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A B S T R A C T   

Background: Cutaneous malignant melanoma is a skin cancer type highly resistant to standard cancer therapies. 
Natural compounds have been reported as important sources for the creation of new drugs for cancer treatment. 
Caryocar brasiliense Camb., popularly known as Pequi, is often used in Brazilian folk medicine, with anticancer 
effects reported. Objectives: The present study evaluated the antiproliferative activity of the crude extract 
butanolic fraction of the C. brasiliense Camb. peel on the B16F10 cell linage 
Method: C. brasiliense peel fraction was analyzed by Gas Chromatography coupled to massa spectra, and its 
biological effects were evaluated on the melanoma cell line B16F10. 
Results: The chromatography analysis of the butanolic fraction of the C. brasiliense peel fraction identified a 
majority presence of gallic acid and sarothrin compounds. These compounds might have been responsible for an 
antiproliferative effect on B16F10, with the inhibitory concentration (IC50) equal to 390.9 µg/mL (24 h) and 
226.4 µg/mL (48 h) after treatments. Our results revealed that cell death assay via bromide and acridine orange 
tests indicated an increase in cell death observed after 24 h treatment with the pequi fraction at 250 μg/mL (p <
0.05) and 500 μg/mL (p < 0.01). In addition, a significant increase in cell death at 250 μg/mL (p < 0.01) and 500 
μg/mL (p < 0.0001) occurred after 48 h. Furthermore, a significant reduction in migratory activity in cells 
treated at 250 μg/mL (p < 0.05) and 500 μg/mL (p < 0.01) occurred and was enhanced by the 48 h treatment (p 
< 0.001). 
Conclusions: The present study is the first to demonstrate the use of "Pequi" residual by product as a potential 
reservoir of bioactive compounds with antiproliferative activity on B16F10 melanoma cells.   

Introduction 

Malignant melanoma is considered a public health problem respon-
sible for more than 90% of deaths from skin cancer (Burns et al., 2019). 
Cutaneous malignant melanoma (CMM) is associated with risk factors 
such as racial skin phenotype, family history, erratic genetic factors, and 

UV light exposure (Michielin et al., 2019), which CMM affecting mainly 
young and middle-aged populations (Coricovac et al., 2018; Leonardi 
et al., 2018). Cutaneous melanoma has its genesis in epidermal mela-
nocytes and is characterized as a highly metastatic neoplasm (Scha-
dendorf et al., 2018; Schatton et al., 2008). Although CMM represents 
5% of cutaneous malignancies, it accounts for high mortality and 
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morbidity rates, in addition to being resistant to conventional therapies, 
such as chemotherapy (Uscanga-Palomeque et al., 2019). 

Given the therapeutic challenges of CMM, new compounds derived 
from natural products have emerged in the search for novel drugs with 
relevant pharmacological properties, such as cytotoxicity and chemo-
therapy activity against cancer (Figueiredo et al., 2014). In this regard, 
Brazil is a rich source of flora biodiversity, including in the Brazilian 
Savannah, also known as the Cerrado, widely distributed across the 
central plateau. Caryocar brasiliense Camb., a native species popularly 
known as pequi (Colombo et al., 2015), is of interest due to its high 
levels of several natural antioxidants, such as gallic acid, quinic acid, 
quercetin, and quercetin 3-O-arabinose (Breda et al., 2016; Roesler 
et al., 2008). In folk medicine, pequi is known for its anti-inflammatory, 
tonic, and aphrodisiac properties (de Oliveira et al., 2018). The oil from 
its pulp is commonly used to treat bronchitis, colds, and flu and to 
control tumors (Roll et al., 2018). Furthermore, the antitumor activity of 
the C. brasiliensis fruit has been proven and is related to its antioxidant 
property (Colombo et al., 2015). Studies have also demonstrated che-
mopreventive effects of pequi oil on preneoplastic lesions in a mouse 
hepatocarcinogenesis model (Colombo et al., 2015; Palmeira et al., 
2016). 

Considering the potential of pequi, this study investigated the anti-
neoplastic activity of the butanolic fraction of the fruit peel of 
C. brasiliense Camb. on the CMM B16F10 murine cell line. The B16 cell 
line is the standard for conducting melanoma research because of its 
rapid and aggressive growth. In vitro studies occur before in vivo tests to 
optimize therapeutic efficacy. Therefore, the use of the B16F10 mela-
noma strain, one of the few pigmented melanoma strains that can be 
used in studies with mice, is ideal for carrying out preliminary tests and 
for later application in an in vivo model in mice (Nakamura et al., 2002; 

Overwijk and Restifo, 2000; Zaidi et al., 2008). The murine model is 
widely used in biomedical research for conserving almost 99% of human 
genes and is physiologically similar to humans (Dutta and Sengupta, 
2016). 

Materials and methods 

Plant material 

"Pequi" fruits were purchased at the market in the city of Montes 
Claros, Minas Gerais. Geraldo Melo PhD identified the species, and the 
plant name was checked using the www.theplantlist.org website. The 
criterion for fruit selection was the healthy appearance of the fruit peel 
(external mesocarp and exocarp). Fruits were then cut and dehydrated 
in an oven with forced air circulation (model 400/ND/Nova Ética) at a 
temperature of 45 ◦C. After drying, the peels were crushed to a fine 
powder in a mechanical mill, followed by conditioning at room tem-
perature until use. The powdered material was protected from light to 
prevent photodegradation. 

Extract and fraction 

The extraction process was performed according to Sidônio (2009). 
The previously pulverized material was mixed with 80% methanol as an 
extraction solvent, in the proportion of 50 g of material to 300 mL of 
solvent. After 24 h of extraction under periodic stirring, the mixture was 
filtered, and the filtrate, considered to be the crude hydromethanolic 
extract, was obtained. The extract was placed in an oven with forced air 
circulation (model 400/ND/Nova Ética) at 45 ◦C to reduce its initial 
volume. 

Fig. 1. Flowchart of the butanolic fractionation of the crude extract of the fruit peel (Caryocar brasiliense Camb.) by the liquid-liquid partition technique, using the 
solvents hexane, dichloromethane, chloroform and butanol, separating classes of compounds according to the polarity increment. 
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For liquid-liquid fractionation procedures, distilled water was added 
to the crude hydromethanol extract, in the proportion of 50 mL of water 
to 100 mL of extract (Fig. 1). This procedure was performed to provide 
better partitioning during fractionation as per previous laboratory 
optimization protocols. The fractionation was performed using butanol 
followed by drying at 45 ◦C. The resulting fraction was then stored in a 
freezer in a hermetic glass until use in vitro tests. 

GC–MS analysis 

Aliquots 2 mg of the plant extracts were measured in an internally 
conical glass suitable for this process and then dissolved in 60 μL of 
pyridine and 100 μL of N,O-bis(trimethylsilyl)-trifluoroacetamide con-
taining 1% of chlorotrimethylsilane. The reaction mixture was heated at 
60 ◦C for 30 min. A volume of 1 μL from the sample was injected into the 
GC–MS column. 

The chromatographic analyses were performed on an gas chro-
matograph (GC 7890A, Agilent Technologies) equipped with an electron 
impact ionization detector (GC–MS) and a DB-5MS capillary column 
(Agilent Technologies, 30 m length x 0.25 mm internal diameter x 0.25 
µm film thickness). Helium (99.9999% purity) was used as carrier gas at 
a rate of 1 mL min−1. Using an autoinjector (CTC combiPaL), 1 μL of the 
sample was injected into the chromatograph at a 1:10 split ratio. The 
split/splitless injector was kept at 230 ◦C. The chromatographic column 
was heated at a rate of 10 ◦C min−1 from 80 up to 300 ◦C with an 
isotherm of 38 min. The interface temperature was maintained at 280 ◦C 
and the ionization was performed by the impact of 70 eV, with the ion 
source at 230 ◦C. The m/z sweep range was from 50 to 650 Da. Identi-
fication of compounds was performed based on the mass comparison 
method using as reference the NIST library and the PubChem platform 
(https://pubchem.ncbi.nlm.nih.gov/). 

Cell culture 

In this study, we used murine metastatic melanoma cells of the 
B16F10 line provided by the Federal University of Minas Gerais - UFMG. 
For the cultivation of B16F10 cells, RPMI medium was used (Gibco™ 

RPMI Medium 199 Powder, 10 × 1 L), supplemented with 10% inacti-
vated fetal bovine serum (Gibco™ fetal bovine serum, certified, heat- 
inactivated, US) and 1% antibiotic (Penicillin/Streptomycin). Cells 
were maintained in tissue culture bottles in an incubator at 37 ◦C in a 
humidified atmosphere with 5% CO2 and observed daily (Sterisonic™ 

GxP MCO-19AIC (UVH) cell incubator CO2 culture. SANYO Electric Co. 
Ltd.). 

Extract preparation and treatments 

To prepare the extracts, 50 mg of the butanolic fraction of the crude 
extract of the fruit peel of Caryocar brasiliense Camb. was added to 5 mL 
of 1x PBS (137 mM NaCl, 10 mM phosphate, 2.7 mM KCl, pH 7.4). After 
shaking, the mixture was filtered with a syringe through a 0.22 µm Milli 
pore filter. B16F10 cells (2.5 × 103 cells/well) were seeded in poly-
styrene microplates (96 wells) for 24 h and subjected to treatments with 
different extract concentrations (1000, 500, 250, and 125 µg/mL) for 24 
and 48 h. Cells treated with culture medium and PBS were defined as the 
control group. 

Cell viability 

Cell viability was determined by the MTT assay (3-(4,5-dimethylth-
iazol-2-yl)−2,5-diphenyltetrazolium bromide) adapted from (Riss et al., 
2016), as described above. The medium containing the extract in 
different concentrations was removed and then 150 µL of MTT solution 
(15 µl of MTT (5 mg/mL) in 135 µL of medium) was added. The mixture 
was incubated at 37 ◦C with 5% CO2 for 2 h and 30 min The medium 
with MTT was removed and the resulting precipitate was dissolved in 

200 µL of dimethylsulfoxide (DMSO) per well, with subsequent shaking 
under dark condition. The absorbance was then measured at 540 nm 
using a spectrophotometer (Elisa Microplate Reader/POLARIS). Absor-
bance was used as an index of cell viability and results were expressed as 
percentages relative to the PBS-treated control group. For greater reli-
ability, the tests were performed in triplicate and three independent 
experiments were conducted. 

Wound scratch assay 

Cell migration was monitored in a wound risk assay as described 
above (Guimaraes et al., 2016; Guimarães et al., 2016). A density of 7 ×
105 cells/well was plated. Treatments were applied after the cells 
reached a confluent monolayer at 80% of the six-well plate. After 24 and 
48 h of treatment, treatments were removed and 200 µL of RPMI me-
dium was added. Cells were immediately observed in an inverted IX81 
microscope (Olympus, Center Valley, PA, USA). Slides were photo-
graphed using an SC30 camera (Olympus, Center Valley, PA, USA). 
ImageJ software (NIH, United States) was used to analyze the wound 
healing area by dividing the initial area by the final cell-free area 
(Vaupel and Harrison, 2004). Two independent experiments were per-
formed in duplicate. 

Cell death assay 

B16F10 cells were plated at a density of 7 × 105 cells/well. After 24 
and 48 h, treatments were removed from each well and added to a 
mixture of 100 µL/mL of acridine orange 100 µg/mL (AO, Sigma, St. 
Louis, MO, USA) and 100 µg/mL of ethidium bromide (EB, Sigma, St. 
Louis, MO, USA) (1:1). The cells were immediately analyzed using a 
FSX100 fluorescence microscope (Olympus, Center Valley, PA, USA). 
Three fields per well were captured at 4X magnification. Viable cells had 
fluorescent green color shown by intense AO staining (Ex460–495, 
Em510–550, DM505 filter), and dead cells had bright orange color 
indicated by intense EB staining (Ex360–370, Em420–460, DM400 fil-
ter). The images obtained were analyzed using the ImageJ software 
(NIH, United States) to quantify the percentage of dead/apoptotic cells 
(total number of dead cells/total number of cells counted] x 100) (da 
Rocha et al., 2019). 

Data analysis 

Statistical analysis of data was performed using the GraphPad Prisma 
software (version 6.0®, San Diego, California, USA), with 95% confi-
dence level (p < 0.05). Data are presented as mean ± standard deviation 
(SD). Statistical differences were assessed through one-way ANOVA was 
used, followed by the Bonferroni post-test. 

Results and discussion 

Major compounds of the butanolic fraction of C. brasiliensis Camb 

The GC–MS analysis of the pequi peel butanolic fraction revealed the 
presence of 11 compounds (Fig. 2, Table S1, and Supplementary 
Figs. S1–S11), which presented a high proportion of sugars. The major 
constituents were shikimic acid (37.73%), gallic acid (GA; 5.18%), myo- 
inositol (3.79%), and sarothrin (3,6,8-Trimethoxy-4′,5,7-trihydroxy-
flavone; 2.55%). Among the compounds, we highlight the presence of 
GA, which was confirmed by comparing its spectroscopic data to those 
in the NIST library and standard, with a retention time of 14.614 min 
and a concentration of 41.67 mg/L (Fig. 2B). 

The main compounds identified in the butanolic fraction were 
phenolic. GA, one of the main phenolic compounds identified in the 
present study, has already been described as the main compound present 
in the pequi peel ethanolic extract (Nascimento-Silva and Naves, 2019; 
Rocha et al., 2015). Shikimic acid is an important precursor in the 
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synthetic route of phenolic compounds, including GA (Diep et al., 2020). 
These compounds have antioxidant properties demonstrated by their 
effective scavenging activity on reactive oxygen species and free radicals 
and important pharmacological properties, such as antiallergic, 
anti-inflammatory, antioxidant, antimicrobial, and antitumorigenic 
properties (Lyu et al., 2020; Nagayoshi et al., 2019). 

The pequi fruit peel corresponds to approximately 76% of the fruit 
(Vera et al., 2005). This by-product is usually discarded and ends up 
causing discomfort to the population due to deterioration and rancidity 
in view of the high content of lipids found in the fruit, in addition to 
promoting contamination of soil and water resources, accompanied by 
the proliferation of vectors that threaten human health (Siqueira et al., 
2012). This ends up requiring significant investments for the treatment 

of pollution (Abud and Narain, 2009). However, the presence of these 
compounds in the pequi fruit peel unveils this product as an important 
source of bioactive compounds, motivating new research for its use in 
the diet, as well as extracts and isolated compounds. 

A butanolic fraction of C. brasiliensis Camb. reduces the viability of 
B16F10 cells 

The C. brasiliense Camb. peel butanolic fraction effect on viability is 
summarized in Fig. 3. Cytotoxicity is an initial indication of the anti-
neoplastic activity present in most chemotherapeutic and antitumor 
agents (Ajith and Janardhanan, 2003). Cell viability assay by the MTT 
test demonstrated a reduction in the B16F10 cells’ viability at doses of 

Fig. 2. Profile GC–MS and molecular structure of chemical constituents of butanolic fraction of the crude extract of the peel of C. brasiliense Camb. detected by CG- 
MS. (A) GC–MS profile; (B) Gallic acid standard quantification compared with sample (retention time of 14.614 min with a concentration of 41.67 mg L−1); (C) 
Molecular structure of the identified compounds. [1] malic acid, [2] D-xylofuranose, [3] D-ribofuranose, [4] arabinonic acid, [5] β-arabinopyranose, [6] d- 
(+)-xylose, [7] shikimic acid, [8] β-D-galactofuranose, [9] gallic acid, [10] myo-inositol, [11] Sarotrin. 
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250 (p < 0.01), 500, and 1000 µg/mL of the butanolic fraction (p <
0.0001) in the 24 h exposure period when compared with the effect of 
PBS on the control (Fig. 3A). These effects were intensified in the 48 h 
treatment, with a significant reduction in viability induced by all extract 
doses (p < 0.0001; Fig. 3B). Our results revealed a dose-dependent 
reduction in cell proliferation, with a 50% inhibitory concentration 
equal to 390.9 µg/mL and 226.4 µg/mL induced by the 24 h and 48 h 
treatments, respectively (Fig. 4). Therefore, doses applied in the subse-
quent trials were chosen based on the described results. A study carried 
out by Roesler et al., evaluating the cytotoxic effect of pequi peel on 3T3 
fibroblast cells, found a low toxicity, with an IC50 of 3731.3 µg/mL 
(Roesler et al., 2010). This data indicates that the biological effects 
observed in the present assay are attributed to the compounds present in 
the pequi peel as an anticancer property, considering that the reduction 
in cell viability by the fraction was caused at doses below 500 µg/mL. 
However, the mechanisms involved in the process need further inves-
tigation to verify if the pequi peel fraction promotes death by cytotox-
icity or antiproliferative effect, still both effects. In addition, an analysis 
on the selectivity of the fraction must be verified in normal cells. 

The cell death assay via the bromide and acridine orange tests 
revealed an increase in cell death observed after treatment with pequi 
peel butanolic fraction at 250 μg/mL (p < 0.05) and 500 μg/mL (p <

0.01) when compared with the PBS effect on the control group (Fig. 5A). 
Similar results were observed after 48 h of treatment, with a marked 
increase in cell death in the cell group treated with the fraction at 250 
μg/mL (p < 0.01) and 500 μg/mL (p < 0.0001), resulting in a lower cell 
confluence (Fig. 5B). 

The antiproliferative activity of the butanolic fraction can be 
attributed to the presence of phenolic compounds (Mustapha et al., 
2015). Among the major compounds, GA inhibits cell proliferation and 
induces apoptosis in several cancer cell lines (Lo et al., 2010). GA at 400 
μM induces death by apoptosis in B16F10 cells by the mitochondrial 
pathway through overexpression of cleaved forms of caspase-9, cas-
pase-3 and PARP-1, and pro-apoptotic Bax and Bad, accompanied by 
Bcl-2 and underexpressed anti-apoptotic Bcl-XL (Liu et al., 2014). 

The anti-melanogenic effect of GA is also mediated by pigmentation 
modulation and adaptation to oxidative stress mediated by melano-
genesis. GA regulates the glutathione-cysteine glutamate and gluta-
thione S-transferase redox system at transcriptional and post- 
translational levels in B16F10 cells (Panich et al., 2012). Furthermore, 
GA inhibits melanin synthesis and tyrosinase activity and decreases the 
expression of transcription factors associated with microphthalmia, 
tyrosinase, tyrosinase-related protein 1, and dopachrome tautomerase, 
which are also proteins related to melanogenesis. Additionally, GA 

Fig. 3. Effect of the butanolic fraction of the crude extract of the peel of C. brasiliense Camb. on cell viability after 24 h (A) and 48 h (B) culture. The B16F10 cells 
were treated with the extract at various concentrations for 24 and 48 h using MTT assay. The results represent the mean ± SD of three independent experiments, and 
were analyzed by one-way ANOVA test, Bonferroni post-test. Statistical differences (p < 0.05) are shown for groups with different letters (a-e) indicated above the 
bars of each treatment. 

Fig. 4. Inhibitory concentration 50% of the cell viability (B16F10 cells) of butanolic fraction of the crude extract of the peel of C. brasiliense Camb. after 24 (A) and 48 
(B) h of treatment. The IC50 was calculated by non-linear regression of the curve. 
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phosphorylates and activates melanogenesis-inhibiting proteins, such as 
Akt and mitogen-activated protein kinase/extracellular signal-regulated 
kinase (Su et al., 2013). Sarothrin has cytotoxic activity on mouse B16 
melanoma cells, as confirmed by an MTT cell viability assay after 48 h of 
exposure (National Center for Biotechnology Information, 2021). Fla-
vones with a chemical structure similar to that of sarothrin, 2′,4′,6-tri-
methoxyflavone, 3′,4′,5-trihydroxy-6,7,8-trimethoxyflavone, 2′4′-dihy 
droxy-6′‑methoxy-chalcone, and 4′,5-dihydroxy-6,7,8-trimethoxyflav 
one have been isolated from Loranthus acutifolius (Apaza Ticona et al., 
2020). These compounds have cytotoxic potential against B16F10 cells, 
which is in accordance with the anti-melanogenic potential observed by 
the flavone identified in the C. brasiliensis Camb. peel butanolic fraction. 

Myo-inositol, a sugar alcohol and glucose isomer, is the precursor of 
numerous secondary messengers. It has a chemopreventive effect on a 
tobacco-exposed mouse model of lung cancer (Unver et al., 2018). 
Myo-inositol inhibits (phosphatidyl-inositol 3-kinase (PI3K) in vitro 
expression. PI3-kinase is important in the regulation of mitogenesis and 
cell differentiation (Carvalheira et al., 2002), which are plausible 
mechanisms of action for the chemopreventive effects (Unver et al., 
2018). 

The butanolic fraction of C. brasiliensis Camb. reduces migration of 
B16F10 cells 

The cell migration assay revealed that treatment with the pequi peel 
butanolic fraction reduced cell migration in a concentration and time- 
dependent manner, indicating a reduced migratory capacity compared 

to untreated cells (Fig. 6). We observed a significant reduction in 
migratory activity in cells treated with the butanolic fraction at 250 μg/ 
mL (p < 0.05) and 500 μg/mL (p < 0.01), and this reduction was 
enhanced by the 48 h treatment (p < 0.001). Notably, we also verified 
the reduction of cells adhered to the plate, which corroborates findings 
regarding the reduction of cell viability and death. Furthermore, the 48 
h treatment not only reduced the cell count but also increased the wound 
area, which justifies the negative values found. The inhibitory effect of 
B16F10 cell migration can be attributed to the presence of GA in the 
butanolic fraction of C. brasiliensis. Evidence has demonstrated that GA 
can suppress the migration and invasion of human melanoma cells 
(A375.S2 cells) via the Ras, AKT, and p38 ERK1/2 pathways (Lo et al., 
2011) and suppress the migration of B16F10 cells in a dose-dependent 
manner at different concentrations (50, 200, and 400 μM) and time 
periods (6, 12, and 24 h; (Lo et al., 2010). For the doses used in our 
study, 76.1 µM AG was found for the treatment with 250 µg/mL buta-
nolic fraction and 152.2 µM AG for the 500 µg/mL dose of fraction. 
These results demonstrate an inhibitory effect on B16F10 cells at a lower 
dose than that found by Lo et al. This can be explained by the synergism 
of other compounds found in our study already reported in the literature 
with anticancer activity (Table 1). 

Final considerations 

The present study is the first to demonstrate the antiproliferative 
effect of C. brasiliense Camb. butanolic fraction peel in the murine mel-
anoma cell line B16F10. The pequi fraction decreased the viability of 

Fig. 5. Butanolic fraction of the crude extract of the peel of C. brasiliense Camb. induces death of B16F10 cells. The cancer cells exposed to the butanolic fraction of 
the crude extract of the peel of C. brasiliense Camb. at concentrations 250 and 500 µg/ml for 24 h (A) and 48 h (B). The results represent the mean ± SD of two 
independent experiments, and were analyzed by one-way ANOVA test, Bonferroni post-test. Statistical differences (p < 0.05) are shown for groups with different 
letters (a-c) indicated above the bars of each treatment. 

J.N.B. Silva et al.                                                                                                                                                                                                                               



Phytomedicine Plus 2 (2022) 100273

7

cancer cells and the ability of cells to migrate. However, the molecular 
mechanisms involved in these processes have not yet been elucidated, 
and additional specific studies are required. Phenolic compounds pre-
sent in the fraction, such as GA and sarothrin, may be responsible for the 
apoptotic action and decrease in viability and migration of B16F10 
tumor cells. In addition, it is necessary to evaluate the pequi fraction on 
normal skin cells to assess its selectivity on cell phenotypes, as well as 
establish cytotoxic and antiproliferative effects. Thus, our study offers 

promising perspectives, providing a basis for deepening the applications 
of the pequi byproduct as a source of biological molecules used in the 
fight against cancer. 

Ethics approval 

All applicable institutional and/or national guidelines for the care 
and use of animals were followed. 

Fig. 6. Effect of butanolic fraction of the crude extract of the peel of C. brasiliense Camb. on B16F10 cells migration. Percentage of B16F10 cell migration treated with 
crude extract of the peel of C. brasiliense Camb at the doses of 250 and 500 μg/mL after 24 (A) and 48 h (B) of treatment, when compared to control (PBS). The results 
represent the mean ± SD of two independent experiments, and were analyzed by one-way ANOVA test, Bonferroni post-test. Statistical differences (p < 0.05) are 
shown for groups with different letters (a and b) indicated above the bars of each treatment. 

Table 1 
Chemical composition of butanolic fraction of the rind of the fruit of Caryocar Brasiliense Camb.  

Peak Compound RT Area Relative area (%) Peaks PubChem CID 
1 Malic acid 9.405 2,329,957 0.04 73, 147, 233 522,155 
2 D-Xylofuranose 10.880 3,028,605 0.06 217, 73, 147 6,427,436 
3 D-Ribofuranose 10.947 2,932,956 0.06 217, 73, 147 13,981,777 
4 Arabinonic acid, 1,4-lactone 11.088 4,466,008 0.09 73, 147,117 523,387 
5 β- Arabinopyranose 11.288 3,276,958 0.06 73, 117,147, 217 91,696,778 
6 d-(+)-Xylose 12.047 5,553,990 0.11 204, 73, 217, 191 135,191 
7 Shikimic acid 13.114 1,769,681,263 37.73 204, 147, 73 8742 
8 β-D-Galactofuranose 13.439 88,850,203 1.89 217, 73, 147, 191 250,139,516 
9 Gallic acid 14.606 243,045,871 5.18 73, 281, 458 519,814 
10 Myo-inositol 15.906 177,915,111 3.79 73, 217, 305, 147, 191 520,232 
11 Sarotrhin 26.150 119,692,822 2.55 73, 575, 590, 487 5,386,960 

RT- retention time. 
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