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Resumo

Extrair recursos geológicos, como fluidos de hidrocarbonetos, requer investimentos signi-

ficativos e processos de tomada de decisão precisos. Para otimizar a eficiência do pro-

cesso de extração, pesquisadores e especialistas da indústria têm explorado metodologias

inovadoras, incluindo a previsão de locais de perfuração ótimos. A porosidade, um atrib-

uto fundamental das rochas de um reservatório, desempenha um papel crucial na deter-

minação da sua capacidade de armazenamento de fluidos. Técnicas geoestat́ısticas, como

a ”krigagem”, têm sido amplamente utilizadas para estimar a porosidade, capturando a

dependência espacial em dados de amostras pontuais. No entanto, a dependência das

coordenadas geográficas para determinar distâncias espaciais pode apresentar desafios

em cenários de pequenas amostras e amplamente separadas. Neste artigo, desenvolve-

mos um modelo de mistura que combina a covariância gerada pelo espaço geográfico e

a covariância gerada em um espaço de covariáveis (features) apropriado para aprimorar

a precisão da estimativa. Desenvolvido no contexto Bayesiano, nossa abordagem uti-

liza métodos de Monte Carlo com Cadeia de Markov (MCMC) e aproveita a estratégia

do Processo Gaussiano dos vizinhos mais próximos (NNGP) para atingir escalabilidade.

Apresentamos uma comparação em um estudo de simulação, considerando várias con-

figurações para geração dos dados, a fim de avaliar o desempenho do modelo de mistura

em comparação aos modelos marginais. Além disso, a aplicação dos nossos modelos em

uma simulação de reservatório tridimensional demonstra sua aplicabilidade prática e es-

calabilidade. Esta pesquisa apresenta uma abordagem inovadora para a melhoria da

estimativa de porosidade, integrando informações espaciais e de covariáveis, oferecendo o

potencial para otimizar atividades de exploração e extração de reservatórios.

Palavras-chave: Estat́ıstica espacial, cokriging, computação bayesiana, espaço das fea-

tures, estimação de porosidade



Abstract

Extracting geological resources like hydrocarbon fluids requires significant investments

and precise decision-making processes. To optimize the efficiency of the extraction pro-

cess, researchers and industry experts have explored innovative methodologies, including

the prediction of optimal drilling locations. Porosity, a key attribute of reservoir rocks,

plays a crucial role in determining fluid storage capacity. Geostatistical techniques, such

as kriging, have been widely used for estimating porosity by capturing spatial dependence

in sampled point-referenced data. However, the reliance on geographical coordinates for

determining spatial distances may present challenges in scenarios with small and widely

separated samples. In this paper, we develop a mixture model that combines the co-

variance generated by geographical space and the covariance generated in an appropriate

feature space to enhance estimation accuracy. Developed within the Bayesian framework,

our approach utilizes flexible Markov Chain Monte Carlo (MCMC) methods and leverages

the Nearest-Neighbor Gaussian Process (NNGP) strategy for scalability. We present a

controlled empirical comparison, considering various data generation configurations, to

assess the performance of the mixture model in comparison to the marginal models. Ap-

plying our models to a three-dimensional reservoir simulation demonstrates its practical

applicability and scalability. This research presents a novel approach for improved poros-

ity estimation by integrating spatial and covariate information, offering the potential for

optimizing reservoir exploration and extraction activities.

Keywords: Spatial statistics, cokriging, computation bayesian methods, feature space,

porosity estimation.



Resumo Estendido

A extração de recursos geológicos, especialmente fluidos de hidrocarboneto, é um em-

preendimento complexo e intensivo, exigindo investimentos substanciais com grandes

peŕıodos de retorno [4]. Essa busca por ganhos financeiros significativos tem despertado

grande interesse e investimento, motivando pesquisadores e especialistas da indústria a

explorar metodologias e estratégias inovadoras destinadas a otimizar a eficiência do pro-

cesso de extração. A recuperação desses fluidos envolve o procedimento de perfuração do

subsolo, exigindo execuções meticulosa devido à complexidade da construção envolvida e

aos significativos custos de produção incorridos [15]. Consequentemente, pesquisadores

têm se dedicado à tarefa de estimar locais ideais para perfuração de poços. Uma abor-

dagem para alcançar esse objetivo é prever as regiões com alta probabilidade de conter

reservatórios de petróleo e/ou gás natural. Um aspecto essencial que representa a ca-

pacidade e eficácia dos reservatórios reside em sua estrutura porosa. As caracteŕısticas

f́ısicas dos reservatórios desempenham um papel fundamental na moldagem das ativi-

dades de exploração e extração nos campos de petróleo e gás. A porosidade, entre essas

caracteŕısticas, assume destaque como um indicador da capacidade de armazenamento de

fluidos de uma rocha. Estimar a porosidade das rochas dentro de um reservatório envolve

a utilização de várias metodologias, e entre elas, a técnica geostat́ıstica conhecida como

”kriging” surge como um método proeminente [9, 25].

A técnica estat́ıstica conhecida como ordinary kriking, comumente referida apenas

como kriging, é amplamente utilizada para interpolação espacial de dados de referência

pontual, a fim de estimar os valores de uma variável em um campo espacial cont́ınuo [20,

23]. Ao contrário dos métodos de interpolação tradicionais, o kriging considera não apenas

a posição espacial entre os pontos observados adjacentes ao ponto a ser interpolado, mas

também a relação posicional entre pontos vizinhos próximos a cada valor amostrado. Ao

incorporar essa dependência espacial estruturada, o kriging facilita a estimativa e previsão

de valores em locais onde não há observações diretas dispońıveis [5]. Uma abordagem

comum é assumir que o processo alvo segue um Processo Gaussiano (GP) caracterizado

por uma média espećıfica e uma função de covariância válida. Frequentemente, essas

funções de covariância são modeladas como o produto de um parâmetro de variância e uma

função de correlação que depende da distância Euclidiana entre as coordenadas geográficas

dos pontos espaciais. No entanto, em muitos cenários, usar a métrica Euclidiana para

determinar distâncias espaciais pode ser impraticável [7]. Isso se torna particularmente

evidente em situações em que os pontos distribúıdos espacialmente estão amplamente



separados por distâncias geográficas substanciais. Nesses casos, a força da dependência

espacial diminui à medida que a distância entre os pontos aumenta, levando a uma perda

de correlação dentro do processo. Isso pode representar desafios para prever valores em

locais não amostrados. Além disso, a suposição de suavidade do processo, que é inerente

ao kriging ao modelar com base na estrutura espacial gerada pelas coordenadas geográficas

(ou seja, efeito de suavização), pode não condizer com a realidade [36].

Nosso trabalho introduz um modelo de mistura que combina contribuições tanto

da covariância gerada pelo espaço geográfico (ou seja, o modelo geográfico) quanto da co-

variância gerada pelas covariáveis dispońıveis (ou seja, o modelo de features). Essa abor-

dagem permite uma integração mais eficaz das contribuições de cada modelo, adaptando-

se à localização espećıfica estimada. Implementamos nosso método no pacote FUSE no

framework bayesiano utilizando o pacote nimble [8], dispońıvel para o software R [26].

Isso possibilita uma amostragem eficiente dos parâmetros espaciais, proporcionando maior

flexibilidade no processo de modelagem. Além disso, nossa metodologia proposta incor-

pora a escalabilidade, aproveitando a estratégia do processo Gaussiano dos vizinhos mais

próximos (NNGP) [6]. Essa abordagem se beneficia da dependência espacial capturada

por locais próximos à localização-alvo. Utilizando a esparsidade da matriz de covariância

derivada dessas observações mais próximas, os modelos NNGP possibilitam inferências

eficientes e escaláveis para grandes conjuntos de dados.

Resultados do estudo de simulação destacam a eficácia de nossa proposta em es-

timar com precisão os parâmetros espaciais e prever o processo-alvo. Especificamente,

comparamos três modelos: geográfico, de feature e de mistura, em diferentes cenários.

O modelo geográfico teve um bom desempenho quando a correlação espacial era estri-

tamente dependente do espaço, enquanto o modelo de features se destacou ao utilizar

as informações inerentes das covariáveis. No entanto, o modelo de mistura surgiu como

uma escolha significativa, incorporando efetivamente contribuições tanto dos modelos ge-

ográficos quanto dos modelos de features, dependendo da localização estimada. O modelo

de mistura obteve estimativas superiores da verdadeira configuração espacial, tornando-

se uma ferramenta valiosa para capturar estruturas espaciais complexas onde os modelos

tradicionais podem falhar.

Adicionalmente, aplicamos a abordagem proposta a um conjunto de dados simula-

dos de um reservatório de petróleo, demonstrando sua aplicabilidade prática. O modelo

de mistura integrou com sucesso caracteŕısticas geológicas representadas por covariáveis,

como a litologia do reservatório, na estimativa da porosidade, proporcionando previsões

mais precisas em comparação com os outros modelos. Essa capacidade de incorporar car-

acteŕısticas geológicas intŕınsecas tornou o modelo de mistura particularmente adequado

para modelar distribuições de porosidade neste contexto espećıfico de reservatório.

De forma geral, modelo de mistura NNGP se destacou como uma estrutura ro-

busta e versátil para modelagem geoestat́ıstica, capaz de lidar com grandes conjuntos de



dados ao mesmo tempo em que mantém previsões precisas. Sua capacidade de combi-

nar informações tanto do espaço geográfico quanto do espaço de covariáveis abre novas

oportunidades para diversas aplicações geoespaciais.
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Chapter 1

Introduction

The extraction of geological resources, particularly hydrocarbon fluids, is a complex and

capital-intensive endeavor, necessitating substantial investments and extended pay-back

periods [4]. This pursuit of significant financial gains has spurred considerable interest and

investment in the field, motivating researchers and industry experts to explore innovative

methodologies and strategies aimed at optimizing the efficiency of the extraction process.

The retrieval of these fluids involves the intricate procedure of drilling into the subsurface,

requiring meticulous execution due to the complexity of construction involved and the

significant production costs incurred [15]. Consequently, researchers have undertaken the

task of estimating optimal locations for well drilling. One approach to accomplish this

objective is predicting regions with a high likelihood of containing oil and/or natural gas

reservoirs. An essential aspect that signifies the capacity and effectiveness of reservoirs

lies in their pore structure. The physical attributes of reservoirs play a pivotal role

in shaping exploration and extraction activities within the oil and gas fields. Porosity,

among these attributes, assumes prominence as an indicator of a rock’s fluid storage

capability. Estimating the porosity of rocks within a reservoir involves the utilization of

various methodologies, and amidst them, the geostatistical technique known as ”kriging”

emerges as a prominent method [9, 25].

The statistical technique known as ordinary kriging, commonly referred to as krig-

ing, is widely used for spatial interpolation of sampled point-referenced data to estimate

the values of a variable across a continuous spatial field [20, 23]. In contrast to traditional

interpolation methods, kriging considers not only the spatial position between adjacent

observation data points and the point being interpolated but also the positional relation-

ship among neighboring points near each sampled value. By incorporating the structured

spatial dependence, kriging facilitates the estimation and prediction of values at locations

where no direct observations are available [5]. This spatial dependence structure arises

from the covariance matrix, which is obtained by considering the distances between pairs

of observed points within the spatial domain. This spatial relationship is established by

utilizing geographic coordinates and the subsequent computation of inter-coordinate dis-

tances. The covariance matrix assumes a crucial role in quantifying spatial dependence,

serving as a fundamental component in diverse spatial statistical analyses [1]. When
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multiple variables exhibit spatial interdependence, the kriging method can be naturally

extended to a technique called cokriging. This extension shares similar properties with

kriging and enables the inclusion of supplementary auxiliary information in the interpo-

lation process. Through the exploitation of the interrelationship between the primary

variable of interest and one or more auxiliary variables, cokriging enhances prediction ac-

curacy and offers valuable insights into spatial patterns [19, 14]. Illustrative applications

of these methodologies include the prediction of soil water storage [31], the estimation of

population density in urban areas [35] and the interpolation of volume-weighted velocity

statistics in cosmic velocity fields [37].

An usual approach is to assume that the target process conforms to a Gaussian

Process (GP) characterized by a specific mean and a valid covariance function. Often,

these covariance functions are modeled as the product of a variance parameter and a corre-

lation function that relies on the Euclidean distance between the geographical coordinates

of the spatial points. Nonetheless, in many scenarios, employing the Euclidean metric to

determine spatial distances may be impractical [7]. This becomes particularly evident in

situations where the spatially distributed points are widely separated by substantial geo-

graphical distances. In such cases, the strength of spatial dependence diminishes as the

distance between points increases, leading to a loss of correlation within the process. This

can pose challenges for predicting values in unsampled locations. Furthermore, the as-

sumption of process smoothness, which is inherent in kriging when modeling based on the

spatial structure generated by geographical coordinates (i.e. smoothing effect), may not

align with reality [36]. Considering these factors, the exploration of alternative domains,

not strictly limited to spatial characteristics, for determining similarity between points in

space can be of significant interest. For instance, when covariates are highly indicative of

the phenomenon under study, they can be employed to construct the spatial dependence

structure instead of relying exclusively on geographical coordinates. The machine learning

community has long explored the use of GP with features in the covariance function with

mainly two purposes: 1) improve prediction; and 2) to allow for a non-linear relationship

with the response [34, 22, 27]. The methodology was successfully applied to face recogni-

tion [17], drug discovery [13], and chemical synthesis [29], among others. In recent times,

there has been relatively limited focus on constructing dependence structures within the

domain generated by covariates in the spatial statistics literature [e.g., 21].

This paper introduces a mixture model that combines contributions from both the

covariance generated by geographical space (i.e. geographical model) and the covariance

generated by available covariates (i.e. feature model). This approach allows for more effec-

tive integration of the contributions from each model, adapting to the specific estimated

location. We implemented our method in the FUSE package on the Bayesian framework

using the nimble package [8] available for the R software [26]. This enables the efficient

sampling of spatially correlated parameters, providing enhanced flexibility in the modeling
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process. Moreover, our proposed methodology incorporates scalability by leveraging the

Nearest-Neighbor Gaussian Process (NNGP) strategy [6]. This approach takes advantage

of the spatial dependence captured by neighboring locations in close proximity to the tar-

get location. By utilizing the sparsity of the covariance matrix derived from these nearest

observations, the NNGP models enable efficient and scalable inference for large datasets.

The viability of employing covariates to determine the spatial dependence structure is

showcased through a simulated study. This study highlights the ability of the mixture

model to accurately recover the marginal models and its behavior in an intermediate

configuration.

To illustrate the practical applicability and scalability of our approach, we utilized

data from a three-dimensional reservoir simulation created by a geomechanical model. In

our analysis, we will illustrate that for this dataset, the feature model exhibits greater

sensitivity to the distribution of porosity. However, the mixture model effectively captures

this relationship and yields competitive results for porosity prediction in new locations.

Furthermore, we will demonstrate that despite the available number of points, the models

demonstrate scalability and maintain robustness when employing the NNGPmethodology.

The rest of the paper is organized as follows. Chapter 2 presents a comprehensive

overview of the dataset used in this study, including details about the simulation of the oil

reservoir and the available covariates. In Chapter 3, we revisit essential concepts from the

literature that are essential for constructing our proposed model. Chapter 4 introduces

and justifies the structure of the feature model in contrast to the geographical model, as

well as the formulation of the mixture model that combines the two models. Chapter 5

summarizes the results of a simulation study where we analyze the performance of the

three models across surfaces created by different scenarios. In Chapter ??, we present the

outcomes of fitting the models using the data from the simulated reservoir and compare

their prediction performances in two specified regions of interest. Chapter ?? concludes

the article.
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Chapter 2

The Data

The dataset utilized in this study originates from a three-dimensional geomechanical

model that simulates an oil reservoir. Specifically, the simulated data represents the

Marimba oil field, which is a turbidite sandstone reservoir located in the post-salt area

of Campos Basin, approximately 80 km from Macaé in the state of Rio de Janeiro, in the

southern offshore region of Brazil [16]. In Figure 2.1(left), the geographical location of

the Marimba field is indicated. The construction of this model involves the utilization of

diverse data sources, which includes well drilling log data, measurements acquired from

seismic wave sources, and crucially, laboratory studies providing reservoir-rock character-

ization of the reservoir. The resulting dataset obtained from the simulation consists of

slightly over 70 million points distributed in a three dimension space (i.e. X,Y and Z),

incorporating measurements from 10 wells. The variable of interest investigated in this

study is the rock porosity at each of these points. Porosity refers to the proportion of

pore volume in a rock compared to its total volume. It represents the rock’s capacity to

store fluids, and in the context of oil reservoirs, it indicates the potential for oil storage

within the rock’s pores. Consequently, higher porosity values signify a greater capacity

for fluid storage [2].
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Chapter 3

Preliminaries

In this chapter we revisit concepts of the literature necessary to construct and motivate

our proposal.

3.1 Spatial Gaussian Process

A spatial Gaussian process (SGP) refers to a stochastic process frequently employed

to model data exhibiting spatial, temporal, or spatio-temporal dependence [28]. It is fully

specified by its mean function µ(·) and a valid cross-covariance function Cθ(·, ·). For a

multivariate stochastic process {Y (s) : s ∈ D}, defined over a domain D ⊂ R
r, the

process is considered a spatial Gaussian process if, for any distinct choices of locations

s1, . . . , sn ∈ D, the random vector Y = [Y (s1), . . . , Y (sn)]
⊤ follows a multivariate normal

distribution with a mean E[Y] = µ = [µ(s1), . . . , µ(sn)]
⊤ and covariance matrix Σθ =

Cθ (y(si), y(sj)) [3]. The density function f(Y) is defined by:

f(Y) = (2π)−n/2|Σθ|
−1exp

{

−
1

2
(Y − µ)⊤Σ−1

θ (Y − µ)

}

. (3.1)

The selection of the covariance function is critical in modeling the process, as it

encapsulates assumptions about the underlying surface [24]. Isotropic covariance functions

are frequently selected for Cθ, wherein the covariance between two spatial points, si and

sj, depends solely on their Euclidean distance. In recent years, spatial statistics research

has placed significant emphasis on exploring covariance functions belonging to the Matérn

class. The Matérn class of covariance functions is defined as follows [18]:

Cθ(dij) = σ2 1

2ν−1Γ(ν)

(

dij
ϕ

)ν

Kν

(

dij
ϕ

)

, (3.2)

where dij = ∥si− sj∥ is the Euclidean distance between locations si and sj, ϕ controls the

decay in spatial correlation (also called the range parameter) , σ2 denotes the variance

of the spatial process and Kν(·) is the modified Bessel function of the second kind with
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ν controlling the process smoothness. The Matérn class of covariance functions is known

for its versatility. When ν → ∞, the covariance function converges to the Gaussian

specification, while setting ν = 0.5 yields the exponential model. This flexibility allows

for the selection of an appropriate covariance function based on the desired behavior and

characteristics of the spatial process being modeled.

3.2 Spatial Regression

Let {Y (s) : s ∈ D} be a realization of a stochastic process defined over the domain

D ∈ R
r, where r ⩾ 1. A common approach to modeling the process Y is by utilizing a

spatial linear mixed effects model:

Y (s) = µ(s) + w(s) + ϵ(s). (3.3)

In this model, the residual component can be decomposed into two parts: a spatial

component (w(s)) and a non-spatial component (ϵ(s)). The non-spatial component, often

referred to as the nugget effect τ 2, is typically modeled as a white noise process [3]. This

effect can be attributed to various factors, such as measurement error or microscopic-

scale variability. As discussed in 3.1, the spatial component w(s) can be modeled as

a stationary spatial Gaussian process with zero mean and a covariance function Cθ, i.e.

w(s) ∼ SGP (0, Cθ(si, sj)). The covariance between w(si) and w(sj) is defined by Cθ, with

the parameter vector θ determining the characteristics of this covariance function. In the

subsequent results presented in this study, we selected the covariance function specified

in Equation (3.2) with ν = 0.5, leading to the adoption of the exponential model

Cθ(dij) = σ2 exp

(

−dij
ϕ

)

.

As a result, the entry i, j of the covariance matrix Σ is given by σ2 exp(−dij/ϕ)+τ 21(i=j),

where 1 is an indicator function. This covariance is derived from the chosen model

with ψ = {θ, τ 2} and θ = {σ2, ϕ}. This modeling framework provides the flexibility to

incorporate both linear and nonlinear processes into the mean function µ(s). For example,

by identifying p spatially referenced covariates, denoted as X(s) = [x(s1), . . . , x(sp)]
⊤, we

can express the relationship between the covariates and the mean of the process as a

linear equation, given by µ(s) = X⊤(s)β, where β represents the vector of regression

coefficients.

In the presence of the covariates X(s) and a new location x(s0) for which a pre-

diction is desired, the classical approach of spatial prediction (kriging) can be employed
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for spatial interpolation. In this context, the model described in Equation (3.3) adopts

the general form

Y (s) =X⊤(s)β + ϵ(s), where ϵ(s) ∼ N(0,Σ), (3.4)

and the resulting likelihood

Y|X,β,ψ ∼ N(X⊤(s)β,Σψ), Σψ = σ2R(ϕ) + τ 2I. (3.5)

Here, R(ϕ) is a valid correlation function over R
r subject to a dependency on pairwise

Euclidean distance dij between locations. Consequently, the prediction problem involves

finding a function h(y), where y represents the collected data, that minimizes the mean

squared prediction error,

E
[

(Y (s0)− h(y))2 | y
]

. (3.6)

From the Bayesian perspective, the function h(y) corresponds to the posterior mean of

Y (s0) [3]. Within this framework, we can incorporate prior distributions for β and ψ,

allowing the construction of a full posterior predictive distribution p (Y (s0) | y). Then,

with respect to this distribution, any desired point or interval estimate and any desired

probability statements can be computed.

3.3 Nearest Neighbor Gaussian Process

The growing availability of large georeferenced datasets presents a challenge in

terms of computational requirements. When the number of locations n becomes very large,

traditional Gaussian process modeling becomes impractical [11]. Evaluating the Gaussian

density in Equation (3.1) involves storing and manipulating the covariance matrix Σθ,

which becomes computationally burdensome when calculating its inverse and determinant.

Models belonging to the Nearest Neighbor Gaussian Process (NNGP) class offer scalable

inference capabilities as the number of spatial observations increases [6].

Consider a fixed finite set of locations in the spatial domain D, denoted as S =

{s1, . . . , sn}, and let w(s) ∼ SGP (0,Cθ) represent a zero-centered Gaussian process.

Thus,wS follows a multivariate normal distributionN(0,Cθ(S)), wherewS = [w(s1), . . . , w(sn)]
⊤.

By factoring the joint probability of the spatial Gaussian process realization, we can ex-

press it as a chain of conditional probabilities, subject to a specific order. For example,

p(wS) = p (w(s1))
n
∏

i=2

p (w(si) | w(s1 : si−1)) . (3.7)

Now, let’s consider any location s in the spatial domain D, and define K(si) as the

collection of the m nearest neighbors of si ∈ S. The NNGP is specified in a similar
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manner to Equation (3.7), and it can be expressed as follows

p(wS) ∼
n
∏

i=1

p
(

w(si) | wK(si)

)

,

with w(s) | wS
iid
∼ p

(

w(s) | wK(s)

)

for all s ∈ D. In practice, the set S is commonly

selected to include the locations presented in the available data. NNGP leverages the

concept of nearest neighbors to create smaller conditioning sets. By utilizing the near-

est neighbors, which correspond to points with higher spatial correlation, this approach

provides a reliable approximation of the full Gaussian process. In [6] it is demonstrated

that the construction described above results in a multivariate Gaussian distribution for

w = wS

w ∼ N(0, C̃θ), (3.8)

where C̃θ is the NNGP covariance function. This function is constructed based on the

original covariance function Cθ and ensures that C̃
−1

θ , i.e. the inverse of C̃θ, is sparse.

As a result, the likelihood in Equation (3.8) can be evaluated at a linear cost, enabling

the model to be scalable for handling massive datasets.

The size of the neighbor set m directly affects the storage and computation re-

quirements of a NNGP model. Simulation experiments, as detailed in [6], demonstrate

the possibility of running NNGP models for different choices of m, potentially in parallel.

The optimal value of m can be determined by minimizing model evaluation metrics such

as RMSPE (Root Mean Squared Prediction Error). However, the simulations indicate

that models with very small values of m (≈ 10 or 15), can yield inference results that

are practically indistinguishable from those obtained using full geostatistical models. As

specified in [32], one possible approach is to select K(si) as the set of m nearest neighbors

of si among s1, . . . , si−1 based on the Euclidean distance.
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Chapter 4

Methodology

4.1 The geographical model

In a traditional approach, the spatial correlation structure is determined exclu-

sively by the Euclidean distance between geographic coordinates. The spatial correlation

structure in a geographical model is specified by its correlation function R(ϕ), as defined

in equation (3.5), which can be extended to

R(ϕG) = Rij(ϕG; dGij), (4.1)

where ϕG represents the correlation decay in geographical space and dGij is the Euclidean

distance between two geographic coordinates of si and sj, with both si, sj ∈ S. Here, as

previously mentioned, the correlation function R(ϕ) adopts the exponential correlation

exp(−dGij
/ϕG). One alternative is to consider the use of other distance metrics to specify

spatial correlation. In many scenarios, relying solely on Euclidean distance may not

capture the complex relationships present in the environment. Nonetheless, caution should

be exercised when incorporating non-Euclidean distance metrics into models that were

developed under the Euclidean paradigm, such as those used in kriging. Indiscriminate

use of non-Euclidean distances does not guarantee that the resulting covariance matrix

will be positive definite, which can lead to an invalid model [33].

4.2 The feature model

We suggest a distinct route, instead of changing the distance metric, we propose to

incorporate useful covariates that assist a better representation of the dependence among

observations. Let Z(s) = [z(s1), . . . , z(sk)] represent a set of features that represent the

spatial characteristics of interest. Similarly to Equation (4.1), we can define the correlation
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structure in the space generated by the covariates in Z(s) by

R(ϕF ) = Rij(ϕF ; dF ij), (4.2)

where the parameter ϕF , the decay in spatial correlation, is regulated by the distances

computed between covariates, i.e. the feature space. Similarly to the previous description,

the distance dF ij is defined as the Euclidean distance between two distinct covariates z(si)

and z(sj) to guarantee a valid correlation structure. As previously discussed, the use of

other distance metrics can be explored but with care.

It is worth mentioning that in this specification, we have the flexibility to choose

any set of relevant feature to define the space. For instance, we can select the same

variables used in the mean function µ(s) in Equation (3.3) to compose the set Z(s), a

subset of X, or a new set of features. Therefore, we have the option to choose only the

covariates that are deemed to possess intrinsic information about the dependence to the

response variable analyzed. The objective of this approach is to enhance the interpolation

of the spatial surface, particularly for distances where the traditional model may fail

to capture any spatial correlation. By altering solely the spatial correlation structure,

the construction of spatial models under the feature space configuration adheres to the

same principles as the traditional model. The main distinction lies in the selection and

utilization of the correlation function based on the covariates, while the other steps in

the model construction, such as specifying the mean function, estimating parameters,

and making predictions, remain unaffected. This facilitates a seamless integration of

the modified spatial correlation structure into the geostatistical modeling framework.

Additionally, the specification of the m nearest neighbors, based on Euclidean distance,

employed in NNGP models, remains unaltered. However, it is important to note that

the nearest neighbors of a location in S may not necessarily be in its immediate spatial

proximity. This allows for determining similarity between two locations in space, even if

they are separated by a long distance.

In the upcoming section, we will introduce the concept of the “mixture model”,

which is derived from the two previously presented correlation structures. This model

provides the flexibility to combine the contributions of information generated by the geo-

graphic space and the available covariates. By incorporating both sources of information,

the mixture model aims to capture the spatial dependence structure in a comprehensive

manner, leveraging the strengths of both the geographical and feature models. This inte-

grated approach allows for a more accurate and robust representation of the underlying

phenomenon of interest.
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4.3 The mixture model

The mixture model is formulated as a weighted combination of the two “single”

models. In this model, the spatial interpolation is performed by incorporating contribu-

tions from both the covariance of the geographical model and the covariance of the feature

model. Formally, the covariance matrix defined in Equation (3.5) can be expressed as:

ΣM = σ2 (λ(s)R(ϕG) + (1− λ(s))R(ϕF )) + τ 2I, (4.3)

and we define the transformation

logit(λ(s)) = B(s)⊤γ. (4.4)

In this formulation, we allowed for an additional set of covariates B(s) to determine

what are the important factors for the weight function. By doing so, we can allow the

contribution of each model to vary spatially. It is worth noticing that since Equation (4.3)

is a convex interpolation of valid correlation functions, the resulting one is also a valid

correlation function. It is evident that as λ(s) → 0, the feature model dominates (ΣM =

ΣF ), while as λ(s) → 1, the geographical model becomes predominant (ΣM = ΣG). This

flexibility allows the model to adapt and incorporate the appropriate contribution from

each model depending on the specific location being estimated. By adjusting the value of

λ(s), the mixture model can effectively capture the spatial dependence and provide more

accurate predictions in diverse regions of interest. The parameters γ are included as part

of the vector of spatial parameters θ, which is estimated within the framework of the

hierarchical model in (3.3). Similar to the other parameters in the Bayesian framework,

we specify a prior distribution for γ, and it is also updated at each step of the MCMC

realization.

For our mixture proposal we define the dynamic NNGP model. In this context,

we let the number of neighbors change according to the location si. Let KG(si) and

KF (si) represent the sets of m nearest neighbors of si from the geographical model and

the feature model, respectively. Henceforth, we write KG(si) as KG and KF (si) as KF ,

the dependence of a location si is implicit. We define KM = KG ∪KF . It is reasonable

to assume that {KG ∩ KF} ̸= ∅. Therefore, the resulting union may have a different

number of components. As a result, the new set KM will consist of m⋆ neighbors, where

m ≤ m⋆ ≤ 2m. As a consequence, we have a dynamic NNGP that enables the number of

neighbors in the mixture model to vary spatially. This means that each location si among

s1, . . . , si−1 may have a different number of neighbors, determined solely by the distinct

neighbors present in KG and KF . By allowing this spatial variation, we can capture

the specific local dependencies and incorporate the relevant information from both the
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geographical and feature models in a flexible manner having both NNGP versions as

special cases of the dynamic NNGP mixture.
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Chapter 5

Simulation Study

To showcase the difference between the feature model and traditional kriging, and further

validate the utility and performance of the mixture model, a comprehensive simulation

study was conducted. The study aimed to assess the model’s effectiveness in estimat-

ing the parameters of the geostatistical regression under various values of λ, as well as

evaluating its prediction capability. To achieve these objectives, we generated synthetic

datasets of three sizes, n = 500, 1000 and 2000. Each observation in these datasets

included p = 2 covariates within a unit square domain. To demonstrate the flexibility

of the feature model, we extended the set Z(s) to include an additional covariate that

is exclusively used in the feature space, along with the second generated covariate. All

the generated covariates were drawn from N(0, 1). Further, we define B(s) = 1, ∀s. We

performed 100 replicates of model fitting for the three different models using the same

datasets, without considering a nugget effect. For each iteration, we generated a response

variable based on the true parameters, which were established under three different con-

figurations under the transformation in (4.4). In the first scenario, we assume that the

geographical model is the true underlying model (γ0 → ∞ or λ = 1). This means that the

spatial dependence structure is solely determined by the geographical coordinates. In the

second scenario, we consider the feature model as the true model (γ0 → −∞ or λ = 0),

where the spatial dependence structure is constructed based on the available covariates.

Lastly, in the third scenario, we assume an intermediate configuration where both the

geographical model and the feature model contribute to the spatial dependence structure

(γ0 = 0 or λ = 0.5). We also included an additional set of observations (out-of-sample),

representing 10% of the total of each dataset, for evaluating the predictive power of the

models. These observations were generated together with the response variable for each

replication. Importantly, all three models used the same datasets for both model fitting

and prediction within each replicate. In order to evaluate the performance and scala-

bility of the models using the NNGP class, we also fitted their full Gaussian (FullGP)

counterparts for the first two scenarios.

For all models, vague priors were assigned for the parameters. The intercept and

regression coefficients were given a Normal(0, 100) prior distributions. To the process

standard deviation component, σ, was assigned a uniform prior distribution with sup-
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port on the interval U(0, 10), both the spatial decay parameters received uniform prior

supports U(0, 100), and the mixture weight parameter γ0 followed a Normal(0, 9) prior

distribution. Model parameter estimates and performance metrics were obtained from

a total of 10, 000 iterations, with the first 8, 000 iterations discarded as burn-in sam-

ples. All MCMC sampling process was conducted using the FUSE package available at

https://github.com/lucasamich/FUSE. Convergence were verified by visual inspection

of the chains traceplots.

Figure 5.1 displays examples of the surfaces generated by the likelihood described

in Equation (3.5) for each scenario configuration. From the left to the right, we have

geographic, feature, and mixture models, respectively. The contrast between them is

clear. The geographic model has a smooth spatial pattern, while the feature set presents

a noise pattern in the original spatial scale. Finally, as expected, the mixture surface is a

combination of the single processes.
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Figure 5.1: True spatial structures of the geographical, feature, and mixture models.

5.1 Parameter recovery capacity

We present the results of fitting the geostatistical model to demonstrate the ac-

curacy and scalability of the proposed approach. All NNGP models were fitted using

m = 10. The true parameter values utilized for data generation are presented in Ta-

ble 5.1. The average computational times, in minutes, for estimating spatial parameters

and predicting the out-of-sample dataset for both NNGP and FullGP methodologies are

displayed in Table 5.2. The experiments were conducted on a computer equipped with an

Intel Xeon processor featuring 16 cores operating at 3.40GHz, 126GB of available RAM,

and running Ubuntu Linux version 20.04.1. It is evident from the results that the reduced
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dimensionality and computational complexity of the NNGP models lead to significant

reductions in computing time compared to the conventional FullGP models.

Table 5.1: True parameters used to generate the data in each scenario for n = 1000.

Scenario 1 Scenario 2 Scenario 3

Parameter True True True
ϕG 0.12 - 0.12
ϕF - 0.48 0.46
σ2 1.00 1.00 1.00
β0 0.50 0.50 0.50
β1 -1.00 -1.00 -1.00
β2 1.50 1.50 1.50
λ 1.00 0.00 0.50

Table 5.2: Average duration (in minutes) for model fitting and prediction among different
models and scenarios for NNGP and FullGP for all datasets sizes.

Scenario 1 Scenario 2 Scenario 3

n Models Estimation Prediction Estimation Prediction Estimation Prediction
500 Geographical 0.91 0.22 1.01 0.20 0.97 0.23

NNGP Feature 1.18 0.31 1.07 0.29 1.15 0.33
Mixture 8.06 0.23 8.03 0.23 9.01 0.24

Geographical 43.17 10.03 23.52 7.49 31.5 9.42
FullGP Feature 28.13 7.43 29.73 9.5 28.9 8.78

Mixture 39.81 6.76 45.99 6.85 51.94 6.75
1000 Geographical 2.04 0.4 1.85 0.38 2.00 0.44

NNGP Feature 2.53 0.67 2.69 0.77 2.69 0.70
Mixture 18.19 0.51 18.03 0.51 20.16 0.51

Geographical 232.63 101.07 300.59 307.94 232.55 103.41
FullGP Feature 223.36 89.45 454.96 291.48 225.08 90.49

Mixture 336.73 62.46 632.51 253.68 380.87 62.49
2000 Geographical 4.17 0.74 3.78 0.72 4.13 0.75

NNGP Feature 5.23 1.53 5.52 1.79 5.49 1.66
Mixture 39.72 1.13 39.69 1.12 43.89 1.11

The posterior median estimates and interval coverages for the three scenarios stud-

ied with n = 1000 are presented in Tables 5.3, 5.4, and 5.5. In the first scenario, where

distances in the geographical space are used, the NNGP model provides a good estimate

of the spatial decay parameter, ϕG. However, it slightly underestimates the process vari-

ance for both the geographic and feature model. The parameters of the geostatistical

regression, including β0, β1, and β2, are well estimated in this model. On the other hand,

the feature model struggles to estimate the spatial range parameter accurately, but it still

provides good estimates for the other parameters. The mixture model is able to estimate

the geographical spatial range effectively, but it produces an unrealistic estimate for the

range in the feature space. It slightly overestimates the process variance due to the intro-

duction of more variability through dynamic neighbors. However, the other parameters,

including λ, are well estimated. The FullGP models exhibit similar behavior to the NNGP

models, with good estimates for the true parameters.
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Although the NNGP provides good point estimate, it is worth to notice and men-

tion that differently from the FullGP it shows a drastic reduction in the parameters cov-

erage, even for the true generating models. To the best of our knowledge, this frequentist

property was never explored for the NNGP approach and may need more attention when

using it. It may suggest that the NNGP are over optimistic about its credible intervals.

Table 5.3: Posterior median regression parameter estimates for the geostatistical model
using NNGP and FullGP methods for scenario 1 with n = 1000

Geographical Feature Mixture

Parameter True Estimated Coverage Estimated Coverage Estimated Coverage
ϕG 0.12 0.10 0.37 - - 0.14 0.71
ϕF - - - 0.03 - 61.66 -
σ2 1.00 0.92 0.28 0.92 0.25 1.25 0.67

NNGP β0 0.50 0.53 0.31 0.52 0.19 0.52 0.99
β1 -1.00 -1.01 0.89 -1.00 0.95 -1.00 0.96
β2 1.50 1.51 0.92 1.50 0.88 1.50 0.98
λ 1.00 - - - - 0.98 -
ϕG 0.12 0.16 0.74 - - 0.15 0.81
ϕF - - - 0.00 - 63.17 -
σ2 1.00 1.32 0.73 0.92 0.24 1.26 0.81

FullGP β0 0.50 0.53 0.97 0.52 0.18 0.56 0.98
β1 -1.00 -1.00 0.92 -1.00 0.95 -1.00 1.00
β2 1.50 1.50 0.97 1.50 0.91 1.50 0.98
λ 1.00 - - - - 0.99 -

In the second scenario, the behavior of the model estimates is similar to that of the

first scenario. The geographical model faces challenges in estimating the range parameter

in the feature space, while the feature model and the mixture model perform well in

capturing the true parameter values. The estimation of λ also shows good convergence

towards its true value. The coverage of credibility intervals continues to exhibit the same

behavior in this scenario, similar to the previous scenario. In the third scenario, which

represents an intermediate configuration, we observe that the geographical and feature

models struggle to estimate the spatial parameters accurately. However, they still produce

reasonable estimates for the other parameters. In contrast, the mixture model performs

well in estimating both spatial decay parameters, providing good approximations to their

true values. Additionally, the mixture model successfully recovers the correct value of λ,

which corresponds to the configuration of this scenario. The consistent behavior observed

in the other datasets across the scenarios further supports the finding that NNGP models

serve as a reliable approximation to full Gaussian models, while offering the advantage of

reduced computational time.
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Table 5.4: Posterior median regression parameter estimates for the geostatistical model
using NNGP and FullGP methods for scenario 2 with n = 1000

Geographical Feature Mixture

Parameter True Estimated Coverage Estimated Coverage Estimated Coverage
ϕG - 0.01 - - - 60.84 -
ϕF 0.48 - - 0.35 0.20 0.56 0.76
σ2 1.00 0.85 0.30 0.87 0.31 1.27 0.70

NNGP β0 0.50 0.43 0.12 0.46 0.30 0.46 0.99
β1 -1.00 -1.00 0.21 -1.02 0.29 -1.02 0.97
β2 1.50 1.50 0.95 1.50 0.91 1.50 0.96
λ 0.00 - - - - 0.03 -
ϕG - 0.00 - - - 62.26 -
ϕF 0.48 - - 0.60 0.83 0.57 0.85
σ2 1.00 0.85 0.29 1.22 0.81 1.28 0.79

FullGP β0 0.50 0.43 0.11 0.47 0.99 0.47 1.00
β1 -1.00 -1.00 0.22 -1.01 0.98 -1.02 0.96
β2 1.50 1.50 0.95 1.50 0.94 1.50 0.95
λ 0.00 - - - - 0.02 -

Table 5.5: Posterior median regression parameter estimates for the geostatistical model
using NNGP and FullGP methods for scenario 3 with n = 1000

Geographical Feature Mixture

Parameter True Estimated Coverage Estimated Coverage Estimated Coverage
ϕG 0.12 0.04 0.00 - - 0.10 0.74
ϕF 0.46 - - 0.15 0.00 0.39 0.57
σ2 1.00 0.92 0.46 0.92 0.44 0.86 0.39

NNGP β0 0.50 0.46 0.14 0.46 0.15 0.43 0.17
β1 -1.00 -0.99 0.29 -0.98 0.33 -1.00 0.61
β2 1.50 1.50 0.92 1.50 0.93 1.50 0.96
λ 0.50 - - - - 0.51 0.66
ϕG 0.12 0.02 0.00 - - 0.15 0.80
ϕF 0.48 - - 0.05 0.00 0.54 0.91
σ2 1.00 0.97 0.55 0.95 0.51 1.30 0.72

FullGP β0 0.50 0.44 0.19 0.42 0.21 0.42 1.00
β1 -1.00 -0.98 0.22 -0.99 0.49 -1.00 0.99
β2 1.50 1.50 0.92 1.50 0.71 1.50 0.93
λ 0.50 - - - - 0.53 0.79

In Figure 5.2, we compare the ability of the three models to recover the true surface

and examine their behavior across the three scenarios. In the first scenario (Figure 5.2,

first row), the geographic model successfully reproduces the original process, albeit with

slight smoothing in space. The feature model, constructed based on the feature space, is

unable to accurately recover the true surface. Meanwhile, the mixture model performs

well and estimates the true surface similar to the geographic model. From the Figure 5.2

second row, the geographic model oversmoothes the spatial structure in the feature space,

while the feature model and the mixture model produce accurate estimates of the true

surface. In the third scenario (Figure 5.2, last row), both models struggle to estimate the

surface accurately. The geographic model again exhibits oversmoothing in space, and the
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feature model fails to capture the spatial structure. However, the mixture model provides

a more accurate estimation of the true region without excessive smoothing of the spatial

structure.
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Figure 5.2: The recovered surface by each model for scenarios 1, 2 and 3.
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5.2 Prediction capacity

To assess the models’ performance in capturing the original surface, we employed

two evaluation metrics

MAE =
1

n

n
∑

i=1

|(yi − ŷi)|, RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2.

In Scenario 1 (Figure 5.3a), both the NNGP and FullGP models demonstrate better

accuracy in estimating the true multivariate random process for the geographical models.

The mixture model performs competitively with the geographical model, providing highly

accurate estimates. In Scenario 2 (Figure 5.3b), the feature model and the mixture model

outperform the geographical model in capturing the true process, while the latter model

struggles to produce accurate estimates. In the intermediate Scenario 3 (Figure 5.3c),

the mixture model surpass the other models, producing lower prediction error estimates

across both metrics. However, the error estimate of the mixture NNGP model is slightly

worse than its FullGP counterpart. These findings highlight the NNGP models’ ability to

approximate the FullGP models effectively, and the mixture model’s capacity to provide

comparable or even superior estimates across all scenarios.
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Figure 5.3: Comparison of prediction error metrics distribution between NNGP and
FullGP models for n = 1000. (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3.
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Chapter 6

Porosity estimation results

We evaluated our proposed method on synthetic oil reservoir data, specifically focusing

on estimating the porosity of rocks in the reservoirs. All the three models, geographical,

feature, and mixture, were fitted using the available well data with the variables described

in Section 2. For this application, we employed the same priors as those used in Section

5, with the exception of the spatial decay parameters ϕG and ϕF , which were assigned

a uniform prior distribution over the interval U(0, 500). Model parameter estimates and

performance metrics were derived from a total of 750, 000 iterations, discarding the initial

500, 000 iterations as burn-in samples and applying a thinning interval of size 50, resulting

in a final chain of size 5, 000 samples. For assessing convergence, we employed visual

inspection of the chains traceplots and verified the [12] diagnostic. The evaluation focused

on comparing the results for two specific regions within the available data volume, namely

Region A and Region B, which represent cross-sections along the x-axis. To measure the

prediction quality of the models, we provide a visualization of the surface of these two

regions in Figure 6.1, which serves as the ground truth for comparison.
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Figure 6.1: Porosity values in two regions extracted from the total volume of data. On
the left is Region A, and on the right is Region B.

In all the models, we incorporated the covariates ρ, Vp, and Vs to specify the mean

and, when suitable, the covariance of the process. This approach enables us to identify

linear relationships between these variables and porosity through the mean function. Si-



36

multaneously, we can capture important spatial features related to porosity at distant

locations by defining the covariance structure. In Table 6.1, we present the posterior

estimates of the geostatistical models adjusted for this dataset. The covariates ρ and Vp

show an inversely proportional relationship with porosity. Notably, the estimated spatial

decay parameters by the geographical model and the feature model differ, which may raise

doubt about model selection without knowledge of the true generative model. However,

the mixture model estimates the value of λ very close to zero, indicating an almost exclu-

sive contribution of the feature model in the composition of the target process. Therefore,

when using the mixture model, we gain more information about the analyzed process and

can make more appropriate decisions. The higher contribution of the feature model in

the mixture model aligns with the nature of the data, as the studied reservoir is a result

of a simulation process that mainly utilizes characteristics of reservoir lithology found in

the field. This suggests that the geological features have a significant influence on the

porosity distribution within the reservoir. The mixture model’s ability to capture and

incorporate these intrinsic geological features makes it a suitable choice for modeling the

porosity distribution in this specific reservoir context.

Table 6.1: Estimates of the medians and Highest Posterior Density (HPD) 95% interval
for the parameters of the geostatistical regression in the models using the data from the
simulated oil reservoir.

Geographical Feature Mixture

Parameter Estimate CI 95% Estimate CI 95% Estimate CI 95%
ϕG 26.43 (17.11, 38.41) - - 329.80 (54.10, 499.96)
ϕF - - 63.47 (29.85, 119.39) 97.60 (38.62, 236.07)
β0 0.03 (0.03, 0.03) -0.45 (-0.74, -0.21) -0.40 (-0.76, -0.14)
βρ -0.04 (-0.04, -0.04) -0.06 (-0.07, -0.06) -0.07 (-0.07, -0.06)
βVp

-0.01 (-0.02, -0.01) -0.01 (-0.01, -0.01) -0.01 (-0.01, -0.00)
βVs

0.06 (0.06, 0.07) 0.05 (0.04, 0.05) 0.04 (0.04, 0.05)
σ2 3.76× 10−4 (2.69× 10−4, 4.78× 10−4) 0.02 (0.01, 0.03) 0.02 (0.01, 0.06)
τ 2 5.42× 10−4 (4.35× 10−4, 6.36× 10−4) 2.94× 10−9 (2.66× 10−12 , 1.29× 10−8) 2.16× 10−9 (1.31× 10−13 , 9.85× 10−9)
λ - - - - 2.81× 10−7 (8.59× 10−11, 1.64× 10−6)

Figure 6.2 displays the porosity estimates for the two regions of interest. It can

be observed that the geographical model tends to oversmooth the porosity interpolation

in space, leading to positive porosity values in regions where the true porosity is zero.

In contrast, the feature and mixture models are able to recover the two regions well,

providing more accurate and similar porosity estimates. Table 6.2 presents the prediction

error measures for the three models across regions A and B. The prediction errors were

computed for the entire region, encompassing locations with zero porosity, making it

possible to measure the models’ capability to estimate abrupt porosity changes present in

the regions. The results clearly indicate that both the feature-based and mixture models

outperform the geostatistical model in terms of prediction errors for both regions. The

mixture model demonstrated equivalent or even lower error estimates compared to the

feature model for both of the considered metrics.
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Figure 6.2: Top row: Estimates of porosity for the geographical, feature, and mixture
models (in that order) for Region A. Bottom row: Estimates of porosity for the geograph-
ical, feature, and mixture models (in that order) for Region B.

Table 6.2: Prediction error estimates for the two regions among the models

Geographical Feature Mixture

Region A MAE 0.008 9.489× 10−4 6.415× 10−4

RMSE 0.017 0.005 0.003
Region B MAE 0.013 0.003 0.002

RMSE 0.029 0.017 0.015
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Chapter 7

Conclusion

Large spatial and spatiotemporal datasets pose challenges for fully model-based Bayesian

inference due to computationally expensive matrix operations. Furthermore, for a broad

spatial domain where the geographical distance among the observations can be substan-

tial, the traditional spatial regression can be ineffective in capturing the spatial depen-

dence relationship. This is the case in our application, where drilling an oil well is very

expensive, and increasing the number of wells is not an option. Therefore, using litho-

logical information to measure similarity among sites becomes a reasonable alternative.

Beyond this, we introduce a mixture modeling framework that incorporates the spatial

regression and feature model in one setting allowing data to determine the appropriate

mixture among the two single models. We also leverage the computational capacity of

our proposal based on a dynamic version of the NNGP approach where the number of

neighbors can vary from site to site. Our methods are implemented in the FUSE package

available at https://github.com/lucasamich/FUSE.

Our simulation study showcased the effectiveness of our proposal in accurately es-

timating spatial parameters and predicting the target process. Specifically, we compared

three models: geographical, feature, and mixture models, under different scenarios. The

geographical model performed well when the spatial correlation was solely space depen-

dent, while the feature model excelled when using the covariates’ inherent information.

However, the mixture model emerged as a powerful choice, effectively incorporating con-

tributions from both geographical and feature models depending on the location being

estimated. The mixture model achieved superior estimates of the true spatial config-

uration, making it a valuable tool for capturing complex spatial structures where the

traditional models may fail. We further applied the proposed approach to a simulated oil

reservoir dataset, demonstrating its practical applicability. The mixture model success-

fully integrated geological features represented by covariates, such as reservoir lithology,

into the porosity estimation, providing more accurate predictions compared to the other

models. This ability to incorporate intrinsic geological features made the mixture model

particularly suitable for modeling porosity distributions in this specific reservoir context.

Overall, the dynamic NNGP mixture model emerged as a robust and versatile framework

for geostatistical modeling, capable of handling large datasets while maintaining accu-
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rate predictions. Its ability to combine information from both geographical space and

covariates space opens up new opportunities for various geospatial applications.

The use of feature information can be extended to address other geostatistical

challenges, e.g., ansiotropy. Another direct extension of this proposal is to spatiotempo-

ral problems. Further, other distance metrics may be more appropriate and should be

explored for the feature space. Finally, from the simulation studies empirical coverage,

there is an indication that the NNGP produces narrow credible intervals for the parame-

ters. Such a finding, although not in the scope of the paper, should be investigated since

the NNGP methodology has gained enormous attention in the literature.
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