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ABSTRACT

The rate of magnetic field diffusion plays an essential role in several astrophysical plasma processes. It has been demonstrated
that the omnipresent turbulence in astrophysical media induces fast magnetic reconnection, which consequently leads to large-
scale magnetic flux diffusion at a rate independent of the plasma microphysics. This process is called ’reconnection diffusion’
(RD) and allows for the diffusion of fields, which are dynamically important. The current theory describing RD is based on
incompressible magnetohydrodynamic (MHD) turbulence. In this work, we have tested quantitatively the predictions of the RD
theory when magnetic forces are dominant in the turbulence dynamics (Alfvénic Mach number MA < 1). We employed the
PENCIL CODE to perform numerical simulations of forced MHD turbulence, extracting the values of the diffusion coefficient ηRD

using the test-field method. Our results are consistent with the RD theory (ηRD ∼ M3
A for MA < 1) when turbulence approaches

the incompressible limit (sonic Mach number MS � 0.02), while for larger MS the diffusion is faster (ηRD ∼ M2
A). This work

shows for the first time simulations of compressible MHD turbulence with the suppression of the cascade in the direction
parallel to the mean magnetic field, which is consistent with incompressible weak turbulence theory. We also verified that in our
simulations the energy cascading time does not follow the scaling with MA predicted for the weak regime, in contradiction with
the RD theory assumption. Our results generally support and expand the RD theory predictions.

Key words: magnetic fields – magnetic reconnection – MHD – turbulence – methods: numerical – stars: formation.

1 IN T RO D U C T I O N

One of the most employed and well-known concepts in magneto-
hydrodynamic (MHD) theory is the magnetic ’frozen-in’ condition
introduced by Alfvén. When the time-scales for Ohmic dissipation of
the magnetic fields are much larger than the typical dynamical time-
scales of the flow (the dimensionless parameter characterizing the
ratio between these two time-scales being given by the magnetic
Reynolds number RM = UL/η, with U and L the characteristic
velocity and scale of the flow, and η the magnetic diffusivity
provided by the Ohmic dissipation), one can adopt the ideal MHD
approximation. It consists in neglecting the resistive term in the
magnetic induction equation. In this limit, it can be demonstrated
that the magnetic flux across a Lagrangian fluid element is conserved,
that is, the magnetic field is perfectly advected by the fluid motions
in the direction normal to the field lines.

The ideal MHD description (and consequently, the frozen-in
condition) is usually thought to be a good approximation for most
astrophysical plasmas, which have in general huge values of RM.
Nevertheless, the frozen in condition when applied, for instance,
to star formation regions gives rise to several problems due to ob-
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dalpino@iag.usp.br (EMdGDP) alazarian@factstaff.wisc.edu (AL)

servational and theoretical requirements for diffusive magnetic flux
transport through the plasma (e.g. Santos-Lima et al. 2010; Santos-
Lima, de Gouveia Dal Pino & Lazarian 2012, 2013; Leão et al. 2013;
González-Casanova, Lazarian & Santos-Lima 2016). Ambipolar
diffusion (AD) is usually invoked for breaking the frozen-in condition
and solving the problem of the magnetic flux transport during star
formation (see e.g. Shu 1983; Nishi, Nakano & Umebayashi 1991;
Ciolek & Mouschovias 1993; Shu et al. 1994; Tassis & Mouschovias
2005). However, several studies revealed weaknesses in this solution
(Shu et al. 2006; Crutcher, Hakobian & Troland 2009; Krasnopolsky,
Li & Shang 2010, 2011; Li, Krasnopolsky & Shang 2011). A potential
solution for this problem in the framework of protoplanetary disc
formation has been proposed by Machida, Inutsuka & Matsumoto
(2007, 2009) based on laminar MHD simulations combined with
local Ohmic resistivity (see also recent studies on the role of the AD
during protostellar disc formation Wurster & Li 2018; Guillet et al.
2020; Marchand et al. 2020; Zhao et al. 2020).

We believe that the limitations of the approach that is described
above is that the effects of ubiquitous astrophysical turbulence are
disregarded in the aforementioned studies. The diffuse interstellar
medium (ISM) and molecular clouds are turbulent. There are over-
whelming observational evidence that support this claim through
the measurements of power spectrum of densities in diffuse ISM
(see Armstrong, Rickett & Spangler 1995; Chepurnov & Lazarian
2010), broadening of the molecular lines (see Larson 1981), statistics
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Diffusion of large-scale magnetic fields by reconnection in MHD turbulence 1291

of velocities (see Lazarian & Pogosyan 2000; Lazarian 2009, and
references therein, Padoan et al. 2009; Chepurnov et al. 2010, 2015;
Kandel, Lazarian & Pogosyan 2017; Utomo, Blitz & Falgarone 2019;
Wolleben et al. 2019; Yuen et al. 2019; Xu 2020), variations of the
Faraday rotation (Haverkorn et al. 2008; Xu & Zhang 2016), and
power spectrum of synchrotron fluctuations (Chepurnov 1998; Cho
& Lazarian 2002, 2010). The reviews describing the molecular cloud
turbulence are presented in McKee & Ostriker (2007); Mac Low &
Klessen (2004, see also Elmegreen & Scalo 2004).

The field of MHD turbulence (see Montgomery & Turner 1981;
Matthaeus, Montgomery & Goldstein 1983; Shebalin, Matthaeus &
Montgomery 1983; Higdon 1984) has seen a rapid progress due to
both, to Solar wind measurements (see Goldstein et al. 1995; Tu &
Marsch 1995; Bruno & Carbone 2013 for a review), theoretical (see
Goldreich & Sridhar 1995; Lazarian & Vishniac 1999; Lithwick &
Goldreich 2001; Cho & Lazarian 2002; Eyink, Lazarian & Vishniac
2011), and numerical progress (Cho & Vishniac 2000; Maron &
Goldreich 2001; Cho, Lazarian & Vishniac 2002; Cho & Lazarian
2003; Kowal & Lazarian 2010; Federrath et al. 2010; Beresnyak
2014; see also a recent book by Beresnyak & Lazarian 2019).

As we discuss later, the subject of MHD turbulence is closely
related to the processes of magnetic reconnection in turbulent
fluid. The model of turbulent reconnection in Lazarian & Vishniac
(1999) predicts the failure of the traditional flux freezing in highly
conducting turbulent fluids. This process does not depend on the rate
of AD and motivated a number of our earlier studies (Lazarian 2005,
2011; Santos-Lima et al. 2010, 2012, 2013; González-Casanova
et al. 2016) that consider the processes of magnetic flux transport
in turbulent fluids.

The process by which the topology of the magnetic field changes
depends on whether the fluid is in a laminar or turbulent state. In
the presence of turbulence, the motions of the ionized gas produce
tangling and wandering of the magnetic field lines which give
origin to several microsites of magnetic reconnection. This process
is independent on how small is the Ohmic resistivity which is
always present in any real plasma. These reconnection microsites
are continuously formed and spread all over the turbulent plasma
volume. As a consequence, the field lines topology can be modified,
and large-scale magnetic flux can be transported through the gas,
implying that the flux freezing concept is seriously altered (Lazarian
2005; Eyink et al. 2011). The speed at which the magnetic flux
is transported in such conditions is independent of the electric
resistivity of the plasma, or the degree of its ionization but is
regulated by the turbulence parameters, as predicted in the theory
of fast magnetic reconnection introduced by Lazarian & Vishniac
(1999). This theory was tested numerically in Kowal et al. (2009,
2017, 2020). A convincing quantitative numerical study proving that
turbulent reconnection violates flux freezing in MHD turbulence is
presented in Eyink et al. (2013). An extensive body of evidence in
favour of turbulence reconnection has been collected by now and
we refer the reader to Lazarian et al. (2020) where the modern state
of the turbulent reconnection theory and a description of its tests
with solar wind as well as numerical testing with different codes is
reviewed.

The concept of magnetic diffusion via turbulent reconnection –
reconnection diffusion (RD) – is distinct from the concept of standard
turbulent mixing. The latter is based on the idea that the field lines are
mixed passively by the turbulent eddies, without taking into account
the effects of the magnetic field on the turbulent cascade. RD, on the
other hand, covers the interesting situation in which the magnetic
forces are dynamically important (e.g. in the late stages of star
formation), and relies on the fact that the fast reconnection induced

by the MHD turbulence is independent of the value of the electric
resistivity of the plasma. For many of the astrophysical applications,
it is important that the RD is not altered by the effects of ambipolar
drift on the scales where turbulence exists.

This RD theory predicts that the diffusion coefficient ηRD for large-
scale magnetic fluxes (i.e. scales larger than the injection or forcing
scale of the turbulence) depends on the turbulence parameters as
follows. In the case of super-Alfvénic turbulence [that is, when the
Alfvénic Mach number, MA = Uturb/vA (Uturb is the turbulent velocity
and vA is the local Alfvén velocity) is larger than one], it coincides
with the standard turbulent mixing coefficient,

ηRD ∼ LturbUturb, (1)

where Lturb and Uturb are the length and the velocity of the turbulence
at the injection scale, respectively. On the other hand, in the regime of
sub-Alfvénic turbulence (MA < 1), this value is reduced by a factor
proportional to the third power of MA (Lazarian 2006, 2011):

ηRD ∼ LturbUturbM
3
A. (2)

Therefore, according to the RD theory, the efficiency of the
magnetic flux transport strongly depends on the local turbulence
regime. In the context of star formation, the turbulence parameters
in scales below sub-parsec (down to dozens of au) can be difficult to
infer with precision. None the less, we reinforce that RD process is
always present at some level during all the star formation process.
It is a natural consequence of the ubiquitous presence of turbulence
in astrophysical environments (see e.g. Krumholz & McKee 2005;
Ballesteros-Paredes et al. 2007; Hennebelle & Chabrier 2011; Padoan
& Nordlund 2011; Federrath & Klessen 2012, 2013; Hull et al.
2017). In previous work (Santos-Lima et al. 2010; Santos-Lima
et al. 2012, 2013; Leão et al. 2013; González-Casanova et al.
2016), we investigated numerically the removal of magnetic flux
from collapsing turbulent molecular clouds and protostellar discs,
considering an ’ideal’ MHD approach (i.e. the microscopic magnetic
dissipation term was not considered explicitly in the induction
equation, although an effective value is always present due to the
numerical discretization of the equations). We found that the mag-
netic flux removal by RD is efficient in these systems, and helps the
gravitational collapse of the structures (see also Myers et al. 2013).
However, these works focused mostly on the super and trans-Alfvénic
regimes of the turbulence where the RD coefficient is controlled
by equation (1). The aim of this work is to test quantitatively the
prediction of equation (2) by using three-dimensional (3D) MHD
simulations. It is also the first attempt to generate simulations of
stationary weak MHD turbulence (the scenario invoked by the RD
theory) in the presence of finite compressibility, which is more
realistic for astrophysical environments.

This work in organized as follows. In Section 2, we present the
main predictions of the RD theory. The numerical methods and
setup for the numerical simulations of this study are described in
Section 3. The results are presented and discussed in Sections 4
and 5, respectively. Our major findings are finally summarized in
Section 6.

2 BASI CS O F R ECONNECTI ON D I FFUSIO N

T H E O RY

To understand the process of RD, we present here some basic facts
of MHD turbulence theory. For simplicity, we consider only the case
of incompressible MHD turbulence.

Traditionally, Alfvénic turbulence is described in terms of non-
linearly interacting wave packets in Fourier space (Iroshnikov 1963;
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1292 R. Santos-Lima et al.

Kraichnan 1965). The non-linear cascading rate is given in this case
by

τ−1
casc ≈

(δuℓ/ℓ⊥)2

ωA
, (3)

where the angular frequency, ω = VA/ℓ�, and ℓ� is the parallel
wavelength. If the injection velocity UL is less than the Alfvén
velocity, the cascade is evolving decreasing only perpendicular
wavelengths ℓ⊥. This is the regime of weak turbulence with the
parallel scale being all the time equal to the injection scale and
δuℓ ∼ ℓ

1/2
⊥ (Lazarian & Vishniac 1999, hereafter LV99; Galtier et al.

2000). However, the weak cascade changes its nature at a small scale.
Below, we explain the nature of this change.

The theory of strong MHD turbulence was formulated by Goldre-
ich & Sridhar (1995, henceforth GS95) for transAlfvénic turbulence,
i.e. UL = VA. For this turbulence GS95 formulated the condition of
the critical balance that relates the scale of parallel and perpendicular
motions, namely, δuℓ/ℓ⊥ ≈ VA/ℓ�. This condition means that the
parallel scale should change with the decrease of the perpendicular
scale.

The transfer to the strong MHD turbulence regime can happen if
the turbulence is injected at UL < VA and is weak at its origin. The
key to that is the increase of the strength of non-linear interactions
with the decrease of perpendicular scale. The transfer to the strong
turbulence regime changes the nature of the turbulent motions.
In fact, due to fast turbulent reconnection predicted in LV99 the
turbulent motions become similar to the hydrodynamic eddies that
mix magnetic field perpendicular to the direction of magnetic field.
For this eddies, it is natural to assume that δuℓ/ℓ ∼ VA/ℓ‖, i.e. that the
rate of turbulent mixing motions is equal to the rate of perturbation
propagating along the magnetic field. The difference between the
original critical balance in GS95 and the above relation between the
perpendicular scale ℓ and the parallel scale ℓ‖ is that both scales
are measured in terms of the magnetic field of the eddies, i.e. local

magnetic field, compared to the wavenumbers k‖ and k⊥ that are given
in the global mean magnetic field reference system. The concept of
local eddies mixing up magnetic field is an essential component for
the understanding of the RD process. Note that numerical research
does indicate that the critical balance relations are valid only in the
local system of reference (Cho & Vishniac 2000; Maron & Goldreich
2001; Cho et al. 2002).

The generalization of GS95 theory for subAlfvénic turbulence
provided in LV99 as well as the analogy between the eddy turbulence
in MHD and ordinary hydrodynamic turbulence helps to understand
the nature of the RD. The predictions for RD when turbulence is
in the sub-Alfvénic regime (Lazarian 2005, 2011) can be recovered
from the statistical calculations presented in Eyink et al. (2011), and
are summarized below.

The magnetic field is assumed to be diffused by turbulence at a rate
similar to the diffusion of trace particles in the direction perpendicular
to the (locally) uniform magnetic field. A simple statistical analysis
can show that the perpendicular diffusivity of trace particles due to
the turbulent velocity field δu is given by

D⊥ =

∫ ∞

−∞

dt〈δu′
⊥(0) · δu′

⊥(t)〉, (4)

where δu′(t) is the turbulent velocity at the position of the particle
at time t, and the angle brackets, 〈 · 〉, denote an ensemble average
over all the particles, which are assumed to be distributed randomly
in space. Considering turbulence composed by Alfvén waves with
random phases and turbulence with a single scale, ℓ, perpendicular to
the field lines (and corresponding parallel scale, ℓ�). The expression

inside the last integral is

〈δu′
ℓ,⊥(0) · δu′

ℓ,⊥(t)〉 ∼ δu2
ℓℜ

{

exp
(

iωA,ℓ‖
t − |t |/τdec

)}

, (5)

where δuℓ is the perpendicular turbulent velocity at scale ℓ, ωA,ℓ‖
∼

VA/ℓ‖ is the local Alfvén frequency, and τ dec is the time-scale
for decorrelation of the velocity eddies (the correlation is simply
assumed to decay exponentially in time). This leads to

D⊥(ℓ) ∼ δu2
ℓ

τdec

(ωA,ℓ‖
τdec)2 + 1

. (6)

We expect that motions at the largest scales produce the dominant
diffusivity. We will assume isotropy at the injection scale, that is, ℓ�
∼ ℓ.

When the time-scale for the microscopic diffusivity is larger than
the dynamical time-scales of the system (which is the case for most
astrophysical environments), the decorrelation time for the velocity
eddies at the injection scale should be of the order of the energy
cascade time for these eddies. In the regime of weak turbulence (i.e.
when the energy cascading time is much longer than the linear wave
time τw ∼ ω−1

A,ℓ‖
), we have τcasc ∼ (ℓ/δuℓ)M−1

A (LV99; Galtier et al.
2000). Substituting this value in equation (6), we obtain the RD
prediction for the magnetic diffusivity ηRD (Lazarian 2005)

ηRD ∼ D⊥ ∼ ℓδuℓ min
(

1, M3
A

)

. (7)

In situations where the energy cascading time at the injection scale
is larger than the molecular or numerical viscous time (implying a low
effective Reynold’s number), the decorrelation time of the velocity,
τ dec, can be more closely related to the dissipation time, τ diss ∼ ℓ2/ν,
where ν is the molecular viscosity. The magnetic field diffusion
driven by turbulence in this case will depend on the microscopic
diffusion and, if τ dec ∼ τ diss, then the diffusivity becomes dependent
on the molecular viscosity, ν.

In our discussion, we considered only one component of MHD
turbulence, namely, Alfvén modes and disregarded the slow and fast
modes (see Cho & Lazarian 2003). This is due to the fact that Alfvén
modes are the most important in mixing the medium.

3 N U M E R I C A L M O D E L S

In order to test the dependency of the magnetic diffusion coefficient,
ηRD, with the Alfvénic Mach number, MA, of the turbulence in the
sub-Alfvénic regime, we employed 3D MHD numerical simulations
of forced turbulence in a Cartesian domain, in the presence of an
external uniform magnetic field of intensity B0 in the x-direction.
We used the PENCIL CODE1 for numerically solving the set of
compressible, isothermal, MHD equations

D ln ρ

Dt
= −∇ · u, (8)

Du

Dt
= −c2

s ∇ ln ρ +
1

ρ
J × (B0 + B) + ν3∇

6u + f , (9)

∂A

∂t
= u × (B0 + B) + η3∇

6 A, (10)

where D/Dt = ∂/∂t + u · ∇ is the lagrangian derivative, A is the
magnetic potential vector, B = ∇ × A is the magnetic field gener-
ated by the internal currents, J = ∇ × B/μ0 is the current density,
μ0 is the magnetic permeability, ν3 and η3 are the coefficients of
hyperviscosity and magnetic hyperdiffusivity, respectively, cs is the
isothermal sound speed, u is the velocity, ρ is the density, and f

1http://pencil-code.googlecode.com/
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Diffusion of large-scale magnetic fields by reconnection in MHD turbulence 1293

represents the force responsible for the turbulence injection. We
use the hyperviscosity and magnetic hyperdiffusivity schemes with
the aim of obtaining a turbulent spectra with an extension as large
as possible for each considered resolution (Borue & Orszag 1995;
Haugen & Brandenburg 2004). The value of the coefficients was
minimized such that numerical stability is guaranteed.

We have also performed simulations without the hyperviscos-
ity and the magnetic hyperdiffusivity. In these cases, we em-
ployed the usual viscosity and Ohmic resistivity, namely, the
terms ν3∇

6u in equation (9) and η3∇
6 A in equation (10) are

replaced by η1

{

∇2u + (1/3)∇∇ · u + 2S · ∇ ln ρ
}

and η1∇
2 A,

respectively, where ν1 is the constant viscosity, η1 is the mag-
netic diffusivity, and S is the rate of strain tensor given by
Sij =

{

(1/2)(∂ui/∂xj + ∂uj/∂xi) − (1/3)δij∇ · u
}

. These models
are explicitly mentioned in the text whenever they appear.

The turbulence is constantly forced by the increment of the velocity
field with a spectrum of Fourier modes. These modes are purely
solenoidal, and the phases are randomly changed at every iteration
during the numerical integration. The turbulence is, therefore, nearly
statistically homogeneous, non-helical, and delta correlated in time.
In Section 3.1, we provide more details about the spectrum of the
excited velocity modes.

The value of the diffusion coefficient, ηRD, is extracted from the
simulations through the test-field method. It employs a set of passive
test magnetic fields in order to calculate unambiguously the coeffi-
cients of the turbulent mean-fields (including the diffusion tensor;
see Appendix A and more details in Brandenburg & Subramanian
2005; Schrinner et al. 2007; Brandenburg et al. 2010).

3.1 Setup and parameters

The RD theory (Section 2) is formulated in the incompressible limit,
assuming that when sub-Alfvénic turbulence is forced isotropically
in the presence of a uniform magnetic field (at least locally), it will
develop a cascade in the regime predicted by the weak turbulence
theory (WTT). Therefore, we restricted our simulations setup and
parameters to the subsonic regime (yet using finite sound speed
cs in the simulations) and favoring conditions under which weak
turbulence could develop.

Table 1 lists the parameters employed in the simulations presented
in the next section. For each set of simulations (identified by its name
in the first column of Table 1), we spanned a range of values of MA

by changing the magnetic field strength B0 and keeping the rms value
of the turbulence velocity, vrms, constant, near to a fixed reference
value, v0. We do not control directly vrms in our simulations, but
instead, the amplitude of the forcing.

The turbulent diffusivity is controlled by the largest scale motions
of the system (the motions at the injection scale), where the universal
laws of the inertial range are not formally valid, and could be
affected by the details of the forcing mechanism. At the same
time, the forcing can also determine the MHD turbulence regime.
Because this work focuses on the subsonic turbulence, we employed
forcing schemes purely solenoidal, and with approximately the same
coherence length in the directions parallel and perpendicular to the
mean magnetic field. The forcing was chosen delta correlated in time
for two reasons: First, if the cascading time follows the WTT, the
correlation of the waves at the injection scale should persist for a
time similar to the cascading time, even if the forcing is generating
low-energy random waves continuously. Secondly, forcing with time
correlation proportional to M−1

A (e.g. Alexakis 2011) must induce
Alfvén waves with approximately the same decorrelation time, which
could determine trivially the diffusion coefficient.

We employed three forcing schemes, which differ in the discrete
spectrum of the velocity modes excited. In one of them, all the
modes inside a spherical shell in the k-space are excited with the
same amplitude. This k-isotropic distribution of amplitudes is the
most usual choice in numerical simulations of forced turbulence.
The models using this scheme are identified by ‘I’ in the column
’forcing’ of Table 1. Alternatively, in order to constrain the parallel
and perpendicular injection scales to well-defined values, ℓ� and ℓ⊥,
respectively, and at the same time avoid the forcing of purely 2D
modes (i.e. with k� = 0) as well as waves of large wavelength in the
direction parallel to the imposed uniform magnetic field, we also used
an k-anisotropic scheme (identified by ‘A’ in Table 1). It forces all
the waves with the components k⊥ and k� inside a cylindrical shell in
the k-space. The amplitude of the spectrum is modulated by a factor
∝ k2

‖ . The third forcing scheme we used excites all the modes inside
a spherical shell in the k-space, but modulates the amplitudes by a
factor ∝sin (2θ ), where cos θ = k�/k. This last scheme is identified by
‘Ab’ in Table 1. The ‘A’ and ‘Ab’ schemes favour distributions with
reduced amplitude for the wavevectors corresponding to wavelengths
far from the fixed injection scale. The forcing scheme ‘I’, on the other
side, generates waves elongated in both parallel and perpendicular
directions. We emphasize that, statistically, all the three schemes
force velocity fluctuations in an (nearly) isotropic form in the physical
space.

The injection scales are indicated in the columns k�L/2π and
k⊥L/2π, where L is the shortest side of the domain, perpendicular to
the mean uniform magnetic field, in Table 1 (except for the runs set
16Lx2L-Ms0.02-low-A, where this side has length 2L). These values
were chosen in order to maximize the turbulence inertial range. Note,
however, that although the separation of scales between the largest
turbulence eddies and the mode employed in the test fields (k⊥,tfL/2π
= kz, tfL/2π = 1; see Appendix A) is still limited.

Unlike real extended astrophysical environments, the finiteness of
the computational box introduces effects on the wave turbulence due
to insufficient density of large-scale modes represented in the discrete
Fourier space. A theoretical constraint on the validity of the classical
weak turbulence regime in a finite box domain, which was derived
both under the Reduced MHD approximation and the assumption of
k⊥ ≫ k� (Nazarenko 2007), is approximately given by
√

ℓ‖

L‖

≪
δuℓ

B0

ℓ‖

ℓ⊥

≪ 1, (11)

where δuℓ is the velocity amplitude corresponding to the mode with
scales ℓ� and ℓ⊥. Therefore, to fullfill this condition at the injection
scale where ℓ� ≈ ℓ⊥, it is needed to ensure

√

ℓ/L‖ ≪ MA ≪ 1.
Another effect due to the finite box size is the 2D ’enslaving’ of

the 3D MHD turbulence if

ℓ⊥

L⊥

√

ℓ‖

L‖

≫
δuℓ

B0

ℓ‖

ℓ⊥

, (12)

(Nazarenko 2007), which at the injection scales becomes
(ℓ/L⊥)

√

ℓ/L‖ ≪ MA. It should be noted that if the leftmost inequal-
ity in equation (11) is satisfied, then the inequality in equation (12)
is automatically false (ℓ/L⊥ < 1).

To evaluate the finite-size effects of the computational domain on
the RD coefficient, we ran simulations with four different domain
sizes in the direction parallel to the mean magnetic field (x-direction):
L� = 16L, 8L, 4L, and 1L, keeping fixed the domain size perpen-
dicular L⊥ = 1L. To verify a possible influence of the perpendicular
domain size on the RD coefficients, we ran a comparative model with
L⊥ = 2L, keeping L� = 16L (runs set 16Lx2L-Ms0.02-low-A).
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1294 R. Santos-Lima et al.

Table 1. Runs parameters.

Runs set L�xL⊥ res. MS
a MA

b vrms/v0 Forcing k�L/2π k⊥L/2π c [t̃0, t̃1] d ν̃3, η̃3
e

16L-Ms0.32-A 16Lx1L 2048, 1282 0.32 0.8, 0.57, 1.10, 1.18, A [0, 4] [3, 4] [3, 8] 1.8 × 10−9

0.4, 0.2 1.18, 1.22
0.1 1.33

16L-Ms0.08 16Lx1L 2048, 1282 0.08 0.8, 0.4, 1.09, 1.17, A [0, 4] [3, 4] [3, 8], [4, 9] 1.8 × 10−9

0.28, 0.2 1.11, 1.10 [7, 12], [7, 12]
0.1 1.11 [9, 14]

16L-Ms0.02-A 16Lx1L 2048, 1282 0.02 0.8, 0.4, 1.08, 1.17, A [0, 4] [3, 4] [3, 8], [4, 9] 1.8 × 10−9

0.28, 0.2 1.27, 1.04 [4, 9], [13, 18]
0.1 1.04 [15, 20]

8L-Ms0.02-A 8Lx1L 1024, 1282 0.02 0.8, 0.4, 1.09, 1.17, A [0, 4] [3, 4] [3, 8], [4, 9] 1.8 × 10−9

0.2, 0.1 0.99, 1.01 [13,18], [15,20]

4L-Ms0.02-A 4Lx1L 512, 1282 0.02 0.8, 0.4, 1.10, 1.19, A [0, 4] [3, 4] [3,8], [4, 9] 1.8 × 10−9

0.2, 0.1 0.94, 1.01 [13, 18], [15, 20]

1L-Ms0.02-A 1Lx1L 128, 1282 0.02 0.8, 0.4, 1.22, 1.19, A [0, 4] [3, 4] [3, 8], [4, 9] 1.8 × 10−9

0.2, 0.1 1.04, 1.11 [7, 12], [7, 12]

8L-Ms0.02-Ab 8Lx1L 1024, 1282 0.02 0.8, 0.4, 1.07, 1.10, Ab − [4, 5] [3, 8], [4, 9] 1.8 × 10−9

0.2, 0.1 1.09, 0.93 [10, 15], [15, 20]

8L-Ms0.02-I 8Lx1L 1024, 1282 0.02 0.8, 0.4, 1.07, 1.11, I − [3, 4] [3, 8], [4, 9] 1.8 × 10−9

0.2, 0.1 1.19, 1.19 [4, 9], [4, 9]

16L-Ms0.02-low-A 16Lx1L 1024, 642 0.02 0.8, 0.4, 1.02, 1.12, A [0, 4] [3, 4] [11, 15] 6.2 × 10−8

0.2, 0.14, 1.31, 1.43
0.1, 0.05 1.44, 1.40

0.025 1.32

16L-Ms0.02-low-A-diff2 16Lx1L 1024, 642 0.02 0.8, 0.4, 1.18, 1.28, A [0, 4] [3, 4] [4, 8] (1.2 × 10−2)f

0.2, 0.1, 1.37, 1.43

16Lx2L-Ms0.02-low-A 16Lx2L 1024, 1282 0.02 0.2 1.30 A [0, 4] [3, 4] [11,15] 6.2 × 10−8

16L-Ms0.02-hi-A 16Lx1L 2048, 2562 0.02 0.2 0.90 A [0, 4] [3, 4] [3, 5] g (5.5 × 10−11)h

aMS ≡ v0/cs is the approximate sonic Mach number of the simulations.
bMA ≡ v0/vA, 0 is the approximate Alfvénic Mach number of the simulations.
cFor the models with forcings ‘Ab’ and ‘I’, this column shows the absolute values of the vector k of the forced modes.
d[t̃0, t̃1] is the time interval used for the averages in time, in units of ℓ⊥/v0.
eν̃3, η̃3 are the hyperviscosity and hyperresistivity in units of ℓ5

⊥v0.
fNo hyperviscosity or hyperresistivity were used in these runs. This column shows the values of ν̃1 and η̃1, the viscosity and magnetic diffusivity, respectively, in units of
ℓ⊥v0. See Section 3 for more details.
gThis simulation used as initial condition a previously evolved simulation with resolution 2048, 1282.
hDue to the anisotropic resolution in this simulation, these values of ν̃3 and η̃3 refer to the terms in the hyperviscosity and hyperresistivity containing the derivatives in the
directions perpendicular to the mean magnetic field. The values of ν̃3 and η̃3 used in the terms containing the derivatives in the parallel direction are 1.8 × 10−9.

In the results presented in the next section, the analysis of
the simulations is performed after the turbulence has reached
the statistically stationary state. The analyses average quanti-
ties between times t̃0 and t̃1 shown in Table 1. Four com-
plete snapshots with equal time separation are extracted from
the simulations during this time interval (the only exception is
the model 16Lx1L-Ms0.02-hi-A, which has only two complete
snapshots).

Fig. 1 compares the distribution of the velocity modulus on
the central xy-plane for three selected runs from Table 1 at time
t̃1 (see Table 1). The three models differ only by the forcing
scheme: A (top panel), Ab (middle panel), and I (bottom panel).
All the runs in Fig. 1 have MA = 0.4. Fig. 2 depicts the same
quantity for simulations that have MA = 0.2. Observe that the
differences between the turbulent structures generated by the dif-
ferent forcings become more pronounced for smaller values of MA

(Fig. 2). For MA = 0.8 (not shown here for compactness), the
velocity distribution resulting from the three forcing schemes is
indistinguishable.

Below, we define the 2D power spectrum of the turbulence E(k�,
k⊥) in terms of the velocity u and magnetic field B as

E(k‖, k⊥) =
∑

k′

(

1

2
ρ0u∗

k′ · uk′ +
1

8π
B∗

k′ · Bk′

)

, (13)

where uk = Fk {u} and Bk = Fk {B} are the k = (k‖ + k⊥) com-
ponents of the discrete Fourier transform of u and B, respectively,
k‖ = (k · B0)B0/B

2
0 , ρ0 is the mean density, and k‖,⊥ = |k‖,⊥|. The

superscript ∗ means the complex conjugate, and the sum extends
for all the discrete modes, k′, with components in the interval
k‖ ≤ |k′

‖| < (k‖ + 1), and k⊥ ≤ |k′
⊥| < (k⊥ + 1). The 1D power

spectrum E(k⊥) is defined by

E(k⊥) =

k‖,max
∑

k‖=0

E(k‖, k⊥), (14)
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Diffusion of large-scale magnetic fields by reconnection in MHD turbulence 1295

Figure 1. Central slice (xy-plane) showing the velocity modulus distribution at the final time of the simulations. Models with identical parameters but different
forcing distributions in the k-space are compared. From top to bottom panel: A-forcing, Ab-forcing, and I-forcing. All simulations have the same Alfvénic Mach
number MA ≡ v0/vA, 0 = 0.4 and sonic Mach number MS = 0.02. See Table 1 for the complete description of the simulations parameters.

Figure 2. Same as Fig. 1, but for simulations with the Alfvénic Mach number MA ≡ v0/vA, 0 = 0.2.

such that

Eturb =
1

2
ρ0〈u

2〉 +
1

8π
〈B2〉 =

k⊥,max
∑

k⊥=1

E(k⊥), (15)

is the total turbulent energy in the system, and the brackets, 〈 · 〉,
represent average in space.

The transfer spectrum is obtained from the following procedure:
we multiply u∗

k to the Fourier transform of the momentum equa-
tion (assuming the incompressible limit by ignoring the density
variations), and we add the Fourier transform of the induction
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1296 R. Santos-Lima et al.

Figure 3. The 2D energy spectrum E(k�, k⊥) distribution in the (k�, k⊥) plane for models with different turbulence forcing schemes. All the runs have the same
sonic Mach number MS = 0.02 and domain size 8Lx1L. Each column corresponds to a different nominal Alfvénic Mach number MA, 0 ≡ v0/vA, 0. Left-hand
column: MA, 0 = 0.4. Right-hand column: MA, 0 = 0.2. From top to bottom panels: I-forcing, Ab-forcing, and A-forcing. See Table 1 for the complete description
of the simulations parameters.
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Diffusion of large-scale magnetic fields by reconnection in MHD turbulence 1297

equation multiplied by B∗

k /(4π). We denote by Tk the time derivative
of (ρ0u∗

k · uk/2 + B∗

k · Bk/8π), when we neglect the forcing and
dissipation terms

Tk = ℜ

{

ρ0u∗

k · Fk

[

(u · ∇) u −
1

4π
(∇ × B) × B

]}

−
1

4π
ℜ
{

B∗

k · Fk [∇ × (u × B)]
}

, (16)

with R denoting the real part of.
The perpendicular transfer spectrum T(k⊥) is then defined by

T (k⊥) =
∑

k′

Tk′ , (17)

with the sum extending over all the modes k′, with the perpendicular
components, k′

⊥
, in the interval 0 ≤ |k′

⊥
| < (k⊥ + 1) (see, e.g.

Alexakis et al. 2007; Alexakis 2011). The turbulence energy transfer
is given by the maximum value of T(k⊥),

Tturb = max {T (k⊥)} . (18)

As we are going to see in Section 4.2, Fig. 3 shows the normalized
2D power spectrum distribution E(k�, k⊥) for the same models
presented in Figs 1 and 2, in the left- and right-hand columns,
respectively. By observing the distribution of modes with the highest
values of energy (around 0 < k�L/2π, k⊥L/2π < 4), we can
qualitatively assess the differences between the three different forcing
schemes.

Observe that in the above definitions of energy and transfer
spectrum, we are neglecting any density fluctuations. We choose
to do so, in order to simplify the analysis and because we expect the
Alfvén modes to dominate the turbulence spectrum for the subsonic
simulations presented in this work.

4 R ESULTS

4.1 Compressibility and domain size effects

Left-hand panels of Figs 4 and 5 show the dependence of ηtf,
computed with the test-field method, with the MA resulting in the
simulations (see e.g. Schrinner et al. 2005; Brandenburg, Rädler &
Schrinner 2008). Each point in the curves corresponds to one model
in Table 1 with anisotropic forcing (A), and points with the same
shape and colour correspond to models with the same sonic Mach
number in Fig. 4, and same box size in Fig. 5. The values of the
diffusivity are normalized by the estimate of the hydrodynamical
turbulent diffusivity ηhyd = (1/3)ℓvrms, where ℓ is the injection
scale of the simulation (corresponding to the minimum wavenumber
k⊥L/2π indicated in Table 1). The Alfvénic Mach number measured
from the simulations is defined by, MA = vrms/〈vA〉, where 〈vA〉

= 〈B/(4πρ)1/2〉 is the Alfvén velocity averaged in the domain. The
quantities vrms, 〈vA〉, and ηtf represent time-averaged values of the
respective space averaged quantities.

The left-hand panel of Fig. 4 compares models with the same do-
main size 16Lx1L, but three different values of sonic Mach number,
MS = v0/cs (where cs is the isothermal sound speed of the simulation).
For MA larger than a certain value M∗

A (M∗
A ≈ 0.5, 0.4, and 0.2 for

MS = 0.32, 0.08, and 0.02, respectively), we observe the approximate
relation ηtf/ηhyd ∼ M3

A. For MA < M∗
A, this power-law dependence

with MA seems to change asymptotically to ηtf/ηhyd ∼ M2
A, with the

constant of proportionality increasing with MS. For the models with
the lowest Mach number (MS = 0.02), the value of M∗

A is closer to the
theoretical lower limit for validity of the classical weak turbulence

(equation 11). This limit is indicated by the vertical solid line in
Fig. 4.

The turbulent diffusion is naturally dominated by the motions of
the injection scales, and the decorrelation time of the velocity fields
at these scales can be expected to be directly related to the energy
transfer time shown in the right-hand panels of Figs 4 and 5. If the
break of the dependence ηtf/ηhyd ∼ M3

A around some M∗
A is caused

by a change in the regime of the turbulence cascade (see equation 6),
the behaviour of the energy transfer time τ ener (i.e. the time-scale
for the energy in the injection scale to cascade to smaller scales)
could also occur around the same values of M∗

A. We estimated τ ener

dividing the total turbulence energy Eturb = Ev + Eb, where Ev

and Eb are the kinetic and magnetic energies (in the incompressible
limit), by the maximum value of the energy transfer spectrum, Tturb

(which is approximately the energy transfer rate at the injection scale
or the turbulence injection power; see below the description of the
energy transfer spectrum, T(k⊥), in the right-hand columns of Figs 6
and 7). The right-hand panel of Fig. 4 shows the dependence of τ ener

(normalized by the estimate of the non-linear turbulence time τ nl =

ℓ/vrms at the injection scale), as a function of MA, for the same models
shown in the left-hand panel. In fact, τ ener/τ nl follows approximately
a well-defined power law in MA for MA > M∗

A, and becomes flatter
for smaller values of MA. The resulting power law does not coincide
with that in the inertial range predicted for the weak turbulence
regime, τener/τnl ∼ M−1

A . Instead, we obtain a dependency ∼ M−2
A .

Models with the same sonic Mach number, MS = 0.02, but
different domain sizes are compared in the left-hand panel of Fig. 5.
The shorter the parallel extension L� of the domain, the larger the
departure from the relation ηtf/ηhyd ∼ M3

A for MA smaller than some
M∗

A, which increases with the decrease of the domain size. The
theoretical limits for the validity of the classical weak turbulence
indicated by the vertical lines in Fig. 4 are also shown in Fig. 5. Each
colour corresponds to a different domain size (following the same
colour scheme for each set of simulations). We also observe in the
right-hand panel of Fig. 5 that for simulations with L� < 16L, the
curve for τ ener/τ nl deviates from a power law for increasing values
of M∗

A.
In the left-hand panels of Fig. 6, we present the 1D power spectrum

of the total energy, E(k⊥), for simulations with different MA. Inside
these same panels, we also show the ratio between the velocity and
the magnetic field power spectra, Eu(k⊥)/EB(k⊥). On the right-hand
column, we present the energy transfer spectrum, T(k⊥), for the
same models, normalized by Eturb/τ nl, which is the expected value
of the energy transfer spectrum in the case of strong turbulence
cascade. The presence of a plato in the energy transfer spectrum is
indicative of an inertial range, where the energy flux between scales
is constant. The flatness of T(k⊥) just after the injection scale k⊥L/2π
≈ 3–4 is important to guarantee that with the current resolution,
the energy transfer time from this scale (and therefore the velocity
correlation time) is shorter than the dissipation time. If this were
not the case, the measured ηtf could be dominated by the numerical
effective viscosity, as the velocity decorrelation time would be of the
order of the dissipation time (see equation 6). The top panels show
simulations with the highest MS = 0.32, and domain size 16Lx1L.
The middle panels show models with the smallest MS = 0.02. In
both sets, the power spectrum of the model with MA closer to unity
shows a poor inertial range (4 � k⊥L/2π � 10). For this wavenumber
interval, the normalized transfer spectrum decays roughly 10 per cent
for the model with MS = 0.02 (middle panel). As MA decreases, a
gradual steepening in the spectrum is accompanied by the decrease
in the energy transfer values at the injection scale, which is consistent
with the increase of the energy transfer time. The power-law index
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1298 R. Santos-Lima et al.

Figure 4. Magnetic diffusion coefficients ηtf measured by the test-field method (left-hand panel) and the energy transfer time τ ener ≡ Eturb/Tturb (right-hand
panel), as a function of the Alfvénic Mach number MA = vrms/〈vA〉. Simulations with the same A-forcing, the domain sizes, but different sonic Mach number
MS = vrms/cs are compared. Each point corresponds to one run in Table 1. For the parameters used in these simulations the vertical solid line indicates the lower
limit of MA given by equation (11) at the injection scale ℓ.

Figure 5. Magnetic diffusion coefficients ηtf measured by the test-field method (left-hand panel) and the energy transfer time τ ener ≡ Eturb/Tturb (right-hand
panel), as a function of the Alfvénic Mach number MA = vrms/〈vA〉. Simulations with the same A-forcing, the same sonic Mach number MS = 0.02, but different
domain sizes are compared. Each point corresponds to one run in Table 1. For each domain size (corresponding to different colour curves), a vertical solid line
indicates the lower limit of MA given by equation (11) at the injection scale ℓ.

seems to become steeper than −2 (the value predicted for the weak
turbulence regime) for the models with MS = 0.02 (middle panels).
The transfer spectra for the simulations with MS = 0.02 (middle
panel) do not reveal a clear inertial range for the models with MA =

0.2 and 0.1. None the less, the microscopic (or numerical) dissipation
does not seem to be predominant at the perpendicular wavenumbers
just above the injection wavenumber k⊥L/2π ≈ 4. We see that
the transfer spectra have not been reduced significantly until the
wavenumbers above k⊥L/2π ≈ 7. The impact of the dissipation level
close to the injection scale will be analyzed in Section 4.1 through
the comparison of models with different perpendicular resolutions.
The bottom panels show models with MS = 0.02 and a domain size
1Lx1L, for which the validity of the classical weak turbulence has
the theoretical lowest limit around MA = 0.5. Below this value, the
power spectrum does show the steepening seen in the model with
extended domain (middle panel) with the decrease of MA, and the
transfer spectrum does not reduce substantially, which is consistent
with a non-increasing energy transfer time, confirming the previous
analysis for these models (see the right-hand panel of Fig. 5).

The ratio between the kinetic and the magnetic power spectra is
shown in the left-hand panels of Fig. 6 is approximately constant
and close to unity, except for the largest wavenumbers, inside
the dissipation range, where numerical effects dominate. When
the energy spectrum is dominated by Alfvén modes, we should
expect equipartition between the magnetic and kinetic energy spectra
inside the inertial range, following the equality between these
two amplitudes in each individual Alfvén mode. We observe this
equipartition even for our models with larger compressibility (models
16L-Ms0.32-A; see the top left-hand panel in Fig. 6).

Fig. 8 compares the 2D energy spectrum for simulations from the
same sets shown in Fig. 6. On the left-hand column the simulations
have MA = 0.4, and on the right-hand column MA = 0.2. Top and
middle panels correspond to simulations with fixed domain size, L� =

16L, but different sonic Mach numbers, MS = 0.32 (top panels), and
MS = 0.02 (middle panels). The less compressible simulations (MS =

0.02) reveal two features that are not visible in the most compressible
simulations (MS = 0.32): a suppression in the energy cascade in
the parallel direction (vertical axis) and steepening of the energy
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Diffusion of large-scale magnetic fields by reconnection in MHD turbulence 1299

Figure 6. The energy spectrum E(k⊥) (left-hand column) and the energy transfer spectrum T(k⊥) (right-hand panel). The ratio between the velocity and the
magnetic power spectra is also shown in the energy spectrum plots. In each panel, models from Table 1 with different Alfvénic Mach numbers MA are represented
by curves with different colours. Top panel: models with sonic Mach number MS = 0.32 and domain size 16Lx1L; middle panel: models with MS = 0.02 and
domain size 16Lx1L; bottom panel: models with MS = 0.02 and domain size 1Lx1L. The power laws ∝ k

−5/3
⊥ and ∝k−2 are also depicted for comparison in

the left-hand panels. The grey area covers the wavenumbers range 4 < k⊥L/2π< 10 for which the transfer spectrum is approximately constant and close to its
maximum value.
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1300 R. Santos-Lima et al.

Figure 7. The energy spectrum E(k⊥) (left-hand column) and the energy transfer spectrum T(k⊥) (right-hand panel) for models with different turbulence forcing
schemes. The ratio between the velocity and the magnetic field power spectra for each model is shown inside the energy spectrum plots. In each panel, models
from Table 1 with different Alfvénic Mach numbers MA are represented by curves with different colours. All the runs have the same sonic Mach number MS

= 0.02 and domain size 8Lx1L. Top: isotropic forcing scheme I; bottom panel: anisotropic forcing scheme Ab. The power laws ∝ k
−5/3
⊥ and ∝k−2 are also

depicted for comparison in the left-hand panels. The grey area covers the wavenumbers range 4 < k⊥L/2π< 10 for which the transfer spectrum is approximately
constant and close to its maximum value.

spectrum in the perpendicular direction (horizontal axis) when MA

decreases. Both features are expected to emerge in the weak turbu-
lence regime in the limit of incompressible MHD (Afvén waves tur-
bulence). The bottom panels of Fig. 8 correspond to simulations with
the same compressibility as the middle panels (MS = 0.02), but with a
shorter domain size in the parallel direction L� = 1L. The two features
described above for the simulations with larger domain size are
clearly weaker in the simulations with shorter domain, which are out
of the limit given by equation (11) (at least near the injection scale).

We note in Fig. 8 that the energy distributions in the parallel
direction (vertical axis) present some peaks or ’steps’. This effect
becomes stronger in the right-hand panels, for which the mean
magnetic field is stronger (smaller MA). These peaks appear around
the parallel wavenumbers which are harmonics of the wavenumber
where the forcing amplitude is maximum, k�L/2π = 4 (see Table 1).
We attribute this feature to the peaked distribution of the forced
modes on the parallel wavenumbers for the A-forcing scheme.
At the same time, the wave-turbulence character becomes more
pronounced when the mean magnetic field is stronger. Non-linear
coupling between triads of Alfvén waves naturally generates the

higher order harmonics. The presence of these same harmonics in the
energy spectrum was also pointed out in Ghosh et al. (2009), for the
turbulence produced by a spectrum of Alfvén waves containing only
one discrete parallel frequency (monochromatic) combined with
quasi-2D MHD modes (nearly zero Alfvén frequency) which has no
broad enough spectrum around k� = 0. In Fig. 3 (discussed in the next
subsection), it is shown that these steps are much less pronounced in
the simulations with the Ab-forcing scheme, which has a broader and
smoother distribution of amplitudes in the parallel wavenumbers.
In this case, the non-linear coupling of waves involving a broader
spectrum is enough to ’fill’ the gaps around the peaks seen before.
Therefore, while the presence of the steps in the parallel spectrum
of the simulations with the A-forcing makes the wave character of
the turbulence visible, the resulting magnetic field diffusion and
energy transfer time are not different from the models employing
the Ab-forcing scheme, where the parallel spectrum is smooth.

Fig. 9 shows, for the same set of simulations presented in Figs 4
and 5, the dependence of the ratio between the amplitude of the
2D component of the solenoidal velocity field, 〈v2D, sol〉 and the
total rms velocity vrms, with MA. We calculate v2D,sol from the
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Diffusion of large-scale magnetic fields by reconnection in MHD turbulence 1301

Figure 8. The 2D energy spectrum E(k�, k⊥) distribution in the (k�, k⊥) plane. Each column corresponds to a different nominal Alfvénic Mach number MA, 0

≡ v0/vA, 0. Left-hand column: MA, 0 = 0.4. Right-hand column: MA, 0 = 0.2. Top row: domain size L� = 16L and sonic Mach number MS = 0.32. Middle row:
domain size L� = 16L and sonic Mach number MS = 0.02. Bottom row: domain size L� = 1L and sonic Mach number MS = 0.02. See Table 1 for the complete
description of the simulations parameters.
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1302 R. Santos-Lima et al.

Figure 9. Ratio between the rms value of the 2D component of the solenoidal velocity 〈v2D, sol〉 and the total rms velocity vrms, as a function of the Alfvénic Mach
number MA = vrms/〈vA〉. Left-hand panel: simulations with different sonic Mach numbers MS = v0/cs are compared. The right-hand panel: simulations with
the same MS = 0.02, but different domain sizes are compared. Each point in the curves corresponds to a model in Table 1. For each domain size (corresponding
to different colour curves on the right-hand panel), a vertical solid line indicates the lower limit of MA given by equation (11) at the injection scale ℓ.

Fourier components of the velocity field, vk, by removing the vector
components parallel to both k and B0 (that is, the vector components
which are either potential or parallel to the mean magnetic field),
and finally keeping only the modes for which k� = 0). The 2D
velocity components are not excited by the A-forcing scheme, but
they naturally develop in the system from the wave interactions. In the
WTT, the 2D modes are required as one component in the three-wave
resonant interactions (although they can exist only in finite-sized
domains). As these velocities do not bend the magnetic field, they
can easily mix the field lines in the perpendicular direction, similar to
hydrodynamical motions (η2D ∼ ℓv2D), dominating the diffusion rate.
Similar to Fig. 4, the left-hand panel of Fig. 9 compares simulations
with the same domain size 16Lx1L, but different compressibility
(MS). Analogous to the behaviour of ηtf for MA > M∗

A, the values
of 〈v2D, sol〉/vrms converge to an approximate power law in MA, and
deviate from this trend for MA < M∗

A (M∗
A ≈ 0.5, 0.4, and 0.2 for MS

= 0.32, 0.08, and 0.02, respectively; we see that these values of M∗
A

correspond to the value of MA above which the energy transfer time
follows the dependence τ ∝ M−2

A , as seen in the right-hand panel
of Fig. 4). None the less, this analysis should be taken with caution
because of the short range of values of the ratio 〈v2D, sol〉/vrms and the
statistical uncertainties generated by the fluctuations in the curves.
Following the trend of ηtf, 〈v2D, sol〉/vrms also increases with MS. The
right-hand panel of Fig. 9 compares simulations with the same MS =

0.02, but different domain sizes. In this case, all the sets of simulations
show a similar qualitative behaviour, i.e. 〈v2D, sol〉/vrms increases with
MA. The magnitude of each curve is inversely proportional to the
square root of L�. In summary, the magnitude of 〈v2D, sol〉 follows
qualitatively that of ηtf, but the dependence of the diffusivity with
MA is stronger for ηtf. There is no direct evidence that the mix caused
by the 2D motions dominates the turbulent diffusivity, even for MA

below M∗
A, for the simulations presented in Figs 4 and 5.

In order to quantify the amount of turbulent energy in compressible
modes for the simulations, for each wave vector in the Fourier
space we performed the projection of the MHD variables on to
the magnetosonic slow and fast eigenvectors. Fig. 10 compares, for
the same set of models presented in Fig. 9, the ratio between the
turbulent energy in each magnetosonic mode (slow and fast) and
the total turbulent energy, as a function of MA. The left-hand panel
compares models with different MS and fixed domain size 16Lx1L.
For the most incompressible run set (MS = 0.02), the relative energy

in the slow modes is nearly constant with the different values of MA,
keeping close to 0.5, and increases slightly with the decrease of MA.
The relative energy in the fast modes is about two orders of magnitude
below that in the slow modes, and decreases slowly with the decrease
of MA. Only for the simulation with the smallest value of MA there is
a sudden increase in the relative energy of the fast modes. The orther
sets of simulations, with larger values of MS, show a trend for the
decrease in the relative energy of the slow modes with the decrease
of MA, at the same time that the relative energy of the fast modes
increases. For the most compressible simulation (MS = 0.32), for
the smallest values of MA the energy in the fast modes overpass the
energy of the slow modes. The right-hand panel of Fig. 10 compares
models with fixed MS = 0.02 but different domain sizes. All sets of
simulations behave similarly to the model with the largest domain
size shown in the left-hand panel.

4.2 Forcing effects

All the results described so far were derived from simulations using
the turbulence forcing anisotropically distributed in the Fourier space
(A-forcing). In order to test the sensitivity of these results to the
forcing scheme, we have repeated the simulations with MS = 0.02 and
domain size 8Lx1L using two alternative forcings, one isotropically
distributed inside a spherical shell in the k-space (I-forcing), and
another where the amplitude of the modes inside a spherical shell
are concentrated around k�/k⊥ = 1 using the modulation factor
∝(k�k⊥/k2) (Ab-forcing). This last forcing scheme can be thought
as intermediate between the extreme A- and I-forcing cases (such as
described in Section 3.1).

The left-hand panel of Fig. 11 shows that for simulations with the
I-forcing, ηtf is essentially independent of MA for MA < M∗

A = 0.2.
Above M∗

A, this dependence follows a power law, ηtf/ηhyd ∼ M−1
A ,

which is much weaker than the observed for the A-models, where the
power low dependence is ∼ M−3

A . The Ab-models behave similar to
the A-models, with scaling of ηtf/ηhyd between ∼ M−3

A and ∼ M−2
A .

In the right-hand panel of Fig. 11, we see that the energy cascading
times, τ ener, around the injection scale, ℓ, for the Ab-models are
almost identical to those of A-models, at least for MA > M∗

A. In
contrast, the increase of τ ener with the decrease of MA for the I-
models is much slower than that for the A-models.
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Diffusion of large-scale magnetic fields by reconnection in MHD turbulence 1303

Figure 10. Ratio between the energy in each magnetosonic component of the turbulence and the total turbulent energy Eturb as a function of the Alfvénic
Mach number MA = vrms/〈vA〉. The continuous lines are for the energy in the slow modes Eslow, and the dashed lines are for the energy in the fast modes
Efast. Left-hand panel: simulations with different sonic Mach numbers MS = v0/cs are compared. The right-hand panel: simulations with the same MS = 0.02,
but different domain sizes are compared. Each point corresponds to a model in Table 1. For each domain size (corresponding to different colour curves on the
right-hand panel), a vertical solid line indicates the lower limit of MA given by equation (11) at the injection scale ℓ.

Figure 11. Magnetic diffusion coefficients ηtf measured by the test-field method (left-hand panel) and the energy transfer time τ ener ≡ Eturb/Tturb (right-hand
panel), as a function of the Alfvénic Mach number MA = vrms/〈vA〉. Simulations with different turbulence forcing schemes are compared. All the runs have the
same sonic Mach number MS = 0.02 and domain size 8Lx1L. Each point corresponds to a model in Table 1. For the parameters used in these simulations, the
vertical solid line indicates the lower limit of MA given by equation (11) at the injection scale ℓ.

The turbulence energy spectrum E(k⊥) for the simulations with I-
and Ab-forcing are shown in the left-hand column of Fig. 7. Their
respective energy transfer spectrum, T(k⊥), are shown in the right-
hand column. We do not notice the steepening of the energy spectrum
with the decrease of MA for the I-models as seen in the Ab-models
and A-models (Fig. 6). Considering the analysis of both, the energy
cascading time (right-hand panel of Fig. 11) and the energy transfer
spectrum (right-hand panel of Fig. 7), there is a difference between
the I-models and the k-anisotropic forcing models A and Ab. Note
that all the forcing schemes produce similar energy spectrum for MA

= 0.8, therefore, the difference is manifested only in the presence of
strong magnetic fields.

The 2D energy spectrum, E(k�, k⊥) for simulations with the
different forcing schemes are compared in Fig. 3. The top, middle and
bottom panels correspond to the I-, Ab-, and A-forcings, respectively.
Simulations in the left-hand column have MA = 0.4, and in the
right-hand column MA = 0.2. We note that substantial differences
between models with different forcing become evident for smaller

values of MA. The 2D energy spectrum for values of MA closer
to unity is almost indistinguishable (not shown). The k-anisotropic
models (middle and bottom panels) show steepening in the energy
distribution in the perpendicular direction (horizontal axis), while this
effect is not observed in the simulations with I-forcing (top panels).
In all the cases, we observe a sharp steepening of the spectrum in the
parallel direction (vertical axis) for MA = 0.2.

With exception of the I-cases, the dependence of the diffusiv-
ity ηtf with MA for all the simulations with different forcings
seems to be closely related to the behaviour of τ ener with MA.
Indeed, the left-hand panel of Fig. 12 shows that the values of
〈v2D, sol〉/vrms for the I-models are much larger compared to the
other forcing schemes. There is no surprise in this fact, as the 2D
velocity modes are only forced in the I-models. These high 2D
velocities can explain the diffusivity observed in the I-models, as
ηtf/ηhyd ∼ 〈v2D, sol/vrms〉.

Finally, the right-hand panel of Fig. 12 compares the relative
turbulent energies in the magnetosonic slow and fast modes for
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1304 R. Santos-Lima et al.

Figure 12. Ratio between the rms value of the 2D component of the solenoidal velocity 〈v2D, sol〉 and the total rms velocity vrms (left-hand panel), and the ratio
between the energy in each magnetosonic component of the turbulence and the total turbulent energy Eturb (right-hand panel), as a function of the Alfvénic
Mach number MA = vrms/〈vA〉. In the right-hand panel, the continuous lines are for the energy in the slow modes Eslow, and the dashed lines are for the energy
in the fast modes Efast. Models with different turbulence forcing schemes are compared in each panel. All the runs have the same sonic Mach number MS =

0.02 and domain size 8Lx1L. Each point corresponds to a model in Table 1. For the parameters used in these simulations, the vertical solid line indicates the
lower limit of MA given by equation (11) at the injection scale ℓ.

the sets of simulations with the several forcings. No appreciable
difference is observed between them.

4.3 Resolution effects and convergence

Fig. 13 compares the model 16L-Ms0.02-A having resolution 2048
x 1282 with the models 16L-Ms0.02-low-A and 16L-Ms0.02-hi-A,
with identical parameters but resolutions 1024 x 642 and 2048 x
2562, respectively. In order to make the higher resolution run feasible
with the computational power we have available, the models 16L-
Ms0.02-hi-A have twice the resolution only in the perpendicular
direction to the uniform magnetic field. In the regime of weak
turbulence, we expect (based on the theory) the non-linear energy
transfer (turbulence cascade) to be more important in this direction,
at least close to the injection scale.

Moreover, in Fig. 13, we compare the low-resolution models 16L-
Ms-0.02-low-A with other two models, 16Lx2L-Ms-0.02-low-A,
and 16L-Ms0.02-low-A-diff2. The first of these models has double
domain size in the direction perpendicular to the mean magnetic
field L⊥, that is, it has the ratio L⊥/ℓ⊥ increased by a factor of two
compared to the models 16L-Ms0.02-low-A. The other models, 16-
Ms-0.02-low-A-diff2, have the hyperviscosity and hyperdiffusivity
replaced by the standard viscosity and resistivity, respectively (see
the description of these microscopic diffusive terms in Section 3).

The minimum MA below which the 3D MHD turbulence becomes
‘enslaved’ to the 2D modes is theoretically predicted to depend on
the ratio L⊥/ℓ⊥ (Nazarenko 2007; see equation 12). This minimum
MA is indeed below the value delimiting the validity of the WTT,
which we have marked in our plots. Therefore, based on theory
only, we should not expect differences in the turbulence regime
between the models 16L-Ms-0.02-low-A and 16Lx2L-Ms-0.02-low-
A. None the less, because these theoretical expressions give only
order of magnitude estimates, we present this convergence test for
the perpendicular size of the domain, in order to check whether or
not the length used in all the previous analyses influences our results.

The transport rate of large-scale fields via RD is expected to
be dominated by the statistics of the larger scale motions of the
turbulence. Since the Reynolds and the magnetic Reynolds numbers

of the turbulence flow are much larger than unity, the microphysics
describing the diffusion mechanism (as for example AD, ohmic resis-
tivity, anomalous resistivity, or even ’numerical diffusivity’) should
not have impact on the magnetic field diffusion coefficient (see equa-
tion 6). However, if the diffusion mechanism can somehow change
the statistics of the turbulence close to the injection scale, then it can
influence the RD process. The comparison between models 16L-Ms-
0.02-low-A and 16L-Ms0.02-low-A-diff2 aims to check if the hy-
perviscosity and hyperresistivity, used in all the other models in this
work, could have some effect on the magnetic diffusivity coefficients.

The upper left-hand panel Fig. 13 shows the diffusion coefficients
ηtf as a function of MA (see also left-hand panel of Fig. 4). The
scaling laws are similar for the different resolutions. The change
in the domains size L⊥ also does not results in important changes
in ηtf. Finally, the results of the models using standard viscosity
and hyperdifusivity (16L-Ms0.02-low-A-diff2) show no noticieable
differences.

The low-resolution models 16L-Ms-0.02-low-A contain runs with
values of MA below the line indicating the lower limit of MA given
by equation (11) at the injection scale ℓ. This extension shows more
clearly the asymptotic change of the power-law dependence with MA

from ηtf/ηhyd ∼ M3
A to ηtf/ηhyd ∼ M2

A, as seen in the models with
standard resolution of this work (see Figs 4 and 5).

The top right-hand panel of Fig. 13 compares the normalized
energy transfer time from the injection scale, τ ener, for these sim-
ulation sets (see also right-hand panel of Fig. 4). We observe that
the curve for the set of simulations with lower resolution is slightly
steeper, with the power-law index in MA between −2 and −3 (for MA

larger than some M∗
A, below which the curves become almost flat).

This difference of power laws in τ ener probably reflects the almost
imperceptible steeper power law in ηtf for the lower resolution model
(top left-hand panel). The break in the curve showing the change in
the dependence of τ ener with MA (at M∗

A) is not evident in the runs
set employing standard viscosity and resistivity.

Some small differences between the compared models are also
visible in the lower left-hand panel of Fig. 13, which depicts the
relation between 〈v2D, sol〉/vrms and MA (see also Fig. 9). The higher
resolution models have relatively more energy in the 2D modes
(although the maximum difference is still less than a factor of 2).
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Diffusion of large-scale magnetic fields by reconnection in MHD turbulence 1305

Figure 13. Comparison between models with different numerical resolution (16L-Ms0.02-A, 16L-Ms0.02-low-A, 16L-Ms0.02-hi-A). In addition, models
16L-Ms0.02-low-A are compared with identical counterpart models differing only by the length of the domain perpendicular to the uniform magnetic field
(16x2L-Ms0.02-low-A), or by the replacement of the hyperviscosity and hyperresistivity by the standard viscosity and resistivity (16L-Ms0.02-low-A-diff2).
The plots show different quantities versus the Alfvénic Mach number MA = vrms/〈vA〉. Top left-hand panel: magnetic diffusion coefficients ηtf measured by the
test-field method. Top right-hand panel: energy transfer time τ ener ≡ Eturb/Tturb. Bottom left-hand panel: ratio between the rms value of the 2D component of
the solenoidal velocity 〈v2D, sol〉 and the total rms velocity vrms. Bottom right: ratio between the energy in each magnetosonic component of the turbulence and
the total turbulent energy Eturb. The continuous lines are for the energy in the slow modes Eslow, and the dashed lines are for the energy in the fast modes Efast.
All the runs have the same sonic Mach number MS = 0.02 and domain size 16Lx1L. Each point corresponds to a model in Table 1. For the parameters used in
these simulations, the vertical solid line indicates the lower limit of MA given by equation (11) at the injection scale ℓ.

Interestingly, when comparing the energies in the magnetosonic
modes for the two resolutions (bottom right-hand panel of Fig. 13),
we notice that the lower resolution runs show the same increase in
the energy of the fast modes seen in the medium-resolution ones
for the smallest values of MA. None the less, this increase happens
for higher values of MA in the lower resolution run, contrary to the
reduction in the 2D solenoidal velocity fields.

All the comparisons in Fig. 13 suggest that the results for the
simulations with the standard resolution (models 16L-Ms0.02-A,
having the same cells-size employed in all the simulations presented
before in this section) may be close to convergence with respect to the
numerical resolution, at least for ηtf in the interval of MA considered.
Also, the results discussed in the previous sections seem not to be
sensitive to changes in the domain size in the direction perpendicular
to the mean magnetic field or to the use of the microscopic
hyperdiffusivities instead of the standard dissipative terms.

We should also mention that the microscopic resistivity employed
in the induction equation of the test-fields (see Appendix A) is the
standard resistivity instead of the hyperresistivity employed in the

main induction equation. The test-field magnetic diffusivity was
kept fixed for all our simulations η1 = 1.2 × 10−2 ℓ⊥v0 (a value
relatively high in order to keep the test-fields smooth for longer
times). As discussed in the beginning of this section, we do not
expect the microscopic terms to influence the diffusion rate of
the large-scale magnetic field. None the less, in order to verify if
this inconsistency between the microscopic resistive terms could
influence the measurement of the turbulent magnetic diffusivity
ηtf, we repeated the run 16L-Ms0.02-low-A, MA = 0.4, using
hyperresisitivity for the test-fields. The result for ηtf (not shown
here) revealed no difference.

5 D ISCUSSION

The diffusion coefficient predicted by the RD theory in the sub-
Alfvénic regime has been derived for the scenario of purely Alfvénic
turbulence (i.e. the incompressible limit) in the weak regime. In
addition, the scaling laws of the inertial range are assumed to be
valid also at the injection scale, as the largest scale motions are
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1306 R. Santos-Lima et al.

responsible for the diffusion rate. The analysis of our simulations
does not evince, entirely, the development of weak turbulence. The
resolution available does not allow the analysis of the power-law
index of the turbulence spectrum, usually employed to characterize
the turbulence. However, our estimate of the energy transfer rate
at the injection scales shows a dependence ∝ M−α

A converging to
α = 2−3, which is much stronger than what is expected by the
WTT at the inertial range, α = 1. It should be pointed out that,
to our knowledge, there are no results in the literature showing a
simulation of forced MHD turbulence reproducing clearly the results
of the WTT. However, Meyrand, Kiyani & Galtier (2015) (see also
Meyrand et al. 2018) identified the WT regime at scales well below
the outer scale in a simulation of decaying turbulence. Employing a
spectral MHD code, Perez & Boldyrev (2008) performed simulations
of forced reduced MHD turbulence and observed a perpendicular
power spectrum consistent with the WTT when the injection is
performed in a broad range of parallel wavenumbers, although far
from the scenario of isotropic injection. From the observational side
there is no clear evidence of the MHD WT until the date. The only
observation that could be consistent with the WTT is the power
spectrum of one of the magnetic field components in the Jupiter’s
magnetosphere (see Saur et al. 2002).

Despite the lack of numerical simulations of forced MHD tur-
bulence demonstrating the development of the WT for the cascade
immediately from the isotropic injection scale and below, there are
several studies (e.g. Alexakis 2011, 2013; Bigot & Galtier 2011) ex-
ploring forced turbulence in the sub-Alfvénic regime, with isotropic
forcing (i.e. strong turbulence is not imposed by anisotropic forcing).
These studies show the effects of limited box sizes, such as the devel-
opment of a 2D dominated cascade, inverse cascade, and the influence
of different types of forcing (selection of modes in the k-space), but
none of them was able to reproduce the WT power spectrum.

In summary, although the WTT for Alfvén waves is relatively
well founded, it seems challenging to produce simulations of forced
MHD turbulence in this regime in order to test theories based on
the WT scenario (as for example the predictions related to turbu-
lent reconnection, RD, and cosmic-ray diffusion). Besides, robust
observational evidence of the MHD WT in nature is still missing.

The simulations presented in this study are not incompressible.
However, we kept the induced turbulence subsonic and, although the
dominance of the Alfvén waves in the energy spectrum, some level of
magnetosonic waves is seen. The compressible code employed (the
PENCIL CODE) has the advantage to have implemented the test-field
method tested in a large number of studies to measure with precision
the turbulent diffusion coefficient of the magnetic field. Although
the scenario of the RD theory in purely incompressible, some degree
of compressibility is expected in the turbulence in astrophysical
environments (as for example, in star-forming regions of molecular
clouds). There is still no theory of weak turbulence for a compressible
MHD gas. The cascade of fast modes is weak2 at least in subsonic
turbulence (see Cho & Lazarian 2002). Slow modes only cascade
fast in the presence of strong Alfvénic turbulence. In the future, it
is important to confirm our conclusions for the validity of the RD
diffusivity prediction in the asymptotic incompressible limit using
for example a spectral MHD code.

2Weak here means that the interactions decrease with the amplitude of the

waves, i.e. ∼ vℓ/

√

c2
s + V 2

A, where cs is the sound velocity. The correspond-

ing spectrum corresponds to ∼k−3/2. The simulations in Kowal & Lazarian
(2010) show that the power spectrum of fast modes can be shock-like, i.e.
∼k−2. The latter result still requires further studies with other codes.

In view of all the points raised above, we cannot discard that
the turbulence regime developed in our simulations is intermediary
between the asymptotic weak and strong limits. This issue can only
be investigated by further analysis of simulations with improved res-
olution. At present, our simulations do not have a clearly identifiable
inertial range, although our analysis of the energy transfer spectrum
indicates that the numerical dissipation at the injection scales (where
the magnetic diffusivity is produced) operates at a rate lower than
the cascade/decorrelation rate.

It is therefore surprising that, despite the turbulence statistics of
our simulations cannot be directly related to the scenario of the RD
theory, we still obtain results close to the predictions (at least when
we consider the setups more suitable for the development of the WT).

It is also clear that compressibility modifies the dependence of the
diffusion with MA, making the diffusion rate closer to the dependence
expected when turbulence is in the strong regime (i.e. when the
critical balance ℓ�/va ∼ ℓ/δuℓ is satisfied), and we have τ casc ∼

(ℓ/δuℓ) in equation (6). In this situation the RD prediction would
modify equation (7) to ηRD ∼ D⊥ ∼ ℓδuℓ min

(

1, M2
A

)

. However,
because the amplitude of the 2D modes of the velocity field increases
with the sonic Mach number, it was not possible to disentangle their
effects. It remains to explore the turbulent diffusivity in the presence
of turbulence more strongly compressible, which is more realistic,
e.g. for the ISM. It could be performed by implementing the test-field
method in a compressible, shock-capturing MHD code.

Two different forcing schemes for the anisotropic amplitude
distribution produced rather similar results. Therefore, the results
are apparently not very sensitive to the details of the ’k-anisotropic’
forcing, provided that the amplitude of the forced modes decreases
to zero when the parallel wavenumber goes to zero. One way to
strengthen this conclusion in the future would be to repeat this study
using a different scheme for driving the turbulence. One particularly
interesting scheme consists of inducing random distributions of finite
eddies directly in real space. This method was introduced in Kowal
et al. (2012), where it was shown to produce the same turbulent
reconnection rates as numerical simulations with forcing controlled
by their Fourier components (as is done in this work).

Our results show that the power in the 2D modes, which can
eventually dominate the turbulence cascade or dominate the diffusion
of the magnetic field, are only controlled when using anisotropic (in
k-space) forcing schemes with domains sufficiently elongated in the
direction parallel to the mean magnetic field. These results are in
agreement with the theoretical limits presented in Nazarenko (2007).

A systematic study of the turbulent diffusivity for sub-Alfvénic
turbulence with a mean magnetic field has been carried out in Karak
et al. (2014, hereafter K14). This work also employed the PENCIL

CODE with the test-field method to measure the diffusion coefficients.
One of the setups studied in K14 uses non-helical random forcing,
exciting modes isotropically in the k-space. With a square domain and
values extremely low of MA, the turbulent regime in their simulations
could, at least theoretically, be in the discrete WT regime and
enslaved to the 2D cascade (Nazarenko 2007; see equations 11–12).
The dependence of the diffusion coefficient with MA observed in K14
(described as a quenching) is close to M−1

A for 0.05 � MA � 1, i.e.
similar to that we observed in our simulations with isotropic forcing.
For the smallest values of MA, the dependence with of ηturb with MA

disappears, which is expected when the diffusion is dominated by
the 2D velocity modes. We can interpret the results of these authors
as effects of the simulation setup, especially the domain size.

In the context of numerical simulations of turbulent reconnection,
the increase of the reconnection rate could also arise as an artefact of
the limited domain size. According to the discussion in the previous

MNRAS 503, 1290–1309 (2021)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
3
/1

/1
2
9
0
/6

1
4
4
5
9
4
 b

y
 U

n
iv

e
rs

id
a
d
e
 F

e
d
e
ra

l d
e
 M

in
a
s
 G

e
ra

is
 u

s
e
r o

n
 1

3
 N

o
v
e
m

b
e
r 2

0
2
3



Diffusion of large-scale magnetic fields by reconnection in MHD turbulence 1307

paragraphs, in order to avoid this effect, the domain size in the
direction parallel to the large-scale magnetic field has to be large
enough in these numerical studies.

The present study also calls for a re-evaluation of the transport
coefficients in the large-scale dynamo context (for example for
helical turbulence), taking into account all role of compressibility
and domain size of the simulation. It is not clear if the same effects
also affect the local simulations aimed to extract the mean-field
coefficients in the convective layer of the Sun or in accretion discs.

The present study supports the predictions of the RD theory at
least in the incompressible limit, but it also points to an increase
of the diffusivity rate due to the compressibility of the turbulence,
alleviating the strong suppression caused by the mean magnetic field.
The RD mechanism has been proposed (Lazarian 2005) and tested
successfully (at least qualitatively) to solve problems related to star
formation: the magnetic flux problem (Santos-Lima et al. 2010; Leão
et al. 2013) and the magnetic braking catastrophe (Santos-Lima et al.
2012, 2013; González-Casanova et al. 2016). Lazarian, Esquivel
& Crutcher (2012) conclude from observations of molecular cloud
cores that the mass-to-flux ratio of supercritical cores, compared to
their envelopes, are more consistent with the transport of magnetic
flux via RD than ambipolar diffusion (AD). More recent works on
simulations of star formation processes, encompassing scales from
molecular cloud clumps down to protostellar discs through the use
of adaptive mesh, try to disentangle the role of other mechanisms
that could solve these problems as well, like the misalignment
of the angular momentum of the protostellar disc and the mean
magnetic field (Joos, Hennebelle & Ciardi 2012; Joos et al. 2013), the
interchange instability, and the AD (see, e.g. Hennebelle & Inutsuka
2019 and references therein). These studies in general do not quantify
the turbulent magnetic flux transport (due to the inherent difficult to
perform this measurement), and it is far from clear if their resolution
is able to represent the RD in these global simulations. For example,
Lam et al. (2019) concluded that only a combination of turbulence
and AD (each one dominating in different phases and/or regions)
can allow the formation of rotationally supported protostellar discs
which persist for sufficiently long times. We remark, however, that the
combination ’turbulent AD’ is an inconsistent concept: when there
is turbulence, this means that the AD is subdominant; if AD is very
strong, there is no turbulence (see a more complete discussion in the
recent review by Lazarian et al. 2020). The setting and interpretation
of such global simulations depend on a full understanding of the RD
mechanism driven by turbulence and the numerical simulation setup
effects that can interfere in the RD diffusivity. The present study
provides a contribution in this direction. Further study of the RD in
the presence of gravity are required as the properties of turbulence
can be modified by gravity. In fact, Santos-Lima et al. (2010) found
some evidence that the transport of magnetic flux via RD increases
with the intensity of the gravitational potential.

6 SU M M A RY A N D C O N C L U S I O N S

In this work, we tested numerically the dependence of the magnetic
diffusion coefficient provided by reconnection induced by turbulence
(RD) with the Alfvénic Mach number of the turbulence. In all our
3D MHD simulations we imposed an initially uniform magnetic field
and focused on the sub-Alfvénic regime. The turbulence is forced
isotropically in the space. Although we envision applications of the
results, e.g. to studies of the role of the RD during star formation,
inside molecular clouds where turbulence is expected to be trans-
sonic or supersonic (Santos-Lima et al. 2010; Santos-Lima et al.
2012, 2013; Leão et al. 2013; González-Casanova et al. 2016), in this

study we have focused only in the subsonic case. The motivation is
the direct comparison with the current RD theory, built on the scaling
laws provided by the Alfvénic turbulence in the weak regime (for
sub-Alfvénic isotropic injection). We employed the PENCIL CODE

with the test-field method to extract the average diffusion coefficient
from the simulations.

The RD theory assumes that the inertial range scale laws of the
WTT can be extended to the injection scales, leading to a diffusion
coefficient η proportional to the hydrodynamical value multiplied by
the third power of MA, when MA < 1. We found no clear evidence
of the development of the weak turbulence regime in our numerical
simulations. In particular, the cascading time ∝ M−1

A from the WTT
at the injection scale is not observed in any of our model sets. Due
to limited resolution and the fast increase of the cascading time with
the increase of the magnetic field intensity, our simulations do not
show appreciable inertial range to allow a robust determination of the
power-law index of the power spectrum. None the less, the diffusion
coefficients we obtain seem to be consistent with the RD prediction
η ∝ M3

A when the domain size parallel to the uniform magnetic field
is large enough to avoid the finite box size effects (see Nazarenko
2007 in the framework of reduced MHD) and the sonic Mach number
small enough (MS � 0.02). For smaller boxes and bigger values of
MS, we observed a dependence of η more consistent with M2

A, which
could be the expected dependency in the strong cascading regime.

In the future, we will investigate both the incompressible limit
to confirm the validity of the RD theory in a larger interval of MA,
and also the diffusivity provided by supersonic turbulence which is
more realistic for star-forming environments. At the same time, more
numerical investigation is necessary for the weak turbulence regime,
as it is not yet clearly reproducible in direct simulations of forced
turbulence.

Due to the omnipresence of MHD turbulence in astrophysics, the
proper understanding of the turbulent diffusivity is of fundamental
importance not only in the context of star formation, but it has
also important consequences for the more general reconnection
problem, for the large-scale turbulent dynamo operating in all scales
(stars, accretion discs, galaxies; see e.g. Xu & Lazarian 2020 for a
recent study on the non-linear turbulent dynamo in a gravitationally
collapsing system which accounts for the RD effects), and for the
propagation and acceleration of cosmic rays in astrophysical media.
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Rheinhardt M., 2010, Phys. Scr., 142, 014028
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APPEN D IX A : THE TEST-FIELD METHOD

The test-field method, developed initially for spherical geodynamo
simulations (Schrinner et al. 2005), allows to compute unambigu-
ously the contribution of the small scale on the large-scale dynamics.
In mean-field analysis, this contribution is described by the electro-
motive force, 〈E〉 = 〈u′ × B′〉, where the primes denote small-scale
fields. Consider that u′ is the turbulent part of a velocity field, u,
in a given simulation, and also a set of test-fields, BT (these fields
are independent between themselves and of the magnetic field of the
simulation B), such that the evolution of B′ may be computed in
a set of partial differential equations which depends only on u and
BT . Thus, it is possible to compute the electromotive force due to the
velocity field as 〈ET 〉 = 〈u′ × BT ′〉. For mean magnetic field varying
slowly in space and time, and systems where averages in the x- and
y -directions are meaningful, it is possible to write the electromotive

force as

〈Ei〉 = αij 〈Bj 〉 − ηij 〈Jj 〉, (A1)

with, i, j = 1, 2. Thus, with the use of four test fields it is possible
to obtain the 4 + 4 components of α and η (see Brandenburg et al.
2008).

For the simulations presented in this work, without rotation and
with non-helical unstratified turbulence, the inductive terms in the
electromotive force, αij, must be zero on average. Therefore, only two
test fields would be sufficient to determine the turbulent diffusivity.
Nevertheless, we use four test fields to verify the existence of other
turbulent effects. These are given by

B
1c

= B0(cos kz, 0, 0), B
2c

= B0(0, cos kz, 0),

B
1s

= B0(sin kz, 0, 0), B
2s

= B0(0, sin kz, 0), (A2)

where k = kz, tf = 2π/L⊥. Thus, the α-effect is given by the diagonal
components of αij, αxx = α11 and αyy = α22, while the turbulent dif-
fusion is given by ηt = 1

2 (η11 + η22). In addition, the turbulent driven
advection of the magnetic field, often called turbulent pumping, can
be measured by γ = 1

2 (α21 − α12). As expected, all the coefficients
but ηt are consistent with zero.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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