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Abstract

Large-eddy simulations (LES) and implicit LES (ILES) are wise and affordable alternatives to the unfeasible direct
numerical simulations of turbulent flows at high Reynolds (Re) numbers. However, for systems with few
observational constraints, it is a formidable challenge to determine if these strategies adequately capture the physics
of the system. Here, we address this problem by analyzing numerical convergence of ILES of turbulent convection
in 2D, with resolutions between 642 and 20482 grid points, along with the estimation of their effective viscosities,
resulting in effective Reynolds numbers between 1 and ∼104. The thermodynamic structure of our model
resembles the solar interior, including a fraction of the radiative zone and the convection zone. In the convective
layer, the ILES solutions converge for the simulations with �5122 grid points, as evidenced by the integral
properties of the flow and its power spectra. Most importantly, we found that even a resolution of 1282 grid points,
Re 10~ , is sufficient to capture the dynamics of the large scales accurately. This is a consequence of the ILES
method allowing the energy contained in these scales to be the same in simulations with low and high resolution.
Special attention is needed in regions with a small density scale height driving the formation of fine structures
unresolved by the numerical grid. In the stable layer, we found the excitation of internal gravity waves, yet high
resolution is needed to capture their development and interaction.

Unified Astronomy Thesaurus concepts: Solar convective zone (1998); Hydrodynamical simulations (767);
Computational methods (1965)

Supporting material: animations

1. Introduction

Turbulent convection is ubiquitous in astrophysics and
geophysics, taking place in planetary atmospheres and oceans,
and inside stars. It is a nonlinear problem for which analytic
solutions are scarce and limited in scope. On the other hand,
laboratory experiments are able to explore only a fraction of the
parameter space spanned by convection in nature. Thus, many
scientists turn to computer simulations to investigate this
phenomenon. The simulations are carried out for ideal
situations, such as Rayleigh–Bénard convection (Sakievich
et al. 2016; Stevens et al. 2018), as well as for several cases
observed in nature ranging from stellar convection (e.g., Elliott
& Smolarkiewicz 2002; Brandenburg et al. 2005; Guerrero
et al. 2016a, 2016b; Featherstone & Hindman 2016; Kitiashvili
et al. 2016; Käpylä et al. 2019) to the Earth’s and planetary
atmospheres as well as oceans and mantle currents (Ganot et al.
2014; Peña-Ortiz et al. 2019; Wang et al. 2019).

A simulation resolving all the relevant scales of the flow is
called direct numerical simulation (DNS). In DNS, the resolved
scales range from the largest scale to the smallest Komolgorov
scale, at which dissipation occurs. In high Reynolds number
systems, such as in the solar convection zone, the ratio between
the largest and the smallest scales is extremely large.
Consequently, to capture all relevant scales, the domain
discretization must be excessively fine (N ReD D3 4~ , where
N is the number of grid points, and D is the number of spatial

dimensions, Pope 2011). These simulations are still unfeasible
for modern supercomputers. The expectation is that with
progressively increasing the resolution the prognostic variables
reach an asymptotic regime of convergent values for
N ReD D3 4 . This would mean that the relevant scales for
a given system are larger than the Kolmogorov scale, and that
the dissipative processes are governed by turbulence. For
instance, the reality of the concept of turbulent viscosity for
solar convection was proposed by Schwarzschild (1959) to
explain the first observations of solar granulation, arguing that
the Reynolds number of these motions must be 1( ) (see also
Canuto 2000; Stothers 2000).
Of course, dissipation is not the only contribution of

turbulence, which poses a problem for DNS. Given the
restricted numerical resolution, suitable values for the dissipa-
tion coefficients, i.e., dynamic viscosity (ν), heat conduction
(κ), or magnetic diffusivity (η), in hydrodynamic and
magnetohydrodynamic simulations of convection, are typically
orders of magnitude larger than the theoretical estimations of
collisional transport coefficient in gas and plasma. Even though
in DNS the explicit values of these parameters approach those
estimated for turbulent dissipation coefficients, the results do
not seem to achieve this asymptotic regime. For instance,
Featherstone & Hindman (2016) performed DNS of solar
convection in spherical shells progressively increasing the
Rayleigh (Ra) number. While they found that the energy
becomes independent of the heat conduction after a certain
value of the Rayleigh number Ra, neither the spectral
distribution of energy nor the radial profile of the vertical
velocity indicated numerical convergence. In other words, it is
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unknown to what extent the numerical models of this
phenomenon represent reality.

An alternative to DNS is the large-eddy simulation approach
(LES). In LES, all the scales down to the numerical cutoff scale
are simulated, while the action of unresolved scales is
parameterized using the simulated values and turbulence
scaling laws. It is a well-founded assumption as to when the
unresolved turbulent flow is scale invariant. However, this
condition is not entirely fulfilled in convective systems with
strong density stratification, rotation and/or other factors
making the motions anisotropic (Elliott & Smolarkiewicz
2002). By using implicit large-eddy simulations (ILES), the
contribution of the unresolved scales can be modeled by
specially designed finite-difference truncation terms of the
numerical advection. In the ILES methodology, these terms act
as an effective dissipation, e.g., effective viscosity for the
transport of momentum, and as an energy flux between scales
(Margolin & Rider 2002).

The numerical convergence of ILES simulations is not easy
to define. Since the terms in ILES would be truncated at a
different scale, changing the spatial resolution of the simulation
would necessarily affect the results. Thus, the numerical
convergence in such a situation is scale dependent as for
increasing numerical resolution the large-scale properties of the
flow remain unaltered while more and more small-scale
structures develop. Therefore, in this respect, the ILES
approach is different from the LES, and requires a detailed
investigation of the numerical convergence for particular
classes of models.

This study explores the numerical convergence in ILES 2D
simulations of turbulent stratified convection, which mimics the
solar convection zone. We do not aim to compare the results to
any particular analytical solution or observations of a physical
system, but explore whether the integral characteristics of a
numerical model reach a converged state when the resolution
increases. The initial and boundary conditions of our model
resembles the solar convection zone, turbulent characteristics
of which are still uncertain and currently debated (Greer et al.
2015; Hanasoge et al. 2016). In this work numerical
convergence will be evaluated in terms of the vertical profiles
of temporally and horizontally averaged quantities, like the
turbulent velocities and the convective heat flux. The
distribution of energy along the different spatial scales resolved
for each grid is assessed through the turbulent spectra of the
kinetic energy and the variance of potential temperature. An
approximated analysis of the effects of the ILES method on the
dynamics of the system is performed from the estimation of an
effective viscosity as a function of the scale. We compare this
quantity with the turbulent viscosity, which is a rough measure
of the enhancement of transport of momentum and other
physical quantities by turbulence. It is computed here from the
length and timescales of the most energetic motions. Finally,
the unexpected development of oscillatory mean horizontal
motions in the stable layer will also be presented.

A similar convergence study was performed by Porter &
Woodward (1994), who used the ILES scheme based on a
piecewise parabolic method (PPM; Colella &Woodward 1984),
devoid of explicit viscosity in the momentum equation, and
reached resolutions up to 1024× 256 grid points (corresp-
onding to Re 2 104~ ´ ). They found that at lower resolutions
the vertical size of the convection cells occupy the entire
convection zone. For the highest resolution models, the small

eddies break down the large cells resulting in a flow dominated
by structures of all sizes but without large-scale convection
cells. In the 3D simulations, they modified the upper thermal
boundary condition allowing for the temperature to be constant
in space but change with time (Porter & Woodward 2000).
They observed convergence in the results for their high-
resolution cases. Sullivan & Patton (2011) presented a
convergence analysis for 3D LES simulations of the Earth’s
convective boundary layer. They found that numerical conv-
ergence is achieved whenever there is enough scale separation
between the most energetic eddies and those with scales close
to the cutoff of the LES scheme. Besides the global convection
simulations of Featherstone & Hindman (2016) described
above, to our knowledge DNS of stratified turbulent convection
has not explored the role of resolution.
Three-dimensional simulations provide a better representa-

tion of the convection zone dynamics. For instance, in the
presence of rotation and magnetic fields, the collective 3D
effects of turbulence include the generation of large-scale flows
and dynamos. Most of these effects either do not exist or take a
different form in 2D convection. Nevertheless, the influence of
the finest scales on the largest scales is worth exploring, as it
sheds light on turbulent convection as well as on the
capabilities of ILES. In this work, we focus on 2D convection,
which allows for higher resolutions, while leaving 3D
simulations for future studies.
This paper is organized as follows. In Section 2, we describe

the equations, the numerical model, and other ingredients used
to simulate turbulent convection. In Section 3, we perform the
convergence analysis by varying the numerical resolution.
Finally, in Section 4, we present our concluding remarks.

2. Numerical Model

We used the EULAG-MHD code (Smolarkiewicz &
Charbonneau 2013)—a specialized variant of the original
EULAG code (Prusa et al. 2008)—to perform two-dimensional
convection simulations in a rectangular domain. EULAG-
MHD is based on the multidimensional positive-definite
advection transport algorithm, MPDATA (Smolarkiewicz
2006). It is a non-oscillatory forward-in-time advection solver
with second-order accuracy in space and time. The code allows
simulations to be run as ILES without any explicit dissipation
(note that it also may be used for DNS with explicit
dissipation). In the current model setup the vertical coordinate,
z, spans from 0–Lz= 254Mm (covering most of the depth of
the solar convection zone and upper layers of the radiative
zone), while the horizontal coordinate, x, spans from 0
–Lx= 2.5Lz. The number of grid points is the same in the
vertical and horizontal directions in each simulation. We solved
the following set of Navier–Stokes equations governing mass,
momentum, and energy conservation:

u 0, 1r· ( )r =

u
g

d

dt
, 2

r
( )p= - ¢ -

Q¢
Q

u
d

dt
, 3a· ( )a

Q¢
= - Q - Q¢

where d/dt= ∂/∂t+ u ·∇, u is the velocity field, ρr is the
reference state density, which in the anelastic approximation is a
function of the vertical coordinate only (Lipps & Hemler 1982);
p¢ is the density normalized pressure perturbation, p ;rr¢
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g gẑ= - is the gravity acceleration adjusted to fit the solar
gravity profile, and Θ is the potential temperature defined as

T P Pb
R cp( )Q = , where T is the temperature, P is the pressure,

Pb is the pressure at the bottom of the domain, R is the universal
gas constant, and cp is the specific heat at constant pressure. The
potential temperature is equivalent to the specific entropy
through the relation ds c d lnp ( )= Q . The subscripts r and a
refer to the reference and ambient states, and the superscript ′
means perturbations of a quantity around the ambient profile.
Perturbations of potential temperature are related to perturbations
of temperature by the anelastic approximation to the equation of
state, T Ta a¢ = Q¢ Q . The energy equation contains a term
forcing the adiabatic perturbations about the ambient state and a
thermal relaxation term that damps these perturbations in an
inverse timescale α= τ−1. In this setup, while the forcing term
tries to mix the fluid in the convection zone, the thermal
relaxation keeps the convective unstable state in this layer (see
Cossette et al. 2017, for a comprehensive analysis of these
effects).

The ambient state defining the thermodynamic variables, ρa,
Θa, and Ta in Equations (1)–(3) is a particular solution of the
hydrodynamic equations. In this work we construct the ambient
state considering hydrostatic equilibrium as follows:

T

z

g
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where m=m(z) is the polytropic index. Solutions of
Equations (4) and (5) with m� 1.5 correspond to stable
stratification, while solutions for m< 1.5 correspond to
convectively unstable states.

We use an ambient state with a stable layer at the bottom of
the domain by setting ms= 2.5 for z� 0.28Lz, and a marginally
unstable convection zone with mu= 1.499991 for z> 0.28Lz.
This is achieved by considering a radial profile of the
polytropic index,

m z m m m
z z

w

1

2
1 erf , 6s s u

1⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦

( ) ( ) ( )= - - +
-

where the transition between zones of different m is made
through the error functions with z1= 0.28Lz and w= 0.041Lz.
Equations (4) and (5) are integrated numerically with

208 kgz1
r = m−3 and T 2.322 10z

6
1 = ´ K at the interface

between the stable and the unstable layers, R= 13.732 × 103 J
K−1 kg−1 is the gas constant for a monoatomic hydrogen gas,
and cp= 2.5R. The pressure is computed via the ideal gas
equation of state, Pa= RρaTa. The resulting vertical profile of
Θa is shown in Figure 1(a). In the convective zone, the slope of
Θa is slightly negative with respect to the z coordinate as can be
seen in the figure insert. The negative slope of Θa ensures that
this zone is unstable to convection, with the difference in Θa

between the bottom and top of the convectively unstable layer
being 18 K. The reference potential temperature Tr z1Q = .
Finally, for all the simulations, we have considered α= 1/τ=
1.29× 10−8 s−1.

The stable zone at the bottom of the domain ensures a more
realistic transition between the two layers, allowing a certain

amount of overshooting. This closely resembles situations in
nature where convection happens in contact with a stable but
not totally rigid layer. As we show below, the dynamics in this
stable layer is governed by internal gravity waves (GWs),
which induce horizontal motions and react back on the
convection properties. Figure 1(b) shows the vertical profiles
of the density, ρa, and the temperature, Ta. The domain
encompasses 4.5 density scale heights.
The boundary conditions for this setup are defined as

follows. In the horizontal direction, we consider periodic
boundaries for all variables. In the vertical direction, stress-free
and rigid boundary conditions for the velocity field are
considered, respectively, at the bottom and top of the domain.
Null convective radial flux is considered as thermal boundaries
at the bottom and top as it has been used in previous works in
the literature (e.g., Fan et al. 2003; Hotta et al. 2015). The
initial conditions are white noise correlated perturbations in
both, uz and Q¢, introduced only in the unstable layer and with
amplitudes 5× 10−4 m s−1 and 5× 10−4 K, respectively. In
the next section, we explore the properties of physical
quantities (in the real and spectral space) resulting from the
simulations with the setup described above but for different
resolutions, namely, N= 64, 128, 256, 512, 768, 1024, and
2048 cells in each direction. All the simulations were run for at

Figure 1. (a) Vertical profile of the ambient potential temperature, Θa. The
insert shows a close-up for 0.1Lz < z < Lz. (b) Vertical profiles of the ambient
density (black line) and temperature (red line). The dotted lines correspond to
the solar structure model of Christensen-Dalsgaard et al. (1996).

3

The Astrophysical Journal, 928:148 (12pp), 2022 April 1 Nogueira et al.



least 60 yr. This time is sufficient for the simulations to reach a
statistically steady state, and to provide enough data for the
analysis. The parameters and results of the simulations are
summarized in Table 1.

3. Results

3.1. Analysis in Physical Space

Figure 2 shows snapshots of the vertical velocity for
simulation from (a) FD64 to (f) FD2048. The yellow and blue
contours represent upflows and downflows, respectively. The

canonical picture of convection in the environment with a
unstably stratified density profile describes broad upflows and
narrow downflows. The figure shows that this feature is well
captured by the 2D convection model for low and high
resolutions, forming two or three large convective cells.
Unlike previous ILES results (Porter & Woodward 1994), in
the higher resolution simulations (N� 512), these large cells
are not broken by the small-scale structures but coexist with
them. The strong downflows seem to be formed by the
coalescence of thinner plumes observed at the upper part of
the domain.

Table 1
Simulation Parameters and Results

Simulation N 〈urms〉 (m s−1) effn (×109 m2 s−1) Reeff ℓ (Mm) νt (×109 m s-2 )

FD64 64 34.0 9.8983 0.7174 42.7 0.484
FD128 128 37.5 0.9820 7.9923 46.5 0.583
FD256 256 40.4 0.0764 110.56 48.2 0.651
FD512 512 41.9 0.0115 758.77 52.3 0.732
FD1024 1024 43.5 0.0033 2698.7 51.8 0.754
FD2048 2048 43.8 0.0013 6933.6 51.2 0.749

Note. Results of simulations with different resolutions, N. In 〈urms〉 the velocity is averaged in space and time. The effective viscosity, effn is the average over the
largest wavenumbers, k. The effective Reynolds number is u LReeff rms eff⟨ ⟩ /n= . The convective correlation length, ℓ, is calculated from averages of the kinetic energy
spectra at different times according to Equation (15). Finally, 〈urms〉 and ℓ are used to compute the turbulent viscosity, νt, following Equation (16). The spatial averages
were calculated for the convectively unstable layer only (0.3Lz < z < Lz).

Figure 2. Snapshots of vertical velocity for simulations (a) FD64 to (f) FD2048. Yellow (blue) colors correspond to upflows (downflows). The label of each
simulation is shown on the top of each image. An animation of panels (b) and (e) is available. The animation shows, respectively, 2 yr and 5.1 yr of evolution of the
vertical velocity for the simulations FD128 (top) and FD1024 (bottom). The real-time duration of the animation is 147 s.

(An animation of this figure is available.)
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Figure 3 shows uz rms (a), ux rms (b), u u ux zrms
2 2= + (c),

and the convective flux, F c uc p r z⟨ ⟩r= Q¢ (d) as a function of
the vertical coordinate z. The rms profiles correspond to
averages over the horizontal direction and time during the last
15 yr of the simulations. The profiles of panel (a) are consistent
with similar simulations presented in the literature for 2D
simulations (Hotta et al. 2012), i.e., the vertical velocity has a
peak close to the bottom of the domain. In 3D simulations,
compatible to the ones presented here, this maximum is shifted
toward the top (e.g., Chan & Sofia 1986; Fan et al. 2003; Hotta
et al. 2012). Except for the amplitude, there is no significant
change in this profile for different resolutions, and simulations
with N� 512 seem to have reached convergence in the location
and the value of the maximum value. The profiles of horizontal
velocity exhibit significant variations with resolution. For the
low-resolution simulations (N� 128), ux rms has two maxima,
at the upper and lower parts of the convective layer, and a
minimum at z∼ 135 Mm. The maxima correspond to fluid

displacements in the opposite direction of the large eddies,
whereas the minimum corresponds to the radius where the
reversal takes place. In the lower part of the convection zone,
this motion has a smaller vertical extension than in the upper
part as a consequence of density stratification. When the
resolution increases, the profile of ux rms becomes flattened with
less prominent maxima and minima. This can be explained by
the small-scale structures developed in higher resolution
simulations, see Figure 4(b) corresponding to simulation
FD1024 as contrasted to the smooth large eddies observed in
the low-resolution simulations, see Figure 4(a) corresponding
to simulation FD64. In the upper layers, the shorter density
scale heights enforces smaller convective structures. For the
simulation with N= 64, there are eight or less grid points per
density scale height, which is insufficient to resolve small-scale
convective motions, resulting in larger convective cells. Thus,
the horizontal flows have another reversal, which on average
forms a second minimum above z∼ 250 Mm (see dark gray
line in Figure 3(b) and also the upper part of Figure 4(a)). On

Figure 3. Vertical profiles of the (a) vertical; (b) horizontal; (c) total rms velocities; and (d) the convective heat flux, F c uc a p zr= á Q¢ñ for simulations FD64–FD2048.
Different resolutions are represented by different colors indicated in panel (a).

Figure 4. Snapshots of horizontal velocities for simulations (a) FD64 and (b) FD1024. Yellow (blue) contours indicate horizontal flow toward the right (left).
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the other hand, the simulations with N> 512 have at least 32
grid points per density scale height and are able to resolve these
structures with the appropriate energy (see, for instance,
Figures 2(d)–(f) and 4(b)). After the temporal and horizontal
averaging, these cells are wiped out, and the minimum
disappears.

Another interesting feature observed in the horizontal
velocity is their depth of penetration, which increases with
the numerical resolution. Additionally, there is a sharp peak
evident in the cases FD1024 and FD2048, which is formed due
to generation of internal gravity waves in the stable layer.
These waves start to become evident in simulations with
N> 256 whenever strong downflows induce perturbations in
the stable zone (these perturbations are evident in Figure 4(b),
after some magnification of the figure, below the white dashed
line). However, they are evanescent and dissipate on timescales
depending on the numerical resolution. The waves appear to be
resolved only in the simulations with 2562 grid points or
greater. For the simulations FD1024 and FD2048, the effective
viscosity is so small (see Section 3.3) that the perturbations
induced by the gravity waves do not dissipate. Instead, they
interfere, and upon a spontaneous symmetry breakdown
interact nonlinearly to form mean horizontal flows (Galmiche
et al. 2000; Wedi & Smolarkiewicz 2006), evidenced in
Figure 3(b) by the peaks with magnitudes that increase with the
resolution. For some resolutions these motions create oscilla-
tory patterns; see Section 3.5 for a discussion.

The profiles presented in Figure 3(c) are combinations of the
corresponding motions depicted in panels (a) and (b). Their
resemblance to the profiles in panel (b) reflects the fact that the
horizontal motions are dominant in the convection zone.
Finally, the convective heat flux presented in Figure 3(d)

exhibits negative values at the bottom of the convective layer
identified with penetrative motions. The higher the resolution,
the larger the extent of the overshooting region. On the other
hand, the profiles with positive values in the convection zone
show that the averaged heat flux carried by convection
decreases with N and seems to reach convergent values
for N> 512.
Figure 5 shows snapshots of the residual of the potential

temperature perturbations, zQ¢ - áQ¢ñ , with the angular brack-
ets meaning vertical average, superimposed with streamlines of
the velocity field for all simulations. For a better contrast of the
structures we have removed the stable layers from the figures.
Note that increasing the resolution allows for progressively
more intricate structures in the form of filaments following the
edges of convective eddies. These filaments form spikes and
swirls due to the fluid movement until they dissolve.

3.2. Analysis in the Fourier Space

To explore further the turbulent characteristics of the
convective motions we compute the kinetic power spectrum,
E k z,K˜ ( ), and the turbulent spectrum of the variance ofQ¢. The
one-dimensional, temporally averaged, kinetic power spectrum
is defined as

E k z u k z u k z,
1

2
, , , 7K *˜ ( ) ˜ ( ) ˜( ) ( )=

where k is the wavenumber in the x direction, the tilde denotes
the Fourier transform of a quantity, and the asterisk denotes
complex conjugate. The temporal average is performed
considering the last 15 yr of evolution with a sampling rate
of 4 months. The power spectrum of the variance of potential

Figure 5. Snapshots of perturbations of potential temperature residual, zQ¢ - áQ¢ñ , for different resolutions. Red contours indicate positive values (hot plumes), blue
contours correspond to negative values (cold plumes). The black streamlines show the velocity field with the arrows pointing in the direction of the flow. An animation
of panel (e) is available. The animation shows 4.4 yr of evolution of the potential temperature residual for simulation FD1024. The real-time duration of the animation
is 83 s.

(An animation of this figure is available.)
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temperature, E k z,˜ ( )Q , is defined analogously by replacing
u k z,˜( ) by k z,˜ ( )Q¢ in Equation (7). Since we expect the
properties of convection to depend on the height, we perform
this computation for the top and the middle of the convection
zone, z= 223 and 139Mm, respectively.

A comparison of the kinetic power spectrum of simulations
with different resolutions is presented in Figure 6 for
z= 223Mm (a) and z= 139Mm (b) as a function of the
wavenumber; panels (c) and (d) display the power spectrum of
the variance of potential temperature, E k z,˜ ( )Q for the same
heights.

In 3D isotropic turbulence, E kK˜ ( ) and E k˜ ( )Q¢ scale
according to the Kolmogorov law, as k−5/3 (Kolmogorov 1941;
Obukhov 1959, hereafter KO scaling). In the presence of the
buoyancy force, but still for isotropic motions, the scaling
should be E k kK 11 5˜ ( ) ~ - and E k k 7 5˜ ( ) ~Q¢ - (Bolgiano 1959;
Obukhov 1959, hereafter the BO scaling). Our simulations are
in 2D and the motions are clearly anisotropic as can be
observed in Figure 2. Therefore, none of the scaling laws above
should be applicable. Nonetheless, for the sake of comparison
the black dashed lines in Figure 6 compare these scaling laws
with the scaling found for the inertial range in our simulation
with N= 1024 (in red). At both heights the kinetic and thermal
spectra are closer to the BO than to the KO scaling laws.

It is noticeable that the kinetic spectra at the upper levels of
the convection zone, panel (a) have inertial range starting at
almost the largest scales, whereas in the middle of the
convection zone, panel (b), the inertial range starts at
k∼ 10−7 m−1. As expected, the inertial range extends over
more wavenumbers as the resolution increases, reaching the
dissipative Kolmogorov scale at the smallest resolved scales.
The scaling law of the energy in the inertial range changes from
one depth to the other. This change might be a manifestation of
differences in the anisotropy of convective motions at different
depths. Except for the simulation FD64, there is a good
agreement between results of different simulations in the
kinetic power in most of the inertial range at z= 223Mm and
at the large scales, k 10−7 m−1, for z= 139Mm. Our results
are in contrast to the DNS simulations performed by
Featherstone & Hindman (2016), where the large scales lose
energy when the dissipative coefficients are diminished and
smaller scales are resolved. However, there is an agreement
between our findings, i.e., convergence of the spectra for the
large scales, and the results of the LES simulations of Sullivan
& Patton (2011). This suggests that subgrid scale (SGS) or
implicit SGS methods properly capture the inverse energy
cascade from the smaller to the larger scales.
The profiles of E k˜ ( )Q¢ in Figure 6(c) present evidence of the

lack of resolution discussed above in simulations FC64–FC256

Figure 6. Power spectra of the kinetic energy, upper panels, and the variance of potential temperature, bottom panels, for different numerical resolutions. Panels (a)
and (c) correspond to the upper part of the domain, z = 223 Mm; and panels (b) and (d) to the middle of the convection zone, z = 139 Mm. The black dashed lines are
guides to the KO and BO scaling laws, and the red dashed lines correspond to the adjusted scaling for simulation FC1024 in the inertial range.
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at the upper layers of the domain where the density scale height
is small. It is manifested in excess of energy at all scales for
FC64 and at intermediate scales for FC128 and FC256. On the
other hand, simulations FC512–FC2048 show convergence in
the inertial range of the power spectra. In the middle of the
convection zone, where the density scale height is larger, most
of the simulations have similar power spectra, differing only in
the extent of the inertial range (see panel (d)).

3.3. Numerical Viscosity

We estimate the effective viscosity, νeff, for the simulations
with all the tested resolutions. There are several techniques to
conduct this calculation for ILES simulations, most of them
performed with the physical quantities represented in the
Fourier space (e.g., Zhou et al. 2014), but some methods also
perform this computation in both physical and spectral spaces
(Schranner et al. 2015). Domaradzki et al. (2003) presented a
method to compute the numerical viscosity for an EULAG
simulation of decaying turbulence. Here, we adapt the method
implemented by Domaradzki et al. (2003) and developed later
for convection simulations in spherical coordinates by
Strugarek et al. (2016) to our Cartesian 2D simulations.

Besides providing the profile of νeff as a function of the
wavenumbers for each resolution, i.e., the amount of viscosity
for different scales, the method allows a clear comparison of
this quantity as the numerical resolution varies.
To estimate the effective viscosity we Fourier transform all

terms in Equation (2), and take the dot product on both sides
with ur k*r , where uk= u(t, k, z). Then, we average the resulting
equation with respect to t and z, and add the contribution of the
effective viscosity to obtain the following equation:

t
, 8k

k k k k eff    ( ) ( )e
n

¶
¶

= + + +

where the kinetic density energy term is given by

u u
1

2
, 9k k k*· ( )e r= á ñ

while the terms corresponding to advection, pressure, gravita-
tional potential energy, and the effective viscous dissipation
rates are, respectively, given by

u u u , 10k r k k* [( · ) ] · ( )r= -á  ñ
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where 〈 · 〉 means the average over z and time.
If the averages are taken during the statistically steady state

and over a long period of time, the left-hand side of
Equation (8) is approximately zero. Thus, dividing the
remaining equation by 1k ( )n- = , reorganizing and over-
looking the fact that νeff might be dependent on the space
coordinates, we obtain an estimate of the effective viscosity of
the system,

k
1 1

. 14k k k

k

k

k

eff
eff

  





( )
( )
( )

( ) ( )
n

n n
n

n
+ +

- =
=
- =
- =

=

The reader should be aware of the several approximations
made to compute what we call numerical or effective viscosity
throughout this paper. In ILES the SGS viscosity is nonlinear,
intermittent in space and time. On the other hand, our estimate
for this contribution, νeff, is considered constant with the depth
and results from spatial and temporal averages. Furthermore, in
the MPDATA algorithm implemented in the EULAG-MHD
code, besides the dissipative terms, there are dispersive SGS
contributions, effectively responsible for inverse cascades
(Margolin & Rider 2002). These terms are evidently not
captured by Equation (13). Therefore, νeff is an integral
measure of the SGS viscosity, which also embodies other SGS
contributions implicit in the numerical technique.
In Figure 7(a), we present νeff(k) for the simulations with

different resolutions. For the large scales, k< 10−7 m−1, νeff
decreases from 109 m2 s−1 to 6× 107 m2 s−1. The difference in
νeff between the different simulations decreases as the
resolution increases. For simulations FD64–FD256, the profiles
of νeff have a minimum for the intermediate scales and an
increase for the smallest scales. Qualitatively, these profiles

Figure 7. (a) Effective numerical viscosity as a function of the wavenumber, k,
for simulations with different resolutions; (b) effective numerical viscosity
(black points) of the smallest resolved scales and turbulent viscosity (red) vs.
the resolution, N. Upper and bottom panels show vertical error bars multiplied
by a factors of 2 and 10, respectively, to make them noticeable. The black
dashed line shows a fitted power law as indicated in the legend.
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resemble the results of Domaradzki et al. (2003). The profiles
obtained by Strugarek et al. (2016) for a global simulation with
51× 64× 128 grid points also show increasing effective
viscosity for large wavenumbers. However, in their more
sophisticated three-dimensional procedure they obtain large
errors for the low wavenumbers and do not consider the results
for these scales. A comparison of the values of νeff averaged
over large wavenumbers shows quantitative agreement
between the results of Strugarek et al. (2016, 2018) and our
simulations FD128 and FD256. The results of Strugarek et al.
(2018) show that the effective viscosity depends on the strength
of convection, the density contrast, and/or rotation. Yet, this
dependency is weak when compared to the changes found here
for different resolutions.

For the cases FD256–FD2048, there is an intermediate range
of k, for which νeff is the same for all resolutions. For the
smallest scales, it has decreasing values with the increase of the
numerical resolution. For FD512–FD2048, the profile of
νeff does not increase but remains roughly constant.
Figure 7(a) shows error bars for this estimation multiplied by
2 to make them distinguishable. The error is computed as

ns , where σ is the standard deviation of the temporal
average and n is the number of temporal samples used in the
computation corresponding to the last 15 yr of the simulations.
Thus, n is of the order of 50, for the considered sampling times.

The magnitude of the effective viscosity averaged over the
largest wavenumbers resolved for each simulation, i.e., over the
Kolmogorov scales, is presented in Table 1 and depicted in
Figure 7(b) as a function of N. It decreases as the resolution
increases following a power law, Neffn µ a, with exponent
α=−2.7. However, the power is higher for the low-resolution
cases and smaller for simulations with N> 512. With the value
of effn and urms (see Table 1) we can compute an effective
Reynolds number, u LReeff rms effn= (with L= 0.3Re, i.e.,
the size of the convection zone), reached by the simulations. Its
values go from ∼1 to∼ 7× 103, and its variation as a function
of N, presented in Figure 8, follows a power law NReeff

2.7µ .

3.4. Turbulent Viscosity

Even though the effective viscosity decreases with the
resolution following a power law, Figures 3 and 6 evidence
convergence of the simulation results. This implies that, despite
the smallest values of νeff in the high-resolution cases, the
dynamics of the system is governed by an enhanced
dissipation, likely provided by turbulence, which efficiently
transports momentum and heat. The turbulent viscosity, νt,
depends on the time and spatial scales of the most energetic
eddies, which are model-dependent quantities. They are
sensitive to variations in the domain’s aspect ratio, the ambient
state and the timescale of the thermal relaxation (Cossette &
Rast 2016). In this section, we determine νt to verify if it also
depends on the resolution and how its values compare with
those of νeff.

To do so, we calculate first the turbulent correlation length of
the convective motions using (Pope 2011),

ℓ
E k kdk

E k dk
. 15

˜( )
˜( )

( )ò
ò

=

Equation (15) can be seen as a weighted average of the
inverse of the wavenumbers, where the weights are given by
the kinetic energy. Therefore, it provides the typical length of

the most energetic convective eddies. Their values vary
between ∼40 and ∼50Mm as presented in Table 1.
With the correlation length, ℓ, we estimate the turbulent

viscosity as (see, e.g., Kitchatinov et al. 1994)

ℓu
1

3
. 16t rms ( )n =

The values of νt as a function of N are presented as red points in
Figure 7(b). They slightly rise as the resolution increases from
∼5× 108 to ∼8× 108 m2 s–1. These values have the same
order of magnitude of recent estimations of the turbulent
magnetic diffusivity due to granulation and supergranulation in
the solar surface (Skokić et al. 2019), which suggest that our
model parameters are in an appropriate regime.
The variance of νt for different resolutions is rather small

when compared to the changes of effn which span about 4
orders of magnitude. As a consequence, the Reynolds number
computed from the turbulent viscosity remains roughly
constant with values ∼13 while the effective Reynolds number
increases 4 orders of magnitude, see Figure 8. From
Figure 7(b), it can be seen that only the simulation FD64 has
effective viscosity considerably larger than the turbulent one.
For all the other cases, t effn n> implies that the system is
governed by the large scales. The relevant question is, why do
these scales, especially in the bulk of the convection zone, have
similar spatiotemporal correlations regardless of the resolution?
The results presented in Sections 3.1–3.3 indicate convergence
for simulations FD512–FD2048 with well-resolved dynamics.
For simulations FD128 and FD256, the agreement is not
perfect, but the large scales behave alike. This might be a
consequence of the implicit SGS contribution toward the
dynamically dominant scales. The different profiles of νeff(k)
between these two sets of simulations provide some support to
this hypothesis; note the increasing values of νeff for the
smallest scales in models with N= 128, 256.

3.5. Internal Gravity Waves and Mean Flows in the Stable
Layer

As a consequence of convective overshooting, internal
gravity waves are excited and propagate in the stable layer.

Figure 8. Effective Reynolds number (black points) and turbulent Reynolds
(red) number as a function of the resolution. The black dashed line shows a
fitted power law as indicated in the legend.
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Interestingly, together with these waves a mean horizontal
motion develops in the stable layer. In our high-resolution
experiments this motion reverses sign periodically as can been
seen in Figure 9. The left panels show snapshots of Q¢ in the
stable layer. The gravity waves are unresolved in the simulation
FD128, barely captured in FD512, and resolved in FD1024 and
FD2048. The right panels show the temporal evolution of u ,
where the overline represents average over the horizontal
direction, during the last 20 yr of the simulated time. For the
case FD128, there is an unorganized, low amplitude pattern at
the very upper fraction of the stable interior. For FD512, the
mean flow is more evident showing nonperiodic reversals. For
FD1024, a well-organized pattern of mean flow reversing sign
every ∼1 yr emerges. The amplitude of this flow reaches

60 m s−1, which is of the same order of the horizontal motions
in the convection zone. Finally, because of a small viscosity,
for FD2048, these motions have large amplitudes, change
direction in a random form, and persist for longer time at z∼
75 Mm forming two or three layers of mean flow, u , at the
same time. Similar results were discussed for small viscosity
simulations in Wedi & Smolarkiewicz (2006). These motions
are reminiscent of the Earth quasi-biennial oscillation (Baldwin
et al. 2001), which are a consequence of interacting gravity
waves and depend on the kinematic viscosity of the
medium (Lindzen & Holton 1968; Holton & Lindzen 1972;
Plumb & McEwan 1978; Kim & MacGregor 2001; Wedi &
Smolarkiewicz 2006). If existing inside the solar radiative
zone, they may be relevant for the transfer of angular
momentum and may interact with large-scale motions in the
convection zone, likely contributing to the formation of
torsional patterns. Since the goal of this work is exploring
the role of numerical resolution, we postpone a more detailed
physical discussion on the physics of GW and these mean
flows for future works.

4. Conclusions

Direct numerical simulations of natural systems at high
Reynolds numbers are unattainable for present supercomputers.
Fortunately, the LES and ILES methods provide capabilities of
reproducing turbulent flows. However, for systems with scarce
observational constraints, such as stellar convection zones,
determining whether LES or ILES capture the systemʼs physics
is a challenging task.
The aim of this paper was to address this problem by

exploring the numerical convergence in ILES simulations of
turbulent convection in two dimensions. The model is
constructed over the anelastic set of equations solved by the
EULAG-MHD code. It considers an atmosphere with char-
acteristics of the solar interior, including a fraction of the
radiative zone and the convection zone. The simulations were
performed with resolution increasing from 642 up to 20482 grid
points. The results present the values of the effective and
turbulent viscosities and other integral characteristics of the
numerical solutions. Another goal was to observe how the large
scales behave when interacting with the progressively smaller
resolved scales.
Spatial and temporal averages demonstrate that quantities

such as the rms velocities have similar vertical profiles for
resolutions even as coarse as N∼ 128. We noticed that the
structure of the flow, characterized by narrow downdrafts and
broad upflows crossing the entire convective layer of the
model, is conserved even when these motions interact with the
smallest structures (Figures 2 and 5). This result stands in
contrast to the results of 2D ILES of Porter & Woodward
(1994) where the progressive development of small scales leads
to the destruction of the large structures. This difference might
arise from the differences between PPM and MPDATA ILES
formulations, but mostly from the compressible character of
their simulations, which imposes structural changes in the
temperature and density profiles as the effective viscosity
decreases. These changes result in different convective models
for each resolution.
As for the spectral behavior, we notice that for resolutions

with N 128, the kinetic energy spectra are similar at the
middle and the top of the convection zone, whereas the length
of the inertial range increases with N reaching more than two

Figure 9. Left panels: snapshots of Q¢ for simulations (a) FD128, (b) FD256,
(c) FD1024, and (d) FD2048. The aspect ratio of this panel is modified for
visualization purposes. Right panels: propagation in the plane (t, z) of the
velocity component, u, averaged over the horizontal direction, x. The time
corresponds to the last 20 yr of evolution during steady state.
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decades for our highest resolution model. As for the turbulent
spectrum of the variance ofQ¢, in the top, it reflects the lack of
resolution of the FD64–FD256 simulations due to the small
density scale height. Convergence is observed, however, in
simulations with N� 512. In the middle of the convection
zone, simulations with N= 128 or more grid points agree in the
injection and inertial ranges.

A deeper analysis of the energy balance in the Fourier space
allows us to estimate the effective viscosity of the simulations
as a function of the wavenumber. For the large scales, the
profiles of νeff in all the simulations are slightly decreasing with
k, and with magnitudes progressively decreasing with N. For
N� 256, there is a range of intermediate scales where the
values and profiles of νeff closely match. These profiles separate
for the smallest resolved scales. For the smallest scales, the
profiles of νeff increase with k for resolutions with N� 256, but
remain roughly constant for N� 512. Our interpretation of this
change has to do with the simplified assumptions made for the
residual of the balanced Equation (2) in the steady state. We
assumed that the residual corresponds only to an effective
viscosity depending on the scale but constant in time. However,
in MPDATA the numerical formulation contains dissipative as
well as dispersive terms, both intermittent in time and space.
The contribution of the dispersive terms is mediating the
transfer of energy between scales. Thus, the increasing of νeff
for the smaller scales in the low-resolution cases can be related
to the enhanced SGS contribution of the numerical algorithm.
Yet, the small-scale contribution is thoroughly resolved at
higher resolutions. Therefore, the profile of νeff would
incorporate only viscous dissipation.

Averaging νeff(k) over the dissipative, Kolmogorov, scales
shows a power-law relation between the effective viscosity and
the resolution, Neff

2.7n µ - . Note, however, that the curve
could be fitted by two different power laws for N� 256 and
N� 512, which supports our conclusion above on the SGS
contributions. With the obtained values of effn the effective
Reynolds numbers the simulations span between ∼1 and∼104.
On the other hand, the values of the turbulent eddy viscosity,
νt, are of the order of 108 m2 s−1 and are barely dependent of
the grid size. Only the simulation FD64 has an average
effective viscosity larger than this value. Thus, despite that
small-scale structures are sharply resolved in high-resolution
cases, the dynamics of the system is determined by the
turbulence, which has an eddy Reynolds number of the order of
10. We argue that the diagnostics observed for simulations
FD512–FD2048 indicated convergent well-resolved turbu-
lence. The fact that the properties of the large scales in
simulations FD128 and FD256 behave like the better resolved
ones evidences the SGS contribution of the advection solver
MPDATA. The convergent LES simulations of Porter &
Woodward (2000) and Sullivan & Patton (2011) obtained
results in agreement to the ones outlined here. Alternatively,
the DNS simulations of Featherstone & Hindman (2016)
indicate that decreasing the dissipation coefficients diminishes
the energy of the large scales in benefit of the smallest ones.

Despite the simulations presented here being 2D, the results of
this research support the idea that ILES are efficient in capturing
the dynamics of turbulent systems. A note of caution is due here
for regions where the thermal stratification enforces the formation
of small structures not well resolved by the grid as in cases FD64
and FD128. Having a nonhomogeneous grid could be appropriate
for these situations. Nevertheless, if the model encompasses both

stable and unstable layers, as in our case, high resolution is
necessary to capture the dynamics in the stable layer dominated
by gravity waves. This is demonstrated in Section 3.5 where
mean oscillatory motions emerge only for sufficiently low
effective viscosities. A relevant question raised by this study is
how much the interaction between these two layers modifies the
dynamics of the turbulent convection. Simulations of convection
in 3D and/or in different geometries that may help answer this
question will be explored in future work.
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