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Resumo

A Internet das Coisas (IoT, do inglês Internet of Things) é uma área que trata

de sistemas pervasivos, conectados por padrões de comunicação como Bluetooth, WiFi

e 5G. Para poder prover serviços com baixa latência, a computação de borda emerge

como um paradigma que permite realizar o processamento de dados mais próximo da

camada de sensores, onde a informação do ambiente é obtida. Aplicações IoT recentes

requerem soluções em tempo real, com a segurança das informações e dos dispositivos

garantida, prezando pelo correto gerenciamento dos dados e o desenvolvimento de sistemas

energeticamente eficientes. Aplicar técnicas de aprendizado de máquina em dispositivos

IoT é uma posśıvel solução que pode auxiliar com requisitos como a governança dos dados

(segurança, confiabilidade e usabilidade), balanceamento do processamento e a tomada de

decisão, como detecção precoce de ataques vindos da rede, reconhecimento de objetos, ou

autoaperfeiçoamento dos sistemas IoT. Para auxiliar com esses requisitos, a computação

de borda também tem sido muito utilizada com a finalidade de criar sistemas em tempo

real e com eficiência energética. O objetivo deste trabalho é avaliar o uso de aprendizado de

máquina em ambientes IoT e de computação de borda, com foco na análise do requisito de

segurança das aplicações e dispositivos. Para isso, propõe-se dois experimentos emṕıricos

com relação ao requisito de segurança, conduzindo um estudo sobre ataque de botnets em

dispositivos IoT e posśıveis estratégias de protegê-los contra esses tipos de ameaças.

Palavras-chave: internet das coisas; detecção de ataques; aprendizado de máquina;

aprendizado profundo; computação de borda



Abstract

Internet of Things (IoT) is an area that deals with pervasive systems, connected

by communication standards such as Bluetooth, WiFi and 5G. To provide low-latency

services, edge computing emerges as a paradigm that allows processing data closer to the

sensing layer, where information is acquired from environment. Recent IoT applications

require real-time solutions, with the security of data and devices guaranteed, focusing

on correct data management and the development of energy efficient systems. Apply-

ing machine learning techniques to IoT devices is a possible solution that can help with

requirements such as data governance (security, reliability and usability), balancing pro-

cessing and decision making, such as early detection of attacks coming from the network,

recognition of objects, or self-improvement of IoT systems. To assist with these require-

ments, edge computing has also been widely used for the purpose of creating real-time

and energy-efficient systems. The goal of this work is to evaluate the use of machine

learning in IoT and edge computing environments, focusing on the analysis of the se-

curity requirement of applications and devices. For this, two empirical experiments are

proposed regarding the security requirement, conducting a study on botnet attacks on

IoT devices and possible strategies to protect them against these types of threats.

Keywords: internet of things; attack detection; machine learning; deep learning; edge

computing
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Chapter 1

Introduction

1.1 Motivation

In the past few years, the Internet of Things (IoT) has become one of the most

researched topics in the computer science field. Nikoui et al. [2021] noticed that Internet

of Things studies increase about 40% annually as the usage and applicability of connected

services rise. Smart homes, smart cities, smart healthcare, and transportation are fields

in which IoT grants huge advantages and technologies. The expectation is that this trend

will increase as IoT applications help society to analyze and predict data, monitor and

automate processes and become more and more connected. For instance, IoT and artificial

intelligence (AI) solutions are being applied to help doctors and scientists with the recent

COVID-19 pandemic, as observed by Ghimire et al. [2020]. There are solutions created

to help diagnose patients with the disease, predict the disease’s spread, and develop new

drugs and vaccines. As expected, smart health is one of the areas that most developed in

the past five years [Nikoui et al., 2021].

Despite the significant increase in IoT solutions, security is still a relevant and

challenging requirement to guarantee when it comes to IoT systems. That happens due

to the heterogeneity of most IoT environments, with vast amounts of transferred data, big

attack surface and a significant number of connected devices with diverse protocols and

standards [Aversano et al., 2021; Hussain et al., 2020; Laguduva et al., 2019]. One of the

most concerning issues in the security field is the possibility of spreading malicious data

across the networks and infecting entire environments in large DDoS attacks, leading

to problems like system malfunctions and data stealing [Aversano et al., 2021; Hoque

et al., 2015]. In this context, Botnets are malwares that are widely used to affect IoT

applications. They are machines used by hackers to coordinate malicious incursions,

which can cause considerable losses to enterprises or even personal data [Hoque et al.,

2015; Kolias et al., 2017]. Some studies have proposed a solution to early detect attacks on

incoming information by applying machine learning (ML) strategies to learn data patterns

and identify which information is benign and block malware information [Meidan et al.,
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2018; Koroniotis et al., 2019].

Creating IoT applications combined with AI techniques is a current trend. Ac-

cording to recent studies [Aversano et al., 2021; Mahdavinejad et al., 2018], it is possible

to achieve remarkable results by combining these technologies. Since there are many

fields in which IoT could be applied and many available IoT solutions (smart healthcare,

transportation, grid, and mobile communication, to cite some examples), it is necessary

to analyze the demanded requirements of the applications and devices to model the best

approach to tackle the proposed issues. AI techniques can be used to achieve recent re-

quirements related to IoT applications, such as guaranteeing the security of the systems,

limiting energy consumption, choosing nodes and gateways where data should be pro-

cessed, performing decision-making tasks, and scaling data, which is the topic of many

studies [Li et al., 2018; Sun et al., 2019; Capra et al., 2019; Wang et al., 2019; Mahdavine-

jad et al., 2018].

Figure 1.1: Concise representation of consolidated architecture for IoT systems. A com-
plete model is presented in Chapter 3.

Source: Ma et al. [2013].

Figure 1.1 represents the most consolidated architecture employed to develop IoT

applications. It shows the perception layer, which includes the end devices and actuators;

the gateway layer, which enables communication and transferring of data to the higher

levels; the management layer, where cloud services usually process data; and the applica-

tion layer, which provides an interface with the user. According to Yahuza et al. [2020]

and Xiao et al. [2019], cloud-centered solutions that process data only in the management

layer can no longer meet modern IoT requirements. Because of that, the edge computing

paradigm emerges as a solution that can improve the latency response of the system, in-
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crease data privacy, minimize power consumption and reduce communication constraints

of an IoT application [Merenda et al., 2020; Laguduva et al., 2019; Samie et al., 2019;

Corneo et al., 2021]. This strategy is a recent and promising paradigm of the Internet of

Things, which sets an architecture that allows managing gathered data next to the end

devices, providing interesting features for real-time and low-power applications [Merenda

et al., 2020].

Although edge devices are especially susceptible to external attacks, they can be

relevant to the security and privacy scopes by preventing data from being continuously

exposed and sent to the cloud. They can also be used alongside ML techniques to perform

early detection and classification of attacks that come through network channels and

prevent infectious data from spreading across the network, potentially protecting the IoT

environment. Those facts extensively motivate studies in the area.

1.2 Problem Statement

Choosing a solution to solve a problem is not always straightforward. In particular,

the Internet of Things is a large field, and its potential is still being discovered and studied.

Therefore, it would be necessary to carefully consider the constraints and requirements of

building a system to decide the best choices. Edge computing is particularly interesting to

a specific class of problems (e.g., real-time, low-power devices [Wang et al., 2018a; Capra

et al., 2019]), and developing machine learning solutions also requires an understanding

of the architecture and the goals of the system.

As the use of IoT applications rises, many challenges and possible studies appear in

the context. IoT systems are known for generating vast amounts of data in short intervals,

which should be appropriately processed, analyzed, and stored. Edge computing is a

paradigm developed to support integrated IoT systems and improve their performance

[Yu et al., 2017; Corneo et al., 2021]. Architectures based on local or cloud servers

offer high computational and storage resources but present constraints in communication

and energy-efficiency fields. Since many recent IoT applications depend on real-time

operations, such as smart healthcare, smart transportation, and smart grid, transmission

latency, bandwidth, and power consumption have become bottleneck problems [Yu et al.,

2017].

A requirement that is becoming especially important when developing IoT and

edge computing solutions is security against malicious attacks [Yahuza et al., 2020]. IoT

environments are particularly susceptible to attacks that come from the network, once

the majority of devices do not incorporate proper defense software and present a large
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attack surface [Alqahtani et al., 2020; Laguduva et al., 2019]. Botnet attacks, which are a

particular type of those malwares, can cause infection of the environment, prevent devices

from working properly and lead to stealing of data [Hoque et al., 2015; Kolias et al., 2017].

Implementing isolated solutions for all devices is challenging since they are commonly

heterogeneous and built with diverse protocols and standards. However, a recent solution

being studied to avoid this type of problem is to perform an early attack detection step

on incoming data using AI approaches [Aversano et al., 2021; Hussain et al., 2020]. The

edge paradigm could also be beneficially applied in this context, preventing malicious

data from reaching higher levels of the application and enabling real-time identification

of data.

The edge computing architecture proposes executing data management actions on

the edge of the systems, in sensors or edge nodes close to end users, as seen in Figure 1.1.

This approach intends to avoid huge latency during communication, allow real-time pro-

cessing, and improve power consumption and privacy, since data does not need to be

continuously exchanged [Capra et al., 2019; Merenda et al., 2020]. However, there are

some issues to consider: sensor/edge nodes usually have limited computing resources to

execute complex algorithms and limited storage capacity. IoT systems are highly hetero-

geneous, which cause constraints to the management of data and communication between

different devices. To mitigate those issues, machine learning techniques are being applied

to IoT and edge services to help in processing and governance tasks, including critical im-

provements to the security field [Wang et al., 2020; Aversano et al., 2021; Hussain et al.,

2020; Tuli et al., 2020].

With the theoretical reference gathered during this study, the problem to be an-

alyzed and solved in this work are the botnet incursions that have recently threatened

many IoT applications. The research on artificial intelligence shows that ML strategies

are suited to tackle IoT systems’ typical constraints and provide reliable solutions, espe-

cially regarding the security of the environments. Combining those strategies with edge

computing is possible and beneficial to enable real-time solutions for the early attack

detection task, which is also investigated. With that knowledge, it is possible to design

proper architectures to tackle the issues and apply strategies that meet the requirements.

1.3 Contributions

Considering the growing importance of IoT technologies combined with machine

learning techniques to the continuous development of helpful and performative IoT solu-

tions, as presented in the sections above, the main contributions of this work are:
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• Perform a complete research and provide an analysis about the use of machine

learning solutions with IoT and edge computing applications to help define the

best techniques to be employed based on the requirements and constraints of each

application;

• Propose two deep learning architectures to perform detection and classification of

botnets attacks, validate their performance by executing experiments with known

datasets and evaluate the hypothesis of employing the final models in the edge

computing context;

• Review IoT architectures and machine learning usage in IoT and edge computing

services in the literature, considering their requirements, constraints, and challenges.

In this study, we review machine learning architectures that can be used in the

Internet of Things, and the possible technical features and challenges. Finally, the work

presents two empirical experiments that apply deep learning techniques (DL), the Varia-

tional Autoencoder (VAE) and the Convolutional Neural Network (CNN), for early attack

detection and classification tasks on incoming data, which also tackles the problem of se-

curity, a worrying constraint for IoT environments. This work is essential to provide a

deep analysis that could help in system design, propose possible solutions to IoT’s recent

and relevant problems, and instigate more investigations within the area.

1.4 Organization

Chapter 2 reviews studies proposed to support this project, explaining and sum-

marizing the most important solutions.

Chapter 3 introduces the main characteristics of IoT environments, showing the

most consolidated structures to design IoT and edge computing systems and the most

common constraints and requirements that should be considered when building those ap-

plications. This chapter also introduces the object of study of the experiments conducted

in the following chapters, the Botnets.

Chapter 4 discusses the possible machine learning classes and a summary of ML

architectures that can be employed in IoT and edge computing solutions considering the

features and constraints of the designed applications.

Chapter 5 proposes a case study considering the reviewed security concepts for IoT

applications. The strategy proposed in this chapter is to detect incoming botnet attacks

early in a simulated IoT environment with a DL technique. The study employs two known
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IoT datasets, N-BaIoT [Meidan et al., 2018] and Bot-IoT [Koroniotis et al., 2019], which

comprise real traffic data of various sensors in operation inside an IoT environment.

Both datasets are also used in Chapter 6 to perform early attack classification of the

botnet attacks. This strategy is proposed as an additional step after detecting malicious

data. This approach intends to gather more knowledge about the possible types of botnets

and prepare efficient and reliable protection routines.

Chapter 7 concludes this work and discusses possible lines of future investigations.
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Chapter 2

Related Work

The studies about the Internet of Things are prolific since it is a new and promising

area, as well as machine learning models and applications researches. Douglas Adams,

the writer of “The Hitchhiker’s Guide to the Galaxy” once said:

“We invented the computers; first, we built them in the size of whole rooms,

then they started to fit on our tables, then in our briefcases and then in our

pockets. In a little while, they will be as ubiquitous as dust - you will be

able to dapple computers everywhere. Little by little, all of our environment

will become much more interactive and smart, and we will live in a way that

would be very difficult for those who are living in this moment to understand.”

[Adams, 2002].

He gave this speech in April 2000 but did not know how correct he was. Society is

entering an era of high technology, small but powerful components, and fast processing.

Those features were essential to the rise of the IoT concept and development.

This chapter aims to organize relevant and recent studies of machine learning for

IoT and edge devices that will be useful for the proposed work. The first section presents

known IoT architectures in the literature (Section 2.1), followed by a summary of recent

machine learning solutions applied in IoT and edge computing (Section 2.2). The last

section is about security in IoT and edge environments, considering models commonly

used to tackle recent issues affecting those devices (Section 2.3).

2.1 IoT and Edge Computing Architectures in

Literature

First, it is essential to consider IoT’s architecture models since it helps to compre-

hend better how the data flows across those systems and how edge devices could utilize it.
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The most consolidated architectures consider at least four layers [Ma et al., 2013]: sensing

layer, the partition in which data is gathered and represents the bottom border of the

system; network layer, where the communication protocols are defined and utilized; man-

agement or middleware layer, responsible for data processing, storage, and security; and

application layer, which provides the interface to the user. Commonly, the management

layer is divided into sub-layers, each acting under a specific responsibility. This model is

also well explored in the studies of AlSuwaidan [2019], Sikwela [2012], and Ray [2018].

AlSuwaidan [2019] discusses the concept of Internet of Everything (IoE), a natural

expansion of the IoT term considering an environment with connected devices, people, and

processes. The project shows a similar architecture as presented in Chapter 3, focusing

on the data management layer. The author suggests the split of this tier into three

different layers: data source layer, master data management layer, and top-level data

management service layer. The first layer treats data gathered from different sources, like

services, processes, people, documents, and machines. The next tier is responsible for

executing the cleaning, governing, and processing of the data, considering big data and

machine learning techniques to deal with the endless amount of information. Finally, in

the last layer, the idea is to execute additional steps over the master data, such as security,

integrity, and federation. The main issue that the author face is the step of storing and

migrating data.

Ray [2018] examines the technical fields of IoT architecture, providing examples,

standard protocols, and possible research issues, like handling many devices and informa-

tion. The author proposes a consolidated Service Description Language (SDL) to process

data from different sources, types, and sizes and proposes standardization for IoT systems.

Using centralized cloud storage along with Internet of Things data, management

is a consolidated methodology that prevents purchasing (usually expensive) servers and

machines, and is called cloud computing. Also, there is fog computing, a method that

brings data processing to the model’s borders at the network level. Since cloud computing

faces the issues of high latency and bandwidth, security, and reliability, executing some

data management steps in the lower layers could overcome these problems [Sikwela, 2012].

For such, fog computing allocates those activities in processors located within LAN (Local

Area Networks) hardware around the network layer. Another similar approach is the so-

called edge computing. Like fog computing, the goal is to execute data processing on the

system’s edge, but closer to the sensors layer, the lowest in the model. That means the

information obtained could be instantly analyzed, eliminating network dependency issues.

Yu et al. [2017] summarize the main characteristics of edge computing, and its ad-

vantages and disadvantages. Edge computing arises due to the difficulties cloud computing

faces in providing the correct Quality of Service (QoS) and Quality of Experience (QoE)

to recent devices. The proposed model is the key to offering service with reduced network

bandwidth and latency, essential to systems that demand near real-time responses, like
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smart healthcare, transportation, and grid [Tuli et al., 2020; Arachchige et al., 2020]. On

the other hand, it is vital to think about the weaknesses of this kind of implementation.

Some challenges to consider are integrating various systems, security standardization, and

managing computational resources. Table 2.1 summarizes the researched studies about

IoT architectures and data management and shows the advantages and solutions proposed

in this work with the analyzed papers.

2.2 IoT Applications with Machine Learning in

Literature

In order to manage resources, a recent methodology applied in many projects

is the use of machine learning techniques within IoT and edge devices. Some studies,

that are presented in this section, show that this kind of technique allows secure, energy-

efficient, reliable and autonomous systems. The discussed studies also represent important

contributions to deal with constraints and requirements of IoT and edge based services.

The following section is organized considering the four main subcategories of ML strategies

(supervised, unsupervised, semi-supervised and reinforcement algorithms). Table 2.2

shows a list of relevant works in the studied field as well as their main topics.

Proposals such as Cui et al. [2018], Mahdavinejad et al. [2018], Samie et al. [2019]

and Wang et al. [2020] provide valuable knowledge about the recent use of machine and

deep learning strategies in IoT environments and how those technologies can benefit from

each other. It is a trend to also evaluate and analyse efforts with edge computing solutions.

Cui et al. [2018], for instance, elucidate the potential of ML solutions for tasks like traffic

profiling, device identification and security. They point that the model reliability for

different environments, huge traffic volumes, DDoS attacks and security against malicious

attacks, heterogeneity of data and processing capacity for ML algorithms are highlights

among the recent challenges, specially for edge computing.

Mahdavinejad et al. [2018] also bring considerations about applying ML techniques

to treat IoT data, considering the taxonomy of ML algorithms and the characteristics of

data in real world scenarios. They analyse works among IoT solutions for smart city with

combined cloud, fog and edge environments, highlighting challenges such as preserving

data quality and privacy and dealing with huge and heterogeneous information. Samie

et al. [2019] and Wang et al. [2020] analyse ML architectures for IoT with a special

emphasis to the edge computing context, concluding that cloud-only systems are not

fulfilling the needs of recent applications anymore, and researches on the area should be
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increasing in the next years, with a boost on deep learning strategies.

2.2.1 Supervised Strategies

Supervised techniques on machine and deep learning enable the algorithm to learn

a function that defines how to map the input features to the output labels from a previ-

ously labeled training set, which serves as an example for the chosen architecture. Some

examples of techniques that can be supervised are: Naive Bayes (NB), Support Vector

Machines (SVM), K-Nearest Neighbors (KNN), regression strategies, and Convolutional

Neural Networks (CNN) and Recurrent Neural Networks (RNN) on the deep learning

scope [Zaki and Meira, 2020; Gron, 2019]. Those techniques are being used by recent

studies to tackle governance, efficiency, security and communication issues in the IoT

context, which are briefly explored during the following topic.

Gao et al. [2021] introduce the concepts of Federated Learning (FL) and Split

Learning (SL), which are distributed machine learning methods that enables training

steps without needing to access raw data from end devices, that is, protect clients’ private

information. The first presented method initializes a global ML model in a remote server

and offloads the model to the edge nodes, enabling clients to perform the training phase

locally; the latter splits the training of the neural network (in particular, a 2D CNN) into

two steps, one performed in the client side, and the other in the server side. Authors also

propose and utilize a Raspberry Pi 3 to evaluate a combined version of both techniques,

the Splitfed Learning (SFL), by comparing the performances achieved with FL and SL

paradigms.

Sun et al. [2019] develop a lightweight CNN for IIoT (Industrial Internet of Things)

applications and apply it with the so called transfer learning. The transfer learning

idea is to pre-train the neural network with some known biases, and utilizes it as the

starting point to train new procedures. This approach allows the development of low cost

algorithms, which are suitable for architectures with limited resources. The researchers

found out that the implementation of artificial intelligence in edge servers is feasible and

provides results with great accuracy.

In the edge computing field, Merenda et al. [2020] study the use of machine learning

algorithms within edge devices, bringing some known requirements to this kind of appli-

cation, like network communication and privacy. They also present techniques to develop

AI in edge devices with lower processing costs, introducing concepts like joint computa-

tion. This technique implements offloading in the edge, guaranteeing that some layers of

the supervised DNN (Deep Neural Network) could be processed on cloud, and others on
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the edge node, reducing the resources needed to perform such algorithms. Finally, they

conduct an image classification experiment (using the known MNIST set) and its eval-

uation by applying machine learning in an edge device, built from a NUCLEO-F746ZG

board with 135.78 kB of RAM and 668.97 kB of flash memory. For image processing prob-

lems, authors summarize that the most employed solutions comprise DNN algorithms, in

particular, Convolutional Neural Networks (CNNs).

Another example of supervised learning in literature is given by Serra et al. [2021],

which create an experiment to perform evaluations with drones in SAR (Search and Res-

cue) missions. They develop a fog architecture to offload costly processes of face detection

and recognition to the most appropriated cloudlet server available with machine learning

algorithms, and test the technique with several supervised classifiers: SVM (Support Vec-

tor Machine), LR (Logistic Regression), MLP (Multilayer Perceptron), NB (Naive Bayes)

and Dummy (random guesses). The choice of common classifiers over deep learning is

because they require less processing resources than the latter. The article shows that

MLP and LR are the techniques that deliver the best accuracies, 99.64% and 99.20%

respectively. Those results are interesting to demonstrate that different machine learning

algorithms, whether they are deep learning or not, could be interesting depending on the

purpose of the project.

2.2.2 Unsupervised Strategies

Differently from the supervised solutions, unsupervised strategies do not rely on

labeled training data to fit the algorithms. In fact, the model should learn the function

to find patterns among the data by itself, without any kind of human intervention [Zaki

and Meira, 2020; Gron, 2019]. Some examples of algorithms that can be developed in an

unsupervised manner are: KNN and SVM, Gaussian Mixture Models (GMM), K-Means

that perform clustering of the data, and Autoencoder and Long-Short Term Memory

Autoencoder (LSTM) in the deep learning field.

To illustrate the unsupervised techniques, Janjua et al. [2019] choose to apply a

two-stage unsupervised machine learning algorithm in their project, which is developed

to identify rare-case events occurred in a data stream. The benefit of this approach is

that their algorithm can learn from the environment events without needing data labeling,

which would be a costly task for the situation. They apply clustering techniques and are

able to develop the project fully on the edge.

Similar to Serra et al. [2021]’s work, Kolomvatsos [2021] propose an architecture

to deploy real-time edge applications and choose between several possible nodes. On the
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other hand, this work utilizes an unsupervised technique with prizing steps to achieve its

goal, in particular a clustering algorithm. This choice is made in order to avoid the cost of

training process, which occurs with supervised methodologies. Also, the author treats the

node selection as a grouping problem, such that clustering techniques should be effective

to this design.

Sharma et al. [2021] bring an unsupervised Autoenconder technique to deal with an

industrial problem. They use a Federated Learning approach (as explained in Gao et al.

[2021]) in order to maintain client’s data privacy and deploy Variational Autoenconders

(VAEs) combined with K-Means algorithm in the edge to perform clustering methods on

data provided by heat sensors. The achieved goal is to evaluate and predict heating points

on an industrial furnace.

2.2.3 Semi-Supervised Strategies

The semi-supervised learning is employed when the model learns from a small

amount of labeled data, but it is also able to predict outputs for the unlabeled data.

Some examples of algorithms that can be implemented in a semi-supervised way are the

SVMs, Fuzzy C-Means, Graph-based ML algorithms and Variational Autoencoders and

Autoencoders. Regarding those semi-supervised techniques applied in IoT systems, Ji

et al. [2021] propose semi-supervised Support Vector Machine (SSVM) algorithms in or-

der to detect crossing intentions from pedestrians to be utilized by autonomous vehicles.

Authors study different models of SSVM by applying collected data of pedestrian cross-

ing intentions and vehicle movement databases, achieving a final prediction accuracy of

94.83% to the proposed problem.

Rathore and Park [2018] develop a framework for attack detection in a fog based

architecture utilizing the proposed paradigm of semi-supervised Fuzzy C-Means based

on Extreme Learning Machine (ELM), called ESFCM. The work brings advances to the

security area for edge-based systems and culminates with an accuracy of 86.53%. Semi-

supervised learning was chosen in this case to permit dealing with partially labeled data,

and the ELM enables a fast performance. Paper also compares the proposed model in

relation to traditional machine learning classifiers.
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2.2.4 Reinforcement Strategies

The reinforcement learning aims to develop intelligent algorithms that are capable

of performing self-supervision by assigning positive values to the desired actions and

penalizing the unwanted behaviors until it converges to an optimal solution [Zaki and

Meira, 2020; Gron, 2019]. Reinforcement learning techniques are the newer ones among

the explored types, but some advances are being achieved in the field, with Q-Learning,

Markov decision problems and Deep Q-Networks as examples of algorithms.

An example of reinforcement learning applied in the IoT context is shown by Chen

et al. [2019]. The researchers propose a platform capable of learning the network envi-

ronment of mobile devices and allocating resources with maximum performance. They

combine reinforcement learning techniques with DNNs to create a self-supervised ambi-

ent. The resource allocation is made through decision tasks, making the reinforcement

algorithm the best solution for the desired goal.

Recent studies about self-supervised systems seems to be prolific, such as in Cas-

tano et al. [2020], which develop a system to monitor characteristics of sensors. One of

the great drawbacks faced within sensors networks is the reliability of the devices. Since

IoT solutions depend on the information obtained across the environment to make de-

cisions and actions, the reliability of detectors represents great importance to the flow.

The authors, thus, create a self-learning platform to identify reliability of sensors with

reinforcement learning (Q-Learning) in a global level and classification (MLP - Multi-

layer Perceptron) and clustering methods (KNN - K-Nearest Neighbors) on local level,

applied in autonomous driven transportation. In conclusion, it is highlighted the impor-

tance of continuous study in this field, since there are challenges regarding performance,

pre-filtering and computational cost on edge devices. The experiment achieves quality

results, with low absolute error (below 40%) and good generalization (above 70%), which

encourages further working.

2.3 Security Solutions for IoT Environments

The last chapters of this work (Chapters 5 and 6) treat about data anomaly

recognition in IoT environments. With the continuous growth of IoT solutions in several

sectors of society, the concern about security and reliability of those devices also grows.

IoT environments are usually composed by many heterogeneous sensors and actuators,
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creating huge nets of connected devices through Wi-Fi, Bluetooth, ZigBee and other

communication protocols. They are usually involved in continuous exchange of massive

data, which contributes to their susceptibility to being attacked by network malwares,

as well as the lack of standardization in devices’ security protocols and the big attack

surface of the environments due to the pervasive deployment of large numbers of elements

[Alqahtani et al., 2020; Aversano et al., 2021; Hussain et al., 2020].

In particular, the botnet is a common attacking technique that is currently being

used to affect IoT systems. The botnets are networks of infected devices that perform

different attacks in unprotected environments. Once infected, the device can be used for

malicious activities, such as stealing of data, accessing protected networks, and performing

large DDoS (Distributed Denial of Service) attacks to infect more devices [Meidan et al.,

2018]. Kolias et al. [2017] present the botnet known as Mirai and its variants, which is

usually employed to perform DDoS attacks on targeted servers by propagating through

unprotected IoT devices. The Bashlite, also known as Gafgyt, is another botnet that

threatens those environments by using brute force techniques to gain access on Linux-

based devices [Pa et al., 2016]. Both of the botnets are explored by Meidan et al. [2018]

work, which provides a complete dataset with botnet behavior against IoT systems.

In the works of Aversano et al. [2021], Hussain et al. [2020], Zeyu et al. [2020],

Yahuza et al. [2020] and Xiao et al. [2019], authors summarize and analyze the impact

of recent studies in the IoT security field, highlighting relevant efforts, the most common

threats, current trends and future challenges. The use of machine learning techniques to

early detect and prevent network attacks arises as an optimistic solution to be applied

within IoT and edge environments. The papers of Zeyu et al. [2020], Yahuza et al. [2020]

and Xiao et al. [2019] bring a special emphasis to edge computing solutions, pointing

security and privacy constraints as relevant enablers for this technology. A summary of

recent studies that propose techniques to deal with security issues in IoT environments is

provided in Table 2.3.

2.3.1 Machine Learning Strategies for Security in IoT

Considering the attack detection and classification problems for IoT systems, there

are also several efforts that successfully apply ML solutions. Meidan et al. [2018] propose

the N-BaIot set and Koroniotis et al. [2019] propose the Bot-IoT set, which are datasets

that contain traffic information from IoT networks when receiving benign and malicious

data. Meidan et al. [2018] propose a semi-supervised network of Deep Autoencoders to

early detect botnet incursions on the N-BaIoT and achieve 100% of True Positive Rate.
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Koroniotis et al. [2019], on the other hand, evaluate detection and classification tasks with

some ML architectures: a RNN, a LSTM and a SVM. Those datasets are extensively used

on literature to study botnet behavior and improve current security solutions

Alqahtani et al. [2020] use a supervised optimized XGBoost classifier combined

with a genetic algorithm on the N-BaIoT dataset for the binary classification problem.

They also add an extra step of feature selection based on the Fisher score to identify the

features that grant most important information for the classifier. They are able to achieve

above 99.00% of accuracy and f1-score with this approach, even with the reduction of the

feature space. Nõmm and Bahşi [2018], on the other hand, choose an unsupervised solu-

tion based on SVMs and feature space reduction for the same set. Although unsupervised

techniques usually result in reduced evaluation metrics, their solution is able to achieve

a mean accuracy value of 96.64% and 92.55% for unbalanced and balanced distributions,

respectively. Borges et al. [2022] analyze the number of packets that a device from the

N-BaIoT set transmitts and perform a multiscale ordinal patterns transformation on the

time series data to apply an Isolation Forest algorithm to detect anomalous data. With

that approach, they are able to achieve 99.50% of accuracy with an unique model for all

of the devices, and 100% when using separated models for each device, while applying a

simple ML solution.

Popoola et al. [2022] employ both N-BaIoT and Bot-IoT datasets to study the

hyperparemeter optimization of DL models and its effects on the final results for detection

and multi-classification of attacks with a supervised DNN. Other works that consider the

attack classification problem that can be highlighted are Htwe et al. [2020] with the ML

CART algorithm applied on the N-BaIoT set; Tran and Dang [2022] with the same dataset

and an ANN architecture; andParra et al. [2020] that propose a LSTM architecture for

the N-BaIoT dataset attack detection.

Anomaly detection for the edge computing context is pointed as one of the most

important trends by authors like Xiao et al. [2019] and Zeyu et al. [2020], which summarize

the state-of-art for security of edge computing environments. This field of study still

require further and deeper work, but it is possible to cite Gopalakrishnan et al. [2020] and

Tian et al. [2020]’s works, which propose ML strategies for anomaly detection with edge

devices. A solution that has also been explored by recent works is to execute offloading

techniques on edge nodes to combine the resourceful computing capacities of the cloud and

the real-time responses provided by the edge [Roy et al., 2022]. For instance, some costly

algorithms can be ran on the cloud, like the training step of ML and DL architectures,

while the prediction phase can be applied on the edge.

The next Chapter starts the discussions on IoT and edge computing environments,

bringing information about the most common architectures developed for these scenarios,

the requirements needed to enable reliable, fast and performative systems and the most

relevant considerations regarding the security field for IoT.
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Table 2.1: List of works that provide researches about IoT and edge computing architec-
tures and data management efforts for IoT solutions.

Paper Main Points of the Work

Ma et al. [2013]

Provide the most consolidated architecture for IoT solutions,
which considers sensors layer, network layer, management
layer and application layer. Comparing with the current work,
it proposes to expand this structure and also consider edge
computing solutions.

AlSuwaidan [2019]

Focuses on the data management layer providing an unrav-
eled architecture to deal with governance, privacy, storing and
migration of data. ML solutions explored on the present work
could be used to deal with the challenges of storing and mi-
gration of data pointed out by the author.

Ray [2018]

Provides a survey analysis on the technical fields of IoT archi-
tectures with protocols and recent challenges faced on the IoT
context, specially considering data treatment. As the current
work shows, ML solutions can be successfully used to deal
with huge amounts of data and organize data governance.

Sikwela [2012]
Explores the possible architectures for IoT environments and
also brings the concept of fog and edge computing.

Yu et al. [2017]

Provides a study specifically about the edge computing ar-
chitecture context, considering its advantages and constraints
to the recent technologies. The proposed work explores a
particular issue raised by the authors, the standardization of
security routines.
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Table 2.2: Summarizing main points treated on studied researches about machine learning
models applied in IoT and edge solutions.

Paper Main Points of the Work

Cui et al. [2018]
Survey about the application of machine learning techniques
in IoT applications with recent examples on traffic profiling,
device identification, security and edge computing scope.

Mahdavinejad et al.
[2018]

A study about machine learning taxonomy and its possible
applications in IoT with an use case emphasizing a smart city
traffic application.

Samie et al. [2019]

Authors identify that cloud-centric solutions are not able to
meet IoT requirements anymore. They propose and research
inserting ML solutions into the IoT world with edge comput-
ing paradigms to improve recent technologies.

Wang et al. [2020]

A research about implementation of DL techniques to edge
computing applications considering practical implementa-
tions, enabling technologies, challenges and future trends for
pervasive and intelligent applications.

Merenda et al. [2020]
A study about machine learning models for edge computing
devices and characteristics of this type of implementation with
experimentation.

Gao et al. [2021]
Implementation of Federated and Split Learning techniques
for offloading processes with CNN. It also proposes a blended
offloading framework, the Splitfed Learning.

Sun et al. [2019]
Authors implement a lightweight Convolutional Neural Net-
work with transfer learning technique applied on industrial
IoT.

Corte et al. [2020]
Evaluation of different supervised classificators to the task of
tree detection with drones.

Janjua et al. [2019]
Application of an unsupervised technique in edge device to
identify rare-case events on data stream with clustering solu-
tion.

[Kolomvatsos, 2021]
Proposing clustering technique to perform tasks management
within edge devices.

[Chen et al., 2019]
Task management work developed with deep neural networks
as well as reinforcement learning techniques.

[Serra et al., 2021]
Fog-based architecture with offloading processes to be em-
ployed in SAR missions. It evaluates the best classification
technique among supervised options.
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Sharma et al. [2021]
Proposing of unsupervised technique with Federated Learn-
ing approach to perform predictions on industrial IoT. The
method was employed to guarantee privacy od client’s data.

Castano et al. [2020]
Self-aware and self-learning model to detect reliability of em-
ployed sensors on IoT network with reinforcement learning
blended with MLP and KNN.

Ji et al. [2021]
Proposing semi-supervised method (SSVM) to detect crossing
intentions from pedestrians. The framework should be used
in the context of autonomous vehicles.

Rathore and Park
[2018]

Applying semi-supervised technique (Fuzzy C-Means) to im-
prove security of system by detecting attacks on network. Also
compares outcomes with state-of-art machine learning mod-
els.
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Table 2.3: Summarizing works that treats about security for IoT environments, specifically
for botnet attack detection. The table shows the main points addressed in the papers.

Paper Main Points of the Work

Aversano et al. [2021]

Authors review 69 articles about IoT security with DL
solutions considering the chosen architectures, the secu-
rity aspects and studied datasets. In the end, they are
able to highlight gaps and future challenges of the field.

Hussain et al. [2020]

A comprehensive survey about application of ML strate-
gies to IoT network nodes in order to improve security
and privacy of the applications, considering that regular
cryptography techniques are insufficient to secure recent
IoT solutions.

Zeyu et al. [2020]
Focus on reviewing security solutions for edge comput-
ing nodes considering the main threats that are em-
ployed to attack those types of systems.

Yahuza et al. [2020]

Provide a survey focusing on studies about security and
privacy for edge computing applications, considering the
taxonomy of possible attacks, popular defense mecha-
nisms and challenges to be dealth with in the future
years.

Xiao et al. [2019]

Authors point that security and privacy constraints nar-
row the acceptance of edge computing applications as
reliable solutions and provide a review of requirements
and relevant researches, future challenges and important
issues to address on further edge computing studies.

Meidan et al. [2018]

Authors create the N-BaIoT dataset containing botnet
and benign information for IoT devices. It contributes
with real world data that can be used to simulate and
develop efficient models that could be used to improve
IoT security. Authors also propose and evaluate a clas-
sification model.

Koroniotis et al. [2019]

Like Meidan et al. [2018], authors propose a novel
dataset to study the effects of machine learning to the
security task and evaluate it with three ML architec-
tures.

Alqahtani et al. [2020]
Propose a XGBoost classifier combined with a genetic
algorithm to detect attacks on N-BaIoT dataset with
feature reduction.

Nõmm and Bahşi [2018]
Create a SVM-based model to solve the attack detec-
tion issue considering feature reduction, balancing of the
data and time evaluation.
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Popoola et al. [2022]

Studying the effects of the hyperparameter optimization
for N-BaIoT and Bot-IoT datasets for attack detection
and multi-classification, evaluating not only the metrics
but also the time spent on training and testing phases.

Htwe et al. [2020]
To the multi-classification task, authors propose a pure
ML architecture called CART comparing its results with
the Naive Bayes algorithm.

Tran and Dang [2022]
Authors create an ANN strategy to perform multi-
classification of botnet attacks and compare its results
with other ML techniques.

Parra et al. [2020]
It is developed a Deep CNN to identify phishing detec-
tion on network data and a LSTM to perform botnet
multi-classification per attack.

Borges et al. [2022]

Propose a novel approach that converts time series data
with a multiscale ordinal transformation and apply an
Isolation Forest algorithm to detect malign data based
on its temporal behavior.

Tian et al. [2020]
Provide a distributed deep learning strategy to detect
anomalous URL requests on edge computing applica-
tions.

Gopalakrishnan et al. [2020]
Develop a Deep Belief Network (DBN) with LSTM of-
floading to detect anomaly tendencies in the edge com-
puting context, achieving metric values around 94.00%.

Roy et al. [2022]

Create an intrusion detection mechanism based on ma-
chine learning architectures with two layers: a fog and a
cloud layer. Authors can choose whether the algorithms
run on the fog or the cloud, enabling real time predic-
tions and preventing from losing performance. They
achieve great results with this approach and prove that
the energy consumption is reduced with the fog-cloud
architecture.
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Chapter 3

Internet of Things Environments

The Internet of Things is a relatively recent field of study. The term was firstly

utilized in 1999 by Kevin Ashton while developing an ubiquitous integrated system with

RFID (Radio Frequency Identification) sensors. Since then, many technologies emerged to

compose the paradigm of Internet of Things and many studies were conducted to propose

standardization of the models, data management, security and privacy solutions [Yu et al.,

2017] [Ray, 2018]. In order to develop propositions to those challenges, it is recommended

to understand the flow of data in IoT systems and the most consolidated architectures to

those models. For example, during data management studies it is relevant to acknowledge

in which layer the data should be gathered, mounted or modified.

The main concept of Internet of Things is to promote an interconnected environ-

ment of physical devices, focusing on gathering and transmitting data and information

[Ma et al., 2013]. The core unit of an IoT network is the sensor, a device capable of re-

sponding to external stimuli and generating signals that can be converted and interpreted.

Sensors, embedded systems and communication devices are widely used in industry and

electronic fields to build automatic responses based on known behaviours and measure-

ments [Sun et al., 2019]. Recently, those units are being employed more and more in

daily contexts: RF sensors and NFC (Near Field Communication) protocol are widely

used in public transport access and cash transactions [Lazaro et al., 2018]; temperature,

humidity, pressure and other sensors are applied in cities, airports and universities to ob-

tain or study environmental conditions; speak sensors are employed in smartphones and

smart hubs to understand voice requests from users, and so on. All of these data can be

processed and transmitted across internet or communication protocols in order to gather

information about the analysed context and generate intelligence or demanded actions.

In this chapter, it is initially explained the classic IoT architecture with which

IoT environments are usually constructed in Section 3.1, also bringing an architecture

option to be used with edge computing devices, considering the particular characteristics

of edge technologies. Section 3.2 treats about the most common requirements related to

IoT and edge devices, or, in other words, the constraints and characteristics that should

be considered when developing solutions for those types of environments. The last section

presents the concept of botnets, that are widely used to threaten IoT environments, and
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datasets that allow prolific studying in the field (Section 3.3).

3.1 Architecture of IoT Environments

With the statements proposed by authors in Ma et al. [2013], AlSuwaidan [2019],

Sikwela [2012] and Ray [2018], it is possible to verify that the most consolidated IoT

structure considers a base organization as represented in Figure 3.1. The characteristics

of each layer, their features and the possible interactions between them are described in

the following list:

[1] The first layer, looking from bottom to top, is the perception or sensors layer, where

all data is first gathered through many different devices. Data are one of the most

important inputs on the globalized digital world, since they enable decision-making

actions, analysis based on real information and development of intelligence [Sikwela,

2012].

[2] Once data are gathered, it is required to send them to a suitable server where the

information could be correctly processed and analysed. The transmission of data

is executed across the gateway or network layer, where the necessary protocols are

implemented in order to transfer them to higher layers or another devices (machine-

to-machine connection). Some known types of networks employed in IoT context

are LANs (Local Area Network) or WANs (World Are Network) and its associated

protocols, like Wi-Fi, Ethernet or 3G/4G/5G, Bluetooth, LoraWAN, 6LowPAN,

Z-Wave and ZigBee [Merenda et al., 2020].

[3] Data should be then transferred to a remote resourceful server, usually the cloud.

This area is called middleware or management layer. Here, data can be managed

with different techniques, like machine learning or statistical algorithms, in order to

provide intelligence to its users; they should be correctly stored to keep a history

of the information and it is also necessary to develop security and privacy actions

to protect their structure and the information contained in data. There are also

efforts to study the construction and correct management of data, since they are

gathered by different sensors, with varied protocols and definitions [Sikwela, 2012]

[Ray, 2018].

[4] Finally, with data properly analysed, it is possible to release them to users on the

application layer, where they can be utilized to take decisions and execute actions.
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Figure 3.1: Consolidated architecture of Internet of Things systems.

Source: Ma et al. [2013].

As an example of the flow, consider a temperature sensor, whose metrics can be

used to define if an air conditioner should be turned on or not. The signals would be

gathered by the sensor, sent through internet to a cloud server for processing and storing

and the result would trigger a connected air conditioner if the determined requirements

were reached. This flow works, but it tends to spend some time during the communication

with cloud server, raising the latency of the system and its response time.

3.1.1 IoT Architecture with Edge Computing

The edge computing paradigm could offer a solution for the latency/communication

drawback presented on previous section, by processing the obtained signals in a middle-

node closer to the sensor. This node is called cloudlet or edge node, as represented

by layer number [2.1] in Figure 3.2. The edge node is composed by any device that
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could provide modeling, processing and management of data [Ceselli et al., 2017] [Wang

et al., 2019], such as Raspberries, Arduinos, ESPs (from Espressif) or GPUs (Graphic

Processing Units). Since the cloudlet node is closer to the sensors node, or perception

layer, the time spent to exchange information between the layers is much lower, granting

real-time responses.

In the given example on Section 3.1, the temperature sensor could send data to be

processed by an Arduino on edge node, and the microcontroller would instantly return

whether the air conditioner should be triggered or not. Also, it could send the weather

information to the cloud server only for storing, since edge-cloud hybrid architectures are

useful to maintain history, governance of data and provide more processing power to the

applications [Merenda et al., 2020] [Yu et al., 2017].

Figure 3.2: Another modeled architecture, now considering the paradigm of edge com-
puting. Edge, or cloudlet nodes [2.1], are able to communicate with management layer
through network tier [2.2], or can directly send response or information to application
layer [4], depending on the design and the purpose of the structure.

Source: Ceselli et al. [2017].

By inserting the edge layer to provide data management closer to the end-user,

some benefits and drawbacks can be enumerated. Since data do not need to be sent to
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cloud servers to be processed anymore, communication and response latencies are tremen-

dously reduced, enabling real-time data analysis and improving the QoS of the application

[Yahuza et al., 2020]. Techniques can be also used alongside edge implementation to bal-

ance the energy drain of cloudlet nodes and enable low-power consumption applications

[Ray, 2018]. The architecture also boosts the growth of mobile IoT-edge systems (called

Mobile Edge Computing, MEC), specially with the rise of 5G networks, by improving

communication between services and end-users and providing high scalability [Xiao et al.,

2019].

As possible drawbacks that may arise with this architecture, edge computing ap-

plications usually require algorithms to run quickly in order to enable real-time systems

and may need routines that require less computational power. This happens because a

cloudlet node could be implemented both with resourceful GPUs (closer to the network

layer [2.2]) or with resourceless microcontrollers (closer to the devices layer [1]) [Xiao

et al., 2019]. Also, by bringing data processing and management steps to the edge, data

becomes more susceptible to external attacks due to the large surface of end-devices and

their lack of protection routines, which turns security and privacy requirements important

bottleneck problems to enhance edge computing applications [Yahuza et al., 2020; Xiao

et al., 2019; Aversano et al., 2021].

3.2 IoT and Edge Applications Requirements

With the constant development of IoT solutions to the connected society, we have

everyday even more modern applications based on seamless communication between a

huge variety of devices that connect and exchange great amounts of information in a

quick way. Because of that, it is important to always develop new technologies and

improve existent ones to meet the needs of recent applications. Current IoT environments

require stable communication channels, proper data storing and processing, management

of energy consumption, real-time data analysis, security and privacy of the data in order

to enable reliable, scalable and secure applications [Nikoui et al., 2021; Yu et al., 2017].

Recent studies point that cloud-centric solutions are no longer able to meet all

modern IoT applications requirements. That way, the edge computing is a recent and

promising paradigm in the IoT world to confront its constraints. The architecture is

interesting to enable real-time services by reducing the overall latency on communication

processes and promote management of data and security tasks on the edge [Yu et al., 2017]

[Merenda et al., 2020]. Nevertheless, it is important to be aware of the requirements

and challenges regard the designed IoT applications and the edge devices themselves,
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considering hardware and software limitations, in order to build the best possible solutions.

Some of these important requirements are discussed below in the chapter.

3.2.1 Communication

A great part of IoT applications require tasks to be executed in real-time scenar-

ios, such as transportation, healthcare, smart home and object detection [Anandhalli and

Baligar, 2018; Wang et al., 2018b; Devi and Kalaivani, 2020]. Thus, developers should

consider network properties and available communication protocols to achieve the de-

sired performance, avoiding waste of energy caused by exchanging huge amounts of data

through the network.

Some used protocols for IoT applications are:

• Bluetooth, in particular Bluetooth Low Energy (BLE), which is a known wireless

technology that enables transferring data with a good range, minimum energy con-

sumption and a good transfer rate of 2MB/s [Merenda et al., 2020];

• IEEE 802.11 pattern comprises wireless network solutions, which, today, can attend

low-power and long-range mechanisms with high speed [Merenda et al., 2020];

• IEEE 802.15.3 is the ultrawideband (UWB) radio technology that utilizes more than

500 MHz of frequency to provide fast, short-range and high-bandwidth communica-

tion in a limited area. It is useful to enable local and real-time applications [Capra

et al., 2019];

• ZigBee and Z-Wave are known communication patterns based on IEEE 802.15.4

standard suitable to low-power, low-rate devices and wireless sensors communica-

tion, widely applied on smart home solutions [Merenda et al., 2020];

• LoRA networks are low-power wide-range solutions (LPWAN) suitable for tasks

that demand communication between devices remotely located [Khutsoane et al.,

2017], like in mining and agriculture fields;

• 5G is a recent pattern of wireless communication that promises to revolutionize the

area, providing reliability and latency improvement as well as energy consumption

reduction [Capra et al., 2019];

• NFC, or Near-field Communication, is a set of protocols based on radio-frequency

identification technology (RFID) that enable low-power and fast communication

between devices in a short range [Lazaro et al., 2018];
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Solutions like compressing the data, performing ML model offloading, implement-

ing distributed algorithms and tasks management of algorithms combined with a proper

communication protocol should help to achieve applications that enable real-time re-

sponses [Gao et al., 2021; Alonso et al., 2020; Castano et al., 2020].

For communication constraints, Corneo et al. [2021] point out that edge computing

strategies can improve network latency up to 30% in relation to cloud-centric systems. It

is hard to define an optimal interval for latency response in IoT solutions because it highly

depends on the purpose of the application. Chen et al. [2017], for instance, define with

an empirical experiment that a latency response of 300ms to 500ms is ideal to perform

real-time recognition task on video frames using edge computing, which can be used as a

basis to define an acceptable latency for IoT-edge applications.

3.2.2 Energy Consumption

Another important limitation that may appear in IoT applications and employed

devices is the energy consumption. IoT systems are usually required to keep working

indefinitely, always collecting data and performing actions in response, and it is not always

possible to be connected to appropriate energy sources, like in drones and cameras. Cloud

servers are unlimited in that aspect, but that does not always apply to the end-devices.

Decision making and data management tasks with AI algorithms normally require

high processing, which can cause energy drain, and employed hardwares for IoT solutions

can be small and powered with low capacity batteries. Thus, the system should be

designed in a way to maintain low-power consumption and guarantee the correct operation

of the application. Edge computing implementation can help in this scenario because

it prevents the transmission of data to the central clouds, which is an energy-hungry

operation [Capra et al., 2019]. Edge devices, however, may also suffer from battery

limitation.

Offloading machine learning techniques help to balance energy drain from nodes

by supporting parallelism on algorithm, like in Ray [2018], where authors use a fog-cloud

architecture that enables the energy consumption reduction. It is also possible to design

duty cycling, a paradigm which prevents the device of being in function all the time. The

peripheral is put in sleep mode and wakes up only when it is necessary to perform a task

[Sun et al., 2019] [Kolomvatsos, 2021]. Most CPUs (Central Processing Units) also have

a deep-sleep mode, similar to duty cycling, but the wake up signal is controlled by an

internal clock. Other methodologies can be used on physical layer, such as clock gating,

which stops the clock on portions of the hardware where no task should be performed at
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the time; and power gating, by disconnecting supply voltage from the system when it is

not required [Capra et al., 2019].

This energy consumption requirement is also intrinsic to the previous communi-

cation topic (Section 3.2.1). By using low-power short-range protocols such as NFC and

BLE it is possible to reduce the overall energy consumption and guarantee longevity of

the devices as shown by Lazaro et al. [2018]. Authors, in this case, provide a study of

low-power and energy harvesting sensors with the NFC technology as a enabler for green

IoT applications.

3.2.3 Computational Resources

The computational resource is another important constraint to be considered when

using machine learning architectures in IoT applications, since those algorithms are nor-

mally costly and require high processing. Choosing some ML algorithm should consider

available resources of employed hardware and the possibility of applying methods to re-

duce consumption of tasks.

Table 3.1: Comparison between some microcontrollers (MCUs) and microcomputers ap-
plied in IoT systems. The available resources should be carefully considered when de-
signing the desired prototype. Raspberry is the microcomputer with best resources, and,
indeed, is employed in many works, but is also the most expensive one.

Device RAM
Flash
Memory

Processor Clock

Arduino Due 96 kB 512 kB ARM dual-core 32 bits 84MHz

ESP32-D2WD 520 kB 2MB
Xtensa dual-core 32
bits

240MHz

Raspberry Pi 4 4-8GB - Cortex-A72 quad-core 1.5GHz

Raspberry Pi 3 1GB - Cortex-A53 quad-core 1.4GHz

SparkFun Apollo3 Blue 384 kB 1MB ARM dual-core 32 bits 48MHz

Adafruit EdgeBadge 192 kB 512 kB ATSAMD51J19 120MHz

Some recommended devices to be used on IoT solutions, specially for edge com-

puting applications, are Arduino series, Espressif controllers (ESP32 series), Raspberry

Pi, SparkFun EdgeBoard and Adafruit EdgeBadge [Merenda et al., 2020], but most of

them have scarce resources, such as memory and processing power. Wang et al. [2018a],
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however, points the possibility to employ resourceful Graphics Processing Unit (GPUs),

as computational nodes to perform data analysis, specially in recent mobile applications.

Table 3.1 compares the characteristics of cited hardwares, intending to analyze overall

resources available when creating an IoT prototype.

As presented in Chapter 2, allying edge-cloud services could enable deploying more

powerful algorithms to the edge, since virtual machines and cloud servers usually are re-

sourceful [Gao et al., 2021; Yu et al., 2017]. Also, Lin et al. [2020] and Sun et al. [2019]

propose developing tiny and distributed architectures of employed neural networks, with

less layers, in order to reduce the required processing from AI architectures. Another solu-

tion that has been explored in this scenario is to run virtualized or containerized operating

systems (OS) to emulate the required hardware resources and create high performance

applications [Capra et al., 2019; Wang et al., 2018a].

3.2.4 Data Management

A constraint usually associated with IoT systems is the management of collected

data. When peripherals detects external signals, they are not necessarily (and probably

not) encoded as the way the software needs it to be. Usually, data should be modified to

fit the required patterns and steps should be take to ensure its security, privacy, accuracy,

reliability, availability and usability [Sikwela, 2012]. The applications should also be

able to gather intelligence from the data, discover patterns and enable actions in an

automatized way. For many of those requirements, ML and DL architectures are being

used more and more with exciting results [Cui et al., 2018; Mahdavinejad et al., 2018].

Specifically in edge architectures, transformation and governance of data should

be performed directly on the edge node. For instance, in Alonso et al. [2020] authors

design the system with a transformation step that converts 3D point cloud data to 2D

representation to perform the learning technique, and return 2D to 3D information after

the segmentation is done. Thus, ML algorithms could also help in treatment of data. As

seen in Castano et al. [2020], edge devices highly depend on reliability of its peripherals,

which shows that data governance is an important constraint to be considered, comprising

integrity, quality, usability and consistency of the acquired information.



3.2. IoT and Edge Applications Requirements 42

3.2.5 Security and Privacy

Security is a particular criteria that is extremely important to consider, specially

when treating with sensible data, like health information, or in smart home scope, where

devices deal with owners’ private data. Recent IoT researches still need improves on the

security field, due to the lack of standardization of protection routines on those systems

and the huge attack surface of the environments [Alqahtani et al., 2020; Laguduva et al.,

2019]. Xiao et al. [2019] identify that poor security and privacy are the most outstanding

constraints that prevent more IoT and edge systems from being deployed.

Considering the underlying limitation of IoT devices, it is important to ensure fea-

tures such as secure communication, security and privacy of data, identity management

and malware detection. Some relevant challenges within the security and privacy require-

ment for IoT are: authentication and control of access within the applications; prevent

distributed and coordinated attacks (DoS and DDoS); anomaly and attack detection on

network traffic; enable malware analysis to gather knowledge about the current trends

and build protected systems [Hussain et al., 2020; Aversano et al., 2021].

Edge devices normally compose environments with minimum protection, once they

lay in the border of the system [Laguduva et al., 2019]. As an advantage, usage of edge

nodes prevents data to be continuously exchanged across the web, decreasing chance of

remote attacks. But a secure system should also be thought and implemented on node’s

architecture. A current trend shows many works that propose building security and

privacy systems with machine learning algorithms to be deployed on the edge, such as

Kozika et al. [2018], Yahuza et al. [2020], Xiao et al. [2019] and Zeyu et al. [2020]. As

seen, tasks management methods enable developing of learning processes without directly

dealing with client’s data, ensuring privacy of information [Gao et al., 2021] [Sharma

et al., 2021].

Aversano et al. [2021] also summarize papers that propose the application of deep

learning strategies to the emerging field of IoT with the promise to accurately identify

threats and potential risks and apply classification techniques to help on keeping the

systems confidential and incorruptible. Those techniques are being widely researched to

help with the constraints of privacy preservation, detection of vulnerabilities, protection of

intellectual property, authentication and authorization and anomaly and attack detection.

The ML strategies proposed to tackle the studied requirements are usually applied on the

network layer (edge) or the data management layer. Among the researched works, there

is also a need to improve the search for algorithms with good performance and that enable

real-time operations, works well documented, with suitable datasets and well interpreted

results.

Regarding the anomaly and attack detection field, which is the main focus of
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this work, efforts are done to early detect abnormal data on systems, which can cause

malfunctioning of a whole environment, and spread of malware information. The last type

comprises botnet data, which are bots created to attack systems and flood the network

with spam, infect other resources and steal data. These are better explained on the further

Section 3.3. According to Alsoufi et al. [2021], the most used DL strategies to deal with

the attack detection task currently are the CNNs, the Autoencoders and the LSTMs.

3.3 Botnet Attacks on IoT Environments

Botnets are networks of computers that are assembled to perform continuous at-

tacks on several devices and create a net of infected machines. Those attacks are usually

coordinated by the attackers, known as botmasters, as huge DDoS incursions, which

explore vulnerabilities of the systems to invade and gain control of targeted devices. At-

tackers can, then, use compromised hosts to send infected packets to other victims, flood

server’s networks, steal information, gain prohibited access and prevent systems to proper

work [Hoque et al., 2015].

With the recent grow of IoT solutions and its growing importance on global so-

ciety, those environments became one of the most targeted systems by the botmasters.

Despite its importance, IoT environments are also very susceptible to malicious attacks as

explained on Section 3.2.5 and can lead to the disrupting of important autonomous mech-

anisms, such as in smart industries (machines, processes, enterprise computers), smart

homes (door locks, personal computers and information) and smart healthcare (surveil-

lance cameras, personal monitors).

Kolias et al. [2017] and Pa et al. [2016] present some recent known botnets such

as Mirai, Gafgyt (or Bashlite), Hajime and BrickerBot. With the knowledge on how

those malwares work, it is possible to respond with efficient mechanisms to protect the

environments and prevent them to be infected by malicious information. In order to

do that, many authors have studied the botnets and created datasets that simulate real

botnet incursions to help on researching and developing new solutions for the problem.

Some of them are the N-BaIoT [Meidan et al., 2018], the Bot-IoT [Koroniotis et al., 2019],

the NSL-KDD [Tavallaee et al., 2009] and the CTU-13 [Garcia et al., 2014] datasets. The

botnet datasets employed on the present study are presented on the following section.
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3.3.1 IoT Datasets

This section discusses some botnet datasets developed for the Internet of Things

context that are used on the case study chapters of this work (Chapters 5 and 6). The

datasets gather information of different devices placed on monitored IoT environments

that are affected by malware data. The data can be used to study the behavior of botnet

information within the environments and develop automated solutions to early detect and

prevent infection.

3.3.1.1 N-BaIoT

The N-BaIoT dataset is created by Meidan et al. [2018] following the methodology

provided by Mirsky et al. [2018] to study the behavior of botnet attacks on the IoT context.

The database contains statistical information of some features on the traffic channel of nine

different IoT devices: Danmini and Ennio doorbells, two Provision and two SimpleHome

cameras, a Samsung webcam and a Phillips baby monitor. The devices were monitored

when operating under normal conditions (benign traffic) and when receiving malicious

information. In total, 115 features were extracted from the channels, with different values

of acquisition time: data gathered with 1min, 10 s, 1.5 s, 500ms and 100ms (L0.01, L0.1,

L1, L3, e L5, respectively). The possible types of features are explained in the Table 3.2.

For instance, a possible feature of the dataset would be HH L5 mean, which represents

the statistical feature mean obtained with 100ms of acquisition time to the Channel

traffic data (between two hosts).

The methodology followed by the authors is summarized by the following steps:

• Collect the traffic packages generated by the observed device and create a raw binary

with this information. The obtaining process is conducted with five different time

intervals: 100ms, 500ms, 1.5 s, 10 s and 1min

• Determine some information obtained with the binary file, like the package size,

arrival time, network addresses and others

• Extract from the file 115 statistical features (mean, variance, etc.) related to the

traffic information for each of the described time intervals
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Table 3.2: Description of each particular statistical feature on the N-BaIoT dataset,
according to the works of Meidan et al. [2018], Mirsky et al. [2018] and Alqahtani et al.
[2020].

Feature Type Acronym Details

Host-IP H Traffic data when it comes from a specific IP address.

Host-MAC&IP MI
Traffic data when coming from specific IP and MAC
addresses.

Channel HH
Traffic is sent between the packet’s source and destina-
tion IP.

Socket HpHp
Traffic is sent between the packet’s source and destina-
tion TCP/UDP sockets.

Network jitter HH jit
A subtype of the Channel category, which considers de-
lays between outgoing traffic packets.

3.3.1.2 Bot-IoT

The BoT-IoT [Koroniotis et al., 2019] is another dataset employed on many studies

that deal with the attack detection and classification problems [Popoola et al., 2022]. To

create the database, authors assemble a testbed environment to simulate operational

IoT services on five devices: a weather station, a smart fridge, a smart thermostat and

motion-activated lights. The devices are connected to a web server in order to gather the

traffic information when receiving both benign and malicious data. Authors were able to

gather 29 relevant features of the channels, which were used to generate 14 more features,

totalizing 43 features. With this technique, authors intend to improve the predictability

for the classifiers.

The next Chapter introduces the concepts of machine and deep learning for IoT

environments, considering the advantages those strategies can bring to tackle the recent

problems and requirements that were described in this Chapter, the modern solutions

that are being researched and current trends.
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Chapter 4

Machine Learning Architectures for

Internet of Things

Machine learning comprehends a series of techniques that allows data extraction,

analysis and prediction. It is a specific area of artificial intelligence, which undertakes

to understand and mimetize the human behavior with machines. It also comprises the

deep learning area, responsible for generating algorithms that are able to learn with

amounts of data similarly to the human brain. It is dispensable to say how important

those technologies are to progress of society. Also, they are hugely applicable in IoT

solutions, creating devices that are aware of the data received and can make decisions

based on them. For example, Devi and Kalaivani [2020] develop an IoT-based platform

with machine learning, capable of predicting cardiovascular diseases according to patient’s

ECG; Sun et al. [2019] show a case study in which a deep learning algorithm (DL-based

transfer learning) is employed for image processing in industrial procedures; Li et al. [2018]

conduct a research about deep learning architectures applied in edge computing; there

are also surveys about the implementation of machine learning in IoT’s power systems

[Farhoumandi et al., 2020] and video processing [Anandhalli and Baligar, 2018], to cite

some.

Although edge computing implementation helps with network’s latency and per-

formance, there are some limitations to be considered. The edge devices usually have

reduced memory and computational capabilities, since they can be low-power mechanisms

[Yu et al., 2017]. The develop of machine learning techniques should be done carefully,

considering optimization and artifices to decrease algorithm’s computational cost, like

pruning, reducing the number of parameters, lowering precision and perform offloading

techniques [Merenda et al., 2020] [Gao et al., 2021].

Section 4.1 discusses the different classes of the machine learning area, dividing the

algorithm types based on the supervision level of the possible architectures. Section 4.2

discusses recent uses of machine learning techniques in IoT environments, including edge

computing systems. Finally, Section 4.3 treats about the hyperparameter optimization, an

important step to be done when creating ML models. In particular, it is also presented the

automated optimization applied on the experiments conducted in this work, the Bayesian
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Optimization.

4.1 Machine Learning Classes

Machine learning architectures usually are separated in three main classes: super-

vised, unsupervised and reinforcement algorithms. In supervised techniques the machine

receives both the inputs and outputs of the data it should analyze and maps a function

from the input to the output. Basically, it learns the characteristics of data by comparison

with the information provided on labeled data. On the other hand, only inputs are pro-

vided to unsupervised learning. It means that the machine should create its own model

for the inserted function, learning more about the data by itself. To the reinforcement

learning, the goal is putting the machine in a decision making situation, usually in a

complex environment, in order to maximize the number of hits or rewards (whether the

decision is right). Additionally, semi-supervised learning combines both supervised and

unsupervised characteristics, providing some classified labels as input, but guaranteeing

that the model can be generated in an unsupervised manner [Cui et al., 2018; Samie et al.,

2019].

Supervised learning is simpler to implement and its results are accurate; the un-

supervised algorithms are complex to develop and the accuracy is lower, but they do not

depend on labeled data to learn; reinforcement techniques, still, grant high accuracy, but

are difficult to code and are commonly used in the context of complex environments.

Choosing between these types normally depends on the goal of the application. Table 4.1

shows a summary of the taxonomy of machine learning classes, whether they comprise

deep learning techniques or not, as well as its technical features, efforts and possible

applications.

It is also possible to summarize some common types of problems in the machine

learning. Classification problems should have its data classified, by predicting the label

that each input should be assigned to. Regression techniques are used to predict the

value of an input based on variable predictors. Clustering strategies models groups of

variables based on the similarity and proximity between them. Association techniques can

be used to detect interesting relationships hidden in large datasets. Finally, generative

architectures are able to reproduce the input and create whole new outputs that have

similarities with the given input [Zaki and Meira, 2020; Samie et al., 2019; Mahdavinejad

et al., 2018].
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Table 4.1: Ordinary classification of types of machine learning algorithms, as well as its
technical features, pros, cons and example techniques. The given examples are assigned
based on the common use in literature.

Class
Technical
Features

Pros (+) and Cons (−) Techniques

Supervised
Learning

Inputs and outputs
are provided, so the
algorithm is able to
learn by mapping.

+ It is easy to imple-
ment

+ Memory cost is usu-
ally low

− Requires labeled
datasets

• Random
Forests

• Linear
Regres-
sion

• CNN

Unsupervised
Learning

Unlabeled data is
provided and the
machine learns by
analyzing only the
input dataset.

− Requires more com-
putational resources

− Accuracy is usually
lower

+ Doesn’t need pre-
generated labeled
data

• K-Means

• GMM

• Isolation For-
est

Reinforcement
Learning

The algorithm
attempts to find
an optimal solution
with trial and error
techniques.

+ Highly appliable in
robots and games,
on tasks that de-
pends on decision
making

+ It guarantees high
accuracy

− Harder to imple-
ment

• Markov
Decision
Problems

• Q-Learning

Semi-
Supervised
Learning

With this method,
the algorithm re-
ceives labeled and
unlabeled data to
execute the train-
ing.

+ Useful when analyz-
ing the raw data is
difficult

+ It can be done with
small quantities of
labeled data

− Lower accuracy

• GAN

• Fuzzy
C-Means

• VAE

Deep learning is a particular subfield of machine learning, since its algorithms

intend to learn by analyzing data, but utilize the so called artificial neural networks

with plenty layers to generate behaviour in a human-like manner. An artificial neuronal



4.1. Machine Learning Classes 49

network is a graph-based data structure often separated in layers, in which the information

flows and it is constantly updated and analyzed. Each node of the graph can be viewed

as a neuron, the biological structure that sends information as an electrochemical signal

(synapse) through the network. The process of learning in our brain occurs because the

emitted signals can be either excitatory or inhibitory, causing the neurons to adjust the

synaptic strengths according to each case. If the synapse is excitatory, the information is

more likely to be transmitted; on the other hand, inhibitory signals generates less potential

to be broadcasted [Zaki and Meira, 2020].

Figure 4.1: The structure of a neural network with its nodes, layers and weight values
that transform data while it passes through the steps of the network [Zaki and Meira,
2020; Gron, 2019].

Source: Elaborated by the author

Like neurons, the nodes of the artificial networks have weights, which mimetize

the so called synaptic strength. They act like processing structures, receiving external (or

input) signals as a weighted summation and generating outputs by applying an activation

function over the input. The persisted outputs are similarly analyzed on the subsequent

layers of the net until its end. In supervised structures, the network also computes the

deviation between these outputs and the true labeled response, returning an error that

causes to change the weight of the node. Large errors generate huge modifications of the

weight and vice-versa. Still, in unsupervised learning, weights are grouped by similarity

via clustering methodologies [Zaki and Meira, 2020]. Figure 4.1 shows the representation
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of a neural network, with the input later, the hidden layer, where the learning operations

are performed, and the output layer that represents the final results.

Supervised and semi-supervised neural networks are helpful to approach classifica-

tion and regression problems, or situations that require a labeled input data to perform

the training. Unsupervised nets could be used to generate new models for an input or

determine certain features (smooth variable function) from time series functions as well as

clustering situations. Reinforcement strategies are interesting to develop self-supervised

solutions that should perceive and interpret environment information to take actions.

Despite the different classes, the aim of a neuronal network is to minimize the error and

return a model that fits and solve the proposed problem. With the generated model, it

would be possible to run it with any inputs from the designed proposition and receive an

answer. Whether the answer would be correct or incorrect depends on the accuracy of

the model, which determines the percentage of hits over the test set.

In machine learning area, there are two main drawbacks that could occur on de-

veloped models: overfitting happens when the model is trained to solve only one kind

of problem and the generated outcomes have great variance; underfitting is the analog

problem, which occurs when model is poorly trained and generates biased predictions.

Variance refers to the variability of the model when different sets are applied, and bias

is related to the generation of wrong answers during training or testing processes [Gron,

2019].

4.2 Applying Machine Learning Techniques in IoT

Environments

As explained in the previous section, the use of a machine learning technique

depends highly on the purpose of the application and the type of the problem (e.g.,

clustering, classification, regression and so on). Some characteristics of the different classes

are highlighted to help on defining the best approaches to some well known cases. In

this section, the goal is to discuss the application of the exposed techniques within IoT

architectures, including in edge computing devices, considering its challenges and potential

improvements. This section also provides relevant examples of use of combined IoT-

machine learning applications to tackle recent problems and constraints of the technologies

in order to enable reliable, secure and efficient systems.
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4.2.1 IoT Solutions with Machine Learning

IoT environments are usually restricted systems. One of their relevant character-

istics is the heterogeneity of the peripherals that compose them, which have their own

communication, privacy and hardware standards. They are ensembled in highly scal-

able environments, with a massive number of connected devices. These devices require

inter-connectivity with local or global information and close proximity communication

in an ultra-reliable and low-latency way. Because of energy consumption, IoT machines

are usually low-power devices, with constrained capabilities [Hussain et al., 2020; Capra

et al., 2019].

Considering the presented architecture on Chapter 3, however, many IoT solutions

today apply their routines on the data management layer, that can be deployed into cloud

resourceful environments, leaving the low-power devices to perform simpler algorithms. It

is also proven that ML algorithms can help to achieve systems common requirements, such

as node selection, reduction of energy consumption, management of communication and

security [Aversano et al., 2021; Hussain et al., 2020; Laguduva et al., 2019]. Because of

that, applying machine learning strategies on IoT environments is increasingly becoming

a popular solution. Some of the areas that take advantage of machine learning and IoT

enabled technologies are listed below.

4.2.1.1 Applications

Personal healthcare is one of the most growing applications in an IoT perspective.

Some works show that by using IoT devices to monitor patients combined with deep

learning strategies it became possible to early-diagnose diseases and help on medical

differentiation [Bolhasani et al., 2021; Ghimire et al., 2020]. Pradhan and Chawla [2020]

summarize several works considering mostly supervised and unsupervised architectures

that blend the machine learning solutions to IoT environments in order to enable lung

cancer detection. Tuli et al. [2020] develop a supervised novel framework with a DNN

architecture to monitor patients with heart conditions, considering the need to achieve

low-latency responses for low-power devices and real-time systems. Authors employ fog

computing paradigm in this case to tackle the requirement.

On the smart cities scope, IoT environments can be used to solve many community

issues that are related to pollution, traffic, energy distribution, public transportation,

public security and communication [Atitallah et al., 2020]. Works like Rashid et al. [2019]
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and Popa et al. [2019] provide supervised solutions with LSTM models to enable smart

distribution of energy consumption in houses and cities. Supervised RNN and LSTM

models are also employed to deal with public traffic data, predictability of automobiles

routes and crowd density [Liu and Shoji, 2018; Atitallah et al., 2020; Song et al., 2016].

The industrial field (IIoT) takes advantage of IoT technologies not only to autom-

atize processes, but also to keep reliability, privacy and safety of data, which is a very

sensitive information in this scope [Arachchige et al., 2020; Zolanvari et al., 2019]. Sun

et al. [2019] also bring a perspective on data offloading to be applied on imagery process-

ing for industrial environments, which can be used alongside fog or edge environments.

Talking about security, this is a field of main concern on many recent researches as shown

on Section 3.2.5, not only because it enables protection of data and underlying environ-

ments, but also because it can be employed in scenarios related to all of the discussed

fields: healthcare, smart cities, smart homes, industrial IoT and so on [Atitallah et al.,

2020; Bolhasani et al., 2021].

4.2.1.2 Requirements

Machine learning algorithms can be helpful to solve many recent IoT related chal-

lenges. That is because of its capacity to learn from non-linear dynamic information and

predict the most probable outcomes [Mahdavinejad et al., 2018]. Moreover, deep learn-

ing strategies enable even more accurate and reliable results, but with a software and

hardware consumption cost.

Thinking on the requirements of IoT systems, the data management and data

standardization problems can be easily targeted by ML and DL solutions: those archi-

tectures require huge amounts of training data and can learn from non-linear relations

[Hussain et al., 2020]. IoT systems should also be capable of performing decision making

and, in that scenario, AI solutions can provide the ”intelligence” needed to achieve this

requirement in a reliable way.

On the communication and energy consumption fields, ML solutions are used to

perform resource allocation and task scheduling. There are solutions to help on deciding

which node or gateway should be used within an environment, determine transmission

rates of data and group low-power nodes to achieve better communication latency by

applying supervised, unsupervised and reinforcement strategies [Samie et al., 2019; Cui

et al., 2018]. Traffic profilling techniques with ML architectures are also implemented to

obtain insightful information about traffic patterns, identify rare-case events, such as in

Janjua et al. [2019], and improve application performance. The use of edge computing
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systems with deep learning strategies has also been shown as a possible solution to enable

real-time environments with low-power devices, specially because it prevents exchanging

large amounts of data with cloud servers [Tuli et al., 2020].

Proper security of IoT environments has also been enabled by applying machine

learning techniques to perform tasks like early detecting intruders or malware information,

getting authentication and authorization for users in an automatized way, discovering

patterns of possible types of incoming attacks, and so on. Borges et al. [2022], for instance,

proposes a reliable model using a simple Isolation Forest ML algorithm by applying proper

time series transformation to identify malign data, which provides great accuracy results.

This trend can be also seen on the works of Aversano et al. [2021], Laguduva et al. [2019],

Hussain et al. [2020] and Alsoufi et al. [2021].

4.2.2 Edge Computing Solutions with Machine Learning

As observed in Chapter 2’s articles and previous discussion about applications

requirements, the great challenge of machine learning within edge devices is the compu-

tational cost of such techniques and the inherent resource limitation of the nodes. Recent

studies, however, show that it is possible to successfully deploy and execute machine and

deep learning operations on edge or cloudlet nodes [Samie et al., 2019; Wang et al., 2018a;

Cui et al., 2018; Capra et al., 2019].

Some modern works propose the management of ML algorithms with offloading

methods [Serra et al., 2021; Gao et al., 2021; Kolomvatsos, 2021; Wang et al., 2018b;

Roy et al., 2022], which appear to deliver interesting results. This technique intends to

pre-train costly models in resourceful environments, usually the cloud, and continuously

upload the model to the edge nodes where the learning tasks can be done.

There are also works that bet in developing small architectures of deep learning al-

gorithms to deal with the problem. Lin et al. [2020] propose a tiny framework (TinyMCU)

to apply neural networks on microcontrollers scope in an energy-efficient optimized man-

ner. Some of the techniques employed to achieve this are pruning (deleting parts of the

net that does not contribute to the model) and quantization (removing redundancy and

thus, complexity of the code), achieving 70.7% of accuracy on the experiment. Alonso

et al. [2020] also develop a compressed neural network architecture, in particular, a FCNN.

The problem presented is the semantic segmentation of 3D images obtained by LiDAR

(Light Detection and Ranging) sensors, which require well designed resourceful nets. They

achieve a fast and accurate framework and show its advantages regarding the state-of-art

modern works.
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4.2.2.1 Applications

As seen in literature, the most utilized class of machine learning within edge com-

puting is the supervised learning. Searching for ”supervised learning edge computing”

on Google Scholar returns about 365.000 articles. On the other hand, the same search

with unsupervised learning generates 204.000 results, while reinforcement learning and

semi-supervised learning comprises only 136.000 and 121.000 papers, respectively. In-

deed, supervised learning is the most targeted area on recent machine learning studies,

due to its advantages as high accuracy of the models and relatively simple implementa-

tion [Wang et al., 2020]. As it is a targeted area, there are plenty consolidated algorithms

and architectures on state-of-art studies, with massive support on popular languages, like

C++ (TensorFlow and Microsoft Cognitive Toolkit) and Python (TensorFlow and Keras

libraries). The use of classificators, regressors or deep learning techniques depends highly

on the purpose of the scope. For instance, image processing and anomalous detection are

fields in which the use of deep learning overcomes other methods, in particular CNNs and

its derivatives. Nonetheless, classification algorithms usually provide good results and

require less computational processing, being an interesting option to systems that lack of

processing resources.

It is always important to define the purposes of the project in order to choose

the best available approach, and occasionally blend it with other techniques. Revised

reinforcement studies utilize supervised and unsupervised techniques to support decision

making actions on edge computing scope [Castano et al., 2020; Ji et al., 2021; Chen et al.,

2019]. Efforts on security and privacy areas comprise the use of extreme machine learning

algorithms, specially semi-supervised methods that may be ran with fewer parameters,

which can make the model run faster [Yahuza et al., 2020; Laguduva et al., 2019; Rathore

and Park, 2018].

Among studied papers, unsupervised learning is commonly applied in clustering

problems, being widely used on offloading solutions to perform grouping task. DNNs are

also widely employed on this scope [Wang et al., 2018a; Sharma et al., 2021; Kolomvatsos,

2021; Shakarami et al., 2020]. Last but not least, reinforcement learning is a methodology

that engenders great solutions, but it is the most hard and costly to implement. Nonethe-

less, literature shows that the field of self-aware, real-time and automatized systems is

an interesting area to apply reinforcement learning, in particular Q-Learning, useful to

solve decision making situations and build networks that could perform self-improvement

[Mahdavinejad et al., 2018].
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4.2.2.2 Requirements

In general, it is possible to conclude some characteristics of the recent use of ma-

chine learning in IoT and edge computing devices. Applying those algorithms on cloud or

remote servers is easier, due to their resourceful components. Edge nodes usually have less

memory and processing resources. For instance, a recent Raspberry Pi 4 has at most 8GB

of RAM, while Google can provide virtual machines with 896GB of available memory 1;

usually, ordinary microcontrollers present at most 1GB of RAM and limited flash mem-

ory. Although recent microchips with better capacities are being continuously designed,

machine learning algorithms are costly, comprehending the train, test and validation steps

for developing a model.

Turns out that the option of designing tiny and lightweight architectures is inter-

esting in order to constraint the processing cost and keep high accuracy [Lin et al., 2020]

[Sun et al., 2019]. Also, the discussed offloading techniques help to assign available nodes

for processing steps, guaranteeing parallelization of the flow and achieving the best possi-

ble performance. In some of the studied architectures, the offloading process is also done

together with cloud servers, generating an interesting edge-cloud application, but always

considering the acceptable limitations of the model [Gao et al., 2021; Wang et al., 2018b].

In this scope, another possible solution with hybrid architecture is to train the algorithm

on cloud, or disposable node, and continuously offloads and updates the obtained model

for punctual use on the edge. Such a methodology is applied by Khani et al. [2020] to

build a real-time adaptive inference IoT prototype based on videos recorded by a cell

phone. Authors claim that this approach avoids overfitting by performing few updates on

the model and delivers instant segmentation at 30 frames-per-second.

Another constraint related to communication latency can be assigned to edge com-

puting environments. Although edge implementation reduces the time spent to generate

responses, it is necessary to ensure that the routines on the cloudlet nodes can run quickly

and enable the pursued latency reduction. Works like Corneo et al. [2021] and Chen et al.

[2017] show that it is possible to reduce the system latency while using machine learning

algorithms on the edge and keep high accuracy values.

It is also important to secure the communication channels that passes through edge

nodes to ensure the protection of the data and the environment itself. Edge computing

implementation add a protection level because it prevents data from being continuously

sent to the cloud. However, edge devices usually have minimum defences against potential

threats and are easy targets for physical and network attacks [Laguduva et al., 2019;

Yahuza et al., 2020; Xiao et al., 2019]. ML and DL methods are being successfully

1Link: Google Compute Engine

https://tinyurl.com/9a63vbvk
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applied in recent works to secure the channels by performing early attack identification,

proper authorization handling and protection of the data as explored by Xiao et al. [2019]

and Yahuza et al. [2020]. Roy et al. [2022] present a two-layer fog-cloud architecture with

a machine learning algorithm capable of performing intrusion detection while keeping

high accuracy and reducing the overall energy consumption. A similar work is proposed

by Gopalakrishnan et al. [2020] and Tian et al. [2020], which employ ML techniques to

perform anomaly detection of data on an edge node level. Alsoufi et al. [2021] points

out in a recent study that CNNs, LSTMs and Autoencoders are the most employed

architectures to deal with attack identification: the first two are supervised techniques

while Autoenconders can be designed in a semi-supervised or unsupervised way.

4.3 Hyperparameter Optimization for Machine

Learning Strategies

The main goal of the ML strategies is to learn trends and tendencies from some

portion of data and reproduce its behavior to new, unknown data. The most recent

algorithms, specially on the deep learning field, fit the learned models by using the studied

architectures. However, different models are created for each type of problem, depending

on the input data, its type, size and internal dynamics. To reach the most appropriate

solutions, it is usual that the model should be filled with a set of hyperparameters that

changes the dynamic of the algorithm [Feurer and Hutter, 2019; Gron, 2019].

Choosing the best set of hyperparameters for a model is not an easy task. To

achieve this assignment manually it would be necessary to search among a wide range of

possible parameters, test the best outcomes and despise the ones that cause low results.

Some recent efforts are done to enable algorithms that can automatically test many sets

and converge to an optimal solution to minimize the loss function in a quicker way.

The problem that should be solved by the hyperparameter optimization is stated

in Equation 4.1: given a space of possible hyperparameters Λ = Λ1×Λ2× ...×Λn. Given

a dataset D, the goal is to find a combination of λ∗ vector hyperparameters capable of

minimizing the model loss L generated by some algorithm A [Feurer and Hutter, 2019].

λ∗ = argmin
λϵΛ

L(A,Dtrain, Dval) (4.1)

Some known optimization strategies are the grid search, random search, bayesian

optimization, gradient-based optimization and evolutionary algorithms [Feurer and Hut-
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ter, 2019]. The approach chosen to optimize the models created on this work is the

bayesian optimization.

4.3.1 Hyperparemeter Types

The hyperparameters that are tuned on the experiments presented on Chapters 5

and 6 are the number of epochs, the learning rate and the batch size of the models. One

epoch in the machine learning context represents one complete pass of the training data

on the fitted model. The higher the total number of epochs, more times the model is

trained with the dataset. In many cases, a high number of epochs guarantees better

results. However, a large number of epochs can cause overfitting of the model, which is

an undesirable behavior. Because of that, tuning this parameter correctly shall ensure

that the model will achieve the best possible results and prevent from overfitting.

The learning rate is an important parameter that defines the behavior of a deep

learning solution. It represents the size of the update step that the optimizer should

perform on the training phase, balancing the amount of attribute modifications in a neural

network on each iteration. A lower learning rate usually causes the model to take more

time to train, because it indicates that minor update steps should be done. However, a

big learning rate can prevent the algorithm to properly learn the desired attributes. The

optimization method should also balance these two characteristics to find the best value

of learning rate.

Finally, the batch size is the size of samples processed at the same time on the

training step. The higher the batch size, the faster the algorithm can pass through the

training. This number should also be chosen carefully because it can impact the efficiency

of the training phase [Gron, 2019].

4.3.2 Bayesian Optimization

The bayesian optimization is a black-box iterative optimizator that is mainly con-

structed by two components: a surrogate model and an acquisition function. The acqui-

sition function uses a predictive distribution of the probabilistic model to estimate the

objective function and trade off exploration (parameters for each the outcome is uncer-

tain) and exploitation (parameters expected to be closer to the optimum value) features.
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The surrogate model iteratively updates and fit all of the observations of the objective

function made so far [Feurer and Hutter, 2019]. This way, the algorithm is capable of

understanding if the loss has been improved or not with the last set of parameters, chooses

the next most relevant set to explore and converges to an optimal solution.

Chapter 5 is the first case study proposed by this work. The chapter discusses the

deep learning architecture chosen to perform the attack detection task on the datasets

presented on Chapter 3, considering all of the information introduced on the present

chapter, as well as the methodology applied on the experiments, the analysis of achieved

results and comparison with other proposals.
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Chapter 5

Botnet Attack Detection

In this chapter, a case study on the field of security for IoT environments is pre-

sented. This way, a deep learning architecture is proposed to solve the attack detection

problem for IoT devices. The goal of this study is to demonstrate a methodology to

choose a suitable machine learning method to tackle a known issue, as well as to analyse

and evaluate the obtained results given the generated models. In this work, the attack

detection task is considered as the step to purely identify whether the scanned data con-

figures a botnet information or not. With this approach, only benign or attack data are

classified, without any investigation about the types of the attacks.

The choice of the deep learning technique to perform the attack detection is ex-

plained in Section 5.1, followed by a description of the validation experiment in Section 5.2.

The obtained results are discussed and compared with other works in Section 5.3, with a

special analysis on the time required to train and test the models.

5.1 Defining the Machine Learning Architecture:

Variational Autoencoder

With this study, it is proposed a methodology to detect and classify possible in-

coming attacks in an IoT environment. The detection step concerns only on identifying

whether an incoming traffic data is an attack or not, thus, it is a binary classification

problem. Because of that, the chosen ML architecture should be able to extract features

from the both types of data and identify them correctly. Considering the recent efforts on

the field, DL strategies are rising as promising architectures to solve many recent comput-

ing problems. They are known to be able to accomplish great reliability of metrics results

(accuracy, precision, recall, and so on) while dealing with huge amounts of data, which

is usually the case of IoT systems. A constraint that is normally related to deep learning

architectures is the computational cost employed during the training phase, which should
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be considered when choosing a technique.

For the attack detection step, the chosen strategy is the Variational Autoencoder

(VAE), which is a neural network-based architecture. The highlighted characteristics of

this type of architecture that weighed on the decision are [An and Cho, 2015; Kingma

and Welling, 2019]:

• The family of Autoencoder (AE) algorithms is usually employed for reconstruction

problems, since the main goal of this strategy is to deconstruct the input data into

a latent space and reconstruct it as close as possible to the original. Because of this

characteristic, Autoencoders are useful to identify anomalies on test data, given that

the model was first trained using a set without anomalies.

• The Variational Autoencoder is a probabilistic subtype of the Autoencoder family

that deconstructs data into a regularized latent space, which grants reliability to

similarity measures because it ensures that similar datapoints lies closer.

• VAEs have been used on literature to deal with anomaly detection problems because

they provide a more precise modelling and capture better representations of the

input data than regular AEs. Some examples are Kim et al. [2020], Yang et al.

[2019] and Lopez-Martin et al. [2017]

• The VAE training step can be faster than other DL architectures, like CNNs or

RNNs, and may require less computational resources. This happens because it

requires to be trained only with the benign data, which enables a reduced number

of entities.

The VAE, as the regular AE, is composed by two main components: the encoder

and the decoder. The encoder is responsible for learning a function (p(z|x)) that is

capable of representing the input data into the latent space, that is a low dimensional

reproduction of the data’s features. However, differently from the traditional AE, the

VAE learns to create two vectors for the latent space, one vector of means (µ) and one

of standard deviations (σ). Those vectors represent a probability distribution q(z|x) to

the output z given an input x. The q(z|x) term (Equation 5.1) can be understood as

the multivariate Gaussian (N) of the latent vectors with a m dimension, generating the

z points for each x entry. The term diag(σ2) is a vector represented by the diagonal of

the variance-covariance matrix, where σ2 is the variance values. Therefore, the matrix’s

diagonal contains the covariance values between all of the possible variable pairs.

q(z|x) = Nm(z;µ, diag(σ
2)), (5.1)

The decoder, on the other hand, is responsible for reconstructing the input from

the net of z points by using the learned function p(x|z). When doing that, the decoder
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assigns a reconstruction error to the output (x′) that is backpropagated to the network,

which indicates whether the reconstructed data are exactly or not. The reconstruction

error is considered as a term of the loss function (Equation 5.2) to be minimized, as

well as the Kullback-Leibler (KL) divergence that acts like a regularization term. The

regularization term on ML models basically aims to simplify the final fitted model and

prevent them from overfitting. The basic architecture of the VAE described in this section

is shown on Figure 5.1, based on the works of An and Cho [2015] and Kingma and Welling

[2019].

loss = ∥x− x′∥2 +KL[N(µx, σx), N(0, 1))] (5.2)

Figure 5.1: Basic architecture of a Variational Autoencoder.

Source: Kingma and Welling [2019].

The VAE has been proven as a good deep learning architecture to solve anomaly

detection problems. Lopez-Martin et al. [2017] present one of the first works that apply

a Conditional VAE on the context of attack detection by using the NSL-KDD dataset.

Yang et al. [2019] apply a Conditional VAE both on the NSL-KDD and UNSW-B15

datasets. Kim et al. [2020], on the other hand, use a Recurrent VAE to classify the

CTU-13 dataset in a real-time manner. Song et al. [2021] evaluate the use of AEs with

different hyperparameters in different datasets, including the N-BaIoT. Moreover, Alsoufi

et al. [2021] provide a study about the DL techniques applied for anomaly detection,

pointing out that CNNs, LSTMs and AEs are the most employed architectures. Thus,

these studies support the choice of using a Variational Autoencoder for attack detection

on N-BaIoT and Bot-IoT databases.



5.2. Experiment Setup 62

5.2 Experiment Setup

This section demonstrates the steps taken to execute the algorithms and exper-

iments for attack detection scenario. They were implemented with Python 3.6.9. All

codes used in the experiments are available in a public repository1. All experiments were

performed on a computer with an Intel Core i9-9900X CPU at 3.50GHz × 20, 128GB

RAM, running a Linux Ubuntu 18.04.4 LTS 64-bit.

5.2.1 Input Data

The experiments are conducted with two datasets: N-BaIoT and Bot-IoT, which

are explored in Chapter 3. The N-BaIoT base comprises nine different datasets, each one

belonging to a different IoT device. A model is developed for each one of the devices, as

well as an unique model that contains information from all of the devices, such as the

methodology developed by Borges et al. [2022]. Furthermore, the models are generated

not only considering all of the 115 features of each dataset, but also considering a reduced

feature space. This way, models are also created for 92, 69, 46 and 23 features. The

reduction of the feature space is done concerning the obtaining time intervals L0.01, L0.1,

L1, L3 and L5. For instance, the model with 115 features contains all of the columns; the

model with 92 features contains all of the columns except from L0.01 columns; the model

with 69 features contains L5, L3 and L1 columns and so on, until the model that contains

only 23 features, with only L5 columns. With this approach it is intended to decrease

the overall training time by reducing the feature space and select the features that are

obtained in the shortest acquisition time, which could improve the detection time on a

real case execution.

In the case of the Bot-IoT database, which has 43 features, only 36 features are

selected. In addition to reducing the training interval, it is considered that the removed

features (stime, flgs, flgsnumber, saddr, sport, daddr, and dport) do not add any relevant

information to the detection task. Both N-BaIoT and Bot-IoT experiments are repeated

five times each in order to understand if the results are maintained despite multiple

iterations and obtain their standard deviation.

1The repository with the code is available at https://github.com/dekinks/DeepLearningSecurity

https://github.com/dekinks/DeepLearningSecurity
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Figure 5.2: Proposed methodology to execute the attack detection experiments on both
datasets.

Source: Elaborated by the author.

5.2.2 Methodology

Figure 5.2 represents the proposed flow for the botnet attack detection experiments.

First, data from any of the two datasets [1] is pre-processed with a minimum-maximum
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normalization scaler [2]. This scaler is used to limit the interval of the values, guaranteeing

a better model performance. Data contains both benign [3] and attack [4] information.

Data is then splitted into two sets: a training set and a testing set. The training set is

composed only by 70% of the total benign data, while test set is composed by all of the

attack data plus the remaining 30% of the benign data.

The VAE model is trained only with the benign data. With this approach, it is

intended to teach the model how to reproduce only the benign data, assigning greater re-

construction errors to any incoming anomalous data. The hyperparameters used to fit the

model are generated via a bayesian optimizer algorithm [5] described in Section 4.3.2. The

test set can be finally inserted into the trained VAE model [7], which should deconstruct

the input and reconstruct it while assigning high errors to any unknown data. If the error

is higher than an anomaly threshold [6], that is automatically calculated considering the

error between the actual train set and the predicted train output, the element should be

assigned as an attack; on the other hand, if the error is lower than the anomaly threshold,

the data is considered benign.

5.3 Results and Discussion

The experiments are executed with nine different models for each IoT device and

with the unique model for the N-BaIoT with features size varying from 115 columns to

23 columns. On the Bot-IoT case, four sensors are studied, which compose one unique

model with 36 columns. The first results that can be analyzed regarding those datasets

are the hyperparameters optimized via the bayesian method (learning rate, epochs and

batch size) and estimated with the training set (anomaly threshold), whose values are

grouped in the following Table 5.1. The hyperparameters are used to generate the proper

VAE model for each device that can solve the proposed binary classification problem.

As discussed in Section 5.2.2, the attack detection experiments comprise two main

scenarios: (i) results obtained with each device model (N-BaIoT) and (ii) results obtained

with the unique models (N-BaIoT and Bot-IoT). On each of the N-BaIoT scenarios, the

number of statistical features are decreased in order to evaluate the overall performance

of the model with limited information. This approach can provide lower training and

testing intervals and also consider data with reduced acquisition time, which is beneficial

for edge computing scenarios.
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Table 5.1: Hyperparameters optimized for each model.

Device
Learning
Rate

Epochs
Batch
Size

Anomaly
Threshold

BoT-IoT (BT) 0.000501 550 19 0.043

Danmini Doorbell (DD) 0.000518 152 99 0.020
Ecobee Thermostat (ET) 0.000121 422 74 0.040
Ennio Doorbell (ED) 0.000553 51 64 0.040
Phillips Baby Monitor (PB) 0.000261 50 97 0.040
P737 Security Camera (P7) 0.000257 464 78 0.050
P838 Security Camera (P8) 0.000908 168 99 0.040
S1002 Security Camera (S2) 0.000468 259 71 0.055
S1003 Security Camera (S3) 0.000162 252 23 0.055
Samsung Webcam (SW) 0.000336 51 40 0.040
Unique Model (UM) 0.000001 44 28 0.050

5.3.1 F1-Score and Accuracy

The results of precision, recall and f1-score obtained for N-BaIoT dataset on each

experiment are shown in Table 5.2. Table 5.3 provides the same results for the Bot-IoT

data as well as its accuracy result.

The precision indicates the amount of True Positives predicted over all of the

positives (true and false), or, in other words, whether the information assigned as attack

is really an attack considering the positive set. The higher this value is, the lower the

False Positive rate, which indicates that a low amount of benign data is classified as

attack. The recall, on the other hand, is the overall rate of True Positive data considering

the set of True Positives plus the False Negatives, identifying the percentage of correctly

predicted attacks among the real attacks. A high recall indicates that the False Negative

rate is low, that is, a low percentage of attacks is classified as benign data. This is the

most important behavior to consider in the anomaly detection scenario, since it would be

specially harmful to the devices if the model classifies a high amount of attacks as benign.

Finally, the f1-score is the harmonic mean between those two metrics. With a first look

on the Table 5.2, it is possible to conclude that the proposed architecture is suited to

generate models that can achieve high f1-score values, guaranteeing a good reliability for

their results.

With the N-BaIoT, the experiments are executed with a reduction of the feature

space. This approach helps to understand whether the features acquired within high

intervals are relevant to the detection task or not. The experiments conducted with 115,
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Table 5.2: Precision, recall and f1-Score results of N-BaIoT dataset.

(a) 115 features

Model Precision % Recall % F1-Score %

DD 99.98 ± 0 100.00 ± 0 99.99 ± 0
ET 99.99 ± 0 100.00 ± 0 99.99 ± 0
ED 99.97 ± 0 100.00 ± 0 99.98 ± 0
PB 99.93 ± 0.01 100.00 ± 0 99.97 ± 0
P7 99.97 ± 0 100.00 ± 0 99.99 ± 0.01
P8 99.96 ± 0 100.00 ± 0 99.98 ± 0
S2 99.98 ± 0 100.00 ± 0 99.99 ± 0
S3 99.99 ± 0 99.99 ± 0 99.99 ± 0
SW 99.95 ± 0 99.91 ± 0.12 99.93 ± 0.06

Mean 99.97 ± 0.02 99.99 ± 0.01 99.98 ± 0.01

UM 99.87 ± 0.01 99.99 ± 0 99.91 ± 0.05

(b) 92 features

Model Precision % Recall % F1-Score %

DD 99.98 ± 0 100.00 ± 0 99.99 ± 0
ET 99.99 ± 0 99.99 ± 0 99.99 ± 0
ED 99.97 ± 0 100.00 ± 0 99.98 ± 0
PB 99.93 ± 0 100.00 ± 0 99.97 ± 0
P7 99.97 ± 0 100.00 ± 0 99.99 ± 0
P8 99.96 ± 0 99.99 ± 0 99.98 ± 0
S2 99.98 ± 0 100.00 ± 0 99.99 ± 0
S3 99.99 ± 0 99.98 ± 0.03 99.98 ± 0
SW 99.89 ± 0.01 99.99 ± 0 99.94 ± 0.01

Mean 99.96 ± 0.02 99.99 ± 0.01 99.98 ± 0.03

UM 99.84 ± 0.01 99.81 ± 0.04 99.83 ± 0.01

(c) 69 features

Model Precision % Recall % F1-Score %

DD 99.98 ± 0 100.00 ± 0 99.99 ± 0
ET 99.99 ± 0 99.99 ± 0 99.99 ± 0
ED 99.97 ± 0 100.00 ± 0 99.99 ± 0
PB 99.93 ± 0 100.00 ± 0 99.97 ± 0
P7 99.98 ± 0.01 99.99 ± 0.01 99.98 ± 0.01
P8 99.96 ± 0 99.98 ± 0.03 99.97 ± 0.02
S2 99.98 ± 0 100.00 ± 0 99.99 ± 0
S3 99.99 ± 0 99.99 ± 0 99.99 ± 0
SW 99.89 ± 0.01 99.99 ± 0 99.94 ± 0.01

Mean 99.96 ± 0.02 99.99 ± 0.01 99.98 ± 0.03

UM 99.83 ± 0.01 99.82 ± 0.04 99.83 ± 0.02

(d) 46 features

Model Precision % Recall % F1-Score %

DD 99.98 ± 0 100.00 ± 0 99.99 ± 0
ET 99.98 ± 0 99.99 ± 0 99.99 ± 0
ED 99.97 ± 0 100.00 ± 0 99.98 ± 0
PB 99.93 ± 0 100.00 ± 0 99.97 ± 0
P7 99.97 ± 0 99.99 ± 0 99.98 ± 0
P8 99.94 ± 0.03 100.00 ± 0 99.97 ± 0.02
S2 99.98 ± 0 100.00 ± 0 99.99 ± 0
S3 99.99 ± 0 99.99 ± 0 99.98 ± 0
SW 99.88 ± 0 99.99 ± 0 99.94 ± 0

Mean 99.96 ± 0.06 99.99 ± 0.01 99.98 ± 0.03

UM 99.76 ± 0.02 99.78 ± 0.04 99.77 ± 0.03

(e) 23 features

Model Precision % Recall % F1-Score %

DD 99.98 ± 0 100.00 ± 0 99.99 ± 0
ET 99.96 ± 0 99.99 ± 0 99.98 ± 0
ED 99.96 ± 0.02 99.99 ± 0 99.98 ± 0.01
PB 99.92 ± 0.03 99.99 ± 0 99.96 ± 0.01
P7 99.95 ± 0.01 99.87 ± 0.18 99.91 ± 0.09
P8 99.85 ± 0.05 99.94 ± 0.13 99.87 ± 0.09
S2 99.98 ± 0 99.98 ± 0.02 99.98 ± 0.01
S3 99.98 ± 0 99.98 ± 0.01 99.98 ± 0.01
SW 99.81 ± 0.02 99.99 ± 0 99.90 ± 0.01

Mean 99.93 ± 0.05 99.97 ± 0.05 99.95 ± 0.05

UM 99.52 ± 0.03 99.50 ± 0.16 99.49 ± 0.15

92 and 69 features show the highest f1-score results among models for the nine separate

devices and for the unique model, which is the one that present the lowest results (values

higher than 99.98 ± 0.03 and 99.83 ± 0.02, respectively). The experiment with 46 features

show a drop on the unique model f1-score results (99.77 ± 0.03%) while keeping an average

f1-score of 99.98 ± 0.03% for the other models. The experiment with 23 features produces
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the lowest overall f1-score results (99.95 ± 0.05% for the separated models and 99.49 ±
0.15% for the unique model), which is an expected behavior, since the feature space is

highly reduced. Despite of that, the values are still good, over 99.00% of confidence, which

configures a tradeoff that can be considered when choosing a model. For the unique Bot-

IoT model, the overall values are also considered good with an average of 99.98 ± 0% of

f1-score and 99.96 ± 0.01% of accuracy.

Table 5.3: Precision, recall and f1-Score results of Bot-IoT dataset.

Model Precision % Recall % F1-Score % Accuracy %

BT 99.97 ± 0 99.99 ± 0 99.98 ± 0 99.96 ± 0.01

Figure 5.3: Confusion matrix of the attack detection on Danmini Doorbell model.

(a) Danmini Doorbell with 115 features (b) Danmini Doorbell with 23 features

Source: Elaborated by the author.

To better visualize the distribution of classified benign and attack data, Figures 5.3,

5.4 and 5.5 provide the confusion matrices of Danmini Doorbell device and the unique

model for 115 and 23 features and of the Bot-IoT model, respectively. The confusion

matrices of the other devices, which present a similar pattern as the Danmini Doorbell

matrix, are provided in the Appendix A with Figures A.1, A.2, A.3, A.4, A.5, A.6, A.7

and A.8. The main diagonal values indicate the correctly predicted values: 0 labels are

the True Negatives (TN), benign data; and 1 labels are the True Positives (TP)), malware

data. Values on the top right are the False Positives (FP), or benign data assigned as

attack; and bottom left are the False Negatives (FN), or attack data assigned as benign.
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Figure 5.4: Confusion matrix of the attack detection with N-BaIoT’s unique model.

(a) Unique Model with 115 features (b) Unique Model with 23 features

Source: Elaborated by the author.

Figure 5.5: Confusion matrix of the attack detection with Bot-IoT model.

Source: Elaborated by the author.
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It is possible to observe that for 115 features, models have high recall, with a

false negative rate tending to 0. This is the pursued behavior, since it indicates that no

malicious information is being wrongly assigned as benign. On the other hand, some of

the benign data is being wrongly assigned as attack information, which indicates a lower

precision for the overall benign information. However, the numbers are not expressive to

the point of highly affecting the final f1-score values. It is also expected in the relationship

of precision and recall metrics that one of the metrics is always higher than the other.

The unique model presents a higher rate of wrongly assigned data, however, the

amount of FNs is still lower than the FPs. Using the unique model over the separated

models is an interesting approach to consider because it would avoid training nine different

models every iteration while being still able to achieve metrics higher than 99.00% even in

the worst scenarios. The Bot-IoT unique model is also capable of achieving great results

while keeping the FN rate lower than the FP one. There is a higher number of FNs in this

case because the Bot-IoT dataset possesses a smaller amount of benign data to train the

model. This problem was circumvented by using an upsampling technique to the Bot-IoT

training data, but the reproduced benign data had the same known information, which

can lead to punctual missclassifying.

Figure 5.6: Accuracy results of Danmini Doorbell models on the attack detection task
with dynamic feature space.

Source: Elaborated by the author.

The accuracy is the most used metric to evaluate ML models, and indicates the

rate of hits the model achieves over the whole data. In this case, it is presented the
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Figure 5.7: Accuracy results of unique models on the attack detection task with dynamic
feature space.

Source: Elaborated by the author.

percentage accuracy for each model with the dynamic number of features. Figures 5.6

and 5.7 show that the reduction of the feature space based on the acquisition interval does

not affect deeply the outcomes of the N-BaIoT set until the experiments with 23 features,

which achieve the lowest results. The accuracy results of the other devices also follow the

same pattern as the Danmini Doorbell model, which are provided in Appendix A with

Figures A.9, A.10, A.11, A.12, A.13, A.14, A.15, A.16

In some models, like the Samsung Webcam (Figure A.16), Provision 737 and Sim-

pleHome 1003 Security Cameras (Figures A.12 and A.15), the accuracy value increases

with the reduction of features space. This phenomena occurs with deep learning archi-

tectures when a feature that is not relevant to the classification process is removed from

the set, or when the removed feature was producing noise for the data. This study cor-

roborates with the usage of a reduced number of columns to generate the models, since

it can decrease training and testing intervals while keeping great results, as it will be dis-

cussed in Section 5.3.2. The unique model in particular is the one that present the lowest

accuracy values, which is expected considering the variety of information that compose

the set. However, the accuracy of the the worst scenario, with 23 features, still achieves

a high accuracy percentage of 99.00%.

The Bot-IoT model presents an accuracy of 99.96 ± 0.01%, which is close to its

f1-score value showed on Table 5.3. It is important to evaluate different datasets with the



5.3. Results and Discussion 71

proposed architecture because it validates the reliability of the models and prove that the

architecture can be successfully applied for different scenarios.

5.3.2 Training and Testing Intervals

Another metric that is very important to evaluate is the time spent on training

and testing steps. Given the constraints presented for IoT and edge applications in this

work, the computational power and time employed to run the algorithms are relevant

when choosing a technique. This way, Tables 5.4 and 5.5 show, respectively, the time

consumed by training and testing phases for N-BaIoT and Table 5.6 for Bot-IoT.

Table 5.4: Training interval of each evaluated model of N-BaIoT dataset.

Model Size (rows)
Training Time(s)

115 c. 92 c. 69 c. 46 c. 23 c.

DD 34,683 141.42 135.26 146.88 87,90 81.02
ET 9,179 113.43 91.97 77.78 78.93 73.24
ED 27,370 46.63 46.64 44.87 35.29 32.84
PB 122,667 190.20 109.78 104.98 92.27 86.38
P7 43,507 697.85 504.00 484.88 437.48 333.14
P8 68,959 367.60 192.16 184.74 179.89 188.36
S2 32,609 207.59 193.84 179.18 158.07 174.35
S3 13,669 343.18 198.72 204.72 187.78 253.46
SW 36,505 99.74 65.44 59.03 55.56 102.77
UM 389,148 917.40 716.90 811.78 829.68 785.14

The training interval results show how long the architecture takes to create and

fit the model that will be used to predict real data. The final values of each model

are calculated by taking the average interval between all of the five experiments. With

Table 5.4 it is possible to observe that the tendency of the training interval is to decrease

with the reduction of the number of features. This behavior makes sense, since there are

less columns to iterate over while fitting the model. Experiments with only 23 columns

are faster to train in six out of ten results and experiments with 46 columns in the

remaining four. The 23 column experiments does not hold all of the lowest results due

to outlier results present on some of the five test sets, probably impacted by the number

of executions performed by the machine concurrently. The same scenario happens with

detection interval results in Table 5.5, whose values have a tendency to decay with lower

number of features. 23 column experiments have four out of ten of the lowest results, 46

columns also have four of ten and 69 and 92 columns show the lowest testing intervals in



5.3. Results and Discussion 72

one out of ten experiments each. This tendency encourages the use of a smaller number of

features to generate the models because it usually reduces the time consumed to perform

the detection of the attacks while keeping high metrics as shown in Section 5.3.1.

Table 5.5: Detection, or testing interval, of each evaluated model. The ratio column
is calculated by taking the mean value between the experiments and dividing it by the
number of rows on the test set. This column shows the average interval that the model
would take to detect an attack per incoming data.

Model Size(rows)
Detection Time(s)

Ratio(ms)
115 c. 92 c. 69 c. 46 c. 23 c.

DD 983,615 39.37 37.69 34.69 24.60 21.46 0.03
ET 826,697 31.02 17.84 16.30 15.17 14.59 0.02
ED 328,130 10.41 10.41 11.43 6.55 6.17 0.03
PB 976,010 38.74 17.81 17.00 16.29 18.54 0.02
P7 785,753 34.07 21.12 18.23 19.61 14.52 0.03
P8 767,932 31.31 17.81 12.59 12.48 21.56 0.02
S2 830,447 26.54 16.72 13.99 13.12 18.25 0.02
S3 837,157 33.56 14.59 16.42 16.46 20.40 0.02
SW 338,717 12.51 6.53 7.95 8.77 9.91 0.03
UM 6,673,458 138.43 147.60 121.43 149.97 130.06 0.02

The Ratio column is calculated by taking the average detection time between the

experiments with different number of columns and dividing it by the size of the data. This

number provides an estimate of how long the model would take to detect an incoming

threat per network packet. This average value for all of N-BaIoT models is 0.024ms and

0.02ms for the Bot-IoT. Considering the average latency of 300ms required by an edge

computing environment shown by Chen et al. [2017], the testing step time cost would fit

the requirement and be able to process between 12,500 ans 15,000 entities at once.

Table 5.6: Training and testing intervals of Bot-IoT dataset. The ratio column is calcu-
lated by taking the mean value between the experiments and dividing it by the number
of rows on the test set. This column show the average interval that the model would take
to detect an attack per incoming data.

Model Training
Size(rows)

Testing
Size(rows)

Training
Time(s)

Detection
Time(s)

Ratio
(ms)

BT 15,025 3,674,485 669.67 90.40 0.02
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5.3.3 Comparison with Related Works

As an important role to consider in the security field for IoT environments, de-

tecting incoming attacks from the network has gained substantial space among recent

researches, with prolific and relevant solutions [Laguduva et al., 2019; Alsoufi et al., 2021].

In this section, the goal is to evaluate the results and improvements achieved with the

proposed VAE architecture in comparison to state-of-art works. Tables 5.7 and 5.8 con-

tain a visual comparison between the studied metrics. The metrics of the current work

showed on these tables are the ones collected as a mean value of all nine devices with the

whole feature space (115 columns) for a full comparison.

• The attack detection performed by Meidan et al. [2018], creators of the N-BaIoT

dataset, returns a mean precision of 99.30% with Deep Autoencoders (value cal-

culated with provided TP and FP rates). This precision is outperformed by the

proposed solution with a mean result of 99.97%. They also provide an average

detection time analysis, with a mean value of 174ms to detect attacks on their sim-

ulated setup. An analysis of recall, f1-score and accuracy values is not provided by

the authors.

• Koroniotis et al. [2019] perform the binary-classification task with some ML and DL

architectures. The most outstanding results are obtained by the RNN architecture

with a mean value of 99.35% of accuracy and 89.64% and 78.89% of precision and

recall. The proposed solution achieves greater results of 99.97% and 99.99% of

precision and recall and 99.96% of accuracy.

• Nõmm and Bahşi [2018] evaluate only the accuracy and precision values with an

unsupervised architecture. A differential of their work is that they evaluate the

dynamic of the results with unbalanced and balanced datasets. The present experi-

ment considers only the unbalanced scenario. In that case, the mean accuracy value

of the tested devices is 96.64% and the mean precision is 98.71% against 99.96%

and 99.97% for the same devices with the proposed architecture. Authors also do

not provide any analysis about the time consumption during training and testing

steps.

• Alqahtani et al. [2020] utilize an XGBoost algorithm with feature selection and an

ensembled model to perform the detection task. When using the reduced feature

space with 3 features only, their model is able to achieve 99.93%, 99.96%, 99.95%

and 99.96% of precision, recall, f1-score and accuracy, being outperformed by little

by the respective mean results of the proposed solution of 99.97%, 99.99%, 99.98%
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Table 5.7: Comparison between the detection metrics achieved in this work and recent
results from the literature for the N-BaIoT dataset.

Work Precision Recall F1-score Accuracy

Current Work 99.97% 99.99% 99.98% 99.96%
Meidan et al. [2018] 99.30% - - -

Nõmm and Bahşi [2018] 98.71% - - 96.64%
Alqahtani et al. [2020] 99.93% 99.96% 99.95% 99.96%
Popoola et al. [2022] 99.97% 99.98% 99.98% 99.99%
Cunha et al. [2022a] 99.95% 98.10% 98.98% 99.95%

Table 5.8: Comparison between the detection metrics achieved in this work and recent
results from the literature for the Bot-IoT dataset.

Work Precision Recall F1-score Accuracy

Current Work 99.97% 99.99% 99.98% 99.96%
Koroniotis et al. [2019] 89.64% 78.89% - 99.35%
Popoola et al. [2022] 98.56% 100.00% 99.27% 100.00%

and 99.96% with the whole feature space. Authors also evaluate their training and

testing steps intervals.

• Popoola et al. [2022] perform the binary classification of N-BaIoT and Bot-IoT

data with complete feature space. N-BaIoT’s results are 99.99%, 99.97%, 99.98%

and 99.98% of accuracy, precision, recall and f1-score respectively, while Bot-IoT

achieves 100.00%, 98.56%, 100.00% and 99.27% for the same metrics. The proposed

CNN is capable of achieving the same results of precision, recall and f1-score for

the N-BaIoT, with a lower accuracy of 99.96%, while outperforming precision and

f1-score metrics with results of 99.97% and 99.98% respectively. Authors also eval-

uate training and testing intervals, but with a different computational set from the

current experiment.

• The VAE models provided by Cunha et al. [2022a] for the N-BaIoT dataset are

improved on the current work by bringing the bayesian hyperparameter optimization

and improving the built VAE architecture. As a result, the outcomes are better than

the previous work, which produces an average value for all devices of 99.95%, 98.10%,

98.98% and 99.95% of precision, recall, f1-score and accuracy. The detection time

is also improved with an average rate of 0.024ms per incoming data against 0.04ms

from the previous experiment.
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An overview across the presented works shows that the proposed solution is capable

of achieving and outperforming some state-of-art results while keeping a low detection

time and a reasonable training interval. Also, by restricting the feature space with a less

number of columns it is possible to think about only keeping data with low acquisition time

to possibly perform better on the edge computing context. This study also encourages

diminishing the feature space for future experiments computational cost improvement, as

seen in the next chapter.
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Chapter 6

Botnet Attack Classification

The attack classification task is also considered in this work with the intention of

determining which is the particular type of some incoming attack. This step is proposed

because it can be useful to gain more knowledge about the botnets and possibly iden-

tify new types of attacks, according to the OpenSet paradigm. For this task, another

architecture is proposed to solve the classification problem and validated according to

the final results and comparisons. This chapter is organized similarly to the previous

one, with Section 6.1 exposing the chosen deep learning method; Section 6.2 describing

the methodology applied on the experiment; and Section 6.3 discussing the results and

comparison with other works.

6.1 Defining the Machine Learning Architecture:

Convolutional Neural Network

Unlike the proposal for attack detection, the attack classification task can assign

data to more than two different labels. The proposed workflow considers as a first step

to detect whether incoming information is malicious or not, and then identify which type

of threat it is in the case of a positive result. The model should be able to extract the

most outstanding features of the data and use them to predict the correct labels. For

this task, the chosen architecture is the Convolutional Neural Network (CNN), a common

technique used for classification problems. The relevant characteristics of this architecture

are [Wibawa et al., 2022]:

• CNNs are usually used to classify 3D and 2D imagery information because of its

characteristic to reduce the number of parameters across the filters without losing

quality of the data. However, it has been proven as a suited model to deal with

1-dimensional data as well.

• The recent models that are built to treat images are usually complex and composed
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by many connected layers. However, to deal with data with less dimensions it is

possible to pursue simpler and resourceless models [Zhanga et al., 2020].

• The CNN is one of the most employed deep learning architectures to perform

anomaly classification as well as LSTMs and Autoencoders [Alsoufi et al., 2021].

• While training phases are usually time consuming, it is possible to achieve low

testing intervals, which can be suitable for edge computing solutions.

A regular CNN is composed by the following layers: input, convolutional layer,

pooling and fully-connected layers, which generates the desired output. Those architec-

tures can also have some additional layers such as dropout, normalization and padding

layers. The proposed flow is exposed in Figure 6.1. The Input size can be described as a

combination of number of samples, number of features and depth size (S, F, D), and, in

this case, the depth is 1 since it is a flatten data. The Input is inserted into a sequence

of convolutional and max-pooling layers. The first layer is responsible for passing filters

through the data, creating an activation map that is used to highlight its most outstand-

ing characteristics by the latter. The values above the boxes are the number of filters

applied on the convolutional layers and the size of the sliding window on the max-pooling

layers.

The filters are applied with an activation function, which is used to introduce non-

linearity in the process making it possible to learn more than just the linear relationships

between the variables. The most used activation function on neural networks has been

the ReLU (Rectified Linear Unit) because it is easy to optimize and it is computationally

cheap, although it is a non-linear function. The function is basically used to decide

whether a neuron on the network shall be activated or not, or, in other words, if the

information is relevant or not.

Figure 6.1: Basic architecture of the proposed Convolutional Neural Network.

Source: Elaborated by the author.

After those steps, the data is flattened to a single dimension and inserted into

the fully-connected layer. This layer is responsible to perform the classification of the

extracted features by calculating class scores from the previous activations. The results

of the last dense layer are passed through a Softmax activation function that is capable
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of creating a distribution probability of the data that indicates the probability of the

analysed data to belong to a class or not, providing the desired output. High percentages

indicate that the information shall belong to the label, and low percentages indicate that

it shall not. The proposed architecture is based on the work of [Zhanga et al., 2020].

6.2 Experiment Setup

This section shows the steps followed to prepare and execute the experiments for

the classification of the types of attacks. The experiments are conducted both using

presented N-BaIoT and Bot-IoT datasets. The possible botnet attack labels that exist

on both datasets are shown in Tables 6.1 and 6.2. The methodology explained below

is repeated five times for each model in order to gather information about the standard

deviation of the acknowledged metrics with the proposed solution.

Table 6.1: Types of botnet attacks on N-BaIoT dataset and their labels.

Botnet Attack Type Label Botnet Attack Type Label

Mirai

Ack 0

Bashlite

Combo 5
Scan 1 Junk 6
Syn 2 Scan 7
Udp 3 Tcp 8
Udpplain 4 Udp 9

Table 6.2: Types of botnet attacks on Bot-IoT dataset and their labels.

Botnet Attack Type Label

DDoS 0
DoS 1
Reconaissance 2
Theft 3
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6.2.1 Input Data

The input data for the classification experiments are similar to the one described in

Section 5.2.1. In this case, however, the models are generated considering the 23 features

related to the L5 time interval only. This approach is employed to train the model

with the lowest possible acquisition time while keeping it simpler to reduce training and

testing intervals. The Bot-IoT is studied with the 36 features that remained from the

data extraction discussed on Section 5.2.1.

On the N-BaIoT, a different model is generated for each device. This approach is

needed because each device has its own types of possible attacks, making it impossible to

develop an unique model as in Chapter 5. Both devices Ennio Doorbell and Samsung

Webcam only have information of attacks of the Bashlite type. The Bot-IoT, on the other

hand, is constructed as a single model in accordance to the previous chapter.

6.2.2 Methodology

The methodology applied for classification experiments is represented on Figure

6.2. Data from both datasets [1] is pre-processed with the minimum-maximum normal-

ization scaler [2] and used to generate train, test and validation sets. 70% of the data

is directed to the train set and 15% for validation and test sets each. The chosen CNN

architecture is trained with train and validation sets to generate the final trained model

[4], whose hyperparameters are chosen by the bayesian optimization discussed in Section

4.3.2. The time interval needed to train the model is collected on this step.

Finally, the test set can be inserted in the trained model, which should be able at

this point to correctly classify each type of attack according to Tables 6.1 and 6.2. The

classification results show to which label each data entry is assigned to. At this point, the

results can be compared to the ground-truth information to evaluate the overall accuracy

of the solution. The interval spent during the test phase is also evaluated because it

indicates how much time would be necessary to classify the botnet attacks on a real case

scenario.

To better analyze the accuracy of the proposed solution, the outcomes of the

experiments are compared with two other machine learning strategies: the K-Nearest

Neighbors (KNN) and the Naive Bayes (NB). The same methodology is applied in both

architectures and the final results are evaluated.
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Figure 6.2: Proposed methodology to execute the attack classification experiments on
both datasets.

Source: Elaborated by the author.

6.3 Results and Discussion

The experiments are executed with the nine different IoT devices from N-BaIoT

and with the unique dataset of Bot-IoT. The number of columns employed on experiments

is fixed with 23 features for the first set and 36 for the second. With the bayesian algorithm

it is possible to estimate the best set of hyperparameters to fit the proposed architecture,

which are shown in Table 6.3.
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Table 6.3: Hyperparameters optimized for each model.

Device Learning Rate Epochs Batch Size

BoT-IoT (BT) 0.0009473 9 19

Danmini Doorbell (DD) 0.072929 89 50
Ecobee Thermostat (ET) 0.000746 18 27

Ennio Doorbell (ED) 0.003711 44 51
Phillips Baby Monitor (PB) 0.089869 14 33
P737 Security Camera (P7) 0.001000 85 12
P838 Security Camera (P8) 0.000615 43 17
S1002 Security Camera (S2) 0.000093 16 14
S1003 Security Camera (S3) 0.000397 35 12
Samsung Webcam (SW) 0.039677 35 49

Table 6.4: Precision, Recall and F1-Score results of the evaluated models.

(a) Precision values of each architecture

Model
Precision %

CNN KNN NB

DD 100.00 ± 0 99.96 ± 0.01 95.73 ± 0.47
ET 99.98 ± 0.01 99.97 ± 0 99.58 ± 0
ED 99.97 ± 0 99.92 ± 0 99.91 ± 0
PB 100.00 ± 0 99.95 ± 0.01 95.63 ± 0.20
P7 100.00 ± 0 99.75 ± 0.01 93.86 ± 0.44
P8 100.00 ± 0 99.76 ± 0.01 94.00 ± 1.55
S2 100.00 ± 0 99.96 ± 0 97.98 ± 0.87
S3 100.00 ± 0 99.95 ± 0.01 98.15 ± 0.53
SW 99.98 ± 0.01 99.92 ± 0.01 99.92 ± 0

Mean 99.99 ± 0 99.90 ± 0.01 97.20 ± 2.08

Bot-IoT 100.00± 0 99.99 ± 0 97.77 ± 1.61

(b) Recall values of each architecture

Model
Recall %

CNN KNN NB

DD 100.00 ± 0 99.96 ± 0.01 93.63 ± 0.91
ET 99.98 ± 0.01 99.97 ± 0 99.57 ± 0
ED 99.97 ± 0 99.92 ± 0 99.91 ± 0
PB 100.00 ± 0 99.95 ± 0.01 93.71 ± 0.52
P7 100.00 ± 0 99.75 ± 0.01 83.79 ± 8.33
P8 100.00 ± 0 99.76 ± 0.02 88.59 ± 3.22
S2 100.00 ± 0 99.96 ± 0 97.67 ± 1.16
S3 100.00 ± 0 99.95 ± 0.01 97.93 ± 0.72
SW 99.98 ± 0.01 99.92 ± 0.01 99.92 ± 0

Mean 99.99 ± 0 99.90 ± 0.11 94.99 ± 6.10

Bot-IoT 100.00 ± 0 99.99 ± 0 94.97 ± 0.07

(c) F1-score values of each architecture

Model
F1-Score %

CNN KNN NB

DD 100.00 ± 0 99.96 ± 0.01 93.72 ± 1.00
ET 99.98 ± 0.01 99.97 ± 0 99.57 ± 0
ED 99.97 ± 0 99.92 ± 0 99.91 ± 0
PB 100.00 ± 0 99.95 ± 0.01 93.60 ± 0.49
P7 100.00 ± 0 99.76 ± 0.01 84.18 ± 9.07
P8 100.00 ± 0 99.75 ± 0.01 89.29 ± 2.75
S2 100.00 ± 0 99.96 ± 0 97.63 ± 1.20
S3 100.00 ± 0 99.95 ± 0.01 97.91 ± 0.75
SW 99.98 ± 0.01 99.92 ± 0.01 99.92 ± 0

Mean 99.99 ± 0.01 99.90 ± 0.11 95.08 ± 5.84

Bot-IoT 100.00 ± 0 99.99 ± 0 97.53 ± 0.04
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6.3.1 F1-Score and Accuracy

Results obtained for precision, recall and f1-score metrics are shown in Table 6.4.

The table also indicates the metrics evaluated with the other two machine learning archi-

tectures for comparison, KNN and NB. All of N-BaIoT’s metrics results are outperformed

by the proposed CNN architecture, with a mean value of 99.99 ± 0% of precision, recall

and f1-score. The KNN reaches 99.90 ± 0.11% on each metric, followed by the NB that

achieves only 97.20 ± 2.08% of precision, 94.99 ± 0.07% of recall and 95.08 ± 5,84% of

f1-score. For the Bot-IoT, the CNN achieves the highest results, reaching 100.00 ± 0% of

precision, recall and f1-score against 99.99% ± 0% with the KNN and 97.77 ± 1.61% of

precision, 94.97 ± 0.07% of recall and 97.53 ± 0.04% of f1-score with the NB architecture.

The CNN remains as the model that achieves the best final results, as expected of a deep

learning strategy. It is also the most stable strategy, with a lower standard deviation of

the mean results.

The confusion matrices generated by the experiments should also be considered

on the evaluation. Those results are presented with Figures 6.3 and 6.4. Figures B.1,

B.2, B.3, B.4, B.5, B.6, B.7 and B.8 represent the matrices of the other devices and

are provided in Appendix B because they keep the same pattern results as the Danmini

Doorbell model. Those matrices show the correlation between labels predicted by the DL

strategy and ground-truth labels. This way, the main diagonal indicates the predictions

that are correctly classified. It is possible to observe that the number of hits is according

to the f1-score metrics gathered in Table 6.4, with a very low error rate. The matrices

values also corroborate with the calculated results, showing that the CNN commit less

classification errors than the KNN and NB strategies.

Finally, the accuracy reached with each studied architecture (CNN, KNN, NB)

for each device is shown on Figures 6.5 and 6.6. The tendency is similar to the f1-score

results, with CNN results reaching the highest values, followed by KNN results and the

NB outcomes, with the lowest values. Figures B.9, B.10, B.11, B.12, B.13, B.14, B.15

and B.16 found in the Appendix B present the same behavior for the other N-BaIoT’s

devices.

In particular, accuracy results presented on Figures B.12 and B.13 show a con-

siderable drop of accuracy to around 99.75% with KNN and 86.00% with NB models.

This phenomena might happen due to the existence of non-linear relationships among

the device’s data, which is better identified and classified by DL techniques than regular

ML algorithms (in fact, NB is a linear solution). In that case, the proposed CNN keep

100.00% of accuracy.
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Figure 6.3: Confusion matrix of the attack classification on Danmini Doorbell with CNN,
KNN and NB models.

(a) CNN model

(b) KNN model

(c) NB model

Source: Elaborated by the author.
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Figure 6.4: Confusion matrix of the attack classification on Bot-IoT with CNN, KNN and
NB models.

(a) CNN model

(b) KNN model

(c) NB model

Source: Elaborated by the author.
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Figure 6.5: Accuracy results for Danmini Doorbell on the attack classification task with
CNN, KNN and NB models.

Source: Elaborated by the author.

Figure 6.6: Accuracy results for the Bot-IoT dataset on the attack classification task with
CNN, KNN and NB models.

Source: Elaborated by the author.
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6.3.2 Training and Testing Intervals

As in Chapter 5, the time intervals evaluation is very important to consider spe-

cially when thinking about edge devices. The lower the response latency is on those

devices, the better for the user and for the environment management. Table 6.5 contains

information of the time consumed to train the models for each proposed architecture.

As expected, the CNN is the strategy that demands the higher training time since it is a

more complex DL architecture with a high number of epochs and low learning rate (shown

in Table 6.3) in most of the models. For instance, the model with the highest training

interval of 22,710.44 s is the Provision 737 Camera, which has a high number of epochs

(85), a low learning rate (0.001) and a low batch size (12). Each of these hyperparameters

contribute to the high training latency. ML strategies, on the other hand, are proven to

be trained faster, where the KNN is the one that achieves the lowest training interval.

Table 6.5: Total training time of each model. The Size field corresponds to the number
of rows. The ratio between total training time and the number of rows is not considered
in this evaluation because the training step is always done with the whole data.

Model Size(rows)
Training Time(s)
CNN KNN NB

DD 678,120 9522.05 0.31 1.08
ET 575,928 2684.97 0.22 0.90
ED 221,478 1527.84 0.07 0.38
PB 646,401 1607.70 0.44 1.25
P7 536,269 22710.44 0.25 0.80
P8 516,858 6173.30 0.29 0.95
S2 571,526 2801.31 0.35 1.07
S3 581,904 7453.16 0.25 0.88
SW 226,148 981.73 0.11 0.38

Bot-IoT 2,567,630 4707.59 0.49 1.51

Table 6.6, however, shows the most important interval to be considered on this

analysis: the detection time. The CNN interval for this metric drops to the second fastest

strategy, losing only for the NB models that are lighter and simpler. In this case, the

KNN is the solution that causes the highest overhead to the detection interval, being

almost 10 times slower than the proposed CNN. The ratio column, as in the previous

chapter, indicates how long the algorithm would take to classify incoming network data.

The proposed solution achieves a great average of 0.067ms to process a single packet for

N-BaIoT devices and 0.07ms for Bot-IoT data. If considering the 300ms interval required
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for a real-time edge device brought by Chen et al. [2017], it would be possible to process

between 4,300 and 4,500 packets at once. Considering the results discussed in Section 6.3,

the CNN emerges as the architecture that enables the best results with reduced testing

time.

Table 6.6: Classification time of each model. The Size field corresponds to the number of
rows, and the Ratio columns indicate the proportion of the time interval spent in relation
to the total number of rows.

Model Size(rows)
Detection Time(s) Ratio (ms)
CNN KNN NB CNN KNN NB

DD 145,308 10.49 78.72 1.10 0.07 0.54 0.008
ET 123,410 9.55 240.96 0.81 0.08 1.95 0.007
ED 47,458 2.92 158.47 0.38 0.06 3.34 0.004
PB 138,512 9.02 79.52 0.97 0.06 0.57 0.007
P7 114,912 10.84 38.12 0.67 0.09 0.33 0.006
P8 110,752 5.64 55.44 0.80 0.05 0.50 0.007
S2 122,466 6.85 68.15 0.88 0.06 0.56 0.007
S3 124,690 9.50 54.30 0.78 0.07 0.43 0.006
SW 48,458 2.81 11.67 0.17 0.06 0.25 0.003

Bot-IoT 743,659 33.79 916.34 0.64 0.07 1.23 0.001

6.3.3 Comparison with Related Works

Since the efforts on attack detection and classification fields are a current trend,

some works can be revisited to better understand possible gaps and improvements achieved

by this research. A comparison between achieved results between the proposed solution

and state-of-art works is exposed in Tables 6.7 and 6.8 for N-BaIoT and Bot-IoT,

respectively. The N-BaIoT results are represented by the mean value of the metrics

obtained with all models.

• The N-BaIoT dataset is created by Meidan et al. [2018]. Although they have per-

formed the botnet detection task to evaluate the dataset, a multi-classification step

is not proposed by them. Current work exceeds the binary-classification proposi-

tion to also instigate a better understanding about the possible types of attacks

dynamics.



6.3. Results and Discussion 88

• The Bot-IoT dataset is created by Koroniotis et al. [2019]. Authors perform both

detection and multi-classification procedures on this case. They achieve 99.99% of

precision and accuracy and 100.00% of recall with a SVM architecture, but do not

provide an evaluation of f1-score and the time consumption of the testing phase.

• Htwe et al. [2020] propose the ML model called CART and compare its outcomes

with a NB model. Authors achieve 99.00% of accuracy against 99.99% with the

proposed architecture for the N-BaIoT data. They also do not provide an evaluation

of the training and testing intervals using their architecture.

• Tran and Dang [2022] achieve 90.00% of accuracy and recall with their ANN and

84.00% and 86.00% of precision and f1-score respectively, which are outperformed by

the proposed CNN. They also provide an evaluation of training and testing intervals,

but under a time complexity analysis.

• Popoola et al. [2022] perform the multi-classification analysis with a DNN and hyper-

parameter tuning both on N-BaIoT and Bot-IoT datasets. The N-BaIoT outcomes

reveal an accuracy of 99.99%, and precision, recall and f1-score values of 99.91%,

99.98% and 99.89%, respectively. The proposed architecture outperforms f1-score

metrics and achieves the accuracy value. For the Bot-IoT, their results are 99.96%

of accuracy and 99.91%, 99.96% and 99.57% of precision, recall and f1-score, which

are also outperformed by the 100.00% results of the proposed CNN. The authors

also evaluate the training and testing phases of the DNN architecture with their

computer set.

• Parra et al. [2020] develop a LSTM to execute the multi-classification task on N-

BaIoT data with a per-attack approach. They achieve 94.90% of accuracy and

84.30%, 99.99% and 96.86% of precision, recall and f1-score. Their results are

outperformed by the proposed CNN. They do not provide any evaluation regarding

the time consumption of training and testing phases.

• The model proposed by Cunha et al. [2022b] is improved on this work with a new

set of tuned hyperparameters and improvement of the developed CNN architecture.

With that, it is possible to note an advance of the metrics values. The previous work

has precision, recall, f1-score and accuracy results of 97.82%, 97.75%, 97.59% and

97.75% respectively with the N-BaIoT set. They are outperformed by the newest

architecture with a 99.99% result for all metrics. The values for the Bot-IoT set

increase to 100.00%. The training interval is slightly better for some cases and worse

for others due to the change of the hyperparemeter set (a higher number of epochs,

lower learning rate and lower batch size can cause the model to take a longer time

to train, as well as the state of the remote machine and its parallel operations at

the time), but the testing step keep an average value of 0.07ms per-packet.
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Table 6.7: Comparison between the classification metrics achieved in this work and recent
results from the literature for the N-BaIoT dataset.

Work Precision Recall F1-score Accuracy

Current Work 99.99% 99.99% 99.99% 99.99%
Htwe et al. [2020] - - - 99.00%

Tran and Dang [2022] 84.00% 90.00% 86.00% 90.00%
Popoola et al. [2022] 99.91% 99.88% 99.89% 99.99%
Parra et al. [2020] 84.30% 99.99% 96.86% 94.80%

Cunha et al. [2022b] 97.82% 97.75% 97.59% 97.75%

Table 6.8: Comparison between the classification metrics achieved in this work and recent
results from the literature for the Bot-IoT dataset.

Work Precision Recall F1-score Accuracy

Current Work 100.00% 100.00% 100.00% 100.00%
Koroniotis et al. [2019] 99.99% 100.00% - 99.99%
Popoola et al. [2022] 99.91% 99.96% 99.57% 99.96%
Cunha et al. [2022b] 99.99% 99.99% 99.99% 99.99%

Considering the presented works, it is possible to infer that the proposed method-

ology is suitable and capable of outperforming many state-of-art results for the attack

classification task. In fact, the proposed model achieves the best set of results, consider-

ing all of the studied metrics, for both datasets experiments. The evaluation of training

and testing phases is also a recent concern for IoT environments, specially when consid-

ering the application of complex DL models to edge devices. This evaluation is not done

on some of the studied papers, which is a relevant gap acknowledged by Aversano et al.

[2021] survey.



90

Chapter 7

Conclusion

The presented work explores an important and recent field among computing tech-

nologies, which is the Internet of Things. IoT systems are proven to be suitable and reli-

able solutions to many recent necessities in the globalized society, such as smart healthcare,

by providing ways to early detect diseases, monitor patients and ensure better quality of

life to elderly and people with disabilities [Bolhasani et al., 2021]; smart cities, enabling

smart homes and transportation, efficient distribution of energy and object and people

detection [Atitallah et al., 2020]; smart agriculture and environment, helping on predict-

ing weather tendencies, identifying deforestation and detecting suitable land relief, to cite

some examples [Aversano et al., 2021; Wang et al., 2020].

As a part of the current society, it is important to study, research and analyse

efforts made on the IoT field to predict tendencies and explore and improve solutions to

the many possible challenges. Across its chapters, this work focuses on providing the main

characteristics and tendencies of IoT environments, considering the possible architectures

to build systems that provide Quality of Service and the most relevant challenges and

constraints pointed out by the researched papers. In this context, the edge computing

paradigm arises as a solution to enable secure, low-power, energy-efficient and real-time

environments, requirements that cloud-only systems are not able to achieve anymore.

This way, the work also provides a deep analysis about those requirements and possible

strategies to tackle them when building IoT systems, with a special emphasis to security

for IoT environments and its challenges.

Another trend in the IoT context is to use artificial intelligence algorithms to

elevate the capabilities of the systems and provide reliable and automated solutions. Not

only those types of algorithms help on decision making tasks, since they are able to

learn trends and feature relationships from environment data, but also are proven to be

helpful to overcome constraints and achieve requirements belonging to the IoT world. The

researched topics show that machine and deep learning solutions are being successfully

used to organize data governance, provide reliable communication within the environment,

optimize gateway usage, enable real-time operations, such as object detection, guarantee

security and privacy of the devices and so on. In this context, the work presents recent

efforts that combine ML and IoT technologies with an analysis to help on defining the
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architectures to be used when building those types of systems.

The experiment chapters of the dissertation show a case study precisely in the

security field, specifically in botnet attack detection and classification for IoT environ-

ments. Two deep learning strategies are proposed to (i) early identify incoming attack

information and (ii) classify the possible types of incoming attacks using datasets that

comprise real network information of IoT devices when functioning with normal data and

when receiving abnormal information. The architecture proposal is to first identify the

threats and then classify its types to gain knowledge about the taxonomy of botnet at-

tacks to help on defining new and better protection methods. The final evaluations show

that the generated models are able to achieve and overcome known state-of-art results,

with a special analysis of the time needed to detect and classify attacks coming from the

network, since low intervals enable edge computing implementation.

Analyzing purely the testing step, which require less computational power and

represents a real world situation, the results imply that the developed models could be

applied within edge devices for a real-time attack detection and classification. However,

improvements to the algorithms can be done, as well as adding more steps to create a

full automated system capable of dealing with attack information. The training step

is a particularly concerning phase, because it requires a longer time and considerable

computational power to execute. Also, since IoT environments are commonly dynamic,

it should be considered how to train the models when new devices are inserted on the

network or excluded from it. The continuation ideas for this work are explored in the

following section.

The research and the results obtained during this dissertation culminated in two

published papers, referred in Cunha et al. [2022a] and Cunha et al. [2022b].

7.1 Future Work

Considering the DL architectures proposed in this work and the generated models

to deal with botnet attacks in IoT devices, some ideas could be used to improve their

results and generate more knowledge to the user. Despite the low time intervals achieved

in the testing step, the training phase of DL solutions is costly considering the required

computational power and the time needed to fit the model. This scenario is bad for

edge computing solutions, which require fast executions to enable real-time systems and

usually have limited computational resources.

Thinking about the issues related to the training of the model, a technique that

has been implemented with great results is to offload the DL model from the edge node
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to the cloud to perform the training step in a resourceful environment and load it back to

the device once it is fitted [Gao et al., 2021; Merenda et al., 2020; Gopalakrishnan et al.,

2020; Tian et al., 2020]. This loop could be done from time to time to keep the model

up to date and converge to the best metric results. Finally, the last loaded model would

be able to perform detection and classification tasks in the edge devices while keeping

low-latency responses.

Other approaches that are being used in the deep learning context are to develop

tiny DL models that consumes less power and perform better, pre-train models to enable

algorithms with a lower cost and apply distributed learning techniques to parallelize the

learning processes [Lin et al., 2020; Tuli et al., 2020; Sun et al., 2019]. Also, to keep

the privacy of the data while training shared models and enable an edge device-learning

approach, a recent solution is to apply the Federated Learning, as seen in Gao et al.

[2021], which is also an interesting option. As a continuation suggestion, the proposed

techniques could be implemented in a real world installation with an edge architecture to

validate the theoretical hypothesis raised by this work and evaluate the new propositions.

Another knowledge that is interesting to add in the attack detection context is to

identify whether an attack type is known or not. The detection phase only discovers if

the data is benign or malicious and the classification identifies the types of malicious data

that are used to harm the devices. However, if an attack type is out of the known set,

the model would not be able to correctly classify it. With this motivation, the OpenSet

paradigm emerges as a solution to identify new types of incoming attacks and expand the

knowledge about botnet possible threats [Bendale and Boult, 2016]. This way, another

step that is proposed to be added in a further work is to develop a DL architecture capable

of identifying open world data and assign unknown classes.

From the initial proposals of this dissertation and the accomplished work among

research and development steps, it can be stated that the pursued contributions were

achieved and the work provides strong results. Not only an extensive research with a

deep analysis about IoT environments requirements is summarized to help on developing

applications with ML strategies considering the novel edge computing paradigm, but also

the implemented architectures reach great results among the state-of-art and it is possible

to expand the efforts to develop a solid architecture that could be applied in many IoT

contexts to provide real-time, reliable and secure solutions.
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Sven Nõmm and Hayretdin Bahşi. Unsupervised anomaly based botnet detection in

iot networks. In 2018 17th IEEE International Conference on Machine Learning and

Applications (ICMLA), pages 1048–1053, Orlando, FL, 2018. IEEE. doi: 10.1109/

ICMLA.2018.00171.

Joao Batista Borges, Joao P. S. Medeiros, Luiz P. A. Barbosa, Heitor S Ramos, and

Antonio A Loureiro. Iot botnet detection based on anomalies of multiscale time series

dynamics. IEEE Transactions on Knowledge and Data Engineering, 2022.

Segun Popoola, Bamidele Adebisi, Guan Gui, Mohammad Hammoudeh, Haris Gacanin,

and Darren Dancey. Optimizing deep learning model hyperparameters for botnet attack

detection in iot networks. IEEE Internet of Things Journal, 2022.

Chaw Su Htwe, Yee Mon Thant, and Mie Mie Su Thwin. Botnets attack detection using

machine learning approach for iot environment. Journal of Physics: Conference Se-

ries, 2020. URL https://iopscience.iop.org/article/10.1088/1742-6596/1646/

1/012101.

Thanh Cong Tran and Tran Khanh Dang. Machine learning for multi-classification of

botnet attacks. In 2022 16th International Conference on Ubiquitous Information

Management and Communication (IMCOM), Seoul, Korea, 2022. IEEE. doi: 10.

1109/IMCOM53663.2022.9721811. URL https://ieeexplore.ieee.org/document/

9721811.

Gonzalo De La Torre Parra, Paul Rad, Kim-Kwang Raymond Choo, and Nicole Beebe.

Detecting internet of things attacks using distributed deep learning. Journal of Network

and Computer Applications, 163, 2020. URL https://doi.org/10.1016/j.jnca.

2020.102662.

T. Gopalakrishnan, D. Ruby, Fadi Al-Turjman, Deepak Gupta, Irina V. Pustokhina,

Denis A. Pustokhin, and K. Shankar. Deep learning enabled data offloading with cyber

attack detection model in mobile edge computing systems. IEEE Access, 8, 2020. doi:

10.1109/ACCESS.2020.3030726.

https://iopscience.iop.org/article/10.1088/1742-6596/1646/1/012101
https://iopscience.iop.org/article/10.1088/1742-6596/1646/1/012101
https://ieeexplore.ieee.org/document/9721811
https://ieeexplore.ieee.org/document/9721811
https://doi.org/10.1016/j.jnca.2020.102662
https://doi.org/10.1016/j.jnca.2020.102662


Bibliography 98

Zhihong Tian, Chaochao Luo, Jing Qiu, Xiaojiang Du, and Mohsen Guizani. A distributed

deep learning system for web attack detection on edge devices. IEEE Transactions on

Industrial Informatics, 16:1963–1971, 2020. doi: 10.1109/TII.2019.2938778.

Souradip Roy, Juan Li, and Yan Bai. A two-layer fog-cloud intrusion detection model

for iot networks. Internet of Things, 19, 2022. doi: https://doi.org/10.1016/j.iot.2022.

100557.

Ana Paula Dalla Corte, Deivison Venicio Souza, Franciel Eduardo Rex, Carlos Roberto

Sanquetta, Midhun Mohan, Carlos Alberto Silva, Angelica Maria Almeyda Zam-

brano, Gabriel Prata, Danilo Roberti Alves de Almeida, Jonathan William Traut-

enmüller, Carine Klauberg, Anibal de Moraes, Mateus N. Sanquetta, Ben Wilkinson,

and Eben North Broadbent. Forest inventory with high-density uav-lidar: Machine

learning approaches for predicting individual tree attributes. Computers and Electron-

ics in Agriculture - Elsevier, 179, 2020.

Antonio Lazaro, Ramon Villarino, and David Girbau. A survey of nfc sensors based on

energy harvesting for iot applications. Sensors (Switzerland), 18(11), 2018.

Alberto Ceselli, Marco Premoli, and Stefano Secci. Mobile edge cloud network design

optimization. IEEE/ACM Transactions on Networking, 25(3):1818–1831, 2017.

M. Anandhalli and V. P. Baligar. A novel approach in real-time vehicle detection and

tracking using raspberry pi. Alex. Eng. J., 57:1597–1607, 2018.

Junjue Wang, Ziqiang Feng, Zhuo Chen, Shilpa George, Mihir Bala, Padmanabhan Pillai,

Shao-Wen Yang, and Mahadev Satyanarayanan. Bandwidth-efficient live video analyt-

ics for drones via edge computing. Proceedings - 2018 3rd ACM/IEEE Symposium on

Edge Computing, pages 159–173, 2018b.

R. L. Devi and V. Kalaivani. Machine learning and iot-based cardiac arrhythmia diagnosis

using statistical and dynamic features of ecg. J Supercomput, 76:6533––6544, 2020.

Otatile Khutsoane, Bassey Isong, and Adnan M Abu-Mahfouz. Iot devices and appli-

cations based on lora/lorawan. IECON 2017 - 43rd Annual Conference of the IEEE

Industrial Electronics Society, pages 6107–6112, 2017.

Inigo Alonso, Luis Riazuelo, Luis Montesano, and Ana C. Murillo. 3d-mininet: Learning a

2d representation from point clouds for fast and efficient 3d lidar semantic segmentation.

IEEE Robotics and Automation Letters, 5, 2020.

Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, Brandon Amos, Guanhang Wu, Kiry-

ong Ha, Khalid Elgazzar, Padmanabhan Pillai, Roberta Klatzky, Daniel Siewiorek,

and Mahadev Satyanarayanan. An empirical study of latency in an emerging class of



Bibliography 99

edge computing applications for wearable cognitive assistance. SEC ’17: Proceedings

of the Second ACM/IEEE Symposium on Edge Computing, pages 1–14, 2017. URL

https://doi.org/10.1145/3132211.3134458.

Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han. Mcunet:

Tiny deep learning on iot devices. ArXiv:2007.10319, 2020.

Rafal Kozika, Michal Chorasa, Massimo Ficcob, and Francesco Palmieric. A scalable

distributed machine learning approach for attack detection in edge computing environ-

ments. Journal of Parallel and Distributed Computing, 119:18–26, 2018.

Muaadh A. Alsoufi, Shukor Razak, Maheyzah Md Siraj, Ibtehal Nafea, Fuad A. Ghaleb,

Faisal Saeed, and Maged Nasser. Anomaly-based intrusion detection systems in iot

using deep learning: A systematic literature review. Applied Sciences (Switzerland),

11, 2021.

Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani. A detailed analysis

of the kdd cup 99 data set. Submitted to Second IEEE Symposium on Computational

Intelligence for Security and Defense Applications (CISDA), 2009.

Sebastian Garcia, Martin Grill, Jan Stiborek, and Alejandro Zunino. An empirical com-

parison of botnet detection methods. Computers and Security Journal, 45:100–123,

2014. URL http://dx.doi.org/10.1016/j.cose.2014.05.011.

Matin Farhoumandi, Quan Zhou, and Mohammad Shahidehpour. A review of machine

learning applications in iot-integrated modern power systems. The Electricity Journal,

34, 2020.

Hamidreza Bolhasani, Maryam Mohseni, and Amir Masoud Rahmani. Deep learning ap-

plications for iot in health care: A systematic review. Informatics in Medicine Unlocked,

23, 2021. URL https://doi.org/10.1016/j.imu.2021.100550.

Kanchan Pradhan and Priyanka Chawla. Medical internet of things using machine learn-

ing algorithms for lungcancer detection. Journal of Management Analytics, 7(4):591—

-623, 2020. URL https://doi.org/10.1080/23270012.2020.1811789.

Safa Ben Atitallah, Maha Driss, Wadii Boulila, and Henda Ben Ghézala. Leveraging deep
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Appendix A

Botnet Attack Detection Results

Figure A.1: Confusion matrix of the attack detection on Ecobee Thermostat model.

(a) Ecobee Thermostat with 115 features (b) Ecobee Thermostat with 23 features

Source: Elaborated by the author.
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Figure A.2: Confusion matrix of the attack detection on Ennio Doorbell model.

(a) Ennio Doorbell with 115 features (b) Ennio Doorbell with 23 features

Source: Elaborated by the author.

Figure A.3: Confusion matrix of the attack detection on Phillips Baby Monitor model.

(a) Phillips Baby Monitor with 115 features (b) Phillips Baby Monitor with 23 features

Source: Elaborated by the author.
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Figure A.4: Confusion matrix of the attack detection on P737 Security Camera model.

(a) Provision 737 Camera with 115 features (b) Provision 737 Camera with 23 features

Source: Elaborated by the author.

Figure A.5: Confusion matrix of the attack detection on P828 Security Camera model.

(a) Provision 838 Camera with 115 features (b) Provision 838 Camera with 23 features

Source: Elaborated by the author.
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Figure A.6: Confusion matrix of the attack detection on S1002 Security Camera model.

(a) SimpleHome 1002 Camera with 115 features (b) SimpleHome 1002 Camera with 23 features

Source: Elaborated by the author.

Figure A.7: Confusion matrix of the attack detection on S1003 Security Camera model.

(a) SimpleHome 1003 Camera with 115 features (b) SimpleHome 1003 Camera with 23 features

Source: Elaborated by the author.
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Figure A.8: Confusion matrix of the attack detection on Samsung Webcam model.

(a) Samsung Webcam with 115 features (b) Samsung Webcam with 23 features

Source: Elaborated by the author.

Figure A.9: Accuracy results of Ecobee Thermostat models on the attack detection task
with dynamic feature space.

Source: Elaborated by the author.
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Figure A.10: Accuracy results of Ennio Doorbell models on the attack detection task with
dynamic feature space.

Source: Elaborated by the author.

Figure A.11: Accuracy results of Phillips Baby Monitor models on the attack detection
task with dynamic feature space.

Source: Elaborated by the author.
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Figure A.12: Accuracy results of Provision 737 Security Camera models on the attack
detection task with dynamic feature space.

Source: Elaborated by the author.

Figure A.13: Accuracy results of Provision 838 Security Camera models on the attack
detection task with dynamic feature space.

Source: Elaborated by the author.
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Figure A.14: Accuracy results of SimpleHome 1002 Security Camera models on the attack
detection task with dynamic feature space.

Source: Elaborated by the author.

Figure A.15: Accuracy results of SimpleHome 1003 Security Camera models on the attack
detection task with dynamic feature space.

Source: Elaborated by the author.
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Figure A.16: Accuracy results of Samsung Webcam models on the attack detection task
with dynamic feature space.

Source: Elaborated by the author.
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Appendix B

Botnet Attack Classification Results

Figure B.1: Confusion matrix of the attack classification on Ennio Doorbell with CNN,
KNN and NB models.

(a) CNN model

(b) KNN model

(c) NB model

Source: Elaborated by the author.
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Figure B.2: Confusion matrix of the attack classification on Ecobee Thermostat with
CNN, KNN and NB models.

(a) CNN model

(b) KNN model

(c) NB model

Source: Elaborated by the author.
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Figure B.3: Confusion matrix of the attack classification on Phillips Baby Monitor with
CNN, KNN and NB models.

(a) CNN model

(b) KNN model

(c) NB model

Source: Elaborated by the author.
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Figure B.4: Confusion matrix of the attack classification on P737 Security Camera with
CNN, KNN and NB models.

(a) CNN model

(b) KNN model

(c) NB model

Source: Elaborated by the author.
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Figure B.5: Confusion matrix of the attack classification on P838 Security Camera with
CNN, KNN and NB models.

(a) CNN model

(b) KNN model

(c) NB model

Source: Elaborated by the author.
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Figure B.6: Confusion matrix of the attack classification on S1002 Security Camera with
CNN, KNN and NB models.

(a) CNN model

(b) KNN model

(c) NB model

Source: Elaborated by the author.



117

Figure B.7: Confusion matrix of the attack classification on S1003 Security Camera with
CNN, KNN and NB models.

(a) CNN model

(b) KNN model

(c) NB model

Source: Elaborated by the author.
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Figure B.8: Confusion matrix of the attack classification on Samsung Webcam with CNN,
KNN and NB models.

(a) CNN model

(b) KNN model

(c) NB model

Source: Elaborated by the author.
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Figure B.9: Accuracy results for Ecobee Thermostat on the attack classification task with
CNN, KNN and NB models.

Source: Elaborated by the author.

Figure B.10: Accuracy results for Ennio Doorbell on the attack classification task with
CNN, KNN and NB models.

Source: Elaborated by the author.
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Figure B.11: Accuracy results for Phillips Baby Monitor on the attack classification task
with CNN, KNN and NB models.

Source: Elaborated by the author.

Figure B.12: Accuracy results for Provision 737 Security Camera on the attack classifica-
tion task with CNN, KNN and NB models.

Source: Elaborated by the author.
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Figure B.13: Accuracy results for Provision 838 Security Camera on the attack classifica-
tion task with CNN, KNN and NB models.

Source: Elaborated by the author.

Figure B.14: Accuracy results for SimpleHome 1002 Security Camera on the attack clas-
sification task with CNN, KNN and NB models.

Source: Elaborated by the author.
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Figure B.15: Accuracy results for SimpleHome 1003 Security Camera on the attack clas-
sification task with CNN, KNN and NB models.

Source: Elaborated by the author.

Figure B.16: Accuracy results for Samsung Webcam on the attack classification task with
CNN, KNN and NB models.

Source: Elaborated by the author.
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