
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Escola de Engenharia

Programa de Pós-Graduação em Engenharia Elétrica

André Costa Batista

SURROGATE-ASSISTED ALGORITHMS FOR MICROWAVE IMAGING

Belo Horizonte
2023



André Costa Batista

SURROGATE-ASSISTED ALGORITHMS FOR MICROWAVE IMAGING

Tese de Doutorado submetida à Banca
Examinadora designada pelo
Colegiado do Programa de
Pós-Graduação em Engenharia
Elétrica da Escola de Engenharia da
Universidade Federal de Minas Gerais,
como requisito para obtenção do Título
de Doutor em Engenharia Elétrica.

Orientador: Prof. Dr. Lucas de Souza
Batista
_______________________________
Coorientador: Prof. Dr. Ricardo Luiz da
Silva Adriano

Belo Horizonte
2023



Batista, André Costa.
B333s Surrogate-assisted algorithms for microwave imaging [recurso

eletrônico] / André Costa Batista. - 2023.
1 recurso online (225 f. : il., color.) : pdf.

Orientador: Lucas de Souza Batista.
Coorientador: Ricardo Luiz da Silva Adriano.

Tese (doutorado) - Universidade Federal de Minas Gerais,
Escola de Engenharia.

Apêndices: f. 207-225.

Bibliografia: f. 179-206.
Exigências do sistema: Adobe Acrobat Reader.

1. Engenharia elétrica - Teses. 2. Micro-ondas - Teses. 3. Problemas
inversos (Equações diferenciais) - Teses. 4. Algoritmos evolutivos - Teses.
5. Otimização - Teses. I. Batista, Lucas de Souza. II. Adriano, Ricardo Luiz
da Silva. III. Universidade Federal de Minas Gerais. Escola de
Engenharia. IV. Título.

CDU: 621.3(043)
Ficha catalográfica elaborada pela Bibliotecária Roseli Alves de Oliveira CRB/6 2121

Biblioteca Prof. Mário Werneck, Escola de Engenharia da UFMG



21/08/2023, 12:27 SEI/UFMG - 2547140 - Folha de Aprovação

https://sei.ufmg.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=2749672&infra_sistema… 1/2

UNIVERSIDADE FEDERAL DE MINAS GERAIS
ESCOLA DE ENGENHARIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

FOLHA DE APROVAÇÃO

 

"SURROGATE-ASSISTED ALGORITHMS FOR MICROWAVE IMAGING"

 

ANDRÉ COSTA BATISTA

 

            Tese de Doutorado subme da à Banca Examinadora designada pelo Colegiado do Programa de
Pós-Graduação em Engenharia Elétrica da Escola de Engenharia da Universidade Federal de Minas Gerais,
como requisito para obtenção do grau de Doutor em Engenharia Elétrica. Aprovada em 17 de agosto de
2023. Por:

 

Prof. Dr. Lucas de Souza Ba sta
DEE (UFMG) - Orientador

 
Prof. Dr. Ricardo Luiz da Silva Adriano

DEE (UFMG) - Coorientador
 

Prof. Dr. Renato Cardoso Mesquita
DEE (UFMG)

 
Prof. Dr. Felipe Campelo França Pinto

Dept. of Computer Science (Aston University)
 

Prof. Dr. Diogo Ba sta de Oliveira
DEE (UFMG)

 
Prof. Dra. Úrsula do Carmo Resende

DEE (CEFET/MG)
 

Prof. Dr. Xisto Lucas Travassos Junior
DEEL (UFSC)

Documento assinado eletronicamente por Diogo Ba sta de Oliveira, Professor do Magistério
Superior, em 17/08/2023, às 13:33, conforme horário oficial de Brasília, com fundamento no art. 5º
do Decreto nº 10.543, de 13 de novembro de 2020.

http://www.planalto.gov.br/ccivil_03/_Ato2019-2022/2020/Decreto/D10543.htm


21/08/2023, 12:27 SEI/UFMG - 2547140 - Folha de Aprovação

https://sei.ufmg.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=2749672&infra_sistema… 2/2

Documento assinado eletronicamente por Ricardo Luiz da Silva Adriano, Professor do Magistério
Superior, em 17/08/2023, às 15:20, conforme horário oficial de Brasília, com fundamento no art. 5º
do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por XISTO LUCAS TRAVASSOS JUNIOR, Usuário Externo, em
17/08/2023, às 17:47, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº
10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Lucas de Souza Ba sta, Professor do Magistério Superior,
em 17/08/2023, às 18:03, conforme horário oficial de Brasília, com fundamento no art. 5º do
Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Ursula do Carmo Resende, Usuária Externa, em
17/08/2023, às 18:20, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº
10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Felipe Campelo Franca Pinto, Usuário Externo, em
18/08/2023, às 09:14, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº
10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Renato Cardoso Mesquita, Professor do Magistério
Superior, em 20/08/2023, às 19:14, conforme horário oficial de Brasília, com fundamento no art. 5º
do Decreto nº 10.543, de 13 de novembro de 2020.

A auten cidade deste documento pode ser conferida no site
h ps://sei.ufmg.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador 2547140 e
o código CRC 4D40D451.

Referência: Processo nº 23072.249594/2023-10 SEI nº 2547140

http://www.planalto.gov.br/ccivil_03/_Ato2019-2022/2020/Decreto/D10543.htm
http://www.planalto.gov.br/ccivil_03/_Ato2019-2022/2020/Decreto/D10543.htm
http://www.planalto.gov.br/ccivil_03/_Ato2019-2022/2020/Decreto/D10543.htm
http://www.planalto.gov.br/ccivil_03/_Ato2019-2022/2020/Decreto/D10543.htm
http://www.planalto.gov.br/ccivil_03/_Ato2019-2022/2020/Decreto/D10543.htm
http://www.planalto.gov.br/ccivil_03/_Ato2019-2022/2020/Decreto/D10543.htm
https://sei.ufmg.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0


To the carpenter from Nazareth, who loves me
in spite of myself.



Acknowledgements

I would like to express my deepest gratitude to my family for their unwavering support
throughout my academic journey. I am thankful for my dad. I still remember when he used
to double check my homework every morning when I was a kid. I am thankful my mom. I
still remember you waking me up and putting on clothes to go to school. I am thankful for my
sister. I think I would never know that I could to go college and even studying at UFMG if she
had not did it before. I am grateful for my brother. I will never forget that you gave me your
computer so I could study at university. Your love, encouragement, and understanding have
been the pillars that have sustained me during the challenges and triumphs of this thesis.

I am especially grateful to Fernanda, who will be my wife in some days. There is no
way to talk about this doctorate without thinking of you. From the beginning to end, you have
been with me. Your companion and your kindness have been instrumental in allowing me to
dedicate the time and energy necessary to complete this research. I am truly blessed to have her
by my side.

I extend my heartfelt appreciation to my advisor, Lucas S. Batista. More than 10 years
since I first showed up in your room and you gave the opportunity for a student that still did not
know what a gradient or contour plot were. You truly shaped me, as a researcher and professor.

I am also thankful for my co-advisor, Ricardo Adriano. You always were really patient
with me even when I did not deserve it. Thank you for friendship and every effort when I had
questions. Your expertise has been crucial in expanding my understanding.

I will always be grateful to my friends from ABU for their camaraderie, support, and
talks. Their friendship has shaped me a lot through the years and I hope it will always be like
this.

Finally, I would like to express my sincere appreciation to Presidents Luiz Inácio Lula da
Silva and, specially, Dilma Rousseff for their commitment to education and scientific research.
Their vision and policies have played a crucial role in creating a conducive environment for
academic pursuits, including my own. I am a legacy of what they believed that education could
be.

To all those who have supported me in ways seen and unseen, thank you. This thesis
would not have been possible without your unwavering support, encouragement, and belief in
my abilities.



“And those who are peacemakers will plant seeds of peace and reap a harvest of
righteousness.” (James 3:18, NLT)



Resumo

O Imageamento em Microondas é uma importante técnica de teste e avaliação não-destrutiva e
não-invasiva com muitas aplicações em diversas áreas, como em exames médicos, triagem de
segurança, sensoriamento remoto, entre outras. A técnica é baseada em um Problema Inverso
de Espalhamento Eletromagnético onde as propriedades elétricas de um meio são recuperadas
através de medições de campo espalhado. Além de ser um problema mal-posto, também é não-
linear e multimodal. Existem vários métodos numéricos para resolver o problema e eles podem
ser classificados em qualitativos ou quantitativos. Estes últimos também são classificados em
métodos determinı́sticos ou estocásticos. Esta tese apresenta uma nova abordagem quantita-
tiva determinı́stica para imageamento em microondas usando algoritmos assistidos por modelos
substitutos. O objetivo é abordar os desafios do problema inverso considerando a imagem qual-
itativa recuperada pelo Método de Amostragem de Ortogonalidade e transformando a imagem
em um problema de otimização bidimensional. O método proposto se concentra em otimizar
a estimativa de contraste e a operação de limiarização para minimizar o erro da equação de
dados. A tese apresenta três formulações baseadas em Algoritmos Evolutivos e duas baseadas
em Métodos de Direções de Busca, fornecendo um leque de opções para a resolução do prob-
lema de otimização. Além disso, uma nova estrutura é proposta para o desenvolvimento e teste
de algoritmos para o problema. A estrutura inclui um pacote abrangente chamado eispy2d,
que oferece funcionalidades como geração de conjuntos de teste com controle de parâmetros,
uma coleção de indicadores de desempenho (incluindo dois novos indicadores) e suporte para
comparação estatı́stica de diferentes algoritmos. Os resultados dos experimentos demonstram
a eficácia dos métodos propostos. Em cenários com espalhadores fracos, os métodos propostos
foram capazes de reconstruir imagens comparáveis àquelas obtidas por métodos tradicionais,
enquanto alcançavam tempos de execução próximos. Além disso, em cenários mais desafi-
adores onde os métodos tradicionais falharam, os algoritmos propostos mostraram resultados
consistentes em termos de recuperação de imagens.

Palavras-chaves: imageamento em microondas; problemas inversos; algoritmos assistidos por
modelos substitutos; algoritmos evolutivos; métodos de direção de busca; biblioteca de código
aberto.



Abstract

Microwave Imaging is an important nondestructive and noninvasive testing and evaluating tech-
nique with many applications in diverse areas, such as medical imaging, security screening, re-
mote sensing, among others. The technique is based on an Electromagnetic Inverse Scattering
Problem where the electric properties of a medium are recovered through scattered field mea-
surements. Besides being an ill-posed problem, it is also nonlinear and multimodal. There are
several numerical methods for solving the problem and they can be classified into qualitative
and quantitative ones. The latter is also classified into deterministic and stochastic methods.
This thesis presents a novel quantitative deterministic approach for microwave imaging using
surrogate model-assisted algorithms. The objective is to address the challenges of the inverse
problem by considering the qualitative image recovered by the Orthogonality Sampling Method
and transforming it into a two-dimensional optimization problem. The proposed method focuses
on optimizing the contrast estimation and the threshold operation to minimize the data equation
error. The thesis introduces three formulations based on Evolutionary Algorithms and two ones
based on Descent Methods, providing a range of options for solving the optimization problem.
In addition, a new framework is proposed for the development and testing of algorithms in
microwave imaging. The framework includes a comprehensive package called eispy2d, which
offers functionalities such as test set generation with parameter control, a collection of per-
formance indicators (including two novel indicators), and support for statistical comparison of
different algorithms. The results of the experiments demonstrate the effectiveness of the pro-
posed methods. In weak scatterer scenarios, the surrogate model-assisted algorithms were able
to recover images that were comparable to those obtained by traditional methods, while achiev-
ing similar runtimes. Moreover, in more challenging scenarios where traditional methods failed,
the proposed algorithms showed consistent results in terms of image recovery.

Keywords: microwave imaging; inverse problems; surrogate model-assisted algorithms; evo-
lutionary algorithm; descent methods; open-source package.
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Ē Total field matrix
f Trial functions of contrast discretization
g Trial functions of electric field discretization
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Chapter 1

Introduction

When children find a gift wrapped in a box, they might get curious to know what it is.
At the same time, it may be that they do not want to open the box not to ruin the surprise, or not
to leave clues that the gift has been found. So, to have a notion of what is the gift, they shake
softly the box and try to imagine the content by the sound of its beats inside the pack and its
weight. As anyone can see, having the notion of what is inside spaces without accessing them
is a need that can be found in everyday life. In fact, this is present even before the birth of a
human being. For example, baby health in the mother’s belly is evaluated by ultrasound images.

Images of the interior of spaces can be obtained through techniques such as ultrasound,
magnetic resonance, X-ray, among others (Morris and Perkins, 2012). Getting these images
can be important in several situations: to identify defects in structures (Benedetti et al., 2007;
Bozza et al., 2008; Caorsi et al., 2004c), to detect diseases in the body (Fhager et al., 2018;
Nikolova, 2011), to identify the composition of the soil (Randazzo et al., 2021a; Zhang et al.,
2010), through-the-wall imaging (Doğu et al., 2020; Fedeli et al., 2017b), and more. When the
electrical property of the interior is the goal of the investigation, then electromagnetic waves are
used to penetrate the space and the characteristics of the medium are studied by the response
of the scattered waves. The choice of this phenomenon may be justified by both interests in
the study of the dielectric properties of the inner space as for the detection of suspected objects
given the dielectric contrast that may have in relation to the medium where they are. This is the
idea behind Microwave Imaging (Pastorino et al., 2000).

Microwave Imaging is then an Electromagnetic Inverse Scattering Problem (Chen, 2017).
The problem is then composed of the known scattered field (the effect) and the goal is to deter-
mine the image of the unknown scatterer (the cause). Because it is an electromagnetic problem,
the mathematical formulation is based on Maxwell’s Equations (Jackson, 1999). The properties
are also based on the theory about Inverse Problems (Kirsch, 2011). In fact, the scattering prob-
lem, whether acoustic or electromagnetic, is a classic example of an inverse problem (Bertero
and Boccacci, 2020). In addition, it is also nonlinear since the field distribution inside the image
is unknown and depends on the unknown image of the scatterer (Colton and Kress, 2019).

Solutions are computationally obtained (Chen, 2017; Pastorino, 2010a). The images are
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recovered by numerical methods that attempt to solve the equations that relate the electrical
properties of the investigated region with the observed electric field. These methods may be
qualitative (Pastorino, 2010b) or quantitative (Pastorino, 2010d), i.e., make indirect or direct
reconstructions of dielectric properties. Among the quantitative methods, there are deterministic
and stochastic ones. The deterministic are those whose operations are completely determined
and have unique results, i.e., they will always yield the same reconstruction for the same input
(Pastorino, 2010c). Stochastics are methods whose steps are influenced by pseudo-random
operations, and therefore, they may have different results for the same input Pastorino (2007). In
recent years, deep machine learning techniques have gained attention in the field of microwave
imaging due to their potential for real-time imaging and improved accuracy (Chen et al., 2020b).

Among the stochastic methods, the Evolutionary Algorithms stand out (Eiben and Smith,
2015). These algorithms are population-based metaheuristics that imitate biological processes.
In other words, they are methods that use a population of candidate solutions and their relation-
ships are mathematical operations inspired by the behavior of individuals in a population over
time. Because they are metaheuristics, they also do not guarantee that the final solution is the
best existing.

The efficiency of Evolutionary Algorithms can be significantly affected when dealing
with problems that have a large number of variables (Gould et al., 2005). As the number of
variables increases, the search space becomes larger and more challenging to explore. This, in
turn, impacts the evaluation of the objective function, often leading to computationally expen-
sive calculations that hinder the application of EAs Omidvar et al. (2022).

To address this issue, one promising approach is to incorporate surrogate models into the
optimization process. Surrogate Models, also known as metamodels or response surface mod-
els, are techniques used to approximate the behavior of complex systems Boser et al. (1992);
Box and Wilson (1992); Hardy (1971); Krige (1951). When applied to objective functions in
optimization algorithms, they act as interpolation functions, providing computationally cheaper
predictions of the output for a given input (He et al., 2023). By using surrogate models, the
direct evaluation of the expensive objective function can be replaced with evaluations of the
surrogate model. This allows for a more efficient search process, as the surrogate model serves
as a proxy for the actual objective function. The surrogate model is initially constructed based
on a limited number of evaluations of the objective function, and it is then updated or refined as
the optimization process progresses.

The key advantage of using surrogate models in optimization algorithms, such as EAs
(Valadão and Batista, 2020), is the significant reduction in computational cost. Instead of repeat-
edly evaluating the expensive objective function, the surrogate model provides quick estimates,
enabling faster exploration of the search space. This allows Evolutionary Algorithms to make
informed decisions and guide the search towards promising regions of the solution space. How-
ever, it is important to note that surrogate models introduce approximation errors, as they are not
exact representations of the objective function. The accuracy of the surrogate model depends
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on factors such as the quality and representativeness of the training data, the chosen surrogate
modeling technique, and the underlying assumptions made during the modeling process. Care-
ful validation and refinement of the surrogate model are necessary to ensure its reliability and
effectiveness in guiding the optimization process (Haftka et al., 2016; He et al., 2023).

1.1 Motivation

In the history of the application of Evolutionary Algorithms in Electromagnetic Inverse
Scattering Problems, many studies have already been made (Rocca et al., 2009). Initially, these
methodologies were applied in situations where some assumptions on the shape, amount, or
even the electrical properties of the scatterers were already assured (Kent and Günel, 1997;
Michalski, 2000). Subsequently, other applications emerged which were not based on these
premises, and therefore, they were more difficult to be solved (Chiu and Liu, 1996; Huang et al.,
2008). The difficulty consists mainly in the huge amount of variables involved in the model
(Caorsi and Pastorino, 2000; Donelli et al., 2006; Salucci et al., 2017). However, the potential to
address nonlinear problems and the independence of expensive computational operations (such
as simulations or decompositions) are attractive advantages for the development and application
of these methods.

Representations based on predefined geometries or contour curves offer certain advan-
tages but require running the forward solver to assess each solution, which can be computation-
ally expensive. On the other hand, representations based on image pixels suffer from a high
number of variables, making the optimization process more complex. To mitigate these chal-
lenges, Salucci et al. (2022b) proposed the utilization of Surrogate Models as a means to reduce
the computational cost associated with contour-based approaches. They introduced a Surrogate-
model Assisted Evolutionary Algorithm that demonstrated promising results in reconstructing
images predominantly composed of strong scatterers, i.e., objects with high contrast or large
dimensions in wavelengths. By employing surrogate models, the algorithm could approximate
the behavior of the expensive simulator, enabling more efficient evaluations of solutions.

However, the proposed approach does have certain dependencies and limitations. For in-
stance, it relies on prior knowledge of the number of scatterers present in the image. Moreover,
it is crucial to strike a balance in the number of parameters used in the contour model to ensure
that the accuracy of the surrogate model is not compromised. Considering that Salucci et al.
(2022b) was the first attempt to apply surrogate models to the problem, there is room for fur-
ther investigation into alternative methods of application. Exploring different forms of utilizing
surrogate models can help uncover new insights and improve the efficiency of the approach.

One potential avenue for future research is the development of methodologies with a
reduced number of variables. By minimizing the number of variables, the accuracy of the sur-
rogate model becomes higher and the computational cost can be further decreased. Addition-
ally, there is a need for techniques that can obtain superior initial solutions compared to random
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contours while maintaining a low computational burden. Such advancements can unlock new
possibilities and allow for a more comprehensive exploration of the potential applications of
surrogate models in image reconstruction.

In order to adequately assess the impact that modifications have on the performance of
algorithms, suitable experiments need to be designed. Arbitrary situations can illustrate well
the capacity of methods in making good reconstructions, i.e., reasonable shape retrievement
and contrast estimation. In addition, experiments with real data are very relevant to attest the
application in practical situations. However, measurement of methods performance and com-
parisons need to follow principles such as control of effect factors and random instances. These
principles are already well established in the specialized literature on Evolutionary Algorithms.
However, this practice is little widespread in the literature on methods for Electromagnetic In-
verse Scattering. There are opportunities for contributions on the insulation of effects factors
and new indicators that better qualify the algorithm’s reconstruction capacity. This applies not
only to stochastic methods but also to deterministic ones.

1.2 Objectives

This doctoral thesis aims to provide a comprehensive exploration of the theoretical and
practical aspects involved in solving the inverse problem of electromagnetic scattering and to
contribute to the advancement of Microwave Imaging techniques. The thesis systematically
investigates the problem, highlighting the gaps in the existing literature and proposing novel
approaches. The thesis begins by examining the foundational aspects of the problem by defining
the mathematical equations that establish the electromagnetic scattering. This step allows for a
thorough understanding of the theoretical aspects and establishes a solid knowledge base of the
problem as documented in the existing literature.

Furthermore, the thesis undertakes a comprehensive review of numerical methods that
have been proposed in the literature for solving the inverse problem. It covers a range of ap-
proaches, from the discretization of the problem to the different classes and trends of algorithms
employed in the field. By surveying the existing methodologies, the thesis establishes a com-
prehensive overview of the available techniques and lays the groundwork for the development
of novel algorithms.

Building on the identified gaps in the literature and the decision to focus on the two-
dimensional form of the problem, the thesis outlines two specific objectives that guide the orig-
inal contributions of this research.

1. An emphasis on investigating alternative approaches for representing solutions, aiming to
enhance the application of surrogate models in a more precise and efficient manner. The
proposition of a new algorithm does not presuppose any specific application, rather it is
developed for a general formulation and it can be extended to several possible applica-
tions.
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2. The development of a well-structured experimentation process. This process is designed
to comprehensively evaluate various aspects of image reconstruction, quantify the perfor-
mance of different algorithms, and enable robust comparisons with other methodologies
in the literature.

1.3 Contributions and Novelties

This research has made significant contributions in two key areas, which are summarized
as follows:

1. Methodology for Transforming the Inversion Problem:
One of the primary contributions of this research is the proposal of a novel methodology
that transforms the inversion problem into a two-dimensional optimization problem. This
transformation enables the application of surrogate models with higher accuracy, improv-
ing the efficiency and effectiveness of the overall approach. The proposed methodology
builds upon the reconstruction achieved by qualitative methods and provides a practical
framework for assigning contrast and refining the geometry of the scatterers. While qual-
itative methods for obtaining initial solutions have been used before, their application in
this context is unique and has not been explored in the literature. Furthermore, the pro-
posed methodology effectively enhances the application of surrogate models, which have
been minimally addressed in the literature. By employing surrogate models, the method-
ology achieves accurate reconstructions of strong scatterers while reducing the number
of variables involved, resulting in improved model accuracy and comparable runtime to
traditional methods. This contribution significantly advances the utilization of surrogate
model techniques in the problem, particularly in scenarios involving strong scatterers.

2. Robust Structure for Algorithm Development and Evaluation:
Another key contribution of this research is the proposal of a more robust framework
for the development, experimentation, and evaluation of algorithms for the electromag-
netic inverse scattering problem. By adopting the Object-Oriented paradigm, a software
package has been developed to facilitate efficient synthetic experimental design. This
package enables the control of various factors that impact algorithm performance and al-
lows for the systematic generation of test sets to evaluate the average performance across
a range of problem instances. This approach to experimental design is novel in the litera-
ture. Additionally, to assess algorithm performance, multiple quality indicators have been
gathered, including the introduction of two new specialized indicators that focus on ob-
ject positioning errors and the reconstruction of object geometries. Finally, the research
defines statistical comparison processes that enable rigorous comparisons of algorithm
performance averages. By providing a more comprehensive and standardized framework
for algorithm development and evaluation, this contribution enhances the rigor and relia-
bility of research in the field.
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In summary, this research has made significant contributions to the field of electromag-
netic scattering inversion. The proposed methodology for transforming the problem into a two-
dimensional optimization one, combined with the utilization of surrogate models, enables more
accurate and efficient reconstructions, particularly in scenarios involving strong scatterers. Ad-
ditionally, the establishment of a robust structure for algorithm development, experimentation,
and evaluation enhances the reliability and comparability of research findings. These contri-
butions enable further advancements in the use of surrogate models and the development of
improved algorithms for microwave imaging.

1.4 Organization

This text aims to present an overview of the subject as well as the work already carried
out in this doctorate. An effort was made on gathering and organizing relevant information
concerning the mathematical theory and already proposed methodologies available in the liter-
ature. Even though some topics on the theory and some methods will not be taken into account
in our proposals, their presence in the thesis is due to the purpose of providing a comprehen-
sive discussion. Therefore, the investigation can be understood within a broader context of the
literature in its current state. The text is structured as follows:

• In Chapter 2, Microwave Imaging is presented and defined in terms of an Electromag-
netic Inverse Scattering Problem. The equations are obtained from the development of
Maxwell’s equations. The main aspects of Inverse Problems Theory and major character-
istics are presented. All this information is raised from a significant review of the problem
theory available in the literature.

• In Chapter 3, the text presents a review of the numerical methods available in the litera-
ture. First, a standard domain definition is presented and then the discretization strategies
are discussed since they are required to solve the problem computationally. In addition
to the deterministic and stochastic quantitative methodologies, the text also presents the
qualitative ones, linearization strategies, regularization methods for ill-posed systems and
the recent applications of machine learning techniques.

• In Chapter 4, the most attractive ideas, which have been most investigated in the literature
recently, are identified as well as the gaps left. Based on this discussion, the research
proposals are announced and explained.

• In Chapter 5, the computational experiments are introduced, presented, and discussed.
The experiments are divided into case studies and benchmarking study. Considerations
and recommendations are discussed at the end.

• In Chapter 6, the final considerations are carried out. This chapter is composed of the
recapitulation of the work, self-criticism, discussions on the continuity proposals and the
bibliographic production during the doctorate.

Chapters 2 and 3 of the thesis provide a comprehensive overview of the theory and
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algorithms for microwave imaging. However, not all the concepts and methods are used in the
proposed methodology in chapter 4. The purpose of these chapters is to enhance the discussion
on the subject by providing an extensive review. If the reader is interested in only the important
parts for the proposed methodology, it is suggested to focus on sections 2.4, 3.1, 3.2.2, 3.5.2,
and 3.7.

In addition to the chapters, this work also includes appendices which are auxiliary texts
explaining theoretical aspects, practices, and peripheral researches. Therefore, their goal is to
provide further information on some theoretical and practical aspects of this work. A summary
of these appendices is presented below:

• Appendix A: a brief review of Dyadic Green’s Function.
• Appendix B: the step-by-step formulation of the integral equations.
• Appendix C: a brief review of functional analysis.
• Appendix D: a brief illustration and implementation details of the proposed metric to

qualify the shape recovery capacity in contrast images.
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Chapter 2

Problem Statement

Microwave Imaging is an Electromagnetic Inverse Scattering Problem (EISP). Because
of its nature, its magnitudes are defined in terms of Maxwell’s equations which describe the
electromagnetic phenomenon. In particular, the problem can be written in the form of an inte-
gral equation, which is very common for problems involving radiation from a current, whether
impressed or induced. Rather than determining the effect from a cause, the problem is de-
fined inversely. Thus, there are several characteristics peculiar to this kind of problem which is
considered an ill-posed one in the literature.

This chapter aims to describe in a general way the mathematical model which represents
the problem and to discuss its most important aspects. In Section 2.1, the electromagnetic model
will be presented. Then, in Section 2.2, the equation which relates all the required quantities
will be developed. Subsequently, some fundamentals about inverse problems are presented in
Section 2.3. Afterward, several important aspects of the problem are discussed in Section 2.4.
Finally, a conclusion is presented highlighting the main topics of the chapter. Appendices A, B
and C were also written as supporting material for several concepts and deductions that will be
used in this chapter.

2.1 Electromagnetic Theory

Maxwell’s equations mathematically describe the electromagnetic phenomena. The four
equations relate fields and sources in space and time. They are expressed as follows (Harrington,
2001):

—⇥E (r, t) = �∂B

∂ t
(r, t) (2.1)

—⇥H (r, t) =
∂D

∂ t
(r, t)+J (r, t) (2.2)

— ·D(r, t) = r(r, t) (2.3)

— ·B(r, t) = 0 (2.4)
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The vector r = xx+yy+ zz = hx,y,zi denotes the space coordinates (in meters [m]) and
t is the time (in seconds [s]). The vectors E , H , D , and B represent electric field intensity
(in volts per meter [V/m]), magnetic field intensity (in amperes per meter [A/m]), electric flux
density (in coulombs per square meter [C/m2]), and magnetic flux density (in tesla [T]). The
sources are the electric current density J (in amperes per square meter [A/m2]) and the volume
electric charge density r (in coulombs per cubic meter [C/m3]).

Maxwell’s equations can also be written in harmonic form, i.e., when time dependence
is expressed in cosinusoidal form. In this case, the fields and sources can be written as quantities
of a complex nature based on the following relationship:

F (r, t) =Re{F(r)e jwt} (2.5)

In this way, the real vector field F is completely described by the complex field F and
the known angular frequency w = 2p f (in radians per second [rad/s]). In (2.5), j =

p
�1 is the

imaginary unit. Thus, Maxwell’s equations in harmonic regime are defined as:

—⇥E(r) = � jwB(r) (2.6)

—⇥H(r) = jwD(r)+J(r) (2.7)

— ·D(r) = r(r) (2.8)

— ·B(r) = 0 (2.9)

In addition to Maxwell’s equations, constitutive relationships are important for describ-
ing the relationship between fields and the environments in which they exist. In general, the
relationships between field intensity and flux density vectors are expressed as:

D(r) = F1(E,H)(r) (2.10)

B(r) = F2(E,H)(r) (2.11)

The operators F1 and F2 represent the relationships between these two types of vector
quantities. They are defined according to the medium in which these fields are present. Depend-
ing on the properties of each medium, these operators can be: linear or nonlinear; dependent on
E and H or just one of these two vectors; defined as tensors or even scalars. Considering only
linear, isotropic, and non-dispersive media, the constitutive relationships can be simplified to:

D(r) = e0er(r)E(r) (2.12)

B(r) = µ0µr(r)H(r) (2.13)

The constants e0 and µ0 represent vacuum dielectric permittivity (in farads per meter
[F/m]) and vacuum magnetic permeability (in henries per meter [H/m]), respectively. These
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constants are already known and are equivalent to e0⇡ 8.854⇥10�12 [F/m] and µ0 = 4p⇥10�7

[H/m]. The dimensionless quantities er and µr represent the relative dielectric permittivity and
magnetic permeability, i.e., they define the electromagnetic properties of a medium in propor-
tion to the vacuum ones. They can be defined as functions which map their scalar value in
space, either to delimit objects or to represent heterogeneities. In addition to these properties, if
conductive objects are considered, the source J in (2.7) must be rewritten as the sum of an im-
pressed current Ji and an induced one sE defined by Ohm’s law, i.e., J(r) = Ji(r)+s(r)E(r).
The electrical conductivity s (in siemens per meter [S/m]) is the property that describes the
ability of the medium to induce current in the presence of an electric field. From this definition,
(2.7) can be rewritten as:

—⇥H(r) = jwe0erE(r)+s(r)E(r)+Ji(r) (2.14)

= jwe0

✓
er(r)� j

s(r)
we0

◆
E(r)+Ji(r) (2.15)

= jwe(r)E(r)+Ji(r) (2.16)

The quantity e = e0er� js/w is called effective dielectric permittivity and is a complex
scalar.

2.2 Integral Equations

The scattering problem consists of a source Ji(r) which propagates a wave through a
medium with electromagnetic properties eb and µb and in the presence of a non-homogeneous
scatter with properties e(r) and µ(r) (Figure 2.1) (Chew, 1995). In this scenario, the equations
(2.6)-(2.9) are valid for any point r of space. With the aid of (2.13), the equation (2.6) can be
rewritten as:

—⇥E(r) = � jwµ(r)H(r) (2.17)

µ�1(r)—⇥E(r) = � jwH(r) (2.18)

If we take the curl of (2.18), we can use (2.16) to obtain an equation with only the
electric field:

—⇥µ�1(r)—⇥E(r) = � jw—⇥H(r) (2.19)

—⇥µ�1(r)—⇥E(r) = � jw ( jwe(r)E(r)+Ji(r)) (2.20)

Through this, we obtain the vector wave equation:

—⇥µ�1(r)—⇥E(r)�w2e(r)E(r) =� jwJi(r) (2.21)
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Figure 2.1: General scattering problem.

Subtracting both sides of (2.21) by —⇥µ�1
b —⇥E(r)�w2ebE(r), one can obtain:

—⇥
�
µ�1(r)�µ�1

b
�

—⇥E(r)�w2 (e(r)� eb)E(r)

=� jwJi(r)�—⇥µ�1
b —⇥E(r)+w2ebE(r) (2.22)

—⇥µ�1
b —⇥E(r)�w2ebE(r)

=� jwJi(r)+w2 (e(r)� eb)E(r)�—⇥
�
µ�1(r)�µ�1

b
�

—⇥E(r) (2.23)

The right side of (2.23) represents the effective current source J. This equation is anal-
ogous to the problem described in Appendix B. Therefore, similarly to (B.15), the solution of
(2.23) is:

E(r) = jw
Z

V
dr0 Ḡ(r,r0) ·µbJ(r)+w2

Z

V
dr0 Ḡ(r,r0) ·µb

�
e(r0)� eb

�
E(r0)

�
Z

V
dr0 Ḡ(r,r0) ·µb—0 ⇥

�
µ�1(r0)�µ�1

b
�

—0 ⇥E(r0) (2.24)

The first term on the right side of (2.24) is the field produced by the impressed source
of the problem, which is also called the incident field Ei(r). The function Ḡ(r,r0) is the Dyadic
Green’s Function for homogeneous medium (A.17) and it is the impulse response, i.e., the
solution of the equations for a point source (see Appendix A for further information). The
second term represents the field due to the displacement or conduction electric currents, while
the third term represents the field due to the magnetic polarization charges. If we suppose that
there are only non-magnetic materials, i.e., µ = µb = µ0, then we can rewrite (2.24) as:

E(r) = Ei(r)+ k2
b

Z

V
dr0 Ḡ(r,r0) ·c(r0)E(r0) (2.25)
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in which:
c(r) = er(r)

erb
�1� j

s(r)�sb

web
(2.26)

is called the contrast function and kb =wpµ0eb is the background wavenumber (in meters [m]).

2.3 Basic Theory of Inverse Ill-Posed Problems

There is no rigorous mathematical definition of inverse problems. In fact, when someone
defines a problem as the inverse counterpart of some other, this is usually arbitrary. A very
known definition was written by Keller (1976) in which two problems are inverse to each other
if the formulation of each involves the complete solution of the other. Also, as stated by Bertero
and Boccacci (2020), the direct problem used to be the one that had been extensively studied
while the inverse counterpart used to be one that was still poorly understood. From a physical
perspective, for a given phenomenon, if the cause is known and we attempt to know the effect,
then we are dealing with a direct or forward problem. On the other hand, if the effect is known
and the cause is sought, then we are dealing with an inverse problem.

One of the reasons for inverse problems being the least attractive one is that they are
often ill-posed. Hadamard (1923) defined that a mathematical model for a physical problem
would be well-posed or properly posed if three conditions were guaranteed. Mathematically,
let X and Y be normed spaces and K a linear or nonlinear operator in which K : X ! Y , the
equation K {x}= y is well-posed if (Kirsch, 2011):

1. Existence: for each y 2 Y there is at least one x 2 X in which K {x}= y;
2. Uniqueness: for each y 2 Y there is at most one x 2 X in which K {x}= y;
3. Stability: solution x has continuous dependence on y, i.e., for each sequence (xn)⇢ X in

which K {xn}!K {x} when n! •, follows xn! x when n! • .
When a problem does not satisfy at least one of these conditions, then it is called ill-

posed or improperly posed. However, when any of them is violated, it is possible to adopt some
strategies so that the posedness conditions are fulfilled. For example, when there is no solution,
the space of solutions can be enlarged so that the respective criterion is satisfied. When there are
many solutions, then there may be a lack of information which could reduce space and ensures
uniqueness. However, when the problem is not stable, then it is practically impossible to find a
solution unless a new information about its form is added. As stated by Lanczos (1961), when
information is lacking, there is no mathematical trickery that can fix it.

Besides, the conditions of existence and uniqueness depend only on the nature of the
spaces and the operators. The stability condition also depends on whether the operator K : X!
Y is surjective. Continuity of the inverse operator K

�1 :Y!X is also relevant information. For
example, an inverse operator K

�1 is automatically continuous if K is linear and continuous
and X and Y are Banach spaces (Theorem 9). Furthermore, if K is a continuous and compact
operator, the inverse problem is ill-posed unless X is of finite dimension (Colton and Kress,
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2019).
The addition of information to solve ill-posed problems can be achieved through regu-

larization strategies. In problems where X and Y are Hilbert spaces, K is an operator that is
linear, compact1, and one-to-one; and y 2 Y is not known except for an error d > 0 such that:

||y� yd || d (2.27)

where yd 2 Y .
The equation K {xd}= yd usually has no solution since yd is not in the range K (X) of

X . So, the goal would be to determine a solution xd 2 X that approximates x 2 X . In addition,
xd must depend continuously on the data yd . Therefore, the objective is to construct a linear
and bounded operator Ra : Y ! X that is an approximation of K

�1, i.e.:

lim
a!0

Ra{y}= x, 8x 2 X (2.28)

In other words, the Ra{K {·}} operation is such that it converges pointwise to an iden-
tity operator. Through this definition, xa,d = Ra{yd} is an approximation to the solution x
of K {x} = y. A more in-depth discussion can be found in books on functional analysis and
regularization strategies (Kirsch, 2011; Lebedev et al., 1996).

2.4 The Eletromagnetic Inverse Scattering Problem

So far, the fundamentals for EISP have been introduced. This section presents the prob-
lem by describing several possible formulations, both in the general three-dimensional repre-
sentation and in a particular two-dimensional case (Transverse Magnetic mode). In addition,
discussions about important aspects of the problem are elaborated, such as the vector spaces of
functions, uniqueness, stability, non-linearity, and degrees of freedom.

2.4.1 Formulations

The equation (2.25) describes the total electric field through the sum of an incident
component and another one caused by induced currents. This latter component is called the
scattered field Es. Particularly, (2.25) can be rewritten as:

E(r) = Ei(r)+Es(r) (2.29)

where:
Es(r) = k2

b

Z

V
dr0 Ḡ(r,r0) ·c(r0)E(r0) (2.30)

1In few words, the compactness of an operator means that its has infinitely small singular values accumulating
at zero. A more precise definition is available at Theorem 16.
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When the contrast function c and the incident field Ei are known within a region V ,
the total field E can be determined using equation (2.25). This problem is called the forward or
direct problem and the equation (2.25) is an example of a Fredholm Integral Equation of Second
Kind (Polyanin and Manzhirov, 2008). On the other hand, if the scattered field Es is known at
one or a set of points r, usually outside V , equation (2.30) can be used to determine c . We call
this problem the Electromagnetic Inverse Scattering Problem (EISP). However, it is necessary
to note that the total field in V is also unknown and depends on c . Thus, EISP is a non-linear
problem.

In EISPs, equation (2.30) is called data equation, since it relates the problem data (Es)
with the unknown variables (c and E). This equation belongs to a class called Lippman-
Schwinger integral equations (Lippmann and Schwinger, 1950). It can be written in the form
of a non-linear operator:

Es(r) = L
D�c(r0),E(r0)

 
, r /2V, r0 2V (2.31)

The equation (2.25) is also used in EISPs and is known as the state equation. It is a
relationship between unknown variables (c and E) with a known one which is a general entry
for the problem (Ei). It is also possible to write (2.25) in terms of an operator:

Ei(r) = E(r)�L
S {c(r),E(r)} ,r 2V (2.32)

Frequently, this equation is used in situations where r 2 V , i.e., the L
S operator can

involve singularities. However, there are approaches to address singularities in this equation
(see Appendix A section A.2).

Alternatively, the EISP formulation in terms of the contrast source Jeq(r) = c(r)E(r) is
also widely found in the literature van den Berg and Kleinman (1997):

Es(r) = k2
b

Z

V
dr0 Ḡ(r,r0) ·Jeq(r0) (2.33)

c(r)Ei(r) = Jeq(r)� k2
bc(r)

Z

V
dr0 Ḡ(r,r0) ·Jeq(r0) (2.34)

The advantage of this type of formulation is that the L
D and L

S operators are linear.
However, there are still two unknown variables in the problem (c and Jeq) that are related in a
non-linear fashion in (2.34).

There are alternative forms of writing the integrals in (2.25) and (2.30) through manipu-
lating the derivative operators of dyadic Green’s function. These kinds of manipulations can be
convenient to facilitate the computational implementation of integral equations. A very com-
mon manipulator is to move one of the — operators within Green’s function to the integral. The
advantage of this technique is that it reduces the numerical quadrature error. As stated in section
4.4.1 of Chew (2009), if we consider equation (A.12), which represents the integrals in (2.25)
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and (2.30), the integral can be rewritten as:

Z

V
dr0g(r0 � r)


Ī+ —0—0

k2
b

�
·c(r0)E(r0) =

Z

V
dr0g(r0 � r)c(r0)E(r0)

+
—
k2

b

Z

V
dr0g(r0 � r)—0 ·c(r0)E(r0) (2.35)

Alternatively, instead of the equation being written in terms of a tensor product of the —
operator, it can also be written in terms of a vector product. This formulation can be interesting
for certain forms of discretization of the equation. As described by Chew (2009), the integral
equation can be written as:

e(r)E(r) = Ei(r)�—⇥
Z

V
dr0g(r0 � r)—0 ⇥c(r0)E(r0) (2.36)

Jeq(r) = p(r)Ei(r)+ p(r)
✓

k2
b

Z

V
dr0Ḡ(r,r0) ·Jeq(r0)� fd(r) · Ī

◆
(2.37)

Recently, a new formulation has received the attention of the literature. Taking into ac-
count (2.34), Zhong et al. (2016) proposed to multiply both sides by a function b (r) [b (r)c(r)+1]�1

to obtain:

b (r)Jeq(r) = R(r)b (r)Jeq(r)+R(r)


Ei(r)+ k2
b

Z

V
dr0Ḡ(r,r0) ·Jeq(r0)

�
(2.38)

where R(r) = b (r)c(r) [b (r)c(r)+1]�1 is a modified contrast function which must respect
the condition b (r)c(r)+1 6= 0. This formulation is based on the Contracted Integral Equation
(Hursán and Zhdanov, 2002; Pankratov et al., 1995) which is generally used to solve the forward
problem. The b function is chosen arbitrarily so that (2.38) represents a family of integral
equations, which aggregates other formulations in the literature such as the Contrast Source-
Extended Born integral equation (Catapano et al., 2007a; D’Urso et al., 2010; Isernia et al.,
2004). The main differences between (2.38) and (2.34) are (i) the term R(r)b (r)Jeq(r) is a
term of local effect while Jeq is of global one; (ii) through an appropriate choice of b (r) it
is possible to make local wave effects dominate over global ones, which is very important for
problems with strong scatterers2 which increase the non-linearity of the problem through multi-
scattering effects. However, the optimal choice of b (r) is still an open problem, as stated by the
authors. They defined b (r) as a constant function and, in addition, other studies followed the
same strategy, such as (Zhong et al., 2020).

2Strong scatterers are objects whose contrast-size ratio is such that the non-linear condition of the problem
becomes more intense. For example, high-contrast objects can be addressed with some efficiency if their size,
proportional to the wavelength, is small enough. After a certain size, the inverse problem becomes harder to be
solved. This subject will also be discussed in the following sections and chapters.
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2.4.2 The Two-Dimensional Problem

If it is possible to assume that the object to be reconstructed can be approximated by an
infinite cylinder on the z axis, then (2.25) can be rewritten as a two-dimensional problem, i.e.,
where the quantities vary only in the x and y coordinates of the Cartesian space (Figure 2.2).
In addition, if we assume a magnetic transverse problem in z (TMz), the electric field vectors
will be reduced to just their z component. Thus, if we define rrr = xx+ yy and denote S a cross
section area in V , then equation (2.30) can be rewritten as:

Scatterer cross section

y

x

z

S

Infinite cylinder

Figure 2.2: Infinite cylinder with inhomogeneous cross section.

Esz(rrr)z = k2
b

Z

S

Z •

�•
dz0drrr 000Ḡ(r,r0) ·c(rrr 000)Ez(rrr 000)z (2.39)

= k2
b

Z

S

drrr 000
"Z •

�•
dz0
✓

Ī+ ——
k2

b

◆
�e jkb|r�r0|

4p|r� r0|

#
·c(rrr 000)Ez(rrr 000)z (2.40)

The integral over z on the right side of equation (2.40) is known (Balanis, 2012):

Z •

�•
dz0
✓

Ī+ ——
k2

b

◆
e jkb|r�r0|

4p|r� r0| =
j
4

H(2)
0 (kb|rrr�rrr 000|) (2.41)

where H(2)
0 is the Hankel function of the second kind. Thus, (2.40) can be rewritten as:

Esz(rrr) =�
jk2

b
4

Z

S
dS0H(2)

0 (kb|rrr�rrr 000|)c(rrr 000)Ez(rrr 000) (2.42)
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Similarly, equations (2.25), (2.33), (2.34), and (2.38) can be rewritten as:

Ez(rrr) = Ezi(rrr)�
jk2

b
4

Z

S
dS0H(2)

0 (kb|rrr�rrr 000|)c(rrr 000)Ez(rrr 000) (2.43)

Esz(rrr) = �
jk2

b
4

Z

S
dS0H(2)

0 (kb|rrr�rrr 000|)Jzeq(rrr 0
00) (2.44)

c(rrr)Ezi(rrr) = Jzeq(rrr)+
jk2

b
4

c(rrr)
Z

S
dS0H(2)

0 (kb|rrr�rrr 000|)Jzeq(rrr 0
00) (2.45)

b (rrr)Jzeq(rrr) = R(rrr)b (rrr)Jzeq(rrr)

+ R(rrr)


Ezi(rrr)�
jk2

b
4

Z

S
dS0H(2)

0 (kb|rrr�rrr 000|)Jzeq(rrr 0
00)

�
(2.46)

Recently, Bevacqua and Isernia (2021a) proposed to decompose the Hankel function in
two terms using the known identity H(2)

0 (x) = J0(x)+Y0, where the Y0 is the zero order Bessel
function of second kind. Then, (2.35) might be rewritten as:

c(rrr)Ezi(rrr) = Jzeq(rrr)+
jk2

b
4

c(rrr)
Z

S
dS0J0(kb|rrr�rrr 000|)Jzeq(rrr 0

00)

+
jk2

b
4

c(rrr)
Z

S
dS0Y0(kb|rrr�rrr 000|)Jzeq(rrr 0

00) (2.47)

The first advantage in (2.47) is that the first integral, which does not exhibit singularity,
can be easily computed from the available scattered field data. Its meaning is the contribution of
main spectral component of the radiating currents to the total field in S. The second advantage
is the potential to mitigate the nonlinearity condition of the problem (see Subsection 2.4.4 for
more information). The authors also provides a straightforward procedure to compute the first
integral and a discretization formula to address the second integral.

2.4.3 Vector spaces and operator properties

The c(r) function is continuous by parts since it represents the dielectric properties
of the media. Therefore, c is an integrable and differentiable function except at the interface
between media. The function which represents the total electric field, in three-dimensional
problems, may have discontinuities in its components due to interface conditions. However,
this does not happen in two-dimensional problems, since the Ez component is always perpen-
dicular to the normal defined on the interface between the media. Either way, the field is always
integrable and differentiable. This is also true for the scattered field. However, it is generally
measured in a homogeneous media, i.e., it does not usually involve discontinuities.

Taking into account (2.33), the set of all scattered fields can be defined in terms of a
linear space of analytical functions with exponential growth at infinity and regular within a
subdomain of the measurement region D, which is external to the scatterer domain (Bucci and
Franceschetti, 1989). These functions are uniformly bounded in this subdomain since the equiv-
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alent current Jeq is uniformly bounded. In other words, since the kernel of (2.33) is analytical
(except at singularities), this operator is compact, and therefore, the image of any bounded set is
pre-compact (Bucci and Franceschetti, 1989). It is also possible to reach the same conclusions
if we assume that the total field within the scatterer is uniformly bounded, provided we equip
the defined c space with the L•norm and the E space with the L2 norm. This is consistent since
the contrast and the incident field are limited. Consequently, the equivalent current also belongs
to a bounded set and the scattered field belongs to a pre-compact one. Furthermore, since the
inverse operator of a compact one cannot be continuous, then the inverse problem is ill-posed.

2.4.4 Uniqueness, Stability and Nonlinearity

As discussed in Section 2.3, three criteria need to be satisfied for a problem to be consid-
ered well-posed. EISP is ill-posed because it does not meet the stability criterion. The condition
of uniqueness is considered only in some theoretical analyzes, i.e., in practical situations, the
problem does not usually have a single solution. In addition, the problem is non-linear, which
provides other aspects to the problem.

As demonstrated by Colton and Päivärinta (1992), the uniqueness of the relative per-
mittivity for a given distant field pattern is guaranteed under certain conditions, among them:
a fixed number of wavenumber, all directions of incidence, and all polarizations of the field
incident. Therefore, the existence condition is also fulfilled. However, in practical situations,
all of this information is not always available. It is also worth noting that there are situations
for which uniqueness is not guaranteed from an analytical point of view, such as, problems in
which permittivity and permeability can be zero or infinite.

Even if a sufficient amount of information is available for uniqueness, the relationship
between known and unknown variables is not continuous (Chen, 2017). As already demon-
strated in the literature (Caro, 2010; Stefanov, 1990), for a problem involving dielectric scatter-
ers, if the error in the known data is at most d , then the worst scenario of the error in the solution
is in the order of ln |d |�s, where 0 < s < 1. This is known as a problem stability estimate and,
when d ! 0, by the L’Hôpital rule, the error order increases dramatically. This type of situ-
ation is known in the literature as an exponential or severely ill-posed problem. This type of
condition cannot change if we have infinite field measurements. However, stability can increase
with some strategies, such as, for example, increasing operating frequencies (Bao et al., 2015;
Isakov et al., 2016; Nagayasu et al., 2013).

As stated earlier, the relationship between contrast and scattered field is not linear since
there are mutual interactions between induced currents. Therefore, we cannot interpret the field
as a linear superposition of individual responses. Besides, the nonlinearity of the problem is
not of the convex kind, i.e., from the optimization point of view, there may be multiple local
minima which can cause algorithms to get trapped in false solutions (Bucci and Isernia, 1997;
Chen, 2017). Therefore, finding the exact solution becomes more complex.
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A deeper explanation on non-linearity is found in Bucci et al. (2001). The authors
developed the Degree of Nonlinearity (DNL) which is indicator to how difficult is solving the
correspond EISP. Considering the state equation in the operator (2.32), the total field Ez may be
rewritten as:

Ez(r) =
⇣
I �L

S{c(r)}
⌘�1

Ei(r) (2.48)

where I is the identity operator and

L
S{c(r)}=�k2

b

Z

V
dr0Ḡ(r,r0) ·c(r0).

When the L2-norm over L
S{c(r)} is lower than 1, the inverse operator is approximated

by Neumann series, i.e.:

⇣
I �L

S{c(r)}
⌘�1

= I +L
S{c(r)}+

⇣
L

S{c(r)}
⌘2

+ · · ·+
⇣
L

S{c(r)}
⌘n

+ · · · (2.49)

Then, Bucci et al. (2001) defined DNL indicator as ||L S{c(r)}||L2 . They observed
that, the smaller than 1 DNL is, the stronger linear approximation is. As DNL tends to 1, a
polynomial relation holds true between data and unknowns. The larger the order of polynomial
is, the larger the number of local minima. When DNL is greater than 1, then a non-polynomial
relation holds true. Therefore, the larger the DNL, the larger overall difficulty of the problem
due its nonlinearity. In these cases, the possible number of local minima in respect to some
cost functional can be higher, which increases the difficulty of finding the global minimum
that defines the solution of the inverse problem. Moreover, the indicator is also applied to the
two-dimensional case (2.43), the Contrast Source Integral Equation (2.45), its Extended-Born
version (2.46), and when the Green’s function is decomposed (Bevacqua and Isernia, 2021a;
D’Urso et al., 2010). In D’Urso et al. (2010), the authors provide criteria for choosing between
(2.45) and (2.46). In Bevacqua and Isernia (2021a), the authors show that the Green’s Function
Decomposition formulation has a much lower growth of DNL than the traditional Contrast
Source Integral (2.45) when the scatterer size increases. Bevacqua and Isernia (2021c) showed
that, for certain configurations of scatterers and values of b in (2.38), the DNL can be drastically
reduced (mainly when b � 2). The authors also showed significant reductions in the degree of
non-linearity when the Y0 (2.47) and NIE (2.38) formulations are combined (Bevacqua and
Isernia, 2021b). For b = 6, the results showed less DNL growth as the scatterer grew when
compared to the other formulations.

2.4.5 Degrees of Freedom

From an analytical point of view, two fields are distinguishable when their definitions
are distinct from each other. However, when these physical quantities differ very little from each
other, they can be indistinguishable in practice. Many factors can contribute to the impossibility
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of distinguishing fields, such as, for example, noise, dynamics of measurement mechanisms,
precision, and numerical errors. Based on the definition of the concept of distinction, it is
possible to define different states of the system, and with that, the notion of a minimum number
of independent parameters that can describe the system to a certain precision. This issue plays
an important role in EISPs since scattered fields that are considered indistinguishable will have
identical reconstructions which will not always represent the investigated media well.

In the first work on the subject, Bucci and Franceschetti (1989) showed that the number
of Degrees of Freedom (DoF) in a scattered field is essentially equal to the Nyquist number
defined in proportion to the dimensions of the source and observation regions. In particular, the
Nyquist N0 number was defined as:

N0 =
2SW0

p
⇡ 2Ska

p
(2.50)

where S is half the length of the observation domain, W0 is the signal bandwidth, k is the source
wavenumber and a is the maximum radius of the domain that the scatterers occupy. This,
then, would be the minimum number of parameters (information) necessary to represent the
spread field with a certain precision. The authors also concluded that a sample interpolation at
equidistant points would be a practically optimal reconstruction of the scattered field.

Subsequently, Bucci and Isernia (1997) evaluated the dimension of the data space which
is consistent with a certain contrast space configuration. Their analysis is based on the fact that
only a finite-dimensional representation of the contrast can be reconstructed. This assessment
was made for both single and multiple cases. In the case of simple incidence, the authors
realized that the relationship between amount and value of kernel eigenvalues in (2.33) behaves
similarly to the step function, i.e., as the number of eigenvalues grows, their values fall sharply
from a certain threshold. Also, the larger the scatterer, the more sudden the fall. This behavior is
also observed when we consider the approximation error, which allows us to identify the number
of degrees of freedom by the number of eigenvalues for which the approximation error exceeds
a certain established threshold. For spherical sources and spherical (concentric) observation
surfaces, if kba� 1, then DoF is approximated by:

DoF ⇡ (ka)2 (2.51)

In a two-dimensional case of concentric circles for circular sources:

DoF ⇡ 2ka (2.52)

Considering multiple incidences, the authors stated that the number of independent pa-
rameters must not be greater than DoF2/2, where DoF is the number of degrees of freedom
for simple incidence. In their experiments, the authors did not observe a significant difference
between a 32⇥ 32 and a 36⇥ 36 scattered matrices, considering a low contrast circular object
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with a diameter of 5lb (DoF ⇡ 32).
Chew et al. (1994) also discussed this issue. Firstly, they demonstrated why solving

(2.33) for Jeq and evaluating E and c through (2.25) and Jeq/E, respectively, is not an ade-
quate approach. Although it seems attractive since there is no iteration process, the solution
in practical situations is not unique, as discussed in Subsection 2.4.4. One of the solutions is
due to non-radiating sources which are also inverse solutions to the Green’s function. The non-
radiating solution is due to the non-trivial null space in (2.33), i.e., there is a non-trivial solution
for Es = 0. Consequently, if a unique solution to (2.33) is obtained (e.g., minimum norm so-
lution through pseudo-inverse method (Ney et al., 1984)), the null space solution is eliminated.
Even though, it does not contribute to the scattered field, it does contribute to the total field
within the scatterer. Therefore, without the null space solution, the total field obtained by the
application of cE = Jeq in (2.25) and the following contrast function estimation by Jeq/E will
not be correct.

Second, the authors stated that a very large number of measurements will not make the
null space smaller, which agrees with Bucci and Franceschetti (1989) and Bucci and Isernia
(1997). In addition, the difference in the dimensionality between the measurement and image
domains is also a practical obstacle for raising the number of measurements. The authors called
the growth of linear dependency as the number of measurements increases as the law of dimin-
ishing return. Their explanation is based on the high-spatial-components of the induced current
which generates evanescent waves that decay fast away from the scatterer and are very small at
the measurement space. The decay is also related to the nature of the Green’s function which
can be compared to a low-pass filter. These components also contributes to the null space.
Through the Fourier analysis of the scattered field, the authors came to the same conclusion as
Bucci and Franceschetti (1989) about the Nyquist number as upper bound of sampling rate.

Finally, some efforts have been made towards a numerical approach for computing DoF.
Lin et al. (2021) proposed to modify the Green function taking into account the maximum
contrast value and evaluate DoF based on the singular values of the Green function. When the
maximum contrast is not available, then it is assumed that the contrast tends to infinity and a
new modification for the Green function is formulated.

2.5 Conclusion

This chapter presented a brief discussion of the theoretical aspects of EISP. Section 2.1
introduced the physical quantities and their most basic relations taking into account a model
with linear, isotropic, non-dispersive, and non-magnetic materials. Section 2.2 presented the
development of the integral equation (2.25) that is the basis for the problem.

Based on the definition proposed by Hadamard (1923), Section 2.3 discussed what is an
an ill-posed inverse problem through the criteria of existence, uniqueness, and stability of the
solution. The section also presented the general formulation of regularization operators using
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equation (2.28).
Section 2.4 defined the electromagnetic inverse scattering problem by presenting three-

dimensional formulations through equations (2.30), (2.33)-(2.38); and the two-dimensional for-
mulations based on the TMz mode described through equations (2.42)-(2.46). Besides, the
properties of the vector spaces and operators were discussed. It has also been shown that the
problem can have a unique solution in some situations which are hardly possible in practice.
Nevertheless, even when there is a unique solution, the problem is still ill-posed for reasons of
instability whose explanation can be demonstrated through the theory of inverse operators of
compact ones. Furthermore, instability can be quantified through the worst-case estimate which
is exponential for the problem. In addition to these factors that contribute to the complexness
of the problem, non-convex non-linearity is an important feature that can cause optimization
algorithms to be trapped in local minima which may represent spurious images. Finally, the
degrees of freedom of the problem were defined using (2.52), which is an important measure
for determining the necessary amount of observations of the scattered field considering a given
configuration of the problem.
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Chapter 3

Methods Overview

Since the inverse problem is ill-posed and nonlinear, analytical approaches are usu-
ally not considered. Due to such complexity numerical approaches are necessary to obtain a
solution. This chapter aims to provide a comprehensive review of the various methods and
techniques used to address the inverse problem.

Section 3.1 presents a general overview of the problem domain, followed by a discussion
on the different approaches to discretization of the equations for the two-dimensional problem
in Section 3.2. In Section 3.3, methodologies for a linear approach to the problem are pre-
sented. Regularization methods, which are used after linearization of the integral equation, are
discussed in Section 3.4.

Section 3.5 focuses on qualitative methods, which are used when only the shape of the
scatterers needs to be recovered. The two classes of quantitative methods are presented in the
subsequent sections, i.e., deterministic methods in Section 3.6 and stochastic methods in Section
3.7. These sections provide a bibliographic review of the main methods, strategies, and ideas
proposed in the literature.

The chapter also emphasizes the application of Deep-Learning methods, which has re-
cently gained significant attention in the literature, as discussed in Section 3.8. Lastly, a brief
conclusion is presented in Section 3.9 to summarize the main points covered in the chapter.

3.1 Domain Definition

All the research conducted in this work will presuppose a two-dimensional TMz prob-
lem with linear, isotropic, non-dispersive and non-magnetic materials. Therefore, (2.42)-(2.46)
will be the equations that will describe the relationships between fields, source and medium.
However, before entering the methodologies, it is necessary to adequately define the problem
domain, i.e., the geometry of the spaces where all variables and constants are defined. These
definitions will be the foundation for all the methodologies described in this work.

Figure 3.1 describes the geometry of the problem. The scattered field Ezs is defined over
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a circle centred on the origin of the Cartesian axes whose radius is denoted by RO, and the angle,
by q . This circle is immersed in a homogeneous medium characterized by the electromagnetic
properties eb, sb, and µb. The vector rrr in (2.42)-(2.46) can be written as:

rrr = RO cosqx+RO sinqy (3.1)

The state-space S is the rectangular region centred at the origin on the axis of coordinate
whose lengths are equal to LX and LY . This region represents the image to be reconstructed.
Therefore, the variables Ez, er, and s are defined within them. The last two are related to the
contrast function c through (2.26).

Finally, the incident field Eiz will be represented by a plane wave known throughout the
problem space. The amplitude of this wave will be denoted by E0, while its incidence angle
concerning the Cartesian axis will be denoted by f . Therefore, the incident field can be written
as:

Eiz(rrr) = E0e� jkb·rrr (3.2)

where kb = |kb|cosfx+ |kb|sinfy is the wavenumber vector. Other forms of incident waves
are possible and compatible with the methodology described throughout this chapter.

Data-space D will be defined as a two-dimensional domain as follows:

D := {(q ,f) : q ,f 2 [0,2p]} (3.3)

Therefore, D is a region that relates the angles in which the scattered field is defined
and those of incidence. The scattered field varies according to q and according to the angle of

Figure 3.1: Problem geometry.
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incidence (f ) since the field scattered is the result of the interaction of the incident field with the
scattering object. So, from now on, we will say that Ezs is a function defined in the D domain,
i.e., Ezs(q ,f). This definition would also be possible with incident waves due to infinitesimal
impressed sources in a circular arrangement.

From those definitions, (2.42)-(2.46) will be rewritten as:

Esz(q ,f) = �
jk2

b
4

Z

S
dxdy GD

2D(q ,x,y)c(x,y)Ez(f ,x,y) (3.4)

Ez(f ,x,y) = Ezi(f ,x,y)

�
jk2

b
4

Z

S
dx0dy0 GS

2D(x,y,x
0,y0)c(x0,y0)Ez(f ,x0,y0) (3.5)

Esz(q ,f) = �
jk2

b
4

Z

S
dxdy GD

2D(q ,x,y)Jzeq(f ,x,y) (3.6)

c(x,y)Ezi(f ,x,y) = Jzeq(f ,x,y)

+
jk2

b
4

c(x,y)
Z

S
dx0dy0GS

2D(x,y,x
0,y0)Jzeq(f ,x,y) (3.7)

b (x,y)Jzeq(f ,x,y) = R(x,y)b (x,y)Jzeq(f ,x,y)+R(x,y)


Ezi(f ,x,y)

�
jk2

b
4

Z

S
dx0dy0 GS

2D(x,y,x
0,y0)Jzeq(f ,x0,y0)

�
(3.8)

where1

GD
2D(q ,x,y) = H(2)

0 (kb

q
(RO cosq � x)2 +(RO sinq � y)2) (3.9)

GS
2D(x,y,x

0,y0) = H(2)
0 (kb

q
(x� x0)2 +(y� y0)2) (3.10)

The choice for such geometry is to be as simple as possible since the intention is to avoid
any influence that any specific characteristic can perform. The advantage is that it is simpler for
the definition of classical discretization formulas. On the other hand, it may not represent most
of the real problems. However, this is not the goal of the thesis.

3.2 Discretization

In practical situations, the scattered field Ezs is known only at a set of points in D. Fur-
thermore, it is necessary to adopt some discretization to solve (3.4)-(3.8) numerically. In the
context of numerical methods for differential equations, the discretization is made either from

1The reader should have noticed that, unlike other works in the literature (Chen, 2017), we will use the letter
D for the region of the scattered field and the letter S for the image region. It is a choice made so that the G2D
superscript indicates whether the equation is data or state.
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the weak or from the strong forms of the equations (Liu, 2009). An example of a methodology
based on the strong form is the Finite Difference Method, where the derivatives are approx-
imated by differences between finite nodal values (Taflove and Hagness, 2005; Yee, 1966).
Regarding the weak one, there is a class of methods based on weighting the residuals of the
equations. It is called the Method of Weighted Residuals (MWR) (Fletcher, 1984). In these
methods, for a given differential equation:

K {u}= 0 (3.11)

the approximate solution ua is written as follows:

ua(r) = u0(r)+
N

Â
j=1

a jy j(r) (3.12)

where u0 is a function that satisfies the boundary conditions, a j is an unknown constant, and
y are analytical functions usually called trial functions. The residual function Rua is defined in
terms of the application of this approximate solution in (3.11), i.e.:

K {ua}= Rua (3.13)

Hence, MWR is based on determining the coefficients a j’s by solving the set of equa-
tions:

hRua ,wk(r)i= 0, k = 1, · · · ,N (3.14)

where wk’s are analytical functions known as weight functions or test functions. These functions
must be independent of each other. Furthermore, if they are part of a base, when N tends to
infinity, this is equivalent to saying that Rua must be orthogonal for each member of the base
functions. However, this also implies that Rua converges to zero on average.

Similarly, we can apply MWR to integral equations such as (3.4). Considering a nonlin-
ear problem, where Ez and c are unknown, the following approximations will be made:

c(x,y) ⇡
NI

Â
i=1

NJ

Â
j=1

ai j f (x)i (x) f (y)j (y) (3.15)

Ez(f ,x,y) ⇡
NP

Â
p=1

NQ

Â
q=1

NR

Â
r=1

bpqrg
(x)
p (x)g(y)q (y)g(f)r (f) (3.16)

The functions f (x), f (y), g(x), g(y) and g(f) are the trial functions while the coefficients
a and b are unknown. They can be defined everywhere in S or even locally, i.e., some por-
tions of the state space. It should be noted that we are choosing the trial function formulation
f (x,y) = f (x)(x) f (y)(y), but other formulations are possible. Our choice is due our previous
experience with this kind of formulation. From these definitions, we can write the following set
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of equations:

ZZ

D
Ezs(q ,f)w

(q)
u (q)w(f)

v (f)dqdf =

�
jk2

b
4

NI

Â
i=1

NJ

Â
j=1

NP

Â
p=1

NQ

Â
q=1

NR

Â
r=1

ai jbpqr

ZZ

D

ZZ

S

dqdfdxdy


GD
2D(q ,x,y)

f (x)i (x) f (y)j (y)g(x)p (x)g(y)q (y)g(f)r (f)w(q)
u (q)w(f)

v (f)
�
,

u = 1, · · · ,NU , v = 1, · · · ,NV (3.17)

where w(q) and w(f) are the chosen weight functions. These integrals can be rearranged as
follows:

2pZ

0

2pZ

0

Ezs(q ,f)w
(q)
u (q)w(f)

v (f)dqdf =�
jk2

b
4

NI

Â
i=1

NJ

Â
j=1

NP

Â
p=1

NQ

Â
q=1

NR

Â
r=1

ai jbpqr

2pZ

0

df g(f)r (f)w(f)
v (f)

·
LX/2Z

�LX/2

dx f (x)i (x)g(x)p (x)

" LY /2Z

�LY /2

dy f (y)j (y)g(y)q (y)
 2pZ

0

dq GD
2D(q ,x,y)w

(q)
u (q)

�#
,

u = 1, · · · ,NU , v = 1, · · · ,NV (3.18)

As is evident, the integral on f on the right-hand side of (3.18) can be separated from
the others. Each integral results in a scalar. Therefore, each equation in (3.18) can be rewritten
as a sum of coefficients:

Luv =
NI

Â
i=1

NJ

Â
j=1

NP

Â
p=1

NQ

Â
q=1

NR

Â
r=1

ai jbpqrFvrWui jpq (3.19)

in which:

Luv =

2pZ

0

2pZ

0

Ezs(q ,f)w
(q)
u (q)w(f)

v (f)dqdf (3.20)

Frv =

2pZ

0

df g(f)r (f)w(f)
v (f) (3.21)

Wui jpq = �
jk2

b
4

LX/2Z

�LX/2

dx f (x)i (x)g(x)p (x)

" LY /2Z

�LY /2

dy f (y)j (y)g(y)q (y)


2pZ

0

dq GD
2D(q ,x,y)w

(q)
u (q)

�#
(3.22)
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It is also possible to write (3.19) in a matrix form:

L̄LL = W̄WWȲYYF̄FF (3.23)

where:

L̄LL =

2

66666666664

L11 L12 · · · L1NV

L21 L22 · · · L2NV
...

...
...

...
Lu1 Lu2 · · · LuNV

...
...

...
...

LNU 1 LNU 2 · · · LNU NV

3

77777777775

(3.24)

W̄WW =

2

66666666664

W11111 W11112 · · · W1NINJNPNQ

W21111 W21112 · · · W2NINJNPNQ
...

...
...

...
Wu1111 Wu1112 · · · WuNINJNPNQ

...
...

...
...

WNU 1111 WNU 1112 · · · WNU NINJNPNQ

3

77777777775

(3.25)

ȲYY =

2

66666666664

a11b111 a11b112 · · · a11b11NR

a11b121 a11b122 · · · a11b12NR
...

...
...

...
ai jbpq1 ai jbpq2 · · · ai jbpqNR

...
...

...
...

aNINJ bNPNQ1 aNINJ bNPNQ2 · · · aNINJ bNPNQNR

3

77777777775

(3.26)

F̄FF =

2

66666666664

F11 F12 · · · F1NV

F21 F22 · · · F2NV
...

...
...

...
Fr1 Fr2 · · · FrNV

...
...

...
...

FNR1 FNR2 · · · FNRNV

3

77777777775

(3.27)

This is the general form for the discretization of (3.4). The other equations also can be
similarly discretized. It is worth noting that, depending on the discretization, these matrices can
be computationally expensive. They also can be sparse if the functions were defined locally
only. Consequently, the computational cost to calculate the matrices and to solve the system
might become prohibitive. It is also necessary to note that (3.23) is a nonlinear system since the
unknown constants a and b (NINJ +NPNQNR) multiply in NU NV equations.

The difference between the MWR class methods is based on the choice of weight func-
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tions w. The most common ones will be discussed in the following subsections.

3.2.1 The Subdomain Method

In the Subdomain Method, domain D is divided into a finite number of Duv subdomains
that might overlap. Mathematically:

wuv =

8
<

:
1, in Duv,

0, outside, Duv
(3.28)

Thus, the integrals over q and f in (3.17) are calculated only in pieces of D. The
practical effect of this kind of method is to eliminate the contribution of some terms in ȲYY in
which r 6= v. Consequently, the sum in r in (3.19) would not be necessary because only bpqv

would be different from zero for the uv equation.
This kind of formulation is more suitable for differential equation problems since the

domains for weight and trial functions are the same. Therefore, the solution in a subdomain
involves only a few elements of the unknown function and not all of them, as in the case of
EISP. However, the Subdomain method has also been applied to integral equations (Deputat
et al., 2005; Gabbasov and Zamaliev, 2014). This approach is also known in the literature as
the Finite Volume Method, usually obtained by energy conservation principles.

3.2.2 The Collocation Method

The Collocation Method is based on the following choice of the weight function:

wi(x) = d (x� xk) (3.29)

where d is the Dirac Delta function. If we apply this definition in (3.17), the integrals in D
will be eliminated. Thus, the matrix F̄FF becomes the identity matrix and does not need to be
considered in (3.23).

This type of method is widely used in EISP since the scattered field is only available at a
set of sampled points in D in practical situations. One of its forms widely used in the literature
is proposed by Richmond (1965), at which the trial functions are defined as rectangular pulse
functions. This choice is equivalent to dividing the S domain into subdomains where the trial
function corresponding to a subdomain is 1 in its region and 0 otherwise. In other words, this
means that we are assuming that Ez and c are constant within the subdomain. In this case, the
integral in (3.22) can be solved by approximating the subdomain Si j by a circular region. In this
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case, the integral over the Hankel’s function has an analytical solution:

jk2
b

4

Z 2p

0

Z ra

0
H(2)

0 (kbr)r 0dr 0dy 0 =

8
<

:

j
2

h
pkbraH(2)

1 (kbra)�2 j
i
, r 2 Si j,

jpkbra
2 J1(kbra)H

(2)
0 (kbr), r /2 Si j

(3.30)

where ra is the radius of the circular region and might be approximated by
p

DxDy/p in which
Dx and Dy are the dimensions of the subdomain of Si j. Note that (3.30) can also be used for
situations involving singularities, which applies to the state equation (3.5), for example. Another
advantage is that this representation is very suitable for homogeneous scatterers.

Therefore, considering a case where the input data are scattered field samples obtained
through NM measurements for each one of NS incidences and the image to be recovered is
divided into NI⇥NJ elements (pixels), then this is equivalent to the model (3.17) with NU =NM,
NV = NR = NS, NP = NI and NQ = NJ . Therefore, the problem has NINJ(1+NS) unknowns and
NMNS equations. In addition, f (x)i (x)g(x)p (x) = 1 and f (y)j (y)g(y)q (y) = 1 only when i = p and
j = q, respectively. Hence, (3.17) can be rewritten like:

Ezs(qm,fs) =�
jpkbra

2
J1(kbra)

NI

Â
i=1

NJ

Â
j=1

H(2)
0 (kb

q
(RO cosqm� xi)2 +(RO sinqm� y j)2)

c(xi,y j)Ez(fs,xi,y j) (3.31)

Instead of choosing the general notation present in (3.19), we will use a more partic-
ular one that is common in the literature. For this notation, we will useEs

ms = Ezs(qm,fs),
Ei

i js = Ezi(ys,xi,y j), ci j = c(xi,y j), Jeq
i js = Jzeq(fs,xi,y j), bi j = b (xi,y j), Ri j = R(xi,y j) and

Ei js = Ez(fs,xi,y j). Thus, both (3.31) and the application of Collocation Method for (3.5)-(3.8)
can be written as:

Es
ms =�

NI

Â
i=1

NJ

Â
j=1

GD
mi jci jEi js (3.32)

Ei js = Ei
i js�

NI

Â
p=1

NJ

Â
q=1

GS
i jpqcpqEpqs (3.33)

Es
ms =�

NI

Â
i=1

NJ

Â
j=1

GD
mi jJ

eq
i js (3.34)

ci jEi
i js = Jeq

i js +ci j

NI

Â
p=1

NJ

Â
q=1

GS
i jpqJeq

pqs (3.35)

bi jJ
eq
i js = Ri jbi jJ

eq
i js +Ri j

"
Ei

i js�
NI

Â
p=1

NJ

Â
q=1

GS
i jpqJeq

pqs

#
(3.36)
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where:

GD
mi j =

jpkbra

2
J1(kbra)H

(2)
0 (kb

q
(RO cosqm� xi)2 +(RO sinqm� y j)2) (3.37)

GS
i jpq =

8
<

:

j
2

h
pkbraH(2)

1 (kbra)�2 j
i
, i = p and j = q

jpkbra
2 J1(kbra)H

(2)
0 (kb

p
(xi� xp)2 +(y j� yq)2), otherwise.

(3.38)

These equations can also be written in matrix form:

Ēs =�ḠDc̄ccĒ (3.39)

Ē = Ēi� ḠSc̄ccĒ (3.40)

Ēs =�ḠDJ̄eq (3.41)

c̄ccĒi = J̄eq + c̄ccḠSJ̄eq (3.42)

b̄bb J̄eq = R̄b̄bb J̄eq + R̄
h
Ēi� ḠSJ̄eq

i
(3.43)

in which the matrices have the following patterns:

Ēs =

2

66664

Es
11 Es

12 · · · Es
1NS

Es
21 Es

22 · · · Es
1NS...

... . . . ...
Es

NM1 Es
NM2 · · · Es

NMNS

3

77775
Ēi =

2

66666666664

Ei
111 Ei

112 · · · Ei
11NS

Ei
121 Ei

122 · · · Ei
11NS...

... . . . ...
Ei

i j1 Ei
i j2 · · · Ei

i jNS
...

... . . . ...
Ei

NINJ1 Ei
NINJ2 · · · Ei

NINJNS

3

77777777775

(3.44)

Ē =

2

66666666664

E111 E112 · · · E11NS

E121 E122 · · · E11NS
...

... . . . ...
Ei j1 Ei j2 · · · Ei jNS

...
... . . . ...

ENINJ1 ENINJ2 · · · ENINJNS

3

77777777775

J̄eq =

2

66666666664

Jeq
111 Jeq

112 · · · Jeq
11NS

Jeq
121 Jeq

122 · · · Jeq
11NS...

... . . . ...
Jeq

i j1 Jeq
i j2 · · · Jeq

i jNS
...

... . . . ...
Jeq

NINJ1 Jeq
NINJ2 · · · Jeq

NINJNS

3

77777777775

(3.45)
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ḠD =

2

66666666664

GD
111 GD

112 · · · GD
1NINJ

GD
211 GD

212 · · · GD
2NINJ...

... . . . ...
GD

m11 GD
m12 · · · GD

mNINJ
...

... . . . ...
GD

NM11 GD
NINJ2 · · · GD

NMNINJ

3

77777777775

ḠS =

2

66666666664

GS
1111 GS

1112 · · · GS
11NINJ

GS
1211 GS

1212 · · · GS
12NINJ...

... . . . ...
GS

i j11 GS
i j12 · · · GS

i jNINJ
...

... . . . ...
GS

NINJ11 GS
NINJ12 · · · GS

NINJNINJ

3

77777777775

(3.46)

c̄cc =

2

66664

c11 0 · · · 0
0 c12 · · · 0
...

... . . . ...
0 0 · · · cNINJ

3

77775
b̄bb =

2

66664

b11 0 · · · 0
0 b12 · · · 0
...

... . . . ...
0 0 · · · bNINJ

3

77775
R̄ =

2

66664

R11 0 · · · 0
0 R12 · · · 0
...

... . . . ...
0 0 · · · RNINJ

3

77775

(3.47)

Note that c̄cc , b̄bb and R̄ are diagonal matrices, i.e., their elements are different from zero
only on the main diagonal. In addition, specifically in c̄cc , the diagonal elements are nonzero only
at the points where the contrast is different from zero, i.e., where there is a scatterer. Therefore,
the most efficient approach to store this data is a sparse matrix. The same might be valid for
J̄eq, in which the lines corresponding to points where there is no contrast contains only zeros.

It is also worth noting that ḠS is a symmetric matrix whose structure is known as
Blocked Symmetric Toeplitz (Böttcher and Grudsky, 2000). All the diagonal elements are the
same, and there are several equal terms for which the root in (3.38) has the same value, i.e.,
equidistant points assuming a uniform discretization. This kind of structure is crucial because
it allows applying the Fast Fourier Transform (FFT) technique for matrix multiplication. Then,
the computational cost is reduced from O(n2) to O(n logn)2.

This discretization will be assumed both in the methods that will be mentioned soon and
in the investigations conducted. Worth it to point out that other ways of implementing the trial
functions of the Collocation Method are also possible. One of them is the discretization of space
by rectangular or triangular elements in which the trial functions take polynomial forms in some
areas of space and zero in the rest. This kind of discretization is similar to the Finite Element
Method, which addresses differential equations. An example is a bilinear function (Figure 3.2)

2To see how this technique applies to (3.40), (3.42), and (3.43), we suggest reading Appendix D of (Chen,
2017)
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whose definition of f (x)i (x) and f (y)j (y) are expressed by:

f (x)i (x) =

8
>>><

>>>:

x�xi�1
xi�xi�1

, xi�1 < x xi
x�xi+1
xi�xi+1

, xi < x < xi+1

0, otherwise.

(3.48)

f (y)j (y) =

8
>>><

>>>:

y�y j�1
y j�y j�1

, y j�1 < y y j
y�y j+1
y j�y j+1

, y j < y < y j+1

0, otherwise.

(3.49)

Figure 3.2: Bilinear shape function on a rectangular grid.

This function can better represent heterogeneities in the scatterers as well as the electric
field. However, unlike pulse discretization, more elements will contribute to the value of the
function at a given point. This can make the computational cost of calculating the integral (3.22)
more expensive while improving integration accuracy.

Alternatively to the trial functions defined in only pieces of the domain, the Spectral
Methods define them everywhere in the domain. The efficiency of this sort of methodology
depends on a careful choice of the functions, i.e., they need to be a good representation of the
unknown functions. For this reason, applying such a strategy to contrast function discretization
may not be a good choice, especially in the case of traditional geometries. However, this may be
compatible with the representation of the electric field essentially because, in analytical prob-
lems that involve only a single scatterer, the solution is written in terms of complex exponentials
or Bessel’s functions. For example, the functions g(x)p (x) and g(y)q (y) could be chosen in such a
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way so that:

g(x)p (x)g(y)q (x) = H(2)
0 (kb

q
(xp� x)2 +(yq� y)2) (3.50)

This choice example refers to the Minimum Norm Collocation. Theoretically, supposing
a linear inverse problem whose operator K : X !C[a,b] is linear, bounded, and injective of a
space of Hillbert X in a space C[a,b] of continuous functions in [a,b]; then the trial function can
be defined as the one whose norm L2(a,b) is minimum. This solution, in the case of an integral
equation as in (C.5), is the kernel ki(s) = k(ti,s), which belongs to L2(a,b) (Kirsch, 2011).

Nevertheless, exceptional attention to possible singularities needs to be taken. For this
reason, the analytical description and implementation of this kind of method might be more
complex.

3.2.3 The Galerkin Method

Another possibility is to choose the weight function from the same family as the trial
ones, i.e.:

wk(x) = fi(x) (3.51)

This strategy is known in the literature as the Galerkin or Bubnov-Galerkin Method. For
problems modeled from differential equations, the choice of these functions need to meet the
following criteria (Fletcher, 1984):

1. The weight and trial functions are chosen from the same family;
2. Weight and trial functions must be linearly independent;
3. The weight and trial functions must be the first N members of a dense set of functions;
4. The weight and trial functions must satisfy the essential homogeneous boundary condi-

tions exactly.
While the first condition defines the method, the second concerns the relationship between
linearly independent equations and unknown variables.

However, it is necessary to note that, in EISP, the domains of the weight and trial func-
tions are different, i.e., their arguments in (3.51) are unrelated. In addition, it is necessary to
integrate Ezs across the D domain (3.20). This requirement can make the practical application
of the method unfeasible since the scattered field is known only at a finite set of points. An
alternative for this problem is to use an interpolation method. However, this strategy can induce
the inversion to solutions far from the real one.

Finally, we can mention some of the few papers in the literature that used methodologies
based on this type of discretization. Rather than discretizing the integral equation, Zakaria
et al. (2010) applied it to the wave equation (2.25). The differential equation was written in
terms of the scattered field and the source. In addition, the Sommerfield radiation boundary
condition was imposed, modeled with second-order absorption conditions. The authors used
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a non-uniform triangular elements discretization and developed a methodology based on the
Contrast Source Inversion (which will be explained later in the text). Alternatively, Brown
et al. (2019) proposed a hybrid and discontinuous approach to the Galerkin Method to solve
the problem within the scope of the Contrast Source Inversion, which requires fewer degrees of
freedom.

3.2.4 Some Aspects on Discretization

Before concluding the section, two aspects also deserve to be highlighted when dis-
cussing discretization. First, it is necessary to underline that discretization methodologies are
also regularization strategies, as defined in Section 2.3 (Kirsch, 2011). Discretization is an issue
within the scope of projection. Mathematically, a projection operator is defined as follows:

Definition 1. Projection Operator
Let X be a normed space over the field K = R or K = C. Let U ⇢ X be a closed subspace. A
linear bounded operator P : X ! X is called a projection operator on U if

• P{x} 2U, 8x 2 X and
• P{x}= x, 8x 2U.

Within this context, the weight and trial functions are members of finite-dimension sub-
spaces Xn ⇢ X and Yn ⇢ Y , respectively. Then, for a given y 2 Y in which K {x} = y is linear
and one-to-one, discretization is a projection operator Qn : Y ! Yn that solves the equation:

Qn {K{xn}}= Qn{y} (3.52)

for xn 2 Xn. So, let {x̂1, · · · ,x̂n} and {ŷ1, · · · ,ŷn} be bases of Xn and Yn, respectively. The terms
Qn{y} and Qn {K{xn}} can be represented as follows:

Qn{y}=
n

Â
i=1

biŷi, j = 1, · · · ,n (3.53)

Qn {K{xn}}=
n

Â
i=1

Ai jŷi, j = 1, · · · ,n (3.54)

in which bi, Ai j 2K. The linear combination xn = Ân
j=1 a jx̂ j is a solution of (3.52) if and only

if {a1, · · · ,an} 2K
n is a solution of the finite system of linear equations:

n

Â
i=1

Ai ja j = bi, i = 1, · · · ,n (3.55)

In this context, the Collocation Method is an example of a projection method whose op-
erator is called an interpolation one. The Galerkin Method is known as an orthogonal projection
operator. This implies that the error is orthogonal to the approximation space and the solution
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is the best one (minimum error) in that approximation space.
Second, the choice of trial functions, i.e., its shape and size, needs to consider not only

the aspects discussed about degrees of freedom in Subsection 2.4.5 but also a concept in the
literature known as Inverse Crime. As highlighted by Colton and Kress (2019), it is necessary
that, when the experimentation involves synthetic data generated by direct solvers, the latter
must not have connections with the inverse solver. In other words, in an inverse problem of
finite dimension, trivial solutions should be avoided.

The concept can be illustrated through a generic problem where its objective is to recover
a family Gm of contour surfaces with m parameters. For this problem, if we use data synthesized
by a direct resolver M to obtain n input data, such as distant field samples, this is equivalent
to a function g : Rm! C

n. Therefore, if a given surface ∂D 2 Gm is generated from the set of
parameters p0, an inversion method that incorporates the same direct solver M is doing nothing
more than solving the finite dimension problem g(p) = g(p0). Therefore, the ∂D surface will
inevitably be well reconstructed, assuming that m and n are not too big.

Wirgin (2004) brought more contributions to the subject by analyzing three examples
that, although not universal, deepened the understanding of the concept introduced by Colton
and Kress (2019). The conclusions made by Wirgin can be summarized in:

• Regarding the meaning of the lack of connection between a direct solver and an inverse
one, he proposed that its practical meaning is the difference in the number of terms of the
power series representing the forward and inverse solver. That is, if that number of terms
are different, then there would be no connection.

• Wirgin concluded that the more significant difference between both solvers in terms of
their functionals, the larger relative inversion error. That means recovering the parameters
very accurately is possible when the two resolvers are connected.

• Committing the inverse crime also has the practical sense of at least revealing whether
the inverse problem has a unique solution or not.

• When the inverse crime is committed, the solution may not only be the “trivial” one, but
others can also be observed through a robust numerical method system, which would not
necessarily be observed in a situation where the crime is not committed.

Wirgin also criticizes the use of the term “trivial solution” since the objective is, in fact,
to recover the parameters as accurately as possible. In addition, even if his mathematical analy-
sis is based on the reconstruction of a single parameter for a single data, mathematical analysis
for larger problems, including two parameters and two data, becomes much more complicated.
However, he claims that it would be difficult to expect contradictions between their conclusions
for a simple case and those that might be obtained for more complex ones. Finally, in exper-
iments with real data, it does not make sense to worry about inverse crime since, in fact, the
“direct resolver” is unknown. Even that a direct solver represents the physical phenomenon
well, this does not prevent the observation of disturbances in the solution, representing some-
thing false.
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3.3 The Linear Case

Although EISP is non-linear, the study of the linear case is significant because many
methods use strategies based on problem linearization. These strategies can be essential when
defining search directions and initial solutions. In addition, it is possible to use approximations
for the total field in problems where we assume weak scatterers. In this case, the problem
may be approximated to a linear one. The discretization of (3.32) and (3.21) will be used to
discuss them. However, all of these methodologies can be easily adapted to other equations and
discretizations.

3.3.1 Approximated Solutions for Weak Scatterers

When the dielectric properties of a scatterer differ very little from the background, and
its size is not too large, it is considered a weak one (DNL⌧ 1). Under these conditions, it is
possible to approximate the electric field and turn the problem into a linear one. Two classic
techniques address this situation: the Born Approximation (BA) and the Rytov Approximation
(RA). The first is best suited for low frequencies, while the second is more suitable for high
ones.

Born’s series is a methodology that writes the electric field as a series in terms of Green’s
function, contrast, and incident field. Recapitulating the formulas from Subsection 2.4.4, if the
L2(S)-norm ����

Z

S
dr0Ḡ(r,r0)c(r0)

����< 1,

then:
E(r) =

•

Â
n=0

✓Z

S
dr0Ḡ(r,r0)c(r0)

◆n
Ei(r) (3.56)

Following the matrix form (3.40), (3.56) can be written in a discretized fashion as:

Ē =
•

Â
n=0

(ḠSc̄cc)nĒi (3.57)

The First-Order Born Approximation is a single-scattering approximation obtained from
the truncation of the Born series (3.56) in its first term n = 0, i.e.:

E(r)⇡ Ei(r) (3.58)

Although it even violates the energy conservation principle, the reciprocity is still valid
because of the symmetry of dyadic Green’s function (Chew, 1995). In addition, if the size of
the scatterer is of the order L in which kbL⌧ 1, then dyadic Green’s function (A.17), contrast
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and volumetric integral can be approximated by (Chew, 1995):

Ḡ(r,r0)⇡
✓

1+
1

k2
bL2

◆
1
L

(3.59)

k2(r)� k2
b ⇡ k2

bDer (3.60)
Z

D
dr0 ⇡ L3 (3.61)

where Der = er/erb�1. Thus, (2.30) is approximated by:

Es(r)⇡
⇥
(kbL)2 +1

⇤
DerEi(r) (3.62)

However, in situations where the frequency is higher, the field variation inside the object
is dominant. In these cases, the operator —— is approximated by k2

b and the field phase within
the scatterer needs to be taken into account. Assuming that the field inside the scatterer is a
superposition of plane waves, the approximation in (3.58) needs to be fixed to:

E(r)⇡ Ei(r)e j(k�kb)·r (3.63)

This approximation depends on (k� kb)L⌧ 1, which is a stronger constraint than the
previous one.

Rytov’s First-Order Approximation is based on a reduction in the vector equation by a
scalar equation. This reduction consists of replacing the total field by a complex exponential
whose phase is a function, i.e.:

Ez(r)⇡ Eiz(r)y(r) (3.64)

in which the first-order phase y(r) is based on the scattered field of (2.30) calculated by the
Born Approximation (3.58), i.e.:

y(r) = 1
Ei(r)

Z

S
dr0g(r,r0)Eiz(r0)c(r0) (3.65)

When we apply an analysis similar to (3.59)-(3.61), it is possible to demonstrate that
y(r) ⇡ k2

bL2Der when kbL! 0 (Chew, 1995). This condition is equivalent to (kbL)2Der ⌧ 1.
On the other hand, if the frequency tends to infinity, then y(r) ⇡ kbLDer. The condition for
this approximation is Der ⌧ 1, which is much weaker than the previous one. Therefore, this
approach is more suitable for high frequencies.

3.3.2 The Back-Propagation Method

The Back-Propagation (BP) Method is noniterative algorithm which is able to provide
a solution for the contrast image. Such solution is often used as initial guess in many methods.
The method is suitable for arbitrary incident fields, near and far fields measurements. BP is
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based on three steps: (i) estimate the induced current; (ii) compute total field in S through the
state equation; and (iii) determine the contrast image by relation between total field and induced
current. If the induced current is assumed to be proportional to the back-propagation field, then
the induced current is evaluated according to:

J̄eq = gḠD⇤Ēs (3.66)

where the superscript ⇤ is the operator’s adjoint and numerically given by the conjugated-
transposed. The parameter g is a complex value that is chosen to minimize the cost function
defined as the quadratic error in the scattered field:

F(g) = ||Ēs� ḠD(gḠD⇤Ēs)||2 (3.67)

The minimum of (3.67) might be obtained analytically and is given as follows:

g =
hĒs,ḠDḠD⇤Ēsi
||ḠDḠD⇤Ēs||

(3.68)

where h·,·i is the inner product, which is numerically computed as the product between the
transpose of the first argument and the complex conjugate of the second one.

Once the induced current is obtained, then the total electric field might be evaluated
according to (3.40) replacing c̄ccĒ by J̄eq. Finally, the contrast might be evaluated according to:

ci j =

NS
Â

s=1
Jeq

i jsE
⇤
i js

NS
Â

s=1
|E⇤i js|2

(3.69)

If it is known that only lossless scatterers are present, then the imaginary part of c̄cc can
be neglected.

3.3.3 Dominant Current Scheme

In nonlinear problems with large number of variables, there may be some unknowns
which are more relevant. Since recovering the induced current might be a hard task when a
limited number of measurements are available, the dominant part of the induced current might
be prioritized. Such strategy is based on the fact that the dominant current contains the most
important features of the unknown scatterers and it is more robust against noise. This is the core
idea behind the Dominant Current Scheme (DCS) (Wei and Chen, 2019a).

When the Singular Value Decomposition is applied to ḠD, the dominant current might
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be evaluated according to:

J̄eq
+ =

L

Â
n=1

ū⇤n · Ēs

xn
v̄ j (3.70)

where ū, v̄, and x are the left, right, and singular value vectors from the decomposition; and
L is an index that limits the singular values in descending order, i.e., the dominant current
is computed taking into account the first L largest singular values. Therefore, the NINJ � L
smallest singular values are neglected and unstable components corrupted by noise are avoided.
However, a compensation for the missing information is also provided, i.e.:

J̄eq
� = F̄ ·aaa (3.71)

where F̄ and aaa are the low-frequency matrices composed by the first m low-frequency Fourier
bases and their corresponding coefficients, respectively. Since aaa is an unknown, some approx-
imation has to be made to complete the scheme. Wei and Chen (2019a) proposed the following
objective-function:

F(aaa) =


||ḠF ·aaa + ḠE||2

||Ēs||2
+

||Ā ·aaa + B̄||2

||J̄eq
+ ||2

�
(3.72)

where ḠF = ḠD · F̄, ḠE = ḠD · J̄eq
+ � Ēs, Ā = F̄� c̄cc · Ḡs · F̄, and B̄ = c̄cc(Ēi + ḠSJeq

+)�Jeq
� .

Based on (3.72), the authors proposed an iterative process to update c̄cc and aaa , starting
by c̄cc = 0. The variable aaa is approximated according to aaa = bggg where:

ggg =

✓
ḠF⇤ · ḠE

||Ēs||2
� Ā⇤ · B̄

||J̄eq||2

◆
(3.73)

b =
Num
Den

(3.74)

Num = �ḠF⇤ · ggg · ḠE

||Ēs||2
+

(Ā · ggg)⇤ · B̄
||J̄eq

+ ||2
(3.75)

Den =
||ḠF · ggg||2

||Ēs||2
+

||Ā · ggg||2

||J̄eq
+ ||2

(3.76)

Then, after using aaa to compute the low-frequency compensation through (3.71), the
following steps are required:

J̄eq = J̄eq
+ + J̄eq

� (3.77)

Ē = Ēi + ḠSJ̄eq (3.78)

ci js =
Jeq

i jsE
⇤
i js

||Ei js||2
(3.79)

In (3.79), it is computed one contrast image for each incidence. The authors had decided
for this based in its application to Convolution Neural Networks. However, a computation
similar to (3.69) might also be used.
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3.4 Regularization Methods

Whenever the total electric field in the state space is known, the inverse problem turns
into a linear one. This may happen when approximating the total field by the incident one
(subsection 3.3.1) or when a forward solver is employed to determine it for a given outdated
contrast image. For a linear problem, regularization methods might be applied to solve an
inverse problem which usually has more unknowns than equations. In the next subsections,
traditional regularization methods will be covered.

3.4.1 The Tikhonov Regularization

Perhaps the most traditional technique for regularizing inverse problems with linear and
limited operators is the Tikhonov Regularization (Kirsch, 2011; Tikhonov, 1963). Not only in
this case but also in underdetermined systems of equations, i.e., where the number of equations
is less than that of variables. In general, the principle of this method is to determine the solution
x 2 X that minimizes ||K {x} = y|| for some norm in Y . If X has a finite dimension and K is
compact, then the minimization problem is also ill-posed.

The Tikhonov Regularization proposes to determine a solution xaT 2X which minimizes
the Tikhonov’s functional JaT

3:

JaT (x) := ||K {x}� y||2 +aT ||x||2 (3.80)

in which aT > 0 is a constant and X and Y are Hilbert spaces. In this case, xaT is the solution
of:

aT xaT +K
⇤{K {xa}}= K

⇤{y} (3.81)

where K
⇤ is the adjoint operator of K . Therefore, the solution xaT can be written in the form

in (2.28) through
RaT := (aT I +K

⇤
K )�1

K
⇤ : Y ! X (3.82)

where I is the identity operator. The linear system (3.81) can also be written as:

(aT I +K
⇤
K )xaT = K

⇤{y} (3.83)

The upper limit of the error for this approximation is known and expressed in terms of
the norm of error in y, i.e., ||y� yd ||  d ; and in terms of a constant D such that ||z||  D,
x = K

⇤{z} 2K
⇤{Y}, and z 2 Y . In this case, if aT (d ) = cd/D for a c > 0, then the error of

3Another possible interpretation for the Tikhonov Regularization was recently proposed by Gerth (2021). The
author has observed that the exact solution is estimated from the range of the adjoint operator and the properties
are derived through the concept of approximate source conditions.
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the solution xaT (d ),d , which is based on these assumptions, follows below (Kirsch, 2011):

||xaT (d ),d � x|| 1
2
�
1/
p

c+
p

c
�p

dE (3.84)

On the other hand, if the auxiliary function z is defined asx=K {K ⇤{z}}2K {K ⇤{X}}
and choosing aT (d ) = c(d/D)2/3 for a c > 0, then the upper limit of the error it will be (Kirsch,
2011):

||xaT (d ),d � x||
✓

1
2
p

c
+ c
◆

D1/3d 2/3 (3.85)

In other words, (3.84) and (3.85) establish that Tikhonov regularization is optimum
given information ||(K ⇤)�1 {x}|| D or ||(K ⇤

K )�1 {x}|| D, provided that K
⇤ is an one-

to-one operator.
It is worth noting that the regularization method is also a correction to the eigenvalues of

the system. In other words, if the eigenvalues of K tend to zero due to their ill-posedness, those
of aT I +K

⇤
K are established above zero by aT > 0. Also highlighted is the relationship

between the choice of aT and d . This relationship is such that aT tends to zero when d ! 0.
Also, the smoother x is, the slower aT will tend to zero. Therefore, in situations where it is al-
ready known that smoothness is a predominant aspect of solution x, the Tikhonov regularization
method is not optimal. In these cases, the Landweber and Gradient-Conjugate methods, which
will be discussed soon, perform better.

The method can be applied to the matrix equation (3.39). This is achieved if we define
the column vector ccc , which represents the main diagonal of c̄cc and the column vector ĒsF which
is the rearrangement of the matrix Ēs in the following form4:

ĒsF =

2

66664

Es
11

Es
12
...

Es
NMNS

3

77775
(3.86)

In addition, we will define the K̄ matrix as:

K̄ =

2

66666666664

GD
111E111 GD

112E121 · · · GD
1i jEi j1 · · · GD

1NINJ
ENINJ1

GD
111E112 GD

112E122 · · · GD
1i jEi j2 · · · GD

1NINJ
ENINJ2

...
... . . . ... . . . ...

GD
m11E11s GD

m12E12s · · · GD
mi jEi js · · · GD

mNINJ
ENINJs

...
... . . . ... . . . ...

GD
NM11E11NS GD

NM12E12NS · · · GD
NMi jEi jNS · · · GD

NMNINJ
ENINJNS

3

77777777775

(3.87)

4The “F ” operator will always mean transforming a matrix into a column vector throughout this thesis. The
order will be standardized in column first and row after. The letter F was chosen in order to refer to the word
flatten.
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Through these definitions, (3.39) can be resolved by:

ccc =
�
K̄⇤K̄+aT Ī

��1 K̄⇤ĒsF (3.88)

where K̄⇤ is the conjugate-transposed of K̄, which is equivalent to the operator’s adjoint in this
case. It is not necessary to apply a matrix inversion algorithm on

�
K̄⇤K̄+aT Ī

�
. Instead, a

linear systems solution algorithm can be used where the matrix of coefficients is
�
K̄⇤K̄+aT Ī

�

and the column vector on the right side of the equation is K̄⇤ĒsF . This type of approach is
computationally more efficient. In a way similar to (3.88), the method can also be applied in
(3.40)-(3.41) provided that arrays are adequately rearranged.

An important question is how to choose the aT value. Since choosing this value based
on the strategies of (3.84) and (3.85) to (3.88) is hardly possible, an alternative capable of
calculating a suitable value for this parameter is needed. In the following subsubsections, some
methods of determining aT will be discussed.

The Discrepancy Principle of Morozov

A possible strategy is to choose the parameter aT that satisfies the following equation:

||K {xaT ,d}� yd ||= d (3.89)

This strategy is known in the literature as the Discrepancy Principle of Morozov (Kirsch,
2011; Morozov, 1984). It is based on the fact that ||xaT || is monotonically non-increasing and
tends to zero when aT !•; and also on the fact that ||K {xa

T }�y|| is monotonically decreasing
and tends to zero when aT ! 0. Under these conditions, the problem is equivalent to finding
the minimum of the function:

faT (aT ) := ||K {xa,d}� yd ||2�d 2 (3.90)

The minimum of (3.90) can be approximated by classical methodologies such as New-
ton’s method (Rao, 2019), where the derivative is the solution to the equation:

(aT I +K
⇤
K )

d
daT

xa,d =�xa,d (3.91)

in which the best order of convergence is O(
p

d ). In addition, a suggestion for initial value in
this algorithm is (Kirsch, 2011):

aT,0 =
d ||K ||2

||yd ||�d
(3.92)

Applying the method in (3.88) requires resolving the system several times up to the stop
criterion for the functional (3.90) to be achieved. Hence, this is classified as a posteriori strategy
because the parameter is defined during the execution. In addition, it is necessary to have an
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estimate of the error between the data obtained and the exact field, i.e., ||Ezs�Ed
zs || d .

Generalized Cross Validation

A strategy that does not depend on prior knowledge of the noise level present in the data
is the Generalized Cross-Validation (GCV) method (Chen, 2017). In this type of method, the
parameter aT is the minimum of the functional defined by:

fGCV (aT ) =

���
⇣

Ī� K̄
⇥
K̄⇤K+aT Ī

⇤�1 K̄⇤
⌘

ĒsF
���

2
/(NMNS)

h
Trace

⇣
Ī�
⇥
K̄⇤K+aTĪ

⇤�1 K̄⇤
⌘
/(NMNS)

i2 (3.93)

Therefore, this is also an a posteriori strategy because aT is calculated while the prob-
lem is addressed. In this case, one may use a one-dimensional kind of optimizer like the Golden
Section Method (Rao, 2019). However, in some cases, the region where the optimum solu-
tion is located can be very close to a flat one (Varah, 1983), turning it into a challenging task
for traditional one-dimensional optimization methods. In addition, the strategy depends on the
normality assumption of noise distribution (Gilmore et al., 2009). A more in-depth discussion
regarding the theoretical aspects of this method can be found in (Golub et al., 1979).

L-Curve Method

Another a posteriori strategy is to choose a value that represents a balance between the
two terms of the functional (3.80), i.e., the residual norm and the solution norm. When the value
of these two terms is plotted on a graph, it is common to observe an L-shaped curve (Figure 3.3).
The strategy is to choose the value of aT corresponding to the inflection point on the L-curve
from that graph. There are numerical methods to determine this point (Calvetti et al., 2000;
Hansen and O’Leary, 1993). A simple method is to choose the value of aT from a finite set
of options that has the shortest normalized distance from the origin of the L-curve graph. That
is, given a set of parameters ha1

T , · · · ,aN
T i with their respective pairs (||K x� y||,||x||), the one

whose distance:

d(an
T ) =

s✓
||K {xai}� y||�min(||K {xa}� y||)

max(||K {xa}� y||)�min(||K {xa}� y||)

◆2
+

✓
||xai ||�min(||xa ||)

max(||xa ||)�min(||xa ||)

◆2

(3.94)
is minimal. This kind of strategy is similar to the Compromise Programming technique within
the subject of Multiobjective Optimization and Decision Theory
(Chankong and Haimes, 2008).

As stated by Hansen and O’Leary (1993), this method is similar to GCV and Morozov’s
Discrepancy Principle. In addition, the authors observed in their experiments that whenever the
GCV found a good value, the corresponding point on the L-curve was located at the inflection.
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However, the advantages of this approach are its easy numerical implementation and the rare
influence of errors correlated in the performance of the methodology. A disadvantage is to
estimate a reasonable interval in which the inflection is present. The Lanczos’ Bidiagonalization
Method might be used to estimate the interval (Calvetti et al., 2002). Its computational cost
O(NMNSNINJ) is less than a formulation of Decomposition by Singular Value (SVD) whose
cost is O(NMNS(NINJ)2) (Gilmore et al., 2009).

(a) (b)

(c)

Figure 3.3: Example of applying the L-curve Method to a linear problem where it presupposes
knowledge of the total field. (a) A simple instance of a contrast dielectric circle c = 0.25
and radius 0.8lb. Respecting the degrees of freedom, the scattered field was sampled in 45
positions for 45 incidence angles at a distance of 10lb from the center of the image. (b) L-curve
considering 20 values of aT in a range of 10�5 a 10�2. The red dot represents the solution with
the shortest normalized distance to the origin. Its aT value is approximately 2.3357⇥ 10�3.
(c) Reconstruction of the image using the aT value from the red dot. No inverse crime was
committed since the data were obtained from the analytical solution.
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Trial and Error

Finally, the trial-and-error approach is another popular strategy. A set of aT values are
tested for a canonical problem. The most reasonable result value is chosen according to some
criterion, and this value is used for other experiments. In many practical situations, no effort
is required to obtain the best value but only identifying a range in which any chosen value
produces reasonable results. Therefore, this is a priori strategy, in which the value is defined at
the input of the algorithm.

3.4.2 The Landweber Regularization

It is possible to solve the system K {x} = y iteratively if we write the solution x in
the form x = (I �aLK

⇤
K )x+aLK

⇤{y} for an aL > 0. That is, the solution is computed
iteratively by:

xm = (I �aLK
⇤
K )xm�1 +aLK

⇤{y} (3.95)

where the initial guess can be defined as x0 := 0. This scheme is similar to a descent step
algorithm in which the quadratic functional ||K {x}� y||2 is minimized. The regularization
operator equivalent to the definition (2.28) can be expressed in this case as:

RL := aT

m�1

Â
k=0

(I �aLK
⇤
K )k

K
⇤, m = 1,2, · · · (3.96)

However, it is necessary to define a stopping criterion for the method. If K : X ! Y
is a linear, compact, and one-to-one operator with a dense interval, then the sequence xm,d of
(3.95), m = m = 0,1,2, · · · , can be rearranged to:

xm+1,d = xm,d +aLK
⇤{y�K {xm,d}}, m = 0,1,2, · · · (3.97)

Within this definition, it is assumed that ||y�yd || d , ||yd ||� rd for an r > 1, d 2 (0,d0)

and 0  aL  1/||K ||2. Under these conditions, the stop criterion ||K {xm,d}� yd ||  rd is
well defined, i.e., there is a m = m(d ) 2 N0 for which ||K {xm,d}� yd ||  rd . In addition, it
is possible to demonstrate that this sequence converges to x and that, if x = K

⇤{z} 2K
⇤(Y )

or x = K
⇤{K {z}} 2 K

⇤
K (X) for a z such that ||z||  D, then the convergence order is

expressed by (Kirsch, 2011):

||xm(d ),d � x|| c
p

Dd (3.98)

||xm(d ),d � x|| cD1/3d 2/3 (3.99)

respectively, for a c > 0. In other words, this means that the choice m(d ) is optimal.
The method can be applied in Ēs,F = K̄ccc as illustrated in algorithm 1.
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Algorithm 1: Landweber Method.
Input: Ēs,F ,K̄, aL, d
Output: cccm

1 ccc0 0
2 m 0
3 while ||K̄cccm� Ēs,F || d do
4 cccm+1 = cccm +aT K̄⇤

�
Ēs,F � K̄cccm�

5 m m+1
6 end

3.4.3 The Conjugate Gradient Method

The Conjugated Gradient Method (CG) is very popular and applied to several situa-
tions. This section will focus on its formulation for the inverse problem with integral equations
considering bounded, linear, and injective operators between Hilbert spaces. Particularly, given
equation K {x}= y in which K : X!Y has the previous properties commented and the adjoint
K
⇤ : Y ! X , we define the functional:

f (x) := ||K {x}� y||2 = hK {x}� y,K {x}� yi (3.100)

The gradient of (3.100) is calculated by the Riesz representation of the Frechét deriva-
tive, which is expressed by:

— f (x) := 2K
⇤{K {x}� y} 2 X (3.101)

Auxiliary, we will call two elements p,q 2 X as K -conjugated if hK {p},K {q} = 0.
If K is one-to-one, this definition has the same properties as an inner product in X .

From these definitions, we can define the sequence xm established for CG as:

xm+1 = xm� tm pm (3.102)

where:

tm = hK {xm}� y,K {pm}i (3.103)

pm+1 := K
⇤{K {xm+1}� y}+ gm pm (3.104)

gm :=
||K ⇤{K {xm+1}� y}||2

||K ⇤{K {xm}� y}||2 (3.105)

In this method, the gradients of the x sequences are orthogonal. Furthermore, the se-
quences of directions p are K -conjugated. Under certain conditions, this algorithm converge
to a solution in which K

⇤{K {xm+1}� y} = 0. However, when only a yd 2 I is known such
that ||yd � y|| d , then a stopping criterion is the threshold ||K {xm,d}� yd || d .
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The application of this method on Ēs,F = K̄ccc can be seen in algorithm 2. One of the
advantages is that it does not depend on a regularization parameter as Tikhonov and Landweber
methods. However, the method depends on more operations.

Algorithm 2: Conjugated Gradient Method.
Input: Ēs,F ,K̄, d
Output: cccm

1 p0 �K̄⇤Ēs,F

2 ccc0 0
3 m 0
4 while ||K̄⇤(K̄cccm� Ēs,F)||< d do

5 tm =
[K̄ccc�Ēs,F ]T K̄p

||K̄p||2

6 cccm+1 cccm� tmpm

7 gm =
||K̄⇤(K̄cccm+1�Ēs,F ))||2

||K̄⇤(K̄cccm�Ēs,F)||2

8 pm+1 = K̄⇤
�
K̄cccm+1� Ēs,F�+ gmpm

9 m m+1
10 end

3.4.4 Spectral Cut-Off

Since the problem is ill-posed, K̄ is a matrix whose eigenvalues approach zero. When
the Single Value Decomposition (SVD) is applied in K̄, the following product is obtained:

K̄ = Ūx̄xx V̄⇤ (3.106)

in which Ū is a matrix NMNS⇥NMNS composed of singular vectors um ’s which are orthogonal
and unitary; V̄ is an NINJ ⇥NINJ matrix composed of singular vectors vm’s which are also
orthogonal and unitary; and x̄xx is the diagonal matrix composed of the singular values xi’s which
are real and place in nonincreasing order x1 � x2 � · · ·� 0. Mathematically, the solution ccc can
be written as:

ccc = K̄�1Ēs,F = Â
xi 6=0

1
xi

�
u⇤i · Ēs,F�vi (3.107)

Once x̄xx contains eigenvalues close or equal to zero, the operation (3.107) is not feasible
since it can lead to substantial numerical errors. This is equivalent to saying that the inverse of
K̄ is unbounded. Therefore, an alternative is to exclude eigenvalues smaller than a threshold,
i.e., xi < aS. Then, (3.107) can be written as an operator regularization RSC as:

ccc = RSC{Ēs,F}= Â
xi>aS

1
xi

�
u⇤i · Ēs,F�vi (3.108)
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This regularization method is called the Spectral Cut-Off and depends on setting a cut-
ting parameter aS. This solution is also known as Minimum Norm. This method is suitable
when the size of the matrices is not too large since the computational cost for evaluating eigen-
vectors and eigenvalues may be high. However, the method is convenient for classifying ill-
posed problems. The reason is: problems whose eigenvalues drop to zero smoothly are called
mildly ill-posed; problems whose eigenvalues rapidly decay to zero are called severely ill-posed
problems.

3.5 Qualitative Methods

When the contrast estimation is not a required information, qualitative methods are more
efficient as they retrieve information about shape and position of scatterers with less computa-
tional effort. Even though applications that do not require electric property retrieval seem to
be rare, qualitative methods might provide initial solutions for quantitative ones. In the next
subsections, some of the qualitative methods are discussed. For a survey of them, readers are
referred to (Potthast, 2006).

3.5.1 Linear Sampling Method

The Linear Sampling Method (LSM) is a fast and traditional qualitative method (Colton
and Kirsch, 1996; Colton and Kress, 2019). If plane waves propagate through the space and the
scattered field is sampled in far field conditions, then the scattered field admits the asymptotic
behavior given by:

Esz(r,q ,f) =
e� jkbr
pr

Es•(q ,f) (3.109)

where Es•(q ,f) is the far-field pattern of the scattered field. For any point rrr in S, the following
far-field integral holds: Z

D
dfEs•(q ,f)g(rrr,f) = F•(q ,rrr) (3.110)

where F•(q ,rrr) is the far-field pattern of the Green’s function �( jk2
b/4)GD

2D(q ,rrr) when the
source point is at rrr and the observation point is in the direction q . F•(q ,rrr) is a function that
might be approximated by:

F•(q ,rrr)⇡
� j
4

s
2

pkb
e jp/4e jkb cos(q�y) (3.111)

where rrr = hx,yi= hr cos(y),r sin(y)i.
The idea behind LSM is to choose an indicator function defined in S which determines

if a spatial point belongs or not to a scatterer. The integral equation (3.110) is solved for g(rrr,f)
for each rrr in S and each f in D. The integral equation might be solved through a regularization
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method (Section 3.4) after computing the kernel in (3.110) by (3.109) based on the scattered
field data and the right-hand-side (3.111). The indicator function I(rrr) is defined as:

I(rrr) = ||g(rrr)||=
rZ

D
dq |g(rrr)|2 (3.112)

The value indicator function becomes unbound if rrr is not within a scatterer region
(Colton and Kirsch, 1996). Therefore, after computing I(rrr) for many points in S, we are able
to recover the scatterer image by verifying if I(rrr) tends to infinite or not. Due to discretization
of D and S and noise presence in the scattered field data, I(rrr) cannot be infinite. Therefore is
necessary to set a threshold heuristically for which the background will be set apart from the
scatterer.

The LSM is not limited to far-field data. For near-field data, the integral equation (3.110)
is replaced by (Cakoni and Colton, 2016):

Z

D
dfEsz(q ,f)g(rrr,f) =�

jk2
b

4
GD

2D(q ,rrr) (3.113)

The LSM cannot estimate the dielectric properties of the media. However, it might
help the performance of other inversion methods (Bao et al., 2007; Catapano et al., 2007b) and
some approximations might be done to turn it into a quantitative method (Crocco et al., 2012).
Further discussion may be found in (see Chen, 2017, chap. 5), (Cakoni and Colton, 2016) and
(see Pastorino, 2010a, chap. 5).

3.5.2 Orthogonality Sampling Method

The Orthogonality Sampling Method (OSM) is another approach to define an indicator
function which detects the presence of scatterers (Potthast, 2010). Instead of writing it in terms
of the solution of the integral equation (3.110), the orthogonality between far-field data and an
exponential function is tested. Another interpretation is the superposition of plane waves back
into the region of the scatterer, which is a very known idea. Mathematically, the orthogonality
is tested according to (Akıncı et al., 2016; Potthast, 2010):

Ered
sz (rrr,q) =

Z

D
dfEs•(q ,f)e� jkbr cos(q�y) =

Z

D
df e� jkb/4
p

8pkb
Esz(q ,f)e� jkbr cos(q�y) (3.114)

where Ered
sz is know as the reduced scattered field. The indicator function is defined as:

I(rrr) =
Z

D
dq |Ered

sz (rrr,q)|2 (3.115)

Therefore, the indicator function computation does not require solving an integral equa-
tion. Rather it depends on integrating reduced scattered field. The maxima of the function is
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used to identify the scatterers. Near-field data is also compatible with the method. However,
the reduced scattered field definition needs to be adapted (Akıncı et al., 2016):

Ered
sz (rrr,q) ==

Z

D
dfEsz(q ,f)KT M(q ,rrr) (3.116)

where:
KT M(q ,rrr) = �2 j

pRO

•

Â
n=�•

Jn(kbr)
H(2)

n (kbRO)
e� jn(q�y) (3.117)

Akıncı et al. (2016) stated that the reduced scattered field is directly related to the elec-
trical properties of the scatterers. Bevacqua et al. (2020) went further and concluded that the
reduced scattered field can be related to the radiating component of the induced currents. As
a consequence, OSM is able to image discontinuities within unknown scatterers and identify
regions with different electromagnetic properties, differently than other qualitative methods.

3.6 Deterministic Quantitative Methods

Now considering the nonlinear and quantitative problem, there is a class of methods that
solve the equations in a deterministic fashion, i.e., without the use of random operations. This
class is the most popular in the problem literature, which has a large number of methods. This
section will discuss both traditional methods relevant to the history of literature and those that
are considered state-of-the-art.

3.6.1 The Born Iterative Method

One of the first methods to become popular was proposed by Wang and Chew (1989).
Assuming a homogeneous background medium, the authors proposed an iterative approach
where each iteration was equivalent to the solution by Neumann series. From an initial es-
timate of the contrast function, the iterative process is based on obtaining a solution for the
total field through a direct solver and solving the inverse linear problem to update the estimate
of the contrast function based on the current estimate of the total field (algorithm 3). There-
fore, the method is based on a linearization strategy, i.e., dividing the problem into two linear
subproblems.

Initially, the authors used the Method of Moments defined by Richmond (1965) as the
forward solver and Tikhonov’s Regularization with a parameter chosen by trial-and-error as an
inverse solver. However, other solvers can be used in such a way that the method has become
a generic structure where many strategies can be defined, for example, the other regularizers
defined in the previous section, the use of Level Set functions (Shah and Moghaddam, 2018)
and Quadratic Programming (Batista et al., 2021). This latter technique may be suitable for
coupling different forms of regularization through the objective function definition.

In the original article, the authors called the Modified Newton Method algorithm since
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Algorithm 3: Born Iterative Method.
Input: Ēs, Ēi, ḠD, ḠS

Output: c̄cc , Ē
1 Compute an initial guess c̄cc000 based on available information
2 m 0
3 while some criterion is not reached do
4 Update Ēm based on the current c̄ccm estimation
5 Update c̄ccm based on the current Ēm estimation
6 end

the iterative process can be compared with the definition of a search direction for a current
solution. However, the algorithm was known in the literature as the Born Iterative Method
(BIM) since the objective was to propose a solution for cases where the Born Approximation
was not valid. Although this was the intention, the algorithm also has limits concerning the
application in cases of high contrast. Generally, the initial solution is determined by the Born
Approximation, and therefore, the convergence of the algorithm can be compromised when
strong scatterers are considered. Moghaddam and Chew (1993) went deeper into this issue
showing good reconstructions for objects with a diameter of 8.5lb in relation to the central
frequency of operation5 and contrast c = 1. However, there is no robust measurement in the
literature on the relationship between contrast and size that BIM can support. Also noteworthy
is the comparison between BIM and the Tarantola Method carried out by Moghaddam et al.
(1991). Although Tarantola’s Method has a lower computational cost than BIM, the latter can
converge faster and be more robust with objects that have edges.

It is also necessary to highlight that BIM implementations that use parameter-based
regularizers need strategies to choose their value. As in the original article, many other works
in the literature that use this kind of regularizer choose a fixed value for all iterations based on
trial-and-error strategy (Batista et al., 2021; Chew and Lin, 1995; Chew and Liu, 1994; Li et al.,
2004; Yao et al., 1997). In fact, the choice is not trivial, and there is no simple rule for the
optimal choice in the nonlinear problem (Engl and Neubauer, 1988).

However, there are strategies for a dynamic definition of aT throughout the iterative
process. In the original work, the authors state that high aT values are essential to avoid
high-spatial-frequency components in the contrast function associated with noise in the image.
However, these components can also be necessary for the object’s vertex reconstructions. As
advocated by Moghaddam and Chew (1992), the small eigenvalues in K̄ can better reconstruct
the contours when the contrast function is already sufficiently smooth during the reconstruction
process. For this reason, they propose that, in the first BIM iterations, high values of aT should
be used to filter out sudden variations in the contrast function; after that, aT would be decreased
to improve the contours of the image. As they explain, this strategy is equivalent to start looking

5In this work, the authors formulated the problem in the time domain. This type of formulation has the advan-
tage of considering more frequencies in the inversion process.
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for solutions in a smaller subspace and expanding over iterations. Rules for this adaptation of
aT have also been proposed in the literature (Franchois and Pichot, 1997; Joachimowicz et al.,
1991; Lavarello and Oelze, 2008; Zaiping et al., 2000). Similarly, methodologies that consider
scattered field data with multiple frequencies suggest a similar dynamic use, i.e., starting with
the lowest frequencies and ending with the highest ones (Batista et al., 2021; Chew and Lin,
1995).

3.6.2 The Distorted Born Iterative Method

The same BIM authors also published an alternative methodology the following year
(Chew and Wang, 1990). In this new approach, the inverse subproblem equations are not solved
for c but a variation Dc . Consequently, the contrast function is updated at each iteration t by
the form c t = c t�1 +Dc . However, to solve the inverse subproblem as a function of Dc , it
is necessary to solve the integral equation considering a inhomogeneous background medium
according to (A.28). Therefore, at each iteration, Green’s function for the inhomogeneous
medium (A.29) needs to be calculated, taking the contrast estimate at the end of the previous
iteration as the background medium.

The following equation must be considered for calculating the inhomogeneous Green
function in a two-dimensional problem for a pair of points rrrm e rrrn:

Gin(rrrm,rrrn) = G2D(rrrm,rrrn)�
jk2

0
4

Z

S
dS0 G2D(rrrm,rrr 0

00)c(rrr 000)Gin(rrr 000,rrrn) (3.118)

where G2D(rrrm,rrrn) = H(2)
0 (k0|rrrm�rrrn|). By the reciprocity theorem, we can rewrite (3.118)

as:

Gin(rrrn,rrrm) = G2D(rrrn,rrrm)�
jk2

0
4

Z

S
dS0 G2D(rrrn,rrr 0

00)c(rrr 000)Gin(rrr 000,rrrm) (3.119)

Following the same discretization of (3.32)-(3.36), the S region will be divided into NINJ

elements, and the value of Gin will be sampled at these points:

Gin(rrrn,rrrm) = G2D(rrrn,rrrm)�
NI

Â
p=1

NJ

Â
q=1

c(rrr pq)Gin(rrr pq,rrrm)

✓
jk2

0
4

Z

Sk

dS0 G2D(rrrn,rrr 0
00)

◆
(3.120)

Note that the integral in parentheses is equivalent to (3.30). So it can be replaced as was
done in (3.38). Therefore, (3.120) can be written as a system of linear equations:

Gin
nm = G2D

nm�
NI

Â
p=1

NJ

Â
q=1

cpqGin
pqmG2D

npq (3.121)

in which Gin
nm = Gin(rrrn,rrrm), G2D

nm = G2D(rrrn,rrrm), cpq = c(rrr pq), Gin
pqm = Gin(rrr pq,rrrm) and

G2D
npq is equivalent to (3.30).

The objective is to determine the inhomogeneous Green function Gin so that this replaces
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GD
2D in (3.4). Therefore, rrrm is a measurement point of the field in D. Now rrrn is a point of

discretization in S. Therefore, (3.121) should be rewritten as:

Gin
mi j = G2D

mi j�
NI

Â
p=1

NJ

Â
q=1

cpqGin
mpqGS

i jpq (3.122)

where Gin
mi j = Gin(qm,xi,y j), G2D

mi j is the same of (3.9) for qm, xi, y j; cpq = c(xp,yq) and GS
npq

is equivalent to (3.38). Consequently, (3.122) might be rewrite in a matrix fashion:

⇣
Ī� ḠSc̄cc

⌘
Ḡin = Ḡ2D (3.123)

in which the matrices Ḡin and Ḡ2D are defined similarly to ḠD. (3.123) can be solved using
techniques for solving linear systems if we transform Ḡin e Ḡ2D in column-vectors.

Therefore, the method proposed by Chew and Wang (1990) needs to solve (3.123) at
each iteration, replacing the c̄cc matrix with the solution of the contrast function obtained at the
end of the previous iteration. It should be noted that many forward solvers already use the
matrix (Ī� ḠSc̄cc) in their formulations, such as the Method of Moments (Richmond, 1965). In
addition, it is necessary to take into account the scattered field data in each iteration. Since the
integral equation must be solved for Dc , the scattered field at the left-hand side of (3.39) must
be subtracted from the current estimate done by the forward solver. That is, the forward solver
calculates the total field Ēt and the corresponding scattered field Ēs,t . Thus, the inverse solver
determines Dc from Ēt , Ḡin,t , and DĒs = Ēs� Ēs,t .

This methodology is known as the Distorted Born Iterative Method (DBIM) since it is
based on the Distorted-Wave Born Approximation (DWBA), similar to BA. However, the dif-
ference is that instead of approximating the total field by the incident one in a homogeneous
medium, DWBA considers the total field due to an inhomogeneous medium. The basic opera-
tion of DBIM can be shown in algorithm 4.

Algorithm 4: Distorted Born Iterative Method.
Input: Ēs, Ḡ2D, ḠS

Output: c̄cc , Ē
1 Compute an initial guess c̄cc000 based on available information
2 t 0
3 while some criterion is not reached do
4 Solve

�
Ī� ḠSc̄cc t�Ḡin,t = Ḡ2D for Ḡin,t

5 Solve the direct problem for Ēt and Ēs,t

6 DĒs = Ēs� Ēs,t

7 Solve the inverse linear problem DĒs = Ḡin,tDc̄ccĒt for Dc̄cc
8 c̄cc t  c̄cc t�1 +Dc̄cc t

9 t t +1
10 end
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Once the method solves the inverse subproblem taking into account the error in ap-
proaching the scattered field, the algorithm may diverge from when the error DĒs starts to be
close to the noise level in the data. Therefore, a reasonable stopping criterion is ending the
algorithm when the residual starts to grow from one iteration to another. Due to this condition,
the authors demonstrated that DBIM is less robust than BIM in noisy data situations. However,
the experiments showed a significant difference in the convergence speed, i.e., DBIM converges
earlier than BIM.

Finally, it is worth noting that DBIM is a methodology equivalent to Newton-Kantorovich
(NK) method (Remis and van den Berg, 2000). NK is an extension of Newton’s method for solv-
ing nonlinear equations in functional spaces. Its main difference is that, in addition to determin-
ing Dccc such that it satisfies DĒs = Ḡin,tDc̄ccĒt , the method also requires that Dccc simultaneously
satisfy DĒs = ḠS(Ī�ḠSc̄cc t)�1Dc̄ccĒt . However, this is equivalent to calculating Green’s function
in (3.123). As stated by Chen (2017), these methodologies are equivalent to determining a gra-
dient for the contrast function based on the Frechét derivative of the Ēs + ḠDc̄cc(Ī+ ḠSc̄cc)�1Ēi.
This residue can be obtained by replacing Ē in (3.39) with the solution of (3.40) as a forward
problem. Since the problem is nonlinear and has many local minima (Chen, 2017), both DBIM
and NK do not guarantee the convergence to a global optimum represented by the minimum
residue of equations.

3.6.3 The Variational Born Iterative Method

Zaiping and Yerong (1998) carried out experiments considering the coupling between
BIM and DBIM. Specifically, DBIM was used in the first iterations, while BIM, in the latter.
The goal was to bring together the best features of each method, i.e., the rapid convergence of
DBIM and BIM stability. However, the authors found that this hybrid version, called Hybrid
Born Iterative Method (HBIM), took too many operations for coupling these two methodolo-
gies.

Later, Zaiping et al. (2000) proposed replacing DBIM with a method called Variational
Born Iterative Method (VBIM). Its difference was that Green’s function was not updated in
each iteration. That is, the algorithm used Green’s function for the homogeneous medium
throughout the process. This reduces the number of operations dramatically. Experiments with
conductive objects indicated a 20% difference in computational efficiency6 between VBIM and
DBIM, whereas the images reconstructed by the two were similar. He also found that the
hybridization between VBIM and BIM, called NHBIM, allowed recovering good images at a
lower computational cost than HBIM.

6In their work, only three instances were used to compare BIM, DBIM, and VBIM. The number of instances is
too low to consider an unbiased comparison, i.e., to exclude the impact on the choice of the instances in the results.
In addition, there was no plot or table that could give a clear explanation about the meaning of the computational
efficiency stated.
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3.6.4 The Conjugated-Gradient Method

The Conjugate Gradient Method has a dual utility as both a regularizer for linear ill-
posed problems and as a quantitative inversion method. This means that its structure can be
tailored to tackle non-linear problems and reconstruct contrast images in scenarios where linear
approximations prove to be insufficient. Lobel et al. (1996) suggested minimizing the following
functional:

F(c̄cc) =
NS

Â
s=1

||kkks||2 (3.124)

where:
kkks = Ēs

s + ḠDc̄ccL̄Ēi
s (3.125)

and L̄ =
�
Ī� ḠSc̄cc

��1, which is the kernel for the total field equation based on (3.22). Eq.
(3.125) represents the mismatch between scattered field and the computed one for each inci-
dence angle. The method updates the contrast image in the iteration k+1 by:

c̄cck+1 = c̄cck+1 +akD̄k (3.126)

where D̄k is the update direction and ak is the optimum step. The latter is a complex parameter
computed by:

ak =

NS
Â

s=1
hkkks, V̄si

NS
Â

s=1
||V̄s||2

(3.127)

where:
V̄s = ḠDL̄T D̄kL̄Ēi

s (3.128)

The update direction might be written according to Polak-Ribière formulation. The
diagonal terms of D̄k, denoted as dk, are computed by:

dk = gk +
hgk,gk�gk�1i

||gk||2
dk+1 (3.129)

where:

gk = 2
NS

Â
s=1

h
diag(L̄Ēi

s)L̄
i⇤

ḠDkkks (3.130)

The method requires an initial guess to c̄cc which may be obtained by linear methods,
such as Back-Propagation or Dominant Current. The performance might improve if an edge-
preserving regularization term is added in the functional (3.124) (Lobel et al., 1997).

The most computationally expensive step is the matrix inversion required in L̄, which
may render the method impractical for high-resolution problems. However, this computational
burden can be alleviated by replacing the term L̄Ēi

s with the actual total field computation, which
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can be computed using algorithms like the Method of Moments. Faster computational might be
attained if implemented according to the Conjugate Gradient Fast Fourier Transform procedure.
Vargas et al. (2021) demonstrated that this modification results in a significant reduction in
complexity. Further improvements can be achieved by adding a portion of the variational-
induced current to the total field, as demonstrated by Vargas and Adriano (2022).

3.6.5 The Level-Set Method

When the possible dielectric properties are known, the problem is reduced to detecting,
locating, and determining the shapes of these materials. In this case, a popular methodology for
segmentation and image registration is the Level Set Method (Dorn and Lesselier, 2006; Osher
and Fedkiw, 2003). This type of method assumes the estimation of the total field to solve the
inverse linear problem by identifying the contours of the objects. Therefore, it is usually used
within a framework such as BIM, for example.

In general, the contrast is represented by a function called level set function y(r). For
example, if we assume that there is only a single material somewhere in the space characterized
by a homogeneous medium, the contrast function can be determined by:

c(r) = coU(y(r)� l0) (3.131)

where co is the object contrast, U(x) is a unit step function, and l0 is a threshold that defines
the boundaries between object and background, i.e., their contours. That is, if y(r) > l0, then
that point is an object and vice versa. Therefore, the method determines the function y(r) by
minimizing residues, either from the data equation or from the state one.

Regarding minimizing the residuals of the data equation, the optimization of the level
set function is obtained by solving the following differential equation:

∂y
∂ t

+
∂ f
∂y

= 0 (3.132)

subject to —y = 0 2 ∂S. In (3.132), t has the meaning of artificial time related to the movement
of y (and not about the electromagnetic phenomenon); f is the function defined as f = ||F ||=
||Es�L {c,E}|| and ∂S is the outline of the image. This equation defines that, if the variation
of the error as a function of y is null, so y does not vary, i.e., its shape does not change.

Solving (3.132) requires the calculation of the derivative ∂F/∂y . The Gâteaux deriva-
tive can be obtained through the first-order approximation of the Taylor series (Shah and Moghad-
dam, 2018):

∂F

∂y
=Re

�
[F 0(c)]⇤F (c)

 
cod (y) (3.133)

where ‘⇤’ is the adjoint operator (15). A major bottleneck for this methodology is calculating
the adjoint of F . In practice, the operation means running the forward solver once again, i.e.,
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to estimate E and for F
⇤ (El-Shenawee et al., 2009; Woten et al., 2010). However, when E is

fixed, then the problem is linear, and the adjoint of F equals K̄⇤ (3.87) in the corresponding
discretization (Colgan et al., 2015; Shah and Moghaddam, 2015). Therefore, being yyy a column-
vector which represents the value of the level set function at each point of discretization and
considering the approximation of ∂y/∂ t as (y t�y t�1)/Dt, then:

yyy t = yyy t�1 +Re
�

K̄⇤
�
Ēs,F � K̄ccc

� 
Dt (3.134)

In addition to the right-hand side of (3.134), regularization terms can be added. Shah
and Moghaddam (2018) implemented the total variation functional in terms of level set function,
i.e.:

fR(y) =
Z

S
dS0 p(|—y|) (3.135)

where p is an analytical function defined as (Li et al., 2010):

p(x) =

8
<

:

1
4p2 (1� cos(2px)) , x < 1
1
2 (x�1)2 , x� 1

(3.136)

In addition, Shah and Moghaddam (2018) reformulated the problem to a finite number of
possible materials. There are two options for implementing this strategy: increasing the number
of levels or the number of level set functions. In the first case, this can be useful for representing
objects that have layers with different properties. At the second, many level functions may be
important to represent disconnected objects with different dielectric properties. Subsequently,
Shah et al. (2019) reformulated the method for the three-dimensional case and included a step
for contrast estimation after detecting the shape of the scatterers in each iteration. This estimate
was formulated in terms of a constraint optimization problem where the Split Bregman Method
is applied, which is a suitable method for problems with regularizers (Xiong et al., 2019).

3.6.6 The Contrast Source Inversion

To avoid incorporating forward solvers within a methodology for EISP, Kleinman and
den Berg (1992) proposed an algorithm based on a formulation of a modified gradient that iter-
atively solves field and contrast through an over-relaxation technique. After successive refine-
ments in the methodology (Kleinman and van den Berg, 1993, 1994; van den Berg and Klein-
man, 1995), van den Berg and Kleinman (1997) proposed adapting the approach to the contrast
source equation (2.33)-(2.34) that became very well known in the literature. This method, called
Contrast Source Inversion (CSI), is based on the weighted minimization of the residual norm in
(2.33) and (2.34). Once the objective function was defined, the authors determined the descent
direction and step size considering the Conjugate Gradient method based on the Polak-Ribière
formulation. It should be noted that, at each iteration, the algorithm first determines a new
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estimate of the contrast source Jeq and then updates the contrast function c .
Later, van den Berg et al. (1999) modified the gradient of the contrast function and

added a regularization strategy known as Total Variation (TV). The regularizer is based on the
integration of the contrast function gradient, i.e.:

fTV (c) =
Z

S
dr
✓q

|—c(r)|2 +d 2
◆p

(3.137)

where d 2 is the norm of the data equation residual considering the contrast source formulation.
Moreover, p is an exponent usually choose as �1.

As an advantage, TV contributes to a better reconstruction of both soft and sharp ob-
jects. However, if this functional is summed to the objective function, it is necessary to choose
a weighting parameter. In this case, the weight is empirically determined after successive ex-
periments only. However, an alternative is to multiply the TV functional by the residual norm.
The authors verified that this methodology was robust, even with noisy data, besides improving
objects recovering in the considered synthetic experiments. Later, other works considered dif-
ferent applications and minor modifications (Abubakar et al., 2008, 2002; van den Berg et al.,
2003). A modification that became common in the following works is the use of the contrast
function obtained from the previous iteration as a weight in (3.137), i.e.:

fTV (c) =
1
V

Z

S
dr |—c(r)|2 +d 2

|—ct�1(r)|2 +d 2 (3.138)

where V is the volume or area of S. This method became known as Multiplicative-Regularized
Contrast Source Inversion (MR-CSI).

Gilmore et al. (2009) compared MR-CSI against DBIM. The authors considered the
Tikhonov Regularization as the inverse solver. For a fairer comparison, a dynamic choice of the
regularization parameter was employed. The L-Curve strategy was implemented, aided by the
Lanczos’ bidiagonalization. In addition, an a posteriori regularization was considered by TV
functional multiplication. The authors considered synthetic and five real data cases, which were
reconstructed at different frequencies. The authors noted that the reconstructed images were
very similar to each other. Regarding the execution time of the algorithms, the MR-CSI spent
less time. However, this is also dependent on the implementation of the algorithms.

3.6.7 Compressive Sensing

In the field of signal processing, Compressive Sensing (CS) is a methodology for signal
reconstruction based on an underdetermined system of linear equations (Donoho, 2006). This
methodology assumes that the signal to be reconstructed is sparse, i.e., it can be represented with
few elements of a domain. In addition to sparseness, the input and output of the system must
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be incoherent7 (Candès and Romberg, 2007). Incoherence is an application of the Restricted
Isometry Property (RIP) (Shah et al., 2016).

This technique has also been applied to several situations in electromagnetics (Massa
et al., 2015). When it comes to Microwave Imaging, CS has some difficulties: (i) the problem is
non-linear while CS is an approach to linear problems; (ii) the unknown variables are not usually
intrinsically sparse; and (iii) the problem’s ill-posedness can turn its application impracticable.
However, there are efforts for linearization, sparse representation of unknown variables, and
system regularization.

Table 1, available at (Oliveri et al., 2017), lists references in the literature that presented
alternatives to adapt the methodology to the problem. Some considered either Born or Rytov
Approximations as linearization strategies, which constraints the algorithm to weak scatterers
only. Regarding discretization, many studies have considered the traditional approach described
in (3.32)-(3.36). As a result, the application is limited to unique or very small scatterers com-
pared to the image size, which is necessary to meet the sparsity criterion. Much of the work
also considered the Bayesian Compressive Sensing (Ji et al., 2008) or Multitask Bayesian Com-
pressive Sensing (Ji et al., 2009) solvers since they are efficient and robust in these situations.

Shah et al. (2016) proposed a relevant approach in this field. To satisfy RIP, the authors
used the BIM structure and implemented a regularizer based on L2 and L1 norms. The reg-
ularizers based on the L2 norm, such as those in section 3.3, tend to significantly smooth the
object’s edges. On the other hand, the coupling of the L1 norm within the regularizer formula-
tion can better reconstruct edges. For this reason, the authors redefined the Tikhonov regularizer
by changing the norm of contrast function for an L1 one and maintaining the L2 norm for the
integral equation residual. The formulation met the RIP condition and the sparsity condition
when the parameters were chosen correctly. The implementation was divided into five steps
necessary to solve the inverse subproblem without disrespecting the CS conditions.

Rather than sparse discrete scatterers, the Bayesian approach to CS is also applicable
to continuous random media. Fouda and Teixeira (2014a) proposed to reconstruct this kind
of scatterer incorporating ultrawideband multistatic measurements and confidence level esti-
mation of the inversion. The method is based on linear regression model where the contrast
function is solved indirectly through the solution of a covariance matrix using the Relevance
Vector Machine technique. The linearization is accomplished by BA. However, the authors had
also applied the method within a nonlinear framework (DBIM). Instead of a general representa-
tion, the contrast function is represented through its spatial harmonics since it conforms better
with the sparsity requirement of the model as well as a better regularization. The authors also
proposed an adaptive approach to measurement location and another one to reduce the image.
The last is achieved through a time-reverse scheme to localize the most important areas. These

7Coherence is a statistical measure that relates two signals and that, in some instances, can estimate the causality
between input and output. The coherence of a linear system might be understood as the fractional part of the output
signal power produced by the input at that frequency.
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two approaches were important to quality of the scattered field information and to reduce com-
putational cost. The methodology has also been applied to breast cancer detection (Fouda and
Teixeira, 2014b).

Finally, we highlight one of the last CS formulations developed by Oliveri et al. (2019).
In this study, the authors proposed an approach similar to BIM. Unlike other methodologies
that shared the same inspiration, the methodology did not depend on full-wave simulations. In
this case, the algorithm estimates the contrast function first. Then, it determines the field by
solving an optimization problem with an iterative algorithm based on the Distorted-Wave Born
Approximation (Caorsi et al., 1996). The contrast is recovered from a Bayesian approach based
on probability distribution maximization. The optimization is achieved through a local search
technique based on the Relevance Vector Machine (Oliveri et al., 2017).

3.6.8 The Subspace-Based Optimization Method

When the problem involves discrete point scatterers, Green’s function operator in the
data equation maps the source space into the scattered field space. Furthermore, it is injective.
This property gives birth to some methods that decompose the Green’s function operator into
subspaces (Chen and Zhong, 2008; Kirsch, 2002). When the source is a distribution, the prop-
erties of the operator are very different. However, this does not prevent obtaining a subspace of
the induced current source.

Taking into account ḠD (3.46), its decomposition into singular values is represented by:

ḠD = Ūx̄xx V̄⇤ (3.139)

where Ū is an NM ⇥NM matrix composed of the orthonormal left singular vectors um; V̄ is
an NINJ ⇥NINJ matrix composed of the orthonormal right singular vectors vi j; and x̄xx is an
NM ⇥NINJ diagonal matrix composed by the set of NINJ singular values xxx arranged in non-
increasing order. Thus, (3.139) can be rewritten as:

ḠDvi j = xi jum (3.140)

Through (3.140), it is possible to observe that the set of vectors um forms an orthonormal
base in the scattered field space for a given source s. Similarly, vectors vi j form the orthonormal
basis of J̄eq

s space. Thus, the sth column of J̄eq can be written as a linear combination of the
vectors in V̄:

J̄eq
s = V̄nnn (3.141)

where nnn is a NINJ-dimensional vector and can be determined analytically in absence of noise
by:

ni j =
u⇤i jĒs

s

xi j
, i j  NM (3.142)
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Due to noise, some singular values in (3.142) are very small and lead to very large
errors in ni j. However, an alternative is to separate the vector nnn into two parts in which there
will be one woth the values whose error is within an established threshold and the remainder
in the other. This strategu will lead us to write the vector J̄eq

s as the sum of two parts, i.e.,
J̄eq

s = J̄eq
s,++ J̄eq

s,�. Thus:
J̄eq

s = J̄eq
s,++ J̄eq

s,� = V̄+
s nnn+

s + V̄�s nnn�s (3.143)

where nnn+
s is the set of values n whose error is less than the established criterion and nnn�s the

opposite. Correspondingly, V̄+
s is a matrix composed of the column-vectors of V̄s corresponding

to nnn+
s , and V̄�s , to nnn�s . In this way, we can use nnn+

s and rewrite the norm of the data equation
residual (3.41): ���ḠDV̄�s nnn�s + ḠDJ̄eq

s,++ Ēs
s

���
2

(3.144)

However, the same idea can be applied to the state equation (3.42):

���
h
V̄�s � c̄ccḠSV̄�s

i
nnn�s + J̄eq

s,++ c̄cc
h
ḠSJ̄eq

s,+� Ēi
i���

2
(3.145)

In general, we can formulate an optimization problem to determine c̄cc and nnn�s , which
minimizes the following functional:

fSOM(c̄cc,nnn�s ) =
1
2

NS

Â
s=1

 ��ḠDV̄�s nnn�s + ḠDJ̄eq
s,++ Ēs

s
��2

||Ēs
s||2

+

��⇥V̄�s � c̄ccḠSV̄�s
⇤

nnn�s + J̄eq
s,++ c̄cc

⇥
ḠSJ̄eq

s,+� Ēi⇤��2

||J̄eq
s,+||2

!2

(3.146)

The first methodology to solve (3.146) was proposed by Chen (2009). The author pro-
posed to solve nnn�s and c̄cc separately. The variables nnn�s were determined through the following
linear system:

�
Ā⇤Ā

�
nnn�s =

�
Ā⇤B̄

�
(3.147)

where Ā = V̄�s � c̄ccḠSV̄�s and B̄ = J̄eq
s,+ + c̄cc

⇥
ḠSJ̄eq

s,+� Ēi⇤. This solution is equivalent to the
least-squares solution of (3.145). After that, (3.146) was solved through Levenberg-Marquardt
Method (Franchois and Pichot, 1997). Note that determining c̄cc requires nnn�s and vice-versa.
Therefore, it is required to iterate the two solutions until a convergence criterion is reached.
This methodology was initially known as the Subspace-based Optimization Method (SOM).
Thereafter, this formulation and the next one that will be introduced in the next paragraph were
called GD-SOM8, since they are based on the decomposition of the matrix ḠD.

Later, Chen (2010) proposed three modifications to the approach: (i) the fraction 1/2
and the summation square have been removed from the objective function (3.146); (ii) c̄cc and

8In the literature, the acronym GS-SOM is more popular because, as previously stated, meanings of the ḠD and
ḠS matrices tend to be inverse to the meaning adopted in this work.
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nnn�s are resolved simultaneously; and (iii) the Levenberg-Marquardt method was replaced by a
formulation adapted from CG to determine descent directions for c̄cc and nnn�s . Through these
modifications, the problem has become equivalent to a Quadratic-Constraint Quadratic Pro-
gramming (QCQP) formulation in which the objective function is (3.144) and constraints are
expressed by (3.145) (Chen, 2017). This problem is known in the literature as NP-hard, i.e., for
which deterministic algorithms with polynomial complexity do not yet exist.

Chen (2010) also made comparisons of SOM against CSI both from a theoretical point
of view as well as an experimental one. Although the algorithms share many properties, some
differences between them are relevant: (i) the amount of unknown variables in SOM is smaller,
since only nnn�s is resolved; (ii) the search direction for unknown variables is determined sepa-
rately in the CSI, whereas in this SOM approach, the calculations for determining the search
direction are performed only once per iteration; and (iii) because of the need of calculat-
ing the SVD of the ḠD matrix, the computational cost of SOM is higher. Once, generally,
NINJ� NMNS, then the cost of SOM is equivalent to SVD one, i.e., O((NINJ)2); while the cost
of the CSI is the equivalent to the operations in each iteration, i.e., O(NINJ log(NINJ)).

Another important aspect is the cut in the set of eigenvalues, i.e., where the separation
between nnn+

s and nnn�s will be made given that these are non-increasingly ordered. The author
pointed out that, although the convergence of the method depends on this choice, it does not
depend on any other parameter in the algorithm. In addition, the higher the noise level in the
Ēs data, the greater the set nnn�s , and vice versa. The author defined a criterion for defining the
cut in nnns based on when the eigenvalues x start to fall. As shown in Figure 2 of the article,
the eigenvalue curve looks approximately constant at the beginning and, after a certain point,
it starts to fall. Therefore, the eigenvalue index from which the decay starts to be noticeable is
the criterion of the division of nnns. All coefficients nnns before this index are maintained, and all
later are determined by the method. A conservative choice that can avoid error amplification is
the low cut-off index, i.e., dividing after the first eigenvalues (first or second, in extreme cases).
Although this can increase the number of variables, the choice is feasible since there is no need
to determine an optimal cut, assuming that the limit is the index for which eigenvalues start to
decay.

Pan et al. (2010) made more comparisons between the two implementations announced
so far. Six images were used whose maximum contrast of the objects was 2. The data from the
scattered fields were synthetically generated and considered different noise levels. As noted,
although the first version converges faster, the second has better reconstructions. Secondly, the
computational cost of the first version is higher due to the way n̄nn�s is calculated. Finally, the
authors understood that the second version had more chances to converge to the global optimum.

An alternative to reduce the computational cost of the GD-SOM was proposed by Zhong
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et al. (2010). Based on the identity Ī = V̄V̄⇤ = V̄+V̄+⇤+ V̄�V̄�⇤, J̄eq
s,� can be rewritten as:

J̄eq
s,� = V̄�s nnn�s

= V̄�s V̄�⇤s ttt

=
�
Ī� V̄+

s V̄+⇤
s
�

ttt

= ttt� V̄+
s V̄+⇤

s ttt (3.148)

The advantage of (3.148) is that, first of all, instead of calculating all V̄ columns, only
V̄+ is required. That is, only eigenvalues that will not be determined by the optimization method
need to be calculated. Consequently, the objective function (3.146) needs to be rewritten replac-
ing the term V̄�s nnn�s by ttt� V̄+

s V̄+⇤
s ttt .

As well as decomposing ḠD, it is also possible to decompose ḠS. We will hereinafter
call V̄D+ and V̄D� the sets of right singular vectors from the decomposition of ḠD; and V̄S+

and V̄S� as the corresponding ones from decomposition of ḠS. As proposed by Zhong and
Chen (2009), the space of J̄eq can then be described by the composition of three orthogonal
subspaces: the corresponding space of V̄D+ (SD+); the space corresponding to the intersection
between V̄D� and V̄S+ (SD�S+); and the intersection between V̄D� and V̄S+ (SD�S+);. The
authors then assumed that the part of J̄eq found in SD�S� has a negligible contribution to the
equation of states, and consequently, little contribution to the data equation. Therefore, it can
be neglected, so J̄eq

s can be written as:

J̄eq
s = V̄D+

s nnn++ B̄D�S+
s tttD�S+ (3.149)

where B̄D�S+
s is the matrix with the bases from the intersection between V̄D� and V̄S+. Now,

in addition to c̄cc and nnn+, tttD�S+ is also an unknown variable. Its size is generally less than nnn+

and depends only on NINJ and the cut that is made in V̄S.
This version of the algorithm became known as Twofold-SOM (TSOM). Although it

has a larger number of unknown variables, its performance tends to be better than GD-SOM
(Chen, 2017). However, the price for a better performance is the computational cost of the
algorithm. First, the calculation of B̄D�S+

s , although not so complex, it is computationally
expensive (Zhong, 2010). Consequently, an approximation was proposed (Zhong and Chen,
2009):

B̄D�S+
s tttD�S+ ⇡ V̄D�

s V̄D�⇤
s V̄S+

s ttt (3.150)

The approach in (3.150) is equivalent to making a projection of V̄S+ on V̄D� instead of
an intersection as in the exact formulation. The more orthogonal V̄S+ is in relation to V̄D�, the
closer to exact the approximation is.

Second, the strategy for choosing the eigenvalue cut-off index for ḠS is not quite the
same. In this case, the index cannot be very low. On the other hand, it does not need to be
chosen to satisfy the state equation. The choice proposed by Zhong and Chen (2009) resumes
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to: in the first iteration, solving the problem for a low cut index and increase over the iterations
up to a value that represents 0.5-1.0% of the largest eigenvalue. Unlike the eigenvalue curve
of ḠD, eigenvalues of ḠS decay much more slowly because of the singularity present in their
formulation.

Finally, the SVD calculation of ḠS and the V̄S+ttt multiplication are also expensive.
However, these costs can be reduced as proposed by Zhong and Chen (2011). The authors
proposed to approximate V̄S+ using discrete Fourier bases, which allows to reduce the com-
putational cost of the multiplicationV̄S+ttt for a Fast Fourier Transform (FFT) operation and
eliminates the need to calculate the SVD of ḠS. This methodology became known as FFT-
SOM.

Alternatively to look for solutions for J̄eq
s,� through the space of V̄D� concerning the

GD-SOM methodology, it is possible to use all the space V̄D. One motivation for this is that,
since the cutting index in this case tends to be small, the dimension of V̄D� is very close to V̄D.
In addition, the number of removed dimensions is much less than NINJ . Therefore, a proposal
is to reconstruct J̄eq

s,� across the entire space V̄D using bases Fourier. In this case, the equivalent
current is defined as:

J̄eq
s = J̄eq

s,++ F̄nnn (3.151)

where F̄ is a NINJ ⇥NINJ matrix containing the Fourier bases in which a Fi jpq element is
determined by:

Fi jpq = e� j2p(i�1)( j�1)(p�1)(q�1)/(NINJ) (3.152)

The second term of (3.151) can be interpreted as a residual current that can compen-
sate for errors in J̄eq

s,+, especially in cases of high noise levels. The objective function, in this
case, might be the same as GD-SOM, i.e., (3.146). Although the computational cost of GD-
SOM and NFFT-SOM are the same, (Chen, 2017) compared the two methods and noticed some
differences. Although GD-SOM converges faster in the beginning, NFFT-SOM has a smaller
error after a certain number of iterations. Furthermore, NFFT-SOM has a relatively simpler
implementation as well as presenting a longer range for a robust choice of cut index.

Finally, there are other works in the literature which either use SOM or join new strate-
gies or explore the principle of decomposing spaces into different algorithms, formulations,
and situations: three-dimensional problems (Zhong and Chen, 2011); modified integral equa-
tion (3.43) (Xu et al., 2020, 2018b,c; Zhong et al., 2016); multiplicative regularization (Xu et al.,
2016); multi-image resolutions (Oliveri et al., 2011; Zhong et al., 2020); subspace decompo-
sition for DBIM (Ye and Chen, 2017) and VBIM (Liu and Nie, 2019); Convolutional Neu-
ral Networks (Wei and Chen, 2019b); Wavelet Transform (Zhang et al., 2020a); non-iterative
methods(Yin et al., 2020); phaseless data (Zhang et al., 2020c); biomedical imaging (Xu et al.,
2018a); iterative domain decomposition approach suitable for strong scatterers Zhang et al.
(2022).
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3.6.9 Regularization on Lp Banach Spaces

The presented regularization approaches are based on L2 Hilbert spaces. When we as-
sume that the known and unknown functions belong to Hilbert spaces, many mathematical tools
are provide which simplifies the analysis and possible applications. The linear regularization
strategies in Section 3.3 and the SVD strategy in SOM are examples. However, a drawback is
the smoothness (over-smoothness) of solutions. This properties is an obstacle to retrieve clear
contours in the image domain.

Hilbert space is a specific case of Lp Banach spaces (see Appendix C for further infor-
mation) in which p = 2. However, other choices may be explored. In fact, the regularization
based on Banach spaces has been explored in different contexts (Bach et al., 2011; Elad, 2010).
These studies have shown advantages for 1 < p < 2, which are lower over-smoothness and
sparsity, i.e., the solution can be represented with less components.

The application to EISP was firstly proposed in Estatico et al. (2012a) and further ex-
plained in Estatico et al. (2012b). The formulation was based on the combination of data and
state equations, which is very common for gradient methods. Specifically, if we rewrite the
electric field in (2.42) in terms of (2.43), we obtain:

Ezs(rrr) =�
jk2

b
4

Z

S
dS0 H(2)

0 (kb|rrr�rrr 000|)c(rrr 000)
✓

Ezi(rrr
000)

+
jk2

b
4

Z

S
dS00 H(2)

0 (kb|rrr 000 �rrr 00|)c(rrr 00)Ezi(rrr
00)

◆�1

(3.153)

which can rewritten as a nonlinear operator equation as:

Ezs = K {c} (3.154)

where K : X ! Y is a nonlinear and ill-posed map between X and Y , which will be defined as
Banach spaces Lp(S) and Lp(D), respectively. We will assume as well that only a noisy version
of the scattered field is known (Ed

zs), i.e., ||Ezs�Ed
zs || d .

Formulations of Gauss-Newton methods, based on the gradient information, have the
general iterative structure as follows:

c i+1 = c i� t i
L

N{c i,Ed
zs} (3.155)

where t i > 0 is the step length and L
N : X ⇥Y ! X is an operator which is used to minimizes

the following functional:

fN(c) =
1
p
||K {c}�Ed

zs ||
p
Y (3.156)

Therefore, this is the generalization of Gauss-Newton method for regularization in Ba-
nach spaces where c 2 Lp(S) and Ezs 2 Lp(D) are pth power Lebesgue integrable functions
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(Appendix C).
In Hilbert spaces, where p = 2, the derivative of the quadratic operator is a linear one.

However, the same is not true in Banach space, generally. In fact, the derivative of (3.156)
is nonlinear for many p choices. The Tikhonov and Landweber regularization can also be
extended to address these cases, even though they are more complexes. Estatico et al. (2012b)
proposed a formulation of Gauss-Newton method where, in each step, the descent direction is
evaluated by an adequate formulation of Landweber methods.

Given an initial solution c0, the linearization of (3.154) is given by:

K
0{c i}c̃ i = Ed

zs�K {c i} (3.157)

where K
0 is the Frechét derivative of K and c̃ i is the unknown function that must be solved

to determine the step, i.e.:
c i+1 = c i + c̃ i (3.158)

The authors proposed a formulation of Landweber method to solve (3.157). Starting
with c̃ i

0 = 0, the solution c̃ i is determined through successive iterations. In each iteration l, the
next c̃ i

l+1 value is computed by:

c̃ i
l+1 = J

X⇤
r⇤
n

c̃ i
l � tK

⇤{c i}J Y
r
�
K {c i}c̃ i

l �Ed
zs +K {c i}

 o
(3.159)

where the function within J
X⇤

r⇤ {}̇ belongs to the dual space9 X⇤ of X ; K
⇤ is the dual operator10

of K ; t > 0 is the step length; and J
Y
r and J

X⇤
r⇤ are duality maps of Y and X⇤ (Schöpfer et al.,

2006) defined as:

J
X⇤
p⇤ {·}= || · ||r

⇤�p⇤
Lp | · |p⇤�1sign(·) (3.160)

J
Y
r {·}= || · ||r�p

Lp | · |p�1sign(·) (3.161)

where r⇤ and p⇤ are the Holder conjugate of r and p, respectively, i.e., r⇤ = r/(r� 1) and
p⇤ = p/(p� 1); r > 1 acts merely as a scaling factor which impacts the step size and it is not
very significative; and the sign function is given by:

sign(x) =

8
<

:
e\x, x 6= 0

0, x = 0
(3.162)

The process described by (3.159) is repeated until a stopping rule is satisfied. Then
(3.158) is computed. If a stopping rule for the Gauss-Newton process has not been satisfied,
then the known terms in (3.157) are computed and the Landweber method is executed once

9Given a vector space V , its dual space is the vector space of all linear functionals on V .
10Given an operator T : V !W , its dual one T

⇤ is a linear map from W ⇤ to V ⇤ defined by T
⇤{y} = y ·T

for y 2W ⇤.
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again.
Besides p, the number of Landweber iterations is also a regularization parameter. A high

number of iterations means low regularization, less Gauss-Newton iterations and greater noise
sensitivity. In Estatico et al. (2014), the authors carried out more experiments to analyze the
choice of these regularization parameters plus the stopping rule for the Gauss-Newton iterations.
They had concluded that a reasonable trade-off between different aspects in the results were
represented by 5 Landweber iterations and 0.01 residual norm threshold as the stopping criterion
of Gauss-Newton process. In respect to p, they had concluded that low values (p < 2) are
responsible for less oscillations specially in background area (clearer background) and over-
estimations of contrast value in object area. On the other hand, high p values had the opposite
behavior and the algorithms had diverged sometimes. They also have noticed that, for p < 1.2,
the solution was more affected by noise. In addition, Fedeli et al. (2015a) have assessed the
impact of the following factors on the algorithm: number of sources, noise level, initial guess,
contrast level, and scatterer size.

Instead of using a fixed choice for p, an automatic and adaptive strategy is also possible.
Estatico et al. (2018a) proposed to define the parameter based on the current contrast estimation.
Given a predefined range, p is evaluated proportionally to the contrast function in each point
of the image, i.e., the authors rearranged the formulation to support a local definition of p.
The results from cases studies show that the automatic and adaptive strategy had outperformed
the regularization in Hilbert space (p = 2) and was equivalent to the fixed choices considered.
Therefore, the advantage is a practical one, i.e., to free from choosing a suitable fixed value.

The method has been tested in diverse situations: buried objects and GPR imaging
(Estatico et al., 2013; Fedeli et al., 2015b, 2021); multi-frequency data (Estatico et al., 2015a,b);
biomedical imaging (Bisio et al., 2018, 2020, 2017; Dachena et al., 2021; Estatico et al., 2017;
Fedeli et al., 2017a; Randazzo et al., 2021b); three-dimensional reconstructions (Estatico et al.,
2018b, 2016, 2018c); through-the-wall imaging (Fedeli et al., 2017b); phaseless data (Estatico
et al., 2020); multiscaling approach (Randazzo et al., 2021a).

3.6.10 Virtual Experiments

Since incident and scattered fields are variables linearly related in state equation, a pos-
teriori recombination of sampled values can be explored in order to enforce particular and
convenient conditions. The result is therefore a virtual problem which must have the same so-
lution. In other words, a superposition of the sampled incident, scattered, and induced current
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fields data (Ei
i js, Es

ms, and Jeq
i js, respectively) might be performed as (Di Donato et al., 2015):

E
i
i j =

NS

Â
s=1

asEi
i js (3.163)

E
s
m =

NS

Â
s=1

asEs
ms (3.164)

J
eq

i j =
NS

Â
s=1

asJ
eq
i js (3.165)

Then, the following system of equations must be solved:

E
s
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ci jE
i
i j = J

eq
i j +ci j

NI

Â
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NJ
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i jpqJ
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Eq. (3.166) and (3.167) are similar to (3.32) and (3.35), respectively. Different choices
of parameters a1, · · · ,as will give different re-arrangements of the original experiment without
requirement new measurements. Such virtual experiment is also a re-weight of the collected
information. The choice might enforce convenient conditions that might allow new approxima-
tions. Di Donato et al. (2015) have proposed to enforce circular symmetry of the contrast source
around pivots points. The strategy is accomplished by solving the following linear system:

NS

Â
s=1

asEs
ms =

s
2

pkb|rrrm�rrr p|
e� jkb|rrrm�rrr p| (3.168)

where rrr p is the considered pivot point. Eq. (3.168) is similar to (3.110), i.e., the integral
equation that defines LSM for far-field conditions, with rrr p acting as the sampling point. The
linear system (3.168) is ill-posed and, therefore, must be solved by some regularization method
(Subsection 3.4).

Di Donato et al. (2015) proposed to solve (3.168) for a set of pivot points. The pivot
points are chosen within the scatterer region, after an analysis of an indicator function based on
the norm of vector containing the a values for each point in the grid. The CSI method is then
adapted to solve the set of equations based on (3.166) and (3.167).

Different approaches based on Virtual Experiments are also possible: Di Donato et al.
(2016) have proposed to adapt DWBA to address the linear system noniteratively; similarly,
Palmeri et al. (2017) proposed to adapt DBIM; Bevacqua et al. (2015) proposed to express the
induced current in terms of a superposition of Bessel functions and they obtain an algebraic
solution for the problem based on truncating the series; Bevacqua et al. (2021) have proposed a
general procedure to define the virtual experiment based on the adjoint solution of an auxiliary
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problem without having to use explicit inversion and regularization processes.

3.7 Stochastic Quantitative Methods

When methodologies employ operations with random variables, they are called stochas-
tics. Stochastic operations in optimization algorithms are widespread in problems where de-
terministic search direction techniques are computationally expensive. In addition, they are
very used in problems with multiple local minima since these operations can contribute to the
method escaping from a local minimum, unlike deterministic algorithms based on the gradient
of the objective function.

A fundamental class within stochastic algorithms is Evolutionary Computation (EC)
(Eiben and Smith, 2015). The name suggests computational operations inspired by the natural
evolution of species. However, this class encompasses a wide range of methodologies based on
other biological or even social processes, such as ant colony, particle swarms, antibodies, bird
migration, anarchist societies, FIFA World Cup, among many others (Campelo and Aranha,
2018). In general, any method in this class is also called in the literature an Evolutionary Algo-
rithm (EA). Initially, inspiration in biological processes for problem-solving came even before
the development of computers. As Fogel (1998) argued, Alan Turing in 1948 was already
proposing a genetic or evolutionary search. The popularization of this type of methodology
started in the 1960s with methodologies that gained attention: Fogel et al. (1966) proposed
Evolutionary Programming (EP); Holland (1973) proposed the Genetic Algorithm (GA); Vent
(1975) proposed the Evolutionary Strategies (ES). Since then, such subject has become deeply
studied, which is evidenced by relevant journals such as IEEE Transactions on Evolutionary
Computation and important conferences such as Genetic and Evolutionary Computation Con-
ference.

In general, these methods address the problem through a population of candidate so-
lutions, commonly referred to as individuals. Iteratively, individuals are chosen to undergo
operations that cross information to generate new individuals and update the population. This
process is driven either by random selection of individuals or random crossing of information.
Throughout iterations, also called generations, the population may converge to a solution that
has characteristics that have been preserved throughout the generations for giving a good evalu-
ation. There is no guarantee that the algorithm converges to a global optimum, but this technique
can simultaneously exploit multiple search space regions.

Concerning using this kind of methodology in EISP, the advantage is to enable a broader
search in the solutions space. This characteristic is very relevant considering the non-linear
aspect of the problem and the existence of multiple local minima, as already mentioned in
subsection 2.4.5. Furthermore, most of the time in which this sort of strategy is employed,
both contrast and field are considered simultaneously. This means that the problem is solved
without employing techniques as forward solvers, matrix decomposition, or Green’s function
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estimation. This aspect is very relevant for application in three-dimensional problems. Another
advantage is that this structure also offers opportunities to facilitate the implementation of prior
information and different types of regularizers. On the other hand, the main difficulty is the
high number of variables usually present in this approach. In these cases, the disadvantage is
that the convergence of this class of methodology can be very slow. Another disadvantage is
that it is not possible to guarantee that the algorithm always converge to the same solution given
the same input. Therefore, the measurement of performance of these algorithms should take
account its average performance for a given number of execution. This information is related
to the method’s reliability and it is crucial for its application in real situations. Specific review
articles about EAs in EISP have already been published in the literature (Pastorino, 2007; Rocca
et al., 2009).

In this section, there will be discussions about the main aspects of implementing EAs,
i.e., representing solutions, defining the objective function, searching mechanisms with their
evolutionary operators, and starting the solutions. These issues will be addressed based on the
works available in the literature that propose EAs formulations to solve EISPs, i.e., reviewing
and differentiating the works from these four aspects11.

3.7.1 Representation of Solutions

The first works that used EAs to solve EISPs considered previous knowledge about the
shape or position of the object so that the problem could be represented with few decision
variables. In addition, in these cases, it may also be possible to derive expressions for the
electric field to avoid including it in the unknown variables of the problem.

A straightforward approach is to reconstruct a circle where the variables are the position
on a bidimensional space, the contrast and the radius (Michalski, 2000). Similar to this case,
when the object is an ellipse, two variables are needed to represent the shape instead of one
(Michalski, 2001). However, there are cases where cylinders with multiple layers were consid-
ered (Caorsi et al., 2003b; Kent and Günel, 1997; Michalski, 2000; Pastorino, 2007). In such
cases, the decision variables are simply the position of the cylinder within a two-dimensional
space, the radius and the dielectric property of each layer. In problems like this, the number
of variables does not usually pass ten. Besides, these quantities can be represented in a binary
fashion instead of a real one (Kent and Günel, 1997).

However, it is possible to represent objects with a slightly more complex contour. Chiu
and Liu (1996) proposed representing the contour of a cylinder through a series of sines and

11For further discussions on the general formulation of evolutionary methods, we recommend the following
references: a general and broad discussion on CE (Eiben and Smith, 2015); a work in Portuguese dedicated to the
theme (Gaspar-Cunha et al., 2013); a chapter with a general presentation of the methods and their application in
EISPs (Pastorino, 2010d).
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cosines. That is, the outline of an object was represented by a function S(q):

S(q) =
N/2

Â
n=0

Bn cos(nq)+
N/2

Â
n=1

Cn sin(nq) (3.169)

In this case, the unknown variables are, in addition to the contrast, the constant of each
term in (3.169). This modelling can also be expanded to more than an object, as was done
in (Qing, 2006; Qing et al., 2001). Instead of a sum of sines and cosines, it is possible to
substitute for cubic splines, i.e., third-degree polynomials, as proposed by Huang et al. (2008).
Furthermore, Salucci et al. (2022b) have proposed to use quadratic Bézier spline functions.

Another specific case in the literature is identifying multiple cracks in structures (Benedetti
et al., 2007). In this case, the contrast function was defined in terms of a finite number of possi-
ble cracks represented by position, length, width, angle of inclination, and contrast. The electric
field was discretized as in (3.45) and considered an unknown addressed by the algorithm.

However, another form of representation is also very used in the literature. Considering
the discretization (3.39)-(3.42), decision variables can be simply the matrices Ē and c̄cc . This
type of representation has been widely used since the early 2000s (Caorsi and Pastorino, 2000;
Donelli et al., 2006; Donelli and Massa, 2005; Etminan and Moghaddam, 2018; Salucci et al.,
2017; Yang et al., 2021a). When there is information about the possible materials in the image
(e.g., human tissues), it is possible to represent these quantities as discrete variables (Modiri
and Kiasaleh, 2012).

The critical issue in this kind of representation is the number of variables of the electric
field. Following the most used discretization in this chapter, it would be necessary to optimize
NINJNS variables and those of the contrast function. Although this type of approach has already
been used in some studies (Caorsi et al., 2004a; Donelli and Massa, 2005), it is not efficient
since the generic formulations of EAs have difficulty with a high number of variables. In these
cases, only image reconstructions with low resolution are feasible. Therefore, several strategies
have already been used in the literature to get around this issue: (i) BA (Caorsi et al., 1991;
Yang et al., 2021a); (ii) prior execution of deterministic algorithms (Brignone et al., 2008; Liu
et al., 2020); (iii) parallelization (Massa et al., 2005); (iv) the estimation of the field by a direct
resolver of all individuals (Huang et al., 2008; Huang and Sanagavarapu Mohan, 2007) or only
those considered acceptable by a neural network (Ashtari et al., 2010; Noghanian et al., 2014);
(v) the use of Markov Random Fields to correct the Born Approximation (Caorsi et al., 1994,
2004d).

A methodology that deserves particular attention is the Iterative Multi-Scaling Approach
(IMSA), which aims to reduce the number of variables. Initially, Caorsi et al. (2002) proposed
to reduce the image area by calculating the “center of contrast”12 of the image. In other words,
the EA is executed for the first time considering the entire image in a low resolution; then

12This calculation is similar to the concept of center of mass in gravitational theory. However, this calculation
is not named in the literature. It is just a way used in this text to describe the calculation.
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background regions in the image are excluded; after the exclusion, the EA receives the new
region and optimize the model for a new resolution; the process of exclusion and running the
EA is repeated until a specific stopping criterion is reached. This process is similar to a zoom
strategy over the most significant areas within the figure. Its idea was based on previous work
(Miller and Willsky, 1996a,b). The same idea was repeated (Caorsi et al., 2003a), and after, a
clustering strategy was added, consisting of three steps: thresholding, noise filtering and object
detection (Caorsi et al., 2004b).

This strategy is relevant since it eliminates regions where the background medium can
be assumed (in these regions, the total field does not need to be considered since, as the contrast
is zero, the contribution to the integral is null). However, the proposed clustering operations
may be unclear and ineffective for some patterns in the images. That same strategy was consid-
ered in many works in the literature without any further consideration (Benedetti et al., 2010;
Donelli et al., 2009, 2006; Oliveri et al., 2012, 2011; Salucci et al., 2017; Zhong et al., 2020). A
modification was proposed recently by Hajebi and Hoorfar (2022). The authors have proposed
to use the Diffraction Tomography to obtain an initial image. Such technique allows to iden-
tify scatterers before the evolutionary process and without significant computational cost. After
obtaining a first impression of the image, more advanced image segmentation algorithms were
applied to crop scatterer areas and, then, the IMSA approach is conducted.

3.7.2 Objective Function Formulation

The definition of the objective function has a fundamental role in the development of
EAs. Through it, individuals will be qualified and compared in the process of updating the pop-
ulation. In works that considered known shapes of objects, the objective function was defined
in terms of the residual norm of the data equation. The state equation was not considered since,
in these cases, there were analytical approximations for the electric field (Caorsi et al., 2003b;
Chiu and Liu, 1996; Kent and Günel, 1997; Michalski, 2001; Qing et al., 2001). Similarly,
the state equation does not need to be taken into account either when the Born Approximation
(Caorsi and Pastorino, 2000; Yang et al., 2021a) or when the total field of each individual is
evaluated by some forward solver (Huang et al., 2008; Noghanian et al., 2014). It is also worth
mentioning the function proposed by Caorsi et al. (1991) defined as the probability in which a
given contrast candidate solution is the true one given the known scattered field. In other words,
the problem resumes to maximizing the conditional probability P(c̄cc|Ēs):

P(c̄cc|Ēs) =
P(Ēs|c̄cc)P(c̄cc)

P(Ēs)
(3.170)

It is worth mentioning that the probabilities involved in this formulation are estimated
by an analytical expression which presupposes the Born Approximation.

Similar to what was introduced in SOM, a vast amount of EAs formulations for EISP
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considered a weighting between the residuals of data and state equations (Pastorino, 2010a).
Many works consider the discretization formula (3.32) and (3.33). Therefore, the weighting of
the residuals is given by:

fEA(Ē,c̄cc) = aEA
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There are many possible ways in which aEA
1 and aEA

2 are defined. However, the most
implemented way in the literature is (Benedetti et al., 2007; Caorsi et al., 2002, 2004b; Donelli
and Massa, 2005; Salucci et al., 2017):
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Therefore, the objective function (3.171) can be rewritten as follows:
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(3.174)

In cases where the contrast and field variables are optimized simultaneously, it is very
important to also consider the state equation in the objective function. The main reason is that
its inclusion represents a penalty in solutions where the electric field is not consistent with the
contrast. In other words, there may be solutions that minimize the data equation residual, but
the relationship between the two unknown quantities is very distant from that established by
Maxwell’s equations. Therefore, the insertion of this residue contributes to the rejection of
solutions with no physical meaning.

The meaning of including the state equation into the formulation might also be under-
stood through the concept of constraint optimization. Following this concept, the actual problem
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which has been addressed is:

min
Ē,c̄cc
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Thus, methods that use forward solvers to estimate Ē guarantee (3.176) in their struc-
ture while the ones that address (3.174) are using an external penalty methodology (Rao, 2019).
While determining the total field by forward solvers might eliminate variables from problem,
the disadvantage is the computational cost that is added to the algorithm. An alternative to over-
come such drawback is the use of surrogate models (He et al., 2023). Surrogate models (also
called meta-models) are, in other words, interpolation techniques that can predict the evaluation
of an expensive objective function based on samples collected from it. Such strategy, when
applied to optimization algorithms, may reduce the computational cost by reducing the number
of times in which the expensive objective function is called. In Surrogate-Assisted Evolution-
ary Algorithms (SAEAs), the surrogate model is build in the beginning by randomly sampling
the search space and the model is updated according some rules throughout the evolutionary
process. The first application of SAEAs in EISP was accomplished by Salucci et al. (2022b).

Another way of interpreting (3.174) is as an application of weighting objectives in a
multi-objective approach (Chankong and Haimes, 2008). Multi-objective problems are those
in which there are more than one objective functions to be optimized which conflict with each
other. Regarding the question about the conflict between the data and the state equation, it is
reasonable that the exact solution of the problem minimizes both equations. However, while
any solution to Maxwell’s equations minimizes the state equation error, it may not minimize
the data one since it might be the scattering of another object. In addition, due to ill-posedness,
there might be solutions that minimize the data equation residual while representing signifi-
cant errors in the state equation since they have no physical meaning. As far as this author
knows, there is no work in the literature discussing possible conflicts between data and space
equations as well as the application of other multi-objective methodologies (eg., e-constraint,
Multi-Objective Evolutionary Algorithms, etc). Therefore, it is an open problem the application
of multi-objective techniques into the problem.

Finally, it is worth noting that regularization terms might be added to the objective func-
tion. Qing (2006) added a penalty term to solutions that contained intersections between the
cylinders; Chiu and Liu (1996) added the square of the absolute value of the derivative of
(3.169); Pastorino et al. (2000) and Caorsi et al. (2001) added the mean of the absolute differ-
ence between all pairs of contrast elements inspired by the Markov chains (Caorsi et al., 1994).
As far as this author knows, no implementation of EA in the literature has added regularization
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terms such as Tikhonov (3.80) or TV (3.138). Possibly, the difficulty of determining a weight
for this type of objective has inhibited its application. In any case, it is worth noting that this
kind of functionals conflicts with the data and state equations since its optimal solution is ei-
ther the zero function (Tikhonov) or a constant function (Total Variational). The L-Curve in
Figure 3.3 is an example of such conflict.

3.7.3 Mechanisms and Evolutionary Operators

Each EA has its search engine which is made up of operators who can take inspiration
from biological, physical or social processes. GA has a mechanism based on crossing and mu-
tation operations. EP is near to GA; its main differences are that only the mutation operation is
considered and each parent generates only one offspring. Particle Swarm Optimization (PSO)
bases its operators on the particle path. Differential Evolution (DE) is also inspired by evolution-
ary behavior but its mutation operator is based on the difference vector between the solutions.
Ant Colony Optimization (ACO) works based on the path of ants through communication by
pheromone trails. Simulated Annealing (SA) is based on thermodynamic processes. These are
the main EAs and those that have been implemented in the literature to address EISPs13.

Until mid-2005, GA was the most popular among works on EA applied to EISP, mainly
among those where the electric field had an analytical solution or approximation (Caorsi and
Pastorino, 2000; Kent and Günel, 1997; Qing et al., 2001). However, it was also applied some-
times in situations where the field was also resolved (Pastorino et al., 2000), either when the
number of contrast variables was decreased (Benedetti et al., 2007) or in the form of a memetic14

algorithm (Caorsi et al., 2003b,c; Massa et al., 2005; Pastorino et al., 2004), in which some
deterministic algorithm (eg, CG) was coupled as a local search operator. Concerning evolu-
tionary operators, classical operators were used for binary or real variables. If we consider the
last works: (Massa et al., 2005) chose the convex recombination and non-uniform mutation;
Benedetti et al. (2007) implemented the binary and uniform mutation crossing; and Noghanian
et al. (2014) used convex recombination and boundary mutation. Although these operators are
very common, they do not exploit characteristics of the problem, which is its main disadvantage.

In the same period, another methodology that had a reasonable number of publications
was DE. Rocca et al. (2011) made a review dedicated to the application of this methodology
both in inverse problems and in optimization of antennas and other situations. In table 2 of the
article, the authors listed eleven works of DE applications to the inverse problem, being that:
(i) six works considered problems with perfect conductors; (ii) eight studies made assumptions
about the shape of the scatterers so that the number of variables was smaller; (iii) six studies
implemented the classic evolutionary operators such as “DE/best/1/bin” or “DE/rand/1/bin”, in

13An implementation of the Bat Algorithm was also found (Yang et al., 2021b). But since this algorithm is not
so relevant within the context of EAs, it will not be included in the discussion.

14Memetic algorithms combine evolutionary and deterministic approaches. Usually, after some generations, an
arbitrary deterministic algorithm is applied to the best solution as a local search operation.
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which the mutation is performed through the difference vector formed from the best solution
(or a random one) and the combination of the two other random solutions; in addition, the
binary crossover is used. They are classic operators that do not use information about the
structure of the problem; (iv) two studies implemented a strategy of partitioning the population
into groups and added a competition operator between them (Breard et al., 2008; Qing, 2003).
It is worth noting that, in these two cases, the shape of the scatterer was parameterized. For
purposes of illustration, Pastorino (2010a) made a comparison between DE and GA. However,
the comparison is quite limited since, in addition to considering only one instance, there was no
discussion about how many times the algorithms were run to obtain the residual convergence
and mean contrast error curves in Figures 7.14 and 7.15 of the cited reference. Finally, it is
worth highlighting the integration of the IMSA strategy with DE available in (Donelli et al.,
2010).

As of 2005, the most applied EA in the literature was PSO. As far this author knows, the
first implementation was proposed by Caorsi et al. (2004a). The authors justified their choice
based on the popularization of the method in EC, the simplicity of its implementation (its struc-
ture has only one variation operator and no selection one), and less complexity about the cali-
bration of its parameters. Traditionally, the inertia and acceleration parameters are adjusted to
0.4 and 2.0, respectively (Rocca et al., 2009). For this algorithm, there are implementations
considering: (i) the three-dimensional case (Donelli et al., 2009); (ii) coupling with the IMSA
strategy (Donelli et al., 2006); (iii) variations in the formulation (Huang and Sanagavarapu Mo-
han, 2007; Yang et al., 2021c); and (iv) the representation of the object by series of sines and
cosines (3.169) (Huang et al., 2008). The most advanced formulation for the algorithm was
proposed by Salucci et al. (2017). The authors considered the Ground-Penetration-Radar case.
Therefore, the technique was adapted to solve the equations considering multiple frequencies
simultaneously. The operation of updating the particles followed the traditional formulation of
the algorithm, which does not take into account the problem’s structure. To contribute to the
search process, the IMSA strategy was used. It is worth highlighting the experimental studies
carried out to justify the choice of parameters of inertia, acceleration, and population size, and
the real experiments carried out.

The SA and ACO algorithms have been applied in a few studies in the literature. In
addition to the traditional applications available in (Caorsi et al., 1991; Garnero et al., 1991), we
highlight: (i) Brignone et al. (2008) proposed a hybrid algorithm where the ACO was integrated
with the Linear Sampling technique; (ii) Etminan and Moghaddam (2018) proposed adapting
SA for a multiple directions search strategy; (iii) Hajebi and Hoorfar (2022) have proposed the
application of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) which shows
a better performance in large scale problems; and (iv) Pastorino (2010a) compared traditional
formulations of GA and ACO and found a faster convergence of ACO in an experiment with
synthetic data. However, only one instance was used and there is no information on how many
times the algorithms were run.
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3.7.4 Population Initialization

One aspect that is also relevant to the performance of EAs is how individuals are ini-
tialized. Population-based algorithms rely on good diversity at startup for proper convergence.
If the initial population does not have this characteristic, in addition to premature convergence,
promising regions of the search space will not be explored.

In EAs, the range of allowed values for contrast and field unknowns is a common a priori
information used for population initialization and evolutionary operators (Donelli and Massa,
2005; Pastorino et al., 2000; Salucci et al., 2017). Although this is important for convergence,
it can be a condition that limits the application of the algorithms.

Many initialization strategies are possible using the range information. Population indi-
viduals might be initialized with random values taken within the allowed range, considering a
uniform distribution (Donelli and Massa, 2005; Pastorino et al., 2000; Salucci et al., 2022b). But
it is also possible to initialize the population as disturbances in the free space solution (Donelli
et al., 2009, 2006). Another way to initialize the solutions is to use a random strategy for the
contrast variables and define the field from (3.40) using the Born Approximation to perform the
integral (Salucci et al., 2017). All of these forms are BA-based. Therefore, these initialization
strategies may be inefficient for strong scatterers situations.

3.8 Deep-Learning Methods

Deep Learning (DL) is a technique within the context of Machine Learning that has be-
come increasingly popular given the numerous variety of possible applications (LeCun et al.,
2015). Its potential to predict effects and to classify data has also attracted attention and im-
pacted many studies in computational electromagnetics (Campbell et al., 2021; Li et al., 2021;
Massa et al., 2018; Seretis and Sarris, 2022a). Considering its application into Microwave Imag-
ing, in most of the cases, the technique will consist of training Deep Neural Networks (DNN)
to predict the result of new entries or even to group them. Although the first works that use
DNNs to solve some formulation of EISP are from the 90s (Azimi-Sadjadi et al., 1992; Low
and Chao, 1992), the development of DLs for EISP started to become popular in the last five
years (Figure 3.4). One of the main attractions is the possibility of real-time imaging from a
well-trained network.

Recently, Chen et al. (2020b) and Salucci et al. (2022a) reviewed the DL methodologies
applied to EISP. They highlighted three main classes of methods: Fully Data-Driven Learning,
Learning-Assisted Objective-Function (LAOF), and Physics-Assisted Learning (PAL). The dif-
ference between them was established through the division of the scattering problem into three
phases: (i) the propagation of the incident wave; (ii) the interaction between the incident wave
and the scatterer which induces a current; and (iii) the radiation of the induced current that prop-
agates the scattered field. Interpreting these phases in the light of the contrast source equations
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Figure 3.4: Emerging trends: the intersection of Microwave Imaging and Deep Neural Net-
works garnering increasing attention among researchers, as reflected by the growth of published
papers. Source: http://app.dimensions.ai

(2.33)-(2.34), only the second phase depends on the contrast function, i.e., in the first and third
phases, the incident field and the induced current source are predominant, respectively.

The Fully Data-Drive Learning class is composed of methods whose input to the net-
work is the scattered field data and the output is the contrast function, i.e., the methods make
a direct mapping between scattered fields and contrast (Direct Learning Scheme). Therefore,
the networks are trained to learn the three phases of the scattering process. Although this is
the easiest implementation, it is not the most efficient one since the network is forced to learn
processes for which they have an analytical form, such as the incident field propagation. The
computational cost for the training phase is very high, especially when the solution is repre-
sented by linear elements. In addition, performance can be unsatisfactory for multiple or strong
scatterers (Chen et al., 2020b). This methodology can be efficient in simple cases where there
is a priori information about the shapes of the scatterers (Fajardo et al., 2019; Ran et al., 2019)
or the media is assumed to be inhomogeneous (Zhang et al., 2023b). If a refinement network
is added after the initial one, that is used to invert the scattered field data, it has the potential to
further enhance the performance and achieve better results (Chen et al., 2022; Song et al., 2021;
Yao et al., 2019). Furthermore, there are additional techniques that can aid in enhancing the
initial contrast estimation, such as inverting the Contract Integral Equation (2.38) using Fourier
bases (Xu et al., 2022) or adding acoustic data in the input (Qin et al., 2022). Another approach

http://app.dimensions.ai


101

involves predicting multi-frequency scattered fields based on a single-frequency one, which can
alleviate the complexity of the direct inversion (Zhang et al., 2023a).

The LAOF Class is based on using deep-learning to accelerate the convergence of an
iterative method. In other words, a trained network can be inserted into the methods of sections
3.6 and 3.7 to provide better search directions to accelerate convergence. An example of this
type of approach was proposed in (Guo et al., 2019). The authors formulated a gradient learning
method, i.e., instead of calculating the gradient to determine the direction of error minimiza-
tion, they use one provided by a previously trained network to determine the average descent
direction. For this reason, it was called the Supervised Descent Method. But other types of
strategies are possible:

1. Chen et al. (2020a) proposed to train a network to receive magnetic resonance images
and estimate the contrast of the images. The results of this initial step were coupled to the
BIM to refine the solution;

2. Similarly, Sanghvi et al. (2020) proposed to train a network to receive the J̄eq
s,+ vector

of the decomposition performed by SOM and obtain an estimate of the total induced
source. This step combined with SOM contributes to the solution of problems with strong
scatterers.

3. Yao et al. (2022) proposed a descent method where the forward problem in each iteration
is solved by a complex-valued deep CNN.

The PAL class principle is to incorporate the physical aspects of the problem into the
mathematical formulation of the network architecture. Although adapting the internal structure
to combine the electromagnetism laws is not a trivial task, Chen et al. (2020b) also consider that
this principle can be used in the configuration of the network input. An example is to train the
network to operate only in the space of contrast solutions, i.e., a mapper of the contrast solutions
space for itself. In practice, this means training a network to receive an initial reconstruction
done by some method and return a high-resolution image with more precise contours of the true
contrast. In other words, this also means predicting the high-spatial-frequency components that
are missing from an image with the low ones. Examples of this approach in the literature are:

1. Different network structures developed to receive the image reconstructed by linear meth-
ods such as Born Approximation, Back-Propagation, and Dominant Current (Guo et al.,
2021; Li et al., 2019a; Sun et al., 2018; Wei and Chen, 2019a; Xiao et al., 2020; Zong
et al., 2022). Specifically, Wei (2022) suggested using each contrast image obtained by
each incident angle in the Back-Propagation method as the input of the network.

2. The refinement of images recovered Near-Field Scanning Microwave Microscopy (Zhou
et al., 2023);

3. The network trained from reconstructions made by the CSI (Khoshdel et al., 2019);
4. The threefold hybrid method that recovers the shape through LSM, refine it through CNN,

and estimate the dielectric properties by BIM (Chen et al., 2021);
5. (Zhang et al., 2020b) proposed the combination of a qualitative and quantitative approach
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as an input to a CNN.
6. In (Chen et al., 2020a), the authors proposed an approach that utilized Convolutional

Neural Networks (CNN) to estimate dielectric properties from Magnetic Resonance im-
ages. This estimated property was then used as an initial guess for a qualitative inversion
method.

In an effort to integrate physical principles into neural network structures, researchers
have utilized the iterative nature of quantitative inversion methods. This approach is also known
as unrolled method and has been investigated in the most recent research papers. They has
consistently demonstrated improved network performance. Notable examples of such papers
include:

1. Li et al. (2019b) proposed a cascade of CNN stages that represents the recursive solution
derived from the regularization of the inverse problem.

2. Liu et al. (2022a) introduced a comparable architecture, but with a distinct feature. In
this structure, each stage consists of four layers dedicated to predicting four different
variables: induced current, total field, contrast image, and an auxiliary variable.

3. In the method proposed by Liu et al. (2022b), the induced current and contrast map from
the previous stage are combined to generate a novel prediction of the induced current.
This approach was compared to SOM.

4. Shan et al. (2023) put forward a novel approach to enhance BIM framework by utilizing
two CNNs in place of the conventional forward and inverse solvers. Consequently, each
stage of the updated framework was characterized as an iteration of BIM.

5. Zhang et al. (2023c) has proposed a novel approach in which each stage comprises of
two Contrast Source Inversion (CSI) iterations and two Convolutional Neural Networks
(CNNs). In the first CSI iteration, the contrast image is updated, following which the
two CNNs predict the residual between the correct image and the present one. This
information is then fed into another CSI iteration that fine-tunes the current contrast image
for further improvement.

6. Zhou et al. (2022) has presented a Generative Adversarial Network (GAN) where each
stage of the generative network implements an iteration of CSI in which each variable is
a layer, similarly to Liu et al. (2022a). In addition, they incorporated a refinement layer
after predicting the contrast image to further enhance the reconstruction.

DL techniques have found applications beyond the inverse two-dimensional problem.
Researchers have explored the use of these techniques for solving three-dimensional problems
(Chen et al., 2023; Han et al., 2022; Khoshdel et al., 2021; Xiao et al., 2022; Zhao et al., 2022;
Zhou et al., 2021) and for estimating fields in the forward problem (Guo et al., 2022; Hu et al.,
2022; Ma et al., 2021; Seretis and Sarris, 2022b; Yao et al., 2023; Yin et al., 2022). Addition-
ally, peripheral issues have been addressed in the literature: learning regularization parameters
(Afkham et al., 2021); independence of measurement configuration (Li et al., 2023); phase
information (Pan et al., 2021) and prediction (Luo et al., 2022); scatterer and background clas-
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sification for qualitative methods (Yago Ruiz et al., 2022); dielectric breast phantoms generated
by GAN (Shao and Zhou, 2022); and the inversion of dielectric and perfect electric conductor
scatterers (Song et al., 2022).

3.9 Conclusion

This chapter has reviewed the EISP solution methodologies. To facilitate the translation
of ideas into numerical implementation, an effort was made to define the problem discretiza-
tion in Section 3.2 based on a usual problem configuration defined in 3.1. We highlight the
discretization of (3.32)-(3.36) which is the most popular form in the literature, as well as the
matrix form in (3.39)-(3.43). Then, linear approaches such as the Born and Rytov approxima-
tions and the Back-Propagation and Dominant Current methods were presented. The classic
regularization methodologies, often required for solving linear ill-posed inverse problems, were
also presented. We mention the Tikhonov Regularization (Subsection 3.4.1) with its several
parameter choice methods, where the L-Curve is one of the main ones (Subsection 3.4.1).

Nonlinear methods are classified as either qualitative or quantitative. The former is suit-
able for when only the shape of the scatterers are necessary to recover. On the other hand, the
latter is the class for when shape and dielectric information need to be estimated. The quanti-
tative methods are divided into deterministic (Section 3.6) or stochastic (Section 3.7) methods.
The main advantage of deterministic methods is the reconstruction by operations that are fully
based on the physical properties while the advantage of stochastic algorithms is their compat-
ibility with nonlinear problems with multiple minimums. Among the deterministic ones, the
most traditional ones are BIM (Subsection 3.6.1), DBIM (Subsection 3.6.2), and CSI (Subsec-
tion 3.6.6) while the ones that have been most used in recent works are CS (Subsection 3.6.7),
Level-Set (Subsection 3.6.5) and SOM (Subsection 3.6.8). Considering the stochastic methods,
we highlight the evolutionary algorithms that can be adapted for different types of representa-
tions (Subsection 3.7.1), objective functions (Subsection 3.7.2), search engines and operations
(Subsection 3.7.3); and initializations (Subsection 3.7.4). The latest formulations usually con-
sider a representation of the solution by the discretization elements, the PSO mechanism, the
weighted residuals of data and state equations. One of the most successful strategies to reduce
the problem is IMSA and the replacement of the objective function by surrogate models. Table
3.1 summarizes the various methods according to their properties.

Finally, a brief discussion was made on the use of DLs (Section 3.8), usually coupled
with linear or non-linear deterministic strategies for the refinement and resolution increase of
the contrast image. This subject has received a lot of attention from the literature recently and
it represents one of the main research opportunities for the development of methodologies that
address EISP.
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Table 3.1: Classification of methods by their properties.

Classes Methods

Qualitative
Linear Sampling Method

Orthogonality Sampling Method

Quantitative

Deterministic

Linear

Born Approximation

Rytov Approximation

Back-Propagation Method

Dominant Current Scheme

Nonlinear

Forward

and

inverse

subproblems

Born Iterative Method

Distorted Born Iterative Method

Variational Born Iterative Method

Level-Set Method

Gradient-

based

Conjugated-Gradient Method

Contrast Source Inversion

Subspace-based Optimization

Method

Other

Compressive Sensing

Regularization on Lp Banach

Spaces

Virtual Experiments

Deep learning methods

Stochatisc

Components Types

Representa-

tion

Known geometries

Contours

Pixel-based

Objective

function

Data equation residual

Data and state equation residual

Mechanism

GA

DE

PSO

Population

Initialization

Random

Born Approximation
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Chapter 4

Proposed Methodology

This thesis aims to enhance the current state-of-the-art algorithms for microwave imag-
ing by proposing novel approaches based on surrogate models. Additionally, a comprehensive
framework for the development and testing of algorithms specific to this problem is presented.
In Section 4.1, a critical review of the literature is presented, highlighting the gaps and areas
for improvement in the current state of the art. Building on this analysis, Section 4.2 proposes
a novel approach to address some of the limitations, specifically, the use of surrogate models
and the framework for development and comparison of algorithms designed for EISPs. Sec-
tion 4.3 provides a detailed discussion of surrogate-model assisted algorithms for microwave
imaging, including a description of the transformation of the inversion problem into a bidimen-
sional optimization one, the Kriging model, and the proposed algorithms. Section 4.4 outlines
a framework for developing and testing algorithms for microwave imaging, including the pro-
posed metrics to assess their performance. Finally, Section 4.5 presents the concluding remarks.

4.1 Literature Criticism and Opportunities

In the early stages of developing algorithms for microwave imaging, several challenges
were encountered (Bertero and Boccacci, 2020; Kirsch, 2011; Pastorino et al., 2000). In the
early context, the available data was significantly limited and noisy, which represented a serious
challenge for a problem with non-unique solution. When more data was available, the limited
computing power was other challenge. The understanding of the physics involved in microwave
imaging also evolved throughout the years, which was also important for the development of
the subject.

Currently, two significant challenges are faced by researchers in the literature: real-
time imaging and the retrievement of strong scatterers. Real-time imaging requires fast and
efficient algorithms that can produce accurate images in real-time or nearly, which is essential
for many applications such as medical imaging (Li et al., 2021) and security screening (Asok
et al., 2022). To address this challenge, researchers have turned to deep-learning techniques that
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can efficiently process large amounts of data and provide accurate results in real-time (Salucci
et al., 2022a).

The other challenge is the imaging of strong scatterers, which refers to objects with high
contrast levels or large dimensions when comparing to the wavelength. Such objects result in
high nonlinearity and can create significant artifacts in the resulting image, making it difficult to
accurately reconstruct the underlying structure. This is particularly challenging when imaging
complex structures, such as biological tissues or composite materials (Lazebnik et al., 2007).
This type of scenario has been addressed in three main ways:

1. The first approach is to reduce the degree of non-linearity by changing the integrals solved
by the algorithms (Section 2.4);

2. The second approach is based on domain decomposition (Zhang et al., 2022). This ap-
proach divides the scatterer region into dominant and subordinate subdomains based on
the information of the induced current. The dominant subdomain is then reconstructed
iteratively, narrowing the inversion domain and reducing the nonlinearity of the problem.

3. The third approach is the use of surrogate models (Koziel and Leifsson, 2008). Salucci
et al. (2022b) proposed a surrogate model to predict the data equation error considering
curve-based representations of scatterers. By using this approach, the computational cost
of stochastic algorithms that do not solve the contrast and the total field simultaneously
can be significantly reduced. This is because such algorithms rely on forward problem
simulations to estimate the error. The authors demonstrated the effectiveness of their
approach in high-contrast scenarios, showing promising results.

Some ideas in the field have yet to receive the attention they deserve, and one of them is
the use of qualitative methods to define initial solutions for quantitative algorithms. Even though
this approach has been explored in some papers (Bevacqua et al., 2015; Han et al., 2022; Zhang
et al., 2020b), it has yet to be fully utilized to improve the performance of stochastic algorithms
for the problem. The use of qualitative methods can help to improve the robustness of images
reconstructed by these algorithms to noise and high contrasts, as well as guide the convergence
of population-based algorithms towards more promising regions of the search space.

Another aspect that draws attention in the literature is experiment design and quality
evaluation of algorithms. A highly relevant aspect of experimentation is using more realistic
scatterer models or data obtained from real measurements. This has become popular in the
literature through laboratories that make the data available. Two widespread examples are the
UWCEM Numerical Breast Phantom Repository (Burfeindt et al., 2012) and the measurements
made by the Institut Fresnel (Geffrin et al., 2005).

In addition, Kurrant et al. (2021b) have recently proposed a methodology to evaluate
the performance of the algorithms applied to breast cancer detection. Given a reference image
and the recovered one, the authors proposed to segment the tissues in the images by an unsu-
pervised machine learning approach. After decomposing the images and mapping the tissues,
five metrics were proposed to evaluate shape fidelity, malignant tissue reconstruction in tumor
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regions, among others. Therefore, the novelty is a technique to measure the quality of breast
reconstruction with suitable tools. Their methodology is also available as a MATLAB toolbox
(Kurrant et al., 2021a).

However, in many publications addressing general applications, traditional instances
have been chosen with particular characteristics to demonstrate the reconstruction ability of the
proposed method in the corresponding situation. Performance is measured through some quality
indicator, and the result is compared to other algorithms and formulations (Zhang et al., 2020a;
Zhong et al., 2020; Zhou et al., 2021). Although this approach is interesting to illustrate the
algorithm’s suitableness, it has little methodological rigor to offer robust answers to questions
such as: (i) what is the impact of the choice of the instance on the performance quantifier’s
value? (ii) How does the indicator vary if the object’s geometry changes? (iii) How does the
difference in performance observed between the two methods vary if the geometries vary? (iv)
What is the average or worst-case performance of the method for a given configuration? Among
others.

Even though these questions may fall outside the scope of proposals based on case stud-
ies (e.g., physical experiments), general conclusions about suitability and performance can be
very weak without an adequate experimental methodology that considers different effect factors
in the configuration of the problem. Although the noise level factor is usually the most explored
in this sense (Batista et al., 2021; Chen, 2010; Chew and Wang, 1990; Shah and Moghaddam,
2018), experiments with random instances for a more robust measurement performance are not
usually performed. Even when the publication had the main objective of comparing algorithms
(Gilmore et al., 2009; Moghaddam et al., 1991; Pan et al., 2010). This practice is essential to
eliminate the observer’s bias in algorithms analysis (Montgomery and Runger, 2010). Other
examples are several works in the literature that propose stochastic methodologies and do not
even inform how many times the algorithm was repeated when showing the result for a given
instance. There is no information if the result shown represents the worst, average, or best case.
This is problematic since these methodologies have no guarantee of returning the same solution
in every execution (Ashtari et al., 2010; Massa et al., 2005; Salucci et al., 2017).

Therefore, another opportunity in the literature is to introduce more robust comparisons
between algorithms, i.e., benchmarking. A reference on best practices for comparing optimiza-
tion algorithms is the article written by Beiranvand et al. (2017). Among the many relevant
notes made by the authors, we highlight the following:

• A test suite with few problems should be referred to as a case study or proof of concept,
but not benchmarking.

• A test suite should avoid the following deficiencies: (i) few problems; (ii) slight or exces-
sive variation in the complexity of the instances, making it impossible to extract helpful
information; (iii) problems with no known solutions (which can be inevitable in real sit-
uations); (iv) bias at the starting point of the algorithms; (v) hidden structures.

• All algorithms must receive the same amount of input information and ensure that there
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is an assumption that is only respected by one of the algorithms in order to verify the
influence of that assumption.

These topics do not necessarily represent failures in the experiments described in the
literature. However, these concepts already established in the optimization literature can bring
maturity to the algorithms for EISP.

Finally, we also highlight the metrics used to assess the quality of the reconstructions.
In the vast majority of works, the quality of the reconstructed images of the contrast function
is quantified in one of the following ways (Chew and Wang, 1990; Oliveri et al., 2019, 2011;
Salucci et al., 2017; Shah et al., 2019; Wang and Chew, 1989; Zhang et al., 2020b):
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where e⇤r,i j and c⇤i j are the actual values of relative permittivity and contrast, respectively. In
general, (4.1) and (4.2) are formulas based on the root of the average percentage error. Slight
variations can also be adopted, such as replacing NINJ with the image area or removing the root
and square of the error.

In general, when it comes to identifying objects in the image, a good reconstruction is
characterized by the correct identification of the scatterer’s position, shape, and contrast. (4.1)
and (4.2) are metrics that address these three characteristics at the same time. A reconstruction
equal to the actual one will minimize these indicators. However, there are situations in which
these indicators are not as efficient. When the area of a scatterer is much smaller than the
figure, the error will be minimal. This might happen even if there are many deviations in the
estimate of the contrast in the scatterer area (e.g., c = 0). This can also disguise significant
errors in the position and shape of the rebuilt scatterers. It is worth noting that the residuals of
the equations are not necessarily taken as quality meters, given that, due to ill-posedness, there
may be solutions with low residues and images that are different from those expected.

As suggested by Beiranvand et al. (2017), other indicators can also evaluate interesting
aspects of algorithms performance: (i) success rate, i.e., the number of times that an algorithm
reaches a certain tolerance in a specific time limit; (ii) percentage of a class of solutions found
in a given situation; (iii) accuracy profile, i.e., percentage of problems that an algorithm can
solve for a given percentage of accuracy; (iii) performance profile, i.e., the probability that an
algorithm will solve a problem given a time limit; among others. These indicators could provide
information that would greatly enrich the comparison of the algorithms.
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4.2 Proposal

In the previous section, the state-of-the-art and the gaps in the literature on the inverse
electromagnetic scattering problem were discussed. Based on this discussion, two contributions
are proposed by our research. First, algorithms assisted by surrogate models that use images
generated by qualitative methods are aimed to be designed. Second, the design of special-
ized software for the development and testing of algorithms for this problem is proposed, with
support for randomized testing and measurement of average performance through a set of indi-
cators. These contributions aim to explore new possibilities of applying surrogate models and
bring more robustness to the analysis of algorithms for the problem.

New applications of surrogate models in this problem are encouraged since their intro-
duction is recent and has only been explored by Salucci et al. (2022b). Using curves to represent
scatterers that define their contours allows a reconstruction compatible with complex geome-
tries, but it requires several variables, which can still be very high for surrogate models (Wu
et al., 2019). Furthermore, it is necessary to know beforehand how many scatterers exist in
the image so that the compatible number of contours can be defined. If the image obtained by
qualitative methods is used, the problem becomes one of estimating the contrast of the objects
and adjusting the threshold that separates the background from the objects. In other words, this
would turn the inversion process into a two-dimensional optimization problem, in which the
performance of surrogate models is higher. The OSM can capture different levels of contrast
in the images, making the application feasible in cases of multiple objects with different levels
of contrast. However, the application is restricted to cases where the qualitative methods work
properly.

As a second contribution, a framework for algorithms for the inverse electromagnetic
scattering problem is proposed to facilitate their implementation and testing. Suitable experi-
ments need to be designed to assess the impact of modifications on the performance of algo-
rithms. Arbitrary situations can illustrate the ability of methods to make good reconstructions,
and experiments with real data are relevant to attest to the application in practical situations.
However, measuring the performance of methods and making comparisons need to follow prin-
ciples such as control of effect factors and random instances, which are well-established in the
specialized literature on Evolutionary Algorithms but little widespread in the literature on meth-
ods for Electromagnetic Inverse Scattering. A framework that addresses the insulation of effects
factors and new indicators can better qualify the algorithm’s reconstruction performance. This
applies not only to stochastic methods but also to deterministic ones.

4.3 Surrogate model-Assisted Algorithms for EISPs

This section focuses on the proposed application of surrogate models to solve the elec-
tromagnetic inverse scattering problem. To address it, a bi-dimensional optimization approach
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is employed, where the objective function represents the discrepancy between the estimation of
the scattered field and the measured data. Surrogate models have proven to be effective tools
in approximating complex objective functions in optimization problems. Therefore, the section
also introduces the concept of surrogate models and their application in solving electromag-
netic inverse scattering problems. The Kriging model, a popular surrogate modeling technique,
is briefly explained, followed by a description of the proposed algorithms that employ the Krig-
ing model to solve the inverse scattering problem.

4.3.1 The Optimization Model

Qualitative inversion methods are commonly employed when only the shape of objects
needs to be retrieved. The method operates by classifying image points as either part of a scat-
terer or not, based on an indicator function that assigns a value to each point. However, these
methods do not offer a quantitative estimate of the scatterer’s contrast, meaning they do not esti-
mate the dielectric properties of the objects. One possible solution is to transform the qualitative
problem into a quantitative one by identifying the best classification threshold and estimating
the contrast in the object region, based on the image obtained from the normalized indicator
function. Furthermore, the Orthogonality Sampling Method (OSM), discussed in subsection
3.5.2, not only classifies the points but also identifies different levels of contrast in the image.
This ability makes it possible to apply a qualitative method in scenarios with multiple scatterers
of different contrasts, which is particularly useful in the field of electromagnetic scattering.

Mathematically, let cccnorm be the NI ⇥NJ image obtained by OSM in which the pixel
values are normalized between 0 and 1. Then, a quantitative inversion result could be obtained
if (i) a threshold level T is applied to separate background and scatterers, i.e., set cnorm

i j = 0
for pixels where cnorm

i j < T ; and (ii) multiply the remaining non-zero pixels by a factor cF . In
other words, a new quantitative image ccc is obtained by:

ci j =

8
<

:
cF cnorm

i j , if cnorm
i j � T,

0, otherwise.
(4.3)

Figure 4.1 illustrates each step of the proposed process. Note that the transformation
does not assume homogeneity within the contrast area, which means that contrast variations
are allowed. However, if homogeneity is assumed, the truncation by the average value can be
performed.

The image ccc represents the diagonal elements of the contrast matrix c̄cc mentioned in
(3.47). Consequently, the data equation error (3.39) can be calculated only if the total electric
field is evaluated. Hence, a two-dimensional optimization problem can be defined based on a
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(a) (b)

(c) (d)

Figure 4.1: Example of the process of transforming a qualitative image into a quantitative one:
(a) ground-truth image; (b) image obtained by OSM (cccnorm); (c) image obtained after the thresh-
olding process; and (d) final image obtained after the multiplication step.

given scattered field data and its corresponding Green function matrix.

T ⇤,cF⇤ = argmin f (T,cF) (4.4)

T 2 [0,1], cF 2 [cF
min,cF

max] (4.5)

where f (T,cF) is the function that determines the data equation error based on the process of
solving qualitatively the inverse problem through OSM and applying the transformation accord-
ing (4.3). Evidently, the total field must be computed for each pair (T,cF).

Understanding the characteristics of the objective function is crucial for solving any
optimization problem effectively. This is because the choice of the most appropriate algorithm
depends on this information. Therefore, having knowledge of the objective function’s properties
is essential for selecting the best optimization method and achieving the desired outcome.

In the optimization problem defined by (4.4)-(4.5), varying the multiplication factor cF

leads to continuous variations in the error of the data equation. However, varying the threshold
T does not produce a significant change on a small scale. This is due to the fact that the image
is a discrete representation of the contrast function, and small variations in the thresholding
operator may not cause any change in the resulting image. Hence, the value of the objective
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function remains constant in this small interval.
Although this effect occurs on a small scale and the objective function appears smooth

and convex from a macro perspective, when we visualize the surface of the function on a smaller
scale, we will notice non-smoothness. This makes the function multi-scale and can create prob-
lems for optimization methods that depend on derivative information. When close to a rough-
ness, the adjustment of the discrete value for perturbation of the solution might be complicated,
making the gradient point in the wrong direction. Derivative-free methods or population-based
methods may be more efficient in such cases.

(a) (b)

(c) (d)

Figure 4.2: Example of an objective function resulting from the transformation of the inversion
problem into a two-dimensional optimization one: (a) the ground-truth image; (b) the image
obtained by OSM; (c) the surface obtained by the transformation of the inversion problem into
a two-dimensional optimization one; and (d) a zoom over the region close to the optimum.

Figure 4.2 illustrates this problem. Figure 4.2b shows the reconstruction from the qual-
itative method for a test represented by Figure 4.2a. In Figure 4.2c, we see the surface of
the objective function resulting from the transformation of the inversion problem into a two-
dimensional optimization problem. The surface appears smooth from a macro perspective, but
when we zoom in on the image close to the optimum (Figure 4.2d), we see the roughness on
the T variable axis.

Another issue is that the optimal value of the multiplication factor may not coincide
with the exact value of the image contrast, mainly in cases of homogeneous scatterers. This is



113

because contrast variations within the object region make it difficult to accurately reconstruct
the image. An alternative to mitigate this effect is to assume that the object is all homogeneous
and truncate the values within the object’s region by their average or maximum value.

Finally, it is worth emphasizing that the evaluation of the objective function is not cheap
since it depends on the execution of the direct resolver to estimate the corresponding total
field. Therefore, applying an optimization algorithm that depends on many evaluations can be
prohibitive.

4.3.2 Surrogate Models

In many optimization problems, the objective function can be computationally expensive
to evaluate, meaning that it takes a long time to compute the value of the function for a given
set of input parameters. This can make it difficult to find good quality solutions, as it may take
many iterations of the optimization algorithm to explore the search space thoroughly.

Surrogate Models are approximations of the expensive objective function that are de-
signed to reduce the computational cost of evaluating the objective function (Mendes et al.,
2013; Sacks et al., 1989; Schonlau, 1997). A surrogate model is typically trained on a set of
input-output pairs, where the inputs are the parameters of the optimization problem and the
outputs are the value of the objective function for those parameters. The surrogate model learns
to approximate the objective function using this training data, allowing it to make predictions
about the value of the objective function for new sets of input parameters without actually eval-
uating the expensive objective function.

Surrogate models can be used to speed up the convergence of optimization algorithms,
as the surrogate model can be evaluated much more quickly than the expensive objective func-
tion. This means that the optimization algorithm can explore the search space more quickly,
potentially finding good quality solutions in fewer iterations. Additionally, the use of surrogate
models can reduce the number of evaluations of the expensive objective function, which can be
a significant computational cost in some problems (Sobester et al., 2008).

There are many different types of surrogate models, including regression models, neural
networks, and Gaussian processes, among others. In this thesis, the Kriging model is considered
since it is widely used in optimization problems (Emmerich et al., 2006; Yang et al., 2019;
Zhao et al., 2011) and it has shown slightly better performance in single-objective optimization
problems (Valadão and Batista, 2020).

4.3.3 Kriging Model

Let y : X ⇢ R
n ) R be an objective function for a given problem. A sample with N

solutions and their respective evaluations are X = [x1, · · · ,xN ]T and y = [y(x1), · · · ,y(xN)]T ,
respectively. The Kriging model is a regression model where each observation of the objective
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function is treated as (Jones et al., 1998; Sacks et al., 1989; Schonlau, 1997):

y(xi) = f (xi)+ e(xi), i = 1, · · · ,N (4.6)

where f (xi) = fT aaa =
d
Â

k=0
ak fk(xi), dN�1, is a linear combination of the regression functions

fk(·) and ak, k = 0, · · · ,d, are the corresponding coefficients; e(·) is a random normal variable
with zero mean and variance S2. Regression functions are similar to the trial functions presented
in Section 3.2. In the scope of present subsection:

fk(x) =
n

’
r=1

xqr
r , qr 2 [0,Q],

n

Â
r=1

qr  Q (4.7)

where Q is the highest integer that satisfies (n+Q)!
Q!n! < N�1 (Zhao et al., 2011). The covariance

of e(·) is assumed as:
Cov(e(xi),e(x j)) = S2R(qqq ,xi,x j) (4.8)

where R(·, ·, ·) is a Gaussian correlation function whose form is:

R(qqq ,xi,x j) =
n

’
r=1

e�qr|xi
r�x j

r |2 (4.9)

with qqq 2H, H= {[q1, · · · ,qn]|qr > 08r = 1, · · · ,n}. Other correlation functions are also possi-
ble (MacKay et al., 1998; Sacks et al., 1989). However, (4.9) is often used when the Kriging
model is considered (Jin, 2005; Zhao et al., 2011). The parameters qqq are estimated based on the
available sample and they mean the importance of each variable and how correlated they are.

The optimal choice of qqq , based on the sample data, is defined as the maximum likelihood
estimator (MLE), where the likelihood funnction has the following form:

L(qqq) = 1p
(2pS2)N |R|

exp
✓
� 1

2S2 (y�Faaa)T R�1(y�Faaa)

◆
(4.10)

where F= [ fk(xi)]N⇥(d+1) and R= [R(qqq ,xi,x j)]N⇥N are the regression and correlation matrices,
respectively, with i, j 2 1, · · · ,N and k 2 0, · · · ,d. For a given qqq , the expressions:

âaa =
�
FT R�1F

��1 FT R�1y (4.11)

Ŝ2 =
1
N
(y�Fâaa)T R�1(y�Fâaa) (4.12)

provide the respective MLEs of aaa and S2. If (4.11) and (4.12) are used in (4.10), then the
optimal qqq is obtained through:

argmax
qqq2H

ln L(qqq) (4.13)
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where:
ln L(qqq) =�N

2
ln(2p)�N ln(Ŝ)� ln(|R|)� 1

2
(4.14)

By determining the optimal qqq through (4.13), the correlation matrix R is obtained and
âaa and Ŝ2 are computed according to (4.11) and (4.12), respectively. Then, for an untried input
x, the predicted evaluation and its mean squared error are, respectively:

ŷ(x) = fT âaa + rT R�1(y�Fâaa) (4.15)

ŝ2(x) = Ŝ2

2

41�
�
fT (x)+ rT (x)

�
 

0 FT

F R

!�1 
f(x)
r(x)

!3

5 (4.16)

where rT (x) =
⇥
R(qqq ,x1,x), · · · ,R(qqq ,xN ,x)

⇤
is the vector of correlation; R(qqq ,xi,x) represents

the correlation between e(·) at the sampled point xi and e(·) at an untried x, for i = 1, · · · ,N.
Finally, such Kriging model is an interpolation model. Interestingly, when (4.15) is

evaluated at a point that belongs to the sample, then the prediction is the actual evaluation. This
is due to the matching of rT for the considered point with a line of the matrix R.

4.3.4 Surrogate model-Assisted Algorithms

The chapter presented various aspects related to the proposed optimization problem and
the use of surrogate models. Subsection 4.3.1 showed how the inversion problem was trans-
formed into a two-dimensional optimization problem. However, the obtained objective function
is non-smooth and computationally expensive due to the non-smoothness of the thresholding
operator and the need to solve the problem directly to estimate the data equation error. To ad-
dress these challenges, one alternative is to use a surrogate model, which can reconstruct the
objective function by considering its macroscopic characteristics through a set of surface points
that are not too close together. The surrogate model works as an interpolation operator and can
overcome the microscale problem, resulting in a smooth function when smooth basis functions
are used. Additionally, predicting the objective function evaluation is less costly than evaluating
it, making it feasible to apply search direction and population-based algorithms.

In order to implement an algorithm assisted by surrogate models, the first step is to
obtain a sample of points in the search space along with their respective evaluations. Based
on this sample, the surrogate model of the objective function can be constructed. Once the
surrogate model is obtained, the search process can begin, and the model can be updated with
new solutions that are chosen to be evaluated by the objective function. Thus, in addition to
the various methods for obtaining the initial set of points, it is also possible to explore different
methodologies for searching and updating the surrogate model.

One way to obtain the initial sample of solutions is through uniform sampling of the
search space. This involves sampling equidistant points on each axis within the range of de-
cision variables. However, the more traditional approach is Latin Hypercube Sampling (LHS)



116

Iman et al. (1981), which is a statistical method that generates quasi-random sampling dis-
tributions. LHS is widely used in computer experiments due to its simplicity and projection
properties in high-dimensional problems. To construct the LHS design, the space of each vari-
able dimension is divided into n sections, where n is the number of sampling points. Only one
point is then placed in each section.

To illustrate the differences between these two sampling methods, a high-contrast scat-
terer problem was simulated (Figure 4.3a), resulting in a multimodal objective function (Figure
4.3b. Sampling by the LHS method resulted in a surface with a barrier separating the original
minimum region in two, in which there was no sample (Figure 4.3b). Since the LHS method
is stochastic, each sampling can result in a different surface, and important regions can be left
without any samples. Uniform sampling can also result in regions running out of samples, es-
pecially if the number of samples is low. However, with a reasonable number of samples, a
surface with similar characteristics can be obtained, especially in two-dimensional problems,
as it is shown in Figure 4.3d. Therefore, to avoid the stochastic aspect of sampling, a uniform
methodology is adopted, and it is always necessary to choose an adequate number of samples.

(a) (b)

(c) (d)

Figure 4.3: Comparison of Latin Hypercube Sampling and Uniform Sampling methods for
strong scatterer instance: (a) the ground-truth image; (b) the surface of the corresponding
objective-function; (c) the predicted surface obtained by LHS; (d) the predicted surface ob-
tained by uniform sampling.

Surrogate Model-Assisted Evolutionary Algorithms (SAEAs) are a popular approach
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(Emmerich et al., 2006; Liu et al., 2014). Despite the various possible formulations of SAEAs
(Buche et al., 2005), they all share the same general structure (He et al., 2023). In Figure 4.4,
the general flowchart is illustrated. The main cycle of the algorithm is initiated after the initial
set of solutions is obtained and the surrogate model is built. In each generation of the cycle,
the current surrogate-model is utilized to evaluate the fitness values of individuals instead of
the real objective-function. An evolutionary algorithm is then employed to continually search
for the optimal solution of the problem. Meanwhile, high-quality individuals are selected to
update the sample and, therefore, are evaluated according the true objective function to update
the surrogate-model (Liu et al., 2014; Sun et al., 2017; Zhou et al., 2007). These operations are
repeated until the termination condition is met (Jin, 2005).

Figure 4.4: The basic flowchart of SAEAs.

In surrogate model-assisted optimization algorithms, it is not only population-based al-
gorithms that can be used. Since the surrogate model is constructed from smooth basis func-
tions, it is also possible to use search direction methods based on derivatives. Once the surrogate
model is built, a local optimum of the predicted surface can be obtained by applying such meth-
ods to a given starting point. This local optimum is then evaluated based on the true objective
function, and the surrogate model is updated with this new sample. This process is then re-
peated with the final solution from the previous iteration as the new starting point. Given that
the objective function is reasonably sampled early on, such a method could converge to the opti-
mum solution. A stopping criterion for this method could be consecutive iterations in which the
optimal solution does not change. Different formulations can be explored for choosing the first
starting point of the search direction method. This can be especially important in multimodal
problems, such as the one addressed in this thesis.
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In this thesis, three SAEAs approaches are considered. Their differences are the way in
which the population is initialized and the way in which the high-quality individuals are selected
for updating the model. In addition, two Surrogate model-Assisted Descent Methods (SADMs)
are also proposed. Their main difference is the approach for obtaining an initial solution. The
next subsubsections describe all of them.

SAEA1

The first SAEA approach is inspired in (Salucci et al., 2022b). After initializing the
surrogate model, the population is initialized by simply sampling random points in the search
space following the uniform distribution. Their fitness are computed by the surrogate model
prediction. Then, the algorithm executes a single iteration of the chosen evolutionary process.
After the new population is selected1, the current best solution is compared against the sample.
If it differs from all available solutions in the sample, its fitness is updated according to the
real objective function and it is added to the sample. The model is trained again and all the
individuals in the current population are re-evaluated according the updated surrogate model.
The cycle repeats and this process continues until the stop criterion is met, at which point the
algorithm returns the best solution in the sample. The pseudo-code presented in Algorithm 5
outlines this process.

Overall, the following observations are drawn for the considered algorithm:
• The sample contains the initial solution and the best individuals discovered throughout

the generations.
• The total number of evaluations of the true objective function is not greater than the sum

of the number of initial samples and the number of generations.
• The offspring population is created using the DE/best/1 operator, and the F factor is ran-

domly selected from a predetermined range.
• In addition, a local search step based on a Descent Method is added and performed after

a fixed number of generations, which distinguishes this process from the one proposed by
Salucci et al. (2022b).

SAEA2

The second approach is inspired in the one proposed by Valadão and Batista (2020). The
approach for selection and mutation in this algorithm differs from the typical prediction model-
based population evaluation implemented in SAEA1. Instead, individual evaluation using the
real function serves as the criterion for selection. The mutation strategy is also distinct, with
mutation vectors calculated based on solutions stored in an archive. The archive is initially
populated with the best solutions from the samples and is updated in each generation with

1The elitism strategy is considered, i.e., the best solution among the parent and offspring populations is pre-
served for the next generation.
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Algorithm 5: The SAEA1 algorithm.
Input: Scattered field data, discretization configuration, lower and upper bounds for cF

and T , number of initial sampled solutions, population size
Output: Contrast image.

1 Solve qualitatively the problem and obtain the normalized contrast image.
2 Sample solutions within the search space uniformly in the defined interval of cF and T .

Evaluate the sampled solutions.
3 Evaluations number of initial sampled solutions.
4 Build and train the surrogate model based on the sample.
5 Initialize a population of individuals by randomizing cF and T values following the

uniform distribution.
6 Set their fitness according to their corresponding prediction obtained by the surrogate

model.
7 while stopping criteria is not met do
8 Generate a offspring population based on the DE/best/1 operator.
9 Evaluate the offspring based on the surrogate model.

10 Selected the new population considering the union of parents and offspring individuals
by Binary Tournament and preserving the best solution among them (elitism).

11 if the local search has not been executed in the last NLS generations then
12 Perform a local search using a Steepest Descent algorithm considering the current

best solution as initial guess and the surrogate model as objective function.
13 if the returned solution by the local search is better then
14 Update the current best solution.
15 end
16 end
17 if the current best solution is not equal to any other in the sample then
18 Evaluate the current best solution according the objective function.
19 Evaluations evaluations + 1
20 Add the current best solution to the sample.
21 Train the surrogate model.
22 Re-evaluate the population using the updated surrogate model.
23 end
24 end

the best NA solutions from the updated sample. Each offspring-individual is generated from a
sub-selection of solutions, generated and evaluated by the surrogate model. The sub-selection
generates a set of solutions, and the one with the best value for the prediction of the objective
function is selected as the offspring. Then, its fitness is updated according the real objective
function. The pseudo-code presented in Algorithm 6 outlines this process.

In practice, the described algorithm leads to the following observations:
• The sample solutions are continuously updated with the best solutions found up to the

current generation. This means that sampled solutions with the worst evaluations are
removed to prioritize the reconstruction of the most promising region.

• The number of evaluations increases with each generation in proportion to the population
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size, causing this algorithm to require more evaluations to converge.
• The current version of the algorithm applies the same mutation and local search operators

in each iteration.

Algorithm 6: The SAEA2 algorithm.
Input: Scattered field data, discretization configuration, lower and upper bounds for cF

and T , number of initial sampled solutions, population size
Output: Contrast image.

1 Solve qualitatively the problem and obtain the normalized contrast image.
2 Sample solutions within the search space uniformly in the defined interval of cF and T .

Evaluate the sampled solutions.
3 Evaluations number of initial sampled solutions.
4 Build and train the surrogate model based on the sample.
5 Initialize a population of individuals by selecting the p best solutions from the sample.
6 Store in the archive the best NA solutions.
7 while stopping criteria is not met do
8 Generate k solutions for each one in the population based on the DE/best/1 operator

and evaluate them according to the surrogate model.
9 For each group of k solutions, selects the best, evaluate it according to the real function

and set it as offspring individual.
10 Evaluations evaluations + population size.
11 Selected the new population considering the union of parents and offspring individuals

by Binary Tournament and preserving the best solution among them (elitism).
12 if the local search has not been executed in the last NLS generations then
13 Perform a local search using a Steepest Descent algorithm considering the current

best solution as initial guess and the surrogate model as objective function.
14 if the returned solution by the local search is better then
15 Update the current best solution.
16 end
17 end
18 if the current best solution is not equal to any other in the sample then
19 Add the current best solution to the sample.
20 Train the surrogate model.
21 end
22 Update the archive with the NA best solutions in the sample.
23 end

SAEA3

SAEA1 has the main advantage of spending only one evaluation per generation, while
SAEA2 has the advantage of considering an archive of best solutions as parents during mutation.
The features of these two algorithms can be combined in a hybrid formulation, called SAEA3,
where the population of parent and offspring individuals is evaluated by the surrogate model,
and mutation vectors are generated based on a file with the best sample solutions. As a result,
only the best solution of the generation is evaluated by the actual function. This approach
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enables SAEA3 to have a high number of generations, similar to SAEA1, while the offspring
individuals tend to inherit more characteristics of the best solutions (exploitation), similar to
SAEA2. The same mutation and local search operators in each iteration. The pseudo-code
presented in Algorithm 7 outlines this process.

Algorithm 7: Explanation of the functioning of the SAEA3 algorithm.
Input: Scattered field data, discretization configuration, lower and upper bounds for cF

and T , number of initial sampled solutions, population size
Output: Contrast image.

1 Solve qualitatively the problem and obtain the normalized contrast image.
2 Sample solutions within the search space uniformly in the defined interval of cF and T .

Evaluate the sampled solutions.
3 Evaluations number of initial sampled solutions.
4 Build and train the surrogate model based on the sample.
5 Initialize a population of individuals by selecting the p best solutions from the sample.
6 Store in the archive the best NA solutions.
7 while stopping criteria is not met do
8 Generate k solutions for each one in the population based on the DE/best/1 operator

and evaluate them according to the surrogate model.
9 For each group of k solutions, selects the best and set it as offspring individual.

10 Selected the new population considering the union of parents and offspring individuals
by Binary Tournament and preserving the best solution among them (elitism).

11 if the local search has not been executed in the last NLS generations then
12 Perform a local search using a Steepest Descent algorithm considering the current

best solution as initial guess and the surrogate model as objective function.
13 if the returned solution by the local search is better then
14 Update the current best solution.
15 end
16 end
17 if the current best solution is not equal to any other in the sample then
18 Evaluate the current best solution according the objective function.
19 Evaluations evaluations + 1
20 Add the current best solution to the sample.
21 Train the surrogate model.
22 Re-evaluate the population using the updated surrogate model.
23 end
24 Update the archive with the NA best solutions in the sample.
25 end

SADM1

Evolutionary algorithms are powerful optimization techniques based on a population of
solutions. They are capable of exploring the entire search space (exploration), and when com-
bined with local search operators, performance can improve significantly due to the exploitation
of a potential solution. The initial surrogate model construction can be seen as a population of
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solutions, which, if sampled broadly, can cover the most promising region of the search space.
Different strategies can be applied to choose a starting point and apply a steepest descent algo-
rithm on the surrogate model.

The best solution found may not necessarily be close to the global optimum, but it can
be evaluated against the actual function and added to the sample set to update the model. By
repeating this process iteratively, the algorithm will tend to converge to a location when the
optimal solutions found in a set of iterations are identical or very close. However, the question
of how to choose the initial solution that will start the iterative optimization process remains.

One possible strategy is to run an evolutionary algorithm considering the initial surrogate
model and take the best solution found as the initial solution of the iterative process. This way,
a global search is performed, and the iterative process tends to focus on the region of the best
basin of attraction available in the first construction of the model. Such an approach will be
denoted as SADM1 where the initials stand for Surrogate-model Assisted Descent Method.
The pseudo-code presented in Algorithm 8 outlines this process.

Overall, the following observations are drawn for the considered algorithm:
• The evolutionary algorithm employed to determine an initial guess is the Differential

Evolution with the following formulation: DE/best/1/bin (Rocca et al., 2011).
• The employed descent method is the L-BFGS-B algorithm which is a limited-memory

version of Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm for boundary constrained
optimization (Byrd et al., 1995; Zhu et al., 1997).

SADM2

Rather than determining the starting point for the SADM iterative process using an evo-
lutionary algorithm, a simpler alternative is to choose the best sample as the starting point. That
is, after sampling the search space, the iterative process starts assuming the best sample of the
model as the current solution. In addition to being simpler, an advantage is to avoid the pos-
sibility of converging to another basin of attraction different from the global minimum when
this is close to the best sample. In other words, considering the surface generated by the surro-
gate model, the evolutionary algorithm does not guarantee convergence to the global minimum,
since it is stochastic. However, if by chance the global minimum is close to the best sample,
which is quite possible, then the first iteration of SADM will certainly converge to that location.
Of course, if the surface is not sampled well at the beginning, then the process may converge to
a region other than the global optimum of the real function. And this can be more complicated
in cases of strong scatterers, where the objective function tends to be multi-modal. But when the
objective function is less complex then this strategy can be quite efficient. This approach will
be denoted as SADM2 and its pseudo-code is shown in Algorithm 9. The L-BFGS-B algorithm
will be used in a similar manner to SADM1.
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Algorithm 8: The SADM1 algorithm.
Input: Scattered field data, discretization configuration, lower and upper bounds for cF

and T , number of initial sampled solutions, population size
Output: Contrast image.

1 Solve qualitatively the problem and obtain the normalized contrast image.
2 Sample solutions within the search space uniformly in the defined interval of cF and T .

Evaluate the sampled solutions.
3 Evaluations number of initial sampled solutions.
4 Build and train the surrogate model based on the sample.
5 Run an evolutionary algorithm considering the surrogate model as objective function and

take the best solution as current solution.
6 Evaluate the current solution according the true objective function, add it to the sample and

retrain the model.
7 while stopping criteria is not met do
8 Run the descent method considering the current solution as initial guess and optimizing

the predicted surface.
9 Evaluate the returned solution according the true objective function.

10 Evaluations evaluations + 1
11 if the returned solution is not equal to any other in the sample then
12 Add the current best solution to the sample.
13 Train the surrogate model.
14 end
15 if the returned solution is better than the current one then
16 Set the current solution as the returned by the last call of the descent optimization.
17 end
18 end

4.4 EISPY2D: A Platform for Developing and Testing Algo-
rithms for EISPs

This section presents the proposed framework for the development and testing of algo-
rithms for the electromagnetic inverse scattering problem. The framework is a Python package
with implemented classes that provide a structured environment for algorithm development and
testing. The novelty of the proposed framework lies in three key aspects. Firstly, it includes the
collection of indicators with the proposal of two specific metrics that allow for a comprehensive
evaluation of the algorithms’ performance. Secondly, the framework proposes an approach to
test randomization, which ensures a fairer and more reliable comparison between algorithms.
Finally, a statistical routine based on traditional statistical tests is proposed to compare the algo-
rithms’ performance. This section provides a brief description of the proposed framework and
its features, highlighting the significance and contribution of each aspect.
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Algorithm 9: The SADM2 algorithm.
Input: Scattered field data, discretization configuration, lower and upper bounds for cF

and T , number of initial sampled solutions, population size
Output: Contrast image.

1 Solve qualitatively the problem and obtain the normalized contrast image.
2 Sample solutions within the search space uniformly in the defined interval of cF and T .

Evaluate the sampled solutions.
3 Evaluations number of initial sampled solutions.
4 Build and train the surrogate model based on the sample.
5 Set the best sample as the current solution.
6 while stopping criteria is not met do
7 Run the descent method considering the current solution as initial guess and optimizing

the predicted surface.
8 Evaluate the returned solution according the true objective function.
9 Evaluations evaluations + 1

10 if the returned solution is not equal to any other in the sample then
11 Add the current best solution to the sample.
12 Train the surrogate model.
13 end
14 if the returned solution is better than the current one then
15 Set the current solution as the returned by the last call of the descent optimization.
16 end
17 end

4.4.1 Structure Description

In order to be able to compare algorithms, it was necessary to develop a common plat-
form for the implementations. This platform was developed as a library programmed in the
Python3 language (VanRossum and Drake, 2010). With a structure based on object orientation,
the library implements the two-dimensional problem with the domain configurations defined
in Section 3.1. Therefore, it was named eispy2d. The UML class diagram can be seen in
Figure 4.5.

The following is a brief explanation of the main classes:
1. Configuration: a class that stores the primary information of the problem, such as image

size (LX , LY ), observation radius (RO), number of measurements and incidences (NM, NS);
2. InputData: a class that characterizes a problem instance. Its primary information is the

data of the scattered field. However, other information can be added, such as the total
field (for the linear problem) or the contrast images (for error measurement);

3. Results: a class that stores and displays the results of an execution of the nonlinear inverse
problem. In addition, it also implements quality indicators;

4. InverseSolver: a abstract class for nonlinear inverse solvers implementation. For in-
stance, inversion approaches such as the Born Iterative Method and the Subspace Opti-
mization methods are derived classes which implement the corresponding methods.
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Figure 4.5: UML Class Diagram of eispy2d library.

5. ForwardSolver: abstract class for implementing forward solvers. One derivation, for
example, is the Method of Moments Conjugated Gradient-Fast Fourier Transform (Su,
1987);

6. Discretization: abstract class for discretization schemes. Each discretization strategy is
a derived class, such as the Collocation Method (Subsection 3.2.2).

7. Experiment: an abstract class that represents an experiment. Two schemes are possible:
case study and benchmark. For each corresponding class, there are appropriate methods
for visualizing and comparing the results.

8. TestSet: it is a class that contains a set of problem instances. There are appropriate
methods for generating synthetic tests controlling multiple scatterer characteristics.

Three aspects are fundamental to evaluate or compare the performance among the al-
gorithms: the quality indicators, the principles for creating random test sets, and the compar-
ison methodology. The following subsections will provide further explanations of these three
aspects. Each of them includes both techniques already known and newly proposed ones; there-
fore, this investigation’s contribution is a more robust structure of synthetic experimentation.

4.4.2 Performance Metrics Proposal

A set of indicators were implemented to assess the quality of the reconstruction done
by the algorithms. The indicator were chosen according to their popularity throughout the
references in the literature. The intention is also to aggregate indicators with different to enable
multiple ways to analyze the performance of a method. Similar to (4.1), the average percentage
error of estimation of relative permittivity and the average error of estimation of conductivity
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will be calculated by:
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In addition, metrics similar to (4.17) and (4.18) were implemented, considering back-
ground and object regions only. They are:
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where NB e NO are the numbers of background and object elements, respectively. The purpose
of these metrics is to precisely measure the ability to estimate the contrast of an object and avoid
perturbations in the background regions.

Concerning EAs that simultaneously optimize contrast and field, measuring the ability
to estimate the total field in the image region is a potential tool. For this reason, the following
indicators were implemented:
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where the operator “]” represents the phase of the complex number. Therefore, these two
indicators measure the average magnitude and phase error of the electric field estimate.

When an algorithm fails to locate and detect the shape of objects, metrics (4.17)-(4.22)
will be affected. However, it may be that an algorithm estimates the shape and contrast of an
object well, but due to errors in position, the evaluation of this solution by the metrics is low.
Two metrics are proposed to take specific account of the ability to detect position and shape.

An indicator based on the distance between the “centers of mass” of the objects in the
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images is proposed to assess the ability to estimate the position of objects:

zP =
q
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where (x⇤c , y⇤c) is the center of the original figure and (xc, yc) is the center of the reconstructed
image. The centers are calculated according to Algorithm 10. After the threshold of the recon-
structed image, the contrast values are discarded. This is done to prevent errors in the contrast
estimation from influencing the center weighting. In this way, this indicator can be used for
images with single or multiple objects.

Algorithm 10: zP measure.
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It was necessary to use an algorithm for detecting contours in the images to assess the
ability to reconstruct the shape of the objects. The Marching Cubes algorithm (Lorensen and
Cline, 1987) is a classic technique for identifying contours in three-dimensional images. The
scikit-image library efficiently implements the two-dimensional case, which is considered in
this work (van der Walt et al., 2014). Then, the shape metric zS is defined in terms of the ratio
between two areas: (i) the area of the difference between the contours of the two images; and
(ii) the area of the original image. The implementation and an example for calculating this
metric can be seen in Appendix D. This approach is not as sophisticated as the one proposed
by Kurrant et al. (2021b), since the former is based on a threshold technique while the latter is
based on image segmentation through a machine learning technique, which is more robust. In
addition, their diverse set of metrics for breast reconstruction can also be adapted to our general
scheme and it will be consider in the future. However, up to the date of this thesis, both zS

and zP are indicators that have not been addressed in the literature. Also, indicators such as
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zT FMPAD and zT FPAD were not seen in the literature. Although they are not so relevant since it
is not the primary objective to reconstruct the field, they can help understand the performance
of some methods, especially the stochastic ones that simultaneously optimize contrast and field.

4.4.3 Randomization of the Test Set

In many studies, synthetic experiments are designed to demonstrate the ability to re-
construct the algorithms in different scenarios. Traditionally, common geometries are used to
explore situations such as strong scatterers, different noise levels, separation of objects, het-
erogeneities, among others. Usually, the images used in the tests are defined arbitrarily, and
the performance in the corresponding situation is studied with only one or a few examples of
images.

To give some examples, some recent and relevant works in the literature are mentioned:
(i) Zhong et al. (2020) used an image type to make comparisons between four noise levels and
an image type to compare high contrast situations; (ii) Wei and Chen (2019a) use four images
for each of the two levels of contrast and three images to study the reconstruction of conductive
objects; and (iii) Salucci et al. (2017) used an image for tests without noise, an image for two
levels of noise, an image for inhomogeneity and an image for high contrast. In these works, it is
worth mentioning that the images are either composed of only circles or a single square or the
traditional Austria profile (composed of a ring and two circles). However, it is also worth noting
that, in (Wei and Chen, 2019a), the authors used six images of a base formed by handwritng
digits commonly used in Machine Learning; in (Shah and Moghaddam, 2018) and (Batista
et al., 2021), the authors use four images with different geometries for experiments with single
objects and three for inhomogeneities with different geometries.

In fact, the form of experimentation traditionally used exemplifies the algorithm’s abil-
ity to deal with different situations, which is relevant for testing the method. A more robust
approach to evaluating algorithmic performance would be to utilize synthetic experiments on
a sufficiently large dataset of images with randomized geometries. Such a methodology can
provide a more comprehensive understanding of the average performance of the algorithms.
The utilization of random test sets to assess average performance is more effective than us-
ing arbitrary images to make a more efficient comparison. Conducting such studies may be of
significant value to the existing literature on optimization algorithms (Beiranvand et al., 2017).

A process of generating a set of random tests was developed to explore this experimen-
tation design. It is embedded within the TestSet class in the eispy2d library. A set of tests is
generated according to the following configuration parameters:

• Geometry pattern: this parameter means what type of geometries will be considered.
Three patterns were implemented: regular geometries2, random polygons3, and random

2Square, rectangle, equilateral triangle, cross, circle, ring, ellipse, rhombus, trapezoid, parallelogram, polygons
of more than five sides (pentagon, hexagon, etc.) and stars of 4, 5, and 6 points.

3Polygons of 3 sides or more with random radius between the center and vertices.
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surfaces4.
• Maximum contrast: this parameter controls the allowed contrast range for the objects

inserted in the image. It is also possible to configure this parameter so that all objects are
defined with this contrast. In other words, the set of tests can be created both to study
performance with different and unique contrasts.

• Maximum size: this parameter regulates the size of objects. It can also be set to a maxi-
mum value or assigned to a fixed value. In regular geometries, all of them are configured
so that this parameter defines the radius between the center and the furthest vertex. In
other words, it is the largest geometry drawing that fits within a circle defined by this
parameter. In the case of random polygons, this parameter regulates the maximum radius
that each vertex can have. In exponentials, this parameter controls the maximum radius
of the exponential up to three times the standard deviation.

• Maximum contrast density: regulates the maximum value of the average contrast per
pixel of the image. This parameter regulates the number of objects in the image.

• Noise: noise level at which the data in the scattered field will be corrupted.
• Sample size: number of test images in the set.

It is important to highlight that each geometry inserted in an image has a randomly defined
rotation and position. Therefore, this process aims to create benchmarks that make it possible
to study the performance of the methods in isolated configurations and the evolution of effects
(e.g., the progression of performance in the growth of the contrast). Moreover, this process al-
lows the study of effect factors on the performance of the algorithms for the problem, isolating
the bias present in the arbitrary choice of geometries. This implementation considers only syn-
thetic experiments. However, these principles could be used for a project of a real benchmark,
i.e., physical measurements, which are defined following these principles of randomization of
geometries and in isolation of effect factors.

4.4.4 Comparison Structure

When a method runs a set of tests, the performance indicator is calculated for the final
solution of each instance. The results information can be viewed in different ways. Two of
the most traditional ways to visualize the data of a sample are the boxplot and the violinplot
(Chen et al., 2008). The first is essential to visualize the quartiles of a sample, and the last is
important to get a sense of the distribution of the data. Routines for visualizing the data of the
experiments through these two graphs were implemented from the matplotlib library (Hunter,
2007). In addition, the routines also implement the visualization of more than one test set in the
same graph, which is relevant to visualize the evolution of the performance of a method when
a parameter in the test configuration varies (e.g., maximum contrast). The Quantile-Quantile
graph was also used to verify assumptions of normality distribution implemented by the qqplot

4Sum of sines or exponentials.
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routine of the pingouin library (Vallat, 2018).
The test sets represent a sample of a universe of possible cases. The information on

the average performance of the method in a particular universe can be relevant to comply with
specifications in a given application and for comparison with other methodologies. As this uni-
verse of cases is very large, if not infinite, it is common to estimate the confidence interval of
this average. The confidence interval can be understood as the range in which, if we repeat the
experiment many times, the sampled average will be within that range in a specified percentage
of the number of times. This type of study is done using statistical tools that make it possi-
ble to estimate the average and compare others, that is, to make comparisons between average
performances of algorithms or test sets. It is not in the scope of this dissertation to explain the
statistical methods that were used. Reading (Montgomery and Runger, 2010) and the imple-
mentations of the statsmodels library (Seabold and Perktold, 2010) are recommend for a better
understanding. In this text, only the comparison process between two and multiple samples will
be presented, representing the results of an indicator for different methods in the same set of
tests.

For a comparison between two stochastic methods in a same test instance, the following
process was implemented:

1. If the Shapiro-Wilk test does not show a deviation from normality for both samples, then
the Two Sample T-Test with a significance of 5% is performed. The effect size5 is cal-
culated for a power of 80%. If a difference is detected, then there is evidence for the
superiority of one of the methods.

2. If the Shapiro-Wilk test shows a deviation from the normal distribution for any of the
samples, then the test is repeated using logarithmic and square-root transformations on
the data. If a transformation is successful, the same transformation is applied for the other
sample, the same procedure as the previous step is repeated, and the same conclusions can
be drawn.

3. If none of the transformations are successful, then the Mann–Whitney U test is performed,
which allows detecting whether, when randomly selecting an element from each sample,
the probability that one element is greater than the other is not the same as otherwise.
If the difference is detected at a significance level of 5%, then there is evidence for the
superiority of one of the methods.

When considering the a stochastic method and a deterministic one, then a similar pro-
cedure is employed. When the distribution of the results from the stochastic method is approx-
imately normal, then an One-Sample T-Test is performed. When data transformation is neces-
sary, then the transformation is also applied to the result of the deterministic method. When the
distribution of the results obtained by the stochastic method is not normal, approximately, then
the Wilcoxon Signed-Rank Test is performed. The test is able to detect whether stochastic data

5The effect size, in this case, means the minimum difference for which it is possible to identify a false-negative
error for the desired power and sample size, i.e., when the hypothesis of equality is not rejected when it is false.
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comes from a symmetric population with a specified median which, in this case, is the result
obtained by the deterministic method.

The process of comparing the performance of an indicator between two methods in
the same test set was implemented according to a paired fashion. Through the results of the
methods for the same test set, the estimated average is defined in terms of the difference between
indicators of the two methods in each instance. The process can be summarized as follows:

1. If the Shapiro-Wilk test does not show a deviation from normality over the paired differ-
ence, then the Paired T-Test with a significance of 5% is performed. The effect size is
calculated for a power of 80%. If a difference is detected, then there is evidence for the
superiority of one of the methods.

2. If the Shapiro-Wilk test shows a deviation from the normal distribution over the paired
difference, then the test is repeated using logarithmic and square-root transformations on
the data. If a transformation is successful, then the same procedure as the previous step is
repeated, and the same conclusions can be drawn.

3. If none of the transformations are successful, then the Wilcoxon Test is performed, which
allows the detection of differences following a symmetrical distribution around zero. If
the difference is detected at a significance level of 5%, then there is evidence for the
superiority of one of the methods.

The independence assumption between the data is guaranteed because the algorithms’ execu-
tion is independent. In other words, the pseudo-random variables used in each algorithm are
generated with sufficient independence, establishing the independence of samples. When the
normality assumption is valid, the routines used are those in the statsmodels library, and the
non-normal test routine comes from the scipy library (Virtanen et al., 2020).

The comparison process between multiple stochastic methods in the same test takes
place using the analysis of variances (ANOVA) (Montgomery and Runger, 2010). The compar-
ison process is described as follows:

1. The residues of observations and their corresponding sample means are evaluated.
2. If the Shapiro-Wilk test does not indicate a deviation between residuals and normal dis-

tributions, either with or without transformations:
(a) If the Fligner Test does not indicate invalidity of the homoscedasticity assumption6,

then the One Way ANOVA is performed under the 5% significance level. The result
will indicate whether there is evidence for at least one performance different from
the others or not. The effect size is also calculated for a power of 80%.

(b) If the Fligner test reveals invalidity of the homoscedasticity premise, then the Welch
ANOVA test is performed, which may indicate evidence for at least one performance
different from the others under a 5% significance level.

(c) If any differences are detected and it is necessary to try to identify all possible per-
formance superiorities:

6The homoscedasticity assumption means equal sample variances.
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i. If the homoscedasticity assumption is valid, the Tukey HSD Multiple Com-
parison Test will be performed and all differences will be detected with the
necessary significance correction.

ii. If the homoscedasticity condition is not valid, multiple comparisons will be
made from multiple Welch T tests for independent samples with the signifi-
cance determined by the Bonferroni correction.

(d) If a difference is detected and it is necessary to identify if all methods are superior
or inferior to a single one (all versus one):

i. If the homoscedasticity condition is valid, the Dunnet Test will be performed
with the necessary significance correction.

ii. If the homoscedasticity premise is not valid, then the comparisons will be made
using the Welch test for independent samples with the significance determined
by the Bonferroni correction.

3. If it is not possible to assume the normality of the residues, then the Kruskal-Wallis test
will be performed with a significance level of 5%. The test allows identifying whether at
least one of the samples came from a different distribution from any other.

(a) If any difference is detected and it is necessary to identify all possible ones, then
multiple Mann-Whitney U tests are performed. This test makes it possible to iden-
tify whether there is evidence for a probability greater than 50% for the superiority
of either method.

(b) If any difference is detected and it is necessary to identify only if one method is
superior to another, then Mann-Whitney U tests are performed to make the necessary
comparisons.

As in the previous process, the hypothesis of independence of observations is guaranteed by the
process of executing the algorithms. Test implementations for normal data are those available
in the statsmodels library and non-normal ones in scipy.

When comparing multiple algorithms within the same set of tests, it becomes crucial
to employ a pairwise comparison approach. This method involves calculating the differences
between each pair of algorithms for each test, thereby generating samples of differences spe-
cific to each test. By focusing on the same test set, this approach proves to be more efficient
in detecting significant differences. The process for pairwise comparisons bears similarities to
comparing multiple algorithms for a single test, but with a few key distinctions. Instead of using
ANOVA or the Kruskall-Wallis test, the Randomized Complete Block Design or the Friedman
Rank Sum Test is utilized, respectively, to analyze the data. These tests are specifically tailored
for paired comparisons within the same test set. For post hoc analyses following the initial tests,
the Paired T-Test and the Wilcoxon Signed-Rank test are employed in place of the standard T
Test and Mann-Whitney U test, respectively. These post hoc tests allow for a deeper exam-
ination of pairwise differences and help draw more nuanced conclusions regarding algorithm
performance.
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Finally, the Factor Analysis technique for two and three factors was also implemented, as
described in chapter 14 of (Montgomery and Runger, 2010). This technique is used to identify
both if an effect factor impacts the performance of an algorithm and the interaction of that factor
with more others. For example, through this type of analysis, it is possible to identify whether
the increase in the size and number of objects in the image influences its performance as well
as to identify whether the variation of these two factors at the same time has any impact. The
analysis was standardized to a significance level of 5% and the normality and homoscedasticity
assumptions are verified by the Shapiro-Wilk and Fligner tests.

4.5 Conclusion

In conclusion, this chapter has presented the proposal of this thesis, which aims to con-
tribute to the advancement of algorithms for the electromagnetic inverse scattering problem.
The state-of-the-art in the field has been discussed and the potential gaps in the literature were
identified. The chapter also explore the role of surrogate models as a potential technique to
address the challenges that have been considered in the literature. The transformation of the
inversion problem into a bidimensional optimization one, which enables the use of surrogate
models, has been described, and five formulations of surrogate model-assisted algorithms have
been proposed, leveraging the Kriging model. Three formulation are based on Evolutionary
Algorithms and two are based on Steepest Descent methods.

Furthermore, this chapter has identified a gap in the literature regarding a systematic ap-
proach for testing algorithms, which motivated the proposal of a framework for the development
and testing of algorithms for the problem. The structure of the framework and the implemented
classes have been briefly introduced, and the three key points of contribution, namely the col-
lection of performance metrics and the proposal of two specific metrics, the approach to test
set randomization, and the statistical approach for algorithm comparison based on traditional
statistical tests, have been highlighted. This framework provides a more robust and systematic
approach for testing algorithms for the problem, which is an important step towards the practical
application of the proposed algorithms.
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Chapter 5

Results

Chapter 5 presents the results of the computational experiments conducted in this thesis,
evaluating the proposed methodologies through both case studies and benchmarking. The case
studies are detailed in Section 5.1, which encompasses various problem scenarios, including
single scatterers (subsection 5.1.1), multiple scatterers (subsection 5.1.2), non-homogeneous
scatterers (subsection 5.1.3), and strong scatterers (subsection 5.1.4). In each case study, a
comparison is made between the proposed algorithms and traditional deterministic methods.

Following the case studies, Section 5.2 focuses on the benchmarking study, which aims
to assess the performance of the proposed methods and identify any potential differences among
them. The subsection 5.2.1 introduces the settings of the benchmarking study, providing essen-
tial context for the subsequent analysis. Subsequently, the results are presented and discussed,
offering insights into the performance of the algorithms.

Some general comments apply to both the case studies and benchmarking stages. Firstly,
all designs utilized lossless materials. Additionally, the amplitude of the incident wave was con-
sistently set at 1 [V/m]. To incorporate a level of realism, the scattered field data was subjected
to random noise. This noise is a random complex number, with its modulus representing a
percentage of the original value and its phase uniformly distributed between 0 and 2p .

Regarding runtime results, they were obtained using a specific machine configuration:
Ubuntu 20.04.5 LTS, Intel Xeon(R) CPU E5-2640 0 @ 2.50GHz with 8 cores, and 11.7 GB
memory. It is important to note that the method implementations may not have been optimized
to their fullest extent, potentially impacting runtime analysis fairness. Consequently, a com-
pletely fair runtime analysis cannot be guaranteed due to potential variations in implementation
optimizations.

5.1 Case Studies

Case studies involve a comprehensive analysis of either a single or a set of specific
instances of a problem. The aim is to deeply analyze these instances, carefully examining their



135

unique attributes. These instances are deliberately chosen to explore specific characteristics
that hold relevance for the proposal. By examining these selected cases, valuable insights and
understanding can be gained.

This section covers four case studies, each focusing on a different scenario. The first case
study examines the behavior of the proposed algorithms in situations that can be easily solved
using traditional methods. The second case study investigates the performance of the proposed
algorithms in a scenario with multiple scatterers and a significant level of contrast. In the third
case study, the objective is to analyze the behavior of the proposed algorithms when dealing with
a non-homogeneous scatterer that exhibits different levels of contrast. Additionally, this case
explores the capability of the qualitative method to provide suitable initial solutions in such
scenarios. The fourth and final case study aims to observe the performance of the proposed
algorithms in a scenario where traditional methods typically struggle to produce satisfactory
solutions.

Throughout all the tests, a noise level of 20 [%/sample] is considered for the scattered
field data. Such noise level might affect significantly the performance of some methods and,
therefore, the goal is to analyze the performance under a challenging scenario. In addition to the
five proposed algorithms discussed in Chapter 4, an evolutionary algorithm that transforms the
inverse problem into a two-dimensional optimization problem will also be included. However,
this algorithm does not employ surrogate models. Furthermore, four deterministic methods,
namely ECSI (Subsection 3.6.6), SOM (Subsection 3.6.8), BIM (Subsection 3.6.1), and DBIM
(Subsection 3.6.2), will be employed. The ECSI version van den Berg et al. (1999) of the
CSI family of algorithms is chosen due to its slightly better performance and fewer control
parameters.

For the algorithms assisted by surrogate models, the threshold variable ranges from 0
to 1. The Method of Moments CG-FFT (MoM-CG-FFT) used in the simulations employs a
stopping criterion of a maximum of 20 iterations or an error tolerance level below 10�3. This
choice allows for a rougher approximation and helps to save computational time.

The performance of the algorithms will be primarily analyzed based on the error in
estimating the object contrast and recovering its shape. Hence, the zeOE and zS indicators
will be measured, respectively. The decision not to use the zePAD indicator is motivated by
the fact that the thresholding operator employed in the proposed approach ensures a noise-
free background. This could heavily favor the proposed approach and make the comparison
with traditional methods less meaningful. Lastly, the maximum number of iterations for each
algorithm is determined based on the convergence of their objective function or the point just
before a divergence behavior is observed.
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5.1.1 Austria Profile

The present case study considers the Austria profile, which is a widely used instance
in the literature (Chen, 2010, 2017), to test the algorithms in a weak scattering scenario (DNL
= 0.694). The profile has multiple and homogeneous scatterers, one of which is hollow. The
Fig. 5.1a shows the ground-truth image and further information regarding the parameters of
the scatterers can be found in (Chen, 2010). The Table 5.1 shows the parameters regarding the
measurement and imaging domains and the incident field configuration. The resulting back-
ground wavelength is 0.749 [m]. Scattered field data was synthesized using MoM-CG-FFT,
with a stopping criterion of 15,000 iterations or error tolerance level less than 10�5, and the
resolution of the original image was 64⇥64, while the reconstruction resolution was 30⇥30.

Table 5.1: Parameters for problem specification of Austria profile case study.

NM NS RO f LX , LY erb

32 16 6 [m] 400 [MHz] 2 [m] 1

The surrogate model-assisted algorithms proposed in this study have many parameters.
The parameters for this case study were chosen based on a prior analysis. The contrast variable
range was set to 0 to 1, and the stopping criterion for each surrogate model-assisted algorithm
was defined as the maximum number of evaluations, which was 26 evaluations, with 30 runs due
to the stochastic characteristics present in them. Despite being based on deterministic choices,
the SADM2 algorithm will be executed multiple times, and the rationale behind this decision
will be elucidated in the upcoming case studies. The number of solutions sampled at the begin-
ning was 16, and the local search operation in SAEAs algorithms happened every 5 generations.
The mutation factor F present in the mutation processes of SAEAs algorithms was randomly
chosen in the range of 0.6 to 1.5 following a uniform distribution. The population size in the
initial solution search process for SADM1 was set at 100 individuals. For the transformation-
based algorithms, MoM-CG-FFT forward solver was used to evaluate solutions, with a limited
number of iterations of 20 or until reaching an error tolerance level of 0.001. In addition to
the surrogate model-assisted evolutionary algorithms, a traditional evolutionary algorithm for-
mulation was also considered in this case study for comparison purposes. The DE/rand/1/bin
formulation was chosen, with F adjusted to 0.5 and the crossing rate to 0.5.

The parameter configuration of the deterministic algorithms is mostly related to the stop
criteria, which includes the maximum number of iterations and the error tolerance level. The
established stopping criterion for SOM was the maximum number of iterations equal to 50,
with a cut-off parameter of eigenvalues set at 15. The initial guess for SOM, ECSI and CGM
was defined as the solution of the Backpropagation algorithm (Subsection 3.3.2). The stopping
criterion for CGM and ECSI was set to 40 and 50 iterations, respectively. The stopping criterion
for DBIM was 3 iterations, with the regularization method as Tikhonov’s with a parameter equal
to 0.01. Finally, BIM used the same parameters as DBIM, except for the stopping criterion,
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which was adjusted to 10 iterations. Both algorithms are considered the Born Approximation
(Subsection 3.3.1) as initial guess strategy.

(a) Ground-Truth (b) SAEA1 (c) SAEA2 (d) SAEA3

(e) SADM1 (f) SADM2 (g) EA (h) BIM

(i) DBIM (j) CGM (k) ECSI (l) SOM

Figure 5.1: Comparison of image reconstructions using surrogate model-assisted algorithms
and deterministic methods considering the Austria profile case study: (a) shows the ground-
truth image; (b), (c), and (d) depict the best image recovered by SAEA1, SAEA2, and SAEA3,
respectively, in 30 execution according to zeOE indicator; (e), (f) and (g) show the best image
recovered by SADM1, SADM2, and EA, respectively, in 30 execution according to zeOE indi-
cator; (g) shows the image recovered by BIM, and (h) shows the image recovered by DBIM;
finally, (i), (k), and (l) show the image recovered by CGM, ECSI, and SOM, respectively.

In the results of the case study, Fig. 5.1 displays the best of the reconstructions among
the 30 runs of each stochastic algorithm, based on indicator zeOE (Figs. 5.1b-5.1g), and also
includes the reconstructions of the deterministic algorithms (Figs. 5.1h-5.1l). The figures show
that all algorithms overestimated the contrast slightly, which can be seen in the maximum con-
trast value in each figure. However, algorithms based on the problem transformation proposal
tended to have slightly lower overestimation, which compensates for underestimation at the
edges of the scatterer. The reconstructions also had some difficulty in detecting the separation
between the ring and the two circles, which was related to the proximity between these objects.
Additionally, the best SAEA2 and EA reconstructed images showed a small ghost object inside
the image ring due to a threshold value adjustment issue. As the zeOE indicator only takes into
account the estimate within the original region of the scatterer, then errors in the original back-
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ground region of the problem do not influence the indicator. Furthermore, algorithms based on
transforming the problem into a two-dimensional optimization problem showed a cleaner back-
ground region, which was attributed to the thresholding operator. BIM (Fig. 5.2g) presented
a slightly cleaner background region than DBIM (Fig. 5.2h), which was associated with the
difficulty of DBIM in dealing with significant noise levels.

(a) SAEA1 (b) SAEA2 (c) SAEA3 (d) SADM1

(e) SADM2 (f) EA (g) BIM (h) DBIM

(i) CGM (j) ECSI (k) SOM

Figure 5.2: Convergence of the objective function for the Austria profile case obtained by the
stochastic and deterministic algorithms. (a) to (k) show the curves obtained by SAEA1, SAEA2,
SAEA3, SADM1, SADM2, EA, BIM, DBIM, CGM, ECSI, and SOM algorithms, respectively.
The x-axis represents the number of iterations, and the y-axis represents the value of the objec-
tive function of the correspondent algorithm.

The convergence curve for each algorithm is shown in Fig. 5.2. The y-axis can only
be compared between algorithms based on two-dimensional optimization (Figs. 5.2a-5.2f), as
each deterministic algorithm has its own objective function that guides its structure. SAEA2
had a few generations but still achieved values close to those achieved by SAEA1 and SAEA3,
thanks to the good mapping of the search space done by the initial population. The final values
reached by SAEA1 in the 30 runs were more similar than those by SAEA3, which may suggest
that SAEA1 convergence is better.

Some SADM1 runs did not converge to the same location as most, which may be an
effect of the stochastic search process for the initial solution. The same does not happen for
SADM2, as all executions of this algorithm converged equally, indicating a deterministic be-
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(a)

(b)

Figure 5.3: Performance of zeOE indicator for various algorithms in the Austria profile. (a)
Boxplots show quartiles of 30 executions for stochastic algorithms, and the solid line represents
the deterministic algorithms. (b) Exclusion of the EA algorithm for better visualization of
differences among algorithms.

havior. The EA has more generations than the SAEA2, but the greater number of generations
did not contribute to reaching the region closer to the minimum more quickly. This is straight-
forward for SAEA2 because of the solution sampling strategy.

Fig. 5.3a shows the zeOE indicator quartiles for the algorithms in which 30 executions
were performed and the value reached by the deterministic ones. The EA quartiles stand out
negatively, as the algorithm has difficulty finding a good final estimate of the scatterer con-
trast. This is attributed to the algorithm’s need for more generations to converge closer to the
optimum, as in other algorithms assisted by surrogate models.

By removing the EA data (Fig. 5.3b), it is possible to better visualize the differences
between the algorithms assisted by surrogate models and the deterministic ones. The median
of algorithms assisted by surrogate models was below all deterministic ones. In particular, all
SADM1 and SADM2 runs were below the deterministic contrast estimation error. However,
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Figure 5.4: Performance of shape error estimation quantified by the zS indicator obtained by
the set of algorithms considering the Austria profile. The boxes represent the quartiles of the 30
executions of the stochastic algorithms, while the other points indicate the obtained values by
the deterministic ones. The shape error is calculated based on the ground-truth image and the
reconstructed image obtained by each algorithm.

there have been executions of SAEA’s that ended with a minor error. All runs of SADM2 ended
with the same error since all runs converged equally (as seen in Fig. 5.2e). Although SADM1
convergence was not as equal between runs, they achieved the same error, indicating that the
final solution for each run was very close. The Kruskal-Wallis H-Test confirmed difference
among SAEA1, SAEA2, and SAEA3 (p-value = 0.0219), and all-to-all comparison by Mann-
Whitney U test confirmed that SAEA1 and SAEA2 overperformed SAEA3 (p-values 0.0199
and 0.0191, respectively). The Multiple Mann-Whitney U test did not detected difference be-
tween SADM1 and SADM2 (p-value = 0.0505).

The contrast estimation error of surrogate model-assisted algorithms has to do with
where on the optimization surface they end up. In general, the result indicates that the problem
transformation approach can be successful in making a better contrast estimate in the median
of cases compared to the traditional approaches. However, in weak scattering scenarios, this
difference is not as significant as the graphs show (up to 1.5 [%/pixel]).

The performance of different algorithms for shape recovery error (zS) is shown in Fig.
5.4. The difference in performance between deterministic algorithms and those based on the
transformation of the problem is more significant, up to approximately 20% of the area of the
original scatterer. The success of the proposed transformation approach in shape recovery re-
sults is associated with the quality of the qualitative methods used and the efficiency of the
thresholding operation intrinsic to the formulation. The Kruskal-Wallis H-Test confirmed dif-
ference among SAEA1, SAEA2, and SAEA3 (p-value < 0.0002), and all-to-all comparison by
Multiple Mann-Whitney U test confirmed that SAEA1 and SAEA2 overperformed SAEA3 (p-
values < 0.001 for both cases). The Mann-Whitney U test detected difference suggesting that
SADM1 outperform SADM2 (p-value = 0.013).
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Figure 5.5: Box plot showing the execution time distribution of the set of algorithms consid-
ered for the Austria profile case. The boxes represent the quartiles of the 30 executions of
the stochastic algorithms, and the whiskers represent the minimum and maximum values. The
deterministic algorithms are represented by individual points. The execution time results are
presented in seconds.

The running time of the algorithms is shown in Fig. 5.5. The median of SAEA1 was
found to be the highest, while SAEA2 was the fastest among SAEA’s formulations, even with
the same number of evaluations. This suggests the impact of operations within the iterative
process of these algorithms, such as the local search process and the number of model training
calls that are less triggered in SAEA2 for the same number of evaluations. However, it is
important to note that SADMs also need to retrain the model once per iteration, spend one
evaluation per iteration, and use the same algorithm applied for the local search process in
SAEAs. Other processes that are part of the implementation of these algorithms may also be
impacting the runtime. It is also worth highlighting that although BIM takes much less time
than SADM2, the latter still manages to deliver good contrast and shape estimation results for
a satisfactory time (less than 10 seconds), which is shorter than other algorithms such as SOM,
CGM, and ECSI. Therefore, with a little more time, SADM2 can deliver a better result in this
instance that is well-treated by traditional algorithms.

Figure 5.6 illustrates the performance of the algorithms, displaying both the objective
function surface and the locations of the final solutions obtained by each algorithm after trans-
forming the inverse problem into a two-dimensional optimization problem. The SADMs con-
verged to the same point every time, indicating that they behaved like deterministic algorithms
for a reasonably smooth surface in the macro sense. The EA solutions, on the other hand, were
widely spread, indicating that the number of evaluations would need to be much higher for the
algorithm to converge more often to the optimal location.

The SAEA3 had a similar behavior to EA, which slightly moved away from the point
found by the SADMs. However, it is important to note that final solutions that are a little farther
from the optimum can sometimes return a smaller error in contrast estimation or shape recovery.
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(a) (b)

Figure 5.6: Surface of the two-dimensional optimization problem obtained from the transfor-
mation of the Austria profile and the final solutions obtained by different algorithms. Subfigure
(a) shows the final solutions obtained by SAEA1, SAEA2, and SADM1 algorithms, while sub-
figure (b) shows the final solutions obtained by EA, SAEA3, and SADM2 algorithms.

This is because the optimal point of the transformed problem can be slightly displaced from
what would be ideal for the thresholding process and the exact contrast value. This displacement
is intrinsic to the estimation of the qualitative method. That is, the optimal solution of the
transformed problem is not necessarily the exact one, but the best that can be obtained from the
qualitative method and minimizing the error of the data equation. Therefore, the performance
of the qualitative method influences the position of the optimum.

5.1.2 Multiple Scatterers

This subsection presents a case study that examines the ability to separate objects in an
image when considering multiple scatterers. This type of scenario is significant and, in order to
further explore the application potential of the surrogate models, the contrast of the scatterers
will be considerably higher. The study describes three scatterers that have a contrast level equal
to 4. The radius of the circle is 0.1lb and is centered on coordinates (LX/4, 0. The side of the
square is 0.2lb and is centered on coordinates (�LY/4,�LX/4), while the side of the triangle is
0.2lb and is centered on coordinates (�LY/4, LX/4). The instance can be seen in Fig. 5.7a and
it is inspired in an experiment presented in (Shah and Moghaddam, 2015) and (Batista et al.,
2021) where the same geometries were considered and different contrast levels. The DNL of
the problem was at 0.915, which is close to threshold 1 for the problem to start to get very
non-linear. The parameters that describe the problem domains are present in Table 5.2. All
other settings for synthesizing the scattered field data are the same as in the previous case study,
except now the original image resolution is 120⇥120.

In this case study, the configuration of the algorithms was similar to the previous one,
but some adjustments were necessary to explore the behavior of the algorithms more effectively.
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Table 5.2: Parameters for problem specification of the multiple scatterers case study.

NM NS lb RO LX , LY erb

20 20 1 [m] 5 [lb] 0.8 [lb] 1

For the algorithms based on problem transformation, some changes were made, including in-
creasing the maximum limit for the contrast variable to 7 since the true contrast is now 4, setting
the stopping criterion to 50 evaluations, and using an initial sample size of 25 solutions. SAEA2
and EA were designed with populations consisting of 20 individuals. As for the deterministic
methods, some modifications were made, including 150 iterations for CGM, 200 iterations for
ECSI, 4 iterations for DBIM, 20 iterations for BIM, and 200 iterations for SOM, with a cut-off
index equal to 5.

(a) Ground-Truth (b) SAEA1 (c) SAEA2 (d) SAEA3

(e) SADM1 (f) SADM2 (g) EA (h) BIM

(i) DBIM (j) CGM (k) ECSI (l) SOM

Figure 5.7: Comparison of image reconstructions using surrogate model-assisted algorithms
and deterministic methods considering the multiple scatterers case study: (a) shows the ground-
truth image; (b), (c), and (d) depict the best image recovered by SAEA1, SAEA2, and SAEA3,
respectively, in 30 execution according to zeOE indicator; (e), (f) and (g) show the best image
recovered by SADM1, SADM2, and EA, respectively, in 30 execution according to zeOE indi-
cator; (g) shows the image recovered by BIM, and (h) shows the image recovered by DBIM;
finally, (i), (k), and (l) show the image recovered by CGM, ECSI, and SOM, respectively.
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The results are presented in Fig. 5.7, which displays the best reconstructions of the
algorithms that were executed multiple times following the same criteria as the previous case
study, along with images of the deterministic methods. In the case of algorithms based on the
transformation of the problem (Figs. 5.7b-5.7g), the scatterers appeared a little more displaced
from the center of the reconstructed image, and they were very close to the edges of the image.
However, the best estimates of the contrast were excellent. BIM (Fig. 5.7h) was not successful
in detecting the scatterers, while DBIM (Fig. 5.7i) displayed significant noise in the background
region, even though it might look like there are three scatterers in the image. CGM, ECSI, and
SOM (Figs. 5.7j-5.7l) were able to detect three scatterers with values less close to the exact one
than the proposed algorithms, although CGM had more difficulty with background noise.

(a) SAEA1 (b) SAEA2 (c) SAEA3 (d) SADM1

(e) SADM2 (f) EA (g) BIM (h) DBIM

(i) CGM (j) ECSI (k) SOM

Figure 5.8: Convergence of the objective function for the multiple scatterers case obtained by
the stochastic and deterministic algorithms. (a) to (k) show the curves obtained by SAEA1,
SAEA2, SAEA3, SADM1, SADM2, EA, BIM, DBIM, CGM, ECSI, and SOM algorithms,
respectively. The x-axis represents the number of iterations, and the y-axis represents the value
of the objective function of the correspondent algorithm.

Figure 5.8 presents the convergence of the objective function for each algorithm. In-
terestingly, the convergence of the SADM1 and SADM2 algorithms (Figs. 5.8d-5.8e) was less
homogeneous in this case study, behaving more like a stochastic algorithm such as SAEAs. Al-
though the decisions within the iterative process of SADMs are deterministic, the differences in
the convergence curves between runs could be due to the processes within the surrogate model
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Figure 5.9: Performance of zeOE indicator for various algorithms in the multiple scatterers case
study. Boxplots show quartiles of 30 executions for stochastic algorithms, and the solid line
represents the deterministic algorithms.

training, which can be more complex in high-contrast scattering scenarios.
On the other hand, the convergence curves of the SAEAs algorithms were similar to

those of the previous case study. SAEA1 (Fig. 5.8a) had slightly more homogeneous curves
than SAEA3 (Fig. 5.8c), and even though SAEA2 (Fig. 5.8b) had only 3 generations, some of
the runs found solutions with the same objective function value as the best solutions found by
the other two algorithms.

Finally, the convergence of the CGM, ECSI, and SOM algorithms (Figs. 5.8i-5.8k)
indicates that they finished their runs with stable solutions. Therefore, even if more iterations
were given, the reconstructed images would not significantly differ from those shown in Figures
5.7j-5.7l. In this scenario, these algorithms would not obtain a better reconstruction.

In Figure 5.9, the results of indicator zeOE for each algorithm are presented. The CGM
algorithm had the lowest error in estimating the contrast of objects, but its reconstructed image
was not as satisfactory as the other algorithms (Fig. 5.7j). However, even with a slight overesti-
mation of the contrast compared to the surrogate model-assisted algorithms, the error may have
been smaller due to the lack of distancing behavior observed for the proposed algorithm and that
influences the error measure. The Kruskal-Wallis H-Test did not detect any differences in the
median performance between the surrogate model-assisted algorithms, despite SAEA1 having
a higher median position. The algorithms assisted by surrogate models had higher medians than
the SOM, CGM, and ECSI methods, but the difference did not exceed 20 [%/pixel].

The results of the zS indicator that evaluates the shape recovery of the scatterers by the
algorithms is presented in Fig. 5.10. The CGM algorithm had the lowest shape recovery error,
with a significant difference of around 50 [%] compared to the second-best algorithm. However,
none of the algorithms were able to reconstruct shapes that resembled the scatterers.

Regarding the surrogate model-assisted algorithms, the medians were very close to each
other. When comparing the medians of SAEA2, SAEA3, SADM1, and SADM2 algorithms,
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Figure 5.10: Performance of shape error estimation quantified by the zS indicator obtained by
the set of algorithms considering the multiple scatterers case study. The boxes represent the
quartiles of the 30 executions of the stochastic algorithms, while the other points indicate the
obtained values by the deterministic ones. The shape error is calculated based on the ground-
truth image and the reconstructed image obtained by each algorithm.

the Kruskal-Wallis H-Test did not detect any difference at a significance level of 5% (p-value
= 0.065). However, when including SAEA1 in the comparison, it showed a better median per-
formance than the other algorithms (p-value < 0.001 in all post-hoc comparisons). Nonetheless,
the difference is not significant enough from the point of view of the reconstructed image.

Figure 5.11 displays the results of the execution time of the algorithms. BIM and DBIM
had shorter execution times since fewer iterations were needed, which means the most expensive
calculation was called fewer times during the algorithm execution. The median performances
of the SADM2 and EA algorithms were quite similar, and no significant difference was detected
based on the Welch Two Sample T-Test (p-value = 0.203). However, the medians of these two
algorithms were below that of the other algorithms. By considering this indicator along with
the zeOE and zS indicators, choosing between SADM2 and CGM in this case could be seen as
a trade-off between reconstruction quality and execution time. In other words, while SADM2
may not achieve the same performance as CGM in shape and contrast estimation indicators, it
can achieve slightly higher values in a much shorter time.

Figure 5.12 presents the surface of the objective function resulting from the transforma-
tion in a two-dimensional optimization problem, along with the location of the final solutions
found by the algorithms in multiple runs. As the nonlinearity of the problem increased, the
surface became less convex, and there was a certain grouping of solutions around the point T ,
c) = (0.75, 4) and a smaller one around (0.8, 5). It is possible that the latter is a local minimum
where some of the runs may have gotten stuck. The occurrence of more difficult to escape local
minima may be more common as the problem becomes more non-linear or the contrast of the
scatterers increases. The final solutions found for all algorithms were scattered, and only in the
case of EA that solutions outside the lowest sublevel region were returned.
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Figure 5.11: Box plot showing the execution time distribution of the set of algorithms consid-
ered for the multiple scatterers case study. The boxes represent the quartiles of the 30 executions
of the stochastic algorithms, and the whiskers represent the minimum and maximum values.
The deterministic algorithms are represented by individual points. The execution time results
are presented in seconds.

(a) (b)

Figure 5.12: Surface of the two-dimensional optimization problem obtained from the trans-
formation of the multiple scatterers case study and the final solutions obtained by different
algorithms. Subfigure (a) shows the final solutions obtained by SAEA1, SAEA2, and SADM1
algorithms, while subfigure (b) shows the final solutions obtained by EA, SAEA3, and SADM2
algorithms.
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5.1.3 Non-Homogeneous Scatterer

The third case study presented in this work focuses on the imaging of a nonhomogeneous
scatterer, which is a square of side length equals to lb with three different regions of contrast
(0.4, 0.9, and 1.25) inside it. This scenario is relevant because it allows the qualitative iden-
tification of different levels of contrast using the OSM method. The inspiration for this study
comes from a similar experiment presented by Bevacqua et al. (2020). The scatterer’s detailed
specifications can be found in the reference. Table 5.3 provides the specifications for measure-
ment and imaging domains. Figure 5.13a illustrates the scatterer. The degree of non-linearity
for this case is 1.396, which is above the threshold for cases where the Born Approximation can
be applied. All settings for synthesizing the scattered field data are the same as in the previous
case study.

Table 5.3: Parameters for problem specification of the nonhomogeneous scatterer case study.

NM NS lb RO LX , LY erb

16 16 1 [m] 3.33 [lb] 1.67 [lb] 1

For this case study, adjustments were made to the algorithm configurations to more
effectively explore their behavior. For the problem transformation-based algorithms, the max-
imum limit for the contrast variable was reduced to 3 since the maximum contrast in the true
image is now 1.25. The stopping criterion was set to 60 evaluations. SAEA2 and EA utilized
populations of 20 individuals as in the previous case study. Deterministic methods also under-
went some modifications, such as CGM and ECSI using 50 iterations, DBIM using 3 iterations,
BIM using 15 iterations, and SOM using 500 iterations with a cut-off index of 5.

Figure 5.13 presents the best reconstructions of the algorithms executed multiple times
under the same criteria as the previous case study, as well as the images of the deterministic
methods. The reconstructed images by the proposed algorithms (Figs. 5.13b-5.13g) were very
similar to each other, suggesting that they were reconstructed from the same threshold level and
contrast estimation. However, the lowest level of contrast in the scatterer appeared to be pro-
portionately higher than in the original image, resulting in a relatively blurred image with the
second level. This may be attributed to the difficulty of the OSM method in estimating differ-
ences when they become distant from each other. As a result, the contrast was underestimated
in all results since the increment in the contrast multiplication factor would represent an object
with a higher average contrast and a higher erro in the data equation.

BIM had a satisfactory reconstruction with a notable contour of the scatterer and well-
estimated contrast levels. On the other hand, DBIM did not perform well. CGM and ECSI
performed reconstructions that resembled the real scatterer, but with some distortions. In CGM,
the contrast was overestimated, and in ECSI, the highest contrast region was slightly distorted.
Finally, SOM did not perform well, possibly because the noise level greatly affected its perfor-
mance in this scenario.
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(a) Ground-Truth (b) SAEA1 (c) SAEA2 (d) SAEA3

(e) SADM1 (f) SADM2 (g) EA (h) BIM

(i) DBIM (j) CGM (k) ECSI (l) SOM

Figure 5.13: Comparison of image reconstructions using surrogate model-assisted algorithms
and deterministic methods considering the nonhomogeneous scatterer case study: (a) shows the
ground-truth image; (b), (c), and (d) depict the best image recovered by SAEA1, SAEA2, and
SAEA3, respectively, in 30 execution according to zeOE indicator; (e), (f) and (g) show the best
image recovered by SADM1, SADM2, and EA, respectively, in 30 execution according to zeOE
indicator; (g) shows the image recovered by BIM, and (h) shows the image recovered by DBIM;
finally, (i), (k), and (l) show the image recovered by CGM, ECSI, and SOM, respectively.

Figure 5.14 presents the convergence curves of the considered algorithms in this study.
The figure shows that BIM, CGM, ECSI, and SOM reached a reasonable level of stability in
the convergence process and ended their executions, indicating that further iterations would
not significantly improve the quality of the reconstructed images. Meanwhile, SADM1 and
SADM2 had slight variations between runs, and although SAEA2 had 3 generations, some of
the runs were able to arrive at solutions with low objective function values like the final solutions
of SAEA1 and SAEA3.

The performance of the algorithms regarding the contrast estimation in the scatterer area
was analyzed based on the results of indicator zeOE presented in Figure 5.15. Despite the fact
that the image reconstructed by BIM was the most satisfactory, with a well-estimated contrast
and reasonably clear scatterer contour, ECSI was the algorithm with the lowest contrast estima-
tion error, although the shape was slightly distorted. Nevertheless, the difference in performance
between BIM and ECSI was not significant, with approximately 1 [%/pixel]. The performance
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(a) SAEA1 (b) SAEA2 (c) SAEA3 (d) SADM1

(e) SADM2 (f) EA (g) BIM (h) DBIM

(i) CGM (j) ECSI (k) SOM

Figure 5.14: Convergence of the objective function for the nonhomogeneous scatterer case ob-
tained by the stochastic and deterministic algorithms. (a) to (k) show the curves obtained by
SAEA1, SAEA2, SAEA3, SADM1, SADM2, EA, BIM, DBIM, CGM, ECSI, and SOM algo-
rithms, respectively. The x-axis represents the number of iterations, and the y-axis represents
the value of the objective function of the correspondent algorithm.

medians of the proposed algorithms were very similar, and the Kruskal-Wallis H-Test failed to
reject the hypothesis of equality between them (p-value = 0.08). The performance difference
between the proposed algorithms and ECSI was not too large, at around 3 [%/pixel].

Figure 5.16 shows the results obtained by the algorithms considering the zS indicator. It
was observed that the proposed algorithms outperformed the deterministic methods in terms of
this indicator. However, it is interesting to note that BIM performed relatively worse than the
other proposed algorithms, and this may be related to the difficulty of applying the indicator
to significantly heterogeneous images. On the other hand, the proposed algorithms performed
better possibly due to the smaller heterogeneity of the scatterer and the difference in respect
to the background medium. Among the surrogate model-assisted algorithms, there was no evi-
dence of a significant difference in the median performance of the indicator, as confirmed by the
Kruskal-Wallis H-Test (p-value = 0.088). This suggests that the performance of the proposed
algorithms in terms of this indicator is similar, and none of them stands out significantly from
the others.

Figure 5.17 displays the running time of the algorithms analyzed in the study. As ex-



151

Figure 5.15: Performance of zeOE indicator for various algorithms in the nonhomogeneous
scatterer case study. Boxplots show quartiles of 30 executions for stochastic algorithms, and the
solid line represents the deterministic algorithms.

Figure 5.16: Performance of shape error estimation quantified by the zS indicator obtained by
the set of algorithms considering the nonhomogeneous scatterer study. The boxes represent the
quartiles of the 30 executions of the stochastic algorithms, while the other points indicate the
obtained values by the deterministic ones. The shape error is calculated based on the ground-
truth image and the reconstructed image obtained by each algorithm.
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Figure 5.17: Box plot showing the execution time distribution of the set of algorithms consid-
ered for the nonhomogeneous scatterer case study. The boxes represent the quartiles of the 30
executions of the stochastic algorithms, and the whiskers represent the minimum and maximum
values. The deterministic algorithms are represented by individual points. The execution time
results are presented in seconds.

pected, some of the deterministic methods required less computational time than the proposed
algorithms that use surrogate models. Among them, DBIM had the shortest time, thanks to the
low number of iterations in which it can run without diverging. The second shortest time was
taken by BIM, which was able to reconstruct the image adequately in a reasonably short time.
Among the proposed algorithms, some executions had shorter times than others. Specifically,
SAEA2, SADM1, SADM2, and EA required less time than SOM and CGM.

Figure 5.18 shows the surface of the objective function along with the location of the
final solutions found by the algorithms in multiple runs. The surface of the objective function
is similar to that obtained in the Austria profile case study (Fig. 5.6). The figure shows that
only EA did not have all the final solutions within the sublevel region with the lowest value in
the graph. This suggests that the EA algorithm may not be as efficient as the other algorithms
in finding the optimal solutions. In contrast, the final solutions of the SADMs were more
concentrated, as expected because of their respective convergence graphs.

5.1.4 Strong Scatterer

In the final case study, we explore the reconstruction of a strong scatterer, aiming to
showcase the applicability of the proposed methodology in a more challenging scenario where
traditional methods often struggle. The scatterer in focus is a 5-pointed star with a radius from
the center to the farthest vertex approximately 0.4lb (see Fig. 5.19a). To emphasize the dif-
ficulty, the object contrast has been set to 4, making it even more challenging to accurately
reconstruct. Detailed information about the measurement and imaging domains can be found in
Table 5.4, providing essential specifications for the experimental setup.

To ensure higher precision in data synthesis, we increased the image resolution to 120⇥120.
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(a) (b)

Figure 5.18: Surface of the two-dimensional optimization problem obtained from the transfor-
mation of the nonhomogeneous scatterer case study and the final solutions obtained by different
algorithms. Subfigure (a) shows the final solutions obtained by SAEA1, SAEA2, and SADM1
algorithms, while subfigure (b) shows the final solutions obtained by EA, SAEA3, and SADM2
algorithms.

This resolution enhancement was chosen to minimize errors during the synthesis of the scattered
field, considering the complexity of the problem at hand. Other parameters for data synthesis
remained consistent with those used in the previous case studies.

The DNL for this particular problem is notably high, measuring 7.39. Such a high DNL
value indicates the significant nonlinearity of the problem, further accentuating the challenge in
accurately reconstructing the strong scatterer. The combination of the intricate scatterer shape
and the high object contrast poses a substantial test for the proposed methodology.

Table 5.4: Parameters for problem specification of the strong scatterer case study.

NM NS lb RO LX , LY erb

50 50 1 [m] 5 [lb] 1 [lb] 1

In order to tackle the increased complexity of the problem, several adjustments were
made to the operating parameters of both the surrogate model-assisted algorithms and the de-
terministic methods. These modifications aimed to enhance the performance and adaptability
of the algorithms to the more nonlinear nature of the scenario.

For the surrogate model-assisted algorithms, the upper bound of the contrast variable
was set to 7, reflecting the higher contrast range present in the problem. Additionally, the max-
imum number of iterations for the MoM-CG-FFT in the evaluation of solutions remained at 20,
despite this representing a greater error in the field approximation. This choice was deliberate
to showcase the methodology’s robustness even in challenging scenarios, where highly precise
field calculations are not necessary. Furthermore, the maximum number of evaluations, serving
as a stopping criterion, was increased to 80. To provide a more comprehensive initial sample,
the number of solutions was increased to 36. These adjustments, while increasing the computa-
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tional cost, were essential to address the growing complexity of the problem and obtain accurate
results.

The remaining parameters for the surrogate model-assisted algorithms remained con-
sistent with the previous study, ensuring continuity and comparability. Similarly, adjustments
were made to the deterministic methods. For SOM and CGM, the maximum number of iter-
ations was extended to 1000, allowing for more comprehensive convergence. ECSI iterations
were adjusted to 50. BIM iterations were set to 4, while DBIM iterations were limited to 2, con-
sidering the nature of the problem and the desired accuracy of the reconstructions. The number
of iterations of the last three algorithms were chosen according to their own limitation in this
scenario.

(a) Ground-Truth (b) SAEA1 (c) SAEA2 (d) SAEA3

(e) SADM1 (f) SADM2 (g) EA (h) BIM

(i) DBIM (j) CGM (k) ECSI (l) SOM

Figure 5.19: Comparison of image reconstructions using surrogate model-assisted algorithms
and deterministic methods considering the strong scatterer case study: (a) shows the ground-
truth image; (b), (c), and (d) depict the best image recovered by SAEA1, SAEA2, and SAEA3,
respectively, in 30 execution according to zeOE indicator; (e), (f) and (g) show the best image
recovered by SADM1, SADM2, and EA, respectively, in 30 execution according to zeOE indi-
cator; (g) shows the image recovered by BIM, and (h) shows the image recovered by DBIM;
finally, (i), (k), and (l) show the image recovered by CGM, ECSI, and SOM, respectively.

The Fig. 5.19 provides a visual representation of the best reconstructions obtained from
the stochastic algorithms, as evaluated by the zeOE indicator, alongside the reconstructions pro-
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duced by the deterministic algorithms. It is noteworthy that the best images generated by the
algorithms based on problem transformation exhibited variations in both contrast estimation
and the application of the thresholding operator. Despite these variations, the reconstructed im-
ages still bear some resemblance to the geometry of the original image. This suggests that the
qualitative method was able to capture certain structural characteristics despite the challenges
posed by the problem. However, the contrast was underestimated in some cases. On the other
hand, the deterministic algorithms failed to achieve satisfactory image reconstructions, although
CGM was able to detect a region similar to a star with reasonable contrast estimation close to
the boundaries and considerable overestimation at the center.

(a) SAEA1 (b) SAEA2 (c) SAEA3 (d) SADM1

(e) SADM2 (f) EA (g) BIM (h) DBIM

(i) CGM (j) ECSI (k) SOM

Figure 5.20: Convergence of the objective function for the strong scatterer case obtained by
the stochastic and deterministic algorithms. (a) to (k) show the curves obtained by SAEA1,
SAEA2, SAEA3, SADM1, SADM2, EA, BIM, DBIM, CGM, ECSI, and SOM algorithms,
respectively. The x-axis represents the number of iterations, and the y-axis represents the value
of the objective function of the correspondent algorithm.

Figure 5.20 provides a visual representation of the convergence behavior of the objective
function for all algorithms employed in the study. Similar to the observations made in the case
study involving multiple scatterers, this analysis reveals notable differences in the convergence
patterns of the SADMs algorithms across multiple executions. This finding suggests that as the
problem becomes more non-linear, the behavior of these algorithms tends to exhibit stochastic
characteristics.
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(a) BIM (b) BIM (c) DBIM (d) DBIM

(e) CGM (f) CGM (g) ECSI (h) ECSI

(i) SOM (j) SOM

Figure 5.21: Reconstruction and convergence of the objective function for BIM (a)-(b), DBIM
(c)-(d), CGM (e)-(f), ECSI (g)-(h), and SOM (i)-(j) algorithms with initial guess from the qual-
itative method.

Notably, ECSI exhibits an atypical behavior characterized by oscillations in its conver-
gence curve. This observation highlights the algorithm’s limitation when confronted with highly
non-linear scenarios. The oscillatory nature of the convergence indicates the algorithm’s strug-
gle to converge to a stable and accurate solution, impairing its performance in such challenging
scenarios.

On the other hand, the convergence curves of the CGM and SOM algorithms exhibit a
different pattern. These algorithms demonstrate a stabilized behavior towards the end of the
run, suggesting that further iterations would have minimal impact on the reconstructed images
depicted in Figs. 5.19j and 5.20k. This stabilization indicates that the algorithms have reached
a reasonably stable state, and additional iterations would not significantly enhance the quality
of the reconstructions.

Initialization by the Backpropagation algorithm and the Born Approximation can be
very bad in strong scattering scenarios, which can compromise all convergence of the determin-
istic algorithms. Therefore, one of the questions that may arise from the results is the impact of
starting with the OSM qualitative method solution, i.e., how the deterministic algorithms would
perform if they also received the image obtained by OSM as initial guess.
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Figure 5.22: Performance of zeOE indicator for various algorithms in the strong scatterer case
study. Boxplots show quartiles of 30 executions for stochastic algorithms, and the solid line
represents the deterministic algorithms.

Figure 5.21 showcases the reconstructions and convergence behavior of the determin-
istic algorithms when initialized with the normalized image from the qualitative method. In-
terestingly, the initialization strategy does not yield improvements for BIM, ECSI, and SOM
algorithms. This indicates that relying solely on the qualitative method’s image is insufficient
to ensure better performance of these methods in such challenging scenarios. However, the
DBIM and CGM algorithms demonstrate similar images resembling a smaller star, with a con-
trast estimate comparable to the surrogate model-assisted methods.

Analyzing the respective convergence graphs, it can be observed that the CGM image
would not undergo significant changes beyond 1000 iterations, suggesting limited improvement
in eliminating middle background noises. On the other hand, DBIM exhibits divergence with
additional iterations. These findings highlight the importance of transforming the problem into
a two-variable optimization framework, which proves to be the most effective approach for
leveraging the reconstructed image provided by the qualitative method.

In Fig. 5.22, we can observe the results of the zeOE indicator obtained by the different
algorithms. Although the CGM algorithm did not produce reconstructions as visually clear as
the proposed algorithms, its performance in terms of the contrast error indicator was comparable
to the median value of most surrogate model-assisted algorithms. Despite the slightly blurred
nature of its reconstructions, CGM was able to provide a reasonable estimation of the contrast
value in the object region.

To further analyze the performance of the algorithms, a statistical comparison was con-
ducted through Kruskal-Wallis H-Test. Comparing the median performance of the SAEAs and
SADM2, evidence of a difference in performance was found (p-value < 10�6). Post-hoc com-
parisons revealed that the difference in performance is found when each SAEA is compared
against SADM2 (p-value < 0.001 in each case). In each case, the performance of the corre-
sponding SAEA formulation overcame SADM2’s performance.
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Figure 5.23: Performance of shape error estimation quantified by the zS indicator obtained by
the set of algorithms considering the strong scatterer study. The boxes represent the quartiles
of the 30 executions of the stochastic algorithms, while the other points indicate the obtained
values by the deterministic ones. The shape error is calculated based on the ground-truth image
and the reconstructed image obtained by each algorithm.

In Fig. 5.23, it is observed the results of the zS indicator obtained by the algorithms.
The median values of the SAEAs were now found to be lower than the median value achieved
by the CGM algorithm. No evidence for differences in the median performance among the
SAEAs formulation was found according to the Kruskal-Wallis H-Test (p-value = 0.1983).
Furthermore, the Wilcoxon signed-rank test detected evidence for a worst median performance
of SADM2 when compared against CGM.

Figure 5.24 displays the running time results of the algorithms used in the study. Among
the algorithms, ECSI, DBIM, and BIM exhibited the lowest running times. This can be at-
tributed to their poor convergence, which led to a lower number of iterations required for com-
pletion.

Notably, there is a significant difference in running time between the SAEA2 and SADM2
algorithms when compared against CGM. It is important to note that although CGM achieved
a better value for the zeOE indicator, the other two algorithms, SAEA2 and SADM2, demon-
strated the ability to produce satisfactory reconstructions within a significantly shorter time
frame.

Figure 5.25 showcases the surface of the objective function resulting from the transfor-
mation in a two-dimensional optimization problem, providing insights into the behavior of the
algorithms and the location of their final solutions in multiple runs. Upon observing the surface,
it becomes apparent that the objective function exhibits two macro basins of attraction.

The distribution of the final solutions found by the algorithms reveals a scattering pat-
tern, suggesting the location of the global optimum and the presence of small basins of attrac-
tion associated with local minima. Notably, such region appears to be very narrow, indicating
a challenging optimization scenario. Therefore, the algorithms encountered greater difficulty
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Figure 5.24: Box plot showing the execution time distribution of the set of algorithms consid-
ered for the strong scatterer case study. The boxes represent the quartiles of the 30 executions
of the stochastic algorithms, and the whiskers represent the minimum and maximum values.
The deterministic algorithms are represented by individual points. The execution time results
are presented in seconds.

(a) (b)

Figure 5.25: Surface of the two-dimensional optimization problem obtained from the transfor-
mation of the strong scatterer case study and the final solutions obtained by different algorithms.
Subfigure (a) shows the final solutions obtained by SAEA1, SAEA2, and SADM1 algorithms,
while subfigure (b) shows the final solutions obtained by EA, SAEA3, and SADM2 algorithms.
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converging to a single point in this particular instance. Furthermore, it is important to con-
sider that the contrast value in the region of the global optimum is significantly underestimated.
This outcome aligns with the expected behavior of qualitative methods when reconstructing the
shape of strong scatterers, as demonstrated in this case study.

5.2 Benchmarking

This section presents a benchmarking experiment designed to evaluate the performance
of the algorithms proposed in this thesis. While studying specific instances can provide valuable
insights into experimental effects, a broader study with a larger number of instances enables a
more comprehensive evaluation. To ensure a thorough analysis of the methods’ performance, it
is crucial to identify and consider influential factors when designing the experiment.

The experiment aims to isolate certain factors while varying others of interest, creating a
diverse range of test scenarios represented by the selected problem samples. By employing a set
of quality indicators, the performance of the techniques can be objectively measured and rigor-
ously compared. The study focuses on evaluating the quality of contrast estimation and shape
recovery while varying the contrast level of objects. Additionally, the number of evaluations
required by each algorithm will be investigated to identify the most efficient approaches.

Unlike the case studies that examine specific instances, this benchmarking experiment
encompasses multiple test sets. Within each set, scatterers possess a fixed contrast value, while
their position and geometry vary. As a result, each set represents a collection of scatterers with
the same contrast value but different configurations and positions within the images.

By analyzing the median behavior through statistical analysis, valuable insights into
performance can be derived. This approach enables the identification of the strengths and
weaknesses of the proposed techniques in a more robust and comparative manner, facilitating
informed conclusions about their efficacy.

5.2.1 Test Sets and Algorithms Parameters Considerations

The overview of the general settings and parameters used in the generation of the test
sets is presented as follows. The formulation and generation process followed the TestSet class
structure implemented in the eispy2d library. Five test sets have been created where each set
consisted of instances with a single scatterer, all sharing the same contrast value.

The selected contrast levels for the test sets were 0.5, 1, 2, 3, and 4, representing a range
of different scattering strengths. The scatterers are random polygons that varied in geometry
and position within the image, ensuring diversity in the test scenarios. Additionally, the size of
the scatterers was controlled, with the size parameter defined as the distance from the center of
the scatterer to its farthest vertex. For each contrast level, a specific size value was assigned.
The size values for each contrast level, in increasing order of contrast, were 1.06, 0.8, 0.41,
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Figure 5.26: Box plot depicting the DNL across test sets: Test Set 1 (Contrast: 0.5), Test Set 2
(Contrast: 1), Test Set 3 (Contrast: 2), Test Set 4 (Contrast: 3), and Test Set 5 (Contrast: 4). The
box plots showcase the distribution of non-linearity values, with the notches roughly indicating
differences between medians. Non-overlapping notches mean significant differences between
the medians.

0.33, and 0.27 [lb].
The choice of object size values was based on an extensive preliminary study that exam-

ined the accuracy of the shape reconstruction by the qualitative method for different scatterer
sizes at a given contrast value. The selected sizes represent the optimal scenarios for applying
OSM in terms of shape quality.

Table 5.5: Parameters for measurement and imaging domains specification of benchmark study.

NM NS RO lb erb

20 20 5 [lb] 1 [m] 1

Table 5.5 presents specifications of the measurement and imaging domains used in the
test sets. The size of the imaging domain (LX , LY ) varied depending on the contrast value, with
smaller domain size corresponding to higher contrast levels. The specific imaging domain sizes
for each set, in ascending order of contrast values, were 4⇥4, 4⇥4, 2⇥2, 2⇥2, and 1⇥1 [l 2

b ].
Each test set consisted of 30 individual tests. To generate the scattered field data, we

employed the MoM-CG-FFT forward solver with 5000 iterations and a tolerance level of 0.001.
Additionally, a noise level of 20 [%/sample] was added to all synthesized data to simulate
realistic measurement conditions. Finally, the original images of each test had a resolution of
120⇥120 pixels, ensuring sufficient detail for accurate analysis and evaluation.

Fig. 5.26 presents the distribution of the DNL for each test set, showcasing the variabil-
ity in DNL despite the same contrast level across tests. The confidence interval for the median
in each case is also displayed. The diversity in scatterer geometry within each set contributes
to the observed variability in DNL. Notably, the median DNL increases with contrast level up
to c = 3, after which a significant decrease in scatterer size for the c = 4 contrast set leads to a
smaller median DNL. However, it is important to note that even in this case, the DNL remains
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(a) Test Set 1, low-
est DNL.

(b) Test Set 2, low-
est DNL.

(c) Test Set 3, low-
est DNL.

(d) Test Set 4, low-
est DNL.

(e) Test Set 5, low-
est DNL.

(f) Test Set 1,
largest DNL.

(g) Test Set 2,
largest DNL.

(h) Test Set 3,
largest DNL.

(i) Test Set 4,
largest DNL.

(j) Test Set 5,
largest DNL.

Figure 5.27: Instances with the lowest and largest DNL for each test set. Figures (a) to (e)
display the instances with the lowest DNL for Test Sets 1 to 5, respectively. Conversely, figures
(f) to (j) showcase the instances with the largest DNL for the corresponding test sets.

above 1, indicating the challenging nature of the problem. To further explore the range of DNL
values, Fig. 5.27 showcases the instances with the smallest and largest DNL within each test
set.

For this comparative evaluation, only algorithms assisted by surrogate models will be
considered. By narrowing down the scope to these specific methods, we can delve deeper into
understanding their unique characteristics and distinguishing features. This selection allows us
to explore the differences between the proposed algorithms and observe their effectiveness and
suitability.

To ensure a fair evaluation, the algorithms will be configured with identical parameters
across all test sets. The maximum value of the contrast variable has been set to 7 in all cases,
providing a wide range of contrast levels that covers each test set adequately. Additionally,
the stopping criterion for the algorithms will be based on either a lack of improvement for 10
iterations or a maximum of 1000 evaluations. This criterion ensures that the algorithms have a
reasonable time frame to converge or identify a lack of progress.

In all test sets, the number of initial samples used for model generation will be fixed at
36. This choice ensures a reasonable number of samples to train the surrogate models accu-
rately in the hardest scenario. Furthermore, for SAEAs, a population size of 20 individuals has
been determined. This population size was chosen aiming a balance between exploration and
exploitation within the evolutionary search process.

5.2.2 Discussion

In this subsection, the results of the benchmarking study will be presented and discussed.
The study aimed to evaluate the performance of different algorithms based on diverse perfor-
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mance indicator data. These indicators were obtained at the end of the algorithm executions and
will be organized in a boxplot format.

For each algorithm, it is showcased the performance evolution based on the contrast
value that defines each test set. To better understand the performance evolution, a straight line
obtained through linear regression will be displayed. This line represents an estimate of the
expectation of the average performance as the contrast value increases. By considering the
averages in the test sets of an algorithm, we can approximate the average performance along the
growth of the contrast.

It’s important to note that each algorithm was executed 30 times for each test in each
set. This approach was taken to ensure reliable and consistent results. To determine the final
performance of an algorithm in a specific test, we will consider the average of the respective
indicator based on these 30 executions. This averaging process helps mitigate the impact of
any outliers or random variations that might occur during individual executions. In the same
fashion, 30 executions will return 30 recovered images for each test and the final one will be
chosen as the one which has the median value according to zeOE indicator.

Figure 5.28 displays the contrast estimation error indicator in the object region for each
algorithm. The y-axis range is consistent among all algorithms, except for SADM1. Due to
significantly larger errors obtained by SADM1, the range had to be increased for this particular
algorithm.

The distinctive performance of SADM1, specially on the test set c = 1, raises curiosity.
To investigate this occurrence, the reconstructed images generated by SADM1 for each test in
the set were analyzed. Figure 5.29 provides visual evidence, presenting the true image from
the first test set alongside the corresponding reconstruction by the method. It is apparent that
the contrast estimate in SADM1’s reconstruction is much higher than the true value, nearing
the maximum limit of the contrast variable. This effect persists across all reconstructions of the
algorithm in the same test set. Thus, these results suggest that the algorithm had a tendency to
become trapped in a local minimum region, unlike the other algorithms. This behavior may be
associated with the performance of the Differential Evolution (DE) as a solution initialization
strategy.
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(a) SAEA1 (b) SAEA2

(c) SAEA3 (d) SADM1

(e) SADM2

Figure 5.28: Evolution of the contrast estimation error (zeOE) in the object region for the pro-
posed algorithms (a)-(e): SAEA1, SAEA2, SAEA3, SADM1, and SADM2, respectively. Ad-
ditionally, a straight line obtained through linear regression is overlaid on each subfigure. This
line represents the estimated evolution of the average performance, based on the means of each
test set.
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(a) Ground-Truth (b) SADM1

Figure 5.29: (a) Ground-truth and (b) recovered images by SADM1 in test 1 for Test Set c = 1.
It is evident from the figure that SADM1 has overestimated the contrast of the object in its
reconstruction.
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On the other hand, the remaining algorithms exhibit similar average performances when
analyzing the regression curves based on the averages of each set. As expected, the error in-
creases with higher contrasts. The average error ranges from approximately 5 to 25 [%/pixel]
within the considered contrast range.

However, statistical pairwise comparison tests have revealed some differences. Only in
the highest contrast test set (c = 4) there was no evidence of a significant difference (Friedman
Rank Sum Test p-value = 0.0693).

Table 5.30 provides the p-values for all post-hoc comparisons, along with their respec-
tive tests. Considering the significance level corrected by the Bonferroni method (= 0.0083),
no difference was detected in the first test set. Therefore, it is possible that a Type I error oc-
curred during the test with multiple samples. The confidence intervals for means (in case of
Paired T-Test) and for medians (in case of Wilcoxon Signed-Rank Test) are also shown in Table
5.30. It is worth noting that SAEA2 exhibits superior performance compared to other SAEAs.
However, SAEA2 did not outperform SADM2 in the third and fourth test sets. Summarizing,
when considering indicator zeOE , SAEA2 tends to perform at an equivalent or superior level
compared to the other algorithms in all cases.

Figure 5.30 showcases the results of the shape recovery indicator (zS). Anomalous be-
havior in the test set c = 1, similar to what was observed previously, is once again apparent in
the SADM1 method. However, this behavior is significantly attenuated compared to previous
indicator. It is notable that all algorithms exhibit an increase in error as the contrast level rises.
This outcome is expected since the qualitative method employed to generate the initial image
tends to loose performance with higher contrast levels. In terms of indicator samples, test sets
c = 1 and c = 2 demonstrate considerable similarity across all algorithms, with the exception
of SADM1.

Regarding the lines obtained through regression analysis for the means in each test set,
they demonstrate high similarity between the algorithms, with the exception of SADM1. How-
ever, when applying pairwise statistical comparisons using the Friedman Rank Sum Test, dif-
ferences are found between the SAEA1, SAEA2, SAEA3, and SADM2 algorithms in each test
set. In the first four test sets, the hypothesis of equal performance was rejected with a p-value
less than 0.0001 at a 95% confidence level. Even in the fifth test set, where the p-value was
slightly higher (0.0015), the null hypothesis was still rejected.

Table 5.7 displays the results of the post-hoc analysis, presenting the p-values for mul-
tiple pairwise comparisons obtained by Wilcoxon Signed-Rank Test in all cases. The table
reveals that differences in performance are more frequently detected in the first four test sets.
As for the latter test set, the difference is detected in only two of the six cases. An examina-
tion of the confidence interval of the medians for each pairwise comparison was accomplished
and showed that SAEA2 demonstrates better performance in the first four test sets compared to
the other SAEAs. Furthermore, in the second, third, and fourth test sets, SAEA2 outperforms
SADM2 as well.
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(a) SAEA1 (b) SAEA2

(c) SAEA3 (d) SADM1

(e) SADM2

Figure 5.30: Evolution of the shape recovering error (zS) for the proposed algorithms (a)-(e):
SAEA1, SAEA2, SAEA3, SADM1, and SADM2, respectively. Additionally, a straight line ob-
tained through linear regression is overlaid on each subfigure. This line represents the estimated
evolution of the average performance, based on the means of each test set.



169

(a) SAEA1 (b) SAEA2

(c) SAEA3 (d) SADM1

(e) SADM2

Figure 5.31: Evolution of execution time for the proposed algorithms (a)-(e): SAEA1, SAEA2,
SAEA3, SADM1, and SADM2, respectively. Additionally, a straight line obtained through
linear regression is overlaid on each subfigure. This line represents the estimated evolution of
the average performance, based on the means of each test set.
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(a) SAEA1 (b) SAEA2

(c) SAEA3 (d) SADM1

(e) SADM2

Figure 5.32: Evolution of the number of evaluations for the proposed algorithms (a)-(e):
SAEA1, SAEA2, SAEA3, SADM1, and SADM2, respectively. Additionally, a straight line
obtained through linear regression is overlaid on each subfigure. This line represents the esti-
mated evolution of the average performance, based on the means of each test set.

Figure 5.31 displays the running time of the algorithms for each test set. The curve
obtained through linear regression of the means reveals that the execution time of the algorithms
exhibits minimal variation as the contrast increases. This finding suggests that the growth of
contrast does not have a significant impact on the running time of the algorithms. A notable
exception is observed in the results of the third test set for the SAEA2 algorithm. In this case,
the running time differs significantly from the other test sets. There is no clear reason for this
anomalous behavior and an unexpected process in the used computer might be a hypothesis.
Comparatively, the execution time of the SADM1 and SADM2 algorithms tends to be shorter
than that of the other algorithms. On the other hand, the SAEA2 algorithm generally exhibits
the longest execution time among the tested algorithms.

Figure 5.32 illustrates the number of evaluations performed by each algorithm in each
test set. Similar to the runtime results, the number of evaluations shows minimal variation as the
contrast increases. This indicates that the algorithms’ ability to converge is largely unaffected
by increasing contrast levels.
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Table 5.8: P-values for post-hoc multiple pairwise comparisons considering the number of eval-
uations, with the compatible statistical test for each test set. The significance level has been cor-
rected using the Bonferroni method, resulting in a significance threshold of 0.0167. Detected
differences are indicated in bold format. Confidence intervals for means are also available.

Pairs
c = 0.5 c = 4

p-value Confi. In. p-value Confi. In.

SAEA3-SADM1 <<<0.0001 (-11.1, -6.27) 0.0004 (-12.7, -2.84)
SAEA3-SADM2 <<<0.0001 (-10.3, -4.62) 0.6238 (-3.75, 2.53)
SADM1-SADM2 0.2693 (-1.52, 3.95) 0.0005 (2.48, 11.8)

Among the algorithms, SAEA2 exhibits the highest number of evaluations, approxi-
mately 10 times more than the other algorithms. This outcome was expected since SAEA2
requires more iterations to converge. Interestingly, in contrast to the runtime results, the num-
ber of evaluations for SAEA2 in the third test set aligns with the other sets. This suggests that
the unexpected increase in execution time observed in the third set was unrelated to the number
of evaluations. This finding can support the hypothesis that an external factor, such as an unex-
pected process on the computer running the experiments, might have influenced the execution
time.

In terms of the algorithms with the lowest number of evaluations, SAEA3, SADM1, and
SADM2 stand out. Statistical tests rejected the hypothesis of equal performance among these
three algorithms under the 95% confidence level only in the test sets c = 0.5 and c = 4, with
p-values smaller than 0.0001 obtained by the Randomized Complete Block Design. Subsequent
post hoc analysis through multiple pairwise comparisons (Table 5.8) reveals that, for c = 0.5,
SAEA3 had from 4 to 11 fewer evaluations than SADM1 or SADM2, in average. For c = 4.0,
SAEA3 had from 3 to 13 fewer evaluations than SADM1, in average, and SADM1 had from
2 to 12 more evaluations than SADM2, in average. Therefore, there is no clear tendency of
superiority among these three algorithms.

5.3 Conclusion

In conclusion, this chapter presented the computational experiments conducted to eval-
uate the proposed methodologies in the thesis. The experiments were divided into case studies
and benchmarking study, providing comprehensive insights into the performance and capabili-
ties of the algorithms.

The case studies examined various problem scenarios, including single, multiple, non-
homogeneous, and strong scatterers. In the simplest cases, the proposed algorithms demon-
strated slightly to moderately improved results compared to traditional deterministic methods,
albeit at a slightly higher computational cost, particularly observed in the SADMs. Moreover, in
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scenarios with significantly higher contrast levels, the proposed algorithms exhibited reasonable
reconstructions, while the traditional deterministic methods struggled.

It is important to note that the complexity of the problems was constrained by the oper-
ating limits of the qualitative method on which the proposed methods are based. When dealing
with multiple contrast values within the same problem, the proposed methodology encountered
challenges in maintaining consistent performance, highlighting the difficulty of the qualitative
method in addressing such scenarios.

The benchmarking study focused solely on the proposed algorithms, aiming to compare
their performance and identify potential differences in a more generalized context. Various
aspects were investigated, including the evolution of contrast estimation error, shape recovery,
execution time, and the number of necessary evaluations for the forward problem, particularly
considering increasing contrast levels. The size of the scatterers was carefully chosen to test the
algorithms under conditions that maximize their performance.

Overall, the findings indicated that SAEA2 consistently achieved slightly lower error
indicators in many cases. However, this improvement came at a significant increase in com-
putational cost, as reflected in the execution time and the number of evaluations. On the other
hand, SADM2 demonstrated results comparable to SAEA2 but with substantially lower com-
putational requirements. Notably, SADM1 exhibited more performance challenges, which may
be attributed to the initial solution search operator employed by the Differential Evolution algo-
rithm, potentially excluding important regions from further exploration.

Furthermore, the experiments revealed that the computational cost, as measured by run-
time and the number of evaluations, remained relatively constant even with increasing contrast
levels. This observation suggests that the proposed methodology is not highly sensitive to the
complexity of the problem, indicating its robustness.
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Chapter 6

Conclusion

This chapter concludes the thesis. Firstly, a recapitulation of the main topics explored in
the thesis is presented in Section 6.1. This serves as a concise summary, highlighting the main
ideas, proposals, key findings, and their significance within the research context. By revisiting
the main research questions and objectives, the recapitulation provides a holistic view of the
thesis’s scope and accomplishments.

Following the recapitulation, a critical analysis of the research methodology, limitations,
and potential biases is presented in Section 6.2. Self-criticism plays a crucial role in research as
it allows for a reflective assessment of the strengths and weaknesses of the study. By acknowl-
edging any limitations or areas for improvement, this section contributes to the overall integrity
and maturity of the research project.

Next, the chapter discusses the proposal continuity in Section 6.3. In the continuity
proposals, different ideas are described that can be addressed after this project. The topics are
developments of subjects that were part of the work, which could receive more attention and
could contribute to the literature. Lastly, the chapter concludes with a list of the bibliographic
production generated during the project (Section 6.4).

6.1 Recapitulation

Microwave imaging is a significant inverse problem with applications in various fields
such as defect identification in structures, through-wall imaging, cancer detection, among oth-
ers. It involves reconstructing the interior of inaccessible regions based on field measurements
at microwave frequencies and images derived from the electrical properties of the materials
within the investigated space.

This thesis aimed to comprehensively review the mathematical aspects of the problem,
recognizing that microwave imaging is an electromagnetic inverse scattering problem. The
objective is to determine the cause, i.e., one or more scatterers, of the observed effect, i.e.,
the scattered field. Maxwell’s Equations provide integral equations that relate the observed
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scattered field outside the region of interest with the unknown electromagnetic field and the
mapping of electrical properties inside the region. However, this relationship is nonlinear due
to the unknown nature of the electromagnetic field and the mapping of electrical properties,
requiring simultaneous resolution of both variables.

The inverse problem is known to be ill-posed, lacking a unique solution or continuity in
the relationship between the scattered field and the imaged medium. To address this, various
formulas, including traditional integral formulas, have been developed to mitigate the inherent
challenges of the problem. The degree of nonlinearity increases with the number of scatterers
or their contrast, further complicating the solution process.

The thesis also presented an extensive overview of numerical methodologies to solve
the problem, covering topics such as discretization, linear approximations, and regularization
methods for ill-posed systems of equations. In the literature, numerical methods for the in-
verse electromagnetic scattering problem are classified into qualitative and quantitative meth-
ods. Qualitative methods focus on reconstructing the shape of scatterers, while quantitative
methods aim to estimate the electrical properties in addition to recovering their geometries.

Noteworthy within qualitative methods is the Orthogonality Sampling Method (OSM),
capable of recovering scatterer geometry and detecting different contrast levels. On the other
hand, quantitative methods can be further categorized as deterministic or stochastic, depending
on whether they rely on well-defined sequences of steps or stochastic processes. Deep Learning
techniques have gained attention for their potential in enabling real-time imaging. Additionally,
the application of Surrogate Models to assist algorithms for the problem, particularly those
dependent on forward problem simulations, is an emerging area that holds promise in reducing
computational costs while requiring effective representation methods.

The thesis also identified others shortcomings in the field, such as the lack of an inte-
grated platform for algorithm development and testing, the need for standardized performance
indicators, and limited generalization capacity in experimental designs. To address these issues,
the thesis proposed two main propositions in the two-dimensional case of the electromagnetic
inverse problem.

The first proposal involved applying Surrogate Models to assist Evolutionary Algo-
rithms and Descent Methods, utilizing images generated by the OSM qualitative method for
representing solutions. Such approach implies in transforming the inverse problem into a two-
dimensional optimization problem, allowing for efficient treatment by Surrogate Models and
achieving greater precision than similar proposals in the literature (Salucci et al., 2022b). Five
formulations for surrogate model-assisted algorithms were proposed, utilizing both evolution-
ary and descent algorithms.

The second proposal focused on implementing a comprehensive algorithm development
and testing structure that supports experimental design, quantification, and performance com-
parison of algorithms for the problem. This structure included software with object-oriented
features capable of conducting case studies and benchmarking, a less explored area in the lit-
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erature. The software facilitated exploring different problem characteristics, measuring various
aspects of obtained images, and performing statistical comparisons to evaluate results more
robustly.

The computational experiments conducted in the thesis included both case studies and
benchmarking. The case studies covered four problem scenarios: simple, multiple, nonhomo-
geneous, and strong scatterers. In these studies, the proposed methods were compared against
traditional deterministic methods. The benchmarking study focused on evaluating the perfor-
mance of the proposed algorithms, specifically considering increasing object contrast levels.

The computational experiments conducted in this thesis provided valuable insights into
the performance of algorithms assisted by surrogate models for microwave imaging. In general,
the results indicated that these proposed algorithms have the capability to obtain images with
comparable or slightly better qualities than traditional methods in the simplest cases. However,
this improvement comes at a slightly higher computational cost in some instances.

One of the notable findings was that in high-contrast scenarios, the methodology assisted
by surrogate models was able to reconstruct objects that traditional methods struggled with, all
while maintaining a reasonable computational cost. This suggests that the surrogate models
have the potential to address the limitations of traditional techniques and enable the imaging
of challenging objects. It was also observed that the limitations of OSM posed restrictions on
the application of the proposed methodology, particularly when dealing with numerous scatter-
ers and varying levels of contrast. This highlights the need to consider the limitations of the
qualitative method when applying the proposed approach.

In terms of the performance comparison between different algorithm versions, one of
the evolutionary versions (SAEA2) demonstrated better image quality indicators but at a higher
computational cost. On the other hand, a version based on the descent method (SADM2)
showed comparable results in terms of image quality indicators while requiring significantly
fewer computational resources. This finding suggests that a descent-based approach may offer
a good balance between performance and computational efficiency.

Based on these results, it is evident that the application of surrogate models in the trans-
formation of the inverse problem into a two-dimensional optimization problem is highly feasi-
ble. The objective function becomes much easier to predict using surrogate models, enabling the
solution of scenarios where traditional techniques struggle to reconstruct images. The advan-
tage of the approach lies in the reduced number of variables, which can be effectively handled
by surrogate models. However, it is important to acknowledge that the limitations of OSM in
certain scenarios prevent a more general application of the proposed methodology, unlike what
is achievable with existing techniques in the literature (Salucci et al., 2022b).

These promising results encourage further development of the technique of applying
surrogate models to strike a better balance between the number of variables that the surrogate
model must handle and the ability to generalize to more complex scattering scenarios. By re-
fining the application of surrogate models, it may be possible to overcome current limitations
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and expand the scope of microwave imaging, opening new avenues for improved imaging per-
formance in challenging environments.

6.2 Self-Criticism

Some critical points in conducting this research are commented below:
• In this work, a case study based on real measurements from the Fresnel Institute (Geffrin

et al., 2005), which is commonly used in the literature, was not considered. Although
including this case study could provide additional support for the real-world applicabil-
ity of the proposed methodology, it was not feasible due to the slight differences in the
electromagnetic propagation model used in the data. Adapting the model would require
substantial time and effort, which was not available during the completion of this work.

• Regarding the benchmark study, the option was made to be more succinct and focus on
the proposed methods. Therefore, the traditional deterministic methods were not included
in the analysis. While including these methods would have allowed for a more compre-
hensive comparison, it would have increased the number of graphs and data to analyze,
which was not the primary objective of this study.

• Salucci et al. (2022b) presented the only methodology available in the literature that ap-
plied surrogate models to the problem, and this work frequently cites their contribution
to contextualize its own. However, the methodology proposed by them was not imple-
mented in this study. It would have been interesting to include their methodology in the
comparison to evaluate the efficiency of the transformation into a two-dimensional opti-
mization problem and identify scenarios where their approach may outperform the one
proposed in this work.

• In the obtained results, it was observed that the formulations based on the SAEAs took
longer to run, even when the number of evaluations had the same limit than SADMs. This
suggests that the evolutionary operations employed in the algorithm may have a signifi-
cant impact on the overall computational cost. Further investigation would be necessary
to implement optimizations and improve the performance of these algorithms in terms of
computational efficiency.

6.3 Continuity Proposals

There are some topics that can be further explored in a future work:
• Improvements to the initial image approach: In this work, one of the evident needs is

to expand the scope of application of OSM to address more challenging scenarios effec-
tively. This requires modifying equations (3.114)-(3.117) to enhance the method’s robust-
ness against highly nonlinear problems. One approach could be exploring new integral
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equations (Bevacqua and Isernia, 2021c) or investigating efficient domain decomposition
techniques (Zhang et al., 2022). Another alternative could be developing more efficient
ways to obtain an initial image while controlling the computational cost.

• A better elaborated comparative study addressing traditional deterministic meth-
ods: The implementation of a benchmark tool opens up possibilities for a more elaborate
experimental design to quantitatively describe the average performance of traditional de-
terministic methods using the proposed indicators. This type of study is currently lacking
in the literature and could provide valuable insights into the differences between these
algorithms when subjected to a comprehensive comparison.

• Creation of standard test sets: Creating a standard test suite would be beneficial to
the field, as it would enable researchers to compare their algorithms using well-defined
and meaningful scenarios. This standardized approach would facilitate future studies by
multiple authors, ensuring consistency and facilitating comparisons.

• Creation of test sets based on DNL value: Furthermore, it would be advantageous to
design a problem generation mechanism based on a DNL target value. This mechanism
would enable studies analyzing the variation of performance indicators of algorithms with
varying DNL. Machine learning techniques could be employed to predict the DNL using
only the characteristics of the desired problem, further enhancing the efficiency of these
investigations.

• Limits of application of the methods: During the experiments in this work, it was ob-
served that DNL alone is not always sufficient to quantify the difficulty of solving a
particular problem for an algorithm. In some cases, algorithms may struggle to solve
problems with lower DNL while being able to solve higher DNL problems. It would
be valuable to develop a way to quantify the application limits of an algorithm, taking
into account the problem’s specific characteristics. This approach would provide a more
comprehensive description of the operating limits of each method.

• Implementation of the 3D model: To continue this work, formulating a standard defini-
tion for the three-dimensional problem and implementing a library capable of supporting
and adapting the development and testing of algorithms in this context would be valu-
able. Additionally, implementing the methodology proposed in this work in its three-
dimensional version would further extend its applicability and provide insights into its
performance in more complex scenarios.

6.4 Bibliographic Production

Journals:

• Batista, A. C., Batista, L. S., & Adriano, R. (2021). A quadratic programming approach
for microwave imaging. IEEE Transactions on Antennas and Propagation, 69(8), 4923-
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4934.
• Vargas, J. O., Batista, A. C., Batista, L. S., & Adriano, R. (2021). On the computa-

tional complexity of the conjugate-gradient method for solving inverse scattering prob-
lems. Journal of Electromagnetic Waves and Applications, 35(17), 2323-2334.

• Batista, A. C., Adriano, R., & Batista, L. S. (2021). EISPY2D: An Open-Source Python
Library for the Development and Comparison of Algorithms in Two-Dimensional Elec-
tromagnetic Inverse Scattering Problems. arXiv preprint arXiv:2111.02185. Under re-
view.

Conferences:

• Vargas, J. O., Batista, A. C. ; Batista, L. S., Adriano, R. A Fast Conjugate Gradient
Method for Solving Two-Dimensional Electromagnetic Inverse Scattering Problems. XX
Simpósio Brasileiro de Micro-Ondas e Optoeletrônica, 2022, Natal, RN. Anais do XX
Simpósio Brasileiro de Micro-Ondas e Optoeletrônica, 2022.
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Appendix A

Dyadic Green’s Function

The dyadic Green’s function is an important tool for solving electromagnetic problems
that include the radiation phenomenon. For this reason, this appendix aims to briefly discuss its
definition and singularity. This text is based on chapter 7 of the book written by Chew (1995),
which deepens the discussion and provides a better bibliographical reference on the topic.

A.1 Dyadic Green’s Function for Homogeneous Medium

A very general and essential problem for electromagnetic theory is that of radiation
from a point source. This problem is fundamental for integral equations since the radiation of
a current distribution is based on the contribution of all points at which the current is defined.
That is, considering a generic scalar problem such as:

(—2 + k2)f(r) = s(r) (A.1)

defined in a homogeneous region V , the solution can be obtained through:

y(r) =�
Z

V
dr0g(r,r0)s(r0) (A.2)

where g(r,r0) is the Green’s function which is the solution to the equation:

(—2 + k2)g(r,r0) =�d (r� r0) (A.3)

Particularly, this solution follows from the interpretation that s(r) is a linear superposi-
tion of point sources.

To obtain Green’s function for a homogeneous and infinite medium, we will change the
source position in the problem of eq.(A.3) to the origin of spherical coordinates:

(—2 + k2)g(r) =�d (r) =�d (x)d (y)d (z) (A.4)
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For r 6= 0, the solution of (A.4) is given by:

g(r) =C
e jkr

r
+D

e� jkr

r
(A.5)

where r = |r|. Assuming that there are no sources at infinity, only the first term on the right-hand
side of (A.5) is a solution:

g(r) =C
e jkr

r
(A.6)

The constant C is determined by calculating both sides of (A.4) in the singularity. To do
this, we combine (A.6) into (A.4) and integrated into a small volume around the origin:

Z

DV
dV — ·—Ce jkr

r
+
Z

DV
dV k2Ce jkr

r
=�1 (A.7)

The second integral of (A.7) tends to zero if DV ! 0, since dV = 4pr2dr. Besides,
Gauss’ theorem can be used to transform the first integral into a surface one, and with that, we
obtain:

lim
r!0

4pr2 d
dr

C
e jkr

r
=�1 (A.8)

or C = 1/4p . Also, the solution (A.6) can be generalized for the case in which the source is
shifted to a point r0. In this case, eq.(A.6) can be rewritten as:

g(r,r0) = g(r� r0) = e jk|r�r0|

4p|r� r0| (A.9)

Solution (32) can be used to obtain Green’s dyadic1 function for the vector wave equa-
tion in a homogeneous and isotropic medium:

—⇥—⇥E(r)� k2E(r) =� jwµJ(r) (A.10)

Since —⇥—⇥E=�—2E+—— ·E and that, according to the continuity equation, — ·E=

r/e = — ·J/ jwe , eq.(A.10) can be rewritten as:

—2E(r)+ k2E(r) = jwµ


Ī+ ——
k2

�
·J(r) (A.11)

where Ī is the identity operator. In Cartesian coordinates, eq.(A.11) is actually three equations
that can be solved just as it was done for the scalar equation. Thus, the solution for (A.11) is:

E(r) =� jwµ
Z

V
dr0g(r0 � r)


Ī+ —0—0

k2

�
·J(r0) (A.12)

1Dyad is an example of a second rank tensor, formed from two vectors and maps one vector field to another.
Besides, they have the property of having nullspace of rank two. For a deeper discussion of tensors and their
mathematical properties, we recommend reading Appendix B of (Chew, 1995).
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Taking into account the vector identities —g f = f —g+g— f and — ·gF = g— ·F+(—g) ·
F, the following integrals can be rewritten as:

Z

V
dr0g(r0 � r)—0 f (r0) = �

Z

V

⇥
—0g(r0 � r)

⇤
f (r0) (A.13)

Z

V
dr0
⇥
—0g(r0 � r)

⇤
—0 ·J(r0) = �

Z

V
dr0J(r0) ·—0—0g(r0 � r) (A.14)

which allows us to rewrite (A.12) as:

E(r) =� jwµ
Z

V
dr0J(r0) ·


Ī+ —0—0

k2

�
g(r0,r) (A.15)

However, as demonstrated in chapter 7 of (Chew, 1995), it is also possible to write
eq.(A.15) as follows:

E(r) = jwµ
Z

V
dr0J(r0) · Ḡ(r,r0) (A.16)

where:

Ḡ(r,r0) =�


Ī+ ——
k2

�
e jk|r�r0|

4p|r� r0| (A.17)

A.2 The Singularity of the Dyadic Green’s Function

As can be seen in equation (A.13), Green’s dyadic function has singularity for r = r0.
That is, to calculate the field at a point within the region of the source J, it is necessary to rewrite
the integral equation (A.16) with the support of the exclusion volume Vd around the singularity
point:

E(r) = lim
Vd!0

jwµ
Z

V�Vd

dr0J(r0) · Ḡ(r0,r) (A.18)

In this way, the equation is defined in terms of an improper integral. Generally, improper
integrals converge if there is a fixed limit regardless the shape of Vd . However, in the case of
(A.18), a necessary condition for convergence is that J must satisfy Holder’s condition (Kellogg,
1953) in r = r0, in which there must be constants c, A, and a such that |J(r)�J(r0) A|r0 �r|a

for |r0 � r| < c. This condition is slightly stronger than general continuity. In addition, the
derivatives of (A.17) do not allow the integral to converge in a traditional fashion, i.e., the
principal value of the integral exists but depends on the chosen shape for Vd .

To calculate the limit of the term that includes those derived in eq.(A.18), we need to
take into account both the integral over the region without the singularity and the region with
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the singularity:

—— ·
Z

V
dr0g(r,r0)J(r0) = lim

Vd!0

2

4—— ·
Z

V�Vd

dr0g(r,r0)J(r0)

+ —— ·
Z

Vd

dr0g(r,r0)J(r0)

3

5 (A.19)

where r 2Vd . The first integral on the right-hand side of the equation does not contain r, so the
operator ——· might enter into the integral. The second integral converges only if an operator —
is introduced in the integral. In this way, eq.(A.19) can be rewritten as:

—— ·
Z

V
dr0g(r,r0)J(r0) = lim

Vd!0

2

4
Z

V�Vd

dr0—— ·g(r,r0)J(r0)

� —
Z

Vd

dr0—0g(r,r0) ·J(r0)

3

5 (A.20)

Therefore, the two integrals on the right-hand side of (A.20) converge to a value that
depends on the shape of Vd . However, the sum of the two integrals must be equal to the left-
hand side, which does not depend on the shape chosen for Vd .

If we use the integration by parts and the relation — · J = jwr , the second integral of
(46) can be rewritten as:

—
Z

Vd

dr0—0g(r,r0) ·J(r0) =
Z

Sd
dS0n ·J(r0)g(r,r0)� jw

Z

Vd
g(r,r0)r(r0) (A.21)

The second integral of (A.21) will tend to zero when Vd ! 0 assuming that, for a vol-
umetric current, r(r) is continuous. The first integral, on the other hand, has the term n ·J(r0)
which is the surface charge on Sd , the surface of Vd . Because of this surface charge, the first in-
tegral is proportional to the field in r and does not vary depending on the scale. In other words,
it does not disappear when Vd ! 0, but depends on the shape of Vd . At the limit, eq.(A.21) is
linearly proportional to J(r). Therefore, with the aid of L̄, a dyad which depends on the shape
of Vd , we can rewrite (A.20) as:

—— ·
Z

V
dr0g(r,r0)J(r0) = lim

Vd!0

Z

V�Vd

dr0——(r,r0) ·J(r0)� L̄ ·J(r) (A.22)
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Using this result in (A.16), we will obtain:

E(r) = jwµ lim
Vd!0

Z

V�Vd

dr0Ḡ(r,r0) ·J(r0)+ L̄ ·J(r)
jwe

(A.23)

The integral of (A.23) is equivalent to the principal value integral operator whose nota-
tion is expressed by P.V.

R
V , that is:

E(r) = jwµP.V.
Z

V
dr0Ḡ(r,r0) ·J(r0)+ L̄ ·J(r)

jwe
, 8r 2V (A.24)

Therefore, although the two terms on the right-hand side of (A.24) are dependent on the
choice of Vd , the E field is unique. This method for determining the field value in the region of
singularity is known as the Principal Volume Method (Van Bladel, 1961).

Physically, this method of solution corresponds to opening a space around the observa-
tion point within the current region. Since this current is discontinuous on the surface of that
space, the surface accumulates charges which, when decreasing the space to an infinitesimal
volume, have an electrostatic nature. This electrostatic field satisfies the Laplace equation and
depends on the shape of that space, no matter how small it is. Therefore, the second term in
eq.(A.24) aims to remove the contribution from this electrostatic field, since it is not part of the
problem but has been added as a mathematical resource.

Finally, some values for L̄ for certain types of exclusion volumes have already been
determined in the literature (Shung-Wu Lee et al., 1980; Yaghjian, 1980). In addition, generally,
the trace

⇥
L̄
⇤
= 1 (Yaghjian, 1980). Board A.1 shows some values for L̄ considering some

geometric shapes:

Table A.1: Dyad L̄ values for different shapes of exclusion volume applied to the singularity of
dyadic Green’s function. Sources: (Shung-Wu Lee et al., 1980; Yaghjian, 1980).

Geometric shape L̄

Spheres or cubes Ī
3

Disks zz

Needles xx+yy
2

A.3 Dyadic Green’s Function for Inhomogeneous Medium

To determine the dyadic Green function for a non-homogeneous medium, we will as-
sume a region V1 and another V2 ⇢ V1. The contrasts of these media in relation to the vacuum
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will be denominated c1 and c2, respectively. We can write c2 as:

c2(r) = c1(r)+Dc(r) (A.25)

Consequently, the integral equation for the electric field at any point in space can be
written as:

E(r) = Ei(r)+ k2
0

Z

V1
dr0 Ḡ(r,r0) ·c1(r0)E(r0)+ k2

0

Z

V1
dr0 Ḡ(r,r0) ·c2(r0)E(r0) (A.26)

However, E can be interpreted as the sum of the scattered field and by c1 for r2V1. The
former is due to the excess of contrast in V2 when the incident field is the field that propagates
in an inhomogeneous medium characterized by e0 for r /2V1. Mathematically, this is equivalent
to:

E(r) = E1(r)+ k2
0

Z

V2
dr0 Ḡin(r,r0) ·c2(r0)E(r0) (A.27)

where E1 is given by:

E1(r) = Ei(r)+ k2
0

Z

V1
dr0 Ḡ(r,r0) ·c1(r0)E(r0) (A.28)

and the Green’s function for the inhomogeneous medium satisfies:

Ḡin(r,r0) = Ḡ(r,r0)+ k2
0

Z

V1
dr00Ḡ(r,r00) ·c1(r00)Ḡin(r00,r0) (A.29)

Analytical solutions for (A.29) are rarely available. Frequently, when inhomogeneous
modeling for Green’s function is necessary, numerical methods are employed to estimate this
function.
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Appendix B

Integral Equation Formulation

Integral equations are an important method for electromagnetic theory. In this appendix,
the derivation of the Electric Field Integral Equation from wave equation and dyadic Green’s
function will be discussed. The text is based on section 3.4 of (Chew, 2009).

Let us suppose a volume Vin f whose surface is Sin f in which there is a source J2 within
a region V2 and another source J1 for a region V1 separate from V2 for a closed surface S (see
Figure B.1). Assuming that the medium in V1 is homogeneous with properties e1 and µ1, the
relationship between electric field E(r) and a current distribution J(r) representing currents J1

and J2 is given by the wave equation:

—⇥—⇥E(r)�w2e1µ1E(r) =� jwµ1J(r) (B.1)

V2

V1
Sinf

J1

Figure B.1: Derivation of integral equation.

The solution to this equation is obtained with the support of the dyadic Green’s function
Ḡ(r,r0) for a homogeneous and isotropic medium, where r0 is an observation point in the source
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region. Under these conditions, the Green’s function is a solution to the following equation:

—⇥—⇥ Ḡ(r,r0)�w2e1µ1Ḡ(r,r0) =�Īd (r� r0) (B.2)

Postmultiplying (B.1) by Ḡ(r,r0), premultiplying (B.2) by E(r), and then subtracting
the resultant equations, we will obtain:

E(r) ·—⇥—⇥ Ḡ(r,r0)�—⇥—⇥E(r) · Ḡ(r,r0)

= jwµ1J(r) · Ḡ(r,r0)�E(r)d (r� r0) (B.3)

If we integrate both sides of the equation (B.3) in the volume V1, we get:
Z

V1
dV
⇥
E(r) ·—⇥—⇥ Ḡ(r,r0)�—⇥—⇥E(r) · Ḡ(r,r0)

⇤
= E1(r0)�E(r0)

in which:

E(r0) =
Z

V1
dr d (r� r0)E(r) (B.4)

E1(r0) = jwµ1

Z

V1
dr J1(r) ·G(r,r0) (B.5)

The field E1 is produced by the source J1 in V1. Since J2 is not in V1, it does not
contribute to the integral.

Through the identity:

�— ·
⇥
E(r)⇥—⇥ Ḡ(r,r0)+—⇥E(r⇥)Ḡ(r,r0)

⇤

= E(r) ·—⇥—⇥ Ḡ(r,r0)�—⇥—⇥E(r) · Ḡ(r,r0) (B.6)

we can apply Gauss’ theorem and rewrite eq. (B.4) as:

E1(r0)�E(r0) =
I

S+Sin f

dSn ·
⇥
E(r)⇥—⇥ Ḡ(r,r0)+—⇥E(r)⇥ Ḡ(r,r0)

⇤
(B.7)

=
I

S+Sin f

dS ·
⇥
n⇥E(r) ·—⇥ Ḡ(r,r0)

� jwµ1n⇥H(r) · Ḡ(r,r0)
⇤

(B.8)

where n is the normal vector on the surface S which points outwards. Depending on the position
of r0, we have different results for eq.(B.8):

E1(r0)�
I

S+Sin f

dS
⇥
n⇥E(r) ·—⇥ Ḡ(r,r0)� jwµ1n⇥H(r) · Ḡ(r,r0)

⇤
=

8
<

:
E(r0), r0 2V1

0, r0 /2V1
(B.9)
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As the distance between the field observation point and the source point increases, the
integral over Sin f vanishes. Although the surface of Sin f increases with this distance, the two
terms on the left-hand side of the eq.(B.9) will cancel each other out so that the integrator
decays.

Swapping the observations points r and r0, we get:

E1(r)�
I

S
dS0
⇥
n0 ⇥E(r0) ·—0 ⇥ Ḡ(r0,r)� jwµ1n0 ⇥H(r0) · Ḡ(r0,r)

⇤
=

8
<

:
E(r), r 2V1

0, r 2V2
(B.10)

From the following transposition properties:

—⇥ Ḡ(r,r0) =
⇥
—0 ⇥ Ḡ(r0,r)

⇤t (B.11)

Ḡ(r,r0) =
⇥
Ḡ(r0,r)

⇤t (B.12)

we can calculate the transpose of eq.(B.10) by:

E1(r)�
I

S
dS0
⇥
—⇥ Ḡ(r0,r) ·n0 ⇥E(r0)� jwµ1Ḡ(r0,r) ·n0 ⇥H(r0)

⇤
=

8
<

:
E(r), r 2V1

0, r 2V2
(B.13)

Letting Ms(r0) = �n0 ⇥E(r0) and Js(r0) = n0 ⇥H(r0), we may write the eq.(B.13) in
terms of equivalent surface electric and magnetic currents imposed on the S surface. Thus, the
equation becomes:

E1(r)+
I

S
dS0
⇥
Ḡ(r0,r) ·Ms(r0)+ jwµ1Ḡ(r0,r) ·Js(r0)

⇤
=

8
<

:
E(r), r 2V1

0, r 2V2
(B.14)

In other words, the field observed at a point in the region V1 is due to the source J1 in
V1 and the equivalent currents Ms and Js on the surface of S which has the same effect as J2.
It is also worth noting that (B.14) also applies to other types of equivalent currents, such as
induction currents due to the penetration of an incident field in a dielectric material. In these
cases, eq.(B.14) can simply be written as:

E(r) = Ei(r)+ jwµ
I

S
dS0Ḡ(r0,r) ·J(r0) (B.15)
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Appendix C

Functional Analysis

An important issue within the scope of integral equations is functional analysis since it
is a problem composed of an operator applied to functions of a vector space. Therefore, this
chapter is a brief approach to the concepts of normed spaces and operators which will be a
reference for discussions found in the dissertation. This text was written based on Appendix
A of (Kirsch, 2011). Therefore, more information can be found in this reference and a more
in-depth study can also be found in (Lebedev et al., 1996).

C.1 Normed and Hilbert Spaces

Let us start with some basic definitions:
Definition 2. Inner Product
Let X be a vector space defined on K= R or K= C. The scalar product is a mapping

h·,·i : X⇥X !K

with the following properties:
1. hx+ y,zi= hx,zi+ hy,zi, 8x,y,z 2 X;
2. hx,y+ zi= hx,yi+ hx,zi, 8x,y,z 2 X;
3. hax,yi= ahx,yi, 8x,y 2 X and a 2K;
4. hx,yi= hy,xi, 8x,y 2 X;
5. hx,xi 2 R and hx,xi � 0, 8x 2 X;
6. hx,xi> 0 if x 6= 0;
7. hx,ayi= āhx,yi, 8x,y 2 X and a 2K.

Definition 3. Pre-Hilbert space
A vector space X over K with inner product h·,·i is called a pre-Hilbert space over K.
Definition 4. Norm
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Let X be a vector space over the field K= R or K= C. A norm on X is a mapping

|| · || : X ! R

with the following properties:
1. ||x||> 0, 8x 2 X with x 6= 0;
2. ||ax||= |a| ||x||, 8x 2 X and a 2K;
3. ||x+ y|| ||x||+ ||y|| and ||x� y||�

���||x||� ||y||
���, 8x,y, 2 X (Triangle Inequality).

A vector space X over K with norm || · || is called normed space over K
Now, the following theorem is introduced:

Theorem 5. Let X be a pre-Hilbert space. The mapping || · || : X ! R defined by

||x|| :=
p
hx,xi, x 2 X

is a norm. Futhermore:
1. |(x,y)| ||x||||y||, 8x,y 2 X (Cauchy-Schwarz inequality);
2. ||x± y||2 = ||x||2 + ||y||2 ±2Re{hx,yi}8x,y 2 X (binomial formula);
3. ||x+ y||2 + ||x� y||2 = 2||x||2 +2||y||28x,y 2 X.

An example of a pre-Hilbert space over R is the space of real or complex continuous
functions over the interval [a,b], denoted by C[a,b], whose internal product is:

(x,y)L2 :=
Z b

a
x(t)y(t)dt, x,y 2C[a,b] (C.1)

and whose norm is Euclidean, i.e.:

||x||L2 :=
p
hx,xi=

s
Z b

a
|x(t)|2dt, x 2C[a,b] (C.2)

When a norm is defined for a vector space, it introduces as well a topology. Based on
the norm definition, it is also possible to define open, closed, compact sets, and others features.
Firstly, we will introduce the definition of a ball with radius r and center x 2 X which will be
useful for the next definitions:

K(x,r) := {y 2 X : ||y� x||< r}, K[x,r] := {y 2 X : ||y� x|| r}

Definition 6. Let X be a normed space over the field K= R or C.
1. A subset M ⇢ X is called bounded if there exists r > 0 with M ⇢ K(x,r). The set M ⇢ X

is called open if for every x 2M there exists e > 0 such that K(x,e)⇢M. The set M ⇢ X
is called closed if the complement X \M is open.

2. A sequence (xk)k ⇢ X is called bounded if there exists c > 0 such that ||xk|| < c for all
k. The sequence (xk)k ⇢ X is called convergent if there exist x 2 X such that ||x� xk||
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converges to zero in R. We denote the limit by x = limk!• xk, or we write xk ! x as
k! •. The sequence (xk)k ⇢ X is called a Cauchy sequence if for every e > 0 there
exists N 2 N with ||xm� xk||< e for all m,k � N.

3. Let (xk)k ⇢ X be a sequence. x 2 X is called an accumulation point if there exists a
subsequence (akn)n that converges to x.

4. A set M ⇢ X is called compact if every sequence in M has an accumulation point in M.
A property derived from these concepts is that a set M is closed if and only if the limit

of each convergent sequence (xk)k ⇢M also belongs to M. Furthermore, we call the sets Mo :=
{x 2M : there exists e > 0 with K(x,e) ⇢Mt} and M := {x 2 X : there exists (xk)k ⇢M with
x = limk!• xk} interior and closure of M, respectively. In addition, the set M ⇢ X is said to be
dense in X if M = X .

We can exemplify some of these concepts defined through the set X =C[0,1] on R and
xk(t) = tk, t 2 [0,1], k 2 N with norm || · ||L2 . In this case, the sequence (xk) converges to
zero. The dependence between topological properties and the definition of the norm of a set is
usual; however, this is not the case with finite-dimensional spaces in which the properties are
independent.
Theorem 7. Let X be a finite-dimensional space with norms || · ||1 and || · ||2. Then both norms
are equivalent, i.e., there exist constants c2 � c1 > 0 with

c1||x||1  ||x||2  c2||x||1, 8x 2 X .

Therefore, each ball defined on || · ||1 contains a ball defined on || · ||2 and vice versa.
Theorem 8. Let X be a normed space over K and M ⇢ X be a subset.

1. M is closed if and only if M = M, and M is open if and only if M = Mo.
2. If M 6= X is a linear subspace, then Mo = ø, and M is also a linear subspace.
3. In finite-dimensional spaces, every subspace is closed.
4. Every compact set is closed and bounded. In finite-dimensional spaces, the reverse is

also true (Theorem of Bolzano-Weierstrass): In a finite-dimensional normed space, every
closed and bounded set is compact.

From now on, we can introduce an important concept in functional analysis, which is
completeness. This concept is a crucial feature of the set of real numbers, for example.
Definition 9. Banach Space, Hilbert Space
A normed space X over K is called complete or a Banach Space if every Cauchy sequence
converges in X. A complete pre-Hilbert space is called a Hilbert space.

The spaces C
n and R

n with their canonical inner products are examples of Hilbert
spaces. The space C[a,b] with inner product h·,·iL2 is not an example. However, any normed
or pre-Hilbert space can be “completed”, i.e., a smaller Banach or Hilbert space that extends X
can be defined. Let us see in the next theorem:
Theorem 10. Let X be a normed space with norm || · ||X . There exist a Banach space (X̃ ,|| · ||X̃)
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and a injective linear operator J : X ! X̃ such that
1. The range J(X)⇢ X̃ is dense in X̃ , and
2. ||J {x}||X̃ = ||x||X , 8x 2 X, i.e., J preserves the norm.

Furthermore, X̃ is uniquely determined in the sense that if X̃ is a second space with properties
1 and 2 with respect to a linear injective operator Ĵ , then the operator Ĵ J

�1 : J (X)!
Ĵ (X) has an extension to a norm-preserving isomorphism from X̃ onto X̂ . In other words, X̃
and X̂ can be identified.

For the pre-Hilbert space (C[a,b],h·,·iL2) to be complete, it is necessary to make use of
Lebesgue’s integration theory (Bartle, 1995). From the Lebesgue measure and its definitions of
measurability and integrability, the complete space of (C[a,b],h·,·iL2) will be denoted as L2(a,b).
For this, we first define the vector space L

2(a,b) := {x : (a,b) ! C : x is measurable and
|x|2 integrable}, in which scalar addition and multiplication are defined pointwise in almost
everywhere. From this, L

2(a,b) is a vector space since for x,y 2L
2(a,b) and a 2C, x+y and

ax are also measurable and ax, x+ y 2L
2(a,b). We define a sesquilinear form on L

2(a,b)
by:

hx,yi :=
Z b

a
x(t)y(t)dt, x,y 2L

2(a,b) (C.3)

However, (C.3) is not an inner product on L
(a,b) since hx,yi = 0 only implies that x

vanishes almost everywhere, i.e., that x 2 N , where N := {x 2 L
2(a,b) : x(t) = 0 almost

everywhere on (a,b)}. Now, we define L2(a,b) as the factor space

L(a,b) := L
2(a,b)\N (C.4)

and equip L2(a,b) with the inner product

h[x],[y]iL2 :=
Z b

a
x(t)y(t)dt, x 2 [x],y 2 [y]

where [x],[y] 2 L2(a,b) are equivalence classes of functions in L
2(a,b). From now on, we will

write x 2 L2(a,b) instead of x 2 [x] 2 L2(a,b). Finally, L2(a,b) is a Hilbert space and contains
C[a,b] as a dense subspace.

C.2 Linear Bounded and Compact Operators

In this section, for all definitions and theorems, we will assume that X and Y are normed
spaces and A : X ! Y is a linear operator.
Definition 11. Boundedness, Norm of A

The linear operator A is called bounded if there exists c > 0 such that

||A {x}|| c||x||, 8x 2 X .
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The smallest of theses contants is called the norm of A , i.e.,

||A || := sup
x 6=0

||A {x}||
||x|| .

Theorem 12. The following assertions are equivalent:
1. A is bounded.
2. A is continuous at x = 0, i.e, x j! 0 implies that A {x j}! 0.
3. A is continuous for every x 2 X.

Hence, L (X ,Y ) can be understood as all bounded linear mappings from X to Y in which
the operator norm is a normed space.
Theorem 13. 1. Let k 2 L2((c,d)⇥ (a,b)). The operator

A {x(t)} :=
Z b

a
k(t,s)x(s)ds, t 2 (c,d), x 2 L2(a,b) (C.5)

is well-defined, linear, and bounded from L2(a,b) into L2(c,d). Furthermore,

||A ||L2 
dZ

c

bZ

a

|k(t,s)|dsdt.

2. Let k be continuous on [c,d]⇥ [a,b]. Then A is also well-defined, linear, and bounded
from C[a,b] into C[c,d] and

||A ||• = max
t2[c,d]

Z b

a
|k(t,s)|ds.

Within the context of integral operators, those whose kernel is weakly singular are also
of interest. Mathematically, a kernel k is weakly singular in[a,b]⇥ [a,b] if k is defined and
continuous for every t,s 2 [a,b], t 6= s, and there is a c > 0 and a 2 [0,1) such that

|k(t,s)| c|t� s|�a , 8t,s, 2 [a,b], t 6= s.

Theorem 14. Let k be weakly singular on [a,b]. Then the integral operator A defined by (C.5)
for [c,d] = [a,b], is well-defined and bounded as an operator in L2(a,b) as well as in C[a,b].

Another important definition for the study is the adjunct operator:
Theorem 15. Adjoint Operator
Let A : X!Y be a linear and bounded operator between Hilbert spaces. Then there exists one
and only linear bounded operator A

⇤ : Y ! X with the property

hA {x},yi= hx,A ⇤{y}i 8x 2 X ,y 2 Y.

This operator A
⇤ : Y ! X is called the adjoint operator to A . For X = Y , the operator A is
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called self-adjoint if A
⇤ = A .

To exemplify the adjunct operators, let X = L2(a,b), Y = L2(c,d), and k 2 L2((c,d)⇥
(a,b)). The adjoint operator A

⇤ of the integral operator

A {x(t)}=
Z b

a
k(t,s)x(s)ds, t 2 (c,d), x 2 L2(a,b)

which is given by

A
⇤{y(t)}=

Z d

c
k(s,t)y(s)ds, t 2 (a,b), y 2 L2(c,d).

Finally, a final important definition is the compact operators:
Definition 16. Compact Operator
The operator K : X ! Y is called compact if it maps every bounded set S into a relatively
compact set K (S).

A set M ⇢ Y is called relatively compact if every bounded sequence (y j) ⇢ M has an
accumulation point in M, i.e., if the closure M is compact. The set of all compact operators
from X to Y is a closed subspace of L (X ,Y ). In respect to integral operators:
Theorem 17. Compactness of integral operators

1. Let k 2 L((c,d)⇥ (a,b)). The operator K : L2(a,b)! L2(c,d), defined by

K {x(t)} :=
Z b

a
k(t,s)x(s)ds, t 2 (c,d), x 2 L2(a,b) (C.6)

is compact from L2(a,b) into L2(c,d).
2. Let k be continuous on [c,d]⇥ [a,b] or weakly singular on [a,b]⇥ [a,b] (in this case [c,d] =

[a,b]). Then K defined by (C.6) is also compact as an operator from C[a,b] into C[c,d].
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Appendix D

Shape metrics

In an Electromagnetic Inverse Scattering (EISP) problem, we are interested in detecting
objects in an image. These objects have three characteristics: position, shape and contrast
value. In the literature of this problem, there are measures to evaluate the error of a method
when estimating the contrast of an object. However, up to the date of this thesis, there is no
reference for measuring position and shape. This appendix aims to investigate and develop
ways to measure the quality of an algorithm in recovering shapes. In addition, this annex is
dedicated to analyzing the case of reconstructing a single object within the image.

The identification of objects in an image is a classic problem in the area of Image Pro-
cessing. Traditionally, the goal is to recognize patterns in figures and to identify those patterns.
In EISP, identifying the object is not the purpose, in the sense of comparing it with a database,
but only to retrieve shapes. This kind of problem can be addressed with methods known as
Marching Squares, which generate contours from a threshold process.

Suppose an algorithm designed to recover an image. The original and the recovered
images are show in Figure D.1. If we apply the Marching Squares algorithm do obtain the
contours using the same threshold for the recovered image as in Algorithm 10, we will obtain
the results which are in D.2.

(a) Original (b) Recovered

Figure D.1: Example images for shape metrics.
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Figure D.2: Contours of original and recovered images.

The main ideia is to calculate the difference area of the two contours. Of course, the area
of one minus the area of the other would not work because the two forms might have equal areas
but completely different forms. The following algorithm calculates the area of the difference:

1. Calculate the contours;
2. Correct the scale of the recovered contour to be equivalent to the size of the original

image;
3. Center the image to isolate the object’s position effect;
4. Check which pixels of the image are on each of the objects;
5. Separate those pixels that are in one of the objects and not in the other;
6. Calculate the quantity and multiply by an area element considering the limits equal to 0

and 1.
This algorithm is implemented in the following Python3 code:

# E v a l u a t e c o n t o u r n s
co = measure . f i n d c o n t o u r s ( o r i g i n a l , 1 . 0 , f u l l y c o n n e c t e d = ’ h igh ’ )
c r = measure . f i n d c o n t o u r s ( r e c o v e r e d , t h r e s h o l d )

# C o n v e r t i n g s c a l e o f r e c o v e r e d c o n t o u r n
f o r i in range ( l e n ( c r ) ) :
c r [ i ] [ : , 1 ] = o r i g i n a l . shape [ 1 ] * c r [ i ] [ : , 1 ] / r e c o v e r e d . shape [ 1 ]
c r [ i ] [ : , 0 ] = o r i g i n a l . shape [ 0 ] * c r [ i ] [ : , 0 ] / r e c o v e r e d . shape [ 0 ]

# T h r e s h o l d i n g
masko = np . z e r o s ( o r i g i n a l . shape , d t y p e = bool )
maskr = np . z e r o s ( r e c o v e r e d . shape , d t y p e = bool )
masko [ o r i g i n a l > 1] = True
maskr [ r e c o v e r e d >= t h r e s h o l d ] = True

# E v a l u a t e c e n t e r s
xo , yo = np . meshgr id ( np . a r a n g e ( 0 , o r i g i n a l . shape [ 1 ] ) ,

np . a r a n g e ( 0 , o r i g i n a l . shape [ 0 ] ) )
xr , y r = np . meshgr id ( np . l i n s p a c e ( 0 , o r i g i n a l . shape [1 ] −1 , r e c o v e r e d . shape [ 1 ] ) ,

np . l i n s p a c e ( 0 , o r i g i n a l . shape [0 ] −1 , r e c o v e r e d . shape [ 0 ] ) )
xco = np . sum ( masko*xo ) / np . sum ( masko )
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yco = np . sum ( masko*yo ) / np . sum ( masko )
x c r = np . sum ( maskr * x r ) / np . sum ( maskr )
y c r = np . sum ( maskr * y r ) / np . sum ( maskr )

# C e n t r a l i z a t i o n
f o r i in range ( l e n ( co ) ) :
co [ i ] [ : , 0 ] = co [ i ] [ : , 0] − yco+ o r i g i n a l . shape [ 0 ] / 2
co [ i ] [ : , 1 ] = co [ i ] [ : , 1] − xco+ o r i g i n a l . shape [ 1 ] / 2

# C e n t r a l i z a t i o n
f o r i in range ( l e n ( c r ) ) :
c r [ i ] [ : , 0 ] = c r [ i ] [ : , 0] − y c r + o r i g i n a l . shape [ 0 ] / 2
c r [ i ] [ : , 1 ] = c r [ i ] [ : , 1] − x c r + o r i g i n a l . shape [ 1 ] / 2

# V e r i f y p o i n t s
masko = np . z e r o s ( o r i g i n a l . shape , d t y p e = bool )
c o u n t e r = np . z e r o s ( o r i g i n a l . shape )
f o r i in range ( l e n ( co ) ) :
maskt = measure . g r i d p o i n t s i n p o l y ( o r i g i n a l . shape , co [ i ] )
c o u n t e r [ maskt ] += 1
masko [ np . mod ( c o u n t e r , 2 ) == 1] = True

# V e r i f y p o i n t s
maskr = np . z e r o s ( o r i g i n a l . shape , d t y p e = bool )
c o u n t e r = np . z e r o s ( o r i g i n a l . shape )
f o r i in range ( l e n ( c r ) ) :
maskt = measure . g r i d p o i n t s i n p o l y ( o r i g i n a l . shape , c r [ i ] )
c o u n t e r [ maskt ] += 1
maskr [ np . mod ( c o u n t e r , 2 ) == 1] = True

# Xor o p e r a t i o n
d i f f = np . l o g i c a l x o r ( masko , maskr )

# Area o f t h e d i f f e r e n c e
z e t a s = np . sum ( d i f f ) / np . sum ( masko )*100

# F ig ur e
f i g , a x i s = p l t . s u b p l o t s ( n c o l s =3 , f i g s i z e = [ 3 * 6 . 4 , 4 . 8 ] )
f i g . s u b p l o t s a d j u s t ( wspace = . 5 )
a x i s [ 0 ] . imshow ( masko , o r i g i n = ’ lower ’ )
a x i s [ 0 ] . s e t t i t l e ( ’ O r i g i n a l ’ )
a x i s [ 1 ] . imshow ( maskr , o r i g i n = ’ lower ’ )
a x i s [ 1 ] . s e t t i t l e ( ’ Recovered ’ )
a x i s [ 2 ] . imshow ( d i f f , o r i g i n = ’ lower ’ )
a x i s [ 2 ] . s e t t i t l e ( ’ D i f f e r e n c e ’ )

p l t . show ( )
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This code yields results in Figure D.3. The zS measure in this case was 20.68%.

Figure D.3: Original, recovered and difference area.
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