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Abstract

Simulating deep solar convection and its coupled mean-field motions is a formidable challenge where few
observational results constrain models that suffer from the nonphysical influence of the grid resolution. We present
hydrodynamic global implicit large-eddy simulations of deep solar convection performed with the EULAG-MHD
code, and we explore the effects of grid resolution on the properties of rotating and nonrotating convection. The
results, based on low-order moments and turbulent spectra, reveal that convergence in nonrotating simulations may be
achieved at resolutions not much higher than these considered here. The flow is highly anisotropic, with the energy
contained in horizontal divergent motions exceeding their radial counterpart by more than three orders of magnitude.
By contrast, in rotating simulations, the largest energy is in the toroidal part of the horizontal motions. As the grid
resolution increases, the turbulent correlations change in such a way that a solar-like differential rotation, obtained in
the simulation with the coarser grid, transitions to an antisolar differential rotation. The reason for this change is the
contribution of the effective viscosity to the balance of the forces driving large-scale flows. As the effective viscosity
decreases, the angular momentum balance improves, yet the force balance in the meridional direction lessens, favoring
a strong meridional flow that advects angular momentum toward the poles. The results suggest that obtaining the
correct distribution of angular momentum may not be a mere issue of numerical resolution. Accounting for additional
physics, such as magnetism or the near-surface shear layer, may be necessary in simulating the solar interior.

Unified Astronomy Thesaurus concepts: Solar differential rotation (1996); Solar meridional circulation (1874);
Solar interior (1500); Hydrodynamical simulations (767)

1. Introduction

Turbulent convection is observed at the solar photosphere in

the form of granulation, with scales of several thousands of

kilometers, and supergranulation, with scales of ∼30,000 km.

From theoretical considerations, it is expected that larger, self-

similar, motions exist at deeper layers. Their characteristics,

however, remain elusive to observations. The properties of

solar convection in deeper layers are relevant for understanding

the physical processes that drive and shape the large-scale

flows observed in the Sun, namely the differential rotation

(DR) and the meridional circulation (MC). Furthermore, they

may be instrumental for the solar dynamo process.
The knowledge that we have about the deep turbulent

motions is based on the one-dimensional mixing-length theory

(MLT; Böhm-Vitense 1958; Kippenhahn et al. 2013). The

results of MLT models predict that the spatial and temporal

scales of convection progressively increase with depth.

Nevertheless, helioseismic observations of turbulent motions

just in the upper convection zone have offered conflicting

results, such that the MLT scenario cannot be confirmed. On

one hand, using time–distance helioseismology measurements,

Hanasoge et al. (2012) found that the convective power of the

large scales is several orders of magnitude smaller than the

MLT prediction. On the other hand, the results obtained by

ring-diagram analysis (Greer et al. 2015) suggested spectral

energies more in line with the theory, perhaps even with a
power greater than expected. This ambiguity is often called the
solar convective conundrum.
Proxauf (2020) and collaborators have recently identified

several incompatibilities in the comparison of the previous
results, proposed the required corrections, and obtained new
inferences. Despite modifications, the disparity between the
two helioseismic inferences still spans three to four orders of
magnitude. Their analysis using surface granulation tracking
and ring-diagram measurements indicated that at low angular
harmonic degree, ℓ, the trend of the power spectra agrees with
the corrected results of Hanasoge et al. (2012), with slightly
higher power (about one order of magnitude). Other analyses
seem to confirm the existence of convective structures larger
than supergranulation but with relatively small power (Getling
& Kosovichev 2022, ; Hathaway & Upton 2021). In the deeper
layers, the properties of convection are still a mystery, and we
rely on global simulations of turbulent rotating convection to
get access at least to some of its characteristics. Unfortunately,
such simulations are not exempt from difficulties.
The overall goal of global convection simulations, precluding

so far the possible development of magnetic fields, is developing
motions able to carry out most of the solar luminosity, Le, and at
the same time producing a mean angular velocity in agreement
with the helioseismic observations (Schou et al. 1998), and a
meridional circulation with poleward migration on the surface
(e.g., Hathaway & Upton 2014; Ulrich 2010). The meridional
circulation profile in the deep convection zone is still under
investigation and remains a matter of debate (see Chen & Zhao
2017; Gizon et al. 2020; Stejko et al. 2021, for inferences with
two and one meridional cells per hemisphere).
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The parameter regime of the solar interior where convection
must transport energy and angular momentum is characterized
by the Rayleigh (Ra) number ( )1020 , the Reynolds number
(Re) ( )1012 , and the Prandtl (Pr) number ( )-10 7 (see Table 2
in Ossendrijver 2003). The separation of the dynamical scales
determined by these parameters requires enormous computa-
tional resources to be resolved by direct numerical simulations
(DNS). Modern supercomputers are still far from allowing
DNS at such resolution. Thus, for the current DNS, the
dissipative coefficients that define the nondimensional numbers
are orders of magnitude larger than the microscopic values of
viscosity and/or thermal conductivity. Considering that the
values of these coefficients are consistent with the estimated
turbulent dissipation, these simulations can be viewed as large-
eddy simulations (LES) that preclude nondissipative contrib-
ution of the unresolved scales.

In state-of-the-art simulations in which the radiative flux
driving convection at the bottom of the convection zone
corresponds to Le= 3.83× 1026 W, and the imposed rotation
is the solar sidereal angular velocity, Ωe= 2.97× 106 s−1, the
convective heat flux results in enhanced turbulent velocities
whose energy spectrum disagrees with the helioseismic
observations described above (Gizon & Birch 2012). Addition-
ally, higher velocities imply shorter convective correlation times,
τc, and therefore larger Rossby numbers, which represent the
ratio between rotation and convection timescales, Ro= Prot/τc.
This ratio is an indication of how strongly the convective
motions are constrained by the Coriolis force. It is a fairly robust
result of global convective simulations (Käpylä et al. 2011;
Featherstone & Miesch 2015; Gastine et al. 2014; Guerrero et al.
2013) that, as the motions become less rotationally constrained
(high Ro), the differential rotation profile has faster poles and a
slower equator, at odds with the observed solar profile.

A solar-like differential rotation profile with an accelerated
equator may be recovered by increasing the rotation rate by a
factor of two or three (Brown et al. 2008; Hotta 2018). Another
alternative is diminishing the convective transport by
increasing the radiative diffusion coefficient (Featherstone &
Miesch 2015; Käpylä et al. 2014; Miesch et al. 2008) or by
decreasing the luminosity of the simulation (Guerrero et al.
2013; Hotta et al. 2015). The latter options artificially decrease
the strength of the convective flows. In general, these
alternatives reduce the Rossby number.

Large- or small-scale magnetic fields may also help to
reproduce the solar differential rotation. They contribute in two
different ways: by modulating the convective heat transport
(Fan & Fang 2014; Guerrero et al. 2019; Karak et al. 2015),
which decreases the turbulent velocities (lower Ro), and
through the direct transport of angular momentum via the
large- and small-scale Maxwell stresses. The contribution of
the large-scale magnetic field has been verified by MHD
simulations with relatively low resolution, which allowed the
simulation to be performed for a long temporal evolution,
including the excitation and sustainment of the large-scale
dynamo. On the other hand, the contribution of the small-scale
dynamo has been recently identified in the high-resolution
simulations by Hotta & Kusano (2021) and Hotta et al. (2022).
They suggested that the small-scale magnetic field diminishes
the convective power and that a meridional flow, developed to
balance the Maxwell stresses, transports angular momentum
toward the equator. However, these simulations have been run
only for a short time, so the large-scale magnetic field did not

develop. Thus, there is still no clarity on the distribution of
small-scale magnetic fields in the presence of large-scale
dynamo, and it is uncertain what is the role of both
contributions on the angular momentum transport.
Most simulations described above suffer from the contrib-

ution of unrealistically large dissipative coefficients caused by
the limited spatial resolution. Strong viscous dissipation, for
instance, is needed to guarantee numerical stability. It is
combined with the numerical dissipation associated with the
numerical schemes. Both contributions directly affect the
transport of linear and angular momentum, whereas in the
Sun, the microscopic viscosity is negligible. Therefore,
achieving converged solutions independently of numerical
resolution is desirable albeit challenging. In other words, it is
appealing to have a system where the dissipation coefficients
are insignificant and the dynamics is governed by well-resolved
turbulent motions subject to well-defined boundary conditions.
However, as discussed above, this does not seem to be the case
for the current models of deep solar convection. As a matter of
fact, very few works have systematically explored the role of
resolution on the properties of convection. The work of
Featherstone & Hindman (2016a) is one exception, for
nonrotating convection in the sphere, with remarkable results.
They were able to achieve simulations where the amplitude of
the kinetic energy became independent of the Ra values, yet the
distribution of root mean square (rms) velocities and turbulent
kinetic spectra continued changing as Ra further increased.
Subsequently, Hindman et al. (2020) presented a large set of
simulations with different rotation rates and Rayleigh numbers.
They described the morphological changes of convection for
different regimes of rotation and convection supercriticality.
Unlike the nonrotating models, the kinetic energy of their
rotating simulations kept increasing with Ra. Consequently, the
kinetic energy spectra obtained from these simulations did not
achieve a convergent profile.
Large-eddy simulations including explicit or implicit (Grin-

stein et al. 2007) turbulent subgrid-scale (SGS) contribution may
be a computationally less expensive alternative to DNS of solar
(stellar) convection and dynamo. LES have been routinely and
successfully used in engineering and meteorological problems.
This approach has also been used for modeling local convection
and small-scale dynamos (Kitiashvili et al. 2015; Rogachevskii
et al. 2011; Wray et al. 2015). Nevertheless, it has not been
broadly considered in the problem of global simulations of solar
and stellar convection and dynamos. This is understandable
given that, unlike laboratory experiments or weather and
climate studies, there are neither sufficient available data nor
convergent DNS results of the same problem. This prevents the
comparison and characterization of the LES results and the
SGS models.
The implicit LES simulations performed with the EULAG-

MHD code, based on a nonoscillatory forward-in-time algorithm,
have been successful in reproducing at lower resolution some
characteristics of the solar activity cycle (Ghizaru et al. 2010),
and they have also been used to study stellar activity (Guerrero
et al. 2019; Strugarek et al. 2017). In the code, the dynamical
equations may be solved in their inviscid form, with the viscous
contribution given by the minimized truncation terms, allowing
the highest possible level of turbulence, i.e., the largest value of
Re, to be achieved for any resolution. In this form, it is less
computationally expensive to search for solutions to the problem
that are independent of the nonphysical influence of numerical
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resolution. We have demonstrated the numerical convergence in
2D convection simulations for a range of mesh sizes (Nogueira
et al. 2022). The low-order moments in the physical space as
well as the turbulent spectra of kinetic and thermal energy were
used as criteria of convergence. We attribute the convergence of
the results in the low-resolution cases to the implicit SGS
viscosity of the nonoscillatory discrete advection method, which
allows the backscatter of energy from small to large scales and
dissipation at the minimal scale, close to the limit of numerical
resolution. For progressively larger resolutions, however, large-
and small-scale motions coexist in a system dominated by a
mesh-independent turbulent dissipation. In these cases, the
contribution from the small scales seems to be resolved.

In this paper, we continue the study presented in Nogueira
et al. (2022) while approximating our numerical model to the
solar interior by considering spherical geometry. Additionally,
we consider the effects of rotation on the turbulent motions and
explore the development of mean flows in models where all
parameters are kept constant except the grid resolution. This
problem is more complicated than the Cartesian case. On the
one hand, the spherical geometry imposes curvature effects and
numerical stiffness in polar regions. On the other hand, gravity
and rotation result in strongly anisotropic convective motions
upon which the amount of viscous resistance, wherever is its
origin, turns out to be highly relevant. We anticipate that, for
nonrotating cases, hints of convergence are achieved at a
resolution consistent with the Cartesian cases. For the rotating
cases, the resulting large-scale motions are substantially
dependent on the resolution, due to the decreasing contribution
of effective viscosity to the net transport of angular momentum.
We characterize these changes through a comparative analysis
of the spectral properties of the fluid and the balance of the
azimuthal and meridional forces that drive these large-scale
motions. To differentiate the most robust features of global
convection from those that seem to be model dependent, we
extend our comparison to previous findings of similar models,
as well as to solar observations when possible. Even though we
do not achieve convergence in our simulations, their analysis
contributes to understanding the sustainment of solar mean
flows and allows us to hypothesize possible ways to solve to
the convective conundrum.

This paper is organized as follows. In Section 2, we describe
the numerical model. The results of nonrotating and rotating
cases are presented in Section 3, and in Section 4, we discuss
our findings and expound the conclusions of this work.

2. Numerical Model

The EULAG-MHD code (Smolarkiewicz & Charbonneau
2013)—a specialized variant of the original EULAG code
(Prusa et al. 2008)—is used to perform global anelastic
convection simulations. EULAG-MHD is based on the
multidimensional positive-definite advection transport algo-
rithm (MPDATA; Smolarkiewicz 2006). It is a nonoscillatory
forward-in-time advection solver with second-order accuracy in
space and time. The code allows simulations to be run as ILES
without explicit dissipation, yet it also may be used for DNS
with explicit dissipation. The domain corresponds to a global
spherical shell with the radial coordinate, r, covering the upper
fraction of the radiative zone from rb= 0.6Re, and the
convection zone (CZ) up to rt= 0.96Re. We exclude the
upper layers of the CZ where compressibility and radiative
transfer play a significant role in the dynamics of convection.

The code integrates the following set of Navier–Stokes
equations governing mass, momentum, and energy conserva-
tion:

· ( )r =u 0, 1r

( )pW+ ´ = - ¢ -
Q¢
Q

u
u g

d

dt
2 , 2

r

· ( )a
Q¢
= - Q - Q¢u

d

dt
3a

where d/dt= ∂/∂t+ u ·∇; u is the velocity field in a

frame rotating with angular velocity ( )W = W W W =q f, ,r

( )q qW -cos , sin , 00 ; ρr is the reference state density, which in

the anelastic approximation is a function of radius only (Lipps &

Hemler 1982); p¢ is the density-normalized pressure perturba-

tion; r¢p ;r ˆ= -g eg r is the gravity acceleration adjusted to fit

the solar gravity profile; and Θ is the potential temperature,

defined as ( )Q = T P Pb
R cp, where T is the temperature, P is

the pressure, Pb is the pressure at the bottom of the domain,

R= 13732 J K−1 kg−1 is the universal gas constant for a

monoatomic hydrogen gas, and cp= 2.5R, is the specific heat at

constant pressure. The potential temperature is equivalent to the

specific entropy through the relation ( )= Qds c d lnp . The

subscripts r and a refer to the reference and ambient states,

and the superscript ′ means perturbations of a quantity about the

ambient profile. Perturbations ofΘ are related to perturbations of

temperature by the anelastic approximation, ¢ = Q¢ QT Ta a. The

energy equation contains a term forcing the adiabatic

perturbations about the ambient state and a thermal relaxation

term that damps these perturbations in an inverse timescale,

α= 1/τ (see Cossette et al. 2017, for a discussion).
The ambient state defining the thermodynamic variables, ρa,

Θa, and Ta in Equations (1)–(3) is a particular solution of the
hydrodynamics equations. In this work, the ambient state
considering hydrostatic equilibrium for a nonrotating atmos-
phere is constructed by solving the following equations:

( )
( )

¶
¶

= -
+

T

r

g

R m 1
, 4

a

( )
r r¶
¶

= - +
¶
¶r T

g

R

T

r
, 5a

a

a⎛
⎝

⎞
⎠

where m=m(r) is the polytropic index. Solutions of

Equations (4) and (5) with m� 1.5 correspond to stable

stratification, while solutions for m< 1.5 correspond to

convectively unstable states.
The ambient state with a stable layer at the bottom of the

domain is built by setting ms= 2.5 for r� 0.7Re, and a
marginally unstable convection zone with mu= 1.49997 for
r> 0.7Re. This is achieved by considering a radial profile of
the polytropic index,

( ) ( ) ( )= - - +
-

m r m m m
r r

w

1

2
1 erf , 6s s u

1⎡
⎣

⎛
⎝

⎞
⎠
⎤
⎦

where the transition between zones of different m is made through

the erf functions with r1= 0.7Re and w= 0.01Re. Equations (4)

and (5) are integrated numerically with r = 208 kgr1
/m3 and

= ´T 2.322 10r
6

1
K at the interface between the stable and the

unstable layers. The pressure is computed via the ideal gas

equation of state, Pa= RρaTa. The resulting profile of Θa as a

3

The Astrophysical Journal, 940:151 (24pp), 2022 December 1 Guerrero et al.



function of radius is shown in Figure 1(a). In the convective zone,

the slope of Θa is slightly negative with respect to the r

coordinate, as can be seen in the figure insert. The negative slope

of Θa ensures that this zone is unstable to convection, with the

difference of Θa between the bottom and top of the convectively

unstable layer being 62 K. The reference potential temperature

Q = Tr r1. Finally, for all the simulations, α= 1/τ= 1.29× 10−8

s−1 is considered. Figure 1(b) shows the radial profiles of the

density, ρa, and the temperature, Ta. The entire radial domain

encompasses 4.5 density scale heights, with 3.7 density scale

heights corresponding to the unstable layer.
The boundary conditions for this setup are impermeable,

stress-free conditions for the velocity field at the two radial
ends of the domain. Null convective radial flux is considered to
constitute thermal boundaries at the bottom and top, as it has
been used in previous works in the literature (e.g., Fan et al.
2003; Hotta et al. 2015). For most of these cases, the initial
conditions are white noise perturbations in Q¢, introduced only
in the unstable layer and with maximum amplitude 0.1 K.

3. Results

In the simulations discussed below, the ambient stratification
and the thermal relaxation timescale are kept constant;

therefore, the forcing and the thermal relaxation terms in
Equation (3) are theoretically the same in all models (i.e., in the
hypothetical limit of the converged numerical solutions).
Nonrotating models (Ω0= 0) with five different numerical
resolutions (see Table 1) are presented. Based on the results of
these models, three rotating simulations with Ω0= 3.03× 10−6

s−1
(Prot= 24 days) for three different resolutions are

performed. For this rotation rate, the low-resolution case
produces a solar-like differential rotation profile. The runtime
of each simulations, here considered as the physical time, in
years, for which the prognostic quantities evolve in time, is
presented in Table 1. Simulation R8 is started from a remeshed
snapshot of simulation R4 in the relaxed state and run for ∼2.8
Earth years. The temporal averages are calculated from the
outputs with a cadence of one month over a time range of five
years. For simulation R8, only six months of simulated data
were considered.

3.1. Nonrotating Convection

We first explore the effects of numerical resolution in the low-
order moments and the spectral properties of nonrotating
simulations. Figure 2 shows snapshots of the radial, latitudinal,
and longitudinal velocities, w, v, and u, for simulations R1–R8
(from top to bottom). The graphs show the level of detail
reached by different resolutions. The amplitude of the velocity
components increases as evidenced by brighter colors from the
top to the bottom panels. It is also evident that, in models R1 and
R2, the grid size in regions with small density scale height, i.e.,
close to the model’s top, is insufficient to resolve the scales of
the subsurface motions. This is observed in the rms profiles of
the radial and longitudinal components of the velocity field,

= á ñfqw wrms
2 and = á ñfqu urms

2 , as well as in the total rms

velocity, = á + + ñfqU u v wrms
2 2 2 , presented in Figure 3(a-c).

Throughout this paper, angular brackets 〈〉fθ correspond to
averages over the horizontal directions and time, 〈〉 to volume
and time averages over the convective shell, and overlines
correspond to averages over longitude and time. In wrms, the lack
of resolution appears as a flat profile for r> 0.9Re in simulation
R1 as well as for r> 0.93Re in simulation R2; see Figure 3(a).
In urms and Urms, it appears as a local minimum that may be
observed in the profiles of the same simulations close to the
upper boundary (Figures 3(b) and (c)). This undesirable
property was reported in the 2D Cartesian cases (Nogueira
et al. 2022). The black dashed line presented in the figure
corresponds to simulation R1x. It has the same horizontal
resolution as R1, but with a fourfold resolution in the radial
direction (Nf= 128, Nθ= 64, Nr = 256). While there are
small departures from the cases with higher resolution,
especially in the radial velocity, there is a remarkable similarity
between case R1x and high-resolution cases R4 and R8.
The spherical simulations show radial motions that have a

maximum roughly at the center of the convection zone
(r∼ 0.85Re). The amplitude of wrms slightly increases from
the low- to the high-resolution cases, with a rather small
difference between cases R4 and R8. The longitudinal velocity,
urms, shows larger amplitudes at the bottom of the convection
zone resulting from the encounter of fast downward plumes with
the rigid stable layer. As a consequence, the profiles of urms as a
function of radius have a minimum in the bulk of the convection
zone at about 0.8Re. This feature does not appear in simulations
that consider only the convection zone, where a stress-free

Figure 1. (a) Radial profile of the ambient potential temperature, Θa. The insert
shows a close-up for 0.7 < r/Re < 0.96 depicting a negative radial gradient of
Θa. The difference between the bottom and top of the unstable layer is 62 K.
(b) Radial profiles of the ambient density (black line) and temperature (red
line). The dotted lines correspond to the solar structure model of Christensen-
Dalsgaard et al. (1996). From the bottom to the top of the domain, there are
∼4.5 density scale heights. From the base of the convection zone, r > 0.7Re,
there are ∼3.7 density scale heights. The vertical red lines show the bottom of
the unstable layer located at r = 0.725Re.
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boundary condition is imposed at their base (e.g., Fan & Fang
2014; Hotta 2018). This is important because it creates a steeper
transition between convective and radiative layers.

The averaged values of the perturbations of potential
temperature are presented in Figure 3(d). Despite simulations
R1 and R2 showing higher values ofQ¢ at the upper levels, the
profiles for models R1x, R4, and R8 are rather similar. The
profile of the luminosity, Le= 4πr2Fe, carried by the enthalpy
flux, r= á Q¢ñfqF R c wg pe , for all nonrotating cases, is shown
with solid lines in Figure 4(a). The profiles are normalized to
the solar luminosity, Le. Notice that Le decreases with the
increase of resolution, and has a similar profile for simulations
R1x and R4. The higher values reached in the low-resolution
simulations reflect the strong perturbations of Θ in the upper
layers of the domain in Figure 3(d). The profile for case R8 is
different, perhaps due to insufficient statistics. The inset of
Figure 4(a) shows the bottom of the convection zone where the
enthalpy flux is negative. This thin layer, where the correlations
between w (mostly negative due to fast downward plumes) and
Q¢ (positive) are negative, is associated with overshooting. It is
roughly zero for case R1, and it increases with the grid size
until reaching roughly similar values for the higher-resolution
simulations R4 and R8. The luminosity carried by the kinetic
energy flux, Lk= 4πr2Fk, with Fk= ρ〈w(u2+ v2+w2

)〉fθ is
presented in the same panel with dotted lines. The flux is
negative for all cases with minimum values reached by the
high-resolution simulations.

3.1.1. Spectral Analysis

In this section, we present the spectral properties of the
nonrotating simulations. We are interested in the distribution of
energy among convective scales for the different components
of the flow. The library SHTns (Schaeffer 2013)5 is used to
compute the spectral representation of the vector velocity field
as

( ) ( )

( )

( ) ( )

q f q f
q f
q f

= å å
+
+

=-u Q

S

T

q

s

t

, ,

,

, , 7

ℓ m ℓ
ℓ

ℓ
m

ℓ
m

ℓ
m

ℓ
m

ℓ
m

ℓ
m

where

ˆ ( )=Q eY , 8
ℓ
m

ℓ
m

r

( )=S r Y , 9ℓ
m

ℓ
m

( )= - ´T r Y , 10ℓ
m

ℓ
m

and Yℓ
m are spherical harmonics of degree ℓ and order m,

with− ℓ�m� ℓ. The coefficients q
ℓ
m, sℓ

m, and tℓ
m are the radial

and transverse components of the velocity vector. Under this

decomposition, the spherical harmonic representation of the

total kinetic energy as a function of the harmonic degree ℓ is

given by

˜( ) ∣ ∣ ( )(∣ ∣ ∣ ∣ ) ( )å= + + +
=-

E ℓ q ℓ ℓ s t1 . 11
m ℓ

ℓ

ℓ
m

ℓ
m

ℓ
m2 2 2

The kinetic energy spectra for all nonrotating simulations
(see legend in the figure) are presented in Figure 5 for three
different depths: (a) r= 0.95Re, (b) r= 0.85Re, and (c)
r= 0.75Re. As it could have been anticipated from the results
in physical space, as a consequence of poorly resolved motions,
simulations R1 and R2 show less kinetic energy at the upper
layers and an excess of energy at large wavenumbers.
However, simulations R4 and R8 have similar spectra with
maximum amplitudes at ℓ∼ 3. In the middle and bottom of the
convection zone, the energy at the largest scales, ℓ< 4,
increases with the resolution. This indicates that the effective
viscosity is decreasing and its action shifting toward the smaller
scales (see Table 1 and Appendix B). For ℓ 4, the kinetic
spectra of simulations R2-R8 are similar. With the increase of
the resolution, the spectra extend over more scales, reaching
about two decades of ℓ for R8.
As for the energy cascade from the most energetic scales

toward the dissipative scales, the simulations show a scaling
slower than the Kolmogorov law, k−5/3

(Kolmogorov 1941),
especially in the middle and bottom of the convection zone.
This result is expected, given the buoyant force in an
atmosphere with significant density stratification. Qualitative
inspection shows that the Kolmogorov rule seems to exist in
small regions of the inertial scale.
A surprising aspect of the figure is the spectra from

simulation R1x presented with black dashed lines. Although
this case has a coarse horizontal resolution equivalent to R1, as
well as a high-resolution equivalent to case R4, only in radius,

Table 1

Simulation Parameters and Results

Simulation Nf, Nθ, Nr dt [s] Rt [yr]

〈Urms〉

(m s−1
) áQ¢ñ [K]

〈Le〉

[Le] Ro νt [ × 109 ] νeff [ × 108 ] κeff [ × 108 ] Preff Reeff

R1 128,64,64 1400 200 54.07 21.49 0.38 L 3.14 3.19 1.30 2.45 29

R2 256,128,128 500 80 51.70 13.78 0.25 L 3.00 0.71 0.20 3.47 127

R4 512,256,256 200 26 61.92 9.45 0.17 L 3.59 0.12 0.02 7.36 890

R8 1024,512,512 50 2.8 69.24 9.23 0.14 L 3.98 0.03 0.01 3.17 3671

R1x 128,64,256 800 40 65.15 9.37 0.16 L 3.76 0.90 0.44 2.02 126

R1x24 128,64,256 800 80 45.85 9.50 1.30 0.56 2.68 1.13 0.09 12.8 70

R2x24 256,128,256 600 60 46.90 9.60 1.37 0.58 2.72 0.29 0.03 8.88 278

R4x24 512,256,256 200 20 52.32 9.54 1.34 0.65 3.03 0.09 0.02 3.97 960

Note. Parameters and results of the simulations presented in this work. The angular brackets, 〈〉, correspond to volume and temporal averages considering only the

convection zone, i.e., an average over the radii of the profiles presented in Figures 3, 4, 8, and 9. The Rossby number is defined as Ro = Prot/τc, where τc = ℓc/〈U〉rms

is the convective turnover time. For simplicity, the convective correlation length, ℓc, is defined as the thickness of the unstable layer. The turbulent viscosity is

calculated as νt = ℓc〈U〉rms/3. Estimates of the effective viscosity, νeff and κeff, are computed as described in Appendix B. With these values, the effective Prandtl and

Reynolds numbers are computed as Preff = νeff/κeff, n= á ñℓ URe ceff rms eff .

5
See also https://www2.atmos.umd.edu/~dkleist/docs/shtns/doc/html/

index.html
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Figure 2. Instantaneous snapshots of the velocity components for simulations R1 to R8, from top to bottom. The radial velocity, w, is presented in the orthographic
projection (panels a, e, i, and m) and in the meridional plane (b, f, j, and n). The latitudinal, v (panels c, g, k, and o), and the longitudinal, u (panels d, h, l, and p),
components are presented in the meridional plane. The thin dashed red line shows the transition between the stable and unstable layers.
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its kinetic power spectra are compatible with the highest-

resolution cases. The comparison shows that simulation R1x

has an excess of energy in the largest scales. However, the

energies at the inertial range, as well as the turbulent scaling,

have good agreement with R4 and R8.
To assess the relevance of the present results, we compare

them with solar supergranulation motions, which are weakly

influenced by rotation. Although their nature is still

controversial, recent works point toward a buoyant convective

origin (Cossette & Rast 2016; Rincon & Rieutord 2018).

Recently, Rincon et al. (2017) developed analytical scaling

laws for the spectral behavior of a flow in a stratified

atmosphere in the presence of buoyancy, i.e., anisotropic
turbulence. They successfully compared these results with the
spectra of supergranulation reconstructed from Doppler and
photometric measurements of the Helioseismic and Magnetic
(HMI) instrument on board the Solar Dynamics Observatory
(SDO) satellite (Scherrer et al. 2012), and decomposed in the
spherical harmonic components. This supports the hypothesis
that supergranulation is a particular scale of buoyantly driven
convection. It is possible to evaluate whether the convectively
driven motions developed in the simulations above are
comparable with their results.
Figure 6 shows the kinetic energy spectra decomposed into

the radial (black lines), spheroidal (blue), and toroidal (yellow)

components at r= 0.95Re for simulations R1 (panel a) to R8
(d), as well as R1x (presented in panel c). These components
are obtained by separating the terms in the RHS of
Equation (11),

˜ ( ) ∣ ∣

˜ ( ) ( )∣ ∣

˜ ( ) ( )∣ ∣ ( )

å

å

å

=

= +

= +

=-

=-

=-

E ℓ q

E ℓ ℓ ℓ s

E ℓ ℓ ℓ t

,

1 ,

1 . 12

Q

m ℓ

ℓ

ℓ
m

S

m ℓ

ℓ

ℓ
m

T

m ℓ

ℓ

ℓ
m

2

2

2

Under this decomposition, ẼS and ẼT are measurements of the

flow divergence and vorticity in the (f,θ) plane, respectively. In

this sense, toroidal does not correspond to the longitudinal

component of the flow, as usually assumed in mean-field theory.

In this representation, simulations R1 and R2 are strikingly

Figure 3. Radial profiles of wrms (a), urms (b), the total Urms (c), and the perturbations of potential temperature (d). The profile of the latitudinal component vrms is
similar to urms. The averaging was performed in the horizontal directions and time. The thin vertical lines show the bottom of the unstable layer.

Figure 4. Luminosity carried by the enthalpy flux, p r= á Q¢ñfqL r R c w4 g pe
2

(solid lines), and the kinetic energy flux, Lk = 4πr2ρ〈w(u
2
+ v

2
+ w

2
)〉fθ

(dotted lines), for the nonrotating simulations presented in Table 1. The color-
coding of the lines is the same as in Figure 3. The inset shows the overshooting
region with negative values of Le.
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different from all the others. These simulations have more

energy in the toroidal motions than in the radial and spheroidal

motions. The distribution of energy changes in simulation R2,

but a convergent pattern seems to appear for cases R4 and R8.

The results clearly show anisotropic turbulence, with the

spheroidal, divergent part of the motions having ∼103 times

more energy than the radial flows. In panel (c), simulations R4

(continuous lines) and R1x (dashed lines) are compared. Both

cases show similar spectral properties. In panel (d), the red

dotted lines correspond to the scaling laws for spheroidal and

radial motions derived by Rincon et al. (2017). The black dotted

lines correspond to their Kolmogorov equivalents. The scaling

laws followed by the motions in our simulations R4, R8, and

R1x, which are certainly of buoyant origin, compare well with

those of Rincon et al. (2017). However, the Kolmogorov laws

are also plausible, and it is hard to distinguish what law is

followed and in what spectral range.
Caution is needed in this comparison, because the

simulations correspond to a thick shell and develop scales

considerably larger than supergranulation (supergranulation has

its maximum energy at ℓ∼ 120, whereas the simulation results

show peaks at ℓ∼ 3). Nevertheless, the energy distribution

Figure 5. Turbulent kinetic power spectra for simulations with different resolutions R1–R8 (see color correspondence in the legend), at three different depths, from left
to right. The black dashed line corresponds to a simulation with the same horizontal resolution as R1 but with 256 grid points in the radial direction. The dotted line
shows the ℓ

−5/3 Kolmogorov scaling.

Figure 6. Kinetic power spectra for the spheroidal (blue lines), toroidal (yellow), and radial (black) components of the velocity field at r = 0.95Re for simulations (a)
R1 to (d) R8. The dashed lines in panel (c) correspond to simulation R1x. The results of panels (c) and (d) indicate strongly anisotropic convection with divergent
flows more energetic than the radial flows. The black and red dashed lines in panel (d) show the Kolmogorov (1941) and Rincon et al. (2017) predictions, respectively,
for the spectra of turbulent motions.
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among the different components of the velocity, the
morphology of the spectral curves, with the spheroidal motion
peaking at a large scale, the radial kinetic energy having a kink
at the same scale but peaking at a smaller one, and the
compatible turbulent scaling laws, demonstrate that simulations
R1x, R4, and R8 capture well the properties of convective
motions unconstrained by rotation.

It is also worth comparing the findings described above with
those of others in similar simulations. The spherical high-
resolution simulation, case SD, presented in Hotta et al. (2019),
has a radial profile of the rms velocity that is qualitatively
similar to the profiles of Urms presented in Figure 3(c). Because
in their simulations convection carries almost the entire solar
luminosity, the amplitude of the velocity is larger. The
turbulent kinetic spectrum of this case has about two orders
of magnitude more energy in the horizontal than in the radial
motions (see also Hotta et al. 2014). In the cases presented
here, the anisotropy is larger, as can be seen in Figures 6(c) and
(d). In their spectrum for the horizontal velocity, the maximum
is at ℓ∼ 5 or 6, in fair agreement with our findings.

In the study performed by Featherstone & Hindman (2016a),
including low- and high-resolution simulations, the situation is
different. Their sets of simulations with density scale heights
Nρ= 3 and 4 are compatible with the experiments presented here.
Unlike what is observed in Figure 3(a), in their profiles of the rms
radial velocity component, the maximum shifts toward the top
boundary of the model with the increase of the resolution
(accompanied by an increase in the Rayleigh number). In their
kinetic spectra, the largest scale, ℓ= 1, has the maximum power.
In their low-resolution simulations, the power at low ¢ℓ s is larger
and decreases for higher resolution, where the newly resolved
motions acquire considerable energy. Thus, their inertial range
becomes flat. This difference is intriguing. It might arise from the
difference in the energy equation between this work and
Featherstone & Hindman (2016a). However, both Featherstone
& Hindman (2016a) and Hotta et al. (2019) consider somewhat
similar energy equations, including a static background state and
radiative diffusivity. On the other hand, Featherstone & Hindman
(2016a) consider explicit viscous dissipation, whereas in this work
and in Hotta et al. (2019), it comes from the numerical scheme.

3.2. Rotating Solar Convection

Here, we present simulations that include the Coriolis force
in the momentum equation, Equation (2) (see Table 1). In
numerical experiments not presented here, we noticed that the
convergence to a steady-state solution occurs faster if the initial
conditions are random perturbations rather than the nonrotating
relaxed state. Figure 7 depicts the morphological characteristics
of the instantaneous radial flow in the orthographic projection
at r= 0.85Re (see panels a, e, and i for simulations R1x24,
R2x24, and R4x24, respectively), as well as in the meridional
plane (panels b, f, and j), along with the latitudinal velocity
(panels c, g, and k) and the longitudinal velocity (panels d, h,
and l) in the meridional plane.

The orthographic projection shows the elongated structures
at equatorial latitudes, also known as “banana cells,”
characteristic of rotationally constrained motions taking the
form of columns (Busse & Or 1986). For cases R2x24 and
R4x24, regions of strongly stretched structures are observed at
intermediate latitudes. These are a consequence of the resulting
large-scale shear. In the meridional plane, the convective
motions at equatorial latitudes are not radial, as in the

nonrotating cases presented in Figure 2; instead, they form
elongated convective columns aligned with the rotation axis. At
higher latitudes, there are multiple convective cells, exceeding
the number in the nonrotating cases, with a certain tilt regarding
the rotation axis. The latitudinal velocity (panels c, g, and k)
shows flow parcels that are aligned to the rotation axis. The
number of these structures seems to increases with the
resolution. Finally, the instantaneous snapshot of the long-
itudinal velocity evinces the sustained large-scale longitudinal
flow resulting from each case. The low-resolution case shows
an accelerated equator and deceleration toward high latitudes
(panel d). The case R2x24 shows a fast rotating equator, a
column of retrograde flow above the tangent cylinder, and a
column of accelerated motions inside the tangent cylinder (h).
In case R4x24, the velocity at the equator diminishes, whereas
the higher-latitude acceleration increases and advances toward
the poles (l). We discuss the sustainment of this longitudinal
mean flow and its coupled meridional flow in Section 3.2.2.
Figure 8 compares the same averaged quantities presented in

Figure 3 between the rotating cases, R1x24, R2x24, and R4x24
(blue, red, and green lines, respectively). For comparison, the
results for the nonrotating models R1x and R4 are presented in
black and gray dotted lines, respectively. It is expected that the
amplitude of the velocity field components is quenched by the
Coriolis force. This change is evident by comparing the
continuous color lines with the dotted dark lines. For simulations
R1x24 and R4x24, the mean radial velocity, wrms, is∼ 65%
and∼ 70% of the values for the cases R1x and R4, respectively
(panel a). Most important for this paper is the observed trend of
this quantity to acquire larger values with the increase of
numerical resolution. Note also that the maximum of wrms

moves toward the upper boundary. The longitudinal component,
urms (b), also decreases compared to the models without rotation,
but the change is not as significant as for wrms. It is noteworthy
that the rms horizontal motions slightly penetrate into the stable
layer at r∼ 0.7Re (see vertical red line), and even at deeper
layers there is a nonzero velocity. This nonvanishing velocity
suggests a weak level of turbulence in the stable layer. It may be
a byproduct of shear instabilities, inertial waves driven by
the Coriolis force, or internal gravity waves. The perturbations
ofΘ (panel d) do not show significant changes in the convection
zone with respect to the nonrotating cases. Also, there are no
notable differences between simulations with different resolu-
tions. However, at the bottom of the CZ, there is a valley of
negative perturbations that is deeper for higher resolution. A
positive peak can be identified slightly below the CZ. Its location
is roughly the same for all rotating cases. As seen below, these
maxima appear as a consequence of the large-scale shear that
establishes at the tachocline and their associated thermal wind
balance.
The luminosity carried by the enthalpy flux resulting in the

rotating simulations is presented in Figure 9. It is interesting
that, despite the differences in wrms between simulations R1x24
to R4x24, the average of the correlations Q¢wrms remains
roughly the same for all cases, carrying approximately 25% of
the solar luminosity. Also, despite the fact that rotation causes
wrms to peak closer to the top of the domain, the maxima of Le
is shifted downward, with respect to the nonrotating cases (for
comparison, see the black dotted lines in the figure,
corresponding to simulations R1x and R4). The figure also
shows that rotation diminishes overshooting. The bottom of the
convection zone is focused in the inset in the figure. It clearly
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shows a considerable difference between the nonrotating cases,
presented in dashed dark lines, and the rotating simulations.
Finally, the dotted lines in the figures show the luminosity
carried by the kinetic energy flux. It is evident that it is much
smaller than in the nonrotating cases. Therefore, the luminosity
carried by convection—see the residual between Le and Lk—is
mostly due to the enthalpy flux.

3.2.1. Spectral Analysis

The turbulent kinetic energy spectra of the rotating
simulations at different depths are presented in Figures 10(a)–
(c). In this figure, only the decomposition in the ẼQ (black

line), ẼS (blue), and ẼT (yellow) components (Equation (12))
is presented. The full kinetic spectra (Equation (11)) follow the
curves of the most energetic component—in this case, the
toroidal kinetic energy. Note also that these spectra correspond
to the turbulent velocity field, removing the axisymmetric

component, m= 0, from the total velocity vector, i.e.,

¢ = -u u u. The thick dashed, dotted, and solid lines

correspond to cases R1x24, R2x24, and R4x24, respectively.

The spectra for the nonrotating case R4 are presented in thin

continuous lines for comparison. For rotating convection, the

spectra reveal anisotropic motions. This time, however, the

toroidal component is the dominant one. The radial velocity is

the less energetic component. The anisotropy is more

pronounced near the top of the model domain, with an energy

difference of about two orders of magnitude at the scales of the

most energetic motions. In the middle and bottom of the CZ,

the anisotropy diminishes and the energy difference is about a

factor of two.
As a consequence of the Coriolis force, the broad convective

cells observed for nonrotating convection, with maximum

energy at the harmonic degree ℓ∼ 3, are broken into cells with

scales peaking at ℓ∼ 30 at the upper part of the domain and

Figure 7. Same as Figure 2, but for simulations R1x24, R2x24, and R4x24, from top to bottom.
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with most of the energy in ẼT . At the middle and bottom, there
are peaks of energy at values of ℓ between 6 and 8.

It has been reported in both HD (Featherstone & Hindman
2016b) and MHD simulations (Guerrero et al. 2019) that the
spatial scale where the spectra peak depends on the Rossby
number. The results presented in this study show that the
Rossby number also changes with the numerical resolution.
However, a shift in the spatial scale of the energy peak is
observed only for the radial component at the domain’s surface
(panel a). ẼQ peaks at ℓ∼ 30 for simulation R1x24, ℓ∼ 40 for

simulation R2x24, and ℓ∼ 50 for case R4x24. Concurrently,

the energy increases by a factor of two to three between the
low- and the highest-resolution cases. In the Sun, the radial

spectral energy has a maximum at ℓ∼ 400 for supergranular
motions. Yet, as previously mentioned, supergranules are

mainly divergent motions with most of the energy contained in
the spheroidal energy component. Interestingly, a relevant
change in the energy-containing scale of the horizontal velocity

components with the mesh size is not observed. It is worth
remembering here that the longitudinal velocity, which largely

contributes to ẼT , is the component used for measuring the
observational spectra (Proxauf 2020). At large values of ℓ, the

spectra decay with a scaling law faster than the Kolmogorov
ℓ
−5/3 rule at all depths (see the thin dotted lines). It is a

remarkable result that the spectra do not show dramatic

changes with the resolution except the one described for
~
EQ at

upper radial levels. Surprisingly, the large-scale patterns

deriving from these turbulent flows result in fully divergent
outcomes, as will be presented below.
It is illuminating to compare these findings with the

results of the high-resolution rotating simulation performed

by Miesch et al. (2008). Their kinetic spectra show anisotropic
motions at surface levels with the maxima energy in the

horizontal velocity components and at the harmonic degrees
ℓ= 20− 30. The spectrum of the radial velocity component
peaks at ℓ= 80. Below the modelʼs top boundary, the motions

become more isotropic. These results are generally in
good agreement with those presented in Figure 10, i.e.,

with the increase of resolution, the radial velocity shifts to
larger energy and smaller scales. On the other hand, the

Figure 8. Same as Figure 3, but for the rotating simulations with different resolutions, R1x24 (blue), R2x24 (red), and R4x24 (green). For comparison, the profiles
corresponding to the nonrotating cases R1x and R4 are presented with black and gray dotted lines, respectively. The thin red vertical lines show the bottom of the
convection zone.

Figure 9. Luminosity carried by the enthalpy flux in the rotating simulations
R1x24, R2x24, and R4x24. For comparison to the nonrotating cases, the dotted
black and gray lines correspond to simulations R1x and R4, respectively. The
inset focuses on the bottom of the convection zone and shows that
overshooting decreases because of rotation. The dotted lines show the
luminosity carried by the kinetic energy flux.
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spectra of the horizontal components seem to be independent

of the resolution. Nonetheless, despite the agreement in the

spectral properties, the resulting mean flows of simulation

R4x24 differ from their findings (see Figure 6 of Miesch

et al. 2008).
From the graphs presented in Figure 10, the maxima

appearing between 6 ℓ 10 stand out. They are more evident

at the middle and the bottom of the domain; see Figures 10(b)

and (c). As a matter of fact, these peaks contain the largest

energy at the bottom of the CZ. To identify to what motions

these peaks correspond, Figure 11 presents two-dimensional

spectra for the simulation R1x24. These spectra are computed

using Equation (11) but not considering the sum over m and

averaging only over time. Panels (b) and (c) reveal that the

high-energy harmonics in this particular range correspond to

low-order longitudinal modes, m= 1 to 4. These are inertial

modes, similar to Rossby waves, developing below the

convection zone. It is observed that their maximal energy is

at depth r= 0.71Re, and quite remarkably, these peaks appear

at the same scales independently of the resolution. Because of

their energy, which seems to propagate upward to higher radial

levels, these modes are likely to be dynamically important in

the rotating convective system. Assessing the properties of

these waves and their relevance is left for an independent study

(Dias et al., in preparation).

The banana cells, clearly observed in Figures 7(a), (e),
and (i) at r= 0.85Re, have longitudinal wavenumbers
16<m< 20; therefore, in the (m,l) plane, they are close to
the diagonal in Figure 11(b). At the top of the domain, the 2D
spectrum shows large energies in the diagonal but also below it.
The analysis of solar motions by Getling & Kosovichev (2022)
presents similar 2D spectra. At the deepest layers reached by
their measurements, 19Mm below the solar surface, their
spectrum shows higher energy levels below the diagonal, with
scales peaking between 10 ℓ 40. The results presented in
Figure 11(a) resemble these observations.

3.2.2. Mean Flows and Angular Momentum Transport

Turbulent inverse cascade effects allow the development of
large-scale motions with spatial scales of the size of the system
and temporal variations much longer than the convective
turnover time. These motions can be separated into the
longitudinal and meridional components, namely the differ-
ential rotation and meridional flow. The resulting differential
rotation for simulation R1x24 is solar-like, and is accelerated
(decelerated) at the equator (poles) with respect to the frame
rotation rate Ω0; see Figures 12(a) and (b). Yet, unlike the Sun,
where isorotation contours are conical, the profile has contours
that are roughly cylindrical, aligned with the rotation axes.

Figure 10. Same as Figure 6, but for simulations R1x24 (dashed line), R2x24 (dotted), and R1_24 (solid). Note that the peak of the spectra of the rotating simulation is
shifted toward the smaller scales, ℓ ∼ 40. Moreover, increasing resolution leads to larger power in the radial component, with the maximum being shifted to the
smaller scales. For comparison, the thin solid lines show the spectra of case R4 at the corresponding depths.

Figure 11. Two-dimensional kinetic energy spectra for simulation R1x24 at the top (a), middle (b), and bottom (c) of the domain. The bottom left points observed in
panels (b) and (c) correspond to inertial modes driven by the Coriolis force.
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The ambient state prevents the turbulent motions from
penetrating into the stable layer below the thin overshooting
region. Thus, a tachocline is formed at the transition between
the radiative and convective zones. In the Sun, the tachocline is
subjected to radiative spreading (Spiegel & Zahn 1992), and
there is not yet widespread agreement with regard to the
mechanisms that sustain its thickness. In most simulations
including a subadiabatic layer below the convection zone, the
tachocline spreads over time due to the imposed viscosity. In
the ILES simulations presented here, there is no measurable
viscous spreading of the tachocline in the stable layer during
the timescale of the simulations. This allows us to assess the
role of this layer on the formation and sustainability of large-
scale flows.

The meridional circulation is represented in Figure 12(c)
through the mean latitudinal velocity in the meridional plane.
In the northern hemisphere, the negative (positive) values of v
correspond to poleward (equatorward) motions. The
graph shows several circulation cells appearing at latitudes
between± 35° with amplitudes of a few m s−1, with the most
prominent cells corresponding to clockwise circulation. At
higher latitudes, the meridional flow weakly reaches the poles
at the upper layers and returns at deeper layers.

The DR of simulation R2x24, illustrated in Figures 12(d)
and (e), still shows a fast equator. Nevertheless, a column of
strong retrograde velocity appears outside the cylinder
tangential to the model’s tachocline. Physically, this is an
expected outcome if the velocity of counterclockwise
convective Busse columns is enhanced due to a large Rossby
number (see, e.g., Featherstone & Miesch 2015). Inside the
tangent cylinder, there is a column of rotation with roughly the
same speed as the equator and slower poles at the highest
latitudes. The same characteristics appear in simulation R4x24;
however, increasing the resolution further decreases the
equatorial speed and enhances the acceleration of the poles.
A similar transition was observed by Hindman et al. (2020) for
simulations with the same rotation rate and increased Rayleigh
and Reynolds numbers. The profiles of meridional flow remain
similar in these simulations, yet with stronger meridional flow
velocities at intermediate to high latitudes. These enhanced
meridional flows transport angular momentum toward the
higher latitudes and explain the obtained polar acceleration. In
cases R2x24 and R4x24, there are negative and positive radial
gradients of W at the equator and middle latitudes. Thus, the
meridional circulation continues to be multicellular despite the
accelerated poles.

Even though a solution independent of the grid resolution is
not observed, and the highest-resolution simulation is the
farthest from the solar-like rotation, with the data at hand, it is
possible to explore the redistribution of angular momentum as a
function of the resolution to get a better understanding of the
processes that drive and sustain the mean-flow profiles.

The mean angular momentum, vr= ur , where v =
qr sin is the lever arm and u is the time and longitudinal

average of u, evolves according to
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(r and θ) components of the velocity field, respectively. More
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which arise from the small-scale correlations, i.e., Reynolds

stresses (RS), of the turbulent flow (for completeness, the profiles

of the RS in the meridional plane for the three rotating simula-

tions are presented in Appendix A) and from the mean profiles of

DR and MC in a statistically steady state. It is expected that,

during this stage, the LHS of the equation vanishes; therefore, the

four fluxes of Equation (14) should balance with each other. The

net radial and latitudinal angular momentum transport may be

estimated by computing the fluxes across spherical and conical

surfaces, respectively (see Brun & Toomre 2002), as
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Since r runs from bottom to top, positive (negative) values of Ir
correspond to upward (downward) angular momentum flux.

Similarly, θ runs from the north to the south poles; thus,

positive (negative) Iθ corresponds to equatorward (poleward)

flux in the northern hemisphere. The fluxes of angular

momentum for the simulations R1x24, R2x24, and R4x24,

integrated over radius and latitude, are presented in the top and

bottom rows of Figure 13, panels (a) to (c), respectively. For

evaluation of the independent contributions of the RS and the

MC, the integrals for r
MC and q

MC (red lines), and r
RS and

q
RS (blue lines) are presented separately. The black dashed

lines show the sum of the MC and RS contributions.
For the lowest-resolution case, panel (a), the RS transports

angular momentum downward at the bottom half of the
convection zone and upward at the upper half. Increasing the
resolution leads to an increase in the radial flux (panels b and c).
However, for cases R2x24 and R4x24, the RS flux is negative
(inward) in most of the convection zone, with boundary regions
of positive (upward) flux at the bottom and top of the domain.
The radial RS flux is well-balanced by the MC flux, and the sum
of the two fluxes is roughly consistent with zero.
The amplitude of the latitudinal fluxes also increases with the

numerical resolution. In all of the cases, the RS flux pumps
angular momentum toward the equator. Unlike the radial flux,
the MC flux does not balance its turbulent counterpart, and it
even shows a different profile for each case. In simulation
R1x24, qI

MC has the same sign as qI
RS at low and intermediate

latitudes. Therefore, the net transport of angular momentum is
equatorward. This explains the solar-like profile observed in
Figures 12(a) and (b). The black dashed line in the bottom
panel of Figure 13(a) clearly shows that the two fluxes do not
balance each other. In these hydrodynamic simulations, the
only term missing in Equation (13) is the molecular viscous
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Figure 12. Left and middle panels: differential rotation as a function of radius for different latitudes and in the meridional plane, respectively, for simulations R1x24,
R2x24, and R4x24, from top to bottom. Right panels: mean profile of the latitudinal velocity in the meridional plane. In the northern hemisphere, negative (positive)
values correspond to poleward (equatorward) flows.
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flux. While in the Sun this term must be irrelevant, in the low-
resolution case, it appears in the form of effective viscosity.
This numerical contribution results in an angular momentum
flux with values compatible with the RS and MC fluxes.

In simulations R2x24 and R4x24, the balance between RS
and MC fluxes is better, as evidenced by the smaller values
reached by the black dashed line relative to the values of qI

RS

and qI
RS. Yet the balance is not perfect (bottom row of panels b

and c). The MC flux assumes the opposite sign of RS and
advects angular momentum toward the poles. Notice that, in
these three cases, the resolution increases only in the horizontal
direction. The estimated values of the effective viscosity
presented in Appendix B show that, for the rotating cases, νeff
scales as f

-N 1.8. Thus, changing Nf and Nθ by respective factors
of two and four results in changes in the effective viscosity
with respective factors of ∼3 and ∼11 (see Table 1). It is good
to bear in mind, however, that this viscosity is nonlinear and
nonhomogeneous, being larger in regions where the flow has
steeper variations. The bottom row of Figure 13(c) demon-
strates the weaker influence of the effective viscosity on the
angular momentum dynamics. In this case, qI

MC has almost

twice the amplitude of qI
RS. Therefore, the sum of the two also

has half of the amplitude of qI
MC and its contribution aims to

settle the balance. The profiles of qI
MC explain the transition of

the DR from the accelerated equator to the accelerated poles. It
is worth mentioning here that the profiles in Figure 13(c) are
compatible with those of Miesch et al. (2008), with the
exception of an enhanced MC latitudinal flux in case R4x24.
Nevertheless, unlike the differential rotation profile observed in
Figures 12(g) and (h), they obtain a solar-like rotation. There
are several differences between the two modeling approaches.
The more relevant ones are perhaps the different values of the
Prandtl number (0.25 in their case and estimated to be ∼3 in
this work) and the initial condition of the simulation as well as
the total evolution time. They enforce a solar-like profile and
then evolve the simulation for ∼3 yr, whereas the models
presented here start from random thermal fluctuations and
evolve the system for 20 yr.

The large-scale flows observed in Figure 12 are sustained by
the fluctuations around average values of the angular momentum
fluxes. The shadows around the profiles presented in Figure 13

depict the standard error, ( )s s= ne , where σ is the variance
and n is the number of samples in the average. It is clear from
the figure that the MC flux has larger deviations from the mean
profile and that these deviations increase for higher resolutions.
This result is not surprising, given the smaller viscous friction
that the flow experiences in the higher-resolution cases. The
fluctuations are sustained by turbulent convection driven by the
buoyancy force. Therefore, Equation (13) does not entirely
describes the sustainability of the mean flows.
Before providing an overview of the sustainment of the DR

and MC, it is illustrative to compute the divergence of the
fluxes on the RHS of Equation (13). Including the minus sign
in front, the results are the axial torques,
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due to the RS and the MC, respectively. These quantities are

presented in Figure 14.
On average, in the steady state, the RS produce a torque that

changes sign with radius and latitude. The profiles from
simulations R1x24 to R4x24 are similar, although for the
higher-resolution cases, the torque becomes stronger and
better-aligned with the axis outside the tangent cylinder, and
it also seems to reach higher latitudes. To balance these
torques, the meridional motions form closed loops with
circulations that have axial torques in the direction opposite
to that of the RS. This process is called gyroscopic pumping. It
is sustained by deviations of the thermal wind balance, as will
be seen in the following section. The direction of the
meridional flows may be identified by writing Equation (13),

Figure 13. Angular momentum fluxes integrated over spherical surfaces at different r (upper panels) and conical surfaces at latitudes 90 − θ (bottom), for simulations
(a) R1x24, (b) R2x24, and (c) R4x24. The red and blue lines correspond to the MS and RS contributions; the dashed black line is the sum of both contributions.
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Figure 14. Axial torques due to the RS (left column) and the MC (middle), and the sum of the RS and MC (right) torques, presented in the meridional plane for
simulations R1x12 (top row), R2x24 (middle), and R4x24 (bottom).
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with ¶ ¶ =t 0 , as

· ( ) · ( ) ( )r v r v W = - ¢ ¢ = -u u u , 19r m r m
2 RS

and with the known profiles of Ω and RS (Figures 12 and 14).

As a simple example, let us consider the simulation R4x24,

with constant θ at the equator, Equation (19) becomes

( ) ( ( )) ( ( )) ( )r
¶
¶

W = -
¶
¶

w r
r
r r

r r
r r

1
. 20r eq eq r eq

2
2

2
,
RS

The radial derivative at the LHS is positive for all r, whereas the

radial derivative at the RHS changes sign several times. It is

negative for 0.72Re r 0.77, positive for 0.77Re r 0.82,

and negative again for 0.82Re r 0.9, from which point on it

is positive; see the leftmost panel of Figure 14(c). Thus, because

of the minus sign in the RHS, the profile of ( )w req has to have

the sign opposite to that of ( ( ))
¶
¶
r r

r r
2

,eq
RS . We have numerically

verified that this relation is obeyed for all values of r.
Figure 14 shows that the MC torque has roughly the same

profile as the RS torque, yet with the opposite sign. The third
column of the figure depicts = +tot

RS MC   . It shows that
the balance is not perfect, suggesting the contribution of axial
torques by the effective viscosity. With the increase of the
resolution, shown in panels (a) to (c), the values of the axial
torques become higher, the balance seems to improve, and tot
is evidently less coherent. Both changes are a consequence of
the diminished viscous resistance to turbulent motions.

3.2.3. Differential Temperature and Thermal Wind Balance

Both quantities on the LHS of Equation (19) are sustained
from the departures of the equilibrium state through
fluctuations driven by convection, which in turn is sustained
by the buoyancy force. An equation including this contribution
may be obtained by computing the vorticity by taking the curl
of Equation (2). The longitudinal component of the vorticity
contains various terms that sustain the meridional balance (see,
e.g., Miesch & Hindman 2011; Passos et al. 2017, for
derivation and discussion). The inertial,  , and the baroclinic,
, terms are the most relevant (Kitchatinov et al. 2013), leading
to the thermal wind balance (TWB) equation,

( )v
q

=
¶W
¶

= + =
Q
¶Q¢
¶

+
z

g
, 21

r

2

   

where z is the vertical axis in cylindrical coordinates, such that

q q¶ = ¶ - ¶q-rcos sinz r
1 , and  incorporates all other forces

in the meridional plane, including the contribution of turbulent

stresses, the turbulent baroclinicity, and the viscous forces

(Miesch & Hindman 2011; Passos et al. 2017).
Departures from the TWB due to fluctuations of the LHS term

induce meridional motions via the gyroscopic pumping seen
from Equation (19). Similarly, latitudinal differential tempera-
tures result in meridional flows driven by baroclinicity.
Equations (19) and (21) are obviously coupled. As mentioned
above, meridional motions are necessary to balance the angular
momentum; these motions are generated by deviations from the
TWB. Figure 15 shows the temperature fluctuations as a function
of latitude. From the figure, it is possible to determine whether
the gyroscopic pumping or the baroclinic force drives the
meridional flow. For better visualization of the latitudinal
differential temperature, two different scales are considered to
the left and right of panels (a) to (c), corresponding to simulations
R1x24 to R4x24, respectively. The scale on the left (right) Y-axis
shows ¢T at the top (bottom) of the convective layer. Comparing
the blue and red curves indicates that the latitudinal contrast is
small (less than one degree) at the top of the domain, yet it
reaches tens of Kelvins at the bottom of the CZ. Furthermore, at
the top of the domain, the equator is colder than the poles for all
cases, but below the CZ, the equator is colder only for simulation
R1x24, and a large temperature contrast between a warmer
equator and colder poles is found for simulation R4x24. The
shadows show the deviation from the mean.
Given the profiles of Figure 15, baroclinicity should result in

motions with prominent clockwise circulation for the case
R1x24, and prominent counterclockwise circulation for cases
R2x24 and R4x24. This is clearly not observed in the rightmost
panels of Figure 12, except perhaps at intermediate to higher
latitudes in case R4x24. The main source of the meridional
motions observed outside the tangent cylinder is likely the
departure from thermal wind balance about the inertia term,  ,
which corresponds to the gyroscopic pumping.
The contribution of the meridional forces to the generation of

meridional circulation can be better understood through
the comparison of the two most important terms of the
meridional force balance equation, namely the inertial,  ,
and the baroclinic, , terms. If the two terms cancel each other,
the system is in TWB. Whenever the balance is violated, either
transiently or after temporal and longitudinal averages,
vorticity in the meridional plane, i.e., meridional circulation,
is induced. Figure 16 shows the contours of  (first column)
and  (second column) in the meridional plane. The third
column shows the departure of TWB via the residual -  .

Figure 15. Latitudinal variations of temperature perturbations: the red and blue lines correspond to profiles of temperature perturbations at the surface and the bottom
of the convection zone for the models (a) R1x24, (b) R2x24, and (c) R4x24. The contrast at the two radial levels is different; therefore, two different scales at the left
and right Y-axis are considered. The dashed line shows a third radial level at r = 0.66, where perturbations are not expected. The angled brackets, 〈〉r, indicate the
radial average centered in r = 0.71Re and r = 0.93Re in a radial layer of thickness 0.04Re.
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The first thing to notice in Figure 16 is the qualitative and

quantitative similarities of the meridional profiles  and .
However, the third column shows that the balance is not

perfect. Note that the scale of the residual is half of the inertial
and baroclinic terms. Thus, the deviation from TWB is smaller

yet considerable. As expected, this deviation is more

prominent outside the tangent cylinder, where the meridional
circulation cells are observed. Not surprisingly, it increases

with the numerical resolution providing enhanced meridional
circulation (note that the opposite happens with the axial

Figure 16. The inertia,  (left), and baroclinic,  (middle), terms of the TWB, Equation (21). The right column shows the residual -  .
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torques, Figure 14, i.e., the residual decreases with the
increase of resolution).

The departures from the TWB by meridional drivers, such as
the meridional Reynolds stress component, sustain a meridional
flow that is stronger at higher resolution because the numerical
viscosity offers less and less resistance to these motions. The
rightmost panels of Figures 17(a)—(c) in Appendix A show
that the meridional component of the RS is indeed enhanced
with the increase of resolution. The meridional motions
compensate for the angular momentum transported by the
Reynolds stresses. In the low-resolution case, where viscosity is
high, the angular momentum balance due to MC is insufficient

and the positive (negative) values of qI
RS in the northern

(southern) hemisphere efficiently accelerate the equator. In the
high-resolution case, the MC motions develop with less friction
and better compensate for the angular momentum fluxes (see

qI
MC in Figure 13). They are sufficiently strong to accelerate the
poles. In the Sun, the molecular viscous resistance is
insignificant. However, there is always the magnetic field,
which may provide large- or small-scale Maxwell stresses,
causing an effective equatorial transport of angular momentum
and resulting in solar-like rotation. Yet it is not the only
possibility to solve this issue.

In mean-field models of differential rotation (see Kitchatinov
et al. 2013, for a review), the TWB is almost exact in the bulk
of the convection zone. And departures are obtained at the
boundary layers in such a way that a strong poleward
meridional flow develops at the near-surface shear layer, and
the equatorial return flow occurs at tachocline levels. The
theory for the formation of the near-surface shear layer (NSSL)

developed by Miesch & Hindman (2011) is in agreement with
this view, suggesting that, in this layer, the inertia term is
balanced by turbulent stresses rather than by the baroclinic
force. It is worth remarking that, in the simulations presented
here, the NSSL is not considered, and these boundary effects
may be a relevant missing element. Nonetheless, baroclinicity
is not sufficient to balance the inertial meridional force as
presented above. It is possible that the turbulent motions
developed in most of the current global simulations are not a
reliable representation of the high Re, low Pr turbulence
occurring inside the Sun.

Another remarkable point from Figure 16 is that the
tachocline does not seem to act as a boundary layer generating
strong departures of the TWB as suggested in mean-field
models. It has usually been assumed that latitudinal gradients
of temperature may be responsible for the deviation from the
cylindrical toward the conical isorotation contours observed in
the Sun. This seems to work in global simulations that do not
include the tachocline where a latitudinal differential
temperature is imposed as a boundary condition (Miesch
et al. 2006). The simulations presented in this work, including
the tachocline, demonstrate otherwise. Consider, for instance,
the low-resolution simulation, R1x24. The slower north pole
and fast equator make the variation of W along the direction of
the rotation axes (z) more negative at the poles than at∼40°,
where the convection zone rotates at the same speed as the
stable layer. This is compensated by a negative gradient ofQ¢,
and consequently, in ¢T . Conversely, in case R4x24, W goes
from a slower stable layer toward a faster north pole,
generating a positive signal for the term  . This is
compensated by a positive temperature gradient of ∼40 K,
which is also evident in . Therefore, it is possible to

conclude that, in our simulations, the differential temperature
is a reaction of the baroclinic force to the gradient of the
angular velocity in the z direction. Once the balance is
established, the outcome is roughly cylindrical isorotation
contours, independently of the rotation being faster at the
equator or the poles.

4. Conclusions

We have performed HD convection simulations with the
EULAG-MHD code in a spherical shell whose thermodynamic
stratification resembles the upper part of the solar radiation
layer and the convection zone up to r= 0.96Re. We have
considered cases without and with rotation. The thermal
driving, considered here through an ambient state, results in
an enthalpy flux corresponding to∼ 0.3Le for the nonrotating
cases and∼ 0.2Le for the rotating simulations. Keeping fixed
all the parameters in the governing equations, we explore how
progressively increasing the numerical resolution affects the
simulation results. We solve the equations in their inviscid
form; therefore, the dissipation of momentum and heat is
delegated only to truncation terms of the numerical method.
Arguably, in this formulation we can achieve larger values of
the effective Reynolds number with less computational
resources than in a formulation with explicit dissipation terms.
It is expected that, at sufficiently high Re, the contribution of
viscosity to the transport of linear and angular momentum
should be negligible and the dynamics of the system is defined
by the properties of the turbulent motions. Our main goals are
to identify the properties of the fluid as a function of the
resolution and evaluate the challenges of achieving grid-
independent results for this complicated problem.
For the nonrotating cases, our findings can be summarized as

follows:

1. The low-order velocity moments and turbulent spectra of
the nonrotating simulations do not show significant
changes between the highest-resolution cases R4 and
R8, indicating that the ILES convergence may be
achieved at a resolution not much higher than R8. The
estimates of the effective viscosity, νeff, and thermal
conductivity, κeff, presented in Appendix B, show a sharp
decrease with the increase of the longitudinal resolution,
Nf. For simulations R1–R8, their values are one to three
orders of magnitude smaller than the turbulent viscosity,
νt, respectively. Therefore, we believe that in the highest-
resolution cases the dissipative processes are dominated
by the resolved turbulent motions.

2. The ambient state considered in the model captures
the sharp transition in the Brunt–Väisälä frequency at the
bottom of the convection zone. High resolution in the
radial direction is needed for this transition to be captured
by the velocity field, especially its horizontal components.
The gradient of Urms between the stable and unstable
layers increases with Nr but seems to saturate at Nr = 256
grid points (this value corresponds to a radial grid size
dz = 982 km). This resolution also appears sufficient to
capture the 4.5 density scale heights considered in the
model (3.7 of which are in the convection zone).

3. The convective motions resulting from cases R4 and R8
are characterized by anisotropic convection, with most of
the energy in the divergent component of the horizontal
flow at the top of the domain. Because of the convection
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zone thickness, the power spectra peak at larger scales,
1000–1400Mm (ℓ∼ 3–4), in good agreement with
similar simulations performed with a much higher
resolution (Hotta et al. 2014, 2019). There is also
agreement with some characteristics of supergranulation
obtained by Rincon et al. (2017). These motions, of
course, have maximum energy at much smaller scales,
presumably because they are driven by thermal
perturbations injected into a thin boundary layer.

4. In case R1x, we increased the resolution of the simulation
in the r direction and kept Nf and Nθ equal to case R1.
Despite the lack of detailed small-scale structures, the flow
properties of this case correlate well with those obtained
for cases R4 and R8. For this reason, we consider this
resolution our starting point for the rotating simulations.

More important for the solar dynamics is the case of rotating
convection. We performed three simulations where the radial
grid size is kept constant, and only the horizontal resolution is
increased. These cases appear in Table 1 as R1x24, R2x24, and
R4x24. The rotation period of these simulations is 24 days. It is
slightly shorter than the solar period, yet it results in solar-like
differential rotation in the lower-resolution experiment, R1x24.
The main results of these simulations are summarized below:

1. The perturbations of Θ, and more importantly, the
luminosity carried by the enthalpy flux, are roughly the
same for all simulations. Nevertheless, the amplitude of
the velocity components increases with the resolution.
This is more evident in the rms profile of the radial
component, wrms. The difference seems to be larger
between R4x24 and R2x24 than between R2x24 and
R1x24. This suggests that, for simulations accounting for
the rotation, grid-independent solutions are hard to
achieve.

2. The turbulent kinetic spectra shows strongly anisotropic
motions near the top of the convection zone. The
anisotropy decreases at the middle and bottom of the
convection zone. As expected, rotation imprints vorticity
in the flow. Thus, the energy of the toroidal part of the
horizontal flows becomes dominant. Interestingly, the
scale with maximal energy in the horizontal motions
appears to be independent of the grid size. On the other
hand, the energy in the radial component increases with
the resolution, and the peak of the spectrum shifts toward
larger harmonic degrees, i.e., the smaller scales become
more energetic. This seems to be a robust result when
comparing our findings with those of the high-resolution
simulation of Miesch et al. (2008).

3. The change in the resulting mean flows as a function of
grid resolution is dramatic. The output values of the
Rossby number go from ∼0.56 to ∼0.65, and in this
range, we observe a transition from solar-like to antisolar
differential rotation. The meridional circulation shows
multiple cells aligned to the cylinder tangential to the
tachocline. The meridional speed increases with the
resolution, as well as with the high-latitudinal pole-
ward flow.

4. The physics behind the differential rotation transition is
understood through the integrated angular momentum
balance and thermal wind balance (TWB). It may be
summarized as follows. At low resolution, the total
viscosity is high, one order of magnitude smaller than our

estimate of the turbulent viscosity, νt; this offers strong
resistance to the meridional motions driven by transient
departures of the TWB. In this case, the angular
momentum balance in the latitudinal direction is
dominated by the viscosity and the Reynolds stresses,
which pump angular momentum toward the equator.
With the increase of the resolution, the effective viscosity
decreases following a power law, becoming two orders of
magnitude smaller than νt. Thus, there is a better angular
momentum balance between the Reynolds stresses and
the meridional circulation, arguably the most relevant
processes to account for in HD simulations. This angular
momentum equilibrium favors polar acceleration because
there is a steady departure in the meridional force
balance, and strong poleward meridional flows carry
angular momentum with low friction.

5. In the simulations presented here, the latitudinal variations
of temperature at the base of the convection zone are a
consequence of TWB and not the result of departure from
TWB as commonly assumed (see the concluding
paragraph in Section 3.2.3). Thus, although there are
strong temperature gradients between the equator and
pole, the contours of isorotation are roughly cylindrical.

The results presented here correspond to an enthalpy flux
carrying only one-fourth of the solar luminosity, and the
rotation period is compatible with the sidereal rotation period
of the Sun. Extrapolating the observed trend to solar values
would result in a larger discrepancy with the solar differential
rotation. Also, the energy contained in scales corresponding to
ℓ∼ 30–40 would be higher than what is found in recent solar
observations (Proxauf 2020), suggesting that increasing the
resolution does not lead to a solution of the convective
conundrum. These problems, of course, are not specific to the
EULAG-MHD simulations but are present in most global
convection models. The results of the recent simulations of
Hotta & Kusano (2021) and Hotta et al. (2022) suggest that the
small-scale dynamo might be a solution. This field may act as
friction that quenches the velocity and contributes to the
angular momentum balance, leading to solar-like rotation.
Other MHD simulations indicate that the large-scale magnetic
field may contribute in the same direction (Fan & Fang 2014;
Guerrero et al. 2016; Karak et al. 2015). To this date, there are
no simulations where both small- and large-scale contributions
of the magnetic field, the usual suspect, are considered.
Nonetheless, the entire problem may reside in the fact that

the convection driven in the global simulations is not an
accurate representation of the turbulent motions in the solar
interior. The reason for this could be the enormous differences
in the parameter regime between the Sun and the simulations. It
has also been suggested that the deep solar convection may
depend on the physics occurring in the uppermost 50Mm (or
less) of the Sun (Spruit 1997), which are barely considered in
global simulations. In this boundary layer, the effective cooling
provided by hydrogen ionization destabilizes the plasma,
generating cold downward plumes. Thus, the turbulent motions
in the deep solar convection zone may be driven by this
penetrative entropy rain (Brandenburg 2016). In this sense,
deep solar convection can be seen as a nonlocal process in a
buoyantly neutral layer. The numerical experiments performed
by Cossette & Rast (2016) demonstrated this concept in a
Cartesian box. Their results show that the dominant convective
scales depend on the thickness of the boundary layer.
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Concurrently, the fast convective motions in this layer are not

constrained by the solar rotation, and they produce a negative

shear that, in turn, accelerates meridional motions, producing

the observed surface latitudinal velocity (Miesch & Hindman

2011). Recent simulations by Kitiashvili et al. (2022) showed

that turbulent convection in the upper part of the NSSL can

generate radial differential rotation and meridional circulation.

However, it is still uncertain how the turbulent correlations

generated by nonlocal convection can sustain the solar

differential rotation below the NSSL. Thus, it is worth

exploring this possibility and its consequences for the mean

flows in global simulations. The pursuit of numerical

convergence is also worth more computational efforts. A

database of simulations with varying resolutions is necessary

for studying the changes in the turbulence properties at

different Rayleigh and Reynolds numbers. It can also be used

for the experimentation of subgrid-scale methods that allow

realistic simulations at a lower computational cost. These goals

will be pursued in future works.
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Appendix A
Reynolds Stresses

For completeness, Figure 17 of this appendix presents the

Reynolds stresses obtained from the rotating simulations (a)

R1x24, (b) R2x24, and (c) R4x24. The stresses are defined as

( )= ¢ ¢ = ¢ ¢ = ¢ ¢fq f qu v u w v w, , . A1r r  
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Figure 17. Reynolds stresses resulting from simulations (a) R1x24, (b) R2x24, and (c) R4x24.
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Appendix B
Estimation of Effective Viscosity and Thermal Diffusion

Estimated values of the effective viscosity and the thermal
conduction are computed by using the procedure presented in
Strugarek et al. (2016). It consists of evaluating kinetic and
thermal energy transfer functions in the spherical harmonics
space. There is one function for each term of Equations (2) and
(3). In a steady state, the sums of these terms are equaled to the
viscous stress vector and the Fickian thermal diffusion for the
velocity and the perturbations of potential temperature,
respectively. The method allows estimating effective viscosity,
νeff, and thermal conduction, κeff, as a function of wavenumber
and radius. In the spectral space, dissipative terms are
proportional to the square of the wavenumber; therefore, only
the largest wavenumbers for each resolution are considered,
i.e., the results represent the coefficients dissipating the
smallest resolved scales. The radial profiles of νeff and κeff
are presented in Figures 18(a) and (b), respectively. The colors
correspond to the nonrotating simulations R1 (solid black), R2
(blue), R4 (red), R8 (green), and R1x (dashed black line). The

shadows show the standard deviation along the considered

wavenumbers. As motions and thermal fluctuations are small in

the stably stratified layer, the resulting coefficients have large

errors. For this reason, the figure presents only the profiles in

the convection zone. Averaging the profiles of Figure 18(a) and

(b) over radius allows the construction of scaling laws for νeff
and κeff as a function of the resolution in the longitudinal

direction, Nf. The results are presented in panel (c).
The results for the rotating cases are presented in

Figures 19(a) and (b). The colors correspond to simulations

R1x24 (blue), R2x24 (red), and R4x24 (green). The scaling

laws are presented in panel (c). Note that, in these cases, the

grid size in the radial direction remains constant and only

changes in the latitudinal and longitudinal direction. This

explains the flatter scaling laws. It is worth remarking that

several approximations were made to compute the dissipation

coefficients. Therefore, these values are physical estimates and

do not correspond to the exact numerical dissipation of the

MPDATA scheme, which is nonlinear and intermittent in space

and time.

Figure 18. Radial profiles of the effective viscosity, νeff (panel a), and the thermal conductivity κeff for the nonrotating simulations represented with different colors.
The shadows show the standard deviation for the highest wavenumbers resolved in each simulation. The average value over the convection zone as a function of the
longitudinal resolution Nf is presented in panel (c). The thin continuous line shows the corresponding scaling laws.

Figure 19. Same as Figure 18 but for the rotating simulations R1x24 (blue line in panels (a) and (b)), R2x24 (red), and R4x24 (green).
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