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Abstract

The observation of global acoustic waves (p modes) in the Sun has been key to unveiling its internal structure and
dynamics. A different kind of wave, known as sectoral Rossby modes, has been observed and identified, which
potentially opens the door to probing internal processes that are inaccessible through p-mode helioseismology. Yet
another set of waves, appearing as retrograde-propagating, equatorially antisymmetric vorticity waves, has also
been observed but their identification remained elusive. Here, through a numerical model implemented as an
eigenvalue problem, we provide evidence supporting the identification of those waves as a class of inertial
eigenmodes, distinct from the Rossby-mode class, with radial velocities comparable to the horizontal ones deep in
the convective zone but still small compared to the horizontal velocities toward the surface. We also suggest that
the signature of tesseral-like Rossby modes might be present in recent observational data.

Unified Astronomy Thesaurus concepts: Astrophysical fluid dynamics (101); Solar oscillations (1515); Solar
rotation (1524)

1. Introduction

The Coriolis force in any rotating fluid body, from planetary
cores and atmospheres to stars, supports the presence of inertial
waves. Rossby waves, common in Earth’s atmosphere, are a
particular subset of inertial waves. In the astrophysical
literature, Rossby waves are referred to as r-modes, while the
more general class of inertial waves are known, a bit
confusingly, as generalized r-modes (Lockitch & Fried-
man 1999). Rossby waves play a fundamental role in the
emission of gravitational waves in neutron stars (Anders-
son 1998), they have a major influence on Earth’s weather
(Michel 2011), and may be even present in the fluid cores of
terrestrial planets, affecting their global rotation (Triana et al.
2021).
Retrograde-propagating vorticity waves, symmetric with

respect to the equator, have been observed and identified a
few years ago as Rossby waves in the Sun by Löptien et al.
(2018) and further confirmed by Hathaway & Upton (2021)

and Gizon et al. (2021). This discovery is highly relevant
because the damping rate of Rossby waves is sensitive to
turbulent flows, as opposed to the acoustic (p) modes also
present in the solar convective zone. Thus, the observation and
careful characterization of solar Rossby waves might be
instrumental for the understanding of the internal solar
dynamics so far elusive for traditional p-mode helioseismology.

More recently, Hanson et al. (2022) provided observational
evidence of a distinct set of high-frequency, retrograde-
propagating (HFR) vorticity waves, penetrating at least to 3%
of the solar radius, but this time with an antisymmetric vorticity
with respect to the equator. However, the identification of these
waves was left as an open question. They do not seem to fit the

classical Rossby wave dispersion relation that, contrastingly,
worked so well for the symmetric-vorticity waves described by
Löptien et al. (2018).
In this work, we provide numerical evidence supporting the

identification of the HFR waves as a class of inertial waves,
different from the Rossby-mode class, that span the whole
convective zone depth but with dominant horizontal flows near
the outer regions. Our numerical model is based on a simplified
physical description of the convection zone, providing the
eigenvalues and eigenvectors associated with the inertial modes
that it may support.
Nonaxisymmetric (i.e., with azimuthal wavenumber m≠ 0)

inertial eigenmodes drift in longitude according to their phase
speed, so in this work we refer to them as waves or modes
interchangeably.

2. A Model For Inertial Eigenmodes

2.1. Main Description

A starting model for solar inertial oscillations can be built by
representing the solar convection zone as a spherical shell filled
with a homogeneous, incompressible, and viscous fluid. The
inner radius rc of the shell corresponds to the outer radius of the
radiative core, with a value rc∼ 0.71 R

e
(Christensen-Dals-

gaard et al. 1991), R
e
being the solar radius. The flow velocity

associated with the vorticity waves in the convection zone is
much smaller than Ω

e
rc, where Ωe

is a representative value of
the Sun’s angular speed, thus the flow velocity u can be
described to a good approximation as a small perturbation to
the uniformly rotating background flow by the linear Navier–
Stokes equation:

¶ + ´ = - + u z u up E2 . 1t
2ˆ ( )

The variables in the preceding equation are rendered

dimensionless by taking R
e
and 1/Ω

e
as the units for length

and time, respectively. We use ẑ as the unit vector along the
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solar spin axis, and p is the reduced pressure. We introduce also

the Ekman number E, defined as



n
=
W

E
r

, 2
c

eff

2
( )

where νeff is an effective or turbulent eddy viscosity. The flow

velocity u follows a time dependence described by

= +lu r u rt, e cc, 3t
0( ) ( ) ( )

where λ= (σ/Ω
e
)− i(ω/Ω

e
) is a complex number whose real

part σ/Ω
e

corresponds to the dimensionless decay rate (or

“damping” for short) and the imaginary part ω/Ω
e

to the

dimensionless eigenfrequency. We add the complex conjugate

(cc) to keep u real. Then, we write the velocity amplitude u0 in

the poloidal–toroidal decomposition:

=  ´  ´ +  ´u r r r r , 40  [ ( ) ] [ ( ) ] ( )

which automatically satisfies the incompressible continuity

equation ∇ · u= 0. We use spherical harmonic expansions for

the angular dependence of the scalar functions ,  . For

instance, we write the toroidal scalar function r( ) as
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where Yl
m are the spherical harmonics, Tlm(r) is a radial

function, and lmax determines the angular truncation level. A

completely analogous expression goes for r( ). It is sometimes

useful to further subdivide the poloidal component into a radial

part  and a consoidal part  (known also as “spheroidal”).

Their spherical harmonic components are written, respectively,
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Note that the horizontal components of the flow velocity are

related to both  and  , while the radial vorticity is related

only to  .
The spherical harmonic expansion leads to a fully decoupled

problem in the azimuthal wavenumber m, allowing us to
consider a single m at a time. If m≠ 0, inertial eigenmodes are
either retrograde or prograde, which is determined by the sign
of their phase speed ω/m. Note that the retrograde inertial
eigenmode spectrum does not coincide in general with the
prograde one. We specify stress-free boundary conditions at
both boundaries by requiring

=  =
¢ - =

= =

= =

P r P r

T r T r r
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where rb denotes the inner or the outer radius of the convective

zone and the prime (′) symbol denotes the radial derivative.
Our numerical scheme involves expansions of the radial

functions Plm(r) and Tlm(r) in terms of Chebyshev polynomials.
This allows us to write the problem represented by Equation (1)
as a generalized eigenvalue problem. For more details, see
Appendix A. Solutions can be classified according to their
equatorial symmetry, see Appendix B for a brief discussion on
the nomenclature.

The use of an incompressible and uniform density fluid in
our model might seem too drastic a simplification. However, if
the large background density gradient across the convection
zone is addressed with the anelastic approximation approach,

Equation (1) would remain almost the same except with u

replaced by ρu (thus satisfying ∇ · ρu= 0, ρ being the fluid
density). If the radial displacements are small compared to the
horizontal ones, then the difference would be mainly in the
viscous term, which has in general only a weak impact on the
modes’ frequencies. In fact, even when compared with a fully
compressible model that considers a realistic solar density
profile (such as Bekki et al. 2022, see their Figure 14), the
results of our model differ at most by 15% for m= 2, and less
than 2% for m= 16 Rossby-mode frequencies.

2.2. Choosing a Rotating Frame

In some works, wave frequencies are reported with respect to
a reference frame rotating at Ω

e
/2π= 456 nHz, known as the

Carrington frame (e.g., Gizon et al. 2021; Hathaway &
Upton 2021), or using a frame rotating at Ω

e
/2π= 453.1

nHz (e.g., Löptien et al. 2018; Hanson et al. 2022). Both
rotation rates are close to the mean rotation rate of the solar
equator (Larson & Schou 2018). A wave with azimuthal
wavenumber m and frequency ω0 observed in a frame rotating
at Ω0 has a frequency ω1= ω0+m(Ω0−Ω1) when observed
from a frame rotating at Ω1. Throughout the present work, we
use the Carrington frame, except where indicated otherwise.

3. Results

The line width Γ of the modes corresponds roughly to two
times their decay rate constant σ, in analogy with a lightly
damped harmonic oscillator. We have tuned the Ekman number
so that the mean [σ] of numerically computed modes (the HFR
candidates), from m= 8 to m= 14, matches one-half the mean
[Γ] of the observed line widths that were computed via ring-
diagram analysis of Helioseismic and Magnetic Imager (HMI)
measurements, as reported by Hanson et al. (2022; see their
Table 1, column 5). Thus, [σ]≈ [Γ]/2= 19.5 nHz is obtained
when E= 2.1× 10−4. The inertial-mode frequency spectrum is
countably dense, so there is always an inertial mode arbitrarily
close to any frequency we might choose as a target for the
eigensolver. We look for lightly damped modes with a simple
spatial structure as they are easier to excite than modes with a
more complex structure. The least-damped modes in a broad
interval around the observed frequencies are plotted in Figure 1
(blue-violet stars labeled “HFR, numerical”). These modes are
retrograde-propagating (ω< 0), have equatorially antisym-
metric radial vorticity (i.e., equatorially symmetric flow
velocity), and their dominant spherical harmonic component,
Tlm, near the outer boundary is such that l=m+ 1, matching
the corresponding characteristics of the observed HFR vorticity
waves. We have extracted the observed HFR frequencies in
Figure 1 (orange and deep-pink error bars) from Table 1 and
Table S1 of Hanson et al. (2022), transforming them to the
Carrington reference frame. For comparison, Figure 1 also
presents the sectoral Rossby-mode frequencies obtained with
our model, which we used for validation, and the sectoral
Rossby modes observed by Löptien et al. (2018). The shaded
areas in Figure 1 represent a crude estimate of the effect of the
solar differential rotation background on the eigenfrequencies,
which we assume is comparable to the variation
DW = W - Wmax min of the background rotation rate Ω(r, θ)
but restricted to the (r, θ) region where a given mode has
substantial amplitude. See Appendix C.
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With the exception of the purely toroidal inertial eigen-
modes, the eigenfrequencies are sensitive to the radial width of
the shell cavity. In Figure 2 we show the eigenfrequencies
obtained with our numerical model by considering different
convective zone widths δ, and different azimuthal wavenum-
bers m. Symbol color and size indicates s Wlog10∣ ∣, with
larger, deep-red symbols indicating modes with little damping,
which are easier to excite, and smaller, green-turquoise
symbols indicating heavily damped modes. We see in the
figure eigenmodes with small magnitude frequencies, typically
with |ω/Ω

e
|< 0.3, particularly at low m, with very little

damping. For instance, when m= 4, the least-damped mode
has a frequency of about ω/Ω

e
∼−0.2 at δ= 0.29 R

e
which

increases in magnitude for smaller δ. This class of modes has
frequencies that generally decrease in magnitude and become
more damped as m increases. These are tesseral-like Rossby
modes whose frequencies are given to a very good approx-
imation by the dispersion relation (B3) but only when the shell
cavity is thin, i.e., when δ 0.06 R

e
. The top-left panel in

Figure 2 shows the theoretical frequencies of the (l= 5, m= 4)
and the (l= 7, m= 4) Rossby modes from Equation (B3) as
horizontal orange dashed lines.

We want to draw attention now to the modes with
frequencies near ω/Ω

e
∼−0.8 for m= 4, δ= 0.29 R

e
, pro-

gressively decreasing in magnitude as m increases until
reaching ω/Ω

e
∼−0.45 at m= 15, δ= 0.29 R

e
. With the

exception of tesseral-like Rossby modes mentioned earlier,
these modes are the least damped in a wide frequency range as

evidenced by their color and symbol size in Figure 2. In the
following, we refer to these modes as the main branch. Modes
on this branch, and with δ= 0.29 R

e
, are marked with black

circles. They appear also in Figure 1 labeled as “HFR,
numerical”. A secondary branch, with higher damping and
lower frequencies in magnitude, can also be identified. It
corresponds to the branch with a mode at ω/Ω

e
∼−0.55 (for

m= 4, δ= 0.29 R
e
). Again, as m increases, their frequency

progressively decreases in magnitude until reaching
ω/Ω

e
∼−0.35 at m= 15. Modes on the main branch have

the particular property that their toroidal (l=m+ 1, m) and
their consoidal (l=m, m) components near the solar surface are
dominant, matching the observed waves, while the modes on
the secondary branch have a dominant toroidal (l=m+ 3, m)

component near the surface. In Figure 3 we present a side-by-
side comparison of the spectral amplitudes near the solar
surface (r= 0.99R

e
) between two m= 8 modes, one on the

main branch (left column panels) and one on the secondary
branch (right column panels), for δ= 0.29 R

e
.

Modes in the main branch appear mainly toroidal from the
surface, but they harbor a nonnegligible poloidal component
deep in the convective zone. The meridional cross sections in
Figure 4 (top row) illustrate this point. The color indicates the
dimensionless velocity amplitude for each spherical coordinate
direction and the amplitude of  and  (note that, as a result of
an eigenvalue calculation, the overall amplitude of the
eigensolution is arbitrary). Modes in the main branch appear
to have no radial nodes in the equatorial plane while the modes
in the secondary branch (not shown) appear to have one radial
node. This suggests that the other weaker branches visible in
Figure 2 represent branches with an increasing number of radial
nodes.
Lastly, there is a correspondence between the modes in the

main branch and a particular class of inertial modes of a full
sphere. The inertial modes in a full sphere can be computed
analytically (Greenspan 1968; Zhang et al. 2004) and can be
specified by three indices (ν, μ, κ), following the notation used
by Greenspan (1968). The modes on the main branch reduce
(when δ= R

e
) to the only retrograde eigenmodes of the full

sphere with ν=m+ 2 and κ=m. These analytical frequencies
are plotted in Figure 1 as hollow black circles.

4. Discussion

The inclusion of turbulent viscous diffusion in our model
gives us the ability to discern which eigenmodes are more
likely to be excited, although it does not tell us anything about
the excitation mechanism itself. As explained earlier, we have
tuned the Ekman number E in order to match the mean
damping rate of the m = 8,K, 14 eigenmodes in the main
branch with one-half of the mean line width of the observed
HFR waves. This amounts to an effective viscosity
νeff; 146 km2 s−1. Such relatively large viscosity prevents
the appearance of thin internal shear layers that would
otherwise appear at low viscosity, ultimately rendering the
modes singular in the limit of vanishing viscosity (Rieutord
et al. 2001). There is no direct way of measuring the value of
the effective viscosity in the solar interior. However, observa-
tional and theoretical estimates of the turbulent magnetic
diffusivity at the solar surface find values of the order of
100 km2 s−1

(e.g., Baumann et al. 2004; Abramenko et al.
2011; Skokić et al. 2019). Thus, by assuming that the turbulent
magnetic Prandtl number is about unity (Käpylä et al. 2020),

Figure 1. Observed HFR vorticity wave frequencies (relative to the Carrington
frame) from mode-coupling analysis (MCA, orange error bars) and from ring-
diagram analysis (RDA, deep-pink error bars) compared to numerical inertial-
mode frequencies for E = 2.1 × 10−4 and δ = 0.29 R

e
(blue-violet line with

stars). We include observed, numerical, and analytical sectoral Rossby-mode
frequencies (as observed in a frame rotating at Ω

e
/2π = 453.1 nHz) for

reference. Shaded areas represent the possible effect on the eigenfrequencies
induced by the solar differential rotation. See main text for further details.
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our choice is entirely consistent. Furthermore, we can combine
the 30Mm length scale for the large-scale convective flows as
proposed by Vasil et al. (2021), with the lower bound of about
10 m/s for the vertical convective velocity as estimated from
observations by Greer et al. (2016), resulting in
νeff; 300 km2 s−1. Although within an order of magnitude of
our original estimate, the foregoing calculation is admittedly

oversimplified, especially considering that the effective visc-
osity may be anisotropic and scale dependent (Rincon et al.
2017).
For low-m values (4�m� 8), the modes we find in the main

branch are the second least damped after the tesseral-like
Rossby-mode family, while at higher m the main branch
becomes the least damped. As shown in Figure 1, the observed

Figure 2. Eigenfrequencies of equatorially antisymmetric vorticity modes as a function of the radial width δ of the convective zone for different azimuthal
wavenumbers m. Color and symbol size indicates the eigenmodes’ damping decay factor σ with larger deep-red points representing lightly damped modes (more likely
to be excited), and smaller green-turquoise points representing heavily damped modes (less likely to be excited). The vertical black dashed line marks the Sun’s actual
convective zone width at δ = 0.29 R

e
. Black circles mark the modes we identify as the observed HFR waves. The horizontal orange dashed lines in the m = 4 panel

are the frequencies of the (l = 5, m = 4) and the (l = 7, m = 4) tesseral Rossby modes according to Equation (B3).
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HFR wave frequencies as measured in the Carrington frame
(rotating at 456 nHz) are a close match to the eigenfrequencies
of the inertial modes in the main branch. Note that the sectoral
Rossby-mode frequencies shown in Figure 1 are relative to a
frame rotating slightly slower at 453.1 nHz. If transformed to
the Carrington frame, the sectoral Rossby modes computed
from the dispersion relation Equation (B3) would have
frequencies systematically smaller than the observations
(relative to that frame). The fact that theoretical HFR waves
and sectoral Rossby waves both match well the observed
frequencies but only when measured in two slightly different
rotating frames is most likely a consequence of the different
solar rotation rates as “sensed” by the two kinds of waves (see
also Appendix C).

Another important piece of evidence is provided by the
spherical harmonic components. The eigenmodes in the main
branch are characterized by their large (l=m+ 1, m) spherical
harmonic component of radial vorticity near the solar surface
(see Figure 3, left column panels), precisely like the observed
HFR waves. Note that the consoidal component is also large
compared to the radial component near the surface, but the
radial vorticity observations are only sensitive to the toroidal
component (see Appendix B). Although the toroidal and
consoidal components are dominant near the surface, the radial
component can be dominant in deeper regions, but never with
as much amplitude as the other components near the surface.

It is tempting to adjust δ to match the observed frequencies
but it cannot be done consistently for all m numbers. A glance
at Figure 2 reveals that modes with low-m numbers are much
more sensitive to δ than modes with higher m. However, we
cannot rule out entirely the possibility that modes with different
m numbers “perceive” a differently sized shell cavity, perhaps
related in some way to the meridional circulation pattern in the
solar convective zone. Nonetheless, we believe that accounting
for the latitudinal differential rotation should be among the first
refinements to be investigated.

It is interesting to note that the phase speed frequency (ω/
2π)/m of the modes, in the range of 13 to 85 nHz in the

retrograde direction, opens the possibility of co-rotation
resonances of the modes with the background latitudinal
differential rotation (Baruteau & Rieutord 2013; Guenel et al.
2016). In a reference frame corotating with the solar equator,
the latitudinal differential rotation appears as a retrograde
azimuthal flow with an angular rotation rate decreasing
continuously from ;120 nHz near the poles until vanishing
at the equator. There is therefore a region in the convective
zone in which the Doppler-shifted frequency vanishes for each
mode. It is then conceivable that the modes draw their energy
from the differential rotation. That being said, there is
presumably some kind of interaction between the large-scale
convective flow and the inertial waves with comparable time
and length scales. In fact, at m> 15, the waves appear
indistinguishable from convection according to Löptien et al.
(2018). Thus, an adequate understanding of the interplay
among differential rotation, waves, and large-scale convection
is desirable.
The retrograde (l=m+ 1, m) tesseral-like Rossby modes in

our model have rather small damping rates, particularly at low
m, which makes them candidates as well to be excited and
observed. The power spectra presented by Hanson et al. (2022;
see their Figure 1) show indeed some power at low frequencies
and low-m numbers in the l=m+ 1 channel, which might
contain the signature of the tesseral-like Rossby modes.
Although it is not clear if the observed power in that region
is not caused by noise or some other artifact (e.g., sunspots; see
Appendix C of Gizon et al. 2021). These tesseral-like Rossby
modes have a ratio of toroidal to poloidal kinetic energy much
larger than one (a distinguishing feature of all Rossby modes),
in contrast to the modes in the main branch. They are mostly
columnar, with very little amplitude in the equatorial region as
Figure 4 (bottom row) shows. According to our calculations,
their spherical harmonic spectra at the surface show significant
contributions from the toroidal l=m+ 1, m+ 3, m+ 5, and
higher components, which match, at least qualitatively, the data
shown in Figure S4 of Hanson et al. (2022).

Figure 3. Comparison of two m = 8 modes, one on the main branch with ω/Ω
e
= −0.641 (left column) and one on the secondary branch with ω/Ω

e
= −0.456 (right

column). The top panels show the radial profile of the kinetic energy associated with the radial, consoidal, and toroidal components of the velocity (averaged over θ
and f, modes are normalized to have unit kinetic energy). The bottom panels show the fractional energy content of each spherical harmonic component at r = 0.99 R

e

(fractions of the total kinetic energy at that radius). The convective zone width is δ = 0.29 R
e
and the Ekman number is E = 2.1 × 10−4. Note that the (l, m) spherical

harmonic component of the radial vorticity is proportional to l(l + 1)Tlm(r)/r.
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Clearly, the dispersion relation (Equation (B3)) fails to hold
for tesseral-like Rossby modes in a deep spherical shell,
although it still holds for sectoral Rossby modes, regardless of
the shell depth. The latter are purely toroidal (i.e., purely
horizontal fluid displacements) and their frequency or damping
is essentially unaffected by the shell depth. The tesseral-like
Rossby modes with symmetric vorticity, in addition to the
sectoral ones, exhibit similar behavior as the tesseral-like
Rossby modes with antisymmetric vorticity. As demonstrated
by the m= 4 panel in Figure 2, their frequency is no longer
described by the dispersion relation in Equation (B3), and they
become increasingly damped as the shell depth increases. This
might explain the apparent lack of symmetric-vorticity modes
other than the sectoral Rossby in the analysis by Löptien et al.
(2018).
To conclude this section, we note that the Ekman number

has a strong influence on the damping rates while only a weak
influence on the eigenfrequencies. But even if the Ekman
number is reduced by an order of magnitude as shown in
Figure 5, the tesseral-like Rossby modes and the modes on the
main branch persist as the least-damped ones, and the
identification of the observed vorticity waves as modes on
the main branch remains valid.

5. Summary and Conclusion

We presented evidence supporting the identification of the

HFR vorticity waves measured recently by Hanson et al. (2022)

as a particular class of inertial modes of a deep spherical shell.

Our findings are based on a relatively simple numerical model

representing the solar convective zone as a homogeneous,

incompressible, and viscous fluid in a rotating spherical shell.

The eigenmodes of this system correspond to oscillations

where the Coriolis force is the restoring force. We recover the

Rossby-mode frequencies described by the well-known

dispersion relation (Equation (B3)) but only for sectoral

Rossby modes. We find that Rossby modes other than sectoral

are also well described by Equation (B3) but only if the depth

of the spherical shell is thin compared to its outer radius. Such a

thin fluid layer is hardly justifiable for the solar convection

zone. Notably, our model also unveils a branch of lightly

damped, retrograde-propagating inertial modes with equato-

rially antisymmetric vorticity, whose dominant spherical

harmonic components T r Ylm l
m( ) near the surface are such that

l=m+ 1, and have frequencies close to the wave frequencies

observed by Hanson et al. (2022). All of these qualities match

Figure 4. Meridional cross sections of the m = 8, ω/Ω
e
= −0.641 eigenmode on the main branch (top row), and the m = 8, ω/Ω

e
= −0.118 of the tesseral-like

Rossby-mode family (bottom row). This latter mode is essentially the same as the one reported by Bekki et al. (2022), see their Figure 11(d). Note the absence of radial
nodes of  or r u0∣ˆ · ∣ in the equatorial plane for the main branch mode. The Ekman number here is E = 2.1 × 10−4, and the convective zone width is δ = 0.29 R

e
.
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observations, leading us to an unequivocal identification of the
HFR waves.

The modes we identify with the HFR waves belong to a class
of inertial modes distinct from the Rossby-mode class.
Although their toroidal (l=m+ 1, m) component is much
larger than the radial component near the solar surface, their
poloidal kinetic energy is still comparable to the toroidal one,
as opposed to Rossby modes.

Our numerical calculations also suggest that the signature of
low-frequency tesseral-like Rossby modes with antisymmetric
vorticity might be present in the observations presented by
Hanson et al. (2022). As true Rossby modes, their kinetic
energy over the whole convective zone is mostly toroidal, in
contrast with the modes in the main branch. Near the solar
surface, the tesseral-like Rossby modes have spherical
harmonic (l, m) components with contributions from
l=m+ 1, m+ 3, m+ 5, and higher orders to a lesser extent,
which appears to match the observations as well.

Differential rotation and density stratification are perhaps the
most important features missing in our model. However, they
are not essential for the identification of the modes. Our aim
here is to provide the initial identification of the modes as a
starting step toward more refined models, hoping to spark
interest from the community in developing inertial-wave
models involving differential rotation, magnetic fields, and
other effects. Such models, although numerically challenging,
are in principle straightforward to develop. More refined
inertial-wave models (e.g., Bekki et al. 2022) are potentially
very valuable to understand and characterize turbulent
processes in the solar convective zone (Gizon et al. 2021),
but just as well in the convective zones of other stars where
oscillations in the inertial range have been detected (e.g.,
Ouazzani et al. 2020). Inertial-wave-based helio/asteroseis-
mology has great potential and might give us new insights into
the interior dynamics of the Sun and the stars.
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Appendix A
Numerical Method

We expand the poloidal Plm(r) and toroidal Tlm(r) functions
occurring in Equation (4) using a Chebyshev polynomial basis.
We write

å åa b= =
= =

P r t x T r t x, , A1lm

k

N

lm
k

k lm

k

N

lm
k

k

0 0

( ) ( ) ( ) ( ) ( )

where tk(x) is the Chebyshev polynomial of degree k, N is the

radial truncation level, the radial variable is mapped to x via the

affine transformation


=

-
-

-x
r r

R r
2 1, A2

c

c

( )

and a b,lm
k

lm
k are the unknown coefficients. This is essentially

the same technique used by Rieutord & Valdettaro (1997),

except that we use a fast spectral method devised by Olver &

Townsend (2013). This method uses Gegenbauer polynomial

bases to represent the radial derivatives of tk(x) resulting in

sparse matrix operators, as opposed to the spectral collocation

method where the operators representing radial derivatives are

dense matrices. The resulting matrices representing

Equation (1) are banded and sparse. We end up with a

generalized eigenvalue problem of the form

l=Ax Bx, A3( )

Figure 5. Reducing the Ekman number by an order of magnitude has only a weak influence on the eigenfrequencies ω but a strong one on the damping rates σ. The
plot on the left is computed for E = 1.98 × 10−4 and the one on the right for E = 1.98 × 10−5, both for δ = 0.29 R

e
, modes from m = 4 to m = 15 are included. Even

at a reduced Ekman number, the HFR modes (orange dots) remain as the least-damped ones, along with some tesseral-like Rossby modes (green dots). Blue dots
represent the remaining inertial modes.
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where A and B are sparse matrices, λ= (σ− iω)/Ω
e

is the

eigenvalue, and x is the eigenvector comprised by the set of

coefficients a b,lm
k

lm
k{ }. We use a shift-and-invert strategy to

obtain solutions with an eigenvalue close to a given target. The

truncation levels used in our calculations are typically N= 156

and =l 158max for the radial and angular expansions,

respectively.
Figure 6 gives an idea of the accuracy and convergence

properties of the method we use. The top-left panel shows the
change in the eigenvalue as the truncation level is increased.
Machine-precision level on the variation is achieved around
N∼ 50. A measure of how well Equation (1) is fulfilled is
given by the residual plotted on the bottom-left panel. We
define the residual as

s
s

=
-K

K
Residual

2

max 2 ,
, A4




∣ ∣

{∣ ∣ ∣ ∣}
( )

where K is the kinetic energy integrated over the whole fluid

volume V:

ò= u uK V
1

2
d , A50 0· ( )†

and  is the viscous dissipation defined as

ò= u uE Vd . A60
2

0 · ( )†

Our code was designed originally to study the flow in planetary

interiors, which typically have very small Ekman numbers and

are thus computationally much more demanding compared to

the Ekman number associated with the solar convection zone.

Our code (named kore) is freely available as an open-source

project: https://doi.org/10.5281/zenodo.6783310.

Appendix B
Symmetry Considerations

The waves reported by Hanson et al. (2022) are described in
terms of the radial vorticity observed near or at the solar

surface. The spherical harmonic coefficients of the radial
vorticity at any radius r are related in a simple way to the
toroidal functions Tlm(r):

 ´ = +r u l l
T r

r
1 . B1l m

lm
0 ,[ˆ · ( )] ( )

( )
( )

The velocity field u of an inertial mode can be either

equatorially symmetric or antisymmetric. The vorticity ∇× u

has the opposite equatorial symmetry to u. Explicitly, if a mode

is equatorially antisymmetric in the vorticity, it fulfills

p q f q f
p q f q f
p q f q f

- =
- =-
- =

q q

f f

u r u r

u r u r

u r u r

, , , , ,

, , , , ,

, , , , , B2

r r( ) ( )

( ) ( )

( ) ( ) ( )

i.e., it is equatorially symmetric in velocity. An inertial-mode

equatorially symmetric in velocity, with azimuthal wavenum-

ber m, has poloidal functions Plm with indices such that l=m,

m+ 2, m+ 4, K, and the toroidal functions Tlm have indices

such that l=m+ 1, m+ 3, K. conversely when the mode is

antisymmetric.
Inertial modes are a general class of modes that include

Rossby modes (also known as planetary waves) as a subset.
The analytical dispersion relation for Rossby modes, namely,



w
W

= -
+
m

l l

2

1
, B3

( )
( )

is usually derived assuming a thin spherical shell, which

ignores motion in the radial direction, leaving only the toroidal

part (see, e.g., Rieutord 2014). In the ideal case, a Rossby mode

has only one spherical harmonic Yl
m component. These modes

can then be classified as sectoral if l=m, or tesseral if l>m. A

sectoral Rossby mode is by necessity equatorially antisym-

metric in the velocity (i.e., symmetric in vorticity). These are

the modes that have been observed and identified in the Sun by

Löptien et al. (2018). Tesseral Rossby modes can have either

symmetry. Similarly, a Rossby mode with an equatorially

Figure 6. On the top-left panel, we show the effect of changing the truncation level N on the eigenvalue of the m = 8, ω/Ω
e
= −0.641 eigenmode depicted in

Figure 4 as a representative example. The reference eigenvalue σ0 − iω0 corresponds to the solution with N = 160. The angular truncation lmax is linked to N so that
~l Nmax . The bottom-left panel shows the residual (defined in the text). The panels on the right show the maximum magnitude of the Chebyshev coefficients for a

given l (top), and for a given k (bottom), associated with a particular solution with N = 128, =l 135max .
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symmetric velocity (i.e., antisymmetric in vorticity) is thus a

tesseral Rossby mode. When the shell is not thin, poloidal

motions can become significant, the dispersion relation (B3) is

not generally valid, and the foregoing classification does not

follow unmodified. Tesseral modes are the most affected, with

other spherical harmonics appearing in the solution besides the

main tesseral component, although the tesseral component

remains dominant. Thus, we call them tesseral like. Sectoral

modes are essentially unaffected.

Appendix C
Differential Rotation Background

Our model assumes a uniformly rotating background flow.
However, we can obtain a crude estimate of the effect of the
solar differential rotation background on the eigenfrequencies
by considering the range of solar rotation frequencies
corresponding to the spatial location (in the r, θ plane) where
the amplitude of a given mode is substantial (averaged over f
and over an oscillation period). We define the “domain” of a
mode as the region where its power is at least one-half of its
maximum power, or equivalently, where its amplitude is at
least 2 2 times its maximum amplitude. We compute then
the difference DW = W - Wmax min between the maximum and
minimum solar rotation rate (based on Larson & Schou 2018)
within the mode’s domain. The shaded areas in Figure 1
represent ω±ΔΩ, where ω is the mode’s frequency from the
uniformly rotating model.

Note that if a mode has a substantial amplitude only in
regions where the solar rotation rate can be considered
constant, say Ω0, then we expect no effect on the eigen-
frequency, i.e., the uniform rotation model would be accurate,
provided the frequency is referred to a reference frame rotating
at Ω0.
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