
UNIVERSIDADE FEDERAL DE MINAS GERAIS

Escola de Engenharia
Programa de Pós-graduação em Engenharia Elétrica

Control Techniques for Uncertain Second Order Systems: An LMI
Approach

Danielle Silva Gontijo

Belo Horizonte
2023



Danielle Silva Gontijo

Control Techniques for Uncertain Second Order Systems: An LMI
Approach

A thesis presented to the Graduate Program in
Electrical Engineering (PPGEE) of the Federal
University of Minas Gerais (UFMG) in partial
fulfillment of the requirements to obtain the de-
gree of Doctor in Electrical Engineering.

Advisor: Prof. Dr. Fernando de Oliveira Souza

Co-Advisor: Prof. Dr. José Mário Araújo
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“Life is like riding a bicycle. To keep your bal-

ance, you must keep moving.” (Albert Einstein)



Resumo

Sistemas de segunda ordem são uma classe importante de sistemas dinâmicos amplamente uti-

lizados na engenharia para modelar uma variedade de fenômenos f́ısicos. Caracterizados por

seu comportamento dinâmico, os sistemas de segunda ordem requerem estratégias de controle

eficazes para atingir o desempenho desejado. Este trabalho apresenta uma estrutura de pro-

jeto para obter um controlador robusto multivariável Proporcional-Integral-Derivativo (PID)

para sistemas lineares de segunda ordem, e um controlador Proporcional-Integral-Derivativo

mais Aceleração (PIDA), para lidar com o problema de regularização do modelo. Desafios de

controle relevantes, como erro de modelagem, otimização de desempenho regulatório, alocação

regional de polos, prevenção de saturação, atraso de entrada, função de custo LQR e controle

baseado no observador, são tratados dentro da abordagem de projeto via desigualdade matricial

linear (LMI). A estratégia de projeto proposta baseia-se em rescrever o modelo do sistema de

uma maneira apropriada de forma que o projeto do controlador PID/PIDA seja equivalente a

de um controlador por realimentação de estados. Primeiramente, uma metodologia é proposta

para a obtenção de um controlador PID/PIDA, fundamentada na alocação regional de polos, de-

sempenho H∞, problema de regularização e prevenção de saturação, tratados simultaneamente.

Uma metodologia para obter um controlador multivariável Proporcional-Integral-Derivativo

(PID) robusto para sistemas de segunda ordem com atraso de entrada variante no tempo tam-

bém é proposta. Ademais, é apresentada uma metodologia para obter um controlador PD/PID

por meio da estratégia de controle do Regulador Quadrático Linear (LQR). Por fim, uma for-

mulação para o projeto de controladores baseado em observador também é proposta, e em

seguida uma metodologia baseada em formulações LMI para obter um controlador baseado em

observador para sistemas de segunda ordem incertos. Para ilustrar a eficácia das metodologias

de controle propostas são realizadas simulações, com exemplos numéricos, e um experimento

prático, utilizando um pêndulo invertido móvel, destacando os benef́ıcios de cada método.

Palavras chave: sistemas de segunda ordem; controle robusto; desigualdades matriciais

lineares; sistemas incertos.



Abstract

Second-order systems constitute an important class of dynamic systems that are widely em-

ployed in engineering to model a variety of physical phenomena. Characterized by their dy-

namic behavior, second-order systems require effective control strategies to achieve the de-

sired performance. This work presents a design framework for obtaining a robust multivariable

Proportional-Integral-Derivative (PID) controller for linear second-order systems. Additionally,

a Proportional-Integral-Derivative with Acceleration (PIDA) controller is proposed to address

the model regularization problem. Relevant control challenges, such as modeling errors, regu-

latory performance optimization, regional pole placement, saturation prevention, input delay,

LQR cost function, and observer-based control, are addressed within the framework of control

design via Linear Matrix Inequality (LMI). The proposed design strategy is based on rewriting

the system model in an appropriate way so that the design of the PID/PIDA controller is equiv-

alent to that of a state feedback controller. Firstly, a methodology is proposed for obtaining

a PID/PIDA controller, grounded in regional pole placement, H∞ performance, regularization

problem, and saturation prevention, all simultaneously addressed. Additionally, a methodology

to obtain a robust multivariable Proportional-Integral-Derivative (PID) controller for second-

order systems with time-varying input delay is also proposed. Furthermore, a methodology is

introduced to obtain a PD/PID controller using the Linear Quadratic Regulator (LQR) control

strategy. Finally, a formulation for observer-based controller design is proposed. This is followed

by a methodology based on LMI formulations to obtain an observer-based controller for uncer-

tain second-order systems. To demonstrate the efficacy of the proposed control methodologies,

simulations with numerical examples and a practical experiment using an inverted pendulum

mobile system were conducted. These experiments effectively showcase the advantages of each

method.

Keywords: second-order systems; robust control; linear matrix inequalities; uncertain systems.
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1 Introduction

This chapter describes various aspects related to the control of second-order systems. It discusses

the motivations for studying this subject, provides a brief literature review, and presents the

proposed objectives. At the end of the chapter, the research contributions and the organization

of the work will be presented.

1.1 Second-Order Systems

Second-order differential equations can be used to represent various systems, such as electrical,

electromechanical, and mechanical systems. They are commonly used in examples of vibration

control and robotic control (Abdelaziz 2014a; Zhang et al. 2019a).

The study of the control of second-order systems in flexible structures has gained significant

interest, primarily because of the performance demands of mechanical systems. These include

active suspension systems for vehicles, aircraft, and aerospace structures, and robotic manipu-

lators (Patel and Mehta 2017; Sun et al. 2015; Wei et al. 2019). Control strategies play a crucial

role in achieving the desired control forces in dynamic environments. In these environments,

sensors detect states, computers calculate control forces in real-time, and actuators generate

the necessary forces. These strategies have been extensively employed to effectively control of

second-order systems under various dynamic operating conditions (Pratt et al. 2009).

To apply control strategies to second-order systems, which are typically described in clas-

sical theory by ordinary differential equations and classical state-space systems, it is common

practice to transform these systems into first-order systems by introducing new variables for

the first derivative (Zhang and Yu 2018). This transformation into first-order systems is a well-

established theory, which makes it possible to use several consolidated techniques to control

these systems (Abdelaziz 2014a; Chu and Datta 1996; Zhao et al. 2016).

This work presents a new robust control structure based on Proportional-Integral-Derivative

(PID) / Proportional-Integral-Derivative with Acceleration (PIDA) controllers that improve

the robustness characteristics and the performance of systems even in the presence of model
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constraints. Subsequently, the motivation behind the development of these control techniques

is presented.

1.2 Motivation

Second-order systems control is widely applied in mechanical systems, from the stabilization

of flexible structures to aircraft and the active suspension of vehicles or seats (Alfadhli et al.

2018; Hayati et al. 2020; Singh et al. 2019).

In these problems, the success of the designed system depends on a series of requirements,

for instance, the robustness of the controlled system against a model mismatch, unavailability

of states for feedback, disturbance rejection in track control problems, saturation avoidance

of the control effort, and treatment of the nonlinear behavior, which is an important source

of uncertainty. Since uncertainties must be taken into account in some step of the design to

avoid unexpected system instability in closed-loop, they are a prominent issue for the design of

control of second-order systems.

Some methods used to express second-order differential equations in an equivalent set of

first-order equations require the inversion operation of a matrix (Datta 2003). However, it is

important to note that matrix inversion is not always a trivial task, especially when dealing with

complex systems or large sets of equations. Matrix inversion can be computationally intensive

and require significant processing resources. Additionally, in certain cases, the matrix may be

singular or ill-conditioned, making inversion impossible or inaccurate. Hence, considering the

second-order system in controller design is of utmost relevance.

Besides that, acceleration feedback can be a requirement for systems with considerable mass

imbalance (Acevedo et al. 2020) or even in the case of a singular mass matrix (Abdelaziz 2015a).

Then, regularizing the mass matrix via acceleration feedback is often a need.

Second-order systems are also subject to time delay, due to several reasons, such as detection

and actuation in the feedback of states, physical separation between sensors and measurement

points, delay in communication in systems, online data acquisition, filtering, signal transmission

from a computer to the actuator which can degrade control performance and destabilize a system

(Araújo and Santos 2018; Zhang et al. 2020).

In this context, delays can be constant or time-varying. Delay variation can be applied to

second-order systems, its resolution being more complex than constant delays, since the notion

of poles and eigenvalues cannot be applied to time-varying systems. Given this, the assumption

of constant time delay is reasonable for most second-order control systems, however, delay

variation can be an important problem when, for example, the delay is network induced, which

motivates the study of time-varying second-order systems (Santos et al. 2018; Seguy et al. 2010;

Yu et al. 2015).

A number of requirements such as pole allocation, saturation prevention, disturbance re-

jection and time delay, can be met in systems in second-order control systems. In view of
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this, linear matrix inequalities (Boyd et al. 1994; Chilali and Gahinet 1996) can be successfully

applied in control problems that involve multiple requirements, such as robustness, guaran-

teed cost disturbance attenuation, regional pole placement, among others (Almeida and Araújo

2019; Li et al. 2013; Richiedei and Tamellin 2021).

Due to the convex nature of the formulation, several control challenges can be combined such

as regional pole placement, robust stability and guaranteed robust performance for uncertain or

time-varying systems, null tracking error in the presence of constant disturbance, and saturation

avoidance, among other relevant issues.

Motivated by this problem of control of second-order systems that combines several require-

ments, this work presents a robust framework to design multivariable PID or, when necessary,

PIDA controllers for parametric uncertain second-order systems. In contrast to related works

based only on proportional and derivative feedback, the integral action is used to achieve null

set-point tracking error. The acceleration action may be used to deal with the regularization

problem, which is one of the contributions of this work. The design methodology is based on

regional pole placement also known as D-stability, H∞ performance, stabilization of asymmetric

systems, regularization problem, actuator saturation avoidance, and set-point tracking, which

are jointly handled within the linear matrix inequality (LMI) framework. Then, the robust

framework presented for designing PID controllers is extended to second-order systems subject

to time-varying delay at the control input, handled through LMI formulations. Furthermore,

a design of PID/PD controllers based on Linear Quadratic Regulator (LQR) control is pro-

posed. Finally, an observer-based controller framework is presented, together with a design

methodology via LMI.

Next, a brief review of the literature is presented, listing some of the main works dedicated

to the control problems of second-order systems.

1.3 Related Works

In the control of second-order systems, there are several topics to be addressed, ranging from

system modeling to controller design, rejecting disturbances, avoiding control effort saturation,

considering the nonlinearity of the systems, and including time-varying delay.

For both of the more used modeling approaches, namely, finite-element models (FEM)

(Zhang and Li 2013) and the receptance approach (Mottershead et al. 2008; Ram and Mot-

tershead 2013; Zhu et al. 2009), the modeling errors are unavoidable, given the approximate

nature of the former and the experimental appeal on the latter. Motivated by the relevance

of modeling error, some studies on the robustness analysis and design of the controlled system

have been delivered in recent times. The robust control of systems described by second-order

models using FEM or receptance models can be addressed by different approaches (Abdelaziz

2013; Adamson et al. 2020; Franklin et al. 2021; Henrion et al. 2005; Nichols 2000; Qian and Xu

2005).The partial eigenstructure assignment with guaranteed robustness is described in early
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and more recent works as Araújo et al. 2018; Cai et al. 2010; Xie 2021. Since uncertainties

must be taken into account in some step of the design to avoid unexpected system instability

in closed-loop, they are a prominent issue for the design of second-order control systems.

The disturbance rejection problem in the context of control is another relevant issue in

applications as structural control. In Gudarzi 2015 the aforesaid problem is dealt with esti-

mating unknown disturbances in the context of seismic alleviation in buildings. Applications of

piezoelectric actuators for disturbance rejection in the control of thin-walled and other smart

structures are addressed in Li and Chen 2013; Zhang et al. 2014; Zhang et al. 2021; Zhang

et al. 2019b. An alternative approach to dealing with the presence of disturbances is the active

disturbance rejection control (ADRC) (Li et al. 2016; Ramirez-Neria et al. 2020; Ramı́rez-Neria

et al. 2021; Safiullah et al. 2022; Zheng et al. 2008), which is a robust control method that uses

an extended state observer (ESO) to estimate the disturbance input beyond the system states.

The H∞ control is also a method discussed in the literature that can guarantee stability and

optimized performance despite insufficient or inaccurate knowledge of the structural system

parameters (Chen et al. 2010; Du and Zhang 2008).

In addition, actuator saturation can occur in the closed-loop system under study, causing

performance degradation and instability, often appearing in engineering systems and is a fo-

cus of study and application in the industry (Sun et al. 2014). Control approaches are most

often proposed to manage compensation between conflicting requirements, such as disturbance

clearance and actuator saturation, a large number of different arrangements have been inves-

tigated. Adaptive control is constantly applied while considering the necessary performance

constraints and actuator saturation, application of anti-windup blocks to preserve stability and

performance in the presence of saturation is also studied (Sun et al. 2014, 2012).

Another problem that directly affects the performance of the system is the singularity of

the mass matrix, a way to deal with this problem is to regularize the matrix using acceleration

feedback (Abdelaziz 2015b). In Yang et al. 2017, a negative acceleration feedback control

algorithm is proposed to shift the active mass. In Abdelaziz 2014b an unstructured problem in

the mass matrix is addressed, the combination of acceleration and velocity feedback is proposed.

Finally, another approach that is constantly studied is the time delay. In general, these sys-

tems can be stable in open-loop and become unstable in closed-loop, if delays are not properly

considered at some stage of the project. The literature discusses the constant and time-varying

delay (Araújo and Santos 2018; Santos et al. 2018; Shustin et al. 2008). In Araújo and Santos

2018 a method based on receptance and the Smith predictor is proposed to handle the constant

delay, however, the proposal only deals with stable and marginally stable systems, not guaran-

teeing the internal stability of unstable systems in open-loop. Araujo and Santos 2020 propose

a sample data strategy to apply a Smith predictor-based approach to address these unstable

systems.

Regarding constant delays, Natori et al. 2008 investigate a dedicated control scheme for

time delay compensation based on the concept of network disturbance and communication
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disturbance observer. Belotti and Richiedei 2020 propose a numerical method for partial pole

placement in time-delayed systems, which guarantees the a priori verification of the stability of

the primary and secondary roots through the reception method, combined with an LMI, which

guarantees asymptotic stability for a limited time delay.

More recent studies have focused on treating systems subject to variable delays, using ro-

bust control techniques. The use of LMI and the Lyapunov-Krasovskii theory is an effective

methodology to investigate the stability of systems with a time-varying delay (Kwon et al. 2016;

Mozelli and Souza 2016; Tognetti and Oliveira 2022).

Design techniques based on Linear Quadratic Regulator (LQR) are well known in modern

control theory and have been widely used in many applications (Alavinasab et al. 2006; He

et al. 2000; Kumar and Jerome 2013). There are several studies that prove the effectiveness

of the PID controller design based on the LQR controller (Argentim et al. 2013; Heidari et al.

2018; Nasir et al. 2008).

The LQR controller can be used in conjunction with an estimator. The general procedure to

obtain the Linear Quadratic Estimator (LQE) is very similar to that used for the LQR (Simoes

et al. 2007). State estimators for dynamical systems have been the focus of many works, mainly

for first-order systems (Demetriou 2004; Nguyen et al. 2020; Zheng et al. 2021).

In the next section, the objectives addressed in this work will be specified.

1.4 Objectives

• To present a robust framework for designing Proportional-Integral-Derivative (PID) mul-

tivariate controllers for uncertain parametric second-order systems.

• To present a robust framework for designing Proportional-Integral-Derivative-Acceleration

(PIDA) multivariate controllers for uncertain parametric second-order systems with non-

singularities in the mass matrix.

• To propose a methodology through Linear Matrix Inequalities (LMI), based on regional

pole allocation, H∞ performance, stabilization of asymmetric systems, regularization

problem, actuator saturation prevention, setpoint tracking, LQR cost function, and observer-

based controllers.

• Provide a robust framework for designing multivariable PID controllers for second-order

systems with time-varying input delay.

• To present a robust framework for the design of observer-based controller for uncertain

parametric second-order systems.
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1.5 Outline of the chapters

The remaining of this document is organized as follows:

• Chapter 2 introduces a PID control structure for delayed second-order systems and a PID/PIDA

structure for free delay second-order systems subject to uncertainty and constraints, both

frameworks formulated through LMIs. Subsequently, a design methodology is presented for

PD/PID controllers based on LQR control. Finally, it presents a robust framework for de-

signing observer-based controllers for second-order systems subject to uncertainty.

• Chapter 3 presents numerical examples to validate the first method proposed in Chapter 2,

which is the PID/PIDA controller for delay-free and delay systems.

• Chapter 4 a practical example of a mobile inverted pendulum (MIP) is presented, and the re-

sults obtained in Chapter 2, from the PD/PID controller based on the LQR and the observer-

based control, are implemented and validated.

• Chapter 5 points out conclusions.
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2 Problem Formulation

In this chapter, we present some fundamental aspects of the formulation of the control problem

studied in this work. In the first section, we present the proposed methodology to represent

second-order systems as descriptor systems. In the second section, we rewrite PID/PIDA as

a state feedback control. In the third section, the control action project A is presented. And

finally, the LMIs formulated to obtain the PID/PIDA controller and deal with the constraints

are displayed.

2.1 Representation of second order linear systems as linear de-

scriptor systems

Consider the second-order linear model:

Mz̈(t) + Dż(t) + Sz(t) = Bu(t− d(t)) + Fw(t) (2.1)

where z(t) ∈ R
n is the state vector and w(t) ∈ R

p is the exogenous disturbance vector, the

delay is considered through the control signal u(t− d(t)). The delay is modeled as d(t) = τ +

µ(t), representing a time-varying delay, with τ being the nominal delay value and µ(t) a time-

varying scalar function, which satisfies µ(t) ≤ |µ(t)| ≤ τ. M, D, S ∈ R
n×n are, respectively,

the mass, damping and stiffness matrices, and B ∈ R
n×m, F ∈ R

n×p are, respectively, the

control and disturbance matrices.

In order to rewrite the second-order system (2.1) as a descriptor system we define the

following state variables: x1(t) = z(t) and x2(t) = ż(t). So, we get the following descriptor

system:

{

Eẋ(t) = Ax(t) + Buu(t− d(t)) + Bww(t)

y(t) = Cx(t)

(2.2.1)

(2.2.2)
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where:

xT(t) = [xT
1 (t) xT

2 (t)],

A =

[

0n In

−S −D

]

, Bu =

[

0n×m

B

]

, Bw =

[

0n×p

F

]

,

E = diag{In, M}, C =
[

In 0n

]

.

Now we define the descriptor system matrix as:

S ,

[

E A

Bu Bw

]

. (2.3)

In addition, assume that the S is uncertain and belongs to the polytopic set ∆. Thus, ∆ is

defined by all matrices obtained by the combination of its vertices:

∆ , cov{S1, S2, . . . ,SN} =
{

S(α) : S(α) =
N

∑
i=1

αiSi, α ∈ Ω

}

(2.4)

where the polytope vertices are

Si ,

[

Ei Ai

Bu,i Bw,i

]

,

and the its coordinate vector α = [α1 α2 . . . αN ]
T belongs to the set

Ω ,

{

α : αi ≥ 0,
N

∑
i=1

αi = 1

}

. (2.5)

2.2 Rewriting PID/PIDA controller as state-feedback controller

In this section we define the control signal u(t) which is an extension of the single-variable PIDA

controller to the multivariable case, so the proportional control action (P) is proportional to the

current error. The integral action (I) can eliminate the steady-state offset and the derivative

action (D) is specially related with shaping the damping behavior of the closed-loop system.

Finally, we use the acceleration action (A) to avoid impulsive behavior in the closed-loop system,

see Example 3 for illustration of this point. Thus the multivariable PIDA controller is defined

by

u(t) = KPe(t) + KI

∫ t

0
ea(τ)dτ + KD ė(t) + KA ë(t), (2.6)

with e(t) = z(t)− r(t) where r(t) ∈ R
n is the desired set-point vector, and ea(t) denotes the

error signal on the states; ea(t) = Ue(t) ∈ R
a, for an appropriated binary matrix U ∈ R

a×n,

chosen according to the controllability of the system.
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In addition KP, KD, KA ∈ R
m×n and KI ∈ R

m×a. ea(t), guarantees the tracking of the

trajectory.

In order to enjoy from the LMI framework to design the robust controller we rewrite the

system (2.1) such that the PID part of the controller (2.6) becomes a static state feedback

controller. In view of that we define the following state variable:

x3(t) = −
∫ t

0
ea(τ)dτ (2.7)

The free of time delay and with time delay closed-loop descriptor systems are presented

below, respectively.

• Descriptor system in closed-loop free of time delay:



























Eẋ(t) = Ax(t) + Buu(t) + Bww(t)

+([0n 0n −U]T)r(t) + (BKA)r̈(t)

u(t) = Kx(t)− K[rT(t) ṙT(t) 01×a]
T

y(t) = Cx(t)

(2.8.1)

(2.8.2)

(2.8.3)

• Descriptor system in closed-loop subject to time delay:



























Eẋ(t) = Ax(t) + Buu(t− d(t))

+Bww(t) + ([0 0 −U]T)r(t)

u(t− d(t)) = Kx(t− d(t))− K[rT(t− d(t)) ṙT(t− d(t)) 01×a]
T

y(t) = Cx(t)

(2.9.1)

(2.9.2)

(2.9.3)

replacing (2.9.2) in (2.9.1), and considering Ad = BuK, we get:



























Eẋ(t) = Ax(t) + Adx(t− d(t))+

+BuK([rT(t− d(t)) ṙT(t− d(t)) 0]T)

+Bww(t) + ([0 0 −U]T)r(t)

y(t) = Cx(t)

(2.10.1)

(2.10.2)

For (2.8) and (2.9) is given:

xT(t) = [xT
1 (t) xT

2 (t) xT
3 (t)],

A =







0n In 0n×a

−S −D 0n×a

U 0a×n 0a






, Bu =







0n×m

B

0a×m






, Bw =







0n×p

F

0a×p






,
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E = diag{In, (M− BKA), Ia}, K =
[

KPm×n KDm×n KIm×a

]

,

C =
[

In 0n 0n×a

]

.

Note that if we want to rewrite the closed-loop descriptor system so that the PID controller

part becomes a PD controller, we just need to remove the last x3(t) state from the (2.8)

system.

• Reduced descriptor system in closed-loop free of time delay:















Eẋ(t) = Ax(t) + Buu(t) + Bww(t)

u(t) = Kx(t)

y(t) = Cx(t)

(2.11.1)

(2.11.2)

(2.11.3)

Where:

xT(t) = [xT
1 (t) xT

2 (t)],

A =

[

0n In

−S −D

]

, Bu =

[

0n×m

B

]

, Bw =

[

0n×p

F

]

,

E = diag{In, (M− BKA)}, K =
[

KPm×n KDm×n

]

,

C =
[

In 0n

]

.

Thus, in the case of uncertainty, the representation of uncertainties in (2.3) and (2.4) is

considered. For simplification purposes, whenever there are uncertainties in the matrices, the

index ”i” will be added.

The proposed PIDA controller for free of time delay systems is defined by a linear time-

invariant control law. Hence, standard tools for robustness analysis with respect to unstructured

uncertainties and delays can be applied a posteriori (Franklin et al. 2021). Moreover, due to the

generality of the polytopic description, polytopic difference inclusions can be used to formally

represent time-varying delay effect (Gielen et al. 2010) and some types of nonlinearities (Boyd

et al. 1994; Hu et al. 2006) a priori. In this last case, the robustness against the polytopic

uncertainty is handled directly during design stage. In the next section, we will discuss the

singularity of the mass matrix M.

2.3 Singulary on mass matrix, M, design the A control action

In this work we will consider two cases according with the mass matrix M singularity:

Case 1) M is nonsingular: we tune a standard PID controller setting KA = 0 in (2.6);
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Case 2) M is singular: we design KA such that (M− BKA) is nonsingular, which is possible

whenever
(

M, B
)

has full row rank (Bender and Laub 1987).

Therefore, in both cases we have that (M− BKA) is nonsingular and the descriptor model

above reduces to a standard state-space description left multiplying (2.8) by E−1. This explain

the reason why the proposed controller (2.6) has term KA ë(t), which can be removed from the

control law when the system mass matrix M is nonsingular.

In order to guarantee that E in (2.8) is nonsingular, in the case when the mass matrix M is

singular, we present the next lemma.

Lemma 2.1

The matrix (M − BKA) is nonsingular if there exist a nonzero scalar β and a matrix

KA ∈ R
m×n such that

[

1
2(Mi + MT

i − BiKA − KT
ABT

i ) βI

βI I

]

> 0, (2.12)

for i = 1, 2, . . . , V, where V is the number of vertices of the polytopic set ∆ in (2.4)

keeping the matrices Mi and Bi and removing the others. Furthermore if (2.12) holds then

the minimum eigenvalue of sm
{

1
2(M− BKA)

}

is greater than β2.

Proof. The lemma follows from the application of Theorem A.1, Appendix A that yields
[

1
2(AF + AT

F) β̂I

β̂I I

]

> 0

assuming that AF = (M − BKA). Therefore the conditions in the Lemma are obtained by

recalling that to ensure an LMI condition over an entire polytopic uncertain domain, it suffices

to check the LMI at the vertices of the convex polytope.

In the case system (2.1) is free of parametric uncertainties and E in (2.8) is nonsingular

a myriad of LMI conditions from the literature can be applied directly in the system (2.8).

However, in the presence of uncertainties the space-state description of the model (2.8) may

require inversion of uncertain matrices which is a hard problem in general. Therefore, in

the following we present tractable LMI conditions, which do not require inverses of uncertain

matrices. The control problems considered are listed throughout the next section for second-

order systems, and the respective LMI formulations for obtaining the controller.

2.4 PID/PIDA controller for second order linear systems

In this section, the control problems addressed are described, and in the subsections the respec-

tive LMI formulations, are followed by a step-by-step procedure for designing controllers.
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Problem 1. Design a PID or PIDA controller for the second-order linear system in (2.1)

free of time delay, such that the closed-loop system model can be written as a standard state

space description; guaranteeing the existence and uniqueness of state responses and avoiding

impulsive behavior that may cause degradation in performance; and for any combination of the

following requirements:

1. the closed-loop poles belong to a prescribed stable region (D-region) on the complex plane

as depicted in Fig. 2.1;

2. the H∞ performance condition is satisfied for a given disturbance attenuation level γ > 0,

sup
‖w(t)‖2 6=0

‖y(t)‖2

‖w(t)‖2
< γ; (2.13)

3. the control signal is bounded in amplitude by a given scalar umax > 0 and a set of initial

conditions,

max
t≥0
‖u(t)‖ ≤ umax. (2.14)

The design requirements listed in the above problem are linked to the system closed-loop

behavior and performance. The item 1) is related to the desired closed-loop time response

that often can be achieved by assigning the closed-loop poles into a suitable subregion of the

complex left-half plane. The H∞ performance in item 2) characterizes the worst case ratio,

γ, of the energies contained in the output and the exogenous disturbance input of the system.

In contrast, item 3) is concerned in maintaining the linear behavior of the closed-loop system

avoiding control-signal saturation and eventual loss of stability by guaranteeing an upper bound

on the norm of the control input umax.

It is important to mention that the main shortcoming of the proposed strategy is the full-

state knowledge assumption. This requirement can be relaxed by using state observers. Also

notice that displacement derivative may be directly measured or estimated from the direct

displacement information. In the case when M is nonsingular, Case 1), acceleration feedback is

not used, but otherwise the accelaration state may be estimated or entirely measured due to the

interesting properties of accelerometers (Abdelaziz 2015a). The following are LMI conditions

for solving Problem 1.

2.4.1 H∞ performance

The next theorem presents LMI conditions to design a controller PID/PIDA with prescribed

closed-loop H∞ performance.

Theorem 2.1

Let γ > 0 be a prescribed closed-loop H∞ performance and KA be a given matrix such that

E = (M− BKA) is nonsingular, see Lemma 2.1. The system (2.1) in closed-loop with the
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Im(s)

Re(s) θ

σ

ρ

Figure 2.1: D-region for pole placement where s is a complex number.

controller (2.6) is robustly stable with disturbance attenuation γ if there exist a symmetric

matrix P ∈ R
2n+a×2n+a and a matrix Y ∈ R

m×2n+a such that P > 0 and







sm{AiPET
i + Bu,iYET

i } EiPCT Bw,i

CPET
i −γ2 I 0

BT
w,i 0 −I






< 0, (2.15)

for i = 1, . . . , N, where N is the number of vertices of the polytopic set ∆ in (2.4). In

affirmative case, the controller gains are given by K = YP−1.

Proof. As established in the previous section the theorem statement is equivalent to designing

a controller of the form u(t) = Kx(t) such that the descriptor model (2.8) in closed-loop

is robustly stable with H∞ disturbance attenuation level γ. Moreover, assuming that E is

nonsingular, consider the state-space description obtained from system (2.8) left-multiplying

the equation (2.8) by E−1. Then such design problem can be formulated as the following

matrix inequalities Boyd et al. 1994, Sec. 6.3.2:

P > 0,

[

sm{P(E−1
i (Ai+Bu,iK))

T}+E−1
i Bw,i(E−1

i Bw,i)
T PCT

CP −γ2 I

]

< 0, (2.16)

for i = 1, . . . , N and j = 1, . . . , L, vertices of the polytopic uncertain domain. Now defining the

linearizing variable Y = KP and applying Schur complement the last inequality is equivalent to







sm{E−1
i (AiP + Bu,iY)} PCT E−1

i Bw,i

CP −γ2 I 0

BT
w,i(E−1

i )T 0 −I






< 0, (2.17)

then pre-and post-multiplying it by diag{Ei, I,I} and its transpose, respectively, the conditions

in the theorem are obtained.
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The next theorem considers the standard D-region given by the intersection of regions: 1)

half-plane Re(s) < −σ, 2) conic sector with apex at the origin and inner angle 2θ, and 3) disk

with radius ρ and center at the origin, as depicted in Fig. 2.1.

2.4.2 PID control via pole placement

The following theorem details how the pole placement in a given D-region can be done via

PID/PIDA design.

Theorem 2.2

Let be given a D-region specified by the positive scalars σ, ρ, θ and a matrix KA such that

E = M− BKA is nonsingular, see Lemma 2.1. The system (2.1) is D-stable in closed-loop

with the controller in (2.6), i.e. the poles of the closed-loop system belong to the D-region

depicted in Fig. 2.1 , if and only if there exist a symmetric positive matrix P ∈ R
2n+a×2n+a

and a matrix Y ∈ R
m×2n+a such that

2σEiPET
i + AiPET

i + EiPAT
i + Bu,iYET

i +EiY
TBT

u,i < 0, (2.18)

[

−ρEiPET
i AiPET

i + Bu,iYET
i

EiPAT
i + EiY

TBT
u,i −ρEiPET

i

]

< 0, (2.19)

[

sin θ(Θi + ΘT
i ) cos θ(Θi −ΘT

i )

cos θ(ΘT
i −Θi) sin θ(Θi + ΘT

i )

]

< 0, (2.20)

with Θi = AiPET
i + Bu,iYET

i , for i = 1, 2, . . . , N, where N is the number of vertices of the

polytopic set ∆ in (2.4) removing Bw,i. In affirmative case, the controller gains are given

in K = YP−1.

Proof. Based on the problem formulation in previous section, and assuming that E is non-

singular, consider the state-space description obtained from system (2.8) left-multiplying the

equation (2.8) by E−1. Then by an application of Theorem A.2, Appendix A in the closed-loop

matrix E−1(A + BuK) we have that

2σP + Γ + ΓT
< 0,

[

−ρP Γ

ΓT −ρP

]

< 0,

[

sin θ(Γ + ΓT) cos θ(Γ− Γ(t)T)

cos θ(ΓT − Γ) sin θ(Γ + ΓT)

]

< 0,

with Γ = E−1(A + BuK)P. Therefore the conditions in the theorem are obtained defining the

linearizing variable Y = KP, pre- and post- multiplying the first LMI by E and ET, respectively,

and the other ones by diag{E, E} and its transpose, and recalling that to ensure the resulting
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LMI conditions over the entire polytopic uncertain domain, it suffices to check the LMIs at the

vertices of the convex polytope.

2.4.3 Saturation on the control input

The following LMI condition considers the physical limitation on the maximum amplitude of

the control signal.

Lemma 2.2

(Boyd et al. 1994, Sec. 7.2.3) Assume the control signal u(t) = Kx(t) = YP−1x(t) and

the initial condition x(0). Then max
t≥0
‖u(t)‖ ≤ umax, if

[

1 x(0)T

x(0) P

]

≥ 0 and

[

P YT

Y u2
max Im

]

≥ 0. (2.21)

Finally, taking into account the above development, the robust PID/PIDA controller design

procedure is summarized next.

Procedure 2.1

PID/PIDA controller design for solving Problem 1:

Step 1: Rewrite the linear second-order system (2.1) as the augmented descriptor model (2.8);

Step 2: Set the H∞ performance γ, the control input constraint umax (if any), and the

desired D-region for the closed-loop pole placement defined by the triplet (σ,θ,ρ)

accordingly with Fig. 2.1;

Step 3: If the matrix M is singular determine the gain KA by solving the LMIs presented

in Lemma 2.1, otherwise set KA = 0 and go to the next step;

Step 4: Find the solution (P,Y) that solves simultaneously the LMI conditions presented

in Theorems 2.1, 2.2, and Lemma 2.2;

Step 5: The PID controller parameters are given in K = [KP KD KI ] where K = YP−1.

Next, we present the second control problem, whose control signal is subject to delay, and

the respective LMI formulations to obtain the controller.

2.4.4 Delayed control input

Problem 2. Design a PID controller for time-delayed second-order linear system in (2.1) such

that the closed-loop system model can be written as a standard state space description, ensuring
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the stability of the system for a given exponential decay rate.

Theorem 2.3

Let τ > 0, τ ≥ µ ≥ 0,such that d(t) ∈ [τ − µ, τ + µ], δ > 0 and α 6= 0 a scalar fit

parameter. Then, the system (2.10) is exponentially stabilized with exponential convergence

rate δ by the PID controller with gains given in the matrix K = XF
−T

, if there exist

matrices of appropriate dimensions: F, P = P
T

, S = S
T

, Q, R1 = R
T
1 , R2, R3 =

R
T
3 , Z = Z

T
and X such that the following LMIs are satisfied

[

P ⋆

Q
T

ε1S

]

> 0, (2.22)

where ε1 = e−2δτ/τ,

R =

[

R1 ⋆

R2 R3

]

> 0, (2.23)

and

[

Ξ ⋆

Γ
T

ε−1
2 µZ

]

< 0, (2.24)

where ε2 = e−2δ(τ+µ), Γ
T
= µ[XTBT αXTBT 0 0] and Ξ given in (2.25).

Ξ =













F ⋆ ⋆ ⋆

E(P + τR2)ET − ε2(EFET − αAF
T

ET) EGET ⋆ ⋆

ε1R
T
3 ET −Q

T
ET + ε2XTBT ε2αXTBT −ε1(R3 + τS) ⋆

2δQ
T

ET − ε1R
T
2 ET Q

T
ET ε1R

T
2 −ε1R1













.

(2.25)

where F = E(2δP+ Q+ Q
T
+ τR1− ǫ1R3 + S)ET + ε2(AF

T
ET + EFAT) and G = τR3 +

2µZ− ǫ2(G + G
T
).

Proof. This proof follows the Theorem A.3, Appendix A, for the state-space description ob-

tained from system (2.10), assuming that E is nonsingular, left-multiplying the equation (2.10.1)

for PID controller by E−1. Then, in the closed-loop matrix E−1(A(t)x(t) + Adx(t− d(t)) +

Bu(t)K).

Define the variables: F
∆
= F−1 and

[P Q R1 R2 R3 Z]
∆
= F[P Q R1 R2 R3 Z]F

T

The LMI in (2.22) and (2.23) are obtained by pre and post multiplying the LMIs (A.18)

and (A.19), respectively, by diag{F, . . . ,F} and diag{F, . . . ,F}T.
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Furthermore, the LMI in (2.24) is obtained through the LMI in (A.20). The following

substitutions are performed: Ad = E−1BK, A = E−1A and G = αF in (2.24), and pre-and post-

multiplying the LMI (2.24) by diag{F, . . . ,F} and diag{F, . . . ,F}T. Finally, considering the new

linearizing variable X = KF
T
and pre-and post-multiplying the LMI (2.24) by diag {E, E, I, I}

and its transpose, respectively, the conditions in the Theorem 2.3 are obtained.

Procedure 2.2

PID controller design for solving Problem 2.4.4

Step 1: Rewrite the time-delayed second-order linear system (2.1) as the augmented de-

scriptor model (2.10.1);

Step 2: Define the decay rate of the system response, δ > 0, and α, a free tuning parameter,

defining the variation in the value of the delay, µ.

Step 3: Find the solution (X, F) that solves the LMI conditions presented in Theorem 2.3.

Step 4: The PID controller parameters are given in K = [KP KD KI ], where K = XF
−T

.

Next, we present the third control problem, followed by an analysis of the influence of the

disturbance on the response of a system, and finally the LMI formulations for obtaining the

controller.

2.4.5 PD/PID via LQR cost function

Problem 3. Design a PID/PD controller based on the linear quadratic regulator (LQR) con-

troller for the second-order linear system in (2.1), that stabilizes the system and minimizes a

quadratic cost function that relates the states of the system and the control signal. Establishing

a compromise between the settling time of the system states and the used control energy.

Disturbance Response

The influence of disturbances on the system response is analyzed, and the findings from this

analysis serve as the foundation for deriving LMIs conditions for designing controllers and filters.

The focus lies on a linear and time-invariant system described by the following equations:

ẋ(t) = Λ(α)x(t) + Ω(α)w(t) (2.26)

where α represents a vector of uncertain parameters invariant in the time. The perturbation

being w(t) white noise, that is, a stochastic variable with zero means, uncorrelated in time and

with a covariance matrix W > 0:
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E{w(t)} = 0 e E{w(t)wT(τ)} = Wδ(t− τ).

In addition, the cost function is defined

lim
t→∞

E [xT(t)Θx(t)] (2.27)

where Θ ≥ 0 is a known matrix.

The result is presented below.

Lemma 2.3

Consider the system (2.26) with zero initial condition, x(0) = 0, and the cost function

(2.27). Suppose that J ≥ 0 and Ψ > 0 are the solution to the following optimization

problem:

min tr(J) subject to:

J −Ω(α)TΨΩ(α) ≥ 0 (2.28)

Λ(α)TΨ + ΨΛ(α) + Θ ≤ 0. (2.29)

Then the cost function (2.27) satisfies

lim
t→∞

E [xT(t)Θx(t)] ≤ |W|tr
(

Ω(α)TΨΩ(α)
)

.

Proof. Initially, note that with zero initial condition, the state vector of the system (2.26) is

given by

x(t) =
∫ t

0
eΛ(α)(t−τ)Ω(α)w(τ)dτ

and that

lim
t→∞

E

[

tr(xT(t)Θx(t))
]

= lim
t→∞

E

[

tr(Θx(t)xT(t))
]

= lim
t→∞

E

[

tr

(

Θ

∫ t

0
eΛ(α)(t−τ)Ω(α)w(τ)dτ

∫ t

0
wT(σ)Ω(α)TeΛ(α)T(t−σ)dσ

)]

= lim
t→∞

tr

(

Θ

∫ t

0
eΛ(α)(t−τ)Ω(α)

∫ t

0
E [w(τ)wT(σ)]Ω(α)TeΛ(α)T(t−σ)dσdτ

)

= lim
t→∞

tr

(

Θ

∫ t

0
eΛ(α)(t−τ)Ω(α)

∫ t

0
Wδ(τ − σ)Ω(α)TeΛ(α)T(t−σ)dσdτ

)

= lim
t→∞

tr

(

Θ

∫ t

0
eΛ(α)(t−τ)Ω(α)WΩ(α)TeΛ(α)T(t−τ)dτ

)

= lim
t→∞

tr

(

∫ t

0
ΘeΛ(α)ηΩ(α)WΩ(α)TeΛ(α)Tηdη

)

= tr

(

WΩ(α)T

[

∫ ∞

0
eΛ(α)TηΘeΛ(α)ηdη

]

Ω(α)

)

(2.30)
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where P(α) is the solution of the equation

Λ(α)TP(α) + P(α)Λ(α) + Θ = 0. (2.31)

Now, note that if there exists a positive symmetric definite matrix Ψ such that the inequality

in (2.29) is satisfied, then Λ(α) is Hurwitz. Furthermore, relating (2.31) from (2.29) we have

that

Λ(α)(Ψ− P(α)) + (Ψ− P(α))Λ(α)T + Θ ≤ 0

and therefore if Λ(α) is Hurwitz then, Ψ− P(α) ≥ 0. Therefore, assuming that Ψ ≥ P(α),

we have the upper bound for (2.30)

tr
(

WΩ(α)TP(α)Ω(α)
)

≤ tr
(

WΩ(α)TΨΩ(α)
)

≤ |W|tr
(

Ω(α)TΨΩ(α)
)

≤ |W|tr(J),

where J is a positive definite symmetric matrix, which implies the inequality in (2.28).

Assuming that Ei is non-singular, then the closed-loop descriptor system (2.8)/(2.11) with

a state feedback control law u(t) = Kx(t), can be rewritten as

ẋ(t) = E−1
i (Ai + Bu,iK)x(t) + E−1

i Bw,iw(t) (2.32)

where the disturbance w(t) is white noise as defined in (2.26). Furthermore, consider the

quadratic cost function

lim
t→∞

E [x(t)TQx(t) + u(t)TRu(t)] = lim
t→∞

E [x(t)T(Q + KTRK)x(t)] (2.33)

in which the constant matrices Q ≥ 0 and R > 0 are specified by the designer and the gain

matrix K must be determined in order to reduce the cost function.

Therefore, noting that the dynamics of the system in (2.32) and the cost function (2.33)

have the same form as the system in (2.26) and the function (2.27), respectively. A solution to

the present problem can be obtained using the result in Lemma 2.3, as presented below.

Theorem 2.4

Let given symmetric matrices Q ∈ Rn×n and R ∈ Rm×m. Consider the system (2.8)/ (2.11)

with Ei non-singular. If there exist matrices P > 0 ∈ Rn×n, Y ∈ Rm×n and J ≥ 0 ∈ Rp×p,

solution of the optimization problem

min
P,Y,J

Tr(J) (2.34)

[

J BT
w,i

Bw,i EiPET
i

]

≥ 0 (2.35)
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





sm{AiPET
i + Bu,iYET

i } EiPQF EiY
TRF

QT
F PET

i −I 0

RT
FYET

i 0 −I






≤ 0, (2.36)

for all i = 1,2, . . . , N, where N is the number of vertices of the polytopic set ∆ in (2.4).

With QF and RF defined such that Q = QFQT
F and R = RFRT

F . Then, the closed-loop

system (2.8) is robustly stable with K = YP−1 and
√

tr(J) is an upper bound for the LQR

cost function (2.33).

Proof. Consider the system in (2.32) and the cost function (2.33), making the substitutions:

Λ(α)← E−1
i (Ai + Bu,iK), Ω(α)← E−1

i Bw,i, Θ← Q + KTRK and Ψ← P−1 in Lemma 2.3

we have, from (2.28), that

J − BT
w,iE

−1
i P−1E−1

i Bw,i ≥ 0 (2.37)

and applying Schur’s complement we have

[

J BT
w,i

Bw,i EiPET
i

]

≥ 0. (2.38)

Now, the second inequality resulting from Lemma 2.3 is

(AT
i + KTBT

u,i)(PET
i )
−1 + (EiP)

−1(Ai + Bu,iK) + Q + KTRK ≤ 0

which pre and post multiplied by EiP and PET
i , respectively, and defining the variable Y = KP,

results in

Ei(PAT
i + YTBT

u,i) + (AiP + Bu,iY)ET
i + Ei(PQP + YTRY)ET

i ≤ 0

then considering the factorials Q = QFQT
F and R = RFRT

F and applying Schur’s complement

we have







sm{AiPET
i + Bu,iYET

i } EiPQF EiY
TRF

QT
F PET

i −I 0

RT
FYET

i 0 −I






≤ 0.

Therefore, the LMIs in the theorem follow directly from the last inequality and from (2.38), by

the fact that to guarantee an LMI in a polytope domain, it is sufficient to check the LMI on

its vertices of the polytope. Finally, considering the aforementioned progress, the procedure for

summarizing the design of a robust PID controller based on LQR control is outlined below.



38

Procedure 2.3

PID controller design for solving Problem 3.

Step 1: Rewrite the second-order system (2.1) as the augmented descriptor model (2.8);

Step 2: If the matrix M is singular find the gain KA by solving the LMIs presented in

Lemma 2.1, otherwise set KA = 0 and go to the next step;

Step 3: Define the weighting matrices Q and R;

Step 4: Find the solution (P,Y) that solves the LMI conditions presented in Theorem 2.4.

Step 5: The controller parameters are given in K = [KP KD KI ], where K = YP−1.

Similar to the PID controller, the procedure for designing PD controllers is described below:

Procedure 2.4

PD controller design for solving Problem 3.

Step 1: Rewrite the second-order system (2.1) as the augmented descriptor model (2.11);

Step 2: If the matrix M is singular find the gain KA by solving the LMIs presented in

Lemma 2.1, otherwise set KA = 0 and go to the next step;

Step 3: Define the weighting matrices Q and R;

Step 4: Find the solution (P,Y) that solves the LMI conditions presented in Theorem 2.4;

Step 5: The controller parameters are given in K = [KP KD], where K = YP−1.

Next, we present a framework for designing observer-based controllers, and the last control

problem addressed is described, followed by the LMIs formulations for obtaining the controller.

2.4.6 Observer control design

Consider the system in (2.11) and the observer-based controller

Ê ˙̂x(t) = Âx̂(t) + B̂uu(t) + ÊL(ŷ(t)− y(t))

ŷ(t) = Cx̂(t) (2.39)

u(t) = Kx̂(t).

in which the matrices with the ∧ symbol overwritten are predefined matrices that can be

chosen as the mean value of the respective matrix functions of the system, the K matrix is
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assumed known and can be projected assuming full feedback of the system states (2.11) and

finally, the L matrix must be determined.

Combining (2.11) and (2.39) we have

[

Ê 0

0 Ei

](

˙̂x

ẋ

)

=

[

Â + B̂uK 0

Bu,iK Ai

](

x̂

x

)

+

[

ÊL

0

]

[

C −C
]

(

x̂

x

)

+

[

0

Bw,i

]

w

and defining e(t) = x(t)− x̂(t), we have that

[

−I I

0 I

](

x̂

x

)

=

(

e

x

)

e

[

−I I

0 I

](

e

x

)

=

(

x̂

x

)

,

which allows us to obtain the dynamics of the estimation error and the closed-loop system

[

Ê Ei − Ê

0 Ei

](

ė

ẋ

)

=

[

Â + (B̂− Bu,i)K Ai − Â + (Bu,i − B̂)K

−Bu,iK Ai + Bu,iK

](

e

x

)

(2.40)

+

[

ÊL

0

]

[

C 0
]

(

e

x

)

+

[

Bw,i

Bw,i

]

w

which, assuming Ēi not singular, is rewritten as

(

ė

ẋ

)

= Ē−1
i (Ãi + Ēi L̃C̃)

(

e

x

)

+ Ē−1
i B̃w,iw (2.41)

whose matrices are obtained from (2.40) by comparison.

Note that the stability of the closed-loop system (2.40) is determined by the eigenvalues

eig{Ē−1
i [Ãi + Ēi L̃C̃]} = eig{Ẽ−1

i Ãi + L̃C̃}
= eig{ÃT

i Ē−T
i + C̃T L̃T}

which reveals that the stability of the system (2.41) is equivalent to the stability of the dual

system

˙̄x(t) =ÃT
i Ē−T

i x̄(t) + C̃Tū(t) + Ē−1
i B̃w,iw (2.42)

ū(t) =L̃T x̄(t).

Problem 4. Design an observer based on the LQR controller for the dual descriptor system

in (2.42).
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Theorem 2.5

Let given symmetric matrices Q ∈ R2n×2n and R ∈ Rq×q. Consider the system (2.8) with

non-singular Ei. If there are symmetric matrices P1 ∈ Rn×n and P2 ∈ Rn×n, such that

P = diag{P1, P2} > 0, Y ∈ Rq×n and J ≥ 0 ∈ Rp×p, solution of optimization problem

min
P,Y,J

Tr(J) (2.43)

[

J BT
w,i

Bw,i EiP1ET
i

]

≥ 0 (2.44)







sm{(Ē−1
i Ãi)

TP + C̃TY[I 0]} PQF [I 0]TYTRF

QT
F P −I 0

RT
FY[I 0] 0 −I






≤ 0, (2.45)

for all i = 1,2, . . . , N, where N is the number of vertices of the polytopic set ∆ in (2.4).

With QF and RF defined such that Q = QFQT
F and R = RFRT

F .

Then, the (2.39) closed-loop system is robustly stable with L = P−1
1 YT and

√

tr(J) is

an upper bound for cost function in (2.33) by performing the substitutions: x(t) ← x̄(t)

and K ← L̃T.

Proof. The result is obtained by applying Theorem 2.4 to the (2.42) system by making the

substitutions:

Ei ← I, Ai ← (Ẽ−1
i Ãi)

T, Bw,i ← Ē−1
i B̃w,i and Bu,i ← C̃T.

In addition, note that

[

P1 P2

PT
2 P3

] [

L

0

]

=

[

P1L

PT
2 L

]

.

Therefore, for the solution of the LMI return to result in only one matrix L the substitution

P ← diag{P1, P2}, and the multiplication of Y by [I 0] is also performed, thus obtaining the

LMI (2.45).

Finally, so that the cost function takes into account only the estimation error, the substitu-

tions are made in the inequality used to minimize the cost function:

P ← P1, Ēi ← Ei and B̄w,i ← Bw,i. Pre and post multiplied by [0 Ei] and [0 Ei]
T,

respectively, we get the LMI (2.44).
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Procedure 2.5

Observer-based controller project to solve Problem 4.

Step 1: Define the weighting matrices QF, RF and K found in the Theorem 2.4;

Step 2: Calculate the average value matrices Ê, Â and B̂ in (2.39), and find the matrices

Ẽ, Ã and C̃ in (2.42);

Step 3: Find the solution (P,Y) that solves the LMI conditions presented in Theorem 2.5.

Step 4: The observer parameter is given for L, where L = P−1
1 YT.

In this chapter, the representation of the second-order uncertain linear system as a descriptor

system, the treatment of the singularity of the mass matrix, as well as the design of controllers

involving multiple control requirements were presented. Next, the 2.1 and 2.2 procedures pre-

sented in this chapter will be applied to numerical examples in order to validate the presented

methods.
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3 Numerical Examples

In this chapter, are presented four numerical examples drawn from the literature to illustrate and

validate the proposed robust PID/PIDA controller design method.The LMIs were programmed

using LMI Lab (Gahinet et al. 1994) in the MATLAB platform. The first session presents three

numerical examples of free time delay second order systems. In the first example is designed

a PID controller for a grasping robot and in the second one a PID controller for an active

suspension of a car seat, in which the driver-plus-seat mass is assumed uncertain. In the third

example, a PIDA controller is designed for a mechanical system with four degrees of freedom

and a singular mass matrix. In the last example, the proposed approach is applied in a setpoint

tracking control for a non-linear system, a model of a flexible rotor coupled to an arm link. In the

second section, two numerical examples taken from the literature are presented for illustrations

and to validate the proposed method of designing a robust PID controller for systems with time

delay.

3.1 Second order systems free of time delay

Example 1. Consider a second-order linearized model, as in (2.1), of a grasping robot (Shapiro

2005) with

M = diag{10,11}, D =

[

4 1

1 5

]

, S =

[

8 4

−4 9

]

, B = F = I2×2. (3.1)

This model can also be rewritten as the augmented descriptor representation in (2.8) by

setting U = I.

The control specifications are: i) limitation on the control signal amplitude as in (2.14)

with umax = 150 for initial condition x(0) = [0.2 0.2 0.8 0.8 0.1 0.1]T, ii) H∞ disturbance

attenuation level γ = 1.2570 and iii) the system closed-loop pole placement in the D-region

defined as the intersection of the half-plane Re(s) < 0.7, a conic sector centered at the origin
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Table 3.1: Open-loop and closed-loop system poles in the Example 1.

Open-loop Closed-loop
0.0039± j0.9001 −0.9119± j0.1141
−0.4312± j0.8953 −2.0789± j1.3140

−2.3439± j1.1754

and with inner angle given by θ = π/4, and a disk with radius ρ = 5 as shown in Fig. 2.1.

Then following the steps in Procedure 2.1 yield the PID controller gains:

KP =

[

−101.9639 9.7931

−1.8587 −101.0996

]

, KD =

[

−51.3961 2.6837

3.0071 −51.4268

]

, KI =

[

−62.1859 6.3242

−5.9849 −61.5149

]

.

For illustration, the respective open-loop and closed-loop poles are summarized in Table

3.1, all closed-loop poles belong to the desired D-region as can be seen in the Fig. 3.1. Fig. 3.2

describes the displacement, z(t) and its derivative ż(t), to a unity set point and to an exogenous

sinusoidal disturbance signal w(t) = 5 sin(10t) + 5 for t ∈ [10, 20]sec. The displacement error

paths e(t) and the input signal u(t), can be seen in Fig. 3.3, where the boundary condition in

(2.14) for the given umax is respected for a given perturbation and the error paths reach zero

in steady state for a constant reference.
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Figure 3.1: The left-hand figure shows the system finite open-loop poles and the right-hand one its closed-loop
poles. The shaded area indicates the desired D-region for the system closed-loop pole placement. Example 1.

Example 2. Consider the active suspension of a car seat sketched in Fig. 3.4 drawn from

Reithmeier and Leitmann 2003. This model has been successfully used to design controllers

for vehicle active suspension (Pan and Sun 2019; Sun et al. 2015), vehicle driver seat (Alfadhli

et al. 2018; Tu et al. 2021), or for a combination of them as in Reithmeier and Leitmann 2003.

The model consists of the car mass (mc) and driver-plus-seat mass (ms). The vibrations are
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Figure 3.2: The system closed-loop response to a unity set point and to an exogenous sinusoidal disturbance
signal w(t) = 5 sin(10t) + 5 for t ∈ [10, 20]sec. Example 1.
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Figure 3.3: Closed-loop response error vector e(t) and control signal u(t) to a unity set point and to an exogenous
sinusoidal disturbance signal w(t) = 5 sin(10t) + 5 for t ∈ [10, 20]sec. Example 1.

partially mitigated by the shock absorbers at the car and at the seat whose stiffness (k1 and

k2) and damping (b1 and b2) that can be adjusted by u1(t) and u2(t), respectively. The system

model is given by (2.1) with data:

M = diag{ms,mc}, B = I2×2, F = diag{0, 1}, D =

[

b2 −b2

−b2 b1 + b2

]

, and S =

[

k2 −k2

−k2 k1 + b2

]

where mc = 1500kg and ms ∈ [70, 120]kg (according to the driver’s weight), k1 = 4×
104N/m, k2 = 5000N/m, b1 = 4000N-sec/m and b2 = 500N-sec/m. Further, this system can

be modeled as (2.8) by setting U = BT.



45

ms

mc

Driver-plus-seat mass

Active seat suspension

Car mass

Active car suspension

Wheel

z1(t)
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Figure 3.4: The quarter–vehicle model of active suspension system. Example 2.

In this example the control specifications are: i) limitation on the control signal amplitude

as in (2.14) with umax = 40000 for initial condition x(0) = [−0.1 −0.1 0.09 0.09 0.05 0.05]T, ii)

H∞ disturbance attenuation level γ = 0.1732 and ii) the system closed-loop pole placement in

the D-region defined as the intersection of the half-plane Re(s) < −0.9, a conic sector centered

at the origin and with inner angle given by θ = π/3, and a disk with radius ρ = 15 as shown

in Fig. 2.1. Then following Procedure 2.1 yields the PID controller gains:

KP =

[

−5748 −3723

−4844 −7029

]

, KD =

[

−1090 −567

−485 −9837

]

, KI =

[

−11803 1676

−4838 −46515

]

.

For the results analysis Fig. 3.5 shows the open and closed-loop system poles for all integer

admissible values of ms where the shaded area indicates the desired D-region for the system

closed-loop pole placement. Moreover, for ms = 100, Fig. 3.6 shows the response evolution

of the closed-loop system state vector z(t) and its derivative to a unity set point and to an

exogenous sinusoidal disturbance signal w(t) = 1000 sin(5t) + 1000 for t ∈ [7, 12]sec. It is

important to mention that small impacts are observed on the dynamic response of the system

for different values of the driver-plus-seat mass. Fig. 3.7 shows close views of the evolution of the

displacement on the seat, z1(t), and its time-derivative, according to the value of ms ∈ [70, 120].

Finally, Fig. 3.8 shows the control signal, where we can see that it does not exceed the limit

umax for a given perturbation and the error in the state reaches zero in steady state for a

constant reference.

Example 3. Consider the singular mass four degrees-of-freedom mechanical system explored

in Abdelaziz 2015a, sketched in Fig. 3.9, which dynamics model can be written as (2.1) with:
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Figure 3.5: The left-hand figure shows the system open-loop poles and the right-hand one its closed-loop poles
for all integer values of ms. The shaded area indicates the desired D-region for the system closed-loop pole
placement. Example 2.
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Figure 3.6: The system closed-loop response to a unity set point and to an exogenous sinusoidal disturbance
signal w(t) = 1000 sin(5t) +1000 for t ∈ [7, 12]sec. Example 2.
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Figure 3.7: Close views of the closed-loop system states, z1(t) and ż1(t), where the shaded area indicates where
the signal may takes place for integer values of ms. Example 2.

0 5 10 15

-1

-0.5

0

0 5 10 15

0

1

2

3

4

10
4 Time (sec)

e(
t)

Time (sec)

u
(t
)

Figure 3.8: Closed-loop error response on the state e(t) and control signal u(t) to a unity set point and to
an exogenous sinusoidal disturbance signal w(t) = 1000 sin(5t) + 1000 for t ∈ [7, 12]sec, for ms = 100kg.
Example 2.
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M = diag{m1,m2,m3,0},

D=













b1 + b2 −b2 0 0

−b2 b2 + b3 −b3 0

0 −b3 b3 + b4 −b4

0 0 −b4 b4













, S=













k1 + k2 −k2 0 0

−k2 k2 + k3 −k3 0

0 −k3 k3 + k4 −k4

0 0 −k4 k4













,

B =

[

1 0 0 0

0 0 0 1

]T

and F = diag{1,0,0,1},

where are assumed the physical system parameters values: m1 = 3kg, m2 = 2kg, m3 = 1kg,

b1 = 5N-sec/m, b2 = 10N-sec/m, b3 = 15N-sec/m, b4 = 20N-sec/m, k1 = 5N/m, k2 = 15N/m,

k3 = 15N/m, k4 = 20N/m. Note that this system can be represented by (2.8) setting U = BT.

m1 m2 m3

k1

b1

z1(t)

u1(t)

k2

b2

z2(t)

k3

b3

z3(t)

k4

b4

z4(t)

u2(t)

Figure 3.9: Mechanical system. Example 3.

Before proceeding to the controller design, note that this system presents an impulsive

behavior due to an open-loop pole at infinite, see Table 3.2, which can result in possible harmful

unwanted dynamic behaviors. Physically, the 4th degree of freedom is stressed to a jump in

velocity due to its negligible mass, resulting in a mechanical shock in the connected dashpot and

spring. Acceleration feedback brings the benefit of eliminating this issue. Thus, the objective of

the PIDA controller proposed is to eliminate the impulsive behavior with acceleration feedback,

generated by the infinite open-loop pole, and to assign for the system desired dynamic behaviors

by the closed-loop pole placement.

Thus for the controller design the specifications are: i) limitation on the control signal

amplitude as in (2.14) with umax = 120 for the initial condition x(0) = [0.4 0.4 0.4 0.4 −0.02

−0.02 −0.02 −0.02 0.001 0.001]T, ii) H∞ disturbance attenuation level γ = 0.9010 and

iii) the system closed-loop pole placement in the D-region defined as the intersection of the

half-plane defined by Re(s) < −0.9, a conic sector centered at the origin and with inner angle

given by θ = π/4, and a disk with radius ρ = 20 as shown in Fig. 2.1. Then following the

steps in Procedure 2.1, we set β = 0.1 in Lemma 2.1, that yields the PIDA controller gains,
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Table 3.2: Open-loop and closed-loop system poles in the Example 3.

Open-loop Closed-loop
−∞ , −23.698, −14.2587± j6.2459,

−0.3680± j0.7923, −4.0065, −3.2294,
−1.9284, −5.0792, −1.4582, −1.3700,
−1.0585, −1. −7.2055, −5.8602,

−1.2489, −1.0232.
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Figure 3.10: The left-hand figure shows the system finite open-loop poles and the right-hand one its closed-loop
poles. The shaded area indicates the desired D-region for the system closed-loop pole placement. Example 3.

KA=













1.2655 0

0 0

0 0

0 −1.7345













T

, KP=













−61.819 −16.591

−27.325 31.7718

14.2869 −71.324

−20.834 2.8653













T

KD =

[

−7.9785 −16.5291 10.9827 −10.6981

−6.8143 29.4912 −71.0446 31.8443

]

, KI =

[

−75.4615 −4.2255

−9.7808 −33.2117

]

.

For illustration, the respective open-loop and closed-loop poles are summarized in Table 3.2,

all closed-loop poles belong to the desired D-region as can be seen in the Fig. 3.10. Fig. 3.11

describes the displacement, z(t) and its derivative ż(t), to a unity set point and to an exogenous

sinusoidal disturbance signal w(t) = sin(5t) + 1 for t ∈ [10, 20]sec. The displacement error

paths ea(t) and the input signal u(t), can be seen in Fig. 3.12, where the maximum limit value

umax is respected for a given perturbation.

Example 4. In this example the proposed approach is applied to a set-point tracking control

for a nonlinear system. We borrowed from Lipták et al. 2017 the model of a flexible rotor

coupled to an arm link, sketched in Fig. 3.13. The system consists of a rotor actuated by the

torque generated with a motor, where the degrees of freedom are the angles in the two extreme
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Figure 3.11: The system closed-loop response to a unity set point and to an exogenous sinusoidal disturbance
signal w(t) = sin(5t) + 1 for t ∈ [10, 20]sec. Example 3.
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Figure 3.12: Closed-loop error response, and control signal u(t) to a unity set point and to an exogenous
sinusoidal disturbance signal w(t) = sin(5t) + 1 for t ∈ [10, 20]sec. Example 3.
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Table 3.3: Open-loop and closed-loop system poles at its vertices, Example 4.

ϕ1(t) Open-loop Closed-loop
±38.9023j, −8.0620± 11.9675j,

−π
2 ±2.5705j −13.5952,

−5.7727.± 4.0952j.
±38.8396j, −6.8103± 9.9304j,

π
2 ±2.0543j −5.9872,

−10.8284± 6.7034j .
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Figure 3.14: The left-hand figure shows the system finite open-loop poles and the right-hand one its closed-loop
poles. The shaded area indicates the desired D-region for the system closed-loop pole placement. Example 4.

For the results analysis purposes, the open and closed-loop system poles at its vertices are

summarized in Table 3.3. All closed-loop poles belong to the desired D-region as can be seen

in the Fig. 3.14. Fig. 3.15 shows the response evolution of the closed-loop system state vector

z(t) and its derivative ż(t) to a piece-wise constant set-point (dashed line). The displacement

error paths ea(t) and the input signal u(t), can be seen in Fig. 3.16. One can notice that the

reference tracking depicts the expected response despite the nonlinear effect induced by the

significant excursion range beyond the original rest positioning.

3.2 Second order systems subject to time delay

Example 1. In this example a standard benchmark is considered, the 3-DoF model for a wing

in an airflow studied in Araujo and Santos 2020, the system matrices are given by:
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Figure 3.15: The system closed-loop response to a piece-wise constant set-point. Example 4.
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Figure 3.16: Closed-loop error response, and control signal u(t). Example 4.

M =







17.6 1.28 2.89

1.28 0.824 0.413

2.89 0.413 0.725






, D =







7.66 2.5 2.1

0.23 1.04 0.223

0.6 0.756 0.658






, S =







121 18.9 15.9

0 27 0.145

11.9 3.64 15.5






,

B =







1

0

0






, U = BT. (3.5)

The delay value considered was τ = 0.2, µ = 0.5τ, the decay rate of the system’s response

is δ = 0.6, and parameter of the free matrix F̄, α = 0.6. The Procedure 2.2 yields the PID

controller gains:
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Figure 3.17: The system closed-loop response. Example 1.
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Figure 3.18: Closed-loop error response, and control signal u(t). Example 1.

KP = [−7.7475 15.5212 0.9003], KD = [−75.0955 − 4.6038 − 12.3270], KI = −66.2748.

For the results analysis, the Fig. 3.17 shows the evolution of the closed-loop system state

vector, z(t) and its derivative ż(t) for a unity set-point. The displacement error paths ea(t)

and the input signal u(t), can be seen in Fig. 3.18.

Example 2. Consider the system studied in Ram et al. 2011, represented by matrices:

M =

[

1 0

0 1

]

, D =

[

1 −1

−1 1

]

, S =

[

3 −2

−2 3

]

, B =

[

1

0

]

, U = BT. (3.6)
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For this example we considered a delay of τ = 0.4, µ = 0.5τ, with a decay rate equal to

δ = 0.1, and the free matrix parameter F̄, α = 0.8. The PID controller gains obtained through

the procedure 2.2 are

KP = [0.2727 − 0.0513], KD = [−1.1878 − 1.0302], KI = −0.3308.

For the results analysis purposes, the Fig. 3.19 shows the response evolution of the closed-loop

system state vector z(t) and its derivative ż(t) to a constant set-point (dashed line). The

displacement error paths ea(t) and the input signal u(t), can be seen in Fig. 3.20.
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Figure 3.19: The system closed-loop response. Example 2.
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Figure 3.20: Closed-loop error response, and control signal u(t). Example 2.
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In the section 3.1, the results obtained through the procedure 2.1 were applied to four

numerical examples, each one with its peculiarity, validating the proposed PID/PIDA controller

for time-delay-free systems. In section 3.2 the PID controller obtained through the procedure

2.2 for systems subject to time delay in the control input was validated through two numerical

examples. In the next Chapter, the PD/PID-LQR controller, and the observer-based controller

from Chapter 2, are applied to a practical experiment of a mobile inverted pendulum.
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4 Practical Experiment: Mobile Inverted

Pendulum

In this chapter, a mobile inverted pendulum (MIP) is studied. The initial section is dedi-

cated to obtaining a model for the inverted pendulum system based on the Lagrange equations.

Subsequently, the second section provides an exposition of the experimental methods used to es-

timate some model parameters. Next, the third section covers the design of PID/PD-LQR and

observer-based control, taking advantage of the techniques proposed in Chapter 2, and the results

of the application of the controllers in the MIP, showing their effectiveness and performance.

The mobile inverted pendulum (MIP) is a robotic platform, similar to an autonomous

vehicle with two independently driven wheels, highly extensible, and compatible with open

standards. The existing development board in the MIP is the BeagleBone Black, based on

Linux (BeagleBoard.org 2023). This board offers several functionalities, and allows the addition

of sensors and hardware, according to the needs of the project to be executed. EduMIP, Fig.4.1,

is a prototype of MIP, used in this thesis, which can be purchased at Hackster.io 2023.

Figure 4.1: EduMIP



58

The MIP is studied to illustrate and validate the design of PID/PD controllers based on the

LQR control, and the design of the observer-based control. To implement the controllers, the

pyctrl library, available at GitHub 2018, was used. The following section presents a model for

the inverted pendulum system based on the Lagrange equations.

4.1 Modeling

Obtaining a model that characterizes the system will allow us to design a suitable controller for

the MIP. To idealize the model, we will consider that the body and the wheels are rigid bodies

and the friction between the wheels and the ground is zero. Consider the model for the MIP

represented by Fig. 4.2.

�

❈b

❈w

�

x

y

r

lℓ

Figure 4.2: MIP system sketch

where x and y are the coordinates, the body angle (θ) and the wheel angle (φ), r represents

the radius of the wheels, and ℓ is the distance between the center of mass of the wheels (Cw)

and the center of mass of the body (Cb).

The model is obtained using the Lagrangian formalism, which allows us to obtain the equa-

tions of motion of a system systematically. The Lagrangian equations of motion for a system

are written as:
d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi
= Fi (4.1)

where:

qi - represents one of the generalized coordinates;

q̇i - represents the first time derivative of qi;

L - the Lagrangian function;

Fi - non-conservative forces acting;
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The Lagrangian function can be defined by:

L = T −U (4.2)

where T is the kinetic energy, and P is the potential energy of the system. The kinetic energy

of the system is given by the translational kinetic energy plus the rotational kinetic energy:

T =
Mb

2
V2

B + 2MwV2
w +

IB

2
θ̇2 + 2

Iw

2
φ̇2 (4.3)

where:

Mb - mass of the body;

Mw - mass of a wheel;

Vb - translational velocity of the body;

Vw - translational speed of the wheels;

Ib - body inertia;

Iw - wheel inertia with gearbox;

The translational speed of the wheels can be easily obtained by first writing the position of

Mw in cartesian coordinates (xw, yw). Given by xw(t) = −rφ(t) and yw(t) = 0. Then the

center of mass of the wheels is:

Cw = (−rφ(t), 0)

and the translational speed of the wheels is defined as

Vw = Ċw = (−rφ̇(t) + 0) (4.4)

For body mass Mb, the position in cartesian coordinates are written as xb(t) = −rφ(t) +

ℓ sin θ(t) and yb(t) = ℓ cos θ(t). Then the center of mass of the body is given by:

Cb = (−rφ(t) + ℓ sin θ(t), ℓ cos θ(t))

The translational speed of the body is:

Vb = Ċb =
(

− rφ̇(t)− ℓθ̇(t)cosθ(t)− ℓθ̇(t)sinθ(t)
)

(4.5)

We define the inertia of the geared wheel as:

Iw =
Mwr2

2
+ R2

g Ia (4.6)

where:

Rg− gearbox ratio;

Ia− inertia of the motor armature;
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Substituting the equations (4.4), (4.5) and (4.6) in (4.3), we can describe the kinetic energy

as:

T =
Mb

2

(

ℓ
2θ̇2(t)+ r2φ̇2(t)+ 2ℓrφ̇(t)θ̇(t) cos θ

)

−Mwr2φ̇2(t)+
Ib

2
θ̇2(t)+

Mw

2
r2 +G2

r Im (4.7)

The potential energy of system is described as

U = Mbgyb(t) = Mbglcosθ(t) (4.8)

Subtracting the potential energy (4.8) from the kinetic energy (4.7) of the system that was

determined, we find the value of the Lagrangian function L.

Now solving the Euler-Lagrange equations (4.1) in terms of the generalized coordinates θ

and φ:



















d

dt

(

∂L

∂θ̇

)

− ∂L

∂θ
=− F(t)

d

dt

(

∂L

∂φ̇

)

− ∂L

∂φ
= F(t)

(4.9.1)

(4.9.2)

we find the following system of equations of motion

{

Ibθ̈(t) + Mbℓ
2 ¨θ(t)−Mbℓg sin θ(t) + Mbℓrφ̈(t) cos θ(t) = −F(t)

Mbrℓθ̈(t) cos θ(t)−Mbrℓθ̇(t)2 sin θ(t) + φ̈(t)2Iw + φ̈r2MB + φ̈r22Mw = F(t)

(4.10.1)

(4.10.2)

In this system F(t) is the torque supplied by the motor, calculated as

F(t) = 2Rg(tmn− Cmwm) (4.11)

where:

n = V(t)/Vmax - normalized motor duty cycle;

tm - motor stall torque;

V(t) - motor voltage;

Vmax - maximum voltage of motor;

Cm - motor constant;

wm = Rg(φ̇− θ̇) - motor armature speed.

Substituting (4.11) into (4.10), isolating the generalized variables, and setting the following

substitution for simplicity:
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a = r2(Mb + 2Mw) + 2Iw

b = Mbℓr

c = Ib + Mbℓ
2

d = Mbℓg

e =
2Rgtm

Vmax

f = 2R2
gCm

Thus equation (4.10) is now:

{

cθ̈(t)− d sin θ(t) + b cos θ(t)φ̈(t) = −eV(t) + f (φ̇− θ̇)

b cos θ(t)θ̈(t)− b sin θ(t)θ̇(t)2 + aφ̈(t) = eV(t)− f (φ̇− θ̇)

(4.12.1)

(4.12.2)

Solving the equations for θ̈ and φ̈ in the equation (4.12), we have the nonlinear MIP model:

[

ac− b2 cos2 θ(t) 0

0 ac− b2 cos2 θ(t)

] [

θ̈(t)

φ̈(t)

]

=

[

−b f cos θ(t)− a f − b2 sin θ(t) cos θ(t)θ̇(t) b f cos θ(t) + a f

b f cos θ(t) + c f + bc sin θ(t)θ̇(t) −b f cos θ(t)− c f

] [

θ̇(t)

φ̇(t)

]

+

[

ad sin θ(t)

−bd sin θ(t) cos θ(t)

]

+

[

−beV(t) cos θ(t)− ae

beV(t) cos θ(t) + ce

]

V(t) (4.13)

4.1.1 Linearization

Since the control design techniques we will employ in this example apply only to linear systems,

the (4.13) equation set needs to be linearized. It is desired to linearize the system at an

equilibrium point, approximating the non-linear behavior of the system by a linear model.

Analyzing the differential equations, it turns out that equilibrium points are dependent on

the value of θ and φ. There are two equilibrium points for the system, the equilibrium 1:

θ(t) = θ̇(t) = φ̇(t) = V(t) = 0, is an unstable equilibrium, where it is necessary to apply a

control. And the equilibrium point 2, where θ(t) = π, and the other variables are 0, is a stable

equilibrium, which is reached without any control.

The (4.13) equations are linearized assuming that the system is close to the point of Equi-

librium 1. Let θ2 be a small deviation of the pendulum position from equilibrium, that is,

θ = 0 + θ2, we can use the following approximations of the nonlinear functions in our system

equations:

cos θ = cos(0 + θ2) ≈ 1

sin θ = sin(0 + θ2) ≈ θ2 = θ

θ̇2 = θ̇2
2 ≈ 0

(4.14)
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Substituting (4.14) in (4.13), we get the linearized model:

[

ac− b2 0

0 ac− b2

] [

θ̈(t)

φ̈(t)

]

+

[

f (a + b) − f (a + b)

− f (b + c) f (b + c)

] [

θ̇(t)

φ̇(t)

]

+

[

−ad 0

bd 0

] [

θ(t)

φ(t)

]

=

[

e(a + b)

−e(b + c)

]

u(t) (4.15)

Note that the obtained model is similar to the second-order model in (2.1), where the state

vector is z = [θ φ]T.

4.2 System Identification

System identification is used to estimate the parameters of mathematical models of dynamical

systems. In this context, the gray box modeling approach is used, which means that we have

partial access to system information, both through experimental measurements and observa-

tions (Aguirre 2015; MathWorks n.d.; Zhuo 2017). The objective is to estimate the unknown

parameters of the MIP mathematical model, represented by (4.15).

To perform the system identification, we conducted two experiments: the first was performed

with the body angle θ, and the second with the wheel angle φ. During these experiments, we

collected data from MIP input and output signal measurements. These measurements are used

to infer the values of unknown parameters in the model.

Gray box modeling allows the combination of known information (theoretical modeling and

known parameters) with information obtained from experimental data. In this way, we can

improve the precision of the mathematical model of the MIP, making it closer to the real

behavior of the system.

At the end of the identification process, we obtained the parameters of the MIP mathemat-

ical model, which is a more accurate representation of the real system, enabling the design of

more efficient control strategies for the MIP. Next, we detail each of the experiments carried

out.

4.2.1 Body angle θ experiment

In the first experiment, we collected data on the angular velocity of the MIP body while

constraining the movement of the wheels. This restriction was made by holding the MIP by

the wheels upside down. We then analyze the body data and identify parameters Ib, Cm, and

tm that are relevant to the mathematical model of the system.

Since the movement of the wheels is restricted, we can state that φ(t) = 0, φ̇(t) = 0, and

φ̈(t) = 0. Then the equation of motion (4.12.1) can be rewritten:
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cθ̈(t)− d sin θ(t) = −eV(t)− f θ̇(t) (4.16)

The experiment is carried out at equilibrium point 2, where θ(t) = π, and the other variables

are 0, resulting in a stable system. Linearizing the model around this equilibrium point, we

obtain the model in reduced state space, which describes the relationship between the voltage

V(t) and the angular velocity of the body θ̇(t):

[

θ̇(t)

θ̈(t)

]

=

[

0 1

− d
c −

f
c

] [

θ(t)

θ̇(t)

]

+

[

0

− e
c

]

u(t) (4.17)

We get the transfer function from V(t) to θ̇(t):

H(s)θ̇ =
− e

c s

s2 + f
c s + d

c

(4.18)

The chirp signal applied to the MIP is 1.85 V, so the PWM duty cycle is 25%, varying the

frequency, starting at 1 Hz, gradually increasing to 20 Hz in 30 seconds, and decreasing in 30

seconds to 1 Hz. The response is shown in Figure 4.3:
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Figure 4.3: Experiment with body angle θ

From this experiment, we collect input (voltage V) and output (body angular velocity) data

and then estimate the transfer function (4.19) using MatLab function tfest.

H(s)θ̇original
=
−30.11s− 52.49

s2 + 7.133s + 110.6
(4.19)
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It was necessary to move a zero from the estimated model (4.19) to obtain a transfer function

in the same form as (4.18), to determine the parameters. We move a zero to the origin in MatLab

as follows: for the obtained transfer function, we calculate the gain peak and the frequency

where this peak occurs, using the getPeakGain function. We extract the numerical coefficients

and denominators of the transfer function by applying tfdata. Subsequently, the peak gain is

calculated for a transfer function with a zero at the origin, with the same denominator as the

original function. With this, the ratio between the gain peaks of the two transfer functions, the

original and the one with zero at the origin, is determined. Finally, the original new transfer

function is obtained, inserting a new zero at the origin equal to the ratio of the two transfer

functions and the unchanged denominator:

H(s)θ̇ =
−30.52s

s2 + 7.133s + 110.6
(4.20)

Note that the method used to obtain the transfer function allows us to obtain only an

approximation. Given this, it is necessary to consider uncertainties in obtaining the transfer

function, we consider an uncertainty of ±4%. In Fig. 4.4, we can analyze the Bode diagram of

the transfer function in (4.20), with an uncertainty of ±4%. In Fig. 4.5 is a magnitude zoom,

where we see the uncertainty better.
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Figure 4.4: Bode diagram H(s)θ̇
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Figure 4.5: Close look at the Bode diagram, the blue line is the H(s)θ̇, and the red and yellow lines are the
transfer function with an uncertainty of ±4%.

4.2.2 Wheels angle φ experiment

The second experiment is carried out to observe the speed of the wheels, to identify the pa-

rameter Iw. The back of the MIP is placed on the table, as in Figure 4.6, and data regarding

wheel speed is collected.

Figure 4.6: Experiment with wheels angle φ

As the body is not moving in this experiment and there is no speed of translation in the

wheels, thus Mb and Mw terms. Then we rewrite:

a = r2(Mb + 2Mw) + 2Iw ⇒ a = 2Iw

We can say that θ̇(t) = 0 and θ̈(t) = 0, so there is only one equation of motion from (4.12):

φ̈(t) = − f

a
φ̇(t) +

e

a
u(t) (4.21)
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This model describes the relationship between the voltage V and angular velocity of wheels

φ̇(t). Convert the state-space model to a transfer function from V(t) to φ̇(t):

H(s)φ̇ =
e
a

s + f
a

(4.22)

The chirp signal applied to the MIP is 1.85 V, that is, the PWM duty cycle is 25%, varying

the frequency, starting at 0.3 Hz, gradually increasing to 30 Hz in 30 seconds, and gradually

decreasing in 30 seconds to 0.3 Hz. The signal response is shown in Figure 4.7:
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Figure 4.7: Wheel angle experiment φ, where the blue line is the input voltage and the red and green lines
represent the speed of wheels 1 and 2, respectively. The red and green lines almost overlap as the speed data
collected for both wheels was very close.

From this experiment, we collect input (voltage V) and output (angular velocity of wheels)

data and then estimate the transfer function using MatLab function tfest. With the results

of the experiment, we can estimate the transfer functions:

H(s)φ̇1
=

208.8

s + 33.02
(4.23)

H(s)φ̇2
=

208.5

s + 33.32
(4.24)

As in the body angle experiment, the transfer function obtained in this experiment is only

an estimate, so there is uncertainty, considering a variation of ±4% in the transfer function of

voltage (V) and angular speed of the wheels.
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To identify the parameters of the experiments Ib, Cm, tm, and Iw. We determine some values

from the transfer functions (4.20), (4.23) and (4.24):

e

c
= 30.52∆,

f

c
= 7.133,

d

c
= 110.6,

e

a
= 208.8∆,

f

a
= 33.02

where ∆ represents an uncertainty of ±4% given by ∆ = [0.96 1.04]. Considering the above

variables, and performing the necessary substitutions, we find the following parameters:

Ib = Mbgl−Mbl2(d/c)
d/c = 4.98× 10−4∆

Cm = Mbgl( f /c)

2R2
g(d/c)

= 2.39× 10−6∆

tm = MbglVmax(e/c)
2Rg(d/c)

= 0.0027∆

Iw = Mbgl(e/c)
2(d/c)(e/a)

= 6.1313× 10−5∆

After substituting these expressions, and the known parameters: g = 9.8, Vmax = 7.4,

Rg = 35.37, Mb = 0.027, Mw = 0.263 and r = 0.034, we get the linear model parameters

(4.15): a = 10−3× [0.4747 0.4639 0.4865], b = 10−3× 0.3482, c = 10−3× 0.9641, d = 0.1066,

e = [0.0282 0.0306] and f = 0.0069. Note that the parameters a and e, assume more than one

value, due to ∆ uncertainty. Substituting the parameters in (4.15), we obtain the matrices

M1 = M4 = 10−6 × diag{0.3365, 0.3365}, M2 = 10−6 × diag{0.3260, 0.3260},

M3 = 10−6 × diag{0.3478, 0.3478},

D1 = D4 = 10−5 ×
[

−0.5659 0.5659

0.9024 −0.9024

]

, D2 = 10−5 ×
[

−0.5584 0.5584

0.9024 −0.9024

]

,

D3 = 10−5 ×
[

−0.5739 0.5739

0.9024 −0.9024

]

,

S1 = S4 = 10−4 ×
[

0.5062 0

−0.3712 0

]

, S2 = 10−4 ×
[

0.4946 0

−0.3712 0

]

, S3 = 10−4 ×
[

0.5187 0

−0.3712 0

]

,

B1 = 10−4 ×
[

−0.2324 0.3706
]T

, B2 = 10−4 ×
[

−0.2294 0.3706
]T

,

B3 = 10−4 ×
[

−0.2554 0.4015
]T

, B4 = 10−4 ×
[

−0.2518 0.4015
]T

,

F =

[

1

1

]

and C =

[

0 1 0

0 0 1

]

. (4.25)

where Mi, Di, Si and Bi of i, . . . , V, where V is the number of vertices of o polytopic set P

given in (??).
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4.3 Controller Design

In this section, the designs and implementations of the PD/PID-LQR controllers and the

observer-based controller in the MIP robot are carried out, whose control objective is to stabi-

lize the MIP, that is, to keep it in a vertical position. Initially, the gains of the PD/PID-LQR

controllers are obtained and the discretization process is presented, and the results are sub-

sequently compared. Next, the observer-based controller gains are presented, along with the

process of discretization and analysis of the results obtained.

4.3.1 Design of PD/PID-LQR controllers

Procedures 2.3 and 2.4 were carried out and the results were implemented in the acquired MIP

system model. Initially, a Proportional-Derivative (PD) controller was obtained through the

LQR approach. Then a Proportional-Integral-Derivative (PID) controller.

1. PD-LQR controller

The second-order model obtained in (4.25) is rewritten as a representation of the reduced

descriptor system in (2.11).

The weighting matrices are: Q = In, and varying R: R = 2, R = 3 and R = 5.

The choice of Q = I is commonly used in LQR control, eliminating the need to adjust

different weights for each state, each state is treated equally. By varying the values of

R, it is possible to adjust the weight assigned to the control signals. Larger values of R

increase the penalty associated with control effort, encouraging the controller to generate

smoother control signals and reducing the effort required to control the system. On the

other hand, smaller values of R reduce the penalty associated with control effort, allowing

the controller to generate more aggressive control signals.

Following the steps described in Procedure 2.4, the PD controller gains can be obtained.

The resulting gains from the PD controller are summarized in Table 4.1.

Table 4.1: PD controller gains, varying the weighting variable R.

R KP KD

1 [38.3431 1.0001] [4.0221 1.5153]
2 [29.0634 0.7072] [2.9553 1.1669]
5 [21.2689 0.4472] [2.0587 0.8688]

2. PID-LQR controller

The second-order model obtained in (4.25) is rewritten as a representation of the descrip-

tor system in (2.8), defining U = [0 1], among the ones we tested, the only matrix U

that the LMIs of Theorem 2.4 return a feasible result, for other values of the matrix U
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tested: U = [0 1] and U = I2, the system is not controllable, and LMIs are unfeasible.

With U = [0 1], the integral action acts only on the wheel speed (φ̇).

The weighting matrices are defined as Q = In, and varying R: R = 2, R = 3 and R = 5,

to adjust the influence of the control signals on the control cost.

Following the steps described in Procedure 2.3, we obtain the resulting gains of the PID

controller, summarized in Table 4.2.

Table 4.2: PID controller gains, varying the weighting variable R.

R KP KD Ki

1 [41.0411 1.9873] [4.3391 1.7000] 0.9997
2 [30.8834 1.4191] [3.1781 1.2952] 0.7071
5 [22.2760 0.9197] [2.1935 0.9469] 0.4472

For the results analysis purpose, the responses with the PD controllers gain, from Table 4.1,

can be seen in Fig. 4.8, we can see that by varying R, noise and control effort decrease. In

Fig. 4.9 we compare the MIP response to the PID controllers gain, in Table 4.2 considering

the variation of parameter R, it is noted that for R = 5 the response is less noisy, for both

controllers obtained the voltage does not exceed the maximum value of 7.4 V. Doing a more

exhaustive search, and varying the weighting variables, the answer may improve. This is the

advantage of designing controllers based on the LQR controller, you can adjust the weighting

variables according to what project needs.
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Figure 4.8: Response of body position (θ) and voltage, with PD controller, for R = 1, R = 2 and R = 5, blue,
red and green line, respectively.
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Figure 4.9: Response of body position (θ) and voltage, with PID controller, for R = 2 and R = 5, blue and red
line, respectively.

Now, we compare the results of the PID controller with the PD. In Fig. 4.10, we analyze

the position of the body. The MIP is initialized in a position close to the equilibrium point,

and it can be observed that both controllers quickly stabilize the MIP. Fig. 4.11 shows that

the position of the wheels for the PD controller varies a little, i.e., the MIP moves to keep the

body in the balance position, unlike the PID, where the position of the wheels is maintained.

This was expected since an integrator has been added. Regarding the control signal, neither

exceeds the maximum voltage of 7.4 V.

The PD/PID-LQR controllers were discretized in state space to be implemented in the MIP

system:

[

x1(k + 1)

x2(k + 1)

]

=

[

1 0

Ts 1

] [

x1(k)

x2(k)

]

+

[

KI

KP

] [

θ̇

φ̇

]

y(k) =
[

0 Ts

]

[

x1(k)

x2(k)

]

+ Kd

[

θ̇

φ̇

]

(4.26)

The discretization step-by-step is in Appendix B.

4.3.2 Observer-based controller

In this section, we present observer-based controller applied in MIP. In order to simplify, we

shall refer to the observer-based controller as PD/LQE controller. The second-order model

obtained in (4.25) is rewritten as a representation of the reduced descriptor system in (2.11),
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Figure 4.10: Response of body position (θ) and voltage, with PID controller (blue line), and PD controller (red
line) for R = 5.
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Figure 4.11: Response of wheel position and control signal V(t), with PID controller (blue line), and PD
controller (red line) for R = 5.

the obtained descriptor system is not observable. Analyzing the obtained descriptor system, we

can see that the state φ(t), has no impact on any other state. This is what happens in reality,
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the MIP can balance if the body is vertical, no matter the position of the wheels, so it is a good

option to reduce the state φ(t). After reduction, the system matrices are:

E1 = diag{1, 0.3365× 10−6, 0.3365× 10−6}, . . . , E4,

A1 =







0 1 0

0.5062× 10−4 −0.5659× 10−5 0.5659× 10−5

−0.3712× 10−4 0.9024× 10−5 −0.9024× 10−5






, . . . , A4,

B1 = 10−4 ×
[

0 −0.2518 0.4015
]T

, . . . , B4,

C =

[

0 1 0

0 0 1

]

, Bw =
[

0 1 1
]T

. (4.27)

where Ei, Ai and Bi from i, . . . , 4, the vertices of the polytopic set. And the states vector is

xT(t) = [θ θ̇ φ̇]. The descriptor system with these matrices is observable.

Considering the reduced MIP model matrices as given in (4.27), and defining the weight

matrices for the LQE as QF =
√

diag{0.01, 0.1} and RF = [2Ê−1B̂u 0]T, chosen using an

iterative fitting process based on systematic experimentation. LQR weighting matrices are

defined as Q = In, while R is varied. Following the steps described in Procedure 2.4, in step

1, we consider the matrices reduced in 4.27. Then, following the steps in Procedure 2.5, we

obtain the gains for the reduced PD controller and the LQE estimator. The resulting gains are

summarized in Table 4.3.

Table 4.3: PD/LQE gains, varying the weighting variable R.

R KP KD L

1 [34.6136 3.6216] 1.2728 103 ×





−0.0019 −0.0005
−1.2599 0.1975
1.9754 −0.3320





2 [26.3376 2.6619] 0.9914 103 ×





−0.0018 −0.0004
−1.2580 0.1976
1.9763 −0.3302





Next, step by step discretization of the observer-based controller will be shown. As an

illustrative example, we consider the PD/LQE controller with R = 2, according to Table 4.3.

The controller transfer function is then specified:

H(s)PD/LQE (θ̇) =
−1436.1(s + 9.031)(s + 88.33)

(s + 1694)(s + 10.45)(s + 5.039)

H(s)PD/LQE (φ̇) =
188.18(s− 232.5)(s + 1.992)

(s + 1694)(s + 10.45)(s + 5.039)
(4.28)

In the transfer functions obtained, all poles of the controller have a negative real part,

resulting in a stable controller. Next, we will discretize the controller at 100 Hz, which is the
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frequency at which the MIP works. Although the controller is stable, we can notice in (4.28)

that some poles and zeros have very high values. Since we are going to discretize the controller

at 100 Hz, all poles and zeros above or close to this frequency can generate random results,

disturbing the discretization of the system. To address this issue, we chose to remove the pole

at 1694 and the zero at 232.5. The reduced controller is a second-order controller with the

specified poles and zeros removed.

H(s)PD/LQE(θ̇) reduced =
−0.8476(s + 9.031)(s + 88.33)

(s + 5.039)(s + 10.45)

H(s)PD/LQE(φ̇) reduced =
−25.831(s + 1.992)

(s + 5.039)(s + 10.45)
(4.29)

The bode diagram in Figure 4.12 shows the comparison between the obtained transfer

functions. In red, H(s) given in (4.28), and in blue, reduced H(s), given in (4.29).
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Figure 4.12: Bode Diagram: Controller Order Comparison

Next, we performed the discretization of the reduced order model at 100 Hz, adapting it for

implementation in the MIP system. We used the zero-order hold method, generating an exact

time-domain discretization for staircase inputs. The resulting discretized model in state space

is:

PD/LQEdiscrete =







0.9008 0.1481 −0.08405 −0.03019

0 0.9509 −0.02148 0.00599

8 0 −0.8477 0






(4.30)
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All PD/LQE controllers obtained in Table 4.3 were discretized before being applied in the

MIP. Fig. 4.13 shows the position of the body for R = 1 and R = 3. There was not a significant

effect on noise suppression with the variation of R, which can be attributed to the chosen values

of R.
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Figure 4.13: Response of body position (θ) and voltage, with PD/LQE controller, for R = 1 and R = 2, blue
and red line, respectively.

Next, the MIP results with the PID controller are compared with the PD/LQE controller.

In Fig. 4.14, it is possible to compare the position of the body, both quickly converge to the

equilibrium point, with body position in the closest range, we can observe that the response is

similar. Regarding the motor voltage response in Fig. 4.15, both controllers limit the applied

voltage to 3V, which is far from the 7.4V limit. This shows that both controllers are effective

in controlling the MIP within the desired voltage range. In Fig. 4.16, the position of the wheels

for the PID controller remains more constant compared to the PD/LQE control, which is an

advantage of using PID control. This is because the PID controller is capable of integrating

the position error and generating a control action proportional to the magnitude and duration

of the error. This allows the control system to continuously adjust the position of the wheels

to compensate for any deviation and maintain a more constant position. As for the speed of

the wheels, according to our analysis, when the MIP tried to stay vertical from a certain angle,

the wheels would shoot to the same side as the direction of the fall to achieve equilibrium.

Analyzing the obtained results, we see that the variation of the weighting matrices of the

PD/PID-LQR controller is a flexible approach that allows to adjusting the performance and

the characteristics of the system according to specific requirements. Increasing the value of the
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Figure 4.15: Control signal, with PID controller (blue line) for R = 5, and PD/LQE controller (red line) for
R = 2.

weighting parameter R resulted in greater control input penalties, leading to smoother MIP

control. When comparing the MIP displacement (φ), we noticed that the PID controller kept

the MIP in a more constant position than the other PD and PD/LQE controllers, with the

advantage of adding the integral of the error in the control. All proposed controllers were able

to stabilize the MIP, each with its distinct characteristics.
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5 Concluding Remarks

This work investigated the control of second-order systems with and without time delay and

proposed new methods. The first contribution, presented in Chapter 2, proposes a robust

framework to design multivariable Proportional-Integral-Derivative (PID) and Proportional-

Integral-Derivative-Acceleration (PIDA) controllers to control systems modeled by second-order

differential equations. The PID controller covers both free of time delay and with input time

delay systems, while the PIDA only includes free of time delay systems.

The integral action of the controllers provides additional design flexibility, while acceleration

action is proposed to solve the regularization problem. One of the main benefits of the proposed

framework comes from the fact that the design approach is systematic. Hence, integral and

acceleration gains bring no relevant drawback with respect to design complexity, despite the

benefits with respect to performance improvement, and regularization effect. Relevant control

challenges such as modeling error, regulatory performance optimization, regional pole alloca-

tion, saturation prevention, input delay, and LQR cost function are addressed within the design

approach via linear matrix inequality (LMI). Furthermore, an observer-based controller design

was developed for second-order systems.

In Chapter 3, simulation case studies are presented to illustrate the usefulness of the pro-

posed methodology. A practical experiment using an inverted pendulum mobile (MIP) system

is presented in Chapter 4; the state space model of the MIP was derived using the Lagrangian

method. Subsequently, two system identification experiments were conducted to achieve a more

accurate model. The obtained controllers were then implemented in the MIP robot, and the

results were validated.

The choice of the U matrix in the examples in Chapter 3 and in the experiments in Chapter

4 was made randomly, taking into account only the controllability of the system. A proposal

to continue the results presented is a more in-depth analysis, defining conditions for choosing

the U matrix.
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5.1 Publications

The publications related to the contributions of this thesis are listed below:

• Gontijo D. G., J. M. Araújo, T. L. Santos and F. O. Souza. ”Proportional-Integral-

Derivative-Acceleration Robust Controllers for Vibrating Systems”. In Journal of Vibra-

tion and Control. 29.5-6 (2023): 1243-1253.

• Gontijo D. G., F. O. Souza, J. M. Araújo. ”Robust PID Controller for Second-Order Sys-

tems plus Time Delay”. In XXIV Congresso Brasileiro de Automática (2022), Fortaleza-

CE, Brasil.
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A Appendix

This appendix presents some useful matrix theorems used to construct the main results in the

Chapter 2.

Consider the descriptor system represented by the following equation:

Eẋ = Ax + Bu (A.1)

where E ∈ R
n×n is singular, A ∈ R

n×n, B ∈ R
n×m. Considering a linear state feedback

control u = Fx where F ∈ R
m×n. In order to compute the feedback gain matrix F, consider

u = F̂x + ũ, where F̂ ∈ R
m×n, which yields an impulse-free descriptor system

Eẋ = (A + BF̂)x + Bũ (A.2)

Since E is singular, there exist orthogonal matrices Z ∈ R
n×n and W ∈ R

n×n such that

(Datta 2017):

ZEW =

[

∑e 0

0 0

]

, ZAW =

[

A11 A12

A21 A22

]

, ZB =

[

B1

B2

]

(A.3)

where ∑e ∈ R
d×d is a diagonal matrix with positive diagonal entries. By defining the

feedback gain matrix F̂ as

F̂ := [0 F̂2]W
T, (A.4)

where F̂2 ∈ R
m×(n−d), we have

Z(A + BF̂)W =

[

A11 A12 + B1F̂2

A21 A22 + B2F̂2

]

(A.5)

Considering the matrices in (A.3) and (A.5), the system in (A.2) is impulse-free if and only

if det(A22 + B2F̂2) 6= 0.

Theorem A.1: (Theorem 1, (Datta 2017))
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Let AF := A22 + B2F̂2. If F̂2 satisfies following condition:

[

1
2(AF + AT

F) β̂I

β̂I I

]

> 0 (A.6)

for some positive β then AF is non singular.

Definition 2.1 (LMI Regions) (Chilali and Gahinet 1996): A subset D of the complex plane

is called an LMI region if there exist a symmetric matrix α = [αkl ] ∈ R
m×m and a matrix

β = [βkl] ∈ R
m×m such that

D = {z ∈ C : fD(z) < 0} (A.7)

with

fD(z) :≈ α + zβ + zβT = [αkl + βklz + βlkz]1≤k, l≤m. (A.8)

Note that the characteristic function fD takes values in the space of m × m Hermitian

matrices and that ” < 0” stands for negative definite. In other words, an LMI region is a

subset of the complex plane that is representable by an LMI in z and z, or equivalently, an LMI

in x = Re(z) and y = Im(z). As a result, LMI regions are convex. Moreover, LMI regions are

symmetric with respect to the real axis since for any z ∈ D, fD(z) = fD(z) < 0.

Interestingly, there is a complete counterpart of Gutman’s theorem for LMI regions. Specif-

ically, pole location in a given LMI region can be characterized in terms of the m× m block

matrix

MD(A,X) := α⊗ X + β⊗ (AX) + βT ⊗ (AX)T

= [αklX + βkl AX + βlkXAT]1≤k, l≤m

(A.9)

Theorem A.2: (Theorem 2.2, (Chilali and Gahinet 1996))

The matrix A is D−stable if and only if there exists a symmetric matrix X such that

MD(A,X) < 0, X > 0 (A.10)

Note that MD(A, X) in (A.9) and fD(z) in (A.8) are related by the substitution

(X, AX, XAT) ↔ (1, z, z). As an example, the disk of radius r and center (−q, 0) is an

LMI region with characteristic function

fD(z) =

[

−r q + z

q + z −r

]

. (A.11)

In this case, (A.10) reads

[

−rX qX + AX

qX + XAT −rX

]

< 0, X > 0. (A.12)
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Consider now the region S(α, r, θ) and take α = r = 0. The sector S(0, 0, θ) if and only if

there exists a positive definite matrix P such that

(W ⊗ A)P + P(W ⊗ A)T
< 0 (A.13)

where

W =

[

sin θ cos θ

− cos θ sin θ

]

. (A.14)

On the other hand, S(0, 0, θ) is an LMI region with characteristic function

fθ(z) =

[

sin θ(z + z) cos θ(z− z)

− cos θ(z− z) sin θ(z + z)

]

. (A.15)

A has its poles in S(0, 0, θ) if and only if there exists X > 0 such that

[

sin θ(AX + XAT) cos θ(AX− XAT)

− cos θ(XAT − AX) sin θ(AX + XAT)

]

< 0. (A.16)

or equivalently

(W ⊗ A)Diag(X,X) + Diag(X,X)(W ⊗ A)T
< 0. (A.17)

Compared to (A.13), this last condition gives additional information on the structure of

P. It is also better from an LMI optimization perspective since the number of optimization

variables is divided by four when replacing P by Diag(X, X).

Theorem A.3: (Theorem 1, (Fenili et al. 2014))

Consider the system ẋ(t) = Ax(t) + Adx(t− d(t)). Let τ > 0 and 0 ≤ µ ≤ τ be given

, such that d(t) ∈ [τ − µ, τ + µ], and δ > 0, the exponential convergence rate. So the

system with d(t) ∈ [τ − µ, τ + µ] is exponentially stable, with exponential convergence

rate δ, if there are matrices of appropriate dimensions: F, G, P = PT, S = ST, Q, R1 =

RT
1 , R2, R3 = RT

3 , Z = ZT , such that the LMIs below are satisfied

[

P ⋆

QT ε1S

]

> 0, (A.18)

where ε1 = e−2δτ/τ,

R =

[

R1 ⋆

R2 R3

]

> 0, (A.19)

and
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[

Ξ ⋆

ΓT ε−1
2 µZ

]

< 0, (A.20)

where ε2 = e−2δ(τ+µ), ΓT = µ[AT
d FT αAT

d GT 0 0] and Ξ is give:

Ξ =













F ∗ ∗ ∗
P + τR2 − ǫ2(FT − GA) τR3 + 2µZ− ǫ2(G + GT) ∗ ∗

ǫ1RT
3 −QT + ǫ2AT

d FT ǫ2AT
d GT −ǫ1(R3 + τS)∗

2δQT − ǫ1RT
2 QT ǫ1RT

2 −ǫ1R1













.

(A.21)

where F = 2δP + Q + QT + τR1 − ǫ1R3 + S + ε2(AFT + FAT).
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B Appendix

This appendix presents the discretization of PD/PID-LQR controllers.

Consider the following PID controller diagram:

Z1 Z2

Z3

e(k)

+

+

y(k)

Figure B.1: Diagram: PID discretization

Z1 represents the proportional integral (PI) control, described by the discrete time equations:

{

x1(k + 1) =x1(k) + KIe(k)

y1(k) =Tsx1(k) + KPe(k)

(B.1.1)

(B.1.2)

with e(k) = [θ̇ φ̇]T. And Z2 represents the integrator (I) represented by:

{

x2(k + 1) =x2(k) + u1(k)

y2(k) =Tsx2(k)

(B.2.1)

(B.2.2)

Rewriting the equations (B.1) and (B.2) in state spaces, assuming that Z3 is the derivative,

given by D = Kpe(k), based on the Fig. B.1, we get the PID discretized in state space:

[

x1(k + 1)

x2(k + 1)

]

=

[

1 0

Ts 1

] [

x1(k)

x2(k)

]

+

[

KI

KP

] [

θ̇

φ̇

]

y(k) =
[

0 Ts

]

[

x1(k)

x2(k)

]

+ Kd

[

θ̇

φ̇

]

(B.3)

The controller has been discretized at 100Hz, which is also the frequency at which the MIP

runs, then Ts = 0.01. In the case of the discretization of the PD controllers obtained in Table

4.1, we use the same process of discretization of the PID controller, assuming Ki = 0.


