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Resumo

Esse documento trata da seleção de regressores de modelos não lineares. Os méto-

dos clássicos de seleção de estruturas de modelos são introduzidos como motivação para

o desenvolvimento de métodos contemporâneos de seleção de estruturas capazes de lidar

com modelos não lineares utilizando técnicas de Monte Carlo. Uma abordagem para

seleção de regressores, baseada em amostragem aleatória, foi implementada no con-

texto de modelos NARMAX (nonlinear autoregressive moving average with exogenous

input) como uma extensão do método RaMSS - Randomized Model Structure Selection

- um algoritmo de seleção de regressores implementado para modelos NARX. O método

proposto foi comparado com técnicas clássicas de seleção de regressores como o ERR

- Error Reduction Ratio, utilizando dados simulados e dados reais. Apesar de que os

modelos obtidos com o método proposto nem sempre são os mais compactos, esses

modelos normalmente apresentam melhor desempenho seja por uma melhor seleção de

regressores ou por contemplar maior flexibilidade de representação, pela inclusão de

termos NMA - Nonlinear Moving Average.

Palavras-chave: NARMAX, Modelos não lineares, Seleção de regressores, Estrutura de

modelos, Identificação de sistemas.



Abstract

This document presents the background, implementation and results for regres-

sor selection in the nonlinear model context. The classical model structure selection

techniques are introduced and serve as a motivation to develop model structure selec-

tion methods capable of dealing with nonlinear models in a randomized Monte Carlo

fashion. A randomized approach for regressor selection was implemented in the context

of nonlinear autoregressive moving average with exogenous input (NARMAX) model

class as the extension of the RaMSS - Randomized Model Structure Selection - method.

The proposed method is compared to classical regressor techniques such as the ERR

- Error Reduction Ratio - in both simulated and real data. Although the models se-

lected by the proposed method are not always the more compact ones, they typically

exhibit better performance in comparison to the models obtained by other methods.

This is due to either better regressor selection performed by the algorithm or by the

inclusion of NMA - Nonlinear Moving Average - what provides a more flexible system

representation.

Keywords: NARMAX, Nonlinear models, Regressor selection, Model structure, System

identification.
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Chapter 1

Introduction

The main objective of system identification is to build models from data [Ljung,

1987; Söderström and Stoica, 1989]. Estimated models can be useful to analyze real

system behavior, implement more robust controllers and predict system output based

on input configurations. Two important steps in system identification are model selec-

tion and parameter estimation. The former one poses special challenges in the case of

nonlinear systems.

In nonlinear system identification, Model Structure Selection (MSS) plays a cru-

cial role in the estimated model behavior. The choice of appropriate regressors to

compose the model is usually a difficult task. Structure selection has been a key point

in nonlinear system identification and several techniques are available [Hong et al.,

2008]. Traditional approaches such as the Akaike Information Criterion (AIC) [Akaike,

1974] and the Bayesian Information Criterion (BIC) Schwarz [1978] have been exten-

sively used in determining the number of regressors of linear models. Those methods,

due to the extreme importance in the modeling field, are revisited in Chapter 2. Unfor-

tunately such methods are not very useful in helping to choose which regressors should

compose the model. Hence in model structure selection to determine which regressors

– or at least which term clusters [Aguirre and Billings, 1995b] – should compose the

model is more critical than to assert the total number of terms [Mendes and Billings,

2001]. Model behavior can be radically different and spurious dynamical regimes can

be introduced with different choices of regressor terms [Aguirre and Billings, 1995a].

In some situations where static data are available it is possible to use such aux-

iliary information to delete from the set of candidate regressors certain term clusters

[Aguirre et al., 2000]. This, of course, characterizes a gray-box modeling approach.

If no a priori information is available, the candidate terms should be chosen in a

black-box fashion [Wei and Billings, 2008].
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The Error Reduction Ratio (ERR) based algorithms, associated with the orthog-

onal least squares (OLS) methods have been widely applied in black-box nonlinear

system identification. These methods have a particular advantage: the contributions

of candidate terms can be decoupled, in such a way that contribution of each term to

the model one-step-ahead prediction is quantified by the corresponding ERR [Koren-

berg et al., 1988; Billings et al., 1989]. It was pointed out that OLS-ERR algorithms

may occasionally select incorrect or redundant model terms for some wide classes of

excitation signals or for noisy data [Mao and Billings, 1997] and a way of overcoming

this is to use the model simulation error rather than the prediction error in choosing

the model structure [Piroddi and Spinelli, 2003; Piroddi, 2008]. This also has problems

of its own, probably the greatest one is that it is quite time consuming. To partially

circumvent such a limitation alternative procedures have been proposed [Bonin et al.,

2010; Farina and Piroddi, 2010].

In a probabilistic vein, the Randomized algorithm for Model Structure Selection

(RaMSS) was proposed recently [Falsone et al., 2015]. This method explores the model

universe by means of randomly sampling different models and calculating performance

indexes. Those indexes, when aggregated in a Monte Carlo fashion, permit regressor

importance rank and model structure extraction. The method is quite useful for linear

in the parameters model representations because of the parameter estimator algorithm

that was chosen for the method - ordinary least squares. The RaMSS method has its

limitations. It was originally formulated for the NARX (nonlinear autoregressive model

with exogenous inputs) model which limits its application to a restrict class of models.

1.1 Aims of this work

The main contribution of this work is to implement an extended version of the

RaMSS algorithm (briefly the RaMSS-m) which is intended to cope with a more general

NARMAX (nonlinear autoregressive moving average model with exogenous inputs)

model. In addition to being able to capture more complex system interaction, the

proposed method may improve the estimator accuracy in comparison to the original

RaMSS method, feature significant run time reduction by applying a parallel model

sampling technique and introduce a way to include prior model information on the

regressor selection phase, in a grey box approach.
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1.2 Organization of this work

This dissertation is divided in five Chapters, including this introductory one.

Chapter 2 reviews some fundamentals of System Identification, ranging from data

collection to structure representation. The following subsections are mainly focused

on classical model structure selection techniques and step-wise selection approaches.

That chapter also introduces an overview on parameter estimation and model valida-

tion. Chapter 3 briefly reviews a more contemporary approach on model structure

selection, by means of Monte Carlo techniques. The RaMSS [Falsone et al., 2015] al-

gorithm is presented and simple examples are provided. In Chapter 4 rests the main

contribution of this dissertation. The RaMSS-m method is introduced as an extension

to RaMSS. The new features are exemplified on both simulation and real data. Re-

sults are compared the original RaMSS method and to the traditional Error Reduction

Ratio method, presented in Sec. 2.2.4.2. The findings on the RaMSS-m method were

published in [Retes and Aguirre, 2018]. Final comments are included in Chapter 5.
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Chapter 2

Nonlinear Modeling

2.1 Introduction

In the beginning of studies on models, the main idea was to find a mathematical

representation that was useful to help to understand how real systems behaves. Science

has always tried to explain natural phenomena using a more palatable language for

humans. This, most of the times, implies obtaining simplified models though powerful

enough to explain natural behavior in bounded conditions.

One example of simplification is to model real, nonlinear data with linear models.

The beauty of linear models, although extremely important to provide information on

data, has its limitations. Linear models do not allow the required flexibility to mimic

real system dynamics in many practical situations. Those properties, observed in the

real world, include bifurcations, quasi-periodic dynamics and chaos.

As more information on real systems becomes available and computer power

increases, the rise of nonlinear models opened up a new world of possibilities in predic-

tion and of better understanding real world problems. In the past thirty years, several

works were dedicated to nonlinear modeling ([Billings, 1980], [Leontaritis and Billings,

1985a,b], [Korenberg et al., 1988; Billings et al., 1989], [Chen and Billings, 1992; Chen

et al., 1990], [Aguirre and Billings, 1995a], [Aguirre and Billings, 1995b], [Aguirre et al.,

2000], [Mendes and Billings, 2001], [Zhu, 2005], [Wei and Billings, 2008]).

This chapter provides an overview on the system modeling procedures and was

the roadmap followed by the author in his nonlinear modeling technique studies. The

classical methodology is widely used in various scientific areas and should be present

in this dissertation to be compared to newer approaches. Some ideas contained in the

following chapters were only developed because of classical method limitations. The

traditional methods will provide a basis to introduce a more contemporary approach
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using a randomized framework to deal with model structure selection in Chapter 3.

2.2 System Identification

System identification is mainly composed of five steps:

1. data collection and pre-processing;

2. choice of model representation;

3. structure selection;

4. parameter estimation;

5. model validation.

Model complexity and nonlinearities will require that each step is performed in

a different way. The following subsections provides an outline of the aforementioned

scheme.

2.2.1 Data Collection

Data collection is the first step to system identification. The system behavior

must be observed introducing excitation signals, in case of non-autonomous systems.

System behavior is observed through direct measurements of output variables (when

available) or through observation on state variables.

Input signals should be designed in order to excite the system dynamics and,

for this, input signal should have adequate spectral power. In the case of nonlinear

models, whereas the amplitude must remain small in order to avoid driving the system

outside the range of linear behavior chosen, the input data should be able to explore

the system nonlinear characteristics, and, often, that requires exciting the system with

greater amplitude signals. Certain conditions should be met to choose the appropriate

excitation signal. In practice, filtered white noise and, especially for linear systems,

pseudo-random binary sequence (PRBS) are commonly used as the system input.

Finally, data sampling should be performed considering the spectral context of

the signals. In what follows, it will be assumed that data was correctly sampled and

it is also important to avoid oversampling what could introduce undesirable sample

correlation.
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2.2.2 Representation

A non-autonomous model describes the output data given an input excitation. A

simple model considers that the input-output relation is linear, i.e. the system satisfies

the property of superposition. The behavior of the linear system output subjected to a

complex input can be described as a sum of responses of simpler inputs. In nonlinear

systems, the changes in the output is not proportional to change of the input. Nonlinear

models can produce certain dynamic regimes that linear models cannot represent.

The chosen model structure should be complex enough to represent the system

nonlinearities of interest. Some classes of those representations include artificial neu-

ral networks (Haykin [1994]), radial basis functions networks (Broomhead and Lowe

[1988]), Volterra series (Billings [1980]), wavelets (Strang [1989]), rational and polyno-

mial functions (Billings et al. [1989]). Particular data characteristics can, sometimes,

drive the choice of structure representation. For example, polynomial and rational

functions may be useful to extract non-linear relations between system variables and

provide further information on high-level system performance due to input disturbance

or variable interaction.

2.2.3 Classical Model Structure Selection Techniques

2.2.3.1 Akaike Information Criterion and AICc

In the model selection task it is desirable to find the optimized model in terms

of the bias-variance tradeoff. Finding this model is, most of the times, a difficult task

because the model error function is usually unknown. The model should be rich enough

to capture and mimic the data behavior but not too flexible so it starts to model noise,

overfitting the data. If the model is too simple, with a small number of parameters,

it will probably not generalize well on training data. In the other hand, if the model

has a huge set of parameters, it will not generalize well in new data. Balancing the

correct model between bias and variance, i.e. choosing the model complexity must be

performed somehow James et al. [2013].

One way to evaluate the model performance is by the likelihood function (or

more conveniently, the log-likelihood function). The principle of maximum likelihood

selects the model parameters that make the data most likely. If the model complexity

is increased, the likelihood function will be also increased as data will be more likely

given the parameters set. The Maximum Likelihood Estimation (see Sec. 2.2.5.3 for

more information) is a technique that deals with the bias portion of the MSE function,

so the overfitting effect is not accounted for. To cope with the undesirable variance
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increase consequence of model flexibility expansion, one idea is to penalize models that

are more complex.

In [Akaike, 1974], the author proposes a criterion to compare and select models

from a pool of candidates. The general idea is presented next.

Consider two likelihood functions f , being the true likelihood function and f ∗,

the estimated likelihood function that was obtained from data. In order to compare

those probability distribution functions, one of the most common ways is to use the

Kullback-Leibler (K-L) divergence:

D(p, q) =
∑

x

p log
p

q
, (2.1)

where p and q are distributions over data x.

Let fjθ∗ be the estimated distribution for a particular model j. The loss function,

considering the true distribution and the estimated distribution is:

loss = D(f, fjθ∗) (2.2)

Considering that fjθ∗ is dependent on the data, to get fjθ∗ closer to f , the ex-

pectation of the loss function should be minimized:

Ef [D(f, fjθ∗)] (2.3)

This way, if the model overfits the data, fjθ∗ will not be close to f and the model

is penalized. The same way if the model underperforms on the training data Y , the

two distribution functions will be different and the model will be also penalized. This

procedure accounts for both bias and variance.

It can be proven that the divergence between f and fjθ∗ is:

D(f, fjθ∗) = c− A(f, fjθ∗), (2.4)

where

c =
∑

Y

f(Y ) log(f(Y )) (2.5)

is the entropy and

A(f, fjθ∗) =
∑

Y

f(Y ) log(fjθ∗(Y )). (2.6)

In order to minimize the divergence, Eq. 2.3, one should maximize 2.6. The
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challenge in minimizing A(f, fjθ∗) is that the true distribution, f , is unknown. One

alternative to solve the optimization problem is to estimate f using the fjθ∗ . This

choice will lead to a biased estimate. The bias can be shown to be approximately

the size of the model, i.e. the model number of parameters k. Shortly, the Akaike

Information Criterion (AIC) is the likelihood, L, corrected by the bias, k:

Ef [A(f, fjθ∗)] ≈ log(L(θ∗|Y ))− k. (2.7)

Considering the maximum likelihood case, the AIC definition becomes:

AIC = −2log(L(θ∗|x)) + 2k. (2.8)

When the sample size is small, the probability that AIC will select models with

large parameter set is increased. This will lead to model overfitting. In order to

address this potential issue, a corrected version of AIC, taking account the sample size

was developed [Cavanaugh, 1997]:

AICc = AIC +
2k2 + 2k

n− k − 1
. (2.9)

With AIC (and AICc), models can be compared and ranked considering the bias-

variance tradeoff. Models with lower AIC should be selected as they are optimum

in terms of this criterion. This is possible as long as the models are from the same

structure, i.e. the AIC method is applicable to select the number of model parameters,

not to select models from alternative structures.

2.2.3.2 Bayesian Information Criterion

When fitting models, it is possible to increase the likelihood function by expanding

the number of model parameters, as shown in Sec. 2.2.3.1. Unfortunately, increasing

the number of parameters may lead to overfitting. The Bayesian Information Criterion

(BIC), also known as Schwarz Criterion was first presented in Schwarz [1978] and uses

a Bayesian framework to deal with the model selection problem. Similarly to AIC,

the BIC introduces a penalty to the model number of parameters, thus preferring

more parsimonious models. The penalty term is larger in BIC than in AIC and it is

asymptotically correct based on the assumptions on that data distribution is on the

exponential family.

The Bayesian approach to model selection is to maximize the posterior probability

of a model (Mi) given the data Y = {yj}
N
j=1 (Bhat and Kumar [2010]). Applying the

Bayes theorem in order to calculate the posterior probability of a model:
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p(Mi|Y ) =
p(Y |Mi)p(Mi)

p(Y )
, (2.10)

where p(Y |Mi)P (Mi) is called the marginal likelihood of modelMi.

Considering that all candidate models are equally likely, i.e. the prior distribution

of models, p(Mi), is uniform, maximizing the posterior probability of a model, given

the data, is the same as maximizing the marginal likelihood:

p(Y |Mi) =

∫

Θi

p(Y |θi)p(θi|Mi)dθi =

∫

Θi

L(θi|Y )p(θi|Mi)dθi (2.11)

where θi is the vector of parameters ofMi, L is the likelihood function and p(θi|Mi)

is the prior on the parameters.

If it is desired to compare two models, Mj and Ml, the posterior odds can be

used:

p(Mj|Y )

p(Ml|Y )
=
p(Mj)

p(Ml)

p(Y |Mj)

p(Y |Ml)
, (2.12)

where the
p(Mj)

p(Ml)
portion comes from the prior beliefs on the models and the

p(Y |Mj)

p(Y |Ml)

comes from data. The last term is defined as the Bayes factor.

Models can be chosen, by comparing the posteriors in Eq. 2.12. If it is greater

than 1, modelMj is chosen, if it is less than 1, modelMl is chosen.

By doing some approximations, it can be shown that:

log p(Y |Mi) ≈ log p(Y |θ∗i )−
|θ∗i |

2
log n, (2.13)

where p(Y |θ∗i ) is the likelihood, θ∗i is the maximum likelihood estimate and |θ∗i | is the

ℓ0 norm, the number of parameters.

Eq. 2.13 is the definition of the BIC. Choosing the model with the largest BIC,

given that the approximations are valid, is equivalent of choosing the model with largest

posterior probability.

2.2.3.3 Regularization

The ordinary least squares (OLS) estimator calculates the parameter vector, θ̂,

by minimizing the residual sum of squares (RSS):

JLS = RSS =
N
∑

i=1

ξ(i)2. (2.14)
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Ridge regression is very similar to OLS, except that the parameter vector is

estimated by minimizing a modified cost function. The Ridge regression parameter

vector, θ̂R is calculated by minimizing:

JR =
N
∑

i=1

ξ(i)2 + λ||θ̂R||
2, (2.15)

where λ ≥ 0 is a design parameter. The cost function 2.15 consideres two different

criteria. Similarly to least squares, the Ridge regression estimates the parameter vector

in order to fit data well, minimizing JR. The second term, λ||θ̂R||
2, called a shrinking

penalty, is small when the θ̂1R...θ̂
j
R are close to zero, so it has the effect of shrinking θ̂R

towards zero.

Parameter λ controls the relative impact of the RSS and the penalty term in

the regression coefficients estimation. When λ = 0, the Ridge regression parameter

estimation is identical to that of the ordinary least squares estimator. However, as λ

increases, the penalty term increases and the estimated coefficients will tend to zero.

The Ridge regression generates a new set of coefficients estimates for each value of

λ, unlike the ordinary least squares estimator which produces a single, optimal set

of coefficients calculated by the minimization of the residual sum of squares. The λ

parameter thus, can be used to control the model flexibility, i.e. to control the bias-

variance trade-off.

Even though the Ridge regression can be useful to control model complexity, it

will still include all regressors from the candidate regressor set. The penalty λ||θ̂R||
2

in 2.15 will shrink all coefficients towards zero, but none will be set exactly to zero,

unless λ =∞. A more recent approach, alternative to the Ridge regression is the (least

absolute shrinkage and selection operator (LASSO) Tibshirani [2011]. LASSO can

perform both regressor selection and regularization in order to control model complexity

by minimizing the cost function:

JL =
N
∑

i=1

ξ(i)2 + λ|θ̂L|. (2.16)

LASSO also includes a penalty term, λ|θ̂L|. This penalty term uses the ℓ1 norm

penalty instead of ℓ2 penalty. It, just like as in Ridge regression, shrinks coefficients

towards zero, however, it also has the effect of forcing some of the coefficients estimates

to be exactly zero when the tuning parameter, λ, is large enough. By setting some

coefficients to zero, LASSO generate models that involve only a subset of variables, in

other words, LASSO performs variable selection.



22

2.2.4 Forward and Backward Regression-based Approaches

2.2.4.1 Stepwise regression

Often, theory and experience give only a general idea of which pool of candidate

variables should be included in the model. In example, if one wants do model the aver-

age household energy consumption, the number of individuals in the house is a natural

probable explanatory regressor. Specially when dealing with nonlinear modeling, the

selection of explanatory variables may not be so evident.

Finding a subset of (independent) regressors involves two antagonistic objectives:

to include every possible variable that influences the dependent variable (output) but

also include the minimal set of regressors, as the inclusion of irrelevant variables reduces

the model prediction ability and decreases the the precision of estimated coefficients.

In linear model selection, forward regression method is used to provide an initial

screening of candidate variables of a large pool. The forward regression consists in

incrementally selecting variables and rebuilding the model. The start point is to fit

models considering one explanatory variable at a time. Then, among all models, the

one with the highest R-squared is selected and the explanatory variable associated to

that model is included in the “best”model. Next, the procedure is run again, but now,

the models include the “best” selected explanatory variable in the previous step and

the remaining variables are tested one by one. Again, the model with the highest R-

squared value has the next “best” explanatory variable. The method is stopped when

the inclusion of explanatory variables does not increase the R-square.

In contrast, backward selection is performed in the opposite direction. The

method starts with the model including all explanatory variables. Iteratively, variables

are pulled out of the model, respecting the selection rule, e.g. keeping the variables

associated with the model with the highest R-squared.

Stepwise selection is a combination between forward selection and backward se-

lection. The method, just like forward selection, incrementally selects explanatory

variables but, at each step one variable is added to the model, all variables in the

model are checked for their significance. If their significance has been reduced below

the specified threshold, the insignificant variables are removed from the model, similarly

to the backward selection approach.

Stepwise selection performance on linear models is pretty acceptable, due to the

superposition property of linear systems. In nonlinear models, this kind of approach

should be used in a more conservative way, as the variable interaction may produce

different results in the model in comparison to their individual contribution. Sub-

sec. 2.2.4.2 presents an alternative to decouple inter-variable interaction and account
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for unique contribution of each variable to the final nonlinear model.

2.2.4.2 Error Reduction Ratio

Let R = {ψ1, ψ2, ..., ψm} denote the set of m regressors from a NARMAX struc-

ture. In short, the model structure selection problem is to choose from R a subset of

nθ ≪ m regressors ψi to compose the final model. For this, a widely used criterion is

the error reduction ratio (ERR) [Billings et al., 1989] which quantifies the reduction in

the variance of the residuals, that occurs when a new term is included in the model,

normalized with respect to the output variance. Hence, the ERR due to the inclusion

of the ith regressor in the model can be written as:

[ERR1]i =
MS1PE(Mi−1)−MS1PE(Mi)

⟨y, y⟩
, (2.17)

for i = 1, 2, . . . ,m, where MS1PE(Mi) stands for the mean square one-step-ahead

prediction error of the model with i terms (regressors); m is the number of candidate

terms tested for; and M represents a family of models with nested structures, thus

Mi−1 ⊂Mi. In (2.17) the numerator equals the reduction in variance of the residuals

due to the inclusion of the ith regressor. The denominator of (2.17) is the data variance.

One of the advantages of the ERR1 is that it can be represented in compact form as

[Billings et al., 1989]:

[ERR1]i =
ĝ2i ⟨wi,wi⟩

⟨y, y⟩
, i = 1, 2, . . . ,m, (2.18)

where wi is the ith orthogonal regressor and ĝi is the corresponding estimated param-

eter. Thus, at each step, the term with the largest ERR1 is added to the model.

ERR1 is easy and fast to use and also it is quite effective, therefore it is widely

used. An extention of the ERR criterion using two-step-ahead predictions, the ERR2,

was proposed in [Alves et al., 2012] in order to detect unwanted terms.

A different criterion, called simulation error reduction ratio (SRR), was defined

as [Piroddi and Spinelli, 2003]:

[SRR]i =
MSSE(Mi−1)−MSSE(Mi)

⟨y, y⟩
, (2.19)

for i = 1, 2, . . . ,m, where MSSE(Mi) stands for the mean square simulation error of

the model with i terms (regressors). In (2.19) the free-run simulation is used. The SRR

can be effective in non-ideal identification conditions and often yields more compact
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models. On the other hand, such a criterion requires a significantly large computational

effort and hard to apply for time series models (models without input).

When dealing with structure selection from experimental data it is of paramount

importance to realize that, strictly speaking, there is no such a thing as “genuine” or

“spurious” regressors, although certain regressors might be more likely to be useful than

others. Also, it has been argued that, given a set of data of limited length and accuracy

different model strcutures might become undistinguishable [Barbosa et al., 2015].

2.2.5 Parameter Estimation

2.2.5.1 Bias and Variance

The identification problem is to define a function f that represents a good ap-

proximation of the system by means of learning from training data. Assume that the

true system can be represented by the approximation function f̂ :

y ∼ f̂(x, θ̂), (2.20)

where x is denoted as the regressor set and θ̂ is denoted as the parameter set. The

effectiveness of the proposed model, f̂ , can be specified as the model generalization

capacity. The mean squared error (MSE) can be used as a measure of model general-

ization, if computed over a validation set of data:

MSE = E[(y − f̂(x, θ̂))2], (2.21)

where E[·] is the expectation operator. As shown in Geman et al. [1992], the MSE can

be represented via the bias/variance decomposition:

MSE = Var(f̂) + [Bias(f̂)]2 +Var(ϵ), (2.22)

where Var(ϵ) is the variance of the noise.

If, on average f̂ is different from E[y], then f̂ is said to be a biased estimator of

E[y].

To minimize the MSE, requires minimizing both the bias term and the variance

term, which is, in most practical situations, a conflicting interest. The variance of

noise, Var(ϵ), cannot be reduced as it is independent of the model and its parameters.

Lets say, for instance, that the output prediction does not depend on the input

variables. By neglecting input data, the output may be set to a constant value, re-

gardless of input values. The estimator variance will be definitely minimized, but the
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output will be probably way off the real function, i.e. the bias will be excessively large.

On the other hand, if the designed model, f̂ is tremendously flexible, capable of per-

fectly interpolating the training data, the estimator bias will be reduced, but model

will suffer from a huge increase in variance.

The bias describes how far the model is, on average, to the true process. The

variance represents how much the model prediction varies between realizations. The

bias-variance tradeoff is, in depth, the over and under-fitting tradeoff. High bias can

cause the model to not follow the original system input-output relation, whereas high

variance is caused by overfitting, where estimated model tends to model the noise rather

than the output.

Defining model complexity can be a challenging task, as there is no analytical way

to decide the ideal model size. One possible solution to estimate model complexity is

to employ cross-validation techniques, where model size is chosen in order to minimize

the prediction error on new data, unseen by the model before.

2.2.5.2 Ordinary Least Squares

Once the model structure is defined, the next step is to estimate model parame-

ters. The mostly employed parameter estimator for linear-on-the parameters regression

is the ordinary least squares. The primordial idea of the OLS method may be found in

Gauss and Davis [2004].

Consider that the scalar function y = f(x) in applied in the vector case:

y = f(x,θ), (2.23)

where f(x,θ) : Rn → R is dependent on θ ∈ R
n.

The function in Eq. 2.23 defines a set of equations (restrictions), which are the

result of the application of f(x,θ):

y1 = f(x1,θ)

y2 = f(x2,θ)

... =
...

yN = f(xN ,θ),

(2.24)

where yi is the i
th observation of y and xi = [x1i x2i ... xni]

T are the ith observations of

the n elements of xi.
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Considering that f and the parameter vector θ does not change between restric-

tions in 2.24, and assuming that f is linear, the restrictions in 2.23 can be rewritten

as

y = Xθ, (2.25)

where

X = [x1 x2 ... xN ]

and

y =













y1

y2
...

yN













.

It is easy to infer that if n linearly independent restrictions are taken to determine

the n elements of θ, i.e. N = n, the parameter vector θ can be determined by:

θ = X−1y. (2.26)

If N > n restrictions were taken, the equation system is overdetermined. This

implies that the X matrix is not squared and, therefore cannot be inverted. Equa-

tion 2.26 is the only solution that simultaneously satisfies the n restrictions in 2.24. In

order to determine the parameter vector θ that satisfies 2.24, one possible solution is

to define a rewritten model of Eq. 2.25, but this time, considering that the solution is

not supposed to be exact, thus introducing an error term:

y = Xθ̂ + ξ, (2.27)

where ξ = [ξ1 ξ2 ... ξN ]
T is the error vector generated by the attempt of explaining y

by Xθ̂. Intuitively, it is desirable that the parameter vector θ̂ is chosen in a way that

the error vector, ξ, is reduced in some sense. To do so, a loss function, relative to the

error vector can be defined as:

JLS =
N
∑

i=1

ξ(i)2 = ξTξ = ||ξ||2. (2.28)

The estimated parameter vector, θ̂LS, that minimizes the loss function, Eq. 2.28,

can be proven to be:
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θ̂LS = [XTX]−1XTy. (2.29)

The Eq. 2.29 is defined as the least squares estimator for the parameter vector θ.

2.2.5.3 Maximum Likelihood Estimation

Another class of parameter estimators, based on the probabilistic properties of

the data, is the Maximum Likelihood Estimate - MLE. The main idea of this method is

to pursue the parameter value that makes data more likely. The MLE is an example of

a point estimate, as it outputs a single value for the unknown parameter, rather than

a probability or interval. The main challenge of this method is to define the likelihood

function to be optimized. This function is dependent on the selected model structure

and previous assumptions on data characteristics.

Consider, again, that the data can be modeled in the same way as 2.27:

y = Xθ̂ + ξ. (2.30)

At this point, the model follows exactly the ordinary least squares assumptions.

One should provide information, or premisses, on the error model. In OLS, the

objective was to reduce the error vector ℓ2 norm, ||ξ||2, to its minimum by finding

an appropriate value of the parameter vector θ̂. This is done despite of the error

(residuals) model and it works for either normal or non-normal errors.

In MLE, the idea is to estimate the parameter vector θ̂ that makes data more

likely, so it is mandatory that the distribution of errors is known. For a simple linear

regression model, it is assumed that:

ξ ∼ N (0N , σ
2IN), i.i.d., (2.31)

where IN is the identity matrix and 0N is a vector of zeros. The observations y are

independent random variables samples with distribution:

y ∼ N (Xθ̂, σ2IN). (2.32)

Under normal errors assumption, the joint probability density function (pdf) of

y given θ̂ is:

f(y|θ̂) =
1

(2πσ2)N/2
e−

1

2σ2 (y−Xθ̂)T(y−Xθ̂), (2.33)

and f(y|θ̂) is defined as the likelihood function, L(θ̂|y).
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Usually it is more convenient to deal with the log-likelihood instead of the likeli-

hood itself:

lnL(θ̂|y) = −
1

2σ2
(y −Xθ̂)T(y −Xθ̂) + c, (2.34)

where c is a constant that does not depend on θ̂.

The maximum likelihood estimate (MLE) of θ̂ is the estimate that satisfies:

max(lnL(θ̂|y)) = max(−(y −Xθ̂)T(y −Xθ̂)) (2.35)

Maximizing the likelihood function, which is equal to maximize the log-likelihood

function, under the previous assumptions, gives the same result as the OLS estimator,

Eq. 2.29, which is to find the parameters that minimize the error vector:

θ̂MLE = [XTX]−1XTy. (2.36)

Note that the MLE is a very powerful tool, that accepts a very flexible set of pre-

misses about the data model. Normality was assumed by convenience and to compare

the results with the OLS outputs.

2.2.5.4 Extended Least Squares

Considering that the data, y(k), can be described by a polynomial model, the

regression equation can be defined as:

y(k) = ψT(k − 1)θ + e(k), (2.37)

where ψT(k− 1) is the regressor vector (independent variables) taken up to time k− 1

and θ is the parameter vector.

From data with p points, the matrix equation can be written:

y = Ψθ + e (2.38)

where

y =













y(k)

y(k − 1)
...

y(k − p+ 1)
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Ψ =













ψ(k − 1)

ψ(k − 2)
...

ψ(k − p)













.

From the ordinary least squares, the parameter vector θ can be estimated by:

θ̂LS = [ΨTΨ]−1ΨTy. (2.39)

Unfortunately, the Ψ matrix may contain lagged noise terms that are, by defini-

tion, unmeasurable. In this case, an alternative approach can be employed to estimate

the lagged noise terms. This alternative is to replace the noise terms by the lagged

residuals, and reconstruct an “extended” regressor matrix, Ψ∗.

This procedure consists in progressively refine the parameters vector, θ̂
∗

ELS by the

following steps:

1) Define an initial random parameter vector:

θ̂
∗

ELS = rand(nθ) (2.40)

2) Define an initial random residual vector and make i = 1:

ξ̂0 = rand(p) (2.41)

3) Reconstruct the extended regressor matrix Ψ∗
i , replacing the noise terms with

the estimates ξ̂i−1.

4) Update the parameter vector:

θ̂
∗

ELS = [Ψ∗TΨ∗]−1Ψ∗Ty (2.42)

5) Calculate the current residual vector:

ξ̂i = y −Ψ∗θ̂
∗

ELS (2.43)

6) Make i = i+ 1 and repeat from step 3) until convergence.

In practice, after about 12 iterations the parameter vector θ̂
∗

ELS will converge.
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2.2.6 Model Validation

2.2.6.1 Performance Measurements

In order to evaluate the performance of a given model, one should be able to

measure the how well the predictions match observed data. In regression models, the

most commonly used measure is the mean squared error (MSE). In this subsection,

a more general definition of MSE will be used and will serve as a basis for particular

cases, such as MSPE and MSSE that will be further defined.

The MSE is given by

MSE =
1

N

N
∑

i=1

(y(i)− ŷ(i))2, (2.44)

where N is the number of data points, y(i) is the observed data and ŷ(i) is the model

prediction.

MSE can be applied either to in sample-data, where model is evaluated using data

already used to train the model or to out of sample-data, where MSE is computed for

data unseen by the model. The latter is of more interest as the idea of modeling is to

provide answers to data that was not available before in the training set. The MSE

can be used to validade the model, for instance, to measure the model performance

on out of sample-data and compare to the in sample-data MSE. A good model should

have similar MSE performance for the training set and test set.

Another commonly used perfomance metric is the mean absolute percentage error

(MAPE), where the measurement is taken on the absolute deviation of prediction to

observed data and, usually, expresses accuracy as a percentage:

MAPE =
100

N

N
∑

i=1

∣

∣

∣

∣

y(i)− ŷ(i)

y(i)

∣

∣

∣

∣

%. (2.45)

2.2.6.2 Validation Set

Suppose that it is required to estimate the test error associated with a regression

model on a set of observations. The validation set technique is a simple, yet powerful,

strategy for this job. It consists in dividing observed data in two parts, a training-

set and a validation-set. The model is learned from the training set and the fitted

model is used to make predictions on the validation set. A performance index on the

validation set, for instance MSE, provides an estimate of the expected error rate on

a test set (new data) and, thus, provide information on model quality. One potential
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drawback of the validation set approach is that the validation estimate of error can be

highly variable, depending on how data is split and which observations are included in

training/validating set. A more refined validating procedure will be presented in the

next subsection.

2.2.6.3 Cross-validation

Cross-validation follows the same idea presented in Sec. 2.2.6.2, but tries to ad-

dress the aforementioned drawbacks. Cross-validation, specifically leave-one-out cross-

validation (LOOCV), consists of splitting the observation set into two parts and have

been extensively discussed in [Allen, 1974] and in [Stone, 1974]. Instead of creating

two subsets with equal or comparable sizes, the validation set is composed of a single

element. The training set is the whole observation set, excluding that element from the

validation set. The model is, then, learned from the N − 1 points set and prediction

ŷ1 is made for the excluded observation. Since the observation on the validation set

was not used for model training, the MSE1 = (y(1)− ŷ(1))2 provides an approximately

unbiased estimate for the test error. Although unbiased, the MSE1 is a poor estimate

because it has high variance, since it is based on a single observation. The underlying

idea behind leave-one-out cross-validation is to compute several MSE indexes for each

N observation, training models on N − 1 observations and leaving one point for vali-

dation. Repeating this approach N times, produces N MSEs: MSE1, ...,MSEN . The

LOOCV estimate for the test set MSE is the average computation of those indexes:

LOOCVN =
1

N

N
∑

i=1

MSEi. (2.46)

Although simple, the LOOCV is known to be asymptotically inconsistent and

too conservative as it tends to select an unnecessarily large model[Shao, 1993]. Other

methods for model selection, such as the AIC, presented in Sec. 2.2.3.1 and the Cp

[Mallows, 2000], are asymptotically equivalent to the LOOCV and, thus, share the

same deficiency - they are inconsistent. The problems associated with LOCCV can be

suppressed by using an alternative observation division scheme.

The k-fold cross-validation approach involves splitting the dataset into k groups,

or folds of equal size. The first fold is used as the validation set and the remaining k−1

ones are used to train the model. The MSE1 is then computed on the observations on

the validation fold. This procedure is repeated k times, each time a group is defined

as the validation set. This results in k estimates of the test error, and, by extent, the

k-fold estimate is defined as the average of those values:
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kFCVk =
1

k

k
∑

i=1

MSEi. (2.47)

The k-fold cross-validation, with proper selection of k, can overcome some of the

LOOCV limitations and provide better estimation on model performance over unseen

data.



33

Chapter 3

Randomized Model Structure

Selection

3.1 Introduction

In this chapter a more contemporary approach to the MSS task is presented. The

increase of computer power available to the general public permits more processing

demanding methods, such as Monte Carlo methods, to be applicable and results to be

obtained in shorter times. Markov chain is introduced as a basis for the Markov Chain

Monte Carlo methods and the Metropolis-Hastings algorithm is presented in the model

structure selection context. Recent developed methods, the Reversible Jump Markov

Chain Monte Carlo and the RaMSS are presented and simple examples are given in

order to illustrate method capabilities.

3.2 Monte Carlo Sampling Approaches

3.2.1 Markov Chains

A sequence X1, X2, ..., Xn of random elements from some set is a Markov chain if

the conditional distribution of Xn+1 given X1, X2, ..., Xn depends on Xn only. The state

space of the Markov chain is the set in which Xi assumes values (Geyer [2011]. One

of the main properties of the Markov chains, assumed in this section, is the stationary

transition probability. This means that transition probability of Xn+1 given Xn does

not depend on n and it is the main kind of Markov chain of interest in Markov Chain

Monte Carlo, which will be discussed in the next section. The Markov chain process

starts in one state Xi and moves successively to other state. Those moves are called
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steps. The chain current state is Xi, then it moves to state Xj with a probability de-

noted by pij - the the transition probability. This probability, because of the stationary

transition property does not depend on which state the chain was before the current

state. The process can stay in the current state with probability pii. Usually the

Markov chain is presented with finite state space and the transition probabilities form

a matrix composed of all element-wise transition probabilities. When the state space

is uncountable one cannot assume the initial distribution as a vector and transition

probability distribution as a matrix. They must be considered to be an unconditional

probability distribution and a conditional probability distribution.

3.2.2 Markov Chain Monte Carlo and Metropolis-Hastings

Monte Carlo methods were introduced with the invention of computers. Those

methods consists in massive random sampling of data to extract useful information.

The first method, developed in the early stages of scientific computing, called Ordinary

Monte Carlo (OMC), considers that X1, X2, ..., Xn are independent and identically

distributed (i.i.d), in which case the Markov Chain is stationary and reversible. This

case is the direct application of elementary statistics. Example 3.2.1 shows one simple

procedure for mean and variance calculation.

Example 3.2.1. Mean and variance calculation using OMC

Suppose that it is possible to simulate X1, X2, ..., Xn, i.i.d., from the distribution

of X. Defining Yi = g(Xi), then the Yi are i.i.d with mean

µ̂n =
1

n

n
∑

i=1

g(Xi). (3.1)

and variance

σ2 = var{g(X)}, (3.2)

where µ̂n is the sample mean of Yi and the central limit theorem defines that

µ̂n ∼ N

(

µ,
σ2

n

)

. (3.3)

The variance can be estimated by

σ̂2
n =

1

n

n
∑

i=1

(g(Xi)− µ̂n)
2, (3.4)

which is the empirical variance of Yi.
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The theory of OMC follows the theory of basic statistics. The difference here is

that, instead of employing real word randomness sampling, the OMC uses the computer

simulation to mimic the random process, commonly through pseudorandom sampling.

The same statistical properties from the traditional statistics theory apply to the OMC.

It is clearly evident that, for instance, the statistical accuracy is inversely proportional

to the square root of the sample size. The accuracy of Monte Carlo methods is de-

pendent on the sample size, so to achieve increase in the method accuracy, significant

increase in the number of simulated samples is required.

Markov chain Monte Carlo (MCMC) are methods used to approximate the pos-

terior distribution of a parameter by means of sampling. Suppose one wants to sample

from a complex distribution p or to approximate the expected value E{f(x)}, f(x) ∼ p

from a complex distribution. The MCMC method draws samples from the target dis-

tribution by generating random values (the Monte Carlo part) subject to some rule

for determining what makes a good sampled value. The main idea is to define, for a

pair of values, which one is most likely to represent the data, given the pior distribu-

tion. If a new randomly sampled value is better than the last one, it is added to the

chain of values with a certain probability determined by the transition rules (transition

probability). This is the Markov chain part. The samples drawn from the posterior dis-

tribution can be used to calculate statistics such as mean and variance that reproduces

the posterior distribution behavior.

MCMC can be employed to estimate model parameters and it is particularly use-

ful when the model parameters state space is large. Considering that the number of

model parameters is fixed, MCMC can be used to sample the parameter values, com-

pose a Markov chain with those values and, after a certain burn-in period of samples,

it is expected that the sampled values will converge to the Markov chain stationary

distribution. In order to perform MCMC, one should sample from the (joint) posterior

distribution. From the Bayes rule, the posterior distribution is described by:

p(θ|Y,M) =
p(Y |θ,M)p(θ|M)

p(Y |M)
, (3.5)

where θ is the parameter vector, Y is the data,M is a model definition, p(θ|Y,M) is

the posterior, p(Y |θ,M) is the likelihood, p(θ|M) is the prior on the parameters and

p(Y |M) is the marginal likelihood. The marginal likelihood plays no role, as it does

not depend on θ, and it can be assumed to be a normalization factor.

MCMC is a process that, given data and auxiliar functions, make intelligent

or guided guesses on the posterior distribution. MCMC will require the following

ingredients to be run:



36

• Data set

• Model

• Sampler

• Likelihood function

• Prior distribution

The method consistis in sequentially drawing samples from the posterior distribu-

tion and, constrained to the update rule, accepting or rejecting the next sample. One

of the mostly used samplers for MCMC is the Metropolis-Hastings sampler [Metropolis

et al., 1953; Hastings, 1970] and it is considered to be one of the top ten most important

algorithms in recent statistic applications.

The Metropolis-Hastings (MH) algorithm proposes a way to construct a Markov

chain on a state space X that is ergodic and stationary with respect to the posterior

distribution π(x). In other words, if Xn ∼ π(x), then Xn+1 ∼ π(x) and, thus, the

chain converges in distribution to π(x). While there are other samplers that delivers

a Markov chain associated with a target distribution, the MH method is one of the

preferred ones, due to its simplicity and versatility. Rather than considering the state

space as role, the method constructs a path through the most probable region in the

parameter state space in an incremental way, exploring local regions and constructing

the posterior distribution by means of the accept/reject schema.

The MH sampler employs an alternative way to draw samples from π, even when

the π function is only known to the ratio π(x)/π(y). This allows the algorithm to be

employed without knowing the normalizing factor. The algorithm requires an arbitrary

candidate distribution, q(x, y), from which one can draw samples. For every point in

state space, q(x, y) is a normalized probability density and a sample y can be always

taken from q(x, ·). Also, at every point of the state space, q(x, y) can be calculated.

The Metropolis-Hastings algorithm is presented in Alg. 1:

This acceptance/rejection schema preserves the stationary density π if the chain

is irreducible, in other words, if q has a wide enough probability to reach every region

of the state space with positive mass under π. Using Eq. 3.5, one can calculate the

posteriors ratio π(x)/π(y) by means of the defined prior, p(θ|M), and the likelihood,

p(Y |θ,M).

If the the MH algorithms is allowed to draw a large amount of samples (∼ 104

to 106), the initial steps (burn-in) can be discarded and the remaining samples are a

representation of the posterior distribution. Ex. 3.2.2 will illustrate the MH method to

perform parameter estimation in a simple case.

Example 3.2.2. MCMC Parameter Estimation
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Algorithm 1 Metropolis-Hastings Algorithm

1: Given X(t),
2: Generate Yt ∼ q(y|X(t)).
3: Take

X(t+1) =

{

Yt with probability α(X(t), Yt),

X(t) with probability 1− α(X(t), Yt),

where

α(x, y) = min

{

π(y)

π(x)

q(x|y)

q(y|x)
, 1

}

.

4: Repeat
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Figure 3.1. Data plot for Ex. 3.2.2.

Consider data generated from the following process:

y(k) = θ1x(k) + θ2 + e(k), (3.6)

where x(k) ∼ U(−10, 10) and e(k) ∼ N (0, σ2).

The process parameters are known: θ1 = 3, θ2 = 1.5, σ2 = 5. Fig. 3.1 shows the

plot of the dependent variable, y(k) against the independent variable x(k).

The next step, following the ingredient list for the MCMC method, is to define a

model. For the sake of simplicity, the same model structure that generated data will

be used, similarly to what was considered in Eq. 2.30, with unknown parameters:

y = Xθ̂ + ξ, (3.7)
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Figure 3.2. Log-likelihood plot for parameter θ2.

with θ̂ = [θ1 θ2]
T, ξ ∼ N (0, σ2).

The likelihood function is the probability which one would expect the data to

occur, given the parameters. Considering the model in Eq. 3.7, the likelihood function

would be

lnL(θ̂, σ2|y) = −
1

2σ2
(y −Xθ̂)T(y −Xθ̂). (3.8)

Fig. 3.2 shows the log-likelihood function plot for parameters θ2.

Now, let’s define the prior distribution on the parameters. If one has previous

beliefs about the parameters, this could be informed to the algorithm as the definition

of the priors. A more generic way is to consider uninformative priors, for instance,

consider a uniform prior, in which the parameter has equal probability in the defined

range. In this example, the prior on the parameters will be defined as an uniform

distribution for parameter θ1, a normal distribution for θ2 and an uniform distribution

for parameter σ2, with arbitrary parameters.

With the log-likelihood and prior definitions, one can define the posterior distri-

bution, by means of Eq. 3.5:

p(θ̂, σ2|X,y) ∝ L(θ̂, σ2|X,y)p(θ̂, σ2). (3.9)

With those definitions in hand, the Metropolis-Hastings algorithm can be run.

The procedure jumps around the parameter state space, on a way that regions that
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Figure 3.3. Posterior distribution of (a) θ1, (b) θ2 and (c) σ2. True values denoted by the
blue dashed line. Mean values appointed by the red red dotted line.

have higher posterior are visited more often. After a burn-in period, the Markov chain

(the sequence of sampled parameter values) converges to the posterior distribution.

Fig. 3.3 shows the final distribution of the parameters.

In comparison to the MCMC method for parameter estimation, a simple, OLS

method was employed in the same dataset to perform parameter estimation. Results for

the coefficients from the linear regression model (OLS) were θ̂OLS = [3.00326 1.54818]T.

Results from obtained from the MCMC-MH method were (mean values): θ̂MCMC =

[3.004216 1.543502]T. The results were quite similar because the chosen model struc-

ture was the same for both methods. MCMC, especially the MH method, has evident

advantages over other parameter estimation techniques when the proposed models re-

quire a large state space.

This subsection presented one of the most famous methods for Bayesian infer-

ence, the Markov chain Monte Carlo. Althought powerful, the MCMC method has its

limitations. Unfortunately, the method cannot handle state spaces that have varying

dimensions. The extended method for this application, the Reversible Jump Markov

chain Monte Carlo, is presented in the next subsection.

3.2.3 Reversible Jump Markov Chain Monte Carlo

The Metropolis-Hastings MCMC algorithm was introduced for simulations of

posterior distributions on spaces of fixed dimensions. In order to simulate samples

from distributions of varying dimensions, the Reversible Jump Markov chain Monte

Carlo method was presented in [Green, 1995]. Reversible Jump MCMC can also be
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considered a generalization on the Metropolis-Hastings algorithm, where the proposal

distribution and the posterior distribution may have densities on spaces of different

dimensions. Different problems in which the number of unknown model parameters

is itself unknown are extensive. Some of those models include: Change-point models,

finite mixtures models, time series models and variable selection [Polasek, 2012]. This

subsection summarizes the work presented in [Hastie and Green, 2012], mostly focused

on the variable selection problem.

Bayesian model selection involves joint inference about model indicator k and

the parameter vector θk, where the model indicator determines the dimension of the

parameter space nk, which may vary from model to model. In the Bayesian framework,

model indicator and parameter vector, (k,θk), are treated as a joint unknown. The

inference on the model is made on the posterior joint p(k,θk|Y ).

Suppose that a prior p(k) is specified over models k in a countable set K and, for

each model indicator k, a prior distribution p(θk) and a likelihood p(Y |k,θk), for data

Y . The joint posterior

p(k,θk|Y ) =
p(k,θk)p(Y |k,θk)

∑

k′∈K

∫

p(k′,θ′k′)p(Y |k
′,θ′k′)dθ

′
k′

(3.10)

can be factorized as

p(k,θk|Y ) = p(k|Y )p(θk|k, Y ), (3.11)

that is, the product of posterior model density and model posterior parameter density.

Inference on the joint posterior, p(k,θk|Y ), is usually achieved using simulation

techniques on Bayesian approaches, once analytical formulations are mostly limited

to toy examples. In MCMC simulations, one can decide to perform within-model

simulation, in the form of sampling θk ∼ p(θk|k, Y ) for a given model indicator, which

is the case presented in Sec. 3.2.2, and across-model simulation, in the form of sampling

(k,θk) ∼ p(k,θk|Y ) which is presented in the current section.

Similarly to what is done in the Metropolis-Hastings MCMC case, the detailed

balance condition can be achieved by correctly proposing new states of the chain and

accepting those new states with an appropriate probability. Consider a general state

space X and a general target distribution π. To construct a Markov chain with invariant

distribution π consider the transition kernel K, such

∫

X

π(dx)K(x, dx′) = π(dx′). (3.12)

The detailed balance condition is achieved if
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∫

AxB

π(dx)K(x, dx′) =

∫

BxA

π(dx′)K(x′, dx), (3.13)

where A,B ⊂ X are Borel sets.

Consider the current state x and that r random numbers u ∼ g are generated.

The proposed chain new state, x′, can be constructed by a function h, such that

(x′, u′) = h(x, u), where u′ are r-dimensional random numbers, sampled from a joint

density g′ that will be required for the reverse move from x′ to x. This is done using

the inverse function h′ of h. Thus, the detailed balance condition, Eq. 3.13 can be

rewritten as:

∫

AxB

π(x)g(u)α(x, x′)dxdu =

∫

BxA

π(x′)g′(u′)α(x′, x)dx′du′. (3.14)

If transformation h from (x, u) to (x′, u′) is a diffeomorphism, that is the trans-

formation and its inverse is differentiable, then Eq 3.14 holds if

π(x)g(u)α(x, x′) = π(x′)g′(u′)α(x′, x)

∣

∣

∣

∣

∂(x′, u′)

∂(x, u)

∣

∣

∣

∣

. (3.15)

A valid choice for α is

α(x, x′) = min

{

π(x′)g′(u′)

π(x)g(u)

∣

∣

∣

∣

∂(x′, u′)

∂(x, u)

∣

∣

∣

∣

, 1

}

, (3.16)

and, given that the dimensions of x, x′, u, u′ are, respectively, n, n′, r and r′, trans-

formation h to be a diffeomorphism, it is required that n + r = n′ + r′, what is called

dimension matching.

The Reversible Jump MCMC method is quite general and flexible and its appli-

cation in model selection (in the trans-dimensional case) may require the transition

between states of the following types:

• Birth move:

Where the parameter vector size is increased

• Update move:

Where no change is dimension is performed, parameters are updated only

• Death move:

Where the parameter vector size is decreased

While the idea behind dimension matching is fairly simple, one of the main dif-

ficulties on the implementation of RJMCMC is the flexible, arbitrary choice of the

maps h and h′ and the proposal distribution g(u). Since mapping functions ultimately

express the relationship of model parameters among different spaces, map function
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choices will have a strong effect on the sampler performance [Polasek, 2012].

Example 3.2.3 shows a simple application of the Reversible Jump MCMC method

for model selection.

Example 3.2.3. Model selection using Reversible Jump MCMC

Consider, again, data generated from the same process of Eq. 3.6

y(k) = θ1x1(k) + θ0 + e(k), (3.17)

where x1(k) ∼ U(−10, 10) and e(k) ∼ N (0, σ2). Consider, also a second random

variable, x2(k) ∼ U(−10, 10). Reversible Jump MCMC can be employed to selected

among two models, which one is more likely:

M1 : y(k) = θ1x1(k) + θ0 + e(k)

M2 : y(k) = θ1x1(k) + θ2x2(k) + θ0 + e(k),

The model selection task can be performed employing a model size indicator

variable z2, which will determine if θ2 should be included in the model. z2 will be

sampled from a Bernoulli prior distribution.

The method was run for a 1000 point data window which is illustrated in Fig. 3.4.

After a burn-in period (2000 samples), the chain is expected to converge to the limit

distribution, in this case on both parameters and model indicator. Fig. 3.5 shows

parameter estimation.

θ2 parameter model indicator, z2, is actually part of the chain. From Fig. 3.6,

it can be seen that parameter θ2 is centered around zero, which means that it should

not be included in the model. In other words, model M1 is more likely to be the

correct one. Fig. 3.7 shows the histogram for the indicative variable z2, which, again,

corroborates to the hypothesis that modelM1 is more likely to be the correct one.

This example illustrated how the Reversible Jump MCMC algorithm can be em-

ployed in order to perform model selection. In this case, model selection and parameter

estimation were performed simultaneously.

3.3 Randomized Model Structure Selection

Structure selection cannot be practically realized by brute force because the can-

didate model universe, that comprehends all possible regressor combination, is typically

large. This scenario is aggravated in the case of nonlinear models. The addition of noise
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Figure 3.4. Data plot from the process generated by Eq. 3.17.
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Figure 3.5. Posterior distribution of (a) θ0, (b) θ1 and (c) σ2. True values denoted by the
blue dashed line. Mean values appointed by the red red dotted line.
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Figure 3.7. Histogram for the indicative variable z2.
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terms typically increases the flexibility of possible models, but also makes the model se-

lection task more difficult. A randomized approach can be employed in order to choose

an adequate model structure, i.e. the expected “correct” model structure, by means

of model sampling in the model universe set. An interactive randomized algorithm

for model structure selection, briefly RaMSS - Randomized Model Structure Selection,

has been introduced in [Falsone et al., 2014] and was significantly extended in [Falsone

et al., 2015]. The method constructs the structure selection task in a probabilistic

framework.

3.3.1 The RaMSS algorithm

The RaMSS method consists of iteratively finding the best subset of regressors,

from a set of candidate regressors, in order to maximize the corresponding model pre-

diction accuracy. This is performed by taking model samples from the model universe

according to probability functions estimated for each potential regressor, called the

regressor inclusion probability (RIP). Models are evaluated, and, based on the perfor-

mance, the aforementioned functions are updated. Hence, at each iteration, Np models

are drawn from the model universe and performances indexes are computed. The used

performance index is based on the model prediction error, simulation error or a com-

bination of both. The performance of a set of models, assuming that any of the Np

models contain the jth-regressor, is computed thus

I+j =
1

n+
j

n+

j
∑

i=1

J +
i (3.18)

where n+
j is the number of extracted models that contain the jth regressor and J + is

the vector of performance indexes for the models that contain the jth regressor. The

average computed in (3.18) is then attributed as an average regressor perfomance and

hence can be a used to rank regressor importance.

At each iteration, RIPs are updated. The regressor inclusion rule in a candidate

model is modeled through a Bernoulli process, where RIP is the Bernoulli random

variable probability of success µj. It is expected that, after some iterations, the average

model performances that include the correct regressors are significantly larger than the

ones that do not include the correct regressors, so “correct” regressors become more

likely to be included in the final model.

The following paragraphs explain, in a more mathematical context, the RaMSS

method.
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The power set of R, i.e. F = 2R, is the set of all possible model structures. If

it is assumed that f ∗, denoted as the true model, belongs to F , it should be possible

to find such a model by exploring the model combination set and taking the model

with best performance. Redundant models, i.e. similar models that include statis-

tically insignificant terms, are removed, and sampling is actually performed on the

reduced (non-redundant) model universe F̃ . f ∗, the true model, can be presented in

an optimization notation, such as

f ∗ =f̃∈F̃ J (f̃), (3.19)

where J is a performance metric computed for models f̃ taken from the set F̃ .

In order to solve the optimization problem, J must be estimated. The RaMSS

algorithm is capable of estimating the correct model structure, f ∗, by sampling the

model universe, calculating model performance J (f̃) and averaging over all models that

include a certain regressor. This is carried out for eachm regressor in the candidate set.

The aforementioned optimization problem can hardly be solved by an exhaustive full-

space search approach, given that the number of candidate models, i.e. the model state

space size, is exponential in the number of candidate regressors. A typical approach,

usually applied to problems where brute force is not feasible, is to consider a frequentist

or bayesian framework, adopting sampling as the primary tool to extract information

on models or perform data inference.

Consider that model performance metric, J , is such

J = e−K·MSPE, (3.20)

and takes values in the [0, 1] range, where K is an magnifying factor. The expected

value of J , considering the probability distribution Pψ and a random variable Φ that

corresponds to a realization of a model sampling in F̃ , is

E[J ] =
∑

f̃∈F̃

J (f̃)Pψ(Φ = f̃). (3.21)

Eq. 3.21 is the expected value of the combination of performance indexes of all

models in F̃ . If Pψ is varied over all possible distributions on F̃ , the maximum of 3.21

is obtained by concentrating all the probability mass on the “true”model. The solution

of the optimization problem

P∗
ψ = E[J (Φ)] (3.22)
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is such that Pψ(f
∗) = 1. In other words, solving the optimization problem 3.22 is,

essentially, selecting the true model and, thus, providing the same solution of Eq. 3.19.

A key feature of the RaMSS method is to provide a way of estimating Pψ. To do

so, a Bernoulli random variable is associated to each regressor ϕj such

ρj ∼ Be(µj), (3.23)

whose possible outcomes are 1, with probability µj and 0 with probability (1 − µj),

µj ∈ [0, 1] and j = 1, ...,m, m being the number of candidate regressors. Regressor ϕj

is present in a certain model if ρj = 1. Random variables ρj are assumed, in this case,

to be independent, although the results presented in [Bianchi et al., 2016] suggest that

a multivariate, conditioned Bernoulli distribution approach provides improvements in

terms of accuracy of the model selection process.

The µ = [µ1, µ2, ..., µm]
T vector is the Regressor Inclusion Probability (RIP)

vector. Setting µ induces a probability distribution Pψ over the models in F . In other

words, assuming that µ is known, the probability of getting a certain model structure

f with any subset of nθ regressors is given by:

Pψ(f̃) =
nθ
∏

j:ψj∈f̃

µj

m−nθ
∏

j:ψj /∈f̃

(1− µj), (3.24)

for any f̃ ∈ F̃ .

By progressively refining RIP vector µ, it is expected that the mass probability

of Pψ is concentrated at f ∗. To do so, it is necessary to define an update rule for the

µ vector, such for each element µj of µ:

µj(i+ 1) = µj(i) + γIj, (3.25)

where γ is a design parameter and Ij is a performance index which will be explained

later on.

Let

Ij = E[J (Φ)|ϕj ∈ Φ]− E[J (Φ)|ϕj /∈ Φ], (3.26)

where j = 1, ...,m and the conditional expectations are set to zero if the conditioning

event has zero probability to occur. The performance index Ij compares the average

performance of the models containing the jth regressor with the performance of the

models that do not contain that specific regressor. The practical computation of the

performance index Ij can be done by estimation, i.e. to take sample models from
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the model universe and averaging the regressor performances. Similarly to (3.18), the

average performance of models that do not contain the jth-regressor, is defined by

I−j =
1

n−
j

n−

j
∑

i=1

J −
i (3.27)

where n−
j is the number of extracted models that do not contain the jth regressor and

J − is the vector of performance indexes for only the models that do not contain the

jth regressor. By setting Ij = (I+j −I
−
j), a performance index for a specific regressor

ϕj can be computed and RIP µj can be updated using (3.25). If n+
j or n−

j are equal to

zero, I+j or I
−
j are set to zero for numeric reasons.

The main idea is to increase each individual RIP if the average performance

of the proposed models that include a specific regressor is greater than the average

performance of the models that do not include that regressor. It is expected that the

RIPs vector distribution will converge to that associated with the model with the best

performance.

The method does not guarantee that the µ vector will be bounded. A final step

keeps the vector elements within the [0, 1] range, saturating values greater than 1 or

smaller than 0.

As γ is a design parameter, a bad initial choice can lead either to slow convergence

or render the method unstable under iteration. To overcome this problem, an adaptive

step size solution was proposed [Falsone et al., 2015]:

γ =
1

10(Jmax − J̄ ) + 0.1
, (3.28)

where Jmax represents the best model performance and J̄ represents the average model

performance at the current iteration. The idea behind the adaptive step size is if J̄ is

far from the best model performance, γ is kept small to account for the probably great

variance of that population of models. On the other hand, if J̄ is close to Jmax, the

sampled models have low performance variability which can serve as an indicator that

model difference should be amplified.

After a certain number of iterations, the µ vector is expected to converge to the

equilibrium distribution. The final model, i.e. the system expected correct model,

is composed by the regressors associated with the µ vector elements greater than a

certain threshold. Because it is assumed that the true model f ∗ ∈ F , this threshold is

set to 1, or a value close to 1.

Algorithm 2 presents the pseudo-code for the RaMSS method and will be used in
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the next example, which illustrates a toy case of variable selection in linear regression

problem.

Algorithm 2 The RaMSS Algorithm

Require:

y, Np, µmin, µmax, K,Φ = {ϕ1, ..., ϕm}
while iter < itermax do

1:
µ← µ0

for i in (1 : Np) do

Model sampling
2: ψ(k)← [ ]
3: τ ← 0

for j in (1 : m) do
4:

rj ← Be(µj) ▷ Sample from the Bernoulli distribution if (rj = 1) then
5:

ψ(k)← [ψT(k) ϕj(k)]
T

6: τ ← τ + 1
7:

8: for h in (1 : τ) do
9:

ψ̃(k)← non-redundant(ψ(k)) ▷ Remove redundant terms
10:

11:ŷ ← Predict(ψ̃(k))
12:Jp[i]← e−K·MSPE(y,ŷ) ▷ Model performance calculation
13:

for j in (1 : m) do

RIP update
14:J + ← 0; n+ ← 0; J − ← 0; n− ← 0; for i in (1 : Np) do

(ϕj(k) ∈ ψ̃(k))
15:J + ← J + + Jp[i]; n

+ ← n+ + 1 else
16:

J − ← J − + Jp[i]; n
− ← n− + 1

17:

18:

19:µj ← µj + γ
(

J+

max(n+,1)
− J−

max(n−,1)

)

20:µj ← max(min(µj, µmax), µmin)
21:

22:

=0

Example 3.3.1. RaMSS toy example

This example will provide a more practical approach in how the RaMSS method

can be employed to select regressors to be included in a final model. The following
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Figure 3.8. Sampled models and their respective performances.

explanation exhibits the RIP increase/decrease mechanism. This example is meant

for illustrative purposes only, as the candidate regressor set is small and the sampling

may not perform well in practice. Consider a candidate regressor set composed by

five regressors: ψ1, ψ2, ψ3, ψ4, ψ5. Five models which contains the regressors marked in

green in Fig. 3.8 are sampled and their performance indexes, J , are calculated such in

Eq. 3.20.

The next step, as shown in Fig. 3.9 is to identify which models contain that

specific regressor and calculate the average model performance that include the current

regressor (in this case, ψ1), I
+
1 and the average model performance that do not include

that specific regressor, I−1, such as in, respectively, Eqs. 3.18 and 3.27. The final

average performance, associated to that specific regressor is then calculated by I1 =

I+1 − I
−
1. This process is held for the remaining regressors, ψ2, ψ3, ψ4, ψ5 and their

respective average performances are calculated, as shown in Fig. 3.10.

The last steps, model sampling through average model performance calculation
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Figure 3.9. Average model performance that contain the specific regressor ψ1.

for each regressor, occur in one RaMSS iterate. The next is step is to update de RIP

vector, using 3.25. This procedure is repeated until the RIP vector converges.

Example 3.3.2. Linear regression variable selection using RaMSS

Consider data y(k) was generated from the following process (in a similar fashion

from Eq. 3.17, but with four independent variables x1, x2, x3, x4):

y(k) = θ4x4(k) + θ3x3(k) + θ2x2(k) + θ1x1(k) + θ0 + e(k), (3.29)

where the four independent variables were generated from x1(k), x2(k), x3(k), x4(k) ∼

U(−1, 1), i.i.d. and e(k) ∼ N (0, σ2), σ2 = 0.01. The coefficients were set to θ0 =

0, θ1 = 1.5, θ2 = −3, θ3 = 1, θ4 = −0.9.

Consider, also, 155 other independent variables, x5, ..., x160, that are not present

in the data generation rule, i.e. y(k) does not depend on those variables. Let the
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Figure 3.10. Average model performances that contain the specific regressors.

candidate regressor set R = [x1, ..., x160] be the pool from which one should consider

taking candidate regressors from. Even if the proposed model is as simple as a linear

regression, the number of possible models to be evaluated is huge and not feasible in

practice, so traditional methods such as AIC and BIC are not applicable. Forward

regression methods can be used, although, if the model has inter-regressor dependence,

the proposed model may not perform well. A randomized approach, for instance the

RaMSS method, may be useful in this situation.

The idea is to build a model that can represent data y(k) well, considering the

candidate regressor set R. In this example, a multiple regression model will be es-

timated for illustration purposes, although the method can be employed in virtually

any model family, as long as the proposed models performance can be computed. In

this case, the algorithm will pursue the best model in terms of mean squared error,

considering that the model is in the linear multiple regression model. Note that no

restrictions were made on the model size.
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Figure 3.11. RIP evolution for the candidate regressors. True regressors highlighted.

The system represented in Eq. 3.29 was simulated for 1000 points. The method

was applied to this data set with parameters Np = 30, K = 1, µ0[1:m] = 1/m, µmin =

0.001, µmax = 1. As the algorithm runs, the regressor inclusion probability vector is

progressively refined, as shown in Fig. 3.11.

Among the clear advantages of the RaMSS method is that it is able to provide

regressor importance rank. It becomes evident from Fig. 3.11 that regressor x2 is

strongly related to the output, so the selection of this regressor is performed in the initial

stages. This is due to the coefficient value, θ2 = 3, associated with this regressor, which

is the largest value among the coefficients. This property can be useful in identification

of partially correct models, where not all “true” regressors can be identified. The RIP

vector converges when the evolution of the vector achieves a steady state. Note that

not all regressors inclusion probabilities saturate in zero or one, but stay in a middle

area. This behavior is associated to regressors that neither increase or decrease model

performance and therefore should not be part of the model. The algorithm is capable

of identifying the “true” set of regressors in less than 25 iterations in most cases for this

candidate set size and data.
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In order to evaluate the method regressor importance ranking, the same dataset

was processed by RaMSS 500 times in a Monte Carlo fashion. Fig. 3.12 exhibits

the relative number of iterations to the final number of iterations that the respective

regressor took to be included in the model for 500 runs. In other words, this graph

represents at which point of the RaMSS timeline each “true” regressor is selected. It

can be seen that regressor x2 is selected in the early stages (first iterations). Following

the order, regressor x1 is selected next. This pictures provides a “expected” timeline

for regressor importance selection, whereas more important or “stronger” regressors are

expected to extracted in early iterations.

Estimated parameter values were θ̂1 = 1.500, θ̂2 = −2.999, θ̂3 = 1.000, θ̂4 =

−0.900, what is compatible with the values used to generate data. Parameters estima-

tion was performed by ordinary least squares. Fig. 3.13 shows the residual plot ACF

and residual normal-QQ plot. It can be seen that residuals are uncorrelated and can

be assumed normally distributed.
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Chapter 4

Model Selection Task for the

NARMAX Model

4.1 Introduction

This chapter presents the model structure selection task in the context of NAR-

MAX models. The NARMAX model is presented in the first subsection and some

important definitions are introduced. This chapter reports the main contributions of

this work. The RaMSS method was extended to cope with NARMAX models and

additional features, such as parallel processing and the possibility of inclusion of prior

model information, were also implemented.

4.2 The NARMAX model

4.2.1 Model Definition

The Nonlinear Autoregressive Moving Average with Exogenous Input(NARMAX)

model can represent a wide class of nonlinear systems [Leontaritis and Billings, 1985a,b].

It can be defined as:

y(k) = F [y(k − 1), y(k − 2), . . . , y(k − ny),

u(k − τ), u(k − τ − 1), . . . , u(k − nu),

e(k − 1), e(k − 2), ..., e(k − ne)] + e(k),

(4.1)

where y(k), u(k), e(k) are the system output, input and noise, respectively and ny,

nu, ne are the respective maximum lags and τ is the time delay. F is some nonlinear
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function.

As it becomes evident from Eq. 4.1, e(k) represents every effect that cannot be

accounted for in the model, in other words, F [·] parameters do not depend on e(k).

Let R = {ψ1, ψ2, ..., ψnR
} denote the set of nR regressors from a NARMAX struc-

ture. The dimension of R, i.e. the number of combinations of NARMAX monomial

terms is given by the ℓ-combination with repetitions such:

nR = nθℓ =

(

nθ + ℓ− 1

ℓ

)

,

where nθ = ny + (nu − τ + 1) + ne + 1 and ℓ is the degree of nonlinearity, in the case

of polynomial models.

Assuming that F [·] can be represented as a polynomial function, as defined in

[Aguirre, 2015], the deterministic part of Eq. 4.1 can be expanded as a non-linear

composition lagged input and output terms, with degree varying in the range 1 ≤ m ≤

ℓ. Each term, ψi, with degree m, is composed by a factor with p degree of y(k − i)

and a factor with (m − p) degree of u(k − i). Finally, a parameter cp,m−p(n1, ..., nm)

multiplies the term:

y(k) =
ℓ

∑

m=0

m
∑

p=0

ny ,nu
∑

n1,nm

cp,m−p(n1, ..., nm)

p
∏

i=1

y(k − ni)
m
∏

i=p+1

u(k − ni), (4.2)

where

ny ,nu
∑

n1,nm

≡

ny
∑

n1=1

...

nu
∑

nm=1

(4.3)

The model noise terms, which contain e(k − ni) terms are formed in a similar

manner. The polynomial NARMAX model can be conveniently defined in a more

compact notation:

y(k) = ψT
y,u,e(k − 1)θ̂ + e(k) (4.4)

The following example illustrates the regressor vector formation.

Example 4.2.1. Regressor set from a polynomial NARMAX model

Consider a NARMAX model with ny = 2, nu = 2 and ne = 2. For a degree of

non-linearity ℓ = 2, the regressor vector, including the constant term, has the following

terms:
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ψ(k − 1) = [1

y(k − 1) y(k − 2) u(k − 1) u(k − 2) e(k − 1) e(k − 2)

y(k − 1)2 y(k − 1)y(k − 2) y(k − 1)u(k − 1)

y(k − 1)u(k − 2) y(k − 1)e(k − 1) y(k − 1)e(k − 2)

y(k − 2)2 y(k − 2)u(k − 1)

y(k − 2)u(k − 2) y(k − 2)e(k − 1) y(k − 2)e(k − 2)

u(k − 1)2 u(k − 1)u(k − 2) u(k − 1)e(k − 1) u(k − 1)e(k − 2)

u(k − 2)2 u(k − 2)e(k − 1) u(k − 2)e(k − 2)

e(k − 1)2 e(k − 1)e(k − 2)

e(k − 2)2]T

4.2.2 Term Clustering

It should be noted that the term coefficients in Eq. 4.2 depend on the sampling

time, Ts and should be represented as cp,m−p(Ts, n1, ..., nm). For simplicity, the argu-

ment Ts is omitted. If the sampling time Ts is short enough and the data window is

smooth the following approximations can be made

y(k − 1) = y(k − 2) = ... = y(k − ny) = ȳ

u(k − 1) = u(k − 2) = ... = u(k − nu) = ū,
(4.5)

therefore Eq. 4.2 can be rewritten as

y(k) =

ny ,nu
∑

n1,nm

cp,m−p(n1, ..., nm)
ℓ

∑

m=0

m
∑

p=0

y(k − 1)pu(k − 1)m−p. (4.6)

From Eq. 4.6, the following definitions arrise.

Definition 1. [Aguirre and Billings, 1995b] “The constants
∑ny ,nu

n1,nm
cp,m−p(n1, ..., nm)

that appear on Eq. 4.6 are the term clusters Ωypum−p which contain terms in the form

y(k− i)pu(k− j)m−pfor m = 0, ..., ℓ and p = 0, ...,m. Such coefficients are called cluster

coefficients and represented as
∑

ypum−p .”

Definition 2. [Corrêa, 2001] “The set of all terms in the form yp(k − d)um(k − j), m+

p ≤ ℓ is called d-cluster and is represented as Ωyp
d
um . The sum of respective coefficients
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is called d-coefficient and is represented as
∑

yp
d
um”.

Term cluster is important to describe how model gain varies in various operating

points. d-clusters are useful to define how the model dynamics respond to changes in

operating points [Aguirre, 2007].

4.3 RaMSS-m Method

The RaMSS method, presented in Sec. 3.3.1, although reported to be modifiable

to handle NARMAX models, was originally designed to handle NARX models only.

This section is the main contribution of this dissertation and introduces an extension of

the RaMSS method. The new method, briefly RaMSS-m, was implemented using the

basic idea behind the RaMSS method, but provides additional features beside being

able to deal with NARMAX models. The RaMSS-m was first introduced in [Retes

and Aguirre, 2018] and is a direct result of this work. Those features include possibly

reduced parameter estimation bias, by the inclusion of moving average terms in the

model, a parallel processing scheme that allows faster model selection and parameter

estimation and a modified regressor inclusion probability rule, what allows the model

designer to interfere in the model selection task when prior model information is avail-

able. The method innovative aspects will be discussed in the following subsections.

4.3.1 Inclusion of Moving Average Terms

The RaMSS method, presented in details in [Falsone et al., 2015], was applied

to NARX models only. The main characteristic of RaMSS that restricts it use in

NARMAX models is the employed parameter estimator nature. RaMSS was imple-

mented using ordinary least squares as parameter estimator (see Sec. 2.2.5.2), which

is appropriate for NARX models [Billings, 2013], as it fits the linear in the parameters

model class. The inclusion of moving average (MA) terms, required by the more flex-

ible NARMAX model, renders the final model a non-linear in the parameters nature

and demands a more flexible parameter estimation algorithm. The proposed RaMSS-m

method implements, for the NARMAX case, an extended least squares estimator (ELS)

for model parameter estimation. The ELS method, shown in Sec.2.2.5.4, is applicable

to a more general model class that includes non-linear moving average (N)MA terms.

This estimator provides, in addition to the (N)MA estimation, less susceptibility to

parameter estimation bias for colored noise in the regression equation or even white

noise added to the output, which is a typical scenario for measurement noise.
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When approaching system identification procedure in a black-box fashion, little

or no prior information is available apart from the data. One may extract initial

information from data, such as the autocorrelation function, in order to produce insights

about data behavior. Those methods, although appropriate for linear models, have

their limitation when applied with nonlinear models. The inclusion of (N)MA terms

in the candidate regressors makes room for wider model dynamic behavior, and also

addresses desirable properties verified in linear models, such as parameter estimation

bias reduction in case the data is corrupted by correlated noise [Chen et al., 1989;

Billings, 2013].

The following example illustrates the application of ELS to reduce parameter

estimation bias.

Example 4.3.1. Parameter Estimation Bias Reduction

Consider the following system, exposed to strongly correlated noise:

S4.1 : y(k) = 0.7y(k − 1)u(k − 1)− 0.5y(k − 2)

+0.6u2(k − 2)− 0.7y(k − 2)u2(k − 2) + e(k),
(4.7)

with e(k) = 0.5e(k − 1) + ν(k), ν(k) ∼ N (0, 0.2). Data was collected when system

achieved equilibrium.

This system data was presented to the original RaMSS method and results were

analyzed. Regressors were generated taking the lags of input and output, with maxi-

mum lags being ny = 4 and nu = 4. A first used investigation tool was the autocorre-

lation function plot of the residuals shown in Fig. 4.1. The ACF plot suggests strong

residual correlation indicating that not all features of the data were correctly accounted

in the model, as the RaMSS method was programmed to identify NARX models only.

Parameter estimation will suffer loss of accuracy (bias) when estimating a model

that does not contain MA terms where the data contains correlated noise. To explore

this bias induced effect, this analysis was performed using a Monte Carlo approach.

System described in Eq. 4.7 was simulated 500 times. Each dataset was fed in the

RaMSS algorithm and results from the OLS estimator were computed. Fig. 4.2 exhibits

the estimated parameter histograms for the true regressors. In spite of being able to

extract the true regressors, models generated from RaMSS lack of inclusion of MA terms

induce parameter estimation bias, once the method used for parameter estimation in

RaMSS, the OLS, produces biased estimations in this case. It can be noticed that

the parameter associated to regressor y(k − 2) exhibits the strongest bias. This is an

expected result as noise is added to the output y and is not present in the exogenous
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Figure 4.1. Autocorrelation function (ACF) of the residuals of a model estimated using
RaMSS from the data produced by system S4.1. The horizontal dotted lines
indicate the 95% confidence band. The presence of significant correlation indi-
cates bias.

input. The remaining regressors contains exogenous input lagged terms, i.e. u(k − 1)

and u(k − 2), what makes bias effect less evident.

The RaMSS-m method is capable of handling a more flexible model and allows

(N)MA terms to be present in the final model, which can be useful to reduce parameter

bias. The same data were presented to the RaMSS-m method, in a similar Monte Carlo

fashion. Fig. 4.3 shows estimated parameter histograms, when allowing the RaMSS-m

method to select (N)MA terms up to lag ne = 3. It becomes evident that bias effect

is strongly reduced by letting the model selector explore models containing (N)MA

terms. Parameter associated to regressor y(k − 2) is much less affected by bias.

4.3.2 Parallel Processing

Parallel processing or parallel computing is a technique for computing large prob-

lems in which calculations are performed in a distributed way, concurrently. Large

problems may be subdivided in smaller ones which can be solved faster by using more

processors instead of a single one. This is desirable because of processors power con-

sumption and heat generation have become a concern in recent years as processor

frequency increase become more difficult by technology limitation. The availability of

multicore processors, which, nowadays, is a standard in both the personal computer



62

(c) (d)

(a) (b)

−0.50 −0.45 −0.40 −0.35 0.50 0.55 0.60 0.65

0.55 0.60 0.65 0.70 0.75 0.80 −0.8 −0.6 −0.4

0

20

40

0

20

40

Coefficient Estimation

F
re

q
u

e
n

c
y

Figure 4.2. Histograms of parameters estimated over 500 Monte Carlo runs using RaMSS.
True parameter values are indicated by the dashed blue line, whereas the mean of
estimated values is shown as a dotted red line. Parameters of (a) y(k − 1)u(k − 1),
(b) y(k − 2)u2(k − 2), (c) y(k − 2), (d) u2(k − 2).

and corporate server markets, demands the implementation of algorithms that are pro-

grammed considering parallel computation specificities and, thus, take advantage of

parallelism.

The parameter estimator algorithm employed in RaMSS-m (Extended Least

Squares), due its iterative nature, is more computer demanding than OLS. This can

lead to slow code code computation, specially when dealing with large models. To take

advantage of RaMSS-m power and, at the same time, get competitive model compu-

tation time, the RaMSS-m method was conceived to implement parallel processing.

The first step in parallel computing implementation is to identify which piece of code

is independent from each other and what information those pieces of code have to

exchange.

A distributed randomized regressor selection (dMSS), was presented in [Avellina

et al., 2017]. Their main idea is to distribute the model structure selection task among

several processors, in a way that each processor executes a small, local, optimization

task. Information is shared between the processors and when the communication round
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Figure 4.3. Histograms of parameters estimated over 500 Monte Carlo runs using RaMSS-m.
True parameter values are indicated by the dashed blue line, whereas the mean
of estimated values is shown as a dotted red line. Parameters of regressors (a)
y(k − 1)u(k − 1), (b) y(k − 2)u2(k − 2), (c) y(k − 2), (d) u2(k − 2).

is finished, each processor verifies that its local solution does not violate any of the

shared constraints. If this condition is not satisfied, the processor must rerun the

optimization process and update the solution. After a finite number of rounds, the

shared constraints are not violated by any of the local solutions and the algorithm

stops.

The RaMSS-m parallel processing method followed the idea of distributing the

MSS task between processors and information sharing, as presented by [Avellina et al.,

2017]. The RaMSS-m method, however, constrains each processor solution by guiding,

at each round, the desired model structure. Model sampling and performance index

calculations, for each of the Np models, are independent and, thus, can be computed

in parallel, only subjected by the current regressor inclusion probability that is shared

among processors. In other words, the individual processor job is to return a sampled

model, constrained to the RIP vector, and the performance metric associated to that

model.

Unlike the dMSS method, the RaMSS-m implements a omniscient supervisor, re-
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Figure 4.4. Parallel processing scheme adopted in RaMSS-m.

sponsible to bind the resulting models performances and update the RIP vector. The

updated RIP vector is then fed again to the processors and new models are sampled

at each unit. Processing stops when convergence is achieved when the RIP vector sta-

bilizes or a certain number of iterations is completed. The final model structure from

RaMSS-m is obtained in an oversighted fashion, in which the process supervisor is om-

niscient sharing the desired parameters with the parallel units and then collecting and

processing the results accordingly to defined rules, rather than the resulting consensual

interaction from the dMSS method.

Additional processing overhead of instantiating and sharing data between mul-

tiple processor threads is clearly overcome by the faster aggregate model generation

and performance calculation. Fig. 4.4 illustrates the RaMSS-m parallel processing data

flow.

4.3.3 Modified RIP Update Rule

If the model designer has prior information regarding model structure, the RaMSS

original method provided no means of including this information in the MSS other than

setting initial RIP values. In RaMSS-m, the algorithm is capable of incorporating ad-
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ditional information about the model structure by means of setting RIPs, at each

iteration, to the desired values. RIPs can be set to specific values (e.g. zero or one)

to force some of the regressors to be included or excluded in the final model. This

approach can be useful, for example, to force MA terms to be present in the parameter

estimation phase of a NARX model, and, therefore, reduce parameter estimation bias.

The modified RIP rule can also incorporate prior knowledge by forcing or eliminat-

ing certain term clusters depending, for instance, on the system static characteristics

[Aguirre et al., 2002].

4.3.4 RaMSS-m Algorithm

By incorporating the features presented in previous sections, the RaMSS-m

method is capable of selecting models from a wider class of model families and also let

the model designer have more control over the model selection task. Alg. 3 shows the

method pseudocode.

4.4 Simulation Results

The first system investigated is taken from [Falsone et al., 2015]:

S4 : y(k) = 0.7y(k − 1)u(k − 1)− 0.5y(k − 2)

+0.6u2(k − 2)− 0.7y(k − 2)u2(k − 2) + e(k),

with u(k) ∼ U(−1, 1) and e(k) ∼ N (0, 0.004), where U(a, b) indicates a uniform dis-

tribution in the range defined from a to b; and N (x, σ2) indicates Gaussian distribution

with mean x and variance σ2.

Two other models where included in the simulations:

SARMAX : 0.5y(k − 1)− 0.6y(k − 2) +

+0.7u(k − 1) + 0.3e(k − 1) + e(k)

SNARMAX : y(k) = 0.7y(k − 1)u(k − 1)− 0.5y(k − 2) +

+0.6u2(k − 2) + 0.8y(k − 2)e(k − 4) + e(k),

with u(k) ∼ U(−1, 1) , e(k) ∼ N (0, σ2). Data was collected when system achieved

equilibrium.

In order to evaluate the RaMSS-m correct regressor selection power, each system

data was run twenty times through the method. Results are displayed in Tab. 4.1.
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Algorithm 3 The RaMSS-m Algorithm

Require:

u,y, Np, µmin, µmax,µforced,
ny, nu, ne, K,µ0, itermax

while iter < itermax do
1:

µ← µ0

2: parfor i in (1 : Np) do ▷ Generate models in parallel
3: m← ny + nu + ne + 1
4: ri ← Bem(µ) ▷ Model sampling
5: [θ̂ ŷ]← ELS estimate(u,y, ri,m)
6: Jp[i]← e−K·MSPE(y,ŷ) ▷ Model performance calculation
7: end parfor

for j in (1 : m) do

Supervised RIP update
8: J + ← 0; n+ ← 0; J − ← 0; n− ← 0; for i in (1 : Np) do

(ri[j] = 1)
9: J + ← J + + Jp[i]; n

+ ← n+ + 1 else
10:

J − ← J − + Jp[i]; n
− ← n− + 1

11:

12:

13: µj ← µj + γ
(

J+

max(n+,1)
− J−

max(n−,1)

)

14: µj ← max(min(µj, µmax), µmin)
15:

16: µ← update(µ,µforced) ▷ Force RIPs to desired schema
17:

18: function ELS estimate(u,y, r,m)
19: θ̂ ← [0 0 0, ...0]m while (stop criterion) do
20:

ξ̂ = y − φθ̂
21: φ← combination matrix(u,y, ξ̂, ny, nu, ne)[r]

22: θ̂ = [φTφ]−1φTy

23:

24: ŷ ← φθ̂

25: return [θ̂ ŷ]
26: end function

27: function update(µ,µforced) for j in (1 : m) do

(µforced[j] ̸= NULL)
28: µ[j]← µforced[j]
29:

30:

31: return µ

32: end function
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Table 4.1. Summary of RaMSS-m algorithm performance.

Model Noise
Level

Correct
NAR
Terms

Correct
NMA
terms

Average
Model Size

S4 0.04 100% - 5.9

SARMAX 0.3 100% 100% 4.4

SNARMAX 0.3 100% 85% 4.2

SNARMAX 0.4 100% 85% 4.2

SNARMAX 0.5 100% 100% 4.7
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Figure 4.5. Typical RaMSS-m RIP evolution.

Meta-parameters were set to ny = nu = ne = 4. The maximum degree of

nonlinearity for the NARMAX model was set to ℓ = 3. The regressor set which the

RaMSS-m algorithm will take sample from, F , is composed of 455 terms. The method

maximum number of iterations was set to itermax = 120, Np = 100 and K = 1. The

proposed method was run on the Amazon Elastic Cloud Computing (EC2) platform.

The EC2 allowed to instantiate a virtual machine with optimized processing power.

The algorithms were implemented in R Statistical Software version 3.3.3. Fig. 4.5

shows a typical RaMSS-m run for system S4.

The RaMSS-m method could correctly identify all nonlinear AR terms in the

evaluated models. For the nonlinear MA terms, the method could identify the correct



68

structure in 85% of the simulations for lower noise level systems. For the system with

higher noise level, the method was able to correctly identify the true model structure

in 100% of the times. In order to perform correct identification of MA terms it is

required that the noise correlation is enough to excite the algorithm and those terms

be distinguished from random noise.

The proposed RaMSS-m method was shown to still perform well under systems

that not include (N)MA terms. The correct regressors from the true model were identi-

fied for those models. The inclusion of (N)MA terms in the possible regressor universe

caused the RaMSS-m method to overestimate model size for simpler systems (S4 and

SARMAX), with little impact on prediction error.

The ELS method, used as the estimator for the NARMAX model in the mod-

ified RaMSS algorithm, generates processing overhead and larger computation times

compared to the ordinary least squares estimator. The extended regressor matrix must

be updated with MA terms at each ELS iterate. MA terms are hence computed at

each ELS iterate using the residuals which are progressively refined. Also at each ELS

iterate, a matrix inversion is performed.

One of the most important results of the RaMSS (and, by extension, the

RaMSS-m) methods is that regressor importance is progressively refined until con-

vergence. Even when convergence was not achieved yet, the RIP evolution path can

be useful. The RIP evolution picture can be very informative on regressor importance

and on the interaction between regressors being included or excluded in the models.

The RIP evolution picture acts as an average model overview. “Strong” regressors, i.e.

regressors that most contribute to model prediction error reduction, easily converge to

the maximum, where regressors that increase model prediction error are rapidly set to

minimum. Regressors that have little impact on model predict error, in other words,

regressors that do not significantly increase or decrease the prediction error, tend to

achieve an equilibrium RIP which does not go to the maximum or the minimum.

Finally, the interaction among regressors can also be evaluated by analyzing the

RIP evolution. In early iterations, several regressors have high probability of being

included in the model. With the inclusion of “strong” regressors in the model and

the resulting decrease in model prediction error, regressor interactions become more

evident. For instance, in Fig. 4.5, around the 23rd iteration a “true” regressor RIP goes

to 1, influencing “spurious” regressors RIP to evolve to the floor level. This happens

because the inclusion of a “true” regressor reduces the prediction error which in turn is

used to update the RIPs.
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Figure 4.6. Estimation data collected from a tank system, where the output y(k) is the
measured flow and the input u(k) is the valve driving signal.

4.5 Real Data Results

In this section, the proposed modified method will be submitted to real world

data in order to evaluate the algorithm potential ability to identify nonlinear models

from a more uncontrolled environment.

The chosen system data was collected from a control valve installed in a Interact-

ing Tank System, described in details in [Braga, 1994]. The pneumatic valve is driven

by an input signal which defines the valve flow. Hence, the input signal, u(k) drives

the valve piston position, whereas y(k) is the output flow measured by a turbine sen-

sor. Input and output data were unity-based normalized. The input signal, u(k) was

designed so the system was persistently excited. Collected data is composed of 1000

samples. The dataset was split into estimation, test and validation sets, composed,

respectively, by N = 667, N = 167 and N = 166 consecutive points. Fig. 4.6 shows

the estimation data.

Model performances on validation data were evaluated using eMSE (Eq. 2.44 and

eMAPE (Eq. 2.45).
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4.5.1 Models obtained with ERR

In the procedures below, models with various process and noise terms were tested.

Terms were chosen using the ERR criterion and the model with lowest error index over

the test data was used on validation data to be compared with the model obtained

using RaMSS-m.

For ny = nu = ne = 3 and ℓ = 1, the model with lowest eMAPE (and eMSE) on test

data was the one with 6 terms. In this case there are only 7 possible process terms and

3 noise terms. On validation data, the 6-process-term model attained eMAPE = 7.55%.

For ny = nu = ne = 3 and ℓ = 2, the model with lowest eMAPE on test data was

the one with 20 process terms. The model with 23 terms had the lowest eMSE. On

validation data, the 20-term model attained eMAPE = 6.04%.

For ny = nu = ne = 3 and ℓ = 3, the model with lowest eMAPE (and eMSE)

on test data was the one with 23 terms. On validation data, this model attained

eMAPE = 3.86% and was the ERR-estimated model with the best performance, using

this index.

4.5.2 Models obtained with RaMSS-m

Model performance index was chosen as a mix of one-step-ahead prediction error

and free-run-simulation error. This approach was necessary in order to speed up the

algorithm convergence because of the slow varying characteristics of the input.

Chosen method parameters were K = 500, Np = 100, α = 0.5, where the K

parameter is used to highlight the difference between models.

In this case, a different criterion was employed for model performance evaluation.

It is argued in [Piroddi and Spinelli, 2003] that using the free-run-simulation error as a

model evaluation criterion can improve the robustness of the model structure selection

process in partial identifiability conditions. In analogy to [Aguirre et al., 2010], a

combined performance index will be used:

J = αJp + (1− α)Js, (4.8)

where

Jp = e−K·MSPE (4.9)

Js = e−K·MSSE, (4.10)
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Table 4.2. Performance of models obtained using ERR and RaMSS-m. eMAPE was computed
on validation data.

Model Process
Terms

Noise
Terms

Total
Model
Size

eMAPE

ERR (ℓ = 1) 6 0 6 7.55%

RaMSS-m (ℓ = 1) 6 0 6 6.96%

ERR (ℓ = 2) 20 3 23 6.04%

RaMSS-m (ℓ = 2) 12 9 21 5.80%

ERR (ℓ = 3) 18 5 23 3.86%

RaMSS-m (ℓ = 3) 32 5 37 2.17%

and MSPE is the mean squared prediction error, MSSE is the mean squared simu-

lation error (free-run-simulation error). User defined parameter α ∈ [0, 1] balances

the contribution of one-step-ahead prediction error and free-run-simulation error to the

model performance. Meta-parameters were chosen as in Sec. 4.5.1. Tab. 4.2 shows the

performance comparison between models obtained with the ERR and the RaMSS-m

methods.

4.5.3 Model comparison

The best models, selected by the ERR and the RaMSS-m methods, were the ones

with nonlinearity degree ℓ = 3.

The RaMSS-m method selected 37 terms out of 220 candidate regressors in the

best resulting model. ERR selected 23 terms out of 220 candidates. From Tab. 4.2,

it can be seen that the RaMSS-m method resulting model outperformed the ERR

regressor selection approach in terms of eMAPE in all three scenarios (ℓ = 1, 2, 3).

Models obtained from both methods have similar performances for ℓ = 1. Neither

RaMSS-m or ERR have selected any noise terms for this scenario. Although both

methods have selected the same model size, RaMSS-m has a slightly smaller prediction

error than ERR.

For ℓ = 2, the RaMSS-m method selected a smaller number of process terms than

the ERR method, whilst it increased the number of noise terms in the final model to

achieve low prediction error.

The most significant result was achieved in the uttermost complex model structure

(ℓ = 3). Although the model size from the one obtained with the RaMSS-m method

is greater than the model estimated by the ERR method, the prediction error from
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Figure 4.7. Pneumatic valve model prediction (ℓ = 3) for ERR Model and RaMSS-m Model.
Validation output flow data (black), free-run simulation (red).

the RaMSS-m model is smaller. Fig. 4.7 shows the validating data and free-run best

model simulation for both ERR and RaMSS-m methods. Models predicted responses

differences are not too evident from the graph as data signal to noise ratio is large.

Models selected by ERR and RaMSS-m methods were evaluated considering term

clusters. Tab. 4.3 shows the comparison between models. It can be seen that models

obtained from the ERR method and from the RaMSS-m method result in similar

clusters. The main difference is that the RaMSS-m method selected terms from the

cluster Ωy2 whereas the ERR method did not.
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Table 4.3. Comparison between selected term clusters (process terms only) by the ERR and
RaMSS-m models.

∑

columns represent the cluster coefficient.

Cluster ERR
∑

RaMSS-m
∑

const ✓ 0.0526 ✓ 0.0227

Ωu ✓ -0.4804 ✓ 0.1707

Ωu2 ✓ -0.1258 ✓ 0.3184

Ωu3 ✓ 0.4105 ✓ 1.0682

Ωy2 X - ✓ 1.3276

Ωy2u ✓ 2.0847 ✓ 5.6499

Ωy3 ✓ -0.1205 ✓ -2.7197

Ωyu ✓ -0.6166 ✓ 0.7003

Ωyu2 ✓ 1.0218 ✓ -5.5445
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Chapter 5

Conclusion

5.1 Final Considerations

This dissertation presented some background material on the main topics of model

identification. The model structure selection, the principal topic of this research, was

introduced in more details considering the classical approaches and some more recent

ones, based on Monte Carlo simulations.

The main contribution of this work is the development of a modified RaMSS

method, the RaMSS-m. The new method could correctly identify a wider class of

models – the NARMAX models, and also presents additional features such as paral-

lelism and the possibility of prior model information inclusion. The proposed method

performance on simpler models, such as the NARX models and ARMAX models, was

compatible to classical approaches. In the case of data containing correlated noise, as

expected, the RaMSS method suffers not only from parameter bias but also this poses

problems in the structure selection step. Those shortcomings are overcome by the

RaMSS-m. The parallelization feature may overcome the additional processing time

overhead due to the chosen estimator iterative nature.

The RaMSS-m method is also useful to identify the “strong” regressors in the

pool as long as the ones with “weak” impact on the model. The RIP evolution clearly

segregates those regressors after a “burn-in” number of iterates, i.e. when the model

probability distribution is close to the limit one. This“insightful”approach to the struc-

ture selection problem seems to be one of the greatest assets of randomized algorithms

when compared to more traditional approaches.

The new method was also employed in a real world system, a pneumatic valve.

Results showed that although the models obtained with RaMSS-m were not always

the ones with less parameters, in all the investigated cases they were those with better
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performances when compared with models obtained with the ERR method, specially

for the more complex models. This is likely to be a consequence of the use of simulation

error as a criterion for updating the regressor inclusion probability functions.

Nonetheless, when data are generated by a real world process, there is no such

a thing as “true” model, as it is virtually impossible that all the information of the

process that generated data be modeled by a mathematical representation. The un-

certainty present in data measurements makes it harder to discriminate among similar

model structures [Barbosa et al., 2015]. The randomized approach to model structure

selection, such as the one performed by RaMSS-m, provides a convenient framework to

deal with a set of possibly equivalent models with rather than a single, “true” model.

5.2 Future Work

The development of a randomized approach for model selection such as the

RaMSS-m opens a wide range of possibilities in model analysis and design. Future

work that has not been treated in this research phase either due to being out of scope

of an initial method implementation or by requiring additional theoretical background

reformulation may be listed:

• Non-polynomial NARMAX models evaluation. The RaMSS-m method is a quite

general method as it does not impose any restrictions about the model structure.

The author finds the proposed method may be a viable approach do structure

selection of models that exhibit some degree of correlation among variables. Those

models include Vector autoregression (VAR) and its variants - Bayesian vector

autoregression and VARMAX.

• Variable selection. Variable selection, although briefly explored in Example 3.3.2,

was not the main focus of this document. RaMSS-m may be a proper method to

variable selection, specially when dealing with a large set of candidate explanatory

variables where a randomized approach may be more appropriate.

• Inclusion of correlation in RIP updates. The regressor inclusion probability model

does not take into account the correlation between regressor inclusion probabil-

ities. An approach using a multivariate Bernoulli distribution [Bianchi et al.,

2016] may be included in the RaMSS-m method and may provide a more flexible

framework.
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