
Journal of Internet Services
and Applications

Ponce et al. Journal of Internet Services and Applications (2019) 10:19

https://doi.org/10.1186/s13174-019-0118-7

RESEARCH Open Access

Upgrading a high performance
computing environment for massive data
processing
Lucas M. Ponce1* , Walter dos Santos1, Wagner Meira Jr.1, Dorgival Guedes1, Daniele Lezzi2 and

Rosa M. Badia2,3

Abstract

High-performance computing (HPC) and massive data processing (Big Data) are two trends that are beginning to

converge. In that process, aspects of hardware architectures, systems support and programming paradigms are being

revisited from both perspectives. This paper presents our experience on this path of convergence with the proposal of

a framework that addresses some of the programming issues derived from such integration. Our contribution is the

development of an integrated environment that integretes (i) COMPSs, a programming framework for the

development and execution of parallel applications for distributed infrastructures; (ii) Lemonade, a data mining and

analysis tool; and (iii) HDFS, the most widely used distributed file system for Big Data systems. To validate our

framework, we used Lemonade to create COMPSs applications that access data through HDFS, and compared them

with equivalent applications built with Spark, a popular Big Data framework. The results show that the HDFS

integration benefits COMPSs by simplifying data access and by rearranging data transfer, reducing execution time.

The integration with Lemonade facilitates COMPSs’s use and may help its popularization in the Data Science

community, by providing efficient algorithm implementations for experts from the data domain that want to develop

applications with a higher level abstraction.

Keywords: COMPSs, High-performance computing, Big data, HDFS, Lemonade

1 Introduction
Parallel and distributed computing frameworks have

proven to be essential for applications that require high

performance, usually associated with the processing of

large volumes of data. Originally, efforts in that area orig-

inated from two different areas, High-Performance Com-

puting (HPC) and Big Data. More recently there has been

a tendency to combine efforts from both areas to merge

their contributions. This work fits in that direction.

HPC applications are those that explore high-level par-

allelism and high-performance hardware, including low

latency networks, to process mostly structured data with

scientific algorithms. On the other hand, Big Data sce-

narios involve the processing of massive data volumes

*Correspondence: lucasmsp@dcc.ufmg.br
1Departamento de Ciência da Computação, Universidade Federal de Minas

Gerais (UFMG), 31270-901 Belo Horizonte, Minas Gerais, Brazil

Full list of author information is available at the end of the article

(usually unstructured), leveraging the use of conventional

hardware and exploiting data parallelism. In this case, data

could be processed as multiple individual streams and

analyzed collectively in stream or in batch, for the discov-

ery of knowledge. In such scenarios, data mining in big

data has become one of the key tasks in many fields of

Science [1].

Considering the convergence of HPC and Big Data, sev-

eral proposals have emerged to address the requirements

of those two areas [2–4]. HPC environments generally

provide better interfaces for regular data and scientific

algorithms based on bag-of-tasks models such as matrix

computation. Despite the good performance in those sce-

narios, it is often hard to implement applications that

handle irregular data and complex data structures in HPC

frameworks. Big Data environments offer good solutions

to address such kind of data, as well as to facilitate the

development of applications by experts in the application

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-019-0118-7&domain=pdf
http://orcid.org/0000-0002-1480-0039
mailto: lucasmsp@dcc.ufmg.br
http://creativecommons.org/licenses/by/4.0/

Ponce et al. Journal of Internet Services and Applications (2019) 10:19 Page 2 of 18

domain. In this work we aimed at extending an environ-

ment commonly used in HPC scenarios, COMPSs, with

a distributed file system and a visual development envi-

ronment for data mining applications, solutions usually

associated with Big Data environments. Besides the result-

ing system in itself, our contributions include a discussion

about how abstractions from both areas can benefit each

other and how they can be effectively integrated.

COMPSs implements a task-based programming

model, a model that has proven to be suitable for HPC

applications [5, 6]. It provides a task-based abstraction

that is easily understandable by programmers in the

HPC community. However, in Big Data scenarios other

abstractions have been adopted, like Spark, one of the

most widely used Big Data frameworks. In Data Science

scenarios, one of the main advantages of Spark is the wide

range of available libraries (e.g., MLlib, GrapX, Streaming

and SparkSQL, and other integrated tools) [7].

In this context, this paper proposes an extension of

COMPSs with two different contributions: first, by adding

support for the Hadoop Distributed File System (HDFS),

the distributed file system most commonly used for

Big Data; second, by integrating it into a massive data-

processing application development environment that

reduces the user’s need to know the details of a program-

ming language to produce applications. Through HDFS

integration, we intend to facilitate the use of large vol-

umes of data in COMPSs. In addition, by using a visual

development environment, we can hide many details of a

parallel programming language, making COMPSs acces-

sible to a larger number of users. In order to achieve that,

we adopted the Lemonade environment, a data mining

and analysis tool developed at the Universidade Federal

de Minas Gerais (UFMG) [8]. The integration of COMPSs

with HDFS and the version of Lemonade that outputs

COMPSs code are both open-source and are available on

GitHub. We also present a performance comparison of

COMPSs and Spark applications, using a cluster usually

associated with Big Data scenarios, with virtualized nodes

and without shared disks.

To describe our work, the remainder of this paper is

structured as follows: Section 3 introduces the COMPSs

framework; Sections 4 and 5 present its integration with

HDFS and Lemonade, respectively. The evaluation of our

solution is discussed in Section 6 and finally Section 7

presents our conclusions and discusses future work.

2 Related work
COMPSs is a framework in constant development, it is

receiving several new extensions and APIs to fit Big Data

requirements, that vary from cloud connectors [9] to a

resource manager integration [10]. In a recent work [3],

COMPSs Storage API is presented, an official software

interface that allows COMPSs applications and COMPSs

runtime to work with persistent objects. The Storage API

can be deployed on multiple back-ends and it allows the

creation, removal, insertion, retrieval, interaction with

persistent data, and especially the extraction of the local

information about that data. The authors demonstrate its

usage by providing an integration with Apache Cassandra

[11], a non-relational (NoSQL) database storage.

Currently, besides HDFS, distributed storage systems

have become more diverse with a variety of purposes:

file systems such as NFS [12], Alluxio [13], Amazon Sim-

ple Storage Service (S3) [14], Microsoft Azure Storage

[15], Lustre [16]; object stores such as OpenStack Swift

[17] and Ceph [18]; key-value systems such as FAWN-

KV [19], Dynamo [20] and Memcached [21]; and NoSQL

databases such as Apache Cassandra and Apache HBase

[22]. Each of these systems address specific problems,

even for storage systems of similar categories. Some of

them are specialized to handle large volumes of data

(e.g., Amazon S3, Cassandra, HBase and HDFS), while

others focus on increasing I/O bandwidth (e.g., Alluxio,

Lustre and Memcached). Each of the storage systems

mentioned has its particularities, was developed with a

specific problem in mind, but often can interact with

others. For example, Alluxio (formerly Tachyon) provides

an efficient in-memory data sharing layer by using exis-

tent storage such as HDFS, NFS or S3 as a persistence

layer.

Among all the available systems, we decided to inte-

grate COMPSs with HDFS, since it is one of the most

widely adopted solution in the market. It supports multi-

ple replicas of files, which increases access bandwidth for

multiple clients accessing a single file (a known bottleneck

in NFS); however, it is not a good solution for handling

small files. Besides that, many of the other solutions men-

tioned are often implemented on top of it (e.g., HBase,

Cassandra and Alluxio). Perhaps the storage system clos-

est to HDFS proposal is Amazon S3, a subsidiary service

of Amazon Web Services for cloud storage. S3 aims to

provide storage at a low cost, as a highly available service

using a price model based on “pay-as-you-go”. However,

S3 is a proprietary solution and it lacks some functionality

often required in scientific projects, such as flexible access

control and support for delegation, for example, in large

science collaborations groups [23].

The dataflow model is a trend in Big Data applications

[24]. There are several flow-based programming frame-

works often defining applications as networks of “black

box” processes, which exchange data through predefined

inputs and outputs. Those frameworks use different ways

to define a flow: by using a functional-based language,

such as Apache Spark and Twister2 [24]; by using a

skeleton-based pipelines, such as Ruffus [25] and Cosmos

[26]; or even visually, such as RapidMiner [27], Orange

[28] and KNIME [29].

Ponce et al. Journal of Internet Services and Applications (2019) 10:19 Page 3 of 18

Although code-based frameworks, such as Apache

Spark, provide a good degree of parallelism and cus-

tomization, programming is often complex because needs

a high-knowledge from user to understand the syntax

and its operators. In Ruffus it is possible to create multi-

thread workflows automatically; however, it requires users

to encode each function of their pipelines and to explic-

itly define how task functions are connected and how data

will be exchanged. In Cosmos, it is possible to create flows

with the MapReduce paradigm [30]; however, besides the

code for all functions, it is also necessary to define their

dependency graph, which requires a specific syntax.

Visual data flows tools enables users to construct com-

plex data analysis scenarios without programming by sup-

porting a visual interface. Besides the different abstraction

levels adopted in each tool to represent a workflow, a

common feature is the support of drag, drop and con-

nect operations to work with the available components.

Many of them, such as RapidMiner, Orange and KNIME,

are designed to be used locally, making them inappropri-

ate to process large data sets that exceed the capabilities of

a single machine. ClowdFlows [31] and Orange4WS [32]

are popular web-based solutions that support non-local

processing, enabling them to execute in a cluster. How-

ever, their solution is multithread-based: it allowsmultiple

workflows to execute concurrently by distributing them

through nodes, but does not provide distribution or par-

allelization of data within a flow to handle Big Data sce-

narios. Lemonade is similar to Microsoft Azure Machine

Learning (ML) Studio [33] in that both support creation

and execution of applications from a visual interface using

Apache Spark to handle Big Data. AzureML, however, is a

proprietary solution that requires a subscription with the

Microsoft Azure, being restricted to a cloud architecture.

Lemonade is an open-source solution that support both

cluster and cloud architectures. Originally, the generated

codes were expressed in Spark language [8]; in this work it

is extend to also be able to create and execute operations

in COMPSs.

A recent work [34] compared COMPSs performance in

Java applications to Apache Spark, using a cluster archi-

tecture normally associated with HPC applications (e.g.,

low-latency networks and shared network disks). In this

work, our integration allow us to take COMPSs into a

cluster usually adopted in Data Science scenarios, with

only traditional networking hardware and with disks dis-

tributed among the cluster nodes.

3 The COMPSs framework
COMPSs is a general data processing framework whose

main objective is to ease the development of applica-

tions for distributed environments, composed of a pro-

gramming model and an execution runtime that supports

it. Applications in COMPSs are written following the

sequential paradigm with the addition of annotations in

the code that are used to inform that a given method is

a task. That means it can be asynchronously offloaded at

execution time, and can potentially be executed in parallel

with other tasks. In the case of Java and C++, those anno-

tations are provided in an interface file that indicates the

directionality of the parameters (input or output). In the

case of Python, tasks are identified with an annotation in

the form of a decorator started with “@task” on top of

a method. With that information, the COMPSs runtime

generates a task graph at execution time where each node

denotes a task, and edges between them represent data

dependencies identified based on the tasks’s parameters

and return values. The task graph expresses the inher-

ent parallelism of the application at task level, which is

exploited by the runtime.

Regarding the programming model, to port an appli-

cation to COMPSs, besides requiring the identification

of the functions that are tasks, it may require structural

changes to the code in order to improve application effi-

ciency and achieve more parallelism. A very common case

is, for example, an application with a single input, possi-

bly a big file, that has to be processed by a task to extract

information from it. The first and quick solution would

be to assign the entire input file to a task and let it read

and compute the data. If there are no dependencies among

file data elements, a much more efficient approach in

COMPSs, which exploits a higher level of parallelism, is

to split the input file into several fragments and invoke

multiple tasks, one per fragment. In that way, different

resources will be used to execute, in parallel, the differ-

ent tasks. Figure 1 shows the Python version of a word

count application in COMPSs that uses such input frag-

mentation technique. The dependency graph produced

during execution is also shown. Before the integration

with HDFS (which will be presented in Section 4), the

programmer needed to explicitly split the input file in

the desired number of fragments before the task could be

called.

The application’s idea is to have the input broken into

fragments and to count the words in each fragment of the

file. Then, it uses a COMPSs operator, mergeReduce, to

combine all the separate counts as a distributed reduction

operation. As shown in Fig. 1, the code in Python does not

involve any new syntax, different from other distributed

programming frameworks, like Spark. In the example,

annotations for both tasks (count words in a fragment and

perform partial sums during the reduction) are similar:

they indicate that both Count and reduceDict are par-

allelizable tasks which return dictionaries as results. The

execution graph shows that all Count tasks can be exe-

cuted in parallel and partial reductions also have some

parallelism, which was controlled by the mergeReduce

function.

Ponce et al. Journal of Internet Services and Applications (2019) 10:19 Page 4 of 18

Fig. 1Wordcount application in PyCOMPSs. The topmost code block shows the main function, that triggers the calls to Count and reduceDict, the

two functions defined as tasks, shown in the two other code blocks. The graph shows the tasks created during execution and the dependencies

among them, identified based on the parameters and return values of each task

The COMPSs runtime architecture is based on a main

component, the master that executes the main code of the

application, and a set of worker processes deployed on

computational nodes that execute the tasks. Those nodes

can be part of a physical cluster, dynamically instantiated

virtual machines, or containers. The runtime takes care

of data transfers, task scheduling and infrastructure man-

agement. It relies on an interoperability layer that makes

COMPSs able to communicate with several resourceman-

agers.

When tasks need to read files stored in a conventional

file system without a shared disk, those files need to be

available in the central node (which is executing the main

code). The document fragments are read in the main

function, and passed as parameters to the Count tasks.

Then, COMPSs runtime would be responsible for trans-

ferring the data over the network to each working node

that would execute one of the tasks, which implies an over-

head on the access to the data. The integration with HDFS

presented in this work simplifies the split of the input data

and distribution of the blocks to worker nodes, leveraging

the COMPSs runtime to use data locality to make better

scheduling decisions.

4 COMPSs-HDFS integration
The HDFS file system, distributed under the Hadoop

project, was developed to deal with the partioning,

distribution and access of massive file shares with

sequential data access patterns, running on clusters of

commodity hardware ([35], p. 43). In HDFS, each file is

internally divided into blocks (usually, 64MB or 128MB in

size), which are automatically distributed among the stor-

age nodes (datanodes). To achieve fault tolerance, increase

data availability and access bandwidth, each block can be

replicated on multiple nodes.

When a client needs to access a file, HDFS provides a

list identifying all the blocks that compose the file to the

client with information about their locations and repli-

cas. Using that information, the application can decide

the proper way to distribute its blocks (i.e., parts of the

file) among the processing nodes (workers). Each worker

receives a number of blocks to process and can access

HDFS datanodes directly to retrieve, in parallel, the con-

tent of such blocks. When a worker needs to access

data, it can fetch them from the best source based on

location and datanode load. In cases where the data is

hosted on the same compute node, HDFS clients are

able to access such data directly through a Short-Circuit

([35], p. 308).

The main concept in the proposed integration between

HDFS and COMPSs is the delegation of some respon-

sibilities to HDFS, such as the division of the input

files in blocks and the transfer of those blocks to each

COMPSs worker. The first step was to decide how HDFS

Ponce et al. Journal of Internet Services and Applications (2019) 10:19 Page 5 of 18

abstractions should be made available to the COMPSs

programmer.

4.1 Data abstraction

The integration presented here1 provides APIs in Python

and Java. We chose those two languages because Java is

the native language for COMPSs and HDFS, while Python

popular in Data Science scenarioes, and it is required for

the Lemonade environment, which will be described later.

Each API provides two abstractions with well-defined

functions for the COMPSs programmer. The first abstrac-

tion, represented by the HDFS class, is responsible for

dealing with HDFS directly; for instance, to create folders

or to retrieve information about a file. The second, repre-

sented by the Block class, is responsible for the representa-

tion of files divided in fragments, which includes methods

like readBlock (reads a fragment as a string buffer,

which can be read as a common file), readDataframe

(reads a fragment as a DataFrame, a method used in

Lemonade) and readBinary (reads a fragment as binary

data).

The idea is that, for reading, the programmer will first

use the API to retrieve information about the list of frag-

ments of a given file in HDFS. After that, each element

of this list will be sent to a worker, which will retch its

data. There are two slightly different interfaces that the

programmer can use to retrieve the fragment list. In one,

the user can request the target file to be represented as

a list of exactly n fragments, e.g., matching the number

of cores available in the cluster. In the other, the user

requests the information about the file as the exact list

of blocks that HDFS used to split it during its creation.

In this case, we use the COMPSs Storage API extension,

discussed in Section 2, to schedule the tasks on the work-

ers that own each HDFS block to be processed. In both

cases, when a COMPSs task reads data, the Block entity

will choose, through HDFS, the best provider (Datanode)

for each fragment. However, when using the later API, we

have a greater chance of activate Short-Circuits to read

a block, because COMPSs can access the block location

from the list while scheduling tasks.

Algorithm 1 illustrates the basic procedure to use

the HDFS integration in COMPSs. BLOCKSLIST, in the

example, does not contain the HDFS file itself; each block

in the loop is a light reference that contains, for example,

the offset of the initial byte that marks the beginning of

the block. Inside a task, a worker will use the information

about its fragment to request the data from HDFS, which

will, in turn, coordinate the transfers. Using HDFS, each

fragment can be read in parallel by the multiple instances

of the task (task1). From there, the next steps are similar

to the existing solutions in COMPSs programming, that

1https://github.com/eubr-bigsea/compss-hdfs

Algorithm 1: COMPSs HDFS API usage example.

begin
BLOCKSLIST = retrieves a list with fragments

from a file on HDFS;

for BLOCK_INFO ∈ BLOCKSLIST do
task1(BLOCK_INFO);

end for

end

is, each partial result can be saved to a separate file or can

be used as input to a new task.

As previously mentioned, HDFS delimits blocks by

number of bytes (physical blocks). However, processing

each block in this way might not be practical, because

most operations on data impose a logical interpretation

of records, delimited by language- or application-specific

markers, leading to variable-length records (e.g., records

represented as text lines). Even when applications handle

fixed-length records, if those have a size that is not the

same as the HDFS-defined file block size, their boundaries

would not match those defined by HDFS. So, if meth-

ods like readBlock and readDataframe considered

only the amount of bytes to read, we could process data

improperly. Figure 2 illustrates the difference between log-

ical blocks and physical blocks for a 350 MB file where

each of the seven records (lines) contains 50 MB. When

a task is assigned to process the first HDFS block, it has

access to three lines, but the bytes that area at the end of

Line 3 will have to be requested for the Datanodes that

hold Block 2. Similarly, the worker that processes Block 2

will have to request the last bytes of Line 6 from the datan-

ode holding Block 3; in this case, it will also to discard the

first bytes of the block, which actually represent part of

the content of Line 3.

To solve this problem, those two methods check

whether the block is the first or the last of the file. If the

block is not the last, the method requests consecutive por-

tions of 2 KB data from the next block until it finds a

record delimiter (e.g., a newline). In addition, if the block

is not the first, the method skips the first bytes until the

end of the first record/line. In this way, we guarantee that

the blocks of each task will maintain their logical meaning.

Figure 3 shows the resultingWordcount when the HDFS

API is used. Conceptually, the operation is the same, but

now we handle the file through HDFS; the different lines

in relation to Fig. 1 are marked by red braces. We can

see, in the main method, the command to contact HDFS

and to request the information about a specific file. In

the Count method, each fragment is read as text, sim-

ilar to a conventional file. All tasks can read data from

their particular file block, in parallel, which improves

https://github.com/eubr-bigsea/compss-hdfs

Ponce et al. Journal of Internet Services and Applications (2019) 10:19 Page 6 of 18

Fig. 2 Difference between logical and physical blocks due to HDFS fixed partition boundaries

data transfer times. The reduceDictmethod is omitted

because there is no difference compared to Fig. 1.

When writing to a file, a merged output can be written

into HDFS by the master node if it fits in its memory (so it

can be collected from the workers). Otherwise, each task

can create a partial file in HDFS with its part of the output.

If the user wants, those partial files can then be merged

using the API. An append function, which would allow

every task to write its output to the end of a global file,

is not provided, since it would impose a serialization in

the execution, given that HDFS does not allow concurrent

writes to a single file.

4.2 Communication with HDFS

To integrate COMPSs with HDFS, we considered the

aspects of techniques available to implement the commu-

nication between external applications, in particular those

written in Java and Python, and HDFS. HDFS provides

Fig. 3Wordcount application code in PyCOMPSs using the HDFS extension. Changes from the previous version are marked by red braces, where

the code now uses the HDFS API

Ponce et al. Journal of Internet Services and Applications (2019) 10:19 Page 7 of 18

interfaces through a direct Java API, a shell command

line (CLI), a REST API (webHDFS) and a C API (libhdfs).

Because HDFS is written in Java, the most complete inter-

face and the most powerful one is the Java API; the others

implement many aspects of the service, but do not guar-

antee a perfect correspondence to the Java API. While in

the communication between Java-COMPSs applications

andHDFS it makes sense use the HDFS Java API interface,

we had to consider some alternatives for the communi-

cation in Python, because HDFS does not offer native

support in that language. We sought a solution capable

of handling large data transfers, with access to low-level

features, such as to open a file from a given position (a

byte offset), a feature that was required in our HDFS data

abstraction.

WebHDFS is a native HDFS API for communication

using HTTP REST ([35], p. 54). Although it has been used

in many Python modules as an alternative method to han-

dle HDFS files [36–38], its HTTP interface is significantly

slower than the native Java client, due both to request tim-

ing and the overhead to use the HTTP protocol, so should

be avoided for large data transfers. A second approach

would be to create a communication service between the

Python application and a Java process, similar to what is

done by PySpark using the Py4J module [39]. PySpark,

which has a hybrid Python and JVM framework, uses Py4J

internally only as a request driver for the Spark process in

the JVM. In the case of COMPSs, changes in its source

code would be needed for that to work and it would not

be possible to maintain such a level of integration over

version updates. Besides, each thread created in COMPSs

would have to communicate with a Java interleaver (which

would in turn connect to HDFS) externally to COMPSs

to request and receive data. In addition to such external

processes increasing memory consumption, data transfers

would have to go through the intermediary itself, different

from what occurs in PySpark. LibHDFS ([35], p. 55) is the

most used approach in Python modules [40, 41]; is uses

a Java wrapper in C that communicates with Java using

the Java Native Interface (JNI), a technology for com-

municating applications directly in the Java JVM. Besides

the existence popular systems using that solution, such as

PyArrow [41], it provides a high-level file abstraction, not

giving access to some low-level API features required by

our project.

Considering those limitations, our chosen solution uses

libhdfs3, an alternative implementation of the libhdfs pro-

tocol developed by the ApacheHAWQproject [42].While

the original libhdfs uses JNI, the libhdfs3 uses a Hadoop

RPC protocol. This difference gets rid of the drawbacks

of JNI, provides a lightweight, small memory footprint

code base, and is able to exploit features such as Short-

Circuit. In turn, Python has, by default, modules capa-

ble of interpreting and converting C/C++ language data

types. Based on that, it was possible to use libhdfs3 to

create a mapping of the functions and data types to be

used in the HDFS integration. Because Python invokes

methods in C++ that are run internally, this approach

is faster and more efficient than webHDFS or the Py4J

module.

5 Lemonade
In the big data area, the application domain experts

responsible for analyzing the data often are not com-

puter scientists, and usually lack any experience in paral-

lel/distributed programming. A recognized challenge for

those researchers is to express their queries in a pro-

cessing tool. Although COMPSs reduces the demand in

terms of parallel programming, it still requires the devel-

oper to identify the tasks that can be run in parallel and

to program them in a language like Java or Python. To

reduce those barriers, we decided to integrate COMPSs

with Lemonade, a visual big data programming envi-

ronment. As mentioned in Section 2, there are several

tools that support visual data flows, such as RapidMiner,

Orange and KNIME. However, those are designed to

be used locally, making them inappropriate to process

large data sets that exceed the capabilities of a single

machine. Although other platforms, such as Microsoft

Azure Machine Learning (ML) Studio and ClowdFlows

support non-local processing, enabling them to use a

cluster still presents several challenges.

Lemonade2 is a visual tool designed for data scientists,

targeting users who lack programming skills or who want

to develop workflows using the existing modules of that

tool [8]. The platform focuses on the creation of analy-

sis and mining flows in the cloud or on a private cluster,

with authentication, authorization and access accounting

guarantees. Using an interface for visual construction of

flows, it allows users to choose predefined operations,

drag and connect them to compose and execute flows

by encapsulating the details of storage, coding, security

and distributed processing, allowing them to be used in

cloud environments by data domain experts. Figure 4 is

an example of an application created with Lemonade, in

that case, a classification application using KNN. Each

operation is presented as a box that represents a data

manipulation task, for instance, a machine learning algo-

rithm. Each box may have a set of parameters that must

be specified to control its execution like, for example, the

name of a file to be read, or the maximum number of

iterations for an algorithm.

In its original version, Lemonade had guidelines to gen-

erate Spark 2.0.2 code in Python (PySpark). Once inte-

grated with COMPSs, it can now offer its users algorithms

written with COMPSs, also in Python (PyCOMPSs). Such

2https://github.com/eubr-bigsea/docker-lemonade

https://github.com/eubr-bigsea/docker-lemonade

Ponce et al. Journal of Internet Services and Applications (2019) 10:19 Page 8 of 18

Fig. 4 KNN workflow for a KNN classification application created using Lemonade. The data reader extract data from a file; specific features are

extracted from records and then only the columns necessary for classification are selected. From that data, a sample is taken to feed the training

model, which uses the KNN classifier as its engine. The trained model is then applied to the remainder of the data, and the Projection box provides a

visualization of the result. The colors are used to identify modules that can be grouped during code generation (discussed in Section 5.3)

algorithms can then be combined to build complex work-

flows. Thus, this strategy enables a hierarchical composi-

tion of code and promotes code reutilization.

5.1 The lemonade environment

The Lemonade architecture is composed of seven indi-

vidual components that work as micro services, respon-

sible for the web interface (Citron), security and pri-

vacy (Thorn), workflow execution (Juicer), application

monitoring (Stand), management of data sets meta-data

(Limonero), algorithms meta-data (Tahiti) and output

data visualization (Caipirinha).

To integrate COMPSs with Lemonade, operations and

algorithms reflecting the modules already available in its

Spark version were implemented in COMPSs and regis-

tered in Tahiti, which maintains all information about the

available functions. Such meta-data includes, for instance,

the category of each operation (e.g., text operations or

machine learning algorithms) and their parameters (e.g.,

column names or the maximum iteration for a given

algorithm). The Juicer module was extended, since it is

responsible for translating the workflow created by the

user (stored as a JSON file) into source code, which it

then submits for execution in a cluster allocated for that.

We created a new source-to-source compiler (transpiler)

that reads the JSON file and generates COMPSs code.

This code consists of two parts, one that is dynamically

generated, which includes a main method responsible for

coordinating all the calls to the operations used in the

application, and another that is a library with the imple-

mentations of operations and algorithms registered in

Tahiti.

5.2 Algorithms and operations

While Spark extracts parallelism from functional opera-

tors, COMPSs does it by identifying the lack of dependen-

cies between tasks. The idea behind the implementation

of a COMPSs module in Lemonade is to take advantage of

Ponce et al. Journal of Internet Services and Applications (2019) 10:19 Page 9 of 18

the notion of HDFS blocks and to decompose large data

files into pieces, so that the algorithm can be broken into

smaller tasks, each one processing a data block with little

or no dependencies to other tasks, so they can be executed

in parallel.

The choice of algorithms to be implemented using

COMPSs in Lemonade was based on the ones that had

already been made available using Spark. So far, 44 func-

tions have been implemented with COMPSs, shown in

Table 1. They can be divided into seven major cate-

gories: read/write operations and change of data struc-

ture (Data); transformation and information extraction

operations (ETL); machine learning algorithms (ML);

operations on textual data (Text); quality appraisers of

the machine learning models (Metrics); operations and

algorithms on geo-referenced data (Geographic); and

algorithms on graphs (Graph). All the code is available and

documented on GitHub3.

To ensure the compatibility of modules inputs and out-

puts during code linkage, all functions have a standard

interface with a single input data element and a config-

uration dictionary as parameters. DataFrame is the data

abstraction used in all algorithms and operations. Inter-

nally, the data input is a list of Pandas DataFrames [43]

where each element is related to an HDFS fragment. The

configuration dictionary stores all attributes specified by

the user through the interface and input/output data is

always a list of DataFrames (block concept). Internally to

the module, the function can be organized as the pro-

grammer wishes, using other functions with any number

of parameters.

5.3 Code optimization

By its nature, all communication from one task that out-

puts some data to another one that consumes that data (as

a function input parameter) is mediated by the COMPSs

main program. That adds overhead to the execution, that

can be avoided in many cases, by optimizing the gen-

erated code to avoid that mediation when the intended

communication pattern is clearly identified.

The transpiler was implemented in Juicer with initial

optimization code guidelines that are based on joining

tasks from multiple algorithms and operations into a

single task to reduce inter-task communication. Apache

Spark implements such optimization internally; each

resulting group of operations is called a stage. Such pro-

cess minimizes the cost of scheduling, data transfer over

the network, and creation/removal of an environment for

the COMPSs tasks. For instance, in the KNN workflow

shown in Fig. 4, the red color operations (Data reader,

Feature assembler and Select columns) could be grouped

as a single stage. In this case, COMPSs will create only

3https://github.com/eubr-bigsea/Compss-Python

Table 1 Operations and Algorithms implemented in COMPSs

available in Lemonade

Categories Operations and algorithms

Data Read and write files, attributes changer, data balancer

ETL Add columns, aggregation, clean missing data, difference,
distinct (remove duplicate rows), drop columns, filter,
intersection, joins (inner, left and right join), replace
values, sample, select columns (projection), sort, split,
transformation, union.

Geographic Read shapefile, Geo within (check if a point is within a
region), ST-DBSCAN

Graph PageRank

Metrics Classification (accuracy, precision/recall and f-measure),
regression (MSE, RMSE, MAE, R2)

ML Feature assembler, Scalers (min-max, max-abs and
standard), String Indexer, PCA, K-Means, DBSCAN, KNN,
Naive Bayes, SVM, Logistic regression, Linear regression,
Apriori, Load/Save model

Text Vectorization by Bag-of-Words and Tf-idf, tokenizer,
stop-words remover

n tasks (one for each fragment) instead of 3n tasks. The

same happens with the blue color boxes, Apply model and

Projection results.

In order for this optimization to work, we look for oper-

ations that only use local data to execute. Code from a

sequence of tasks that only handle local data can be safely

integrated into a single stage. In many cases, complex

operations may require internal communication before an

output can be generated (e.g., when an average over all

elements has to be computed). Every time such a general

communication pattern is found, integrated stages have to

be limited to the tasks before and after it; there can be

no direct integration of operations before and after the

communication step.

In our implementation of COMPSs modules, all algo-

rithms and operations added to Lemonade were tagged to

identify how they manipulate the data from input to out-

put: (i) operations that have only one internal step, like

Filter (in this case, there is no stage of communication

between fragments); (ii) operations where the number of

rows is preserved at the end of execution, such as when

some value in a column has to be replaced (mapping); (iii)

operations that have more than one input (and therefore

require communication with more than one box before

them, like Join); (iv) operations that define or change the

nature of the data from input to output, like Split (which

will usually include at least one step where general com-

munication is needed); and, finally, (v) operations that

write data to HDFS or return data to the main program,

like Save data.

Based on those tags, the transpiler can decide how to

combine (or not) the code of multiple tasks: operations

with tags (iii) or (iv) must always be at the beginning of

https://github.com/eubr-bigsea/Compss-Python

Ponce et al. Journal of Internet Services and Applications (2019) 10:19 Page 10 of 18

a stage, since the communication patters inside or just

before them preclude the integration of tasks before and

after them; operations with tags (i) and (ii) can be any-

where in a stage, since their operations can be safely

integrated; and operations with tag (v), by definition, must

be at the end of a stage. When those rules lead to the iden-

tification of sequences of operations that can be grouped

in a single stage, the transpiler outputs code that include

all transformations in a single task.

6 Performance evaluation
The main purpose of this work was validate COMPS

integration with HDFS and Lemonade. In particular, we

sought to better understand the factors involved in the

performance of the HDFS integration API and the effects

of using Lemonade’s code optimization guidelines. In

addition, we intended to compare the performance of

COMPS applications in Python, created by Lemonade,

with Spark applications.

In order to achieve that purpose we used three exper-

imental techniques: 2kr factorial design, Z-pairwise test

and linear regression. A 2kr factorial design is used to

determine the effect of k factors, each of which has two

alternatives or levels [44]. We used this technique to study

the effect of three parameters involved in the use of the

HDFS integration API: the interface, the HDFS replication

factor and the size of HDFS blocks. The Z-Pairwise test is

a technique for comparisons between two systems based

on a set of samples using the z coefficient, allowing the

calculation of the difference between these systems [44].

In order to satisfy the premise of using the normal coef-

ficient Z, each experiment was executed 40 times. Linear

regression was used to evaluate the performance of the

executions due to the increase of the workload. In most

cases, we have used the one-sided confidence interval

when the goal was to show the superiority of a system, but

when explicit, we have used the two-side confidence inter-

val to show that there is no significant difference between

systems.

We used four applications in the experiments: Grep, an

application for occurrence counting of a particular word

in parallel; Wordcount, an application of word count also

in parallel, where initially it is made a partial count of

the words in each fragment, followed by a reduction step

for merging results; KNN workflow (shown in Fig. 4), a

flow of operations that comprises a step for reading and

preprocessing data, a step for sampling data to be used

in the training of a K Nearest Neighbors classifier, fol-

lowed by a final step to apply the model over the data;

and a KMeans workflow (shown in Fig. 5), other flow that

comprises reading data, creating of a vector of attributes,

removing unnecessary columns and training a model to

find the centroids of the input data set.

The use cases have different input data types: for

Grep and Wordcount, the applications receive a text file;

KMeans and KNN workflows receive a tabular file (csv)

Fig. 5 KMeans workflow created using Lemonade to build a clustering model

Ponce et al. Journal of Internet Services and Applications (2019) 10:19 Page 11 of 18

with numeric attributes. The text load was created by

concatenating several books from the Gutenberg Project4

multiple times. As for the numerical load, we used the

Higgs Data Set5 which initially contains 11 ×106 samples

with 28 dimensions of simulated signal processes that pro-

duce Higgs Bosons. All experiments used a cluster with

COMPSs (v. 2.3), HDFS (v. 2.7) and a Spark (v. 2.2), with a

dedicated master node and eight workers nodes. The vir-

tualized machines had Intel E56xx processors of 2.5 GHz

with 4 cores, 8 GB of RAM, with Ubuntu Linux 16.04 LTS.

6.1 HDFS read performance

The use of the COMPSs HDFS API involves some param-

eters that can influence the performance of an execution,

being important to specify the used interface, i.e., whether

or not it uses the COMPSs Storage API (parameter A),

the replication factor (parameter B) and the block size

(parameter C). It is expected that the execution be faster

when using the Storage API, since it directs, whenever

possible, the reading of a fragment to a node that owns it,

meaning, it improves data locality. The same happens with

data replication, where the usage of a replication factor

greater than one increases the probability that a block will

be found where the code will execute. Finally, larger block

sizes decrease the number of requests made to HDFS, but

on the other hand, it can increase the amount of trans-

ferred data if the block is in another node and, in addition,

it increases memory consumption.

As a first step, we performed a 2kr factorial Project,

shown in Table 2, where k corresponds to three evaluated

parameters, and r to the 40 repetitions for each config-

uration. For this, we executed scenarios using Grep and

Wordcount applications in Python with both interfaces,

replications of 1 and 3, and block size of 64 MB and

128 MB.

The result of the factorial project, shown in Table 2,

was able to explain approximately 93% of the variation

of the execution time for the Grep application; the other

7% may be assigned to experimental errors, like network

problems. This analysis shows that the Storage API is

the parameter that most impacts the variation of exe-

cution time, being responsible for approximately 57% of

the variation, where the negative effect means a decreas-

ing of the execution time when it is used. Data replica-

tion is the second most impacting parameter that assists

in decreasing runtime. These results are expected, since

both parameters increase data locality. When using the

Storage API, we have a greater probability that the data

will be directed to right node. The increase in block

size, on the other hand, causes an increase in execution

time, although not as significant as the previous ones.

4http://www.gutenberg.org
5Available in: https://archive.ics.uci.edu/ml/datasets/HIGGS

Table 2 Results of the 2340 factorial design to analyze

configuration aspects of the COMPSs HDFS API

Parameter Effect Variation (%) 95% Confidence Interval
(two-sided)

Grep

Intercept 57.97 - (57.55, 58.39)

A -11.16 56.93 (-11.58, -10.74)

B -6.85 21.41 (-7.26, -6.438)

C 4.88 10.9 (4.46, 5.30)

AB 0.51 0.12 (0.09, 0.93)

AC 1.31 0.79 (0.89, 1.73)

BC -2.2 2.21 (-2.61, -1.78)

ABC -1.55 1.11 (-1.97, -1.13)

Effects (%) 93.48

Wordcount

Intercept 220.57 - (220.27, 220.87)

A -7.83 82.44 (-8.13, -7.54)

B -1.73 4.02 (-2.02, -1.43)

C -0.35 0.17 (-0.65, -0.06)

AB 0.58 0.45 (0.28, 0.87)

AC 0.40 0.22 (0.11, 0.70)

BC 1.40 2.73 (1.12, 1.72)

ABC 0.56 0.42 (0.26, 0.85)

Effects (%) 90.46

From Table 2, we can also see the variations caused by

the interactions between the parameters, however, since

the sum of the interactions represent only about 4%

of the variation, we focus only on the individual fac-

tors. Since the zero value is not contained in any of the

95% confidence intervals, we can say that all calculated

effects, although they come from a sample, are signifi-

cant, and they represent well the reality given the observed

confidence.

The results for Wordcount were similar, where the Stor-

age API and data replication are responsible for most of

the variation in runtime, however, with a different ratio

of 82% and 4% respectively. Unlike Grep, increasing the

size of the blocks decreases execution time, however in a

small rate of 0.17%. The results suggest that the decrease

in execution time of Wordcount is related to the num-

ber of reduction tasks and not to the HDFS itself because,

unlike Grep, Wordcount has a more involved cost in the

execution of the sum stage of the partial counts. When we

use a small block size, in the Wordcount case, we increase

the number of tasks for partial reads and, consequently,

we increase the number of tasks to join the results. Again,

the confidence interval suggests that the effects of the

calculated parameters are significant and represent well

the population.

http://www.gutenberg.org
https://archive.ics.uci.edu/ml/datasets/HIGGS

Ponce et al. Journal of Internet Services and Applications (2019) 10:19 Page 12 of 18

After analyzing the importance of the considered

parameters, the next step was the creation of speedup6

graphs, shown in Fig. 6, evaluating the speedup of the dif-

ferent configurations of the HDFS API compared to the

conventional file system as a function of the workload.

The applications, for both languages, were executed using

the conventional file system and both HDFS API inter-

faces, varying the input load size from 2 to 20 GB, in 2 GB

steps and 15 times each. For the executions using HDFS,

we also vary the replication factor by 1 and 3 and set the

block size to 64 MB. We adopt the following pattern to

refer to a COMPSs application: F represents the applica-

tion that uses the conventional file system; H1 and H3 are

versions using the first HDFS interface with replication 1

and 3 respectively; finally, S1 and S3 are versions using

the second interface of the API with replication 1 and 3

respectively;

In Fig. 6, we can see that the use of HDFS is prefer-

able in all scenarios because the speedup is always greater

than one. The speedup is greater for Grep, as expected,

because the Wordcount application has several secondary

tasks for the sum of the partial counts. There is a sig-

nificant difference in runtime between S1 and H1 for

simpler applications like Grep, however, the speedups are

closer for Wordcount scenarios. For example, using S1

over H1, in Python, increases only 7% in speedup but 1%

in Java. For the evaluated workload range, the speedup

curves start to stabilize in 14 GB, and at 20 GB, the

speedups is approximately 6.9 and 13.9 for the Python

Grep application for H1 and S1, respectively. Although

the speedup in Wordcount is lower than in Grep, it is still

significant. For example, the average Wordcount applica-

tion runtime in Python with a conventional file system is

577 s, while using H1 or S1 the time is 198 and 184 s,

respectively.

There are two reasons for the difference of speedups

between Python and Java: the COMPSs architecture

and the difference between implementations of Word-

count application. PyCOMPSs is a COMPSs binding: all

COMPSs orchestration is done in the JVM while task

execution is done in Python. For instance, when trans-

ferring files through COMPSs in Python, those files are

transparently transferred by connectors executed in the

JVM, to be later interpreted by Python. This causes a

greater overhead compared to an execution in COMPSs

native language. In contrast, when using HDFS, the file is

transferred directly by HDFS using libhdfs3 (as discussed

in Section 4), minimizing COMPSs overheads. The sec-

ond reason is the different implementation of the merge

step reduction of the partial results. While in Python the

results are reduced two by two, in Java, the partial results

6A metric that measures the relative performance of two systems processing
the same problem.

are reduced in a specific order, one by one, which reduces

the time gains during data reading.

In summary, the previous analysis shows that COMPSs

HDFS integration increases the performance of applica-

tions. Even in more complex applications, where data read

step correspond to a smaller portion of the execution, the

performance increase of HDFS is at least 50% faster than

the conventional file system.

6.2 HDFS write performance

Besides the read performance, it is still necessary to ana-

lyze the behavior of our proposed system during data

writes. For this, we execute a micro-benchmark applica-

tion for data writing, varying the use of the file system,

HDFS replication and output file size. The application

in question is a dumps file creator where each task is

responsible for creating a file fragment.

In order to create a COMPSs application using the con-

ventional file system, where each task produces a file, it is

necessary tell COMPSs that this file is an output param-

eter. This means that at the end of the execution, the

master node must request the files produced by each task.

By default, files and tasks are transparently transferred

over NIO connectors. Although this connector is recom-

mended for its speed, its disadvantage is that at the end

of execution, COMPSs request all files at once, and that

exhausts the central nodememory in cases where the total

size of the files is larger than the available memory in the

master node. For instance, in our cluster, where the mas-

ter node has 8 GB of RAM, when we try to receive 6 GB

of output, COMPSs gives an error due to lack of memory.

To work around this problem, there are two alternatives:

use the GAT connector, that uses ssh to schedule trans-

fers, or force the serialization of actions when receiving

the files.When usingHDFS, we are not susceptible to such

problems because, as previously mentioned, COMPSs no

longer has the responsibility of transferring files between

the nodes: that responsibility is now of HDFS.

Figure 7 shows the speedup of the solutions using HDFS

with a replication factor 1 (H1) and 3 (H3) over the con-

ventional system using the GAT connector and using the

NIO connector with the serialization of the transfers. For

this set of tests, we varied the size of the output file

from 6 to 16 GB, running each experiment 15 times. The

performance of the interface using the Storage API was

not evaluated because the API only impacts data read-

ing. Although we only display the results for Python, the

results for Java were similar.

We can see from Fig. 7 that the HDFS API is superior

in almost all scenarios. Increasing the replication factor,

we are writing three times more data, and that affects per-

formance. For instance, writing a 16 GB file using HDFS

replication factor 1 (H1) has a speedup of approximately

6x over the conventional system using NIO connectors

Ponce et al. Journal of Internet Services and Applications (2019) 10:19 Page 13 of 18

Fig. 6 Speedup as a function of the workload size for Grep and Wordcount applications, considering Python and Java implementations, when the

HDFS API is configured with (S) or without (H) the Storage API, and with no block replication (1) or 3-way replication (3). Speedup is computed

compared to the execution times of the same applications executing on a conventional file system. a Grep - Python. b Grep - Java. cWordcount -

Python. dWordcount - Java

(serializing file reception). However, the same scenario

has a 2x speedup with H3, because internally HDFS was

writing 48 GB. In other words, H1 is approximately 3x

faster than H3. In that application, it is better to use

GAT connector if is necessary to use the conventional file

system.

Fig. 7 Speedup of file writing using HDFS over the conventional file

system, considering no replication (H1) and 3-way replication (H3),

against the performance of the traditional file system interfaces using

GAT and NIO solutions

The H1 and H3 speedups over the conventional file

system version using the GAT connector is 2.7 and 0.9,

respectively. Although the speedup of 0.9 means that writ-

ing large amounts of data in HDFS with replication factor

3 (H3) is slower than the conventional system using GAT,

we believe that the use of the integration API is still

preferable for the writing step. The GAT connector has

a larger overhead as disadvantage in COMPS executions.

For instance, to this same application when creating a 4

GB file, the runtime was on average 142 s using GAT,

however, using NIO connector, without serializing the

transfer, the average time was 77 s. Considering that a

real application will need to read data, processes tasks and

write data, the use of GAT will be slower than executing

COMPSs with HDFS, which will use the NIO in all other

orchestrations steps.

6.3 Network behavior

In addition to the performance analysis considering exe-

cution times, we also evaluated the network traffic to

better understand the performance gains of using HDFS

in a COMPSs execution. We ran the Grep application for

an input load of 20 GB and captured the traffic using

Tcpdump7 in each node of the cluster. We illustrate,

7http://www.tcpdump.org/

http://www.tcpdump.org/

Ponce et al. Journal of Internet Services and Applications (2019) 10:19 Page 14 of 18

in Fig. 8, the data exchanges between machines during

COMPS executions using the conventional system, using

HDFS, and using HDFS while exploring data locality with

COMPSs Storage API.

In Fig. 8, each graph models the behavior of data traf-

fic between nodes during COMPS execution. In those

graphs, each vertex pattern represents the volume of data

read from that node by other workers, while each edge

pattern represents the volume of data transferred between

two nodes. In those scenarios, we only consider the traffic

related to file access. To select such traffic in executions

using the conventional system, we selected connections

of the master COMPSs NIO connector (by default, port

43001) that sent the same amount of bytes of a fragment

(64 MB). For executions using HDFS, we considered the

connections where data was sent by the datanodes (by

default, using port 50010).

The topology seen in the common file system case is

different from both other graphs. Figure 8a shows that

the master is the only node to read data from the file

system, transferring it to the workers. Because of that,

the master has the darkest pattern and workers have the

lightest, while edges represent large upload volumes. In

Fig. 8b-c, the master is responsible only for the orches-

tration of the tasks, no longer needing to transfer file

contents. Because of that, significant data transfers are

observed only between workers, but the vertex and edge

patterns show that read load is distributed among all

nodes, and that there are lower traffic volumes between

any two nodes than on scenario (a). Finally, by increasing

the locality of the data in scenario (c), data transfers drop

drastically. There are still some traffic between nodes, but

volumes are much lower, since they are mostly due only

to the effect of reading logical blocks at the edges of the

HDFS blocks (as explained in Fig. 2).

Table 3 shows the relative amount of data trans-

ferred through the network in those Grep executions.

All columns show values relative to the size of the file

(20 GB, in this case). In a COMPSs execution without

a shared disk, on a conventional file system (case C in

the Table 3), the input files are transferred from the mas-

ter to all requesting workers. In other words, workers do

not contribute in the transferring stage (0.0% of worker

upload). This means that no fragments were located on

the requesting computer, since COMPSs dictates that data

be read sent by the main task. On the other hand, when

using HDFS, data transfers are distributed over all work-

ers (which also act as datanodes). When no locality-aware

API was used and file blocks were not replicated (H1),

most of the file data is still accessed over the network

(89.3%), but each worker has to read only a fraction of

that total (11.2%). Theoretically, the chance of a byte being

accessed at the node node where it is stored is given by

the ratio of favorable cases to total cases. Thus, in this

scenario a given byte could be in only one of the eight

machines, so it had a theoretical probability of 12.5% of

being read in-place. That is close to the measured 10.7%.

By increasing the replication factor to 3, there is a higher

chance that a read will find a block locally at its own

node, and the total traffic decreases (67.9%), as well as

the amount of data uploaded by each node (8.6%). On the

other hand, when we combine HDFS with the COMPSs

storage PI, tasks tend to be assigned to workers located on

the same nodes where data reside. Even when there is no

replication (S1), only 11.1% of the data is accessed over the

network, and on average each datanode has to serve only

Fig. 8 Representation of network traffic patterns in COMPSs executions. a) conventional file system; b) HDFS API; c) HDFS+Storage APIs. The legend

to the right indicates the aggregate volume of traffic read from a vertex or transferred through an edge. In the Conventional file system, all data is

transferred between the master and the workers; by using HDFS, the traffic is distributed among workers, since all I/O is performed by directly by

HDFS and data moves from the datanodes holding the data to the worker nodes where each block will be processed; when COMPSs Storage API is

used, tasks are assigned preferentially to workers executing at the same nodes where blocks are stored, and network traffic is limited to a few cases

where locality is not achievable (e.g., when reading records at the block edges)

Ponce et al. Journal of Internet Services and Applications (2019) 10:19 Page 15 of 18

Table 3 Network traffic of Grep on a cluster with eight workers

Case % worker upload % total traffic % in place

C 0.0 100 0.00

H1 11.2 89.3 10.7

H3 8.6 67.9 32.1

S1 1.4 11.1 88.9

S3 0.16 1.7 98.3

Values are relative to the file size (20 GB). Except for the total traffic, values are the

averages over all workers

1.4% of the file data to other nodes. When 3-way replica-

tion is considered, 98.3% of the data is read locally (using

short-circuit techniques).

By this analysis, the use HDFS (even with the non-

conventional use of replication factor 1) is preferable

over the conventional file system. Although we only had

10.7% of the bytes executed in the node where they were

stored, the transmission of the other data was distributed

between all nodes of the cluster, avoiding a bottleneck at

the master.

Another way to visualize the difference in performance

is by analyzing traces created by COMPSs itself, as those

shown in Fig. 9a and b. They represent the mapping of

data transfers coordinated directly by COMPSs between

cluster nodes during the execution of the Python versions

of Wordcount with the HDFS API (scenario H1) and with

a common file system (scenario C), for an 8 GB file. Red

lines represent data transfers orchestrated by COMPSs

during an execution.

In Fig. 9a, when the application uses the traditional file

system, the master is responsible for the transfer of all

data. We can see that as the set of lines fanning out from

the master to all workers, starting soon after the execution

starts. By the length of the lines we can see that part of the

execution time is due to the wait for the file transfers to

complete. All lines starting at the master are data transfers

of parts of the input file to the workers. In this example

there are more file fragments (64) than worker threads (4

in each worker, so 32 total), the master sends a first set

of fragments soon after the application stars. When the

tasks associated with those complete and return, the mas-

ter goes on to send the 32 remaining fragments. Since the

tasks do not complete at the same time, the messages for

this second set are spread over a longer period of time

(the block of messages around 105 s). Finally, the last set

of messages, close to 163 s, are the messages related to the

final reduction that adds all the partial counts

In Fig. 9b, the version using the HDFS API, we see

only the data transfers orchestrated by COMPSs, since the

HDFS access is not controlled directly by the COMPSs

Fig. 9 Data transfer traces of COMPSs while running Wordcount. aWordcount on a common file system (C): application ends around 163 s. b

Wordcount using the HDFS API (H1): application ends in around 105 s. Blue bars represent the execution of the master and the 8 workers (identified

to the left of the vertical axis). Red lines represent data transfers orchestrated by COMPSs during execution. They connect the bar of the two

communicating nodes; horizontally, they indicate the duration of each transfer. Vertical lines represent very short data transfers, whose duration is

not discernible at that time scale

Ponce et al. Journal of Internet Services and Applications (2019) 10:19 Page 16 of 18

runtime. Transfers are much shorter (almost vertical

lines), since COMPSs only has to send the information

about the list of fragments. Since we have twice the num-

ber of fragments than threads, we still have two moments

when the master sends information about the fragments

that need to be counted (the set of vertical lines at the

beginning of execution, and the second set, around 50 s).

HDFS is the one responsible for delivering the actual data

to the multiple compute nodes. The last set of messages

represents the reduction step.

6.4 Spark versus COMPSs

As previously mentioned in Section 2, a recent work [34]

compared COMPSs performance in Java applications to

Apache Spark, using a cluster architecture normally asso-

ciated with HPC applications. Since our integration allows

COMPSs to better interface with a cluster architecture

more frequently found in Data Science scenarios, in this

study we present a comparison of the two systems under

those conditions,

Table 4 presents a performance comparison between

COMPSs and Spark using the applications Grep, Word-

count, KMeans and KNN. The first two applications were

implemented manually in COMPSs and executed in the

different configurations mentioned previously (H3 and

S3). The KMeans and KNN applications were created by

Lemonade and executed in four scenarios, varying the

HDFS interface (H3/S3) and the use of the optimiza-

tion guidelines discussed in Section 5.3 (identified by the

suffix .opt in the table). In our experiments, all Spark

applications were implemented manually and used the

same HDFS configuration as their COMPSs counterparts;

Spark always takes data locality in consideration during

Table 4 Performance comparison: COMPSs versus Spark

Use case Scenario Time (s) Speedup 95% CI

Grep H3 59 2.74 (-∞, -101)

S3 38 4.24 (-∞, -122)

Spark 161 1 -

WC H3 226 1.59 (-∞, -131)

S3 210 1.71 (-∞, -148)

Spark 358 1 -

KMeans H3 905 0.48 (472, ∞)

H3.opt 571 0.77 (138, ∞)

S3.opt 438 1.00 (-6, 5)†

Spark 438 1 -

KNN H3 1426 0.52 (691, ∞)

H3.opt 1076 0.69 (340, ∞)

S3.opt 711 1.05 (-∞, -23)

Spark 746 1 -

†Difference not statistically significant

execution. For each application, the speedup was com-

puted in relation to the performance with Spark (which is

represented as 1 in each case).

The column 95% Confidence Interval of Table 4 (95%

CI) represents the result of the paired Z test between

Spark and COMPS scenarios; all ranges are one-sided,

except for KMeans (S3.opt), which is two-sided because

there was no significant difference between those systems.

According to the table, we can see that the first two

applications had better performance with COMPSs than

with Spark, regardless of the API used. The result in

that table, with the analysis presented earlier for Fig. 6,

suggests that HDFS contributes to the increased perfor-

mance of COMPSs, making it competitive with the Spark

solution. In the Grep application, for example, COMPSs

obtained a speedup of 4.24, being at least 122 s faster than

Spark.

Spark has well-known mechanisms for code optimiza-

tion and data locality since its first versions, while

COMPSs has the Storage API to exploit data locality.

However, the user is still responsible for tuning the code

and, as shown in Table 4, a good implementation can

have an impact on COMPSs executions. For instance, a

well-implemented, optimized KNN workflow (H3 - opt),

is 1.33 faster than a naive implementation (H3). We also

showed that Lemonade+COMPSs is able to match the

Spark performance in complex scenarios like KMeans or

KNN, characterized by several stages of tasks, even with

loops. In fact, in the KMeans scenario, when Lemonade

generates a better implementation (i.e., with code opti-

mization guidelines and using the locality-aware version

of the HDFS API), the two-side 95% confidence interval

indicates that there was no significant performance differ-

ence. In the KNN case, although we obtained a speedup

of 1.05, the one-side interval of (-∞, -23) suggests that

this COMPSs superiority is significant, although not very

large. Those results suggest that COMPSs is a power-

ful framework and that the current version of Lemonade,

using the initial optimization guidelines and the HDFS

API with the locality-aware COMPSs storage API is able

to generate good Python implementations in COMPSs

with performances comparable to Spark in Big Data

scenarios.

7 Conclusion
Advances in the HPC and big data areas have led to the

development of techniques that are being used in both

of them. In this work we proposed and evaluated new

extensions to the COMPSs environment, originally used

in HPC applications, to increase its performance and

facilitate its application in big data scenarios. These open-

source extensions allow its integration with a distributed

file system (HDFS) and a visual tool for Data Analytics

(Lemonade).

Ponce et al. Journal of Internet Services and Applications (2019) 10:19 Page 17 of 18

We have shown that in a typical big data scenario, with

a Horizontal scaling architecture, conventional networks

and no shared disk solution, the use of HDFS is indis-

pensable for better performance. Also, the use of HDFS

in COMPSs applications is recommended, not only by the

already known HDFS advantages, but also because it pro-

vides a data abstraction, the division of data in blocks, that

helps to express in COMPSs algorithms from Machine

Learning and Data Mining that deal with large volumes of

data.

Lemonade has aspects, such as a friendly visual user

interface for creating and executing flows using the drag

and drop elements, that justify its use.We have shown that

Lemonade is able to generate efficient cods in COMPSs

that achieve performances comparable to Spark. In addi-

tion, beginner or advanced COMPSs programmers can

use the algorithms implemented for Lemonade as an

external library for their applications, even if they do not

want to use Lemonade itself.

Our ongoing work includes experimental tests to eval-

uate the HDFS extension with bigger data sets and other

real scenarios. We also plan to support more operations

and algorithms in Lemonade and to improve our Lemon-

ade optimization guidelines. To accomplish that we will

examine the possibility to generate more flexible Lemon-

ade code to, for example, when possible, re-define the

number of fragments in runtime based on the size of the

data being produced. We expect that the generated code

in that case will be better fitted to what is being processed,

optimizing the number of tasks created, which may also

be beneficial to COMPSs in general.

Abbreviations

API: Application programming interface; ETL: Extract transform load; HDFS:

Hadoop distributed file system; HPC: High-performance computing; KNN: K

nearest neighbors; ML: Machine learning

Acknowledgements

Not applicable.

Authors’ contributions

All authors read and approved the final manuscript.

Funding

This work was partially funded by Fapemig, CAPES, CNPq, MCT/CNPq-InWeb,

FAPEMIG-PRONEX-MASWeb (APQ-01400-14), and by the collaboration

between Brazilian MCT/RNP and the European Union Horizon 2020 research

and innovation programme under grants 690116 (EUBra-BIGSEA) and 777154

(EUBra Atmosphere).

Availability of data andmaterials

As mentioned in the text, the implemented systems are open source, available

through GitHub. Readers can contact the corresponding author to request the

dataset used in this work.

Competing interests

The authors declare that they have no competing interests.

Author details
1Departamento de Ciência da Computação, Universidade Federal de Minas

Gerais (UFMG), 31270-901 Belo Horizonte, Minas Gerais, Brazil. 2Barcelona

Supercomputing Center (BSC-CNS), Barcelona, Spain. 3Artificial Intelligence

Research Institute (IIIA), Spanish Council for Scientific Research (CSIC),

Barcelona, Spain.

Received: 15 February 2019 Accepted: 5 September 2019

References

1. Kamburugamuve S, et al. Twister2: Design of a big data toolkit. Concurr

Comput: Pract Experience. 2019;31(14). https://doi.org/10.1002/cpe.5189.

2. Fox G, et al. Big data, simulations and HPC convergence. In: Big Data

Benchmarking: 6th International Workshop, WBDB 2015, Toronto, ON,

Canada, June 16-17, 2015 and 7th International Workshop, WBDB 2015,

New Delhi, India, December 14-15, 2015, Revised Selected Papers. Cham,

Switzerland: Springer; 2016. p. 3–17. https://doi.org/10.1007/978-3-319-

49748-8_1.

3. Tejedor E, et al. PyCOMPSs: Parallel computational workflows in Python.

Int High Perform Comput Appl. 2017;31(1):66–82. https://doi.org/10.

1177/1094342015594678.

4. Asch M, et al. Big data and extreme-scale computing: Pathways to

convergence-toward a shaping strategy for a future software and data

ecosystem for scientific inquiry. Int J High Perform Comput Appl.

2018;32(4):435–79. https://doi.org/10.1177/1094342018778123.

5. Lezzi D, et al. Enabling e-Science applications on the cloud with COMPSs.

In: Parallel Processing Workshops at European Conference on Parallel

Processing (Euro-Par 2011). Berlin: Springer; 2011. p. 25–34. https://doi.

org/10.1007/978-3-642-29737-3_4.

6. Lordan F, Ejarque J, Sirvent R, Badia RM. Energy-aware programming

model for distributed infrastructures. In: 24th Euromicro International

Conference on Parallel, Distributed, and Network-Based Processing (PDP

2016). Washington: IEEE Computer Society; 2016. p. 413–7. https://doi.

org/10.1109/pdp.2016.39.

7. Zaharia M, et al. Resilient distributed datasets: A fault-tolerant abstraction

for in-memory cluster computing. In: Proceedings of the 9th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

’12). Berkeley: USENIX Association; 2012. p. 15–28. https://dl.acm.org/

citation.cfm?id=2228301.

8. Santos W, et al. Lemonade: A scalable and efficient Spark-based platform

for Data Analytics. In: 17th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing (CCGRID). Piscataway: IEEE Press; 2017. p.

745–8. https://doi.org/10.1109/CCGRID.2017.142.

9. Marozzo F, et al. Enabling cloud interoperability with COMPSs. In: Parallel

Processing Workshops at European Conference on Parallel Processing

(Euro-Par 2012). Berlin: Springer; 2012. p. 16–27. https://doi.org/10.1007/

978-3-642-32820-6_4.

10. Ramon-Cortes C, et al. Transparent orchestration of task-based parallel

applications in containers platforms. 2018;16(1):137–60. https://doi.org/

10.1007/s10723-017-9425-z.

11. Apache Cassandra. http://cassandra.apache.org/. Accessed 4 July 2019.

12. Shepler S, Eisler M, Noveck D. Network file system (NFS) version 4 minor

version 1protocol. RFC. 2010;5661:1–617. https://doi.org/10.17487/RFC5661.

13. Li H. Alluxio: A virtual distributed file system. EECS Department, University

of California, Berkeley, USA. 2018. http://www2.eecs.berkeley.edu/Pubs/

TechRpts/2018/EECS-2018-29.html.

14. Amazon Simple Storage Service (S3). https://aws.amazon.com/s3/.

Accessed 4 July 2019.

15. Microsoft Azure Storage. https://azure.microsoft.com/services/storage/.

Accessed 4 July 2019.

16. Schwan P. Lustre: Building a file system for 1000-node clusters. In:

Proceedings of the Linux Symposium. Ottawa: Linux symposium; 2003.

p. 380–6. https://www.kernel.org/doc/ols/2003/ols2003-pages-380-386.

pdf.

17. OpenStack Storage (Swift). https://docs.openstack.org/swift/. Accessed 4

July 2019.

18. Weil SA, et al. Ceph: A scalable, high-performance distributed file system.

In: Proceedings of the 7th Symposium on Operating Systems Design and

Implementation (OSDI ’06). Berkeley: USENIX Association; 2006. p.

307–20. http://dl.acm.org/citation.cfm?id=1298455.1298485.

19. Andersen DG, et al. FAWN: A fast array of wimpy nodes. In: Proceedings of

the 22nd ACM SIGOPS Symposium on Operating Systems Principles

https://doi.org/10.1002/cpe.5189
https://doi.org/10.1007/978-3-319-49748-8_1
https://doi.org/10.1007/978-3-319-49748-8_1
https://doi.org/10.1177/1094342015594678
https://doi.org/10.1177/1094342015594678
https://doi.org/10.1177/1094342018778123
https://doi.org/10.1007/978-3-642-29737-3_4
https://doi.org/10.1007/978-3-642-29737-3_4
https://doi.org/10.1109/pdp.2016.39
https://doi.org/10.1109/pdp.2016.39
https://dl.acm.org/citation.cfm?id=2228301
https://dl.acm.org/citation.cfm?id=2228301
https://doi.org/10.1109/CCGRID.2017.142
https://doi.org/10.1007/978-3-642-32820-6_4
https://doi.org/10.1007/978-3-642-32820-6_4
https://doi.org/10.1007/s10723-017-9425-z
https://doi.org/10.1007/s10723-017-9425-z
http://cassandra.apache.org/
https://doi.org/10.17487/RFC5661
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-29.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-29.html
https://aws.amazon.com/s3/
https://azure.microsoft.com/services/storage/
https://www.kernel.org/doc/ols/2003/ols2003-pages-380-386.pdf
https://www.kernel.org/doc/ols/2003/ols2003-pages-380-386.pdf
https://docs.openstack.org/swift/
http://dl.acm.org/citation.cfm?id=1298455.1298485

Ponce et al. Journal of Internet Services and Applications (2019) 10:19 Page 18 of 18

(SOSP ’09). New York: ACM; 2009. p. 1–14. https://doi.org/10.1145/

1629575.1629577.

20. DeCandia G, et al. Dynamo: Amazon’s highly available key-value store. In:

Proceedings of the 21st ACM SIGOPS Symposium on Operating Systems

Principles (SOSP ’07). New York: ACM; 2007. p. 205–20. https://doi.org/10.

1145/1294261.1294281.

21. Memcached: A distributed memory object caching system. http://

memcached.org/.. Accessed 4 July 2019.

22. Apache HBase. http://hbase.apache.org/.. Accessed 4 July 2019.

23. Palankar MR, et al. Amazon S3 for science grids: A viable solution? In:

Proceedings of the 2008 International Workshop on Data-aware

Distributed Computing (DADC ’08). New York: ACM; 2008. p. 55–64.

https://doi.org/10.1145/1383519.1383526.

24. Wickramasinghe P, et al. Twister2:TSet high-performance iterative

dataflow. In: International Conference on High Performance Big Data and

Intelligent Systems (HPBD&IS 2019). Piscataway: IEEE Press; 2019.

p. 55–60. https://doi.org/10.1109/HPBDIS.2019.8735495.

25. Goodstadt L. Ruffus: a lightweight Python library for computational

pipelines. Bioinformatics. 2010;26(21):2778–9. https://doi.org/10.1093/

bioinformatics/btq524.

26. Gafni E, et al. COSMOS: Python library for massively parallel workflows.

Bioinformatics. 2014;30(20):2956–8. https://doi.org/10.1093/

bioinformatics/btu385.

27. Mierswa I, et al. YALE: Rapid prototyping for complex data mining tasks.

In: Proceedings of the 12th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. New York: ACM; 2006. p. 935–40.

https://doi.org/10.1145/1150402.1150531.

28. Demšar J, et al. Orange: Data mining toolbox in Python. J Mach Learn Res.

2013;14(1):2349–53.

29. Berthold MR, et al. KNIME - the konstanz information miner: version 2.0

and beyond. ACM SIGKDD Explor Newsl. 2009;11(1):26–31. https://doi.

org/10.1145/1656274.1656280.

30. Dean J, Ghemawat S. Mapreduce: Simplified data processing on large

clusters. In: OSDI’04: Sixth Symposium on Operating System Design and

Implementation. San Francisco: USENIX Association; 2004. p. 137–50.

31. Kranjc J, et al. ClowdFlows: A cloud based scientific workflow platform. In:

Machine Learning and Knowledge Discovery in Databases: European

Conference (ECML PKDD 2012). Berlin: Springer; 2012. p. 816–9. https://

doi.org/10.1007/978-3-642-33486-3_5.

32. Podpečan V, Zemenova M, Lavrač N. Orange4WS environment for

service-oriented data mining. Comput J. 2012;55(1):82–98. https://doi.

org/10.1093/comjnl/bxr077.

33. Microsoft Azure Machine Learning. https://azure.microsoft.com/services/

machine-learning-studio/.. Accessed 4 July 2019.

34. Conejero J, et al. Task-based programming in COMPSs to converge from

HPC to big data. Int J Perform Comput Appl. 2018;32(1):45–60. https://doi.

org/10.1177/1094342017701278.

35. White T. Hadoop: The Definitive Guide, 4th. Sebastopol: O’Reilly Media,

Inc.; 2015.

36. Gonzales SD. PyWebHDFS: a Python wrapper for the Hadoop WebHDFS

REST API. 2016. https://pypi.python.org/pypi/pywebhdfs/.. Accessed 4

July 2019.

37. Luckow A. WebHDFS: HDFS Python client based on WebHDFS REST API.

2014. https://pypi.org/project/WebHDFS/.. Accessed 4 July 2019.

38. Kalika M. Python WebHDFS. 2019. https://github.com/mk23/webhdfs..

Accessed 4 July 2019.

39. Rosen J. PySpark Internals. 2016. https://cwiki.apache.org/confluence/

display/SPARK/PySpark+Internals/.. Accessed 4 July 2019.

40. Leo S, Zanetti G. Pydoop: a Python MapReduce and HDFS API for

Hadoop. In: Proceedings of the 19th ACM International Symposium on

High Performance Distributed Computing. New York: ACM; 2010.

p. 819–25. https://doi.org/10.1145/1851476.1851594.

41. Apache Arrow Developers. Pyarrow: Python library for Apache Arrow.

2016. https://pypi.org/project/pyarrow/.. Accessed 4 July 2019.

42. Chang L, et al. HAWQ: A massively parallel processing SQL engine in

Hadoop. In: Proceedings of the 2014 ACM SIGMOD International

Conference on Management of Data (SIGMOD ’14). New York: ACM; 2014.

p. 1223–34. https://doi.org/10.1145/2588555.2595636.

43. McKinney W. Pandas: a foundational Python library for data analysis and

statistics. In: Workshop on Python for High Performance and Scientific

Computing Collocated with the 24rd International Conference for High

Performance Computing, Networking, Storage and Analysis (SC ’11). New

York: ACM; 2011.

44. Jain R. The Art of Computer Systems Performance Analysis: Techniques

for Experimental Design, Measurement, Simulation, and Modeling. Wiley

Computer Publishing. New York: Wiley; 1991.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

https://doi.org/10.1145/1629575.1629577
https://doi.org/10.1145/1629575.1629577
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
http://memcached.org/.
http://memcached.org/.
http://hbase.apache.org/.
https://doi.org/10.1145/1383519.1383526
https://doi.org/10.1109/HPBDIS.2019.8735495
https://doi.org/10.1093/bioinformatics/btq524
https://doi.org/10.1093/bioinformatics/btq524
https://doi.org/10.1093/bioinformatics/btu385
https://doi.org/10.1093/bioinformatics/btu385
https://doi.org/10.1145/1150402.1150531
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1007/978-3-642-33486-3_5
https://doi.org/10.1007/978-3-642-33486-3_5
https://doi.org/10.1093/comjnl/bxr077
https://doi.org/10.1093/comjnl/bxr077
https://azure.microsoft.com/services/machine-learning-studio/.
https://azure.microsoft.com/services/machine-learning-studio/.
https://doi.org/10.1177/1094342017701278
https://doi.org/10.1177/1094342017701278
https://pypi.python.org/pypi/pywebhdfs/.
https://pypi.org/project/WebHDFS/.
https://github.com/mk23/webhdfs.
https://cwiki.apache.org/confluence/display/SPARK/PySpark+Internals/.
https://cwiki.apache.org/confluence/display/SPARK/PySpark+Internals/.
https://doi.org/10.1145/1851476.1851594
https://pypi.org/project/pyarrow/.
https://doi.org/10.1145/2588555.2595636

	Abstract
	Keywords

	Introduction
	Related work
	The COMPSs framework
	COMPSs-HDFS integration
	Data abstraction
	Communication with HDFS

	Lemonade
	The lemonade environment
	Algorithms and operations
	Code optimization

	Performance evaluation
	HDFS read performance
	HDFS write performance
	Network behavior
	Spark versus COMPSs

	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

