greenhouse gas emissions is a major concern in light of the crisis of

climate change [39, 40]. The impact of human activities on these emissions, particularly in the field of

large-scale computing, is significant and calls for immediate action to mitigate it. While various efforts

have been made to reduce these emissions, there is still a lack of understanding on how computational

precision impacts the carbon footprint of simulations [41–43].

In most articles that use discretization methods, the authors seem to assume their results are compu-

tationally sound without worrying about limitations of computers. Therefore, to fill this gap, in this work

an analysis of the discretization results will be performed taking into account the computer’s accuracy in

floating point arithmetic. With the advancement of research and knowledge about Posit arithmetic, the

same analysis of the discretization of systems will be performed, including computational accuracy and

reduction of the carbon footprint.

1.1 Motivation

As a motivation, the initial step of this research was then to analyze the simulation of continuous-

time systems. Due to characteristics of nonlinear continuous-time chaotic systems, they were used as

examples. For the simulation of these systems, their discretization was performed using methods based

on the Taylor series. In the discretization process using a well-known simulation method, the fourth-

order Runge-Kutta method, a large number of monomials was created and because of that it was decided

to focus the study on this method.

The discretization by the fourth order Runge-Kutta method presented a large amount of monomials

as an step-size raised to high numbers depending on the system under analysis. It was arbitrarily decided

to exclude monomials that presented an step-size raised to powers greater than seven, and as the results

Guedes, P. F. S.

1.2. OBJECTIVES 19

obtained it was verified that the characteristics of the systems remained the same, with this, it was con-

cluded that the computer in the calculations performed did not use these monomials. Therefore, from

this initial analysis it was possible to define the objectives of this research.

1.2 Objectives

Obtain an effective discretization of nonlinear dynamical systems when discretized by the fourth-

order Runge-Kutta method. Effective because it is possible to exclude some monomials based on the

precision of the computational arithmetic used, and yet the characteristics of continuous systems are

preserved.

The characteristics analyzed were the attractor in the xy plane, the observability and the Lyapunov

exponent. In addition to comparing quantitative characteristics, such as the number of monomials for

each equation, the number of mathematical operations performed in the simulation at each iteration,

simulation time, as well as the reduction in the carbon footprint.

1.3 Thesis outline and contributions

The Thesis’s organization and the related contributions of each chapter are:

Chapter 2 presents an overview of the main concepts used in the Thesis, such as dynamical systems,

Lyapunov exponent, observability, fourth-order Runge-Kutta and computational arithmetic.

Chapter 3 shows the theorem for obtaining an effective discretization for floating point arithmetic.

The results was published in the journal paper entitled "Effective computational discretization scheme

for nonlinear dynamical systems" [44].

Chapter 4 derives the results for Posit arithmetic, with the change in the precision value. The article

"Posit Number Impact on Carbon Footprint Reduction in Simulation of NonLinear Dynamical Systems"

was submitted for publication in a journal IEEE Access [45].

Finally, Chapter 5 presents concluding remarks and suggestions for future works.

Guedes, P. F. S.

20

CHAPTER 2

Theoretical Foundation

This chapter brings the theoretical foundation that supports the studies carried out in this thesis.

First, the study of dynamic systems is presented, exposing concepts of recursive functions, orbits and

pseudo-orbits, as well as the calculation of the Largest Lyapunov exponent. The fourth-order Runge-

Kutta method is also portrayed as a discretization method. Finally, concepts of computational arithmetic

are presented, both floating point and Posit.

The diagram of Figure 2.1 shows how these concepts will contribute to the discussion in the next

sections.

Figure 2.1: Diagram of the study.

In words, there is a continuous system under study that needs to be discretized for computational

simulation. With the discretized system (discrete system), all sorts of analyses can be performed such

as stability, controllability, observability, the number of monomials generated during the discretization

process, their computational precision and the exponents of each variable. Taking these aspects into

Guedes, P. F. S.

2.1. DYNAMIC SYSTEMS 21

account, a theorem is proposed considering the accuracy and characteristics of the computer so that there

is an effective discretization.

2.1 Dynamic Systems

According to Monteiro [46], a system can be defined as a set of objects brought together by some

interrelationship, with a cause and effect relationship existing between the elements of this set. When

the magnitudes that quantify this system vary over time, we have the concept of a dynamic system.

2.1.1 Continuous Dynamic Systems

Continuous-time dynamical systems are governed by differential equations. A system is continuous-

time if time 𝑡 is a real number. Normally, 𝑡 ∈ R+ is considered, that is, 𝑡 is a non-negative real number

[46].

2.1.2 Discrete Dynamic Systems

A discrete-time system is governed by difference equations. A system is discrete-time when time 𝑡

is an integer. Generally, 𝑡 ∈ Z+ is considered, that is, 𝑡 is a non-negative integer [46].

2.1.3 Recursive Functions

Let 𝑘 ∈ N, 𝑀 ⊂ R be a metric space, the relation

𝑥𝑘+1 = 𝑓(𝑥𝑘), (2.1)

where 𝑓 : 𝑀 → 𝑀 is the recursive function defined in state space and 𝑥𝑘 denotes the state in discrete

time 𝑘 [47].

2.1.4 Interval Extensions

The intervals are normally represented by capital letters [22]. The lower and upper bounds of an

interval 𝑋 are denoted by 𝑋 and 𝑋 , respectively.

𝑋 = [𝑋, 𝑋]. (2.2)

Guedes, P. F. S.

2.1. DYNAMIC SYSTEMS 22

For a function 𝑓 defined for a real variable 𝑥, Moore and Bierbaum [48] provided the following

definition.

Definition 1. An interval extension of f is an interval function F defined to map an interval variable X,

such that for real arguments one has

𝐹 (𝑥) = 𝑓(𝑥). (2.3)

Definition 2 ([49]). An interval function 𝐹 : IR → IR (IR is the real interval) represents the real

function 𝑓 : R → R when for all 𝑥 ∈ [𝑎, 𝑏] we have 𝑓(𝑥) ∈ 𝐹 ([𝑎, 𝑏]).

Arithmetic operations with intervals will follow the rules described by Moore and Bierbaum [48].

Example 1 ([50]). Some interval extensions of 𝑓(𝑥) = 𝑟𝑥(1 − 𝑥) can be given by:

𝐹 (𝑋) = 𝑟𝑋(1 − 𝑋)

𝐺(𝑋) = 𝑟(𝑋(1 − 𝑋)) (2.4)

𝐻(𝑋) = 𝑟𝑋 − 𝑟𝑋2

Consider 𝑟 = 3 and 𝑋 = [0.3,0.4], then we have:

𝐹 ([0.3,0.4]) = 3[0.3,0.4](1 − [0.3,0.4]) = [0.54,0.84],

𝐺([0.3,0.4]) = 3([0.3,0.4](1 − [0.3,0.4])) = [0.54,0.84],

𝐻([0.3,0.4]) = 3[0.3,0.4] − 3([0.3,0.4]2) = [0.42,0.93].

It is noteworthy that the equations in the set (2.4) are mathematically equivalent, but have different

sequences of elementary operations [51].

2.1.5 Orbits and Pseudo-Orbits

The sequence defined by {𝑥0, 𝑥1, 𝑥2, · · · , 𝑥𝑘} obtained at each iteration of a function is called the

orbit of 𝑥0 [52].

However, when a computer is used to calculate the results at each iteration of a map, we have a

pseudo-orbit. That is, an approximation of the true orbit due to computer limitations. A specific pseudo-

orbit 𝑖 ∈ N is represented by {�̂�𝑖,0, �̂�𝑖,1, · · · , �̂�𝑖,𝑘}, such that,

|𝑥𝑘 − �̂�𝑖,𝑘| ≤ 𝛿𝑖,𝑘, (2.5)

Guedes, P. F. S.

2.1. DYNAMIC SYSTEMS 23

where 𝛿𝑖,𝑘 ∈ R is an error and 𝛿𝑖,𝑘 ≥ 0. Then, an interval associated with each value of the pseudo-orbit

is defined,

𝐼𝑖,𝑘 = [�̂�𝑖,𝑘 − 𝛿𝑖,𝑘 , �̂�𝑖,𝑘 + 𝛿𝑖,𝑘]. (2.6)

From the inequation (2.5) and equation (2.6) it is evident that

𝑥𝑘 ∈ 𝐼𝑖,𝑘 for all i ∈ N. (2.7)

2.1.6 Lyapunov Exponent

The Lyapunov exponents measure the average divergence or convergence of nearby trajectories along

certain directions in state space. In chaotic systems the states of two copies of the same system will

separate exponentially with time despite very similar initial conditions [53].

The calculation of the Largest Lyapunov Exponent is considered one of the best methods for detecting

chaos in dynamic systems, because in addition to presenting a simpler and more accessible methodology

in relation to other indicator methods, it can be used to quantify how chaotic is a dynamic system, so that

the higher the exponent found, the more chaotic and less predictable is the system under analysis [54].

2.1.6.1 Wolf’s Algorithm

Wolf et al. [55] was the forerunner in investigating the exponential divergence of trajectories obtained

from very close initial conditions with the aim of calculating the Largest Lyapunov Exponent.

According to Wolf et al. [55], consider an unknown time series {𝑥(𝑡)} with 𝑁 samples and its

reconstructed version in a space of dimension 𝑑. If 𝜏 is the time delay used for reconstruction, then each

trajectory point is a d-dimensional vector of the form �⃗�(𝑡) = {𝑥(𝑡), 𝑥(𝑡 + 𝜏), 𝑥(𝑡 + 2𝜏, . . . , 𝑥(𝑡 + (𝑑 −

1)𝜏)}. If we select a point �⃗�0 that represents the state of the system at 𝑡0 and identify its closest spatial

neighbour �⃗�𝑛, then, the high density of the system trajectories in the phase space allows us to make the

assumption that these points belong to different neighbouring trajectories. Let us denote the distance

‖�⃗�0 − �⃗�𝑛‖ as 𝐿(𝑡0). If we consider these points as the initial conditions of two trajectories and let the

system evolve in time, then, at time 𝑡1 the distance between the new trajectory points �⃗�′
0 and �⃗�′

𝑛 will be

𝐿′(𝑡1) = ‖�⃗�′
0 − �⃗�′

𝑛‖. At this point, the trajectory point �⃗�′
𝑛 is substituted by another point �⃗�′

𝑚 such that

the distance 𝐿(𝑡1) = ‖�⃗�′
0 − �⃗�′

𝑚‖ is less than 𝐿′(𝑡1).

Guedes, P. F. S.

2.1. DYNAMIC SYSTEMS 24

If the algorithm reaches the last point of the trajectory, then the maximum largest Lyapunov exponent,

𝜆1, is calculated by the equation:

𝜆1 = 1
𝑡𝑀 − 𝑡0

𝑀∑︁
𝑘=1

log2
𝐿′(𝑡𝑘)

𝐿(𝑡𝑘−1) (2.8)

where 𝑡𝑀 is the time of the last substitution and 𝑀 the number of substitutions.

2.1.6.2 Rosenstein’s Algorithm

Rosenstein et al. [54] developed an algorithm based on the method by Wolf et al. [55]. The algorithm

is similar to that of Kantz [56], with the distance between the trajectories is defined as the Euclidean dis-

tance in the space of reconstructed states, also using only a neighboring trajectory. Kantz [56] mentions

that when using only one neighbor, within a neighborhood of points, can induce statistical errors in noisy

signals.

In Rosenstein’s algorithm, the Lyapunov exponent is estimated as:

𝜆1(𝑖) = 1
𝑖Δ𝑡

1
𝑀 − 𝑖

𝑀−𝑖∑︁
𝑗=1

ln
𝑑𝑗(𝑖)
𝑑𝑗(0) , (2.9)

where 𝑀 = 𝑁 − (𝑚 − 1)𝐽 , 𝐽 is the lag, 𝑚 is the embedding dimension, 𝑁 is the number of point of

the serie, Δ𝑡 is the sampling period of the time series and 𝑑𝑗(𝑖) is the distance between the 𝑗−th pair of

nearest neighbors after 𝑖 discrete-time steps.

2.1.6.3 Mendes and Nepomuceno’s Algorithm

Lower Bound Error - LBE

The lower bound error was introduced by Nepomuceno and Martins [50] and improved in Nepomu-

ceno et al. [57]. It is based on the fact that interval extensions are mathematically equivalent, but may

present different results in computer simulations, due to the representation of real numbers as floating

point numbers, as evidenced in Figure 2.2.

Example 2. Consider the Hénon map described by the equations:

𝑥𝑘+1 = 1 − 𝑎𝑥2
𝑘 + 𝑦𝑘, (2.10)

𝑦𝑘+1 = 𝑏𝑥𝑘. (2.11)

Guedes, P. F. S.

2.1. DYNAMIC SYSTEMS 25

Let be the following interval extensions:

𝐹 (𝑋𝑘) = 1 − 𝑎𝑋2
𝑘 + 𝑌𝑘 (2.12)

𝐺(𝑋𝑘) = 1 − 𝑎𝑋𝑘𝑋𝑘 + 𝑌𝑘. (2.13)

If 𝑎 = 1.4, 𝑏 = 0.3, 𝑥0 = 0.3 and 𝑦0 = 0.3.

50 100 150 200

k

-1.5

-1

-0.5

0

0.5

1

1.5

F
(X

k
),
G
(X

k
)

Figure 2.2: Free Simulation of the Hénon Map, with 𝑎 = 1.4, 𝑏 = 0.3, 𝑥0 = 0.3 and 𝑦0 = 0.3, for two
different extensions, (-x-) for 𝐹 (𝑋𝑘) and (-o-) for 𝐺(𝑋𝑘).

The interval extensions represented by Equations (2.12) and (2.13) are mathematically equivalent,

but represent a different sequence of operations. This causes the accumulated error at each iteration to

be different, as a result, after a few iterations, the interval extensions diverge.

The definition of LBE is presented in Theorem 1.

Theorem 1. Let two pseudo-orbits �̂�𝑎,𝑛 and �̂�𝑏,𝑛 derived from two interval extensions. Let 𝛿𝛼,𝑛 =

|�̂�𝑎,𝑛 − �̂�𝑏,𝑛|/2 be the lower bound error of a map 𝑓(𝑥), then 𝛿𝑎,𝑛 ≥ 𝛿𝛼,𝑛 or 𝛿𝑏,𝑛 ≥ 𝛿𝛼,𝑛.

Theorem 1 states that at least one of the two pseudo-orbits must have an error greater than or equal

to the lower bound of the error. If the LBE is greater than the required accuracy, the simulation must be

carefully analyzed. So, to guarantee the reliability of the simulations, it must be proved that at least one

of the pseudo-orbits has the necessary accuracy.

In Nepomuceno et al. [57], the LBE concept was refined. The concept of the associative property

of multiplication was used to determine the natural interval extensions. Thus, the LBE was defined as

follows:

Guedes, P. F. S.

2.2. OBSERVABILITY OF DYNAMICAL SYSTEMS 26

Theorem 2. Let {�̂�𝑎,𝑛} and {�̂�𝑏,𝑛} be two pseudo-orbits derived from two arithmetic interval exten-

sions. Let ℓΩ,𝑛 = |�̂�𝑎,𝑛 − �̂�𝑏,𝑛|/2 be the lower bound error associated to the set of pseudo-orbits

Ω = [{�̂�𝑎,𝑛},{�̂�𝑏,𝑛}] of a map, then 𝛾𝑎,𝑛 = 𝛾𝑏,𝑛 ≥ ℓΩ,𝑛.

Calculating the Largest Lyapunov Exponent

The method proposed by Mendes and Nepomuceno [53] uses the concept of lower bound error (LBE)

and consists of the following steps:

• Choose two interval extensions from the system under investigation.

• With the same initial condition, the same step-size and the same discretization scheme, simulate

the two interval extensions.

• Compute the LBE.

• Use the method of least squares to fit a line to the slope of the natural logarithm of the lower bound

error. The slope of the line is the LLE.

In the example 2, we have the simulation of the two interval extensions. So, based on this example,

Figure 2.3 shows the LBE curve for the Henon map and the associated Lyapunov exponent; the value of

the Lyapunov exponent found was 0.4062 nat/k (nat is a unit of information, based on natural logarithms)

and is in agreement with that found in the literature [58]. The Lyapunov exponent was calculated using

the method proposed by Mendes and Nepomuceno [53], in which a straight line is fitted to the LBE

curve, so that the slope of the line represents the Lyapunov exponent and the independent term represents

the maximum precision of the simulated system . The line is empirically adjusted, usually until the

simulation precision is lost.

2.2 Observability of Dynamical Systems

In the Thesis, the examples focus on systems with three dimensions, then the concept of observability

will be developed for these systems.

Let be the dynamical system

ẋ = f(x), 𝑟 = 𝑔(x), (2.14)

where x ∈ R3 is the state vector, f is nonlinear vector field and 𝑟 is the observable acquired through the

measurement function 𝑔 : R3 ↦→ R.

Guedes, P. F. S.

2.2. OBSERVABILITY OF DYNAMICAL SYSTEMS 27

0 20 40 60 80 100 120 140 160 180 200

k

-40

-30

-20

-10

0

10

ln
(|
x̂
i,
n
−
x̂
j,
n
|)

0.4062 k -40.6321

Figure 2.3: Evolution of the LBE of the Hénon Map and the associated Lyapunov exponent. Where the
𝑥 axis represents the iterations and the 𝑦 axis, the natural logarithm (𝑙𝑛) of the LBE.

The portrait that is reproduced may be spanned by the derivative coordinates, such as

𝑋 = 𝑟, 𝑌 = �̇�, 𝑊 = 𝑟. (2.15)

It is possible to define a coordinate transformation Φ, when original states (𝑥,𝑦,𝑤) and derivative

coordinates (𝑋,𝑌,𝑊) are related. If 𝑟 = 𝑥, then the transformation Φ is equivalent to

𝑋 = 𝑟, 𝑌 = 𝑓𝑟, 𝑊 = 𝜕𝑓𝑟

𝜕𝑥
𝑓𝑥 + 𝜕𝑓𝑟

𝜕𝑦
𝑓𝑦 + 𝜕𝑓𝑟

𝜕𝑤
𝑓𝑤, (2.16)

where 𝑓𝑥, 𝑓𝑦 , and 𝑓𝑤 are the components of f [59, 60].

The system can be rewritten as an explicit system

�̇� = 𝑌, �̇� = 𝑊, �̇� = 𝐹𝑟(𝑋, 𝑌, 𝑊), (2.17)

where 𝐹𝑟(𝑋,𝑌,𝑊) is the jerk equation [60–62]. For a given original system, the jerk equation 𝐹𝑟 can be

analytically derived using the coordinate transformation Φ [63].

Example 3. Let the Rössler system be represented by:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�̇� = −𝑦 − 𝑧,

�̇� = 𝑥 + 𝑎𝑦,

�̇� = 𝑏 + 𝑧(𝑥 − 𝑐).

Guedes, P. F. S.

2.3. FOURTH-ORDER RUNGE-KUTTA METHOD 28

And Φ𝑦, the transformation coordinate of the variable y, built from equations (2.15).

Φ𝑦 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑋 = 𝑦,

𝑌 = �̇� = 𝑎𝑦 + 𝑥,

𝑍 = 𝑎�̇� + �̇� = −𝑦 − 𝑧 + 𝑎𝑥 + 𝑎2𝑦.

→ Φ𝑦 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑦 = 𝑋,

𝑥 = 𝑌 − 𝑎𝑥,

𝑧 = −𝑋 + 𝑎𝑌 − 𝑍.

(2.18)

𝐹𝑟 = −𝑦 − 𝑧 + 𝑎𝑥 + 𝑎2𝑦.

The jerk equation for variable y.

𝐹𝑦 = 𝜕𝐹𝑟

𝜕𝑥
𝑓𝑥 + 𝜕𝐹𝑟

𝜕𝑦
𝑓𝑦 + 𝜕𝐹𝑟

𝜕𝑧
𝑓𝑧

= 𝑎(−𝑦 − 𝑧) + (𝑎2 − 1)(𝑎𝑦 + 𝑥) − (𝑏 + 𝑧(𝑥 − 𝑐))

= 𝑎𝑍 − 𝑌 − 𝑏 + 𝑋𝑌 − 𝑎𝑋2 − 𝑐𝑋 − 𝑎𝑌 2 + 𝑎2𝑋𝑌 + 𝑎𝑐𝑌 + 𝑌 𝑍 − 𝑎𝑋𝑍 − 𝑐𝑍.

The same is done with the variables x and z.

2.3 Fourth-Order Runge-Kutta Method

Runge-Kutta methods are a family of implicit and explicit iterative methods used as approximations

for solutions of ordinary differential equations [7].

An implicit Runge-Kutta method has the form:

𝑥𝑘+1 = 𝑥𝑘 + ℎ
𝑚∑︁

𝑖=1
𝑏𝑖𝑘𝑖, (2.19)

where

𝑘𝑖 = 𝑓

⎛⎝𝑡𝑘 + 𝑐𝑖ℎ, 𝑥𝑘 + ℎ
𝑚∑︁

𝑗=1
𝑎𝑖,𝑗𝑘𝑗

⎞⎠ , 𝑖 = 1, 2, . . . , 𝑚.

where 𝑎𝑖,𝑗 , 𝑏𝑖 and 𝑐𝑖 are constants of the numerical scheme.

The difference for the implicit method is that in the explicit method the summation in 𝑗 in this

expression goes up to 𝑖 − 1.

Fourth-order Runge Kutta (RK4) method is one of the most used and well known [8, 64] methods.

Consider the initial value problem determined by:

Guedes, P. F. S.

2.3. FOURTH-ORDER RUNGE-KUTTA METHOD 29

�̇� = 𝑓(𝑡, 𝑥), 𝑥(𝑡0) = 𝑥0, (2.20)

where 𝑥 is the state variable. Let the integration step ℎ > 0 in RK4 be expressed by:

𝑥𝑘+1 = 𝑥𝑘 + ℎ

6 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) , (2.21)

where

𝑘1 = 𝑓𝑘,

𝑘2 = 𝑓(𝑡𝑘 + ℎ

2 , 𝑥𝑘 + ℎ

2 𝑘1),

𝑘3 = 𝑓(𝑡𝑘 + ℎ

2 , 𝑥𝑘 + ℎ

2 𝑘2), (2.22)

𝑘4 = 𝑓(𝑡𝑘+1, 𝑥𝑘 + ℎ𝑘3).

For systems that do not depend on time explicitly, a discrete model can be directly written from the

continuous counterpart. Therefore, the equations (2.22) can be rewritten as follows, which will be used

in this thesis.

𝑘1 = 𝑓𝑘,

𝑘2 = 𝑓(𝑥𝑘 + ℎ

2 𝑘1),

𝑘3 = 𝑓(𝑥𝑘 + ℎ

2 𝑘2), (2.23)

𝑘4 = 𝑓(𝑥𝑘 + ℎ𝑘3).

Example 4. Consider the discretization of the following system:

⎧⎪⎪⎨⎪⎪⎩
�̇� = 𝑦,

�̇� = −𝑥 + 𝑦.

(2.24)

Guedes, P. F. S.

2.3. FOURTH-ORDER RUNGE-KUTTA METHOD 30

For the variable 𝑥 we have:

𝑘1𝑥 = 𝑓(�̇�) = 𝑦,

𝑘2𝑥 = 𝑓(�̇� + ℎ

2 �̇�) = 𝑦 + 1
2ℎ𝑦 − 1

2ℎ𝑥,

𝑘3𝑥 = 𝑓(�̇� + ℎ

2 �̇� + ℎ2

4 �̇� − ℎ2

4 �̇�) = 𝑦 − 1
2ℎ𝑥 + 1

2ℎ𝑦 − 1
4ℎ2𝑥,

𝑘4𝑥 = 𝑓(�̇� + ℎ�̇� − ℎ2

2 �̇� + ℎ2

2 �̇� − ℎ3

4 �̇�) = 𝑦 − ℎ𝑥 + ℎ𝑦 − 1
2ℎ2𝑥 − 1

4ℎ3𝑦.

Then,

𝑥𝑘+1 = 𝑥𝑘 + ℎ

6 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) = 𝑥𝑘 + ℎ𝑦𝑘 + 1
2ℎ2𝑦𝑘 − 1

2ℎ2𝑥𝑘 − 1
6ℎ3𝑥𝑘 − 1

24ℎ4𝑦𝑘. (2.25)

Likewise, for the variable y we have:

𝑘1𝑦 = 𝑓(�̇�) = −𝑥 + 𝑦,

𝑘2𝑦 = 𝑓(�̇� + ℎ

2 (−�̇� + �̇�)) = −𝑥 + 𝑦 − 1
2ℎ𝑥,

𝑘3𝑦 = 𝑓(�̇� + ℎ

2 (−�̇� + �̇� − ℎ

2 �̇�)) = −𝑥 + 𝑦 − 1
2ℎ𝑥 − 1

4ℎ2𝑦,

𝑘4𝑦 = 𝑓(�̇� + ℎ(−�̇� + �̇� − ℎ

2 �̇� − ℎ2

4 �̇�)) = −𝑥 + 𝑦 − ℎ𝑥 − 1
2ℎ2𝑦 + 1

4ℎ3𝑥 − 1
4ℎ3𝑦.

Then,

𝑦𝑘+1 = 𝑦𝑘 + ℎ

6 (𝑘1 +2𝑘2 +2𝑘3 +𝑘4) = 𝑦𝑘 −ℎ𝑥𝑘 +ℎ𝑦𝑘 − 1
2ℎ2𝑥𝑘 − 1

6ℎ3𝑦𝑘 + 1
24ℎ4𝑥𝑘 − 1

24ℎ4𝑦𝑘. (2.26)

Therefore, the discretization of the continuous-time system using the RK4 method can be given by

⎧⎪⎪⎨⎪⎪⎩
𝑥𝑘+1 = 𝑥𝑘 + ℎ

6 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) = 𝑥𝑘 + ℎ𝑦𝑘 + 1
2ℎ2𝑦𝑘 − 1

2ℎ2𝑥𝑘 − 1
6ℎ3𝑥𝑘 − 1

24ℎ4𝑦𝑘,

𝑦𝑘+1 = 𝑦𝑘 + ℎ
6 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) = 𝑦𝑘 − ℎ𝑥𝑘 + ℎ𝑦𝑘 − 1

2ℎ2𝑥𝑘 − 1
6ℎ3𝑦𝑘 + 1

24ℎ4𝑥𝑘 − 1
24ℎ4𝑦𝑘.

(2.27)

By iterating Eq. (2.27), the Runge-Kutta solution of the system in Eq. (2.24) is obtained. Note that

the discrete model is rather complex when compared to the continuous counterpart.

In the next example, a non-linearity in the variable 𝑦 dynamics will be considered.

Guedes, P. F. S.

2.4. ARITHMETIC COMPUTING 31

Example 5. Consider the following system:

⎧⎪⎪⎨⎪⎪⎩
�̇� = 𝑦,

�̇� = 𝑥2 + 𝑦.

(2.28)

Applying Eq. (2.21) and Eq. (2.23) to Eq. (2.28) yields to the following nonlinear discrete Runge-

Kutta model.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥𝑘+1 = (𝑥2
𝑘+𝑦𝑘)2

ℎ6

96 + (4𝑥2
𝑘𝑦𝑘+6𝑦2

𝑘)ℎ5

96 + (8𝑦2
𝑘+(16𝑥𝑘+4)𝑦𝑘+8𝑥3

𝑘+4𝑥2
𝑘)ℎ4

96 +

+((32𝑥𝑘+16)𝑦𝑘+16𝑥2
𝑘)ℎ3

96 + (48𝑥2
𝑘+48𝑦𝑘)ℎ2

96 + ℎ𝑦𝑘 + 𝑥𝑘

𝑦𝑘+1 = ℎ9𝑦4
𝑘

384 + ((8𝑥𝑘+4)𝑦3
𝑘+4𝑥2

𝑘𝑦2
𝑘)ℎ8

384 +

+(8𝑦3
𝑘+(24𝑥2

𝑘+16𝑥𝑘+4)𝑦2
𝑘+(16𝑥3

𝑘+8𝑥2
𝑘)𝑦𝑘+4𝑥4

𝑘)ℎ7

384 +

+(16𝑦3
𝑘+(32𝑥𝑘+20)𝑦2

𝑘+(32𝑥3
𝑘+40𝑥2

𝑘)𝑦𝑘+20𝑥4
𝑘)ℎ6

384 +

+((80𝑥𝑘+80)𝑦2
𝑘+96𝑥2

𝑘𝑦𝑘+24𝑥4
𝑘)ℎ5

384 +

+(128𝑦2
𝑘+(160𝑥2

𝑘+96𝑥𝑘+16)𝑦𝑘+64𝑥3
𝑘+16𝑥2

𝑘)ℎ4

384 +

+(128𝑦2
𝑘+(256𝑥𝑘+64)𝑦𝑘+128𝑥3

𝑘+64𝑥2
𝑘)ℎ3

384 +

+((384𝑥𝑘+192)𝑦𝑘+192𝑥2
𝑘)ℎ2

384 + (384𝑥2
𝑘+384𝑦𝑘)ℎ

384 + 𝑦𝑘

(2.29)

It is important to point out that the variable x presented a linear component, but with the discretiza-

tion several non-linear components were introduced. For the variable y that had only one non-linear

component, other non-linear components were introduced. Furthermore, comparing the continuous sys-

tem and the discrete system, it can be stated that the discrete system is more complex, taking into account

the amount of monomials and nonlinearities.

2.4 Arithmetic Computing

Most numerical problems are solved using computational tools. However, computers are not able to

represent all real numbers, resulting in divergent results. Therefore, this section presents some essen-

tial points of the IEEE 754 floating point standard [28], responsible for guaranteeing standards for the

representation and operations with real numbers in computers.

Guedes, P. F. S.

2.4. ARITHMETIC COMPUTING 32

2.4.1 IEEE 754 Floating Point Standard

Floating point arithmetic have been used in computers since the mid-1950s. From that date on,

each company adopted a different standard, resulting in program incompatibility on different machines.

In order to solve this problem, in the 1970s and 1980s, scientists and engineers, led by the Institute of

Electrical and Electronics Engineers – IEEE, developed a standard for representing and operating floating

point numbers [30] .

Therefore, the IEEE 754 standard presents rules and standards to be followed by computer and

software manufacturers in the treatment of computational arithmetic for floating point numbers. Some

of these concepts will be detailed below.

2.4.1.1 Representation of Numbers on the Computer

A real number is represented on the computer as floating point number. The term "floating point" is

due to the fact that the decimal point of the number moves to the position after the first non-null digit

[65]. A number 𝑥 is represented as floating point number as follows:

𝑥 = ±𝑆 × 𝐵𝐸 , (2.30)

where 𝑆 is called the signifier or mantissa, 𝐸 is the exponent and 𝐵 is the base used.

Most current computers use the binary base (𝐵 = 2), but to facilitate the iteration of man with the

machine, the computer converts numerical values from the decimal input, in addition to converting the

output to decimal, regardless of the base used [66].

In current computers that follow the IEEE 754 standard, base 2 is used internally, with digits 0 and 1

[67]. The binary expansion of the signifier of a non-zero number 𝑥 is given by

𝑆 = (𝑏0, 𝑏1𝑏2...) with 𝑏0 = 1. (2.31)

The IEEE 754 standard determines that the first bit of the signifier is always different from zero, as

seen in the equation (2.31). Usually, this first bit is called a hidden bit because the computer does not

use its memory to store it. The number zero cannot be normalized and has a special representation, with

zero mantissa and the lowest possible exponent [68].

Guedes, P. F. S.

2.4. ARITHMETIC COMPUTING 33

2.4.1.2 Computational Representation in Different Formats of the IEEE 754 Standard

The IEEE 754 standard specifies two essential formats: the single format, which uses 32 bits, and the

double format which uses 64 bits. The single format has 1 bit for the sign, 8 bits for the exponent and 23

bits for the signifier. While the double format provides 1 bit for the sign, 11 bits for the exponent and 52

bits for the signifier. The sign bit is 0 for positive numbers and 1 for negative numbers [30]. Table 2.1

presents the arrangement of bits.

Table 2.1: Bit arrangement according to IEEE standard for 32 and 64 bit systems.

System Signal (±) Exponent (E) Mantissa (S)
single (32 bits) 1 bit 8 bits 23 bits
double (64 bits) 1 bit 11 bits 52 bits

The exponent uses a biased representation. For the single format, the exponent is the binary repre-

sentation of 𝐸 + 127. The range of 𝐸 goes from binary number from 1 to 254, which corresponds to

𝐸𝑚𝑖𝑛 = −126 and 𝐸𝑚𝑎𝑥 = 127 [69].

The range of values the single format can represent goes from approximately 1.2 × 10−38 to 3.4 ×

1038, while the 64-bit system presents a range of values from approximately 2.2×10−308 to 1.8×10308.

Numbers that are smaller than the smallest possible value to be represented by the format are consid-

ered equal to zero by the computer (this rounding is called underflow). Similarly, numbers that exceed the

upper limit are considered infinite and this event is called overflow. This range of values is symmetrical,

valid for both positive and negative numbers [28].

2.4.1.3 Accuracy of a Floating Point System

The precision of a floating point system is associated with the amount of bits representable by the

format, given by the number of bits of the signifier, including the hidden bit [30]. A floating point with

precision 𝑝 can be expressed by:

𝑥 = ±(1,𝑏1𝑏2...𝑏𝑝−2𝑏𝑝−1)2 × 2𝐸 . (2.32)

Using this representation, the following definition about precision is presented.

Definition 3. Precision (𝜌) denotes the number of bits of the mantissa. The double precision (𝜌 = 53)

corresponds to approximately 𝜌10 = log10(253) ≈ 16 decimal digits [30].

The smallest floating point 𝑥 greater than 1 is given by:

Guedes, P. F. S.

2.4. ARITHMETIC COMPUTING 34

(1,00...01)2 = 1 + 2−(𝑝−1). (2.33)

The distance between this number and 1 is called the machine’s epsilon (𝜖):

𝜖 = (0,000...01)2 = 2−(𝑝−1). (2.34)

2.4.1.4 Rounding

A real number in the IEEE 754 floating point standard can be expressed by 𝑥 = ±(𝑏0,𝑏1𝑏2...𝑏𝑝−2𝑏𝑝−1)2×

2𝐸 , where p is system precision, 𝑏0 = 1 and 𝐸𝑚𝑖𝑛 ≤ 𝐸 ≤ 𝐸𝑚𝑎𝑥 for a normalized number or 𝑏0 = 0 and

𝐸 = 𝐸𝑚𝑖𝑛 for a subnormalized number.

𝑁𝑚𝑖𝑛 and 𝑁𝑚𝑎𝑥 are denoted as the smallest and largest normalized positive values that the machine

can represent, respectively. According to Overton [30], a real number is not a floating point if either of

the two statements are true:

• x is outside the normalized range, i.e. it is greater than 𝑁𝑚𝑎𝑥, less than −𝑁𝑚𝑎𝑥, is between 0

and 𝑁𝑚𝑖𝑛 or even between −𝑁𝑚𝑎𝑥 and 0. For example, 𝑥 = 2130 or 𝑥 = 2−130 are outside the

normalized range on a system that adopts the 32-bit single format.

• Binary number expansion requires more than p bits to specify exactly what number, i.e. the floating

point precision p is not enough to represent the number x exactly. For example the number 𝑥 =

1 + 2−25 = (1.0000000000000000000000001)2 requires more bits than the single format allows.

In both cases, it is necessary to approximate x by a different representation of the original real number,

rounding this value to a floating point. According to the IEEE 754 standard [28], rounding the number x

can be performed following one of the rules below:

• Round to nearest: the real number x is rounded to the nearest floating point.

• Negative or rounding down: the real number x is rounded to the nearest smaller floating point.

• Round positive or up: the real number x is rounded to the closest floating point that is greater.

• Rounding towards zero: works the same as negative rounding if 𝑥 > 0 and positive rounding if

𝑥 < 0.

Guedes, P. F. S.

2.4. ARITHMETIC COMPUTING 35

Rounding to the nearest is generally adopted as the rounding standard and, if the nearest floating

points are equally distanced from the real number, the one with the last significant bit equal to zero is

chosen. The notation used to demonstrate the rounding of x will be round(x) and if x is floating point

then round(x) = x.

2.4.1.5 Computational Errors

Even before the invention of the computer, error analysis and care with numerical precision have

been a relevant subject [70]. With the use of the computer, there were significant advances in numerical

methods involving this area [71]. Although many programs and algorithms present results with precision,

it can happen that computational errors considerably influence the numerical computation results [72].

The difference between the main types of computational errors is important for understanding the

behavior of numerical algorithms and the factors that affect the accuracy of the results. Computational

errors can be divided into truncation errors and rounding errors [66].

2.4.2 Universal Number (Unum)

The universal number was created based on the principles of floating point (IEEE-754), but differs

from this one in the ability to vary the precision and number of bits, and also determines whether a

number is exact or within a range. This section aims to understand Posit (Unum type III).

2.4.2.1 Unum Type I and Type II

The concept of unum was proposed by Gustafson [31] as an alternative to IEEE floating point arith-

metic.

Unum type I can represent either an exact floating point or an open gap between two adjacent floating

points, when the computer cannot provide an exact result. For this, unum includes an uncertainty bit

(ubit) as a value of 0 for exact result, and 1 otherwise.

The rest of the unum Type I format is similar to the IEEE-754 floating point scheme [28], which

features the sign, exponent, and fraction (or mantissa) bits. Also, in unum format, it presents fields for

exponent and fraction length. The components of the unum Type I format are presented in the Definition

4, which can also be seen in Figure 2.4.

Definition 4 ([31]). A unum is a variable-length bit string that has six subfields: Sign Bit, Exponent,

Fraction, Uncertainty Bit, Exponent Size, and Fraction Size.

Guedes, P. F. S.

2.4. ARITHMETIC COMPUTING 36

Therefore, unum can be represented as:

Figure 2.4: Unum Type I. Source [31].

The last two fields indicate the number of bits in the exponent and the fraction, allowing both to

change with each calculation.

The unum Type II format was proposed with the aim of solving some problems presented by Type I,

such as the fact that certain values can be represented in different ways. Thus, this Type II is no longer

compatible with IEEE-754.

Unum Type II is based on mapping values onto the real projective line, which is the set R̂ = R∪{∞}.

The key concept is that the point where signed (two’s complement) numbers change from positive to

negative was defined to be the point where positive real numbers turn into negative numbers, and the

same ordering, and that point represents the value ±∞. The Type II format is shown in Figure 2.5. The

first quadrant (upper right) presents an ordered set of real numbers, while the fourth quadrant (upper left),

the negative numbers.

The bottom half of the circle contains the reciprocals of the numbers in the top half, a reflection of

the horizontal axis. In this way, given a certain value, we can obtain the opposite and reciprocal values

by vertical and horizontal reflections, respectively.

Unum Type II has a representation limitation to 20 bits, for current technology [32]. With this, the

Type III format (Posit) was developed.

2.4.2.2 Posit

Posit is based on Type II, which uses the real projective line, but the implementation in hardware

is similar to the logic used in IEEE-754 floating point arithmetic [73]. This is achieved by relaxing the

perfect reflection rule for obtaining the reciprocals. In Posit this rule is only for the 0, ±∞ and integer

powers of 2 [32]. Therefore, all numbers are of the form 𝑚 · 2𝑘, where 𝑚 and 𝑘 are integers, and there

are no open intervals.

The structure of Posit with 𝑛 bits and 𝑒𝑠 exponent bits is shown in Figure 2.6. The Posit format is

formed by the sign, regime, exponent and fraction (mantissa) fields.

Guedes, P. F. S.

2.4. ARITHMETIC COMPUTING 37

Figure 2.5: Unum Type II. Source [32].

Figure 2.6: Generic posit format for finite, nonzero values. Source [31].

Figure 2.7: Decimal values of regime bits. Source [31].

The regime field is unique to this format. It is used to calculate a scale factor named 𝑢𝑠𝑒𝑒𝑑𝑘, where

𝑢𝑠𝑒𝑒𝑑 = 22𝑒𝑠
. The 𝑘 value is determined by the number of identical bits, terminated with an opposite bit,

if any. Let 𝑚 be the number of identical bits; if the regime field consists of leading 0’s, then 𝑘 = −𝑚; if

they are 1, then 𝑘 = 𝑚 − 1.

The bits of the exponent (blue color coded) encode the value 𝑒 and represent the scale factor 2𝑒. As

the regime length is variable, there can be up to 𝑒𝑠 exponent bits, as the first bit of this field is located

right after the regime field (therefore, there is a possibility that there are no exponent bits).

The remaining bits after the exponent correspond to the fraction field and represent the fraction value

𝑓 .

The decimal value of a Posit is given by:

Guedes, P. F. S.

2.5. GREEN ALGORITHM 38

(−1)𝑠 × 𝑢𝑠𝑒𝑒𝑑𝑘 × 2𝑒 × 𝑓, (2.35)

where 𝑠 is the sign bit, 𝑘 is the integer represented by the regime bits, 𝑒 is the integer represented by the

exponent bits, and 𝑓 is the fraction (including the hidden bit, which is always 1).

Consider the example of representing the number 3.55383×10−6 in posit, taken from the book [31].

Example 6. Representation of the number 3.55383 × 10−6 in Posit.

Figure 2.8: Example of a posit number.

(−1)𝑠𝑖𝑔𝑛 × 𝑢𝑠𝑒𝑒𝑑𝑘 × 2𝑒 × 𝑓, (2.36)

where 𝑢𝑠𝑒𝑒𝑑 = 223 = 256, 𝑘 = −3, 𝑒 = 5 and 𝑓 = 1 + 221/256.

2.5 Green Algorithm

Several human activities are responsible for significant greenhouse gas emissions, including data

centers and other sources of large-scale computing. While many important scientific milestones have

been reached thanks to the development of high-performance computing, the resulting environmental

impact is underestimated. In Lannelongue et al. [36], a methodology for the carbon footprint of any

computational activity is presented. An online tool was developed called Green Algorithm, in which

with minimal information it is possible to estimate the carbon footprint of computer simulations. The

program needs basic information from the computer on which the algorithm is being simulated, such as

the processor and memory, as well as the simulation time and from this data it is possible to estimate the

carbon footprint.

Guedes, P. F. S.

39

CHAPTER 3

Simulation of continuous-time systems using
RK4 and floating point arithmetic (IEEE -

754)

This chapter brings the simulation of continuous systems that will be discretized by the fourth order

Runge-Kutta method, the result of this discretization will be simulated in floating point arithmetic. Due

to the discretization result and computational precision, some monomials may be excluded based on

Theorem 3 that will be presented below, but first some definitions will be presented to substantiate and

understand the proposed theorem.

Definition 5. Monomial is an algebraic expression formed by a real number, or a variable, or by a

multiplication of numbers (coefficients) and variables.

Example 7. The algebraic expressions in (3.1)-(3.4) are examples of monomials

2, (3.1)

4.7 × 10−3, (3.2)

5𝑥2𝑦, (3.3)

3.2 × 102𝑥𝑦𝑧. (3.4)

Addition and subtraction of numbers in scientific notation can only be performed when there are

equal exponents. The monomial in (3.2) can be represented by mantissa (𝑆 = 4.7), base (𝐵 = 10) and

exponent (𝐸 = −3).

Guedes, P. F. S.

40

Example 8. Consider three monomials,

𝑥1 = −1.2 × 102, (3.5)

𝑥2 = 2.5 × 103, (3.6)

𝑥3 = 3.3 × 10−1. (3.7)

To add them, it is necessary to convert their representations to the same exponent. In this case, the

conversion is performed for the highest value exponent (E = 3).

𝑆 = 𝑥1 + 𝑥2 + 𝑥3

= −0.12 × 103 + 2.5 × 103 + 0.00033 × 103

= (−0.12 + 2.5 + 0.00033) × 103

= 2.38033 × 103.

The key point is to analyse monomials of systems discretized by the fourth-order Runge-Kutta

method. As some monomials can be of high-order, it can be noticed that round-off operation may turn

some of these monomials negligible. Thus, it is possible to safely determine that such monomials may

be excluded or not. The result of excluding monomials is presented in the following theorem.

The theorem is general for any computational arithmetic, being necessary to consider the precision

value of each arithmetic. That is, just adjust the value of 𝜌 in base 10. For the proof of the theorem,

floating point arithmetic for the double format (IEEE-754 2019) was considered.

Theorem 3 ([44]). Let 𝛾 be a set of monomials, that is, 𝛾 = {𝛼110𝛽1 , 𝛼210𝛽2 , . . . , 𝛼𝑛10𝛽𝑛}, with

1 ≤ 𝛼𝑛 ≤ 9 and with 𝛽𝑛 > 𝛽𝑛−1 > 𝛽𝑛−2 > . . . > 𝛽1. Let Ω be the set of differences between 𝛽𝑛

and other exponents, that is, Ω = {Ω1, Ω2, . . . , Ω𝑛−1} = {(𝛽𝑛 − 𝛽1), (𝛽𝑛 − 𝛽2), . . . , (𝛽𝑛 − 𝛽𝑛−1)}. If

Ω𝑖 > 𝜌, then the monomial 𝛾𝑖 may be excluded in the implementation of the discretization scheme.

Proof. Definition 3 shows that a number represented in the decimal base for double precision is approx-

imately 𝜌 ≈ 16 decimal digits. Then, if the necessary adjustment to perform the sum (or subtraction) is

greater than 16, the number will be represented by zeros multiplied by 10𝛽 , that is, 0.0000000000000000×

10𝛽 , which confirms its exclusion. This rationale can be applied for any number of bits or decimal dig-

its.

Guedes, P. F. S.

41

Example 9. Consider the following equation

𝑋 = 0.05 + 6.5104 × 10−20 − 3.90625 × 10−10

= 5 × 10−2 + 6.5104 × 10−20 − 3.90625 × 10−10

According to Theorem 3, the set of monomials are as follows:

𝛾1 = 𝛼110𝛽1 = 6.5104 × 10−20

𝛾2 = 𝛼210𝛽2 = −3.90625 × 10−10

𝛾3 = 𝛼310𝛽3 = 5.0 × 10−2.

The set Ω is given by

Ω1 = 𝛽3 − 𝛽1 = −2 − (−20) = 18

Ω2 = 𝛽3 − 𝛽2 = −2 − (−10) = 8.

Since Ω1 > 16 (for double precision), 𝛾1 may be excluded without loss of accuracy. This is verified in

Eq. (3.8). Fig. 3.1(a) and 3.1(b) present this operation using Matlab for long and hexadecimal formats,

respectively. As it can be seen, the hexadecimal remains the same after the exclusion of the monomial.

𝑋 = 5 × 10−2+0.0000000000000000 × 10−2

−0.0000000390625 × 10−2 (3.8)

= 4.9999999609375 × 10−2

To show what happens when there are monomials with the same exponent value, an example is now

given (Example 10).

Example 10. Consider the following equation

𝑋 = 0.04 + 6.5 × 10−20 − 3.9 × 10−10 + 0.02

= 5 × 10−2 + 6.5 × 10−20 − 3.9 × 10−10 + 2 × 10−2

Guedes, P. F. S.

42

(a) Format Long (b) Format Hexadecimal

Figure 3.1: Example 9 was run on Matlab™. The result is presented in long and hexadecimal formats,
as described in Eq. (3.8). The exclusion of monomial 𝛾1 = 6.5104 × 10−20 does not change the final
result.

According to Theorem 3, the set of monomials are as follows:

𝛾1 = 𝛼110𝛽1 = 6.5 × 10−20

𝛾2 = 𝛼210𝛽2 = −3.9 × 10−10

𝛾3 = 𝛼310𝛽3 = 2.0 × 10−2

𝛾4 = 𝛼410𝛽4 = 5.0 × 10−2.

The set Ω is given by

Ω1 = 𝛽4 − 𝛽1 = −2 − (−20) = 18

Ω2 = 𝛽4 − 𝛽2 = −2 − (−10) = 8

Ω3 = 𝛽4 − 𝛽3 = −2 − (−2) = 0.

Since Ω1 > 16 (for double precision), 𝛾1 may be excluded without loss of accuracy. The mono-

mial represented by Ω3 will be kept in the representation, since only monomials where Ω > 16 will be

excluded.

Based on Theorem 3 and on the examples above, one can summarize the steps to obtain an effective

discretization in:

1. Discretization of the continuous system by the fourth-order Runge-Kutta method;

Guedes, P. F. S.

43

2. Apply to each monomial the values of the initial conditions, parameters and step-size, in order to

obtain a numeral monomial in base 10;

3. Evaluate each of the monomials based on the Theorem 3 and exclude the monomials that do not

respect the precision;

4. Get the effective discretization.

First, the continuous system is discretized using the fourth-order Runge-Kutta method in the Maple

software, version 18. The result of the discretization will be symbolic, that is, depending on the variables,

parameters and step-size.

For floating point arithmetic (IEEE-754 2019), the discretization result will be transferred to Matlab

software, version R2016a - 64 bits. For each function (𝑥𝑘+1, 𝑦𝑘+1, 𝑧𝑘+1) a vector will be created, which

each position of the vector will be occupied by a monomial resulting from the dicretization. Once this is

done, the initial condition, parameters and step-size will be considered, in order to obtain monomials in

base 10. Afterwards, it is possible to exclude some monomials based on the Theorem 3.

The proposed approach is illustrated for three systems: the Rössler system [74], the Lorenz equations

[75] and Sprott B [76]. For each system, the reduced RK4 based on floating point arithmetic, here named

as RRK4, according to Theorem 3 is calculated. The quality of RRK4 is evaluated by means of the

observability of the dynamical systems, plot of the projections on the 𝑥𝑦 plane of the discretized systems

and computation of the largest Lyapunov exponent. The step size ℎ is chosen according to the usual

values found in the literature. In addition, all parameters used for the systems under study are shown in

Table 3.1.

Table 3.1: Parameters of the systems under study. 1) Rössler: (𝑥0, 𝑦0, 𝑧0) = (−1.0, 1.0, 1.0), 𝑎 = 0.15,
𝑏 = 0.20 and 𝑐 = 10.0, and step-size 10−2; 2) Lorenz: (𝑥0, 𝑦0, 𝑧0) = (1.0, 0.5, 0.9), 𝜎 = 16.0, 𝛽 = 4.0,
𝜌 = 45.92, ℎ = 10−3; 3) Sprott B: (𝑥0, 𝑦0, 𝑧0) = (0.05, 0.05, 0.05) and ℎ = 10−2.

System Initial condition (𝑥0, 𝑦0, 𝑧0) Parameters Step-size

Rössler (−1.0, 1.0, 1.0) 𝑎 = 0.15, 𝑏 = 0.20 and 𝑐 = 10.0 10−2

Lorenz (1.0, 0.5, 0.9) 𝜎 = 16.0, 𝛽 = 4.0, 𝜌 = 45.92 10−3

Sprott B (0.05, 0.05, 0.05) - 10−2

Guedes, P. F. S.

3.1. RÖSSLER SYSTEM 44

3.1 Rössler System

Let the Rössler system be represented by [74]:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�̇� = −𝑦 − 𝑧,

�̇� = 𝑥 + 𝑎𝑦,

�̇� = 𝑏 + 𝑧(𝑥 − 𝑐),

(3.9)

where bifurcation parameters are described by (𝑎,𝑏,𝑐). Rössler equations were discretized by the Runge-

Kutta scheme of fourth-order. Theorem 3 was applied considering initial condition (𝑥0, 𝑦0, 𝑧0) =

(−1.0, 1.0, 1.0), parameters 𝑎 = 0.15, 𝑏 = 0.20 and 𝑐 = 10.0, and step-size of 10−2. The number

of monomials for each equation of the Rössler system is shown in Table 3.2. RK4 represents the dis-

cretization performed by the fourth-order Runge-Kutta method, and RRK4 represents the fourth-order

Runge-Kutta method when Theorem 3 is applied and some terms are excluded.

Table 3.2: Number of monomials for each of the discretized equations for the systems Lorenz, Rössler
and Sprott B. The comparison is made between conventional RK4 and Reduced RK4 (RRK4). The high-
est reduction in the number of monomials occurs for the Lorenz equations, where the total is decreased
in 75.5%.

Equations Rössler Lorenz Sprott B
RK4 RRK4 RK4 RRK4 RK4 RRK4

𝑥𝑘+1 117 101 116 79 175 41
𝑦𝑘+1 38 38 886 192 38 26
𝑧𝑘+1 903 290 963 210 167 37

The exclusions of monomials are related to the observability of the equations. To investigate the

observability of each dynamical variable, it is necessary to begin with a measurement component so that

𝑟 = 𝑔(𝑥,𝑦,𝑧) = 𝑦. The coordinate transformation Φ𝑦 peruses at that point as

Φ𝑦 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑋 = 𝑦,

𝑌 = 𝑎𝑦 + 𝑥,

𝑍 = −𝑦 − 𝑧 + 𝑎𝑥 + 𝑎2𝑦,

(3.10)

Guedes, P. F. S.

3.1. RÖSSLER SYSTEM 45

and the equivalent jerk equation 𝐹𝑦 is

𝐹𝑦 = −𝑏 − 𝑐𝑋 + (𝑎𝑐 − 1)𝑌 + (𝑎 − 𝑐)𝑍 − 𝑎𝑋2

+(𝑎2 + 1)𝑋𝑌 − 𝑎𝑋𝑍 − 𝑎𝑌 2 + 𝑌 𝑍. (3.11)

When the observable is variable 𝑥 of the Rössler system, the coordinate transformation Φ𝑥 is as

follows

Φ𝑥 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑋 = 𝑥,

𝑌 = −𝑦 − 𝑧,

𝑍 = −𝑥 − 𝑎𝑦 − 𝑧(𝑥 − 𝑐) − 𝑏,

(3.12)

and the corresponding jerk equation 𝐹𝑥 is

𝐹𝑥 = 𝑎𝑏 − 𝑐𝑋 + 𝑋2 − 𝑎𝑋𝑌 + 𝑎𝑐𝑌 + 𝑋𝑍 + (𝑎 − 𝑐)𝑍

−(𝑎 + 𝑐 + 𝑍 − 𝑎𝑌 + 𝑏)
𝑎 + 𝑐 − 𝑋

. (3.13)

For variable 𝑧 of the Rössler system as the observable, the coordinate transformation Φ𝑧 is as follows

Φ𝑧 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑋 = 𝑧,

𝑌 = 𝑧(𝑥 − 𝑐) + 𝑏,

𝑍 = (𝑏 + 𝑧(𝑥 − 𝑐))(𝑥 − 𝑐) + 𝑧(−𝑦 − 𝑧),

(3.14)

and the associated jerk equation is

𝐹𝑧 = 𝑏 − 𝑐𝑋 − 𝑌 + 𝑎𝑍 + 𝑎𝑋2 − 𝑋𝑌 (3.15)

+(𝑎𝑏 + 3𝑍)𝑌 − 𝑎𝑌 2 − 𝑏𝑍

𝑍
+ 2𝑏𝑌 2 − 2𝑌 3

𝑋2 .

Analysing Eqs. (3.11), (3.13) and (3.15) it is possible to state that Eq. (3.15) is more complex than

Eq. (3.13) and therefore is more complex than Eq. (3.11). Similar to [62], we consider complexity

associated with the number of monomials included in the jerk equation, order of the nonlinearities and

poles. Note that the jerk equation indicates the connections between the states of the original system

“seen from one observable point of view”.

Based on the complexity of 𝐹𝑥, 𝐹𝑦 e 𝐹𝑧 , it can be said that variable 𝑦 is more observable than variable

Guedes, P. F. S.

3.1. RÖSSLER SYSTEM 46

𝑥, which is more observable than variable 𝑧, that is, 𝑦 ▷ 𝑥 ▷ 𝑧. From the results presented in Table 3.2,

it is conceivable to evaluate the observability and compare it with what has already been exposed before.

Variable 𝑦 is more observable than variable 𝑥, which is more observable than the variable 𝑧. Since

variable 𝑧 is the one with the greatest exclusion of terms, it does not contribute much to the description

of the system. This statement corroborates the observability analysis carried out previously.

Figures 3.2(a) and 3.2(b) show the projections on the 𝑥𝑦 plane of the Rössler equations for the fourth-

order Runge-Kutta method and the reduced fourth-order Runge-Kutta method. The trajectories exhibit

very close values in both cases, so Figures 3.2(a) and 3.2(b) are practically the same, illustrating Theorem

3 consequences.

The largest Lyapunov exponent was calculated using the method proposed by Nepomuceno and

Mendes [20] for both RK4 and RRK4, as shown in Table 3.3. This method uses the interval extensions

to calculate the lower bound error which is a measure of the distance between the simulated dynamical

systems (or pseudo-orbit) and the real orbit. When a system behaves chaotically the distance between

these two orbits is exponentially divergent, and therefore a slope in a logarithm plot of the lower bound

error captures the divergence and quantifies it as a number which is the positive Lyapunov exponent. The

positive exponent was found to be 0.0897 and 0.0909 for RK4 and RRK4, respectively, which is in a

good agreement with the literature value of 0.090 nat/iter [77]. Table 3.4 shows the number of points

needed to calculate the Lyapunov exponent using the method proposed in [20]. It is possible to observe

that RK4 uses a slightly larger number for this estimation.

Table 3.3: Calculation of Lyapunov exponent. The expected values are obtained in [77] for Rössler and
Lorenz equations and in [76] for Sprott B. The unit of the Lyapunov exponent is indicated in nat/iter.

System Literature 𝜆 Calculated 𝜆 for RK4 Calculated 𝜆 for reduced RK4
Rössler 0.0900 0.0897 0.0909
Lorenz 1.5000 1.4702 1.4778

Sprott B 0.2100 0.1710 0.1854

Table 3.4: Number of points needed to estimate the Lyapunov exponent for each system.

System RK4 RRK4
Rössler 35218 33331
Lorenz 21276 19678

Sprott B 14893 12687

In order to analyse the computational complexity of the systems under study, the mathematical oper-

ations were counted and the simulation time has been calculated.

Guedes, P. F. S.

3.1. RÖSSLER SYSTEM 47

-15 -10 -5 0 5 10 15 20

x

-20

-15

-10

-5

0

5

10

15

y

(a) Fourth-order Runge-Kutta.

-15 -10 -5 0 5 10 15 20

x

-20

-15

-10

-5

0

5

10

15

y

(b) Reduced fourth-order Runge-Kutta.

-30 -20 -10 0 10 20 30 40

x

-40

-20

0

20

40

60

y

(c) Fourth-order Runge-Kutta.

-30 -20 -10 0 10 20 30 40

x

-40

-20

0

20

40

60

y

(d) Reduced fourth-order Runge-Kutta.

-6 -4 -2 0 2 4 6

x

-4

-2

0

2

4

y

(e) Fourth-order Runge-Kutta.

-6 -4 -2 0 2 4 6

x

-4

-2

0

2

4

y

(f) Reduced fourth-order Runge-Kutta.

Figure 3.2: (a) and (b): Projections on the 𝑥𝑦 plane of the discretized Rössler equations. (c) and (d):
Projections on the 𝑥𝑦 plane of the discretized Lorenz equations. (e) and (f): Projections on the 𝑥𝑦 plane
of the Sprott B.

Table 3.5 shows the summary of the basic operations used in the calculations. The number of oper-

ations is per iteration that outfits a computational complexity of 𝑂(𝑛). Rössler equations present a total

of 9080 operations per iteration using RK4 whereas, using RRK4, the number of operations was 3095,

representing a reduction of approximately 65.9% of operations performed per iteration.

Guedes, P. F. S.

3.1. RÖSSLER SYSTEM 48

Table 3.5: Summary of computational complexity. The basic operations used throughout each system
were analysed, that is, Sum/Subtraction, Multiplication/Division and Power. For each system, all the
operators for variables 𝑥, 𝑦, 𝑧 are added and the reduction was calculated. The proposed method can
reduce up to 81.1% of the required operations for the Lorenz equations.

RK4 Reduced RK4 Reduction
Operations 𝑥𝑘+1 𝑦𝑘+1 𝑧𝑘+1 𝑥𝑘+1 𝑦𝑘+1 𝑧𝑘+1

R
ös

sl
er

Sum/Subtraction 116 37 902 100 37 289
Multiplication/Division 527 141 4878 445 141 1269
Power 192 47 2240 161 47 606
Summation of operators 835 225 8020 706 225 2164

Total 9080 3095 65.9%

L
or

en
z

Sum/Subtraction 115 885 962 78 191 209
Multiplication/Division 605 5260 5739 325 877 980
Power 289 2881 3190 172 425 514
Summation of operators 1009 9026 9891 575 1493 1703

Total 19926 3771 81.1%

Sp
ro

tt
B Sum/Subtraction 174 37 166 40 25 36

Multiplication/Division 726 139 710 118 64 115
Power 404 60 393 62 33 64
Summation of operators 1304 236 1269 220 122 215

Total 2809 557 80.2%

Table 3.6: Average time in seconds of a thousand attempts to execute the proposed algorithm. We have
also presented one standard deviation in order to consider the intrinsic fluctuation of time consumption
in a computer.

System 𝑅𝐾4 𝑅𝑅𝐾4 Reduction

Rössler 4.1729 ± 0.5054 1.4500 ± 0.0991 65.3%

Lorenz 18.7971 ± 0.1078 1.7481 ± 0.0994 90.7%

Sprott B 1.6427 ± 0.0567 0.2540 ± 0.0085 84.5%

The simulation time is shown in Table 3.6. Each system was simulated a thousand times and the

time shown in the table is the average over the outcome of the simulations. For the reduced fourth-order

Runge-Kutta it is evident that there was a significant reduction in the simulation time. Since the decrease

in time is directly related to the amount of operations performed, the contribution to the decrease in

computational cost is worth considering.

Table 3.7 shows the average simulation time for various iterations. As the number of iterations

increases, the time also increases linearly for both RK4 and RRK4. Hence, the simulation time can be

related to the number of iterations using the equation for RK4:

Guedes, P. F. S.

3.1. RÖSSLER SYSTEM 49

𝑡(𝑘) = 0.0005𝑘 + 0.6973, (3.16)

and for RRK4:

𝑡(𝑘) = 0.0001𝑘 + 0.0995, (3.17)

where 𝑡(𝑘) represents the simulation time in seconds for 𝑘 iterations.

Table 3.7: Average time in seconds of a hundred attempt to execute the proposed algorithm. Initial condi-
tions, parameters and step size for each system are as follows: 1) Rössler: (𝑥0, 𝑦0, 𝑧0) = (−1.0, 1.0, 1.0),
𝑎 = 0.15, 𝑏 = 0.20 and 𝑐 = 10.0, and step-size of 10−2; 2) Lorenz: (𝑥0, 𝑦0, 𝑧0) = (1.0, 0.5, 0.9),
𝜎 = 16.0, 𝛽 = 4.0, 𝜌 = 45.92, ℎ = 10−3; 3) Sprott B: (𝑥0, 𝑦0, 𝑧0) = (0.05, 0.05, 0.05) and ℎ = 10−2.

Iteration Rössler Lorenz Sprott B
RK4 RRK4 RK4 RRK4 RK4 RRK4

500 0.9391 0.1800 2.6733 0.2048 0.1622 0.0294
1000 1.1450 0.2439 3.4366 0.2855 0.2351 0.0423
1500 1.3790 0.3196 4.3002 0.3769 0.3181 0.0550
2000 1.6072 0.3926 5.1826 0.5393 0.4029 0.0681
2500 1.8093 0.4813 6.0595 0.5520 0.4873 0.0797
3000 2.0389 0.5360 6.9338 0.6390 0.5689 0.0968
3500 2.2802 0.6143 7.7909 0.7257 0.6510 0.1069
4000 2.4932 0.6904 8.6913 0.8227 0.7329 0.1239
4500 2.6933 0.7648 9.5379 0.9037 0.8098 0.1329
5000 2.9826 0.8267 10.4094 0.9924 0.8957 0.1475
5500 3.2316 0.9050 11.2939 1.0876 0.9785 0.1608
6000 3.4198 0.9700 12.1794 1.1691 1.0620 0.1716
6500 3.6160 1.0470 13.0695 1.2572 1.1436 0.1863
7000 3.8412 1.1218 14.0214 1.3443 1.2639 0.1970
7500 4.0879 1.1989 14.8371 1.4378 1.3052 0.2121
8000 4.3457 1.2722 15.6907 1.5242 1.3904 0.2297
8500 4.5597 1.3437 16.5518 1.6121 1.4750 0.2412
9000 4.7452 1.4097 17.4318 1.6973 1.5640 0.2500
9500 4.9484 1.4943 18.2519 1.7946 1.6349 0.2615
10000 5.2406 1.5631 19.1772 1.8750 1.7258 0.2745

With the estimates presented by equations (3.16) and (3.17), it is possible to observe that with RRK4

there is a reduction in the simulation time, as a consequence of the reduction in the number of opera-

tions. And with the growing concern about climate factors, especially the carbon footprint, this reduction

contributes to the development of more efficient algorithms from this point of view. Table 3.8 shows the

reduction in carbon footprint. To find the simulation time, equations (3.16) and (3.17) were considered,

for 𝑘 equal to one million iterations, which would be the approximate number of iterations needed to

build the bifurcation diagram. For the Rössler system there was a reduction of approximately 75%.

Guedes, P. F. S.

3.2. LORENZ EQUATIONS 50

Table 3.8: Carbon Footprint for the systems of Rössler, Lorenz and Sprott B for the original and reduced
systems using the Floating Point arithmetic.

Time Carbon Footprint

Decreased (%) 𝑔𝐶𝑂2𝑒

R
ös

sl
er

RK4 8 min 21 sec - 1.39

RRK4 1 min 40 sec 75.04% 0.347

L
or

en
z

RK4 28 min 21 sec - 4.86

RRK4 3 min 20 sec 89.3% 0.52

Sp
ro

tt
B

RK4 3 min 20 sec - 0.52

RRK4 30 sec 66.54% 0.174

3.2 Lorenz Equations

Consider the Lorenz equations [75]

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�̇� = 𝜎(𝑦 − 𝑥),

�̇� = 𝑥(𝜌 − 𝑧) − 𝑦,

�̇� = 𝑥𝑦 − 𝛽𝑧,

(3.18)

where 𝜎, 𝜌 and 𝛽 are parameters. Lorenz equations were discretized by the fourth-order Runge-Kutta

method. To apply Theorem 3, initial condition (𝑥0, 𝑦0, 𝑧0) = (1.0, 0.5, 0.9), parameters 𝜎 = 16.0,

𝛽 = 4.0 and 𝜌 = 45.92, and step-size of 10−3 were considered. The number of monomials for each

equation of the Lorenz equations is shown in Table 3.2. As it occurred to Rössler’s equations, the reduced

RK4 varies as iterations of Lorenz equations occur.

The observability of each dynamic variable was investigated, and the associated model for variable

𝑥 is

𝐹𝑥 = 𝑋𝛽𝜌𝜎 − 𝑋3𝜎 − 𝑋𝛽𝜎 − 𝛽𝜎𝑌 − 𝑋2𝑌 − 𝛽𝑌 − 𝛽𝑍 − 𝜎𝑍 + 𝜎 𝑌 2

𝑋
− 𝑍 + 𝑌 2

𝑋
+ 𝑌 𝑍

𝑋
(3.19)

whereas for the other coordinates the respective equations have a large number of monomials and, more

Guedes, P. F. S.

3.2. LORENZ EQUATIONS 51

importantly they are of the following implicit form

�̇� = 𝑌, �̇� = 𝑍, 𝐹𝑟(𝑋, 𝑌, 𝑍, �̇�) = 0. (3.20)

Equations relating to 𝐹𝑥, 𝐹𝑦, and 𝐹𝑧 have 12, 588, and 211 monomials, respectively. Based on the

complexity of the jerk equations, it can be concluded that variable 𝑥 is more observable than variable 𝑧,

which is more observable than variable 𝑦, that is, 𝑥 ▷ 𝑧 ▷ 𝑦. This is slightly different from the results in

Table 3.2, variable 𝑥 is more observable than variable 𝑦, which is more observable than variable 𝑧, that

is, 𝑥 ▷ 𝑦 ▷ 𝑧. The result is in accordance with what is stated in [62, 78] and indicates that the variable

𝑧 is the least observable, based on symmetry considerations. Nonetheless the result presented in Table

3.2 is in accordance with the observability analysis performed previously using the jerk equations, which

determines that the variable 𝑥 is the most observable.

Figures 3.2(c) and 3.2(d) show the projections on the 𝑥𝑦 plane of the Lorenz equations. The tra-

jectories exhibit very close values in both cases. The Lyapunov exponent was calculated as shown in

Table 3.3 and Table 3.4 shows the number of points needed to calculate the Lyapunov exponent. Values

obtained from RK4 and RRK4 are similar to the values found in the literature.

Table 3.5 shows the summary of the basic operations used in the calculations. The Lorenz equations

presented 19926 and 3771 mathematical operations per iteration, when discretized using RK4 and RRK4,

respectively. The reduction in the number of mathematical operations was 81.1%.

Table 3.6 shows the average time of simulation of Lorenz equations. As there was a significant

reduction in the number of operations, evidently the simulation time for the reduced equations was

shorter.

The average simulation time for different iterations is shown in Table 3.7. It is observed that the

time grows linearly as the number of iterations increases. Hence, the time-per-iteration relationship

can be represented by the following equations for RK4 (Equation (3.21)) and RRK4 (Equation (3.22)),

respectively:

𝑡(𝑘) = 0.0017𝑘 + 1.7055, (3.21)

𝑡(𝑘) = 0.0002𝑘 + 0.123, (3.22)

where 𝑡(𝑘) is the simulation time in seconds for 𝑘 iterations.

The carbon footprint of the systems was estimated using Equations (3.21) and (3.22). For the Lorenz

Guedes, P. F. S.

3.3. SPROTT B 52

equations, there was a significant reduction of approximately 89.3% in the carbon footprint, as shown in

Table 3.8.

3.3 Sprott B

Consider the Sprott B system [76]:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�̇� = 𝑦𝑧,

�̇� = 𝑥 − 𝑦,

�̇� = 1 − 𝑥𝑦.

(3.23)

The Sprott B system was discretized using the fourth-order Runge-Kutta method. In order to apply

Theorem 3, (𝑥0, 𝑦0, 𝑧0) = (0.05, 0.05, 0.05) and step-size of 10−2 were considered as indicated in [76,

79, 80]. The number of monomials for each equation of the Sprott B system is shown in Table 3.2. RRK4,

as shown in Table 3.2, is achieved for some iterations since, as the Sprott B equations are iterated, their

values change. Thus, the values of the monomials are also changed, causing the number of monomials

to vary for each equation.

For the investigation of the observability of each dynamic variable, consider 𝑟 = 𝑔(𝑥,𝑦,𝑧) = 𝑦 as

and coordinate transformation Φ𝑦 such as

Φ𝑦 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑋 = 𝑦,

𝑌 = 𝑥 − 𝑦,

𝑍 = −𝑥 + (1 + 𝑧)𝑦,

(3.24)

and the corresponding jerk equation 𝐹𝑦 is

𝐹𝑦 = −𝑍 + (1 − 𝑋𝑌 + 𝑋2)𝑋 − (𝑌 + 𝑍) 𝑌

𝑋
. (3.25)

When the observable is variable 𝑧 of the Sprott B, the coordinate transformation Φ𝑧 reads as

Φ𝑧 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑋 = 𝑧,

𝑌 = 1 − 𝑥𝑦,

𝑍 = 𝑥𝑦 − 𝑥2 − 𝑦2𝑧,

(3.26)

Guedes, P. F. S.

3.3. SPROTT B 53

and the corresponding jerk equation 𝐹𝑧 is

𝐹𝑧 = 1
2𝑋

{8𝑋2𝑌 − 8𝑋2 − 2𝑋𝑌 − 4𝑋𝑍 + 𝑌 2 + 𝑌 𝑍

+2𝑋 − 𝑌 ± (2𝑋 − 𝑌)(−4𝑋𝑌 2 + 8𝑋𝑌 + 𝑌 2

+2𝑌 𝑍 + 𝑍2 − 4𝑋 − 2𝑌 − 2𝑍 + 1)
1
2 }. (3.27)

The final case is to consider the variable 𝑥 of the Sprott B as the observable. The coordinate trans-

formation Φ𝑥 reads as

Φ𝑥 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑋 = 𝑥,

𝑌 = 𝑦𝑧,

𝑍 = (𝑥 − 𝑦)𝑧 + (1 − 𝑥𝑦)𝑦,

(3.28)

and the associated jerk equation is

𝐹 3
𝑥 𝑋3 + (4𝑋3𝑌 − 3𝑋4 + 7𝑋3𝑍 − 3𝑋2𝑌 2 − 3𝑋2𝑌 𝑍 − 𝑋2 + 𝑋𝑌)𝐹 2

𝑥 + (22𝑋3𝑌 2 + 27𝑋6𝑌 + 9𝑋6𝑍 − 18𝑋4𝑌

−22𝑋4𝑍 + 28𝑋3𝑌 𝑍 + 15𝑋3𝑍2 + 4𝑋3 − 8𝑋2𝑌 3 − 22𝑋2𝑌 2𝑍 − 14𝑋2𝑌 𝑍2 − 5𝑋2𝑌 − 𝑌 3 − 3𝑋2𝑍 + 3𝑋𝑌 4

+6𝑋𝑌 3𝑍 + 3𝑋𝑌 2𝑍2 + 2𝑋𝑌 2 + 4𝑋𝑌 𝑍 − 𝑌 2𝑍)𝐹𝑥 + 27𝑋9𝑌 − 45𝑋7𝑌 − 18𝑋7𝑍 + 4𝑋6 + 31𝑋6𝑌 2 + 39𝑋6𝑌 𝑍

+9𝑋6𝑍2 − 27𝑋5𝑌 3 − 36𝑋5𝑌 2𝑍 − 9𝑋5𝑌 𝑍2 + 17𝑋5𝑌 + 16𝑋5𝑍 − 22𝑋4𝑌 2 − 42𝑋4𝑌 𝑍 − 27𝑋4𝑍2 − 4𝑋4

+40𝑋3𝑌 𝑍2 + 5𝑋3𝑌 + 9𝑋3𝑍3 + 6𝑋3𝑍 + 31𝑋3𝑌 3 + 60𝑋3𝑌 2𝑍 − 19𝑋2𝑌 4 − 44𝑋2𝑌 3𝑍 − 40𝑋2𝑌 2𝑍2 − 5𝑋2𝑌 2

−15𝑋2𝑌 𝑍3 − 9𝑋2𝑌 𝑍 − 2𝑋2𝑍2 + 4𝑋𝑌 5 + 15𝑋𝑌 4𝑍 + 18𝑋𝑌 3𝑍2 + 4𝑋𝑌 3 + 7𝑋𝑌 2𝑍3 + 6𝑋𝑌 2𝑍 − 3𝑌 5𝑍

−3𝑌 4𝑍2 + 4𝑋𝑌 𝑍2 − 𝑌 6 − 𝑌 3𝑍3 − 3𝑌 3𝑍 − 2𝑌 2𝑍2 = 0. (3.29)

It can be seen that Eq. (3.29) is more complex than Eq. (3.27), just as this equation is more complex

than Eq. (3.25). Therefore, one can guarantee that the variable 𝑦 is more observable than the variable

𝑧, which is more observable than the variable 𝑥, that is, 𝑦 ▷ 𝑧 ▷ 𝑥. According to the results presented

in Table 3.2, it is possible to assess the observability of the system. Variable 𝑦 is the most observable

since there is a lesser exclusion of terms, followed by variables 𝑧 and 𝑥. All this is in conformity with

the observability analysis carried out previously.

Figure 3.2 shows the projections on the 𝑥𝑦 plane of the Sprott B for RK4 and RRK4. Note that

Figures 3.2(e) and 3.2(f) appear to be the same since their pseudo-orbits exhibit very close values. This

highlights the concept of monomial exclusion.

In addition, using both RK4 and RRK4, a Lyapunov exponent of 0.1710 nat/iter and 0.1854 nat/iter

was found, respectively, as shown in Table 3.3, which is also in good agreement with literature. Table 3.4

shows the number of points needed to calculate the Lyapunov exponent. It is possible to observe again

Guedes, P. F. S.

3.4. DISCUSSION 54

that RK4 needs a slightly larger number of iterations to estimate the exponent.

Table 3.5 shows the number of operations required to simulate the Sprott B system per iteration. The

Sprott B system presented a total of 2809 operations when discretized using RK4 and 557 operations

using RRK4. Therefore, there was a reduction of approximately 80.2% in the number of mathematical

operations when Theorem 3 was applied.

Table 3.6 shows the average time of simulation, as shown in other systems, the number of mathemat-

ical operations reduced and consequently the average time of simulation also reduced.

Table 3.7 shows the average simulation time for different iterations. As the number of iterations

increases, the time grows linearly, as demonstrated by the relationships described by Equations (3.30)

and (3.31). The time shown in Table 3.8 is an estimate for building the bifurcation diagram for one

million iterations. Thus, the reduction in the carbon footprint was approximately 66.54%.

𝑡(𝑘) = 0.0002𝑘 + 0.0729, (3.30)

𝑡(𝑘) = 0.00003𝑘 + 0.0166, (3.31)

where 𝑡(𝑘) represents the simulation time in seconds for 𝑘 iterations.

3.4 Discussion

Theorem 3 was applied to a discretization scheme, namely the fourth-order Runge-Kutta scheme with

fixed step-size, for the still widespread use and also for better visualisation of the amount of excluded (or

neglected) terms (or monomials).

It could be argued that the proposed computational discretization scheme does not improve the per-

formance of classical Runge-Kutta numerical methods since the removal of the neglected terms in the

method is automatically performed by the computer and therefore the advantage of not including them

in the general scheme has no effect on the results. Unfortunately that is not the case since the computer

will perform the operations related to the neglected terms anyhow before returning zero. That certainly

has an impact on the overall performance as shown here.

Stretching this argument a bit further, it could be also argued that the advantage related to the number

of operations performed by computers could be considered as not very important, if their current perfor-

mance is taken into account. That is not entirely true, if a discretization scheme is to be implemented in

Guedes, P. F. S.

3.4. DISCUSSION 55

a FPGA device for instance, the code length is certainly a factor to be taken into consideration. A shorter

algorithm will certainly have an appeal in this case.

Another criticism is the use of a fixed step size Runge-Kutta of low order (considered outdated) when

a variety of discretization schemes with variable step size are currently available. The change in the step

will aggravate the problem when its value becomes smaller. More terms will be neglected and the final

operation will be performed by far less terms which again shows the importance of the present study.

The results presented by floating point arithmetic were significant from the point of view of reduc-

ing the number of monomials, reducing operations performed per iteration and consequently reducing

simulation time. It is important to emphasize that the results obtained with the effective discretization

maintained the characteristics of the systems, such as attractors, Lyapunov exponent and Observability.

Guedes, P. F. S.

56

CHAPTER 4

Simulation of continuous-time systems using
RK4 and Posit arithmetic

The idea of excluding terms due to computer precision will be applied to Posit arithmetic. Theorem

3 will consider the accuracy of the Posit.

Consider Figure 4.1, a screenshot of the computer window with a Jupyter notebook. This figure

brings the sum of successive numbers with a chosen number 𝑥. The computer works with base 2, so

adding successive numbers is the same as adding 𝑥 to 2𝑦, where 𝑦 are successive numbers. Therefore,

when 𝑥+2𝑦 is equal to 𝑥, it can be stated that for this value of 𝑦 there is a loss of computational precision.

According to Figure 4.1, the SoftPosit library used to implement Posit arithmetic loses precision for

mantissa equal to 28 bits, that is, 𝜌 = 28; which corresponds to approximately 8 decimal places. In this

chapter, a value of 𝜌10 ≈ 8 will be considered. Therefore, the same theorem presented for floating point

arithmetic in Theorem 3 will be applicable to Posit arithmetic, with the only difference being the value

of 𝜌10.

Moreover, for the Posit arithmetic, the result of the discretization carried out in the Maple software

was transferred to the Python software, version 3.7.1 and the SoftPosit library was used, and the same

steps to obtain a effective discretization in floating point arithmetic will be done in Posit arithmetic.

Example 11. Consider the following equation

𝑋 = 0.05 + 6.51 × 10−5 + 3.96 × 10−12

= 5 × 10−2 + 6.51 × 10−5 + 3.96 × 10−12

Guedes, P. F. S.

57

Figure 4.1: Mantissa bits preview for Posit.

According to Theorem 3, the set of monomials are as follows:

𝛾1 = 𝛼110𝛽1 = 6.51 × 10−5

𝛾2 = 𝛼210𝛽2 = 3.96 × 10−12

𝛾3 = 𝛼310𝛽3 = 5.0 × 10−2.

The set Ω is given by

Ω1 = 𝛽3 − 𝛽1 = −2 − (−5) = 3

Ω2 = 𝛽3 − 𝛽2 = −2 − (−12) = 10.

Since Ω1 > 8 (for Posit), 𝛾2 may be excluded without loss of accuracy. Fig. 4.2 present this operation

using Python.

Figure 4.2: Example 11 was run on Python. The exclusion of monomial 𝛾1 = 3.96 × 10−12 does not
change the final result.

Guedes, P. F. S.

4.1. RÖSSLER SYSTEM 58

As with floating-point arithmetic, the monomial exclusion proposal for Posit arithmetic will be il-

lustrated for three systems: the Rössler system [74], the Lorenz equations [75] and Sprott B [76]. For

each system, the reduced RK4 based on Posit arithmetic, here named as RPosit, according to Theorem

3, considering 𝜌10 = 8, is calculated.

The quality of RPosit is evaluated by means of the observability of the dynamical systems, compu-

tation of the largest Lyapunov exponent, simulation time and the reduction of the carbon footprint. The

step size ℎ is chosen according to the usual values found in the literature. In addition, all parameters used

for the systems under study are shown in Table 3.1.

4.1 Rössler System

Let the Rössler system be represented by [74], according to equation (3.9).

Theorem 3 was applied to Posit, considering the parameters highlighted in Table 3.1.

The number of monomials for each equation of the Rössler system is presented in Table 4.1. Posit

represents the discretization performed by the fourth-order Runge-Kutta method and RPosit represents

the system reduced by the Posit.

Based on the complexity, as noted for floating point arithmetic, it can be concluded that 𝑦 is more

observable than 𝑥, which is more observable than 𝑧, that is, 𝑦 ▷ 𝑥 ▷ 𝑧. This statement is supported

by the results in Table 4.1, which indicate that the variable 𝑦 is more observable than 𝑥, which is more

observable than 𝑧. Since variable 𝑧 has the largest exclusion of terms, it does not seem to contribute

much to the description of the system, which is consistent with the observability analysis in [44, 62].

Table 4.1: Number of monomials for each discretized equation for Lorenz, Rössler and Sprott B systems.

Equations Rössler Lorenz Sprott B
Posit RPosit Posit RPosit Posit RPosit

𝑥𝑘+1 117 18 116 13 175 8
𝑦𝑘+1 38 10 886 24 38 7
𝑧𝑘+1 903 27 963 15 167 6

As another criterion for evaluating the results, the Lyapunov exponent was calculated as shown in

Table 4.2. The Lyapunov exponent was calculated using the method proposed by Nepomuceno and

Mendes [20]. For RPosit a value of 0.0914 was found.

Table 4.3 shows the number of operations necessary for each iteration to simulate each system. The

Rössler equations have a total of 9080 operations per iteration when calculated using Posit, whereas

Guedes, P. F. S.

4.1. RÖSSLER SYSTEM 59

Table 4.2: Calculation of the Lyapunov exponent. The expected values were obtained in [77] for the
Rössler and Lorenz equations, and in [76] for Sprott B. The unit of the Lyapunov exponent is nat/iter.

System Literature Posit RPosit
Rössler 0.0900 0.0855 0.0914
Lorenz 1.5000 1.5443 1.4592

Sprott B 0.2100 0.2081 0.2372

RPosit has a total of 269 operations, representing a reduction of approximately 97.04% of operations

performed per iteration.

Table 4.3: Computational complexity. The basic operations used in each system were analyzed, that is,
Addition/Subtraction, Multiplication/Division and Power. For each system, all operators for the variables
𝑥, 𝑦, 𝑧 are summed and the reduction is calculated.

RK4 RPosit Reduction
Operations 𝑥𝑘+1 𝑦𝑘+1 𝑧𝑘+1 𝑥𝑘+1 𝑦𝑘+1 𝑧𝑘+1

R
ös

sl
er

Sum/Subtraction 116 37 902 17 9 26
Multiplication/Division 527 141 4878 44 21 84
Power 192 47 2240 20 8 40
Summation of operators 835 225 8020 81 38 150

Total 9080 269 97.04%

L
or

en
z

Sum/Subtraction 115 885 962 12 23 14
Multiplication/Division 605 5260 5739 39 82 48
Power 289 2881 3190 16 30 21
Summation of operators 1009 9026 9891 67 135 83

Total 19926 285 98.57%

Sp
ro

tt
B Sum/Subtraction 174 37 166 7 6 5

Multiplication/Division 726 139 710 17 11 10
Power 404 60 393 7 4 5
Summation of operators 1304 236 1269 31 21 20

Total 2809 72 97.44%

Table 4.4 shows the average simulation time for various iterations. As the number of iterations

increases, the time also increases linearly for both Posit and RPosit. Hence, the simulation time can be

related to the number of iterations using the equation for Posit:

𝑡(𝑘) = 0.0664𝑘 − 2.3902, (4.1)

and for RPosit:

𝑡(𝑘) = 0.0022𝑘 + 0.0568, (4.2)

Guedes, P. F. S.

4.2. LORENZ EQUATIONS 60

where 𝑡(𝑘) represents the simulation time in seconds for 𝑘 iterations.

Table 4.4: Average time in seconds of a hundred attempt to execute the proposed algorithm. Initial condi-
tions, parameters and step size for each system are as follows: 1) Rössler: (𝑥0, 𝑦0, 𝑧0) = (−1.0, 1.0, 1.0),
𝑎 = 0.15, 𝑏 = 0.20 and 𝑐 = 10.0, and step-size of 10−2; 2) Lorenz: (𝑥0, 𝑦0, 𝑧0) = (1.0, 0.5, 0.9),
𝜎 = 16.0, 𝛽 = 4.0, 𝜌 = 45.92, ℎ = 10−3; 3) Sprott B: (𝑥0, 𝑦0, 𝑧0) = (0.05, 0.05, 0.05) and ℎ = 10−2.

Iteration Rössler Lorenz Sprott B
Posit RPosit Posit RPosit Posit RPosit

500 32.7201 1.1048 69.4772 1.2363 9.2679 0.2966
1000 65.6605 2.2123 137.7913 2.5067 18.6230 0.5860
1500 99.4124 3.4367 203.6965 3.7021 25.8499 1.0080
2000 129.3818 4.4892 275.7256 4.8307 37.4983 1.1437
2500 161.7611 5.8145 349.1869 6.1712 46.9779 1.4515
3000 197.3239 6.6830 410.4117 7.4568 57.0728 2.0481
3500 229.0141 7.7063 470.5010 8.9101 64.3457 2.0497
4000 259.6650 9.2248 545.3113 9.6726 73.5389 2.4020
4500 305.0579 10.2199 621.4583 10.6799 85.8576 2.8105
5000 327.1820 11.3886 690.6847 11.8862 95.5799 2.9853
5500 364.8461 12.0575 736.2958 13.7164 106.0473 3.4338
6000 390.2489 13.2096 801.7055 14.7777 112.7767 3.7445
6500 431.6851 14.8487 898.2372 15.8668 125.5166 4.0322
7000 460.0903 15.8024 945.9377 17.2628 134.0342 4.1393
7500 478.8445 16.9259 1031.7592 18.1602 144.6224 4.4603
8000 539.1163 18.2183 1101.5918 18.7389 154.4316 4.8905
8500 552.9877 19.0536 1153.0226 20.0133 160.3803 5.2086
9000 589.7269 20.0061 1228.4084 21.0094 173.5347 5.5616
9500 621.5443 21.1598 1302.0462 22.6732 180.6069 5.8339

10000 683.1889 22.3663 1370.7029 23.3023 190.5237 5.8952

With the estimates presented by equations (4.1) and (4.2), it is possible to observe that with RPosit

there is a significant reduction in the simulation time, as a consequence of the reduction in the number

of operations. And with the growing concern about climate factors, especially the carbon footprint, this

reduction contributes to the development of more efficient algorithms from this point of view. Table 4.5

shows the reduction in carbon footprint, for the Rossler system there was a reduction of approximately

96.64%.

4.2 Lorenz Equations

Consider the Lorenz equations [75], described according to the equation (3.18).

Theorem 3 was applied using Posit, considering the parameters highlighted in Table 3.1. And, a

𝜌10 = 8 was considered. The number of monomials for each Lorenz equation is shown in Table 4.1. The

reduction in the number of monomials was significant.

Guedes, P. F. S.

4.2. LORENZ EQUATIONS 61

Table 4.5: Carbon Footprint for the systems of Rossler, Lorenz and Sprott B for the original and reduced
systems using the Posit arithmetic.

Time Carbon Footprint

Decreased (%) 𝑔𝐶𝑂2𝑒
R

ös
sl

er

Posit 18 h 26 min - 45.60

RPosit 37 min 96.64% 1.53

L
or

en
z

Posit 37 h 56 min - 156.70

RPosit 38 min 99% 1.57

Sp
ro

tt
B

Posit 5 h 22 min - 13.27

RPosit 10 min 96.9% 0.412

For observability analysis, and based on the results in Table 4.1, variable 𝑥 is more observable than

variable 𝑦, which is more observable than variable 𝑧. This result is in accordance with previous findings

[44, 62, 78] and indicates that variable 𝑧 is the least observable due to symmetry considerations.

Table 4.2 brings the Lyapunov exponent, using Posit a value of 1.5443 was entered and for RPosit,

the value entered was 1.4592 which is very close to that indicated in the literature of 1.5000 nat/iter [77].

In terms of computational complexity, the number of operations needed to simulate the Lorenz equa-

tions was calculated, as shown in Table 4.3. The Lorenz equations had 19926 and 285 mathematical

operations per iteration when calculated using Posit and RPosit, respectively. This represents a reduction

of 98.57% in the number of mathematical operations.

The average simulation time for different iterations is shown in Table 4.4. Just like in Rössler’s

system, it is observed that the time grows linearly as the number of iterations increases. Hence, the

time-per-iteration relationship can be represented by the following equations for Posit (Equation (4.3))

and RPosit (Equation (4.4)), respectively:

𝑡(𝑘) = 0.1366𝑘 + 0.0493, (4.3)

𝑡(𝑘) = 0.0023𝑘 + 0.3349, (4.4)

Guedes, P. F. S.

4.3. SPROTT B 62

where 𝑡(𝑘) is the simulation time in seconds for 𝑘 iterations.

The carbon footprint of the systems was estimated using the Green Algorithms model and the online

tool [36]. The simulation time used was based on the estimated value that will be used to construct

the bifurcation diagram, approximately one million iterations. Hence, the time can be estimated using

Equations (4.3) and (4.4). For the Lorenz equations, there was a significant reduction of approximately

99% in the carbon footprint, as shown in Table 4.5.

4.3 Sprott B

Consider the Sprott B system [76], according to equations (3.23). Theorem 3 was applied to Posit,

considering the parameters highlighted in Table 3.1 and 𝜌10 = 8.

The number of monomials in each equation of the Sprott B system was reduced by approximately

94.47% using the Posit language and the proposed theorem, as shown in Table 4.1. The observability

analysis performed in [44] revealed that the variable 𝑦 is the most observable, followed by 𝑧 and then 𝑥.

This is also reflected in the results in Table 4.1.

The Lyapunov exponent for the Sprott B system was found to be 0.2081 nat/iter using Posit and

0.2372 nat/iter using RPosit, as shown in Table 4.2. These results are in good agreement with literature.

Table 4.3 shows the computational complexity of the Sprott B system. When discretized using Posit,

it required 2809 operations, whereas when Theorem 3 was applied using RPosit, it required only 72

operations, resulting in a reduction of approximately 97.44% in the number of mathematical operations.

Table 4.4 shows the average simulation time for different iterations. As the number of iterations

increases, the time grows linearly, as demonstrated by the relationships described by Equations (4.5) and

(4.6). The time shown in Table 4.5 is an estimate for building the bifurcation diagram for one million

iterations. Thus, the reduction in the carbon footprint was approximately 96.9%.

𝑡(𝑘) = 0.0193𝑘 − 1.3582, (4.5)

𝑡(𝑘) = 0.0006𝑘 + 0.0237, (4.6)

where 𝑡(𝑘) represents the simulation time in seconds for 𝑘 iterations.

Guedes, P. F. S.

4.4. DISCUSSION 63

4.4 Discussion

As mentioned for floating-point arithmetic, it can be argued that the proposed computational dis-

cretization scheme does not improve the performance of classical Runge-Kutta numerical methods, since

the removal of neglected terms in the method is performed automatically by the computer and, therefore,

the advantage of not including them in the overall scheme has no effect on the results. Unfortunately,

this is not the case, as the computer will also perform operations related to the neglected terms before

returning zero. This certainly has an impact on overall performance, as shown here.

In the results presented for Posit arithmetic there was a drastic reduction in the number of monomi-

als, resulting in a reduction in the number of operations and, consequently, in the reduction of simulation

time, which contributes to the reduction of the carbon footprint, which is currently in focus. It is impor-

tant to emphasize that the results obtained with the effective discretization maintained the characteristics

of the systems, such as Lyapunov exponent and Observability.

Guedes, P. F. S.

64

CHAPTER 5

Conclusion

The focus of this thesis was the study of the fourth-order Runge-Kutta discretization method, an ef-

fective computational discretization method for the solution of nonlinear dynamic systems. Based on a

theorem, it has been shown how to safely exclude monomials in an implemented Runge-Kutta of fourth-

order with almost no accuracy loss. The reduced fourth-order Runge-Kutta using floating-point arith-

metic (RRK4) has been successfully applied to three classical nonlinear dynamical systems: the Rössler

equations, Lorenz equations, and Sprott B. The quality of simulations has been verified by means of the

concept of observability of nonlinear dynamical systems, projections on the 𝑥𝑦 plane of the attractors,

and computation of the largest Lyapunov exponent. The figures of attractors in the 𝑥𝑦 plane reinforce

the efficiency of RRK4 by showing practically identical trajectories. To demonstrate the computational

effectiveness of the proposed technique, the number of mathematical operations between RK4 and RRK4

was used for comparison. The reduction achieved is up to 81.8%. Consequently, simulation time has also

significantly decreased, reaching 90.7% for the Lorenz case. It was shown that decreasing the step-size,

the number of neglected terms increases, further reducing the number of operations performed. This is a

striking outcome that allows the user of such systems to speed up simulations and save energy and time

in many applications.

Later, the precision was modified for Posit arithmetic. It has been demonstrated how to delete mono-

mials efficiently and with minimal loss of precision. The reduced fourth-order Runge-Kutta (RPosit) is

applied to three classical nonlinear systems: the Rössler equations, the Lorenz equations, and Sprott B.

A carbon footprint analysis was also included.

For comparison, the number of mathematical operations between Posit and RPosit was used to

demonstrate the computational efficiency of Posit. As shown, a reduction of up to 98% was achieved.

The relationship between simulation time and carbon footprint reduction is depicted, which shows that

a decrease in the number of operations also resulted in a decrease in simulation time and a significant

Guedes, P. F. S.

65

reduction in the carbon footprint. This finding is promising and should be applied to other nonlinear

dynamical systems and extended to different discretization schemes. It is also believed that the reduced

discretizations would be beneficial for embedded applications, such as image encryption.

As future work, we plan to evaluate the use of the theorem in variable step-size discretization and

in other discretization schemes. In addition, we plan to further optimize the algorithm introduced to

make it more versatile and applicable to a wider range of nonlinear dynamic systems. In particular,

we plan to develop a tool that can automatically calculate the carbon footprint reduction for any given

nonlinear dynamic system. This would allow for a more efficient and environmentally-friendly approach

to simulating and analyzing nonlinear dynamic systems. As we move towards a more sustainable future,

tools like this will play an increasingly important role in reducing the carbon footprint of scientific and

engineering simulations.

Guedes, P. F. S.

BIBLIOGRAPHY 66

Bibliography

[1] V. Ardourel and J. Jebeile, “On the presumed superiority of analytical solutions over numerical

methods,” European Journal for Philosophy of Science, vol. 7, no. 2, pp. 201–220, 2017.

[2] S. M. Hammel, J. A. Yorke, and C. Grebogi, “Do numerical orbits of chaotic dynamical processes

represent true orbits?” Journal of Complexity, vol. 3, no. 2, pp. 136–145, 1987.

[3] T. b. Sauer, C. d. Grebogi, and J. Yorke, “How long do numerical chaotic solutions remain valid?”

Physical Review Letters, vol. 79, no. 1, pp. 59–62, 1997.

[4] Z. Galias, “The Dangers of Rounding Errors for Simulations and Analysis of Nonlinear Circuits

and Systems? and How to Avoid Them,” IEEE Circuits and Systems Magazine, vol. 13, no. 3, pp.

35–52, jan 2013.

[5] R. Lozi, “Can we trust in numerical computations of chaotic solutions of dynamical systems?”

in Topology and dynamics of Chaos: In celebration of Robert Gilmore’s 70th birthday. World

Scientific, 2013, pp. 63–98.

[6] X. Zhuang, Q. Wang, and J. Wen, “Numerical Dynamics of Nonstandard Finite Difference Method

for Nonlinear Delay Differential Equation,” International Journal of Bifurcation and Chaos,

vol. 28, no. 11, p. 1850133, oct 2018.

[7] J. C. Butcher and N. Goodwin, Numerical methods for ordinary differential equations. Wiley

Online Library, 2008, vol. 2.

[8] A. Quarteroni, R. Sacco, and F. Saleri, Numerical mathematics. Springer Science & Business

Media, 2010, vol. 37.

Guedes, P. F. S.

BIBLIOGRAPHY 67

[9] I. Singh, B. Kaur, and K. K. Khun, “Simulating longitudinal vibrations of coupled oscillator using

the fourth-order runge–kutta method by programming spreadsheet,” European Journal of Physics,

vol. 40, no. 4, p. 045003, 2019.

[10] A. Sinhababu and S. Ayyalasomayajula, “An improved dealiasing scheme for the fourth-order

runge-kutta method: Formulation, accuracy and efficiency analysis,” International Journal for Nu-

merical Methods in Fluids, vol. 93, no. 3, pp. 559–589, 2021.

[11] M. Habibi, M. Safarpour, and H. Safarpour, “Vibrational characteristics of a fg-gplrc viscoelastic

thick annular plate using fourth-order runge-kutta and gdq methods,” Mechanics Based Design of

Structures and Machines, vol. 50, no. 7, pp. 2471–2492, 2022.

[12] M. Shao, X. Zhao, J. Wu, Q. Wu, J. Qing, and X. Guo, “Nonlinear vibration of moving ortho-

topic films under oblique support,” International Journal of Structural Stability and Dynamics, p.

2350179, 2023.

[13] J. Wang, X. Li, S. Shi, and X. Guo, “Multiscale nonlinear dynamics analysis of defective graphene

reinforced pmma composite plates under aerodynamic pressure,” Nonlinear Dynamics, pp. 1–34,

2023.

[14] H. M. Hasan, S. S. Alkhfaji et al., “Nonlinear dynamic buckling behavior of axially loaded func-

tionally graded graphene-enhanced composite laminated cylindrical shells in thermal conditions,”

Journal of Applied Nonlinear Dynamics, vol. 12, no. 02, pp. 213–230, 2023.

[15] E. Süli and D. F. Mayers, An introduction to numerical analysis. Cambridge university press,

2003.

[16] S. Monaco and D. Normand-Cyrot, “A combinatorial approach of the nonlinear sampling problem,”

Lecture Notes in Control and Information Sciences, vol. 144, pp. 788–797, 1990.

[17] R. E. Mickens, “Nonstandard finite difference schemes for differential equations,” The Journal of

Difference Equations and Applications, vol. 8, no. 9, pp. 823–847, 2002.

[18] J. V. Lambers and A. C. Sumner, Explorations in Numerical Analysis. Hattiesburg: The University

of Southern Mississippi, 2016.

[19] E. G. Nepomuceno, “Convergence of recursive functions on computers,” The Journal of Engineer-

ing, vol. 2014, no. 10, pp. 560–562, 2014.

Guedes, P. F. S.

BIBLIOGRAPHY 68

[20] E. G. Nepomuceno and E. M. A. M. Mendes, “On the analysis of pseudo-orbits of continuous

chaotic nonlinear systems simulated using discretization schemes in a digital computer,” Chaos,

Solitons & Fractals, vol. 95, pp. 21–32, 2017.

[21] E. G. Nepomuceno, P. F. Guedes, A. M. Barbosa, M. Perc, and R. Repnik, “Soft computing sim-

ulations of chaotic systems,” International Journal of Bifurcation and Chaos, vol. 29, no. 08, p.

1950112, 2019.

[22] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis. Philadelphia:

SIAM, 2009.

[23] L.-S. Yao, “Computed chaos or numerical errors,” arXiv preprint nlin/0506045, 2005.

[24] D. Faranda, M. F. Mestre, and G. Turchetti, “Analysis of Round Off Errors With Reversibility Test

As a Dynamical Indicator,” International Journal of Bifurcation and Chaos, vol. 22, no. 09, p.

1250215, 2012.

[25] A. Hasan, E. C. Kerrigan, and G. A. Constantinides, “Control-theoretic forward error analysis of

iterative numerical algorithms,” IEEE Transactions on Automatic Control, vol. 58, no. 6, pp. 1524–

1529, 2013.

[26] T. Karimov, D. Butusov, and A. Karimov, “Comparison of analog and numerical chaotic system

simulation,” in 2015 XVIII International Conference on Soft Computing and Measurements (SCM).

IEEE, 2015, pp. 81–83.

[27] E. G. Nepomuceno, S. A. Martins, B. C. Silva, G. F. Amaral, and M. Perc, “Detecting unreliable

computer simulations of recursive functions with interval extensions,” Applied Mathematics and

Computation, vol. 329, pp. 408–419, 2018.

[28] Institute of Electrical and Electronics Engineers (IEEE), 754-2008 – IEEE standard for floating-

point arithmetic. IEEE, 2008, p. 1–58.

[29] ——, “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2019 (Revision of IEEE 754-

2008), pp. 1–84, 2019.

[30] M. L. Overton, Numerical Computing with IEEE Floating Point Arithmetic. Society for Industrial

and Applied Mathematics : Philadelphia, jan 2001.

[31] J. L. Gustafson, The end of error: Unum computing. Chapman and Hall/CRC, 2017.

Guedes, P. F. S.

BIBLIOGRAPHY 69

[32] J. L. Gustafson and I. T. Yonemoto, “Beating floating point at its own game: Posit arithmetic,”

Supercomputing frontiers and innovations, vol. 4, no. 2, pp. 71–86, 2017.

[33] J. Hou, Y. Zhu, S. Du, and S. Song, “Enhancing accuracy and dynamic range of scientific data ana-

lytics by implementing posit arithmetic on FPGA,” Journal of Signal Processing Systems, vol. 91,

pp. 1137–1148, 2019.

[34] I. Alouani, A. B. Khalifa, F. Merchant, and R. Leupers, “An investigation on inherent robustness of

posit data representation,” in 2021 34th International Conference on VLSI Design and 2021 20th

International Conference on Embedded Systems (VLSID). IEEE, 2021, pp. 276–281.

[35] R. Murillo, A. A. Del Barrio, and G. Botella, “Deep pensieve: A deep learning framework based

on the posit number system,” Digital Signal Processing, vol. 102, p. 102762, 2020.

[36] L. Lannelongue, J. Grealey, and M. Inouye, “Green algorithms: quantifying the carbon footprint of

computation,” Advanced science, vol. 8, no. 12, p. 2100707, 2021.

[37] B. He, Z. Deng, S. Huang, and J. Wang, “Application of unascertained number for the integration

of carbon footprint in conceptual design,” Proceedings of the Institution of Mechanical Engineers,

Part B: Journal of Engineering Manufacture, vol. 229, no. 11, pp. 2088–2092, 2015.

[38] K. Chen, M. Yang, X. Zhou, Z. Liu, P. Li, J. Tang, and C. Peng, “Recent advances in carbon foot-

print studies of urban ecosystems: Overview, application, and future challenges,” Environmental

Reviews, vol. 30, no. 2, pp. 342–356, 2022.

[39] IPCC, “Global warming of 1.5c. an ipcc special report on the impacts of global warming,” Inter-

governmental Panel on Climate Change, Tech. Rep., 2018.

[40] United Nations Framework Convention on Climate Change, “Emissions gap report 2020,” UN-

FCCC, Tech. Rep., 2020.

[41] R. Jain, M. Radojevic, and R. Buyya, “Green cloud computing: Balancing energy in processing,

data storage, and transport,” IEEE Transactions on Sustainable Computing, vol. 1, no. 1, pp. 3–14,

2016.

[42] H. Dai, J. Li, W. Li, Y. Li, and X. Wang, “A review of energy-efficient techniques for large-scale

data centers,” IEEE Communications Surveys and Tutorials, vol. 20, no. 4, pp. 2689–2712, 2018.

Guedes, P. F. S.

BIBLIOGRAPHY 70

[43] L. Gao, W. Fan, and H. Chen, “Data center carbon emissions and energy-saving opportunities: A

big data analytics perspective,” IEEE Transactions on Sustainable Computing, vol. 4, no. 2, pp.

192–204, 2019.

[44] P. F. Guedes, E. M. Mendes, and E. Nepomuceno, “Effective computational discretization scheme

for nonlinear dynamical systems,” Applied Mathematics and Computation, vol. 428, p. 127207,

2022.

[45] ——, “Posit Number Impact on Carbon Footprint Reduction in Simulation of NonLinear Dynami-

cal Systems,” IEEE Access, vol. submitted, 2023.

[46] L. H. A. Monteiro, Sistemas dinâmicos, 3a ed. Editora Livraria da Física: São Paulo, SP, 2011.

[47] R. Lozi, “Can we trust in numerical computations of chaotic solutions of dynamical systems?”

Topology and Dynamics of Chaos, pp. 63–98, 2013.

[48] R. E. Moore and F. Bierbaum, Methods and applications of interval analysis. SIAM: Philadelphia,

1979, vol. 2.

[49] R. H. N. Santiago, B. R. C. Bedregal, and B. M. Acióly, “Formal aspects of correctness and opti-

mality of interval computations,” Formal Aspects of Computing, vol. 18, no. 2, pp. 231–243, 2006.

[50] E. Nepomuceno and S. Martins, “A lower bound error for free-run simulation of the polynomial

narmax,” Systems Science & Control Engineering, vol. 4, no. 1, pp. 50–58, 2016.

[51] M. Rudolph-Lilith and L. E. Muller, “On a representation of the Verhulst logistic map,” Discrete

Mathematics, vol. 324, pp. 19–27, 2014.

[52] R. Gilmore and M. Lefranc, The topology of chaos: Alice in stretch and squeezeland. John Wiley

& Sons, 2012.

[53] E. M. A. M. Mendes and E. G. Nepomuceno, “A very simple method to calculate the (positive)

Largest Lyapunov Exponent using interval extensions,” International Journal of Bifurcation and

Chaos, vol. 26, no. 13, 2016.

[54] M. T. Rosenstein, J. J. Collins, and C. J. De Luca, “A practical method for calculating largest

Lyapunov exponents from small data sets,” Physica D: Nonlinear Phenomena, vol. 65, no. 1-2, pp.

117–134, 1993.

Guedes, P. F. S.

BIBLIOGRAPHY 71

[55] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining Lyapunov exponents from a

time series,” Physica D: Nonlinear Phenomena, vol. 16, no. 3, pp. 285–317, jul 1985.

[56] H. Kantz, “A robust method to estimate the maximal Lyapunov exponent of a time series,” Physics

Letters A, vol. 185, no. 1, pp. 77–87, 1994.

[57] E. Nepomuceno, S. Martins, G. Amaral, and R. Riveret, “On the lower bound error for discrete

maps using associative property,” Systems Science & Control Engineering, vol. 5, no. 1, pp. 462–

473, 2017.

[58] M. T. Rosenstein, J. J. Collins, and C. J. D. Luca, “A practical method for calculating largest

Lyapunov from small data sets,” Physica D: Nonlinear Phenomena, vol. 65, pp. 117–134, 1993.

[59] C. Letellier, L. A. Aguirre, and J. Maquet, “Relation between observability and differential embed-

dings for nonlinear dynamics,” Physical Review E, vol. 71, no. 6, p. 066213, 2005.

[60] C. Letellier and L. A. Aguirre, “Interplay between synchronization, observability, and dynamics,”

Physical Review E, vol. 82, no. 1, p. 016204, 2010.

[61] G. Gouesbet and J. Maquet, “Construction of phenomenological models from numerical scalar time

series,” Physica D: Nonlinear Phenomena, vol. 58, no. 1-4, pp. 202–215, 1992.

[62] C. Letellier and L. A. Aguirre, “Investigating nonlinear dynamics from time series: The influence

of symmetries and the choice of observables,” Chaos: An Interdisciplinary Journal of Nonlinear

Science, vol. 12, no. 3, pp. 549–558, 2002.

[63] C. Letellier, J. Maquet, L. Le Sceller, G. Gouesbet, and L. Aguirre, “On the non-equivalence of

observables in phase-space reconstructions from recorded time series,” Journal of Physics A: Math-

ematical and General, vol. 31, no. 39, p. 7913, 1998.

[64] A. Quarteroni and F. Saleri, “Scientific computing with matlab and octave,” Computational Science

and Engineering, 2006.

[65] M. A. Campos and P. F. Lima, Introdução ao tratamento da informação nos Ensinos Fundamental

e Médio. Editora FGV, 2005, vol. 1.

[66] M. T. Heath, Scientific computing. McGraw-Hill : New York, 2002.

[67] R. F. Weber, Fundamentos de arquitetura de computadores. Sagra Luzzatto, 2000, vol. 1.

Guedes, P. F. S.

BIBLIOGRAPHY 72

[68] G. V. R. Viana, “Padrão IEEE 754 para aritmética binária de ponto flutuante,” Revista CT, vol. 1,

no. 1, pp. 29–33, 1999.

[69] J.-J. Fernandez, I. García, and E. M. Garzón, “Educational issues on number representation and

arithmetic in computers: An undergraduate laboratory,” IEEE Transactions on Education, vol. 46,

no. 4, pp. 477–485, 2003.

[70] L. F. Richardson, “IX The approximate arithmetical solution by finite differences of physical prob-

lems involving differential equations, with an application to the stresses in a masonry dam,” Philo-

sophical Transactions of the Royal Society of London, vol. 210, no. 459-470, pp. 307–357, 1911.

[71] C. J. Freitas, “The issue of numerical uncertainty,” Applied Mathematical Modelling, vol. 26, pp.

237–248, 2002.

[72] T. Hickey, Q. Ju, and M. H. V. Emden, “Interval Arithmetic : from Principles to Implementation,”

Journal of the ACM (JACM), 2001.

[73] A. A. Del Barrio, N. Bagherzadeh, and R. Hermida, “Ultra-low-power adder stage design for ex-

ascale floating point units,” ACM Transactions on Embedded Computing Systems (TECS), vol. 13,

no. 3s, pp. 1–24, 2014.

[74] O. E. Rössler, “An equation for continuous chaos,” Physics Letters A, vol. 57, no. 5, pp. 397–398,

1976.

[75] E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the atmospheric sciences, vol. 20, no. 2,

pp. 130–141, 1963.

[76] J. C. Sprott, “Some simple chaotic flows,” Physical review E, vol. 50, no. 2, p. R647, 1994.

[77] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining Lyapunov exponents from a

time series,” Physica D: Nonlinear Phenomena, vol. 16, no. 3, pp. 285–317, 1985.

[78] L. A. Aguirre, S. B. Bastos, M. A. Alves, and C. Letellier, “Observability of nonlinear dynamics:

Normalized results and a time-series approach,” Chaos: An Interdisciplinary Journal of Nonlinear

Science, vol. 18, no. 1, p. 013123, 2008.

[79] Q. Lai and S. Chen, “Generating multiple chaotic attractors from Sprott B system,” International

Journal of Bifurcation and Chaos, vol. 26, no. 11, p. 1650177, 2016.

Guedes, P. F. S.

BIBLIOGRAPHY 73

[80] Q. Lai, G. Xu, and H. Pei, “Analysis and control of multiple attractors in Sprott B system,” Chaos,

Solitons & Fractals, vol. 123, pp. 192–200, 2019.

Guedes, P. F. S.

	Introduction
	Motivation
	Objectives
	Thesis outline and contributions

	Theoretical Foundation
	Dynamic Systems
	Continuous Dynamic Systems
	Discrete Dynamic Systems
	Recursive Functions
	Interval Extensions
	Orbits and Pseudo-Orbits
	Lyapunov Exponent
	Wolf's Algorithm
	Rosenstein's Algorithm
	Mendes and Nepomuceno's Algorithm

	Observability of Dynamical Systems
	Fourth-Order Runge-Kutta Method
	Arithmetic Computing
	IEEE 754 Floating Point Standard
	Representation of Numbers on the Computer
	Computational Representation in Different Formats of the IEEE 754 Standard
	Accuracy of a Floating Point System
	Rounding
	Computational Errors

	Universal Number (Unum)
	Unum Type I and Type II
	Posit

	Green Algorithm

	Simulation of continuous-time systems using RK4 and floating point arithmetic (IEEE - 754)
	Rössler System
	Lorenz Equations
	Sprott B
	Discussion

	Simulation of continuous-time systems using RK4 and Posit arithmetic
	Rössler System
	Lorenz Equations
	Sprott B
	Discussion

	Conclusion
	Bibliography

