

Id.: EN_25

VALIDAÇÃO NEUTRÔNICA DE MODELO DE ELEMENTOS COMBUSTÍVEIS PADRÃO E ANELARES NO CÓDIGO NEUTRÔNICO NEWT

Raphael H. M. Silva¹, Clarysson A. M. da Silva¹, Cláubia Pereira¹

¹Departamento de Engenharia Nuclear Universidade Federal de Minas Gerais Av. Antônio Carlos, 6627, Campus UFMG PAC 1 – Anexo Engenharia, Pampulha, 31270-901 Belo Horizonte, MG rapha.galo@hotmail.com; clarysson@nuclear.ufmg.br; claubia@nuclear.ufmg.br

Palavras-Chave: LWR; SCALE 6.0; Newt; Criticalidade; composição isotópica; Queima

RESUMO

O presente trabalho envolve simulação neutrônica dos elementos combustíveis padrão no arranjo 16x16 e anelares 11x11, 12x12, 13x13, 14x14 e 15x15 enriquecidos com óxido de urânio (UO2) à 3,2%. As simulações serão realizadas no código neutrônico determinístico Newt, pertencente ao pacote SCALE 6.0 (*Standardized Computer Analyses for Licensing Evaluation*). O objetivo do artigo é verificar se há significantes variações de valores dos parâmetros relacionado à criticalidade e a composição isotópica nos modelos simulados. Tais validações, tendem proporcionar em trabalhos futuros nos núcleos dos reatores, a extensão da queima nos LWR (*Light Water Reactor*). Os resultados obtidos mostraram similaridades com os padrões de referências utilizados, relacionados aos valores de criticalidade no estado estacionário, quanto nos passos de queima simulados.

1. INTRODUÇÃO

Combustível sólido tradicional é utilizado em reatores LWR, nos qual possui como característica a alta temperatura na região central da pastilha de urânio. Tal fato, limita os valores de potência e pode proporcionar problemas estruturais (inchaços / trincas / deformações) nas varetas localizadas nos elementos combustíveis / núcleo. Por esse motivo, novos projetos de varetas são estudados desde a década de 50, no qual, as varetas anelares se demostraram eficientes.

A implementação do canal interno de refrigeração possui como característica a diminuição da temperatura central médias das pastilhas do combustível cerâmico consideravelmente. Este fato, proporciona a redução de problemas estruturais, nos quais podem danificar pastilhas, gaps e revestimentos. Além de possibilitar a extensão da queima com o aumento da potência utilizado no processo.

Nesse cenário, cinco elementos combustíveis anelares (ECA) com diferentes *pitch distances* e raios das varetas foram simulados e comparados com o elemento combustível tradicional (ECP). A dimensão externa do elemento combustível tradicional foi mantida nas configurações anelares, com objetivo de realizar futuras substituições no núcleo dos reatores LWR (*Light Water Reactor*). A razão V_M/V_F (moderador / combustível) permaneceram as mesmas em todas as configurações trabalhadas. O código SCALE 6.0

/ Newt (*Standardized Computer Analyses for Licensing Evaluation*) [1], foi utilizado para calcular os valores do k_{inf} no estado estacionário e na queima, bem como, a composição isotópica final dos elementos combustível tradicional e anelares. O objetivo do artigo é obter os valores dos parâmetros acima citado, assim, possibilitando verificar se há consideráveis variações dos parâmetros analisados.

2. METODOLOGIA

As simulações de modelos dos elementos combustíveis realizadas nesse trabalho constituem-se na obtenção dos valores de k_{eff} , os quais foram estimados e comparados nos no código neutrônicos determinístico SCALE 6.0 (NEWT). As bibliotecas utilizadas pelo código são relacionadas à ENDF/B-VII colapsada a 238 grupos de energia. As simulações ocorreram com ausências totais das barras de controle e sem a utilização de boro no moderador / refrigerante.

As seis configurações de núcleos simuladas estão de acordo com as seguintes nomenclaturas.

- ECP 16 Elemento Combustível Padrão 16 x 16;
- ECA 11 Elemento Combustível Anelar 11 x 11;
- ECA 12 Elemento Combustível Anelar 12 x 12;
- ECA 13 Elemento Combustível Anelar 13 x 13;
- ECA 14 Elemento Combustível Anelar 14 x 14; e
- ECA 15 Elemento Combustível Anelar 15 x 15.

Na Fig. 1 é mostrado o esquema dos elementos combustíveis em relação à disposição das varetas combustíveis e tubos guias utilizadas nas configurações das simulações. Os raios das varetas combustíveis anelares (R_{fo}), foram calculadas com objetivo de manter a razão V_M/V_F (moderador / combustível) em todos os elementos combustíveis simulados. Para tal, as dimensões externas dos ECAs foram mantidas iguais ao ECP. As descrições dos raios são demonstradas na Fig. 2. a seguir.

Semana Nacional de Engenharia Nuclear e da Energia e Ciências das Radiações – V SENCIR 24 a 26 de maio de 2021 Evento online

Fig. 1. Ilustração dos ECA s e ECP simulados.

Fig. 2. Nomenclatura dos raios anelares calculados.

As condições de simulação aconteceram em "*Hot Full Power*", o material físsil utilizado nos elementos combustíveis foi o óxido de urânio (UO₂), enriquecido à 3,2%, o revestimento das varetas de combustíveis é constituído por Zircaloy-4, aço inox nos tubos guias e gás hélio (He₂) nos gaps. Os valores associados à geometria das varetas (combustível e tubos guias), bem como, volumes do combustível e moderador são apresentados na Tab.1. As temperaturas e composição do material físsil utilizadas na pesquisa são apresentadas na Tab. 2

Parameter		ECA	ECA	ECA	ECA	ECA	FCD 16	
		11	12	12 13 14		15 ECP 10		
	R _{cii}	0.53665	0.47665	0.43165	0.37665	0.33665	-	
Data da	R _{cio}	0.59380	0.53380	0.48880	0.43380	0.39380	-	
Combustível / vareta (cm)	R _{fi}	0.60000	0.54000	0.49500	0.44000	0.40000	-	
	R _{fo}	0.87860	0.79886	0.73562	0.66555	0.61554	0.45830	
	R _{coi}	0.88620	0.80646	0.74182	0.67315	0.62314	0.46590	
	R _{coo}	0.95880	0.87906	0.79897	0.74575	0.69574	0.53850	
Raio do Tubo Guia (cm)	Inner	0.7000	0.7000	0.7000	0.7000	0.7000	0.6200	
	Outer	0.7683	0.7683	0.7683	0.7683	0.7683	0.6900	
Número de Varetas		116	136	160	184	207	236	
Número de Tubos Guias		05	08	09	12	18	20	
Pitch Distance		2.08	1.90	1.76	1.63	1.52	1.43	
Volume (cm ³)	V _M	117123	114707	112059	109294	106428	118066	
	V _F	60248	59005	57643	56220	54746	60733	
	V _M /V _F	1.9440	1.9440	1.9440	1.9440	1.9440	1.9440	

Tab. 1. Geometrias utilizadas nas simulações [2].

Tab. 2. Temperaturas utilizadas nas simulações [2].

Pa	arâmetro	Temperatura (ECP / ECA)		
	Combustível	873 K / 600 K		
Temperatura	Gap	873 K / 600 K		
	Revestimento	618 K / 587 K		
	Moderador	587 K / 587 K		
Enriquagimento	Isótonos	Concentração		
Emiqueennento	isotopos	(Densidade Atômica)		
	²³⁵ U	7,52493E-04		
Combustível (3,2 %)	²³⁸ U	2,24755E-02		
	¹⁶ O	4,64559E-02		

CRITICALIDADE

Para estimar os valores de criticalidade em relação à variação de temperatura do combustível, foram utilizadas as temperaturas de 300 K, 400 K, 500 K, 600 K, 800 K, 900 K, 1000 K e 1200 K. Outras temperaturas relacionadas a materiais como gap, revestimento e moderador foram relacionadas à 300 K.

QUEIMA

A queima dos elementos combustíveis foi estabelecida em 33 GWd/Tu e densidade específica de potência 38 W/g [2], o programa utilizado foi o Origin S do SCALE 6.0. Esse processo foi realizado em 19 *steps*, no qual os espaçamentos entre os pontos de análise na parte inicial da queima foram menores, tal fato, é baseado na maior variação da composição isotópica em comparação com outras etapas de simulações

2. RESULTADOS

CRITICALIDADE

A Fig. 3. apresenta o comportamento k_{inf} em função da variação de temperatura para casos simulados, em que a temperatura mais baixa foi de 300 K e a mais alta de 1200 K. Em aspectos gerais, devido ao Efeito Doppler, os valores k_{inf} diminuem com o aumento da temperatura. O alargamento do pico de ressonância, reduz a seção transversal e, consequentemente, diminuindo a probabilidade associada à interação dos nêutrons com o físsil material. De modo que em todas as configurações simuladas o efeito Doppler foi observado [3] [4].

Os valores associados ao ECP se mostram maiores comparados com ECAs, o volume combustível/moderador e a geometria podem ser possíveis a razão dessa diferença $k_{inf.}$

Fig. 3. Variação do fator de multiplicação de nêutrons devido a variação de temperatura.

QUEIMA

A Fig. 4. apresenta os valores de queima de todos elementos combustíveis simulados. Em geral, os valores do fator multiplicação infinito diminuem com a consequência da queima, esse fato ocorre principalmente pela diminuição dos percentuais de isótopos de físsil e eme menor probabilidade fissionáveis no sistema. Em todos os casos, o valor inicial do k_{inf} é próximo de 1,40. Nessa etapa do trabalho, o programa SCALE 6.0 por ter uma grande confiabilidade na verificação e validação referente à queima de conjuntos de núcleos e combustíveis nucleares.

Diferentes geometrias associadas aos conjuntos de combustível anular e tradicionais também contribuem para fornecer taxas de moderação distintas. O TFA 16 (0,86214) apresentou os maiores valores de k_{inf} do corte de queimadas, os menores foram identificados na AFA 14 (0,85058). As demais configurações (11x11, 12x12, 13x13 e 15x15) demonstraram valores intermediários do fator de multiplicação infinita, os resultados iniciais (*BOC – Beginning Of Cycle*) e finais (*EOC – End Of Cycle*) são observados no Tab. 3.

Tab. 3. Valores do fator de multiplicação de nêutrons iniciais e finais do ciclo de queima.

GWd/tU	AFA 11	AFA 12	AFA 13	AFA 14	AFA 15	TFA 16
BOC	1.33650	1.33420	1.32780	1.32840	1.32420	1.34890
EOC	0.95320	0.95110	0.94900	0.94770	0.94640	0.96130

Fig. 4. Valores de k_{inf} durante a queima de 33 GWd/Tu.

Na Tab. 4 foram analisados e comparados os principais isótopos físsil e fissionável originados e transmutados da cadeia de fissão de plutônio, principalmente o ²³⁹Pu, no qual pode ser usado para a fabricação de armas nucleares, isótopos de urânio e ²³⁷Np. Assim como os venenos mais importantes de queimaduras foram produzidos ¹³⁵Xe e ¹⁴⁹Sm.

Em todos os casos, os valores da composição final, mostram poucas variações de acordo com a geometria simulada, as concentrações estão na mesma ordem de magnitude. Entre os isótopos que mais contribuem para o processo de geração de energia no espectro na faixa térmica e rápida, podemos citar os ²³⁹Pu, ²⁴¹Pu, ²³⁵ e ²³⁸U, respectivamente.

Isotopicos	ECA 11	ECA 12	ECA 13	ECA 14	ECA 15	ECP 16
²³⁴ U	0.00015%	0.00014%	0.00014%	0.00014%	0.00014%	0.00016%
²³⁵ U	0.69755%	0.69567%	0.70430%	0.69717%	0.70393%	0.70393%
²³⁶ U	0.34834%	0.34803%	0.34721%	0.34762%	0.34743%	0.34992%
²³⁷ U	0.00080%	0.00079%	0.00080%	0.00079%	0.00080%	0.00083%
²³⁸ U	83.18569%	83.18569%	83.18569%	83.18569%	83.18569%	83.18569%
²³⁹ U	0.00006%	0.00006%	0.00006%	0.00006%	0.00006%	0.00006%
²³⁶ Np	0.00000%	0.00000%	0.00000%	0.00000%	0.00000%	0.00000%
²³⁷ Np	0.02386%	0.02385%	0.02391%	0.02386%	0.02391%	0.03355%
²³⁸ Np	0.00011%	0.00010%	0.00010%	0.00010%	0.00010%	0.00011%
²³⁹ Np	0.00870%	0.00870%	0.00878%	0.00874%	0.00879%	0.00864%
²³⁸ Pu	0.00964%	0.00948%	0.00954%	0.00941%	0.00953%	0.01038%
²³⁹ Pu	0.45870%	0.45679%	0.46786%	0.46061%	0.46824%	0.45488%
²⁴⁰ Pu	0.16359%	0.16344%	0.16355%	0.16336%	0.16352%	0.16421%
²⁴¹ Pu	0.11194%	0.11198%	0.11463%	0.11306%	0.11460%	0.11148%
²⁴² Pu	0.00944%	0.00948%	0.00946%	0.00948%	0.00944%	0.00930%
^{134}Cs	0.01051%	0.01046%	0.01050%	0.01045%	0.01051%	0.01083%
¹³⁷ Cs	0.10601%	0.10601%	0.10594%	0.10596%	0.10592%	0.10598%
¹⁴⁷ Pm	0.01731%	0.01735%	0.01731%	0.01733%	0.01728%	0.01725%
⁹⁹ Tc	0.07069%	0.07071%	0.07066%	0.07069%	0.07063%	0.07056%
^{129}I	0.01766%	0.01751%	0.01760%	0.01743%	0.01755%	0.01301%
¹³⁸ Ba	0.11473%	0.11473%	0.11469%	0.11471%	0.11467%	0.11469%
¹⁴⁷ Sm	0.02657%	0.02673%	0.02695%	0.02692%	0.02695%	0.02622%
¹⁴⁹ Sm	0.00016%	0.00016%	0.00017%	0.00016%	0.00017%	0.00017%
¹³⁵ Xe	0.20730%	0.20739%	0.20708%	0.20730%	0.20704%	0.20685%

Tab. 4. Composição final da queima em percentual de massa.

4. CONCLUSÃO

Através de todo o procedimento realizado nesta pesquisa, pode-se concluir que, os conjuntos de combustível anular através de parâmetros associados à criticidade e queima não apresentaram variações consideráveis em relação ao elemento combustível tradicional e os anelares. Assim, possibilitando a continuidade da pesquisa.

Apesar das ECAs apresentarem resultados semelhantes em comparação com a tradicional, outros parâmetros neutrônicos e termo-hidráulicos devem ser usados para complementar a análise.

Outros códigos também contribuirão para a comparação dos parâmetros estudados, com o objetivo de aumentar a confiabilidade e a determinação do(s) elemento(s) combustível

específicos para projetos futuros. Finalmente, os estudos devem ser feitos considerando não apenas montagens, mas o núcleo de um reator PWR

AGRADECIMENTOS

Os autores são gratos à CNEN, CNPq, CAPES e FAPEMIG pelo apoio ao trabalho.

REFERÊNCIAS BIBLIOGRÁFICAS

[1] B. T. Rearden et al., "Monte Carlo capabilities of the SCALE code system", Annals of Nuclear Energy, Vol. 82, pp. 130-141 (2015).

[2] FSAR. "Final Safety Analysis Report–FSAR Angra 2", Eletronuclear, Rio de Janeiro, Brasil, (2013).

[3] Duderstadt, James J. et al.,. Nuclear Reactor Analysis by James J. Duderstadt and Louis J. Hamilton. IEEE Transactions on Nuclear Science, v. 24, n. 4, p. 983, (1977).

[4] Lamarsh, John R., Introduction to nuclear engineering, (1975).