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Resumo

Houve um tempo em que a evolução tecnológica de sistemas computacionais era constante e
célere. A alta velocidade no desenvolvimento de novas técnicas de miniaturização significava
que métodos de fabricação menores e mais eficientes ficavam disponíveis após alguns meses
de pesquisa e eram empregados no desenvolvimento de novos circuitos integrados. Embora
isso fosse verdade nas últimas décadas, este cenário mudou recentemente devido aos
limites impostos pela física. Cada nova geração de dispositivos enfrenta novos desafios
de miniaturização dos transistores, principalmente por causa do consumo de energia e
dissipação de calor devido à natureza da física quântica nesta escala. À medida que a
inteligência artificial se torna mais prevalente devido à necessidade de processar uma
enorme quantidade de dados rapidamente em paralelo, o hardware será um gargalo. Várias
soluções para este problema de hardware estão sendo propostas e testadas. Algumas delas
envolvem o uso de novos paradigmas para construir sistemas computacionais além do silício,
tais como o uso de luz ou moléculas orgânicas como substrato para realizar a computação.
Uma das alternativas é usar o DNA como hardware “úmido” como um complemento aos
computadores tradicionais de silício, acelerando alguns cálculos específicos in vitro ou
in vivo. As capacidades de processamento massivamente paralelo e baixo consumo de
energia do DNA o tornam a alternativa perfeita para a implementação de novas aplicações
biológicas, que vão desde o diagnóstico de doenças a novos medicamentos para o tratamento
de várias doenças. Esta tese propõe que a tecnologia de deslocamento de fitas de DNA
(DNA Strand Displacement, DSD) é passível de ser utilizada como um substrado de
hardware para desenvolvimento de circuitos moleculares modulares digitais, analógicos
e de aprendizado de máquina. Assim, para atingir este objetivo, esta tese apresentará
a contribuição de novas ferramentas de Computer Aided Design (CAD) desenvolvidas
que amparam a modularização, composição, projeto, simulação e validação dos circuitos
moleculares baseados em DSD.

Palavras-chave: Nanocomputação, Computação Molecular, Circuitos em DNA



Abstract

There was a time when the evolution of computer systems technology was fast and steady.
The development rate of new miniaturization techniques was high, meaning that smaller
and more efficient fabrication methods became available and employed to develop new
integrated circuits after a few months. Although this was true in the past decades, this
is no longer true due to physics limits. Each new generation of devices faces transistor
miniaturization challenges mainly because of power consumption and heat dissipation
due to the nature of quantum physics at this scale. As artificial intelligence becomes
more prevalent due to the need to process an enormous amount of data in parallel and
fast, the hardware will be a bottleneck. Several solutions to this hardware problem are
being proposed and tested. Some of them involve trying new paradigms to build computer
systems beyond silicon, such as using light or organic molecules as a substrate to carry out
the computation. One of the alternatives is using DNA as “wet” hardware to complement
the traditional silicon computers, accelerating some specific computations in vitro or in
vivo. DNA’s massively parallel processing capabilities and low power consumption make it
the perfect alternative to implementing new medical applications, ranging from diagnostic
of diseases to new drugs to treat various illnesses. This thesis proposes that DNA Strand
Displacement (DSD) technology can be a hardware substrate for developing digital, analog,
and machine-learning modular molecular circuits. Thus, to achieve this goal, this thesis
will present the contribution of new Computer Aided Design (CAD) tools developed that
support the modularization, composition, design, simulation, and validation of molecular
circuits based on DSD.

Keywords: Nanocomputing, Molecular Computing, DNA Circuits
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Chapter 1

Introduction

1.1 Historical Background: What is a computer?

The term “computation” can have different definitions. Here, we define “computa-
tion” as a process that begins with initial conditions (such as input) and gives an output
after following a definite set of rules. In other words, a computation transforms an input
into output by applying a sequence of operations. This sequence of strict instructions,
typically used to perform a computation, is called an “algorithm.” So, a computation (and
an algorithm) per se are not directly related to the physical substrate used to perform it.

Figure 1.1: Main Antikythera mechanism fragment. The mechanism consists of a complex
system of 30 wheels and plates. The machine is dated around 89 B.C. and comes from the
wreck found off the island of Antikythera. National Archaeological Museum, Athens, No.
15987. (59)

Throughout time, humans have seen the necessity of doing complex repetitive tasks
with quality and ease. Figure 1.1 shows the Antikythera mechanism. It was the first
known and considered an analog mechanical computer (34). Analog mechanical computers
were made from mechanical components like gears, levers, and other devices that can carry
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computation. The Antikythera mechanism’s purpose, being a mechanical computer, is
now understood to track and calculate the cycles of the Solar System. It was found in
1901 on the Greek island of Antikythera and has been dated to approximately 100 BC. It
incorporates a sophistication that would not reappear until a thousand years later.

Another example is the loom machine that facilitates the fabrication of cloth and
tapestry: the Jacquard Machine. Joseph Marie Jacquard patented this machine in 1804
(44), and it is considered a significant step in the history of computing hardware because
of its use of punched cards to automate the weaving of complex patterns in fabric and
tapestry. The cards controlled the machine weaving ability and could be simply changed
at any time to alter the patterns weaved into the textile. Computer pioneer Charles
Babbage used the same medium later in 1837, i.e., punch cards, to store programs that
would run in his Analytical Engine (62). Finally, at the dusk of the 19th century, Herman
Hollerith invented the punched card tabulating machine, patented in 1884, used for the
1890 US Census (38). The data processing industry that used punched-card technology
significantly developed at the beginning of the 20th century. Punched cards remained in
use in computing up until the mid-1980s.

The work of Shannon (81) helped accelerate the aforementioned remarkable de-
velopment of computers in the first half of the 20th century by introducing the idea of
using electrical switches to build digital logic circuits. Nevertheless, in the early twenty
century, other mechanical computers were still built using mechanical components, like
the Mark I Fire Control Computer, deployed by the United States Navy during World
War II (36). Another mechanical computer was MONIAC, used to calculate the workings
of the economy (12).

In 1945, an incomplete 101-page document written by John von Neumann contained
the first published description of the logical design of a computer using the stored-program
concept, which has come to be known as the von Neumann architecture. It was known
as “The First Draft of a Report on the EDVAC” (commonly shortened to First Draft)
and was distributed by Herman Goldstine, the security officer on the classified ENIAC
project (64). Next came the electromechanical computers made from switches and relay
logic, faster and capable of working with digital data (95).

In recent decades, with the help of the Computer Science field, the electronic industry
has increased its influence in the life of people, providing unimaginable technological devices
which can assist us in many practical problems of our lives and jobs. Nowadays, electronic
digital computers practically run all of the world’s infrastructure. Due to this incredible
success, people with no expertise in areas of theory of computation tend to think of
computers as something intrinsic to electronic devices.
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1.1.1 “End” of Moore’s Law

Nowadays, electronic computers that dominate the market rely on the “transistor”
to work: a small electric switch with no moving parts. A transistor is like an electrical
bridge that operates in two states: when it is on, it allows the flow of electric current;
when it is off, it blocks the passage of electric current. What controls this behavior
is a small electric potential (also known as voltage) applied to one of the transistor
terminals. Different logic gates used in electronic computers use various transistors in their
implementation. Four and two transistors in different circuit configurations can function
as the universal NAND (not-and) and NOR(not-or) logic gates, respectively. With these
universal logic gates, it is possible to create any logic circuit in computers.

Since 1970, engineers and scientists have worked to reduce the size of the fabricated
transistor. This size reduction brought many benefits, such as a reduction in power
consumption and a higher switching speed. In addition, with each transistor occupying
less space, more of them could be used to create better-performing computation circuits.
This size reduction led to the famous “Moore’s Law,” in which Gordon Moore observed
that “the number of transistors in a dense integrated circuit (IC) doubles about every two
years” (61). So, the big transistors of the past quickly reached millimeters, micrometers,
and nanometers in size in the following decades.

Nevertheless, since the middle of the 2000s, a downside to this heavy reduction
in size was discovered: the smaller the transistor, the greater the leakage current it
possesses. This leakage current implies that tiny transistors consume power even when off.
Also, modern computers have microprocessors with billions of transistors, all switching
in Gigahertz frequency. Therefore, a high concentration of transistors simultaneously
working in high frequencies has high power consumption, which leads to heat damaging
the processor. This undesirable effect led to the end of “Dennard Scaling,” which noted in
1974 that as transistors become smaller, their power density stays constant (28, 27, 13).

Also, as transistors get smaller and smaller, another problem arises: the inherent
limitations of the size of atoms. Even if technological advances allow us to fabricate
transistors of one atom in length, after that, they cannot be reduced anymore. This
physical barrier inflicted by nature imposes technical challenges confronting the electronic
chip industry due to the miniaturization of the electrical circuits to the nanometer scale (18,
80). These challenges brought to focus that the physical limits of the lithography process
and electronic components will be soon reached, a technical issue that has motivated the
development of new methods and paradigms for computation.

So, in recent years this knowledge of the inevitable end of fast progress in electronic
computers has received a renewed interest from the scientific community. Researchers are
looking for new properties in the physical and chemical systems that could be appropriate
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to promote innovations in the concept of logical and programmable computer devices.

1.1.2 DNA as a Hardware Substrate

Maybe, one of the most intriguing novelties that surged in the last years is the
use of the Deoxyribonucleic acid (DNA) molecule as a physical substrate to compute.
DNA as a biological entity is a molecule composed of two polymeric strands of nucleotides
containing the nitrogenous bases Adenine, Thymine, Guanine, and Cytosine (A, T, G, and
C) in a unique sequence for each. However, DNA molecules also can be obtained in the
laboratory by chemical synthesis. The sequence patterning of bases in a strand of DNA
can store codified information, and specific molecules can manipulate these sequences,
named enzymes, that cut and link strands of DNA in a programmed way. It was the
chemical system used by Adleman to prove that DNA molecules can be used to perform
computation, where he solved the Travel’s Salesman problem (1).

Further advances in the manipulation of DNA molecule have made it possible
to process the information without using enzymes. DNA Strand Displacement (DSD)
reaction is an enzyme-free molecular technique to exchange a strand of DNA duplex (DNA
complex formed by two strands bonded by their base pairs) with another single strand
(input) of DNA. It is based on the hybridization of two complementary strands of DNA
via Watson-Crick base pairing (A-T and C-G) and makes use of the branch migration
process (82).

The DSD technique is incredibly powerful and energy-efficient. It is powerful
because it can be described as a Chemical Reaction Network (CRN), which is Turing
Complete (55, 31), meaning it has the same computation capability as all computers.
Energy-efficient because it can resolve challenging computing problems known as NP-
Complete and NP-Hard using a small fraction of energy and time compared with electronic
computers (26). It is excellent to perform computations at an energy-efficient level because
it opens doors to many possible applications. From a strictly computational standpoint, it
allows a highly parallel biological computer to solve instances of NP-Complete problems
faster than traditional computers. From a health perspective, it enables the development
of intelligent drugs (8) and diagnostics such as sensing and actuation on diseases to release
drugs in a controlled way (2, 9).

DNA Strand Displacement (DSD) has already been used for the construction of
autonomous molecular motors (100), DNA nanostructures (103) and molecular logic gates
(72). It can also implement generic CRNs (83, 71, 21).
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1.2 Goal, Contributions, Organization

1.2.1 Goal

The main goal of this work is to explore the proven computing capabilities of DNA
Strand Displacement (DSD) technology as a hardware substrate for developing digital,
analog, and machine-learning modular molecular circuits. Thus, to achieve this goal, this
thesis will work towards applying the principles of abstraction and scaling of design.

The abstraction is obtained by suppressing specific implementation details from
the designer. A tool will automatically handle these details to allow the designer to scale
the design up, i.e., to focus on creating more complex molecular circuits due to worrying
less about specific molecular implementation details.

1.2.2 Contributions

Given the objectives presented above, this work focused on providing ways and
methods to make feasible and quickly iterate the development of digital, analog, and
machine learning molecular circuits based on DSD. The contributions of this work are
listed:

Constructive Methodology for Molecular Circuits: This thesis proposed and devel-
oped a constructive methodology to implement software tools capable of abstracting
the construction of molecular circuits and handling the specific implementation
details for the designer;

Digital Molecular Circuit Software Tool: with the previous methodology, a molecu-
lar circuit design automation tool named DNAr-Logic was developed (57) and showed
its capabilities in combinational and sequential circuits (56). The library allows
modularization and programmatically assists the development of digital molecular
circuits modeled as generic CRNs.

Analog Molecular Circuit Software Tool: The development of DNAr-Logic led to
contribute (69, 67) to the initial development of another software tool named DNAr-
Analog, inspired by DNAr-Logic and focused on analog molecular circuits (68).
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Unsupervised Learning CRN Algorithm: also based on previous methodology, the
K-medoids Unsupervised Algorithm is implemented as a CRN DSD circuit able to
cluster similar DNA strands by their complementarity. For the implementation,
reusable CRN gates that are not destroyed (i.e., unreversible inactivated) after use
were developed and can be reused throughout iterations’ runs.

1.2.3 Text Organization

This thesis is organized in 5 more chapters as follows:

Chapter 2: Presents some multidisciplinary concepts needed to comprehend the proposed
work, such as chemical reactions, DSD mechanism, artificial intelligence, and machine
learning fields.

Chapter 3: Presents the literature review of the most important works about computing
systems made of biological components and works done to bring machine learning
to Chemical Reaction Networks (CRNs).

Chapter 4: Presents part of the contributions developed by this work, such as the
Constructive Methodology for Molecular Circuits and DNAr-Logic software package.

Chapter 5: Presents another part of the contributions developed by this work, such as
the implementation of the K-medoids unsupervised learning algorithm in Chemical
Reaction Networks (CRNs).

Chapter 6: Finally, the Conclusions and suggestions for future works are presented.
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Chapter 2

Background

This chapter will lay the foundation of some multidisciplinary concepts needed to compre-
hend the work proposed here. In the first two Sections, 2.1 and 2.2, we will, respectively,
introduce concepts of chemical reactions and DNA strand displacement mechanism. Then,
in Section 2.3, introduces concepts of artificial intelligence and machine learning fields,
such as supervised and unsupervised learning. Finally, Section 2.4 enumerate some tools
used in design automation of DNA circuits.

2.1 Chemical Reaction Networks

In this section, we describe the basic concepts of chemical reactions. They are
essential to understand how it is possible to use the language of chemical kinetics as a
formal language to program a “wet” hardware made of chemical compounds.

2.1.1 Chemical Reactions

A chemical reaction is a process in which one or more substances, the reactants,
are converted to one or more different substances, the products (87).

All chemical reactions are defined by a set of species (substances) and a rate constant
(described later). One reaction with a set of species S = {A,B}, which A transforms in
B, and a chemical reaction rate constant k is described using the following notation (also
called “chemical equation”):

A
k−→ B . (2.1)

The species(substances) can be categorized as either reactants or products. Reac-
tants are the species that will react and transform into the products, which are species
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produced by the chemical transformation. For example, in the reaction (2.1), the left side
of the arrow contains the reactants, and the right side of the arrow contains the products,
which are A and B, respectively.

Equation 2.2 shows another chemical reaction of two different reactants A and B

interacting with sufficient energy to create, in this process, a new product species C.

A+B
k−→ C . (2.2)

A fundamental aspect of the chemical reaction notation is that one must not confuse
the “+” symbol between reactants as a sum: it is simply read as “and.” So, Equation 2.2
is read as “A and B produces C.”

The following reaction (2.3) shows an example of how to represent reactions that
produce more than one product: in this case, reactant A creates two products: B, and C.

A
k−→ B + C . (2.3)

It is important to emphasize, as noted by (87), that chemical reactions must be
distinguished from physical changes. Physical changes include changes of state, such as
ice melting into water and water evaporating to vapor. If a physical change occurs, the
physical properties of a substance will change, but its chemical identity will remain the
same.

2.1.2 Stoichiometric Coefficients

Stoichiometric coefficients are numeric values that precedes species’ names. For
example, in reaction (2.4):

2A
k−→ B . (2.4)

the value “2” is the stoichiometric coefficient of A and “1” (implicit, omitted) is of B, which
means that two molecules of A react to produce one molecule of B. These coefficients are
used to balance the number of atoms of elements (molecules, for example) of reactants with
the number of atoms of elements of the products (following the law of mass conservation
(86)).
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2.1.3 Reversible Reactions

It is possible to have a system of chemical reactions that work in the following way:

A+B
k1−→ C +D ; (2.5a)

C +D
k2−→ A+B . (2.5b)

That means one reaction has products that are reactants of the other, and vice-versa. This
system can be represented in a more compact way:

A + B
k1−−⇀↽−−
k2

C + D . (2.6)

Reaction (2.6) is called reversible chemical reaction, because A transforms into B, but B
also can transforms into A.

2.1.4 Equilibrium Constant

Suppose a system that contains two reactions that interact competitively, such
as reactions (2.5). In that case, they will share a moment in time that A will produce
B at the same rate that B produces A (such as A and B are reactants and products of
one reversible reaction, respectively). This means that the reversible reaction will reach
equilibrium, i.e., the concentrations of both A and B will stay constant.

The relation between the concentration of products and reactants is defined by

what is called “equilibrium constant”, described by the following equation: K =
[B]

[A]
,

where [A] and [B] are the concentrations of A and B at the equilibrium, respectively.
The equilibrium constant for the generic reaction aA + bB k1−−⇀↽−−

k2
cC + dD can be

expanded to:

K =
[C]c[D]d

[A]a[B]b
. (2.7)

When K > 1 and in equilibrium, there is a more concentration of products than of the
reactants. When K < 1, the concentration of reactants is more significant than that
of the products. Finally, when K = 1, reactants and products can still have different
concentrations, but the product of the reactants’ concentrations is equal to the product of
the concentrations of the reaction products. (51).
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2.1.5 Concentration of Solutions

The mathematical model that expresses the behavior of chemical reactions is fully
linked to the amount of substance in the system. So, it is fundamental to understand how
to measure each amount in a system. First of all, a “system” is an environment in which
the species (substances) are, and the reactions are occurring (17). Usually, substances
are placed in a solution, i.e., a mixture of two or more substances, to make a chemical
reaction occur (30). As the solution is the system, an amount (or quantity) of substance is
expressed by its concentration, the relation between its amount and the solution volume.

The molar concentration (or molarity) is the amount of substance of the solute per
volume of solution, and its symbol is mol/L (25). The work of (58) defines “mole” as:

“The mole, symbol mol, is the SI unit of amount of substance. One mole
contains exactly 6.02214076 × 1023 elementary entities. This number is the
fixed numerical value of the Avogadro constant, NA, when expressed in mol−1,
and is called the Avogadro number. The amount of substance, symbol n, of
a system is a measure of the number of specified elementary entities. An
elementary entity may be an atom, a molecule, an ion, an electron, or any
other particle or specified group of particles.”

In other words: one mol from substance A is equivalent to 6.02214076× 1023 molecules of
A. 1

2.1.6 Chemical Reaction Rate

Usually, a chemical reaction comprises a sequence of elementary reactions that
occur in a single step. This sequence of elementary reactions composes the mechanism,
i.e., the “reaction path,” of a chemical reaction. Because an elementary reaction does not
involve the formation of an intermediate substance, the products must be formed directly
from the reactants.

An elementary reaction’s molecularity is the number of reactant molecules involved
in the chemical reaction. Elementary reactions involving one, two, and three reactant
molecules are called unimolecular, bimolecular, and termolecular reactions. Termolecular

1Another important fact is that the mole is used to define a relationship between the number of
elements of a substance and its mass. For example: the 12C carbon isotope has 12 grams per mol (12g on
6.02214076× 1023 atoms).
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Table 2.1: Experimental data collected from an elementary hipotetical A −→ B reaction.
Time in hours and concentrations in mole (M). Adapted from (90).

Time (h) [A] [B]
0.0 1.000e-05 0.000e+00
0.5 6.016e-06 3.984e-06
1.0 3.652e-06 6.348e-06
1.5 2.236e-06 7.764e-06
2.0 1.368e-06 8.632e-06
2.5 8.352e-07 9.165e-06
3.0 5.096e-07 9.490e-06
3.5 3.111e-07 9.689e-06
4.0 1.900e-07 9.810e-06
4.5 1.160e-07 9.884e-06
5.0 7.083e-08 9.929e-06

reactions are infrequent, and reactions with higher molecularity have never been observed
experimentally.

Regardless of the molecularity of the reaction, it needs time to occur. The speed
at which the reaction needs to happen is known as the “rate law.” The “global rate
law” is an experimentally obtained rate for a chemical equation. It is used to propose a
reaction mechanism consisting of a sequence of elementary unimolecular and bimolecular
reactions. Combining these elementary reactions, we can arrive at the experimental rate
law. Theoretically, building any complex reaction (or network of reactions) from elementary
reactions is possible.

For example, the elementary chemical reaction A −→ B expresses that A transforms
into B during some time. However, that is not enough; the behavior of this transformation
must be defined. “Chemical Kinetics”, also known as reaction kinetics, is the branch of
physical chemistry that is concerned with understanding the rates of chemical reactions
(45).

In order to study the speed of the elementary A −→ B reaction (also called the
rate), in a practical situation, a chemist performs a lab experiment with this reaction.
As the experiment proceeds, the concentrations of A and B (denoted by [A] and [B])
are measured at different points in time. Suppose, for illustrative purposes, that the
concentration measurements resulted in the values shown Table 2.1. All the values present
in the Table 2.1 are ploted in graph at Figure 2.1. Because experimental work needs to
measure and write down the concentration values, we need a compact and clear form to
represent the reaction behavior at any time.

The behavior can be mathematically modeled based in law of mass-action. It
affirms that the reaction rate of a chemical reaction in constant temperature is directly
proportional to reactants concentrations (52, 19). Using this law, it is possible to define a
mathematical expression to rate of reaction A

k−→ B as:
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Figure 2.1: Graphical representation of data from Table 2.1. Adapted from (90)

r(t) = k[A]nt ; k, n,∈ R; t ∈ N; (2.8)

where r(t) expresses the time rate t and [A]t is the concentration of species A at time t. A
more generic reaction aA+ bB + . . .

k−→ products can be expressed as:

r(t) = k × [A]nt × [B]mt × . . . ; k, n,m ∈ R; t ∈ N; (2.9)

The rate function of a reaction is called reaction kinetics. The kinetics of a reaction
network is the association of a rate function for each reaction in the network (33).

Remark that k (also called the rate constant), used in the notation for reaction
2.1 (at the top of the arrow), is the same as used in the rate equation. This constant
determines the proportionality between reactants and products. It is defined based on
reaction’s characteristics, such as temperature and reactants, for example (19).

The m and n coefficients define the order of the reaction. They express how much
the concentration of A and B affect the reaction rate, respectively. It is essential to highlight
that these values are not necessarily equal to the species’ stoichiometric coefficients (a and
b). In practice, these values are obtained experimentally. The reaction order is defined as
the sum of the reactants’ order, which is m+ n. Since velocity is nothing more than the
variation of species concentration over time, we can also rewrite the velocity function for
the reaction A

k−→ B as being:

r(t) = −∆[A]t
∆t

=
∆[B]t
∆t

, (2.10)
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where ∆[A]t denotes the concentration variation of [A] from time t − 1 to t and ∆t =

t−(t−1). We need to note that the reaction velocity is defined by the negative concentration
of [A], because [A] is consumed in the reaction, whereas [B] is being produced. With this
is mind, we can merge equations 2.8 and 2.10 as:

−∆[A]t
∆t

=
∆[B]t
∆t

= r(t) = k[A]nt . (2.11)

An equation that expresses reaction rate in terms of the species’ concentration
variation is called “differential rate law” (19). Setting ∆t→ 0, we have:

−d[A]t
dt

=
d[B]t
dt

= k[A]nt . (2.12)

The expression 2.12 can be rewriten as:
d[A]

dt
= −k[A]nt

d[B]

dt
= k[A]nt

. (2.13)

The ordinary differential equations (ODE) system in 2.13 is one of many forms in
expressing the behavior of one or many CRNs mathematically.

2.1.7 Chemical Reaction Network

A Chemical Reaction Network (CRN) is a set of coupled chemical reactions. For
example, the CRN in equation 2.14 is composed of three bimolecular coupled chemical
reactions (42). The chemical reactions in equations (2.14b) and (2.14c) are autocatalytic,
since each one produces three copies of the reactants species X0 and X1, respectively.

X0 +X1
k1→ SX ; (2.14a)

SX +X0
k2→ X0 +X0 +X0; (2.14b)

SX +X1
k3→ X1 +X1 +X1. (2.14c)

The mathematical model that describes the dynamical behavior of the species of
the CRN in equation 2.14 is:

d[Sx]

dt
= k1[X0][X1]− k2[Sx][X0]− k3[Sx][X1]; (2.15a)

d[X0]

dt
= −k1[X0][X1] + 2k2[Sx][X0]; (2.15b)

d[X1]

dt
= −k1[X0][X1] + 2k3[Sx][X1]. (2.15c)
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Figure 2.2 shows the dynamic behavior of the species X0 and X1 obtained by
computational simulation of the system of ordinary differential equations (2.15). The
two graphics correspond to the simulations made with different initial conditions for the
concentration of the species X0 and X1.
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(a) Initial concentration of species X1 is higher
than X0.
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than X1.

Figure 2.2: Simulation results for the equation 2.14. Both concentration and time axis are
in arbitrary units.

Figure 2.2a shows the result of simulation when the initial concentration of X1 > X0,
while Figure 2.2b shows the inverse case X1 < X0. Both the axis are in arbitrary units
to show the behavior of the curves defined by its differential equations. In both cases,
the concentrations of the species change in function of time until they reach the chemical
equilibrium. Still, the species that have the higher initial concentration evolves to the
chemical equilibrium value equal to 1, while the other one drops to zero.

2.2 DNA Strand Displacement Mechanism

This section will define some DNA concepts needed to understand its utility in
implementing computation and how it is related to CRNs. Section 2.2.1 will introduce
basic concepts about DNA, such as its basic blocks and how it is organized. After, at
Section 2.2.2, introduces the DNA Strand Displacement (DSD) mechanism and give some
examples of how it can be used to construct chemical circuits using DNA.
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2.2.1 Desoxyribonucleic Acid

The Deoxyribonucleic acid (DNA), and Ribonucleic acid (RNA) are organic
molecules present in all living organisms. The DNA primary purpose is to store in-
formation. Its structure is built around two strands. Each strand is composed of a
sequence of nucleotides (3), that repeat as subunits. Each nucleotide is composed of three
molecules: one of four nitrogenous bases available to use ((A)denine, (T)imine, (G)uanine,
(C)ytosine), a sugar called deoxyribose, and a phosphate group. On RNA, (U)racile is used
instead of (T)imine. These are built from chemical elements such as carbon, hydrogen,
oxygen, phosphorus, and nitrogen, having slightly different structures.

One nucleotide is joined to another in a chain by covalent bonds between the
phosphate of one and the sugar of the next. This structure results in an alternating
phosphate-sugar polymer. The nitrogenous bases of both strands are bound together
through “hydrogen bonds” of complementary Watson-Crick base pairing (A-T and C-G),
which makes the double helix DNA shown in Figure 2.3.

2.2.2 Strand Displacement Mechanism

The DNA Strand Displacement (DSD) mechanism is an experimental technique
to program the interaction of synthetic and small strands of DNA molecules (83). It is
essential to note that all of this work is based on the use of synthetic DNA strands. Different
graphical representations can be used to simplify the description of DNA. Examples of
these are shown in Figure 2.4.

When a sequence of bases in synthetic DNA are grouped together, they form a
domain. In addition, this sequence has a codomain, i.e., a complimentary domain that
bounds to it. In Figure 2.4, domains are number named, and codomains are stared number
named. The 5’ (read “five-prime end”) and 3’(read “three-prime end”) at both ends of
every strand of DNA are direction indicators of strands. In a DNA double helix, the
strands run in opposite directions to permit base pairing between them.

The dynamic process starts when the toehold domain 1 of single-strand A hybridize
(through complementary Watson-Crick base pairing) with the complementary toehold
domain 1∗ of strand Gi, following a branch migration and displacement of single-strand
Oi, which in turn, interacts with double-strand Ti through complementary toehold 3∗ to
displace the single-strand B from the double strand Ti.

As a whole, the set of molecules in the Figure 2.5 forms a coupled DSD network,
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Figure 2.3: The structure of DNA showing with detail the structure of the four bases,
adenine, cytosine, guanine and thymine, and the location of the major and minor groove
(11).

Figure 2.4: Example of three forms of representation of DNA molecules (104). The
numbers denote domains; stared numbers denote complementary domains.
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A

B
Figure 2.5: A DNA Strand Displacement (DSD) network (figure produced with (49)) with
dynamic behavior analog to the unimolecular chemical reaction of the Equation 2.16.

and its dynamic behavior can be modeled by the law of mass action.
It has been proposed that it is possible to design a coupled DSD network with

dynamic behavior analog to the dynamics of elementary uni or bimolecular chemical
reactions (83, 85). For example, the dynamic behavior of the arbitrary formal unimolecular
chemical reaction, represented on the left side of the brace in Equation 2.16, can be
approximated by the dynamic behavior of coupled DSD network described in the right
side of the brace.

The Adna and Bdna from the right side of Equation 2.16 are the single DNA strands
A and B in Figure 2.5. These strands represent the species A and B in the arbitrary
unimolecular chemical reaction from the left side of Equation 2.16. The DNA double
strands Gi and Ti are the auxiliary DNA species gate and translator, respectively. The
species Oi is a DNA single-strand that couples the two DSD processes.

To approximate the dynamic of the unimolecular chemical reaction, there are some
constraints on the constants qi, qmax, and on the concentration of auxiliary species that
need to be met (83). The method also applies to emulate a generic biomolecular elementary
chemical reactions using a proper design for the coupled DSD network.

Combining DSD networks that emulate the dynamic behaviors of uni and bimolec-
ular elementary reactions, any arbitrary CRN can be physically simulated in the test tube
(85).

A
k→ B =⇒

Adna +Gi
qi→ Oi

Oi + Ti
qmax→ Bdna

(2.16)

The system of Ordinary Differential Equations (ODEs) that models the CRN
A

k→ B is described in Equation 2.13. The ODEs that model the DSD reactions present
on the right side of the arrow in Equation 2.16 is described in Equation 2.17.
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Figure 2.6: Behavior comparison between a formal unimolecular chemical reaction and its
equivalent implementation in DSD mechanism shown in Equation 2.16.



d[A]

dt
= −qmax[A]t[Gi]t

d[B]

dt
= qmax[Oi]t[Ti]t

d[Gi]

dt
= −qmax[A]t[Gi]t

d[Oi]

dt
= qmax[A]t[Gi]t − qmax[Oi]t[Ti]t

d[Ti]

dt
= −qmax[Oi]t[Ti]t

. (2.17)

Figure 2.6 shows that the behavior of DSD reactions approximate the behavior of
the unimolecular chemical reaction present in Equation 2.16.

2.3 Machine Learning

Machine learning (ML) is the study of computer algorithms that can improve
automatically through experience and by the use of data (60). It is seen as a part of
artificial intelligence field. These algorithms use sample data to build a model to make
predictions (or decisions) without being explicitly programmed by a human. There are
various approaches to machine learning. Section 2.3.2.2 will cover the unsupervised learning
algorithm K-Medoids used in this work. Before that, Sections 2.3.1 and 2.3.2, respectively,
explain the differences between supervised and unsupervised learning algorithms.
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2.3.1 Supervised Learning

Supervised learning is a category of ML algorithms that learn a function with the
help of input-output examples (76). These examples are called training data. This training
data consists of pairs of input and output values. A pair map the input to its desired
output value. The supervised learning algorithm uses the training data to adjust (or “to
learn”, “to train”) the function behavior. After “training”, the function can now infer
outputs to never previously seen inputs.

When considering a perfect scenario, the algorithm learns a function that can
correctly determine outputs for unseen instances. This situation shows that the learning
algorithm could generalize the training data enough to infer unseen input values correctly
in a “reasonable” way.

Many supervised learning algorithms exist, but some issues are common in all
of them, i.e., the necessity of providing two sets of data: the training set and the test
set. Humans must gather real-world representative data (either from human experts or
measurements). Then, the training set should contain some of the gathered data that will
be used in the training phase of the learning algorithm. The remaining data is used as the
test data to verify the quality of the trained function.

These two sets, if improperly chosen, can cause various degrees of problems, such
as bias-variance tradeoff, not enough training data to learn the function complexity,
redundancy, or high heterogeneity in the data.

2.3.2 Unsupervised Learning

Unlike the approach used by supervised learning algorithms, no previously labeled
training set is provided to unsupervised learning algorithms (37). Thus, the algorithms
must themselves group the data into categories with similar features. This is a significant
advantage over supervised learning algorithms because it minimizes the human labor to
prepare and review the training set. Furthermore, the algorithm has more freedom to
identify and use previously undetected features in the data that human experts may not
have discerned.

This advantage comes with a cost. Unsupervised learning algorithms require more
data in the training set. Also, they take more time to converge the learning function and
require greater computing power and memory storage to accomplish the initial investigative
process. In addition, in some situations, the unsupervised learning algorithm can see
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artifacts or anomalies in the training data as irrelevant or assigned undue importance.
These artifacts and anomalies, in some cases, are even erroneous when seen by a human,
but the algorithm may show greater sensibility of them.

Unsupervised learning algorithms can be organized into four major categories:
clustering, anomaly detection, neural networks, and latent variable models (98, 43). The
most known algorithms are in the clustering category. Some examples include hierarchical
clustering (98), K-Means, K-Medoids (43), mixture models, DBSCAN (29) and OPTICS
algorithm.

This work is focused in designing a chemical reaction network that implements
the K-Medoids algorithm. Because K-Medoids is an variation of K-Means algorithm, in
Section 2.3.2.1 we will present how K-Means algorithm works. After, in Section 2.3.2.2,
we show the behavior of K-Medoids algorithm.

2.3.2.1 K-Means

K-means is one of the most popular clustering algorithms (98). It aims to partition
data points into clusters, in which each data point belongs to the cluster with the nearest
calculated mean, named centroid.

The clustering problem which both heuristics try to resolve is NP-hard, i.e., it is
computationally difficult (40, 4); nevertheless, a local optimum can be obtained quickly
by efficient heuristic algorithms. Unfortunately, although helpful, the k-means clustering
algorithm is not very robust to noise and outliers. It generally relies on minimizing squared
euclidean distances between points and uses centroids that are not necessarily present in
the input points set.

The standard k-means algorithm, also known as “naive k-means”, is described in
Algorithm 1. It contains two steps: the assignment step and the update step. In the
assignment step, each point is assigned to the cluster of nearest mean. In the update step,
the means (centroids) from each cluster are recalculated to match the possible updated
clusters in previous step (54). The notation S

(t)
i present in Equation 2.18 refers to nearest

cluster set Si in iteration t. Accordingly, m(t+1)
i in Equation 2.19 refers to mean (centroid)

mi to be used in next iteration t+ 1.
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Algorithm 1: K-means algorithm.
Input: X = {x0, x1, ..., xn−1}, n ∈ N data points and K ∈ N cluster sets.

Initialization: Given a initial array M of K means M = [m0,m1,m2, ...,mK−1] for
K-partitions (randomly chosen or based on some prior knowledge);

Assignment step: Assign each point xp ∈ X to the nearest cluster set Si:

S
(t)
i =

{
xp :

∥∥∥xp −m
(t)
i

∥∥∥2

≤
∥∥∥xp −m

(t)
j

∥∥∥2

| ∀j, 0 ≤ j ≤ K − 1

}
(2.18)

for i, j ∈ {0, 1, 2, ..., K − 1} and t ∈ N iterations.

Update step: Recalculate means (centroids) for each cluster:

m
(t+1)
i =

1∣∣∣S(t)
i

∣∣∣
∑

xj∈S
(t)
i

xj (2.19)

Stop condition: Repeat both steps until the assignments do not change.

2.3.2.2 K-Medoids

K-Medoids main difference to K-Means resides in that it does not use calculated
centroids as the representative of a cluster. Instead, it chooses actual data points as
centers; they are called “medoids”. Another significant difference is that K-Medoids can
use arbitrary dissimilarity criteria instead of Euclidean distances. This change in measuring
criteria causes the algorithm to minimize a sum of pairwise dissimilarities instead of a sum
of squared Euclidean distances, making it more robust to noise and outliers than K-Means
(41).

K-Medoids is a partitioning algorithm (such as K-Means) that groups n points into
K clusters by similarity. The problem of clustering is NP-hard, i.e., grouping data by
similarity is difficult to solve exactly (40, 4). The Partitioning Around Medoids (PAM,
also known as K-Medoids) algorithm (43) was the first heuristic proposed to solve the
partitioning problem. Other heuristics based on PAM were subsequently proposed, with
various degrees of optimization in speed and quality of results, such as CLARA, CLARANS,
and FastCLARA (43, 79).

The PAM algorithm uses a greedy search heuristic. This heuristic may not find the
optimum solution but is fast and can find some good local optima. The PAM algorithm
works in two distinct phases: the BUILD phase and the SWAP phase. These phases are
shown in Algorithms 2 and 3, respectively.

In BUILD phase, an initial clustering is found by selecting representative points
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Algorithm 2: Partition Around Medoids BUILD phase algorithm (Adaptated
from (43)).
1 Initialize S with a point for which the sum of the dissimilarities to all other points

is minimal;
2 Consider a point xi ∈ U as a candidate for including into the set S;
3 For a point xj ∈ U − {xi}, compute Dj;
4 If Dj > d(xi, xj) then point xj will contribute to the decision of selecting point xi:

Cji = max
(
Dj − d(xj, xi), 0

)
(2.20)

5 Compute total gain obtained by adding xi to S:

gi =
∑
xj∈U

Cji (2.21)

6 Choose point xi that maximizes gi, i.e.: S = S ∪ {xi} and U = U − {xi};
7 Repeat all steps from step 2 until K points have been selected;

successively until K points are found. The first point is the one for which the sum of the
dissimilarities to all other points is as small as possible. This point is the most centrally
located in the set of points. After that, at each step, another point is picked. This point is
the one that minimizes the objective function as much as possible (43).

To explain both phases in detail, some assumptions are needed. As our convention,
data points are placed in set X. Points that are also medoids are placed into a set
S of selected points. Non-medoid points are placed in set U of unselected points. So,
U = X − S. For each point xp ∈ X we need to maintain two values: Dp and Ep. The
Dp is the dissimilarity value between xp and the closest point in S, i.e., the first nearest
medoid. The Ep is the dissimilarity value between xp and the second closest point in S,
i.e., the second nearest medoid. So, Dp ≤ Ep and xp ∈ S if and only if Dp = 0. Also,
both Dp and Ep must be updated every time when the sets S and U change. With these
assumptions, the BUILD phase is described in Algorithm 2

The SWAP phase is where the heart of the PAM algorithm resides. In this phase,
the heuristic tries to improve the set of representative points and, consequently, improve
the clustering generated by this set. First, the heuristic considers all pairs of points (xi, xh)

for xi ∈ S and xh ∈ U . Then, we must determine what effect is obtained on the clustering
value when a swap is carried out, i.e., when the point xi is no longer a medoid but point xh

is. Mathematically, this is equivalent to transferring xi from S to U and xh from U to S.
It is important to highlight that the clustering value is defined as the sum of dissimilarities
between each point and the most similar representative point.

Deciding swap xi and xh involves computing the swap total contribution Tih. This
total contribution needs to consider each contribution Kjih of each point xj ∈ U −{xh} to
the swap of xi and xh. It is important to highlight that we can have only d(xj, xi) > Dj or
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Algorithm 3: Partition Around Medoids SWAP phase algorithm (Adaptated
from (43)).
1 repeat
2 Iterate ←− false;
3 // For each non-medoid
4 for xh ∈ U do
5 // For each medoid
6 for xi ∈ S do
7 // For each non-medoid minus xh

8 for xj ∈ U − {xh} do
9 // Dj is the dissimilarity between xj and the first closest medoid

10 if d(xj, xi) > Dj then
11 if d(xj, xh) ≥ Dj then
12 Kjih ←− 0;
13 else
14 Kjih ←− d(xj, xh)−Dj;
15 else if d(xj, xi) = Dj then
16 // Ej is the dissimilarity between xj and the second closest

medoid
17 if d(xj, xh) < Ej then
18 Kjih ←− d(xj, xh)−Dj;
19 // Kjih can be either positive or negative
20 else
21 Kjih ←− Ej −Dj;
22 // In this sub-case, Kjih > 0.

23 // Compute total swap contribution
24 Tih =

∑{
Kjih | j ∈ U

}
;

25 Select a pair (xi, xh) ∈ S × U that minimizes Tih;
26 if Tih < 0 then
27 S ←− (S − xi) ∪ xh;
28 Iterate ←− true;
29 until Iterate = false;
30 Exit, because the objective cannot be decreased anymore;
31 //This happens when all values of Tih are positive and it is the halting condition of

the algorithm
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d(xj, xi) = Dj . In other words: or xj belongs to a cluster more distant to xi or xj belongs
to the cluster of xi. Algorithm 3 shows how to calulate the effect of a swap between xi

and xh, i.e., when xi ∈ U and xh ∈ S.
After the total contribution value Tih is obtained, the algorithm decides if the swap

can be carried on. If Tih < 0 the swap is made and another iteration begins. Otherwise,
the algorithm halts. An example of k-medoids running is shown in Figure 2.7.

In the next Chapter, we will show some related works that builds upon the base
concepts of DNA Computing and Machine Learning applied in the context of Chemical
Reaction Networks.

2.4 DNA Computing Design Automation Tools

Designing and simulating DNA Strand Displacement (DSD) circuits is complex
and prone to errors. Depending on what level of abstraction the DSD circuit design starts,
it can be top-down or bottom-up. Top-down designs usually start from the higher levels of
abstraction, such as generic Chemical Reaction Networks (CRNs) describing the dynamic
behavior of a DSD chemical reaction without the specific details of DSD encoding (such as
4-Domain scheme and others (83, 85)) and work towards the compilation to DNA strands
in lower levels of abstraction, such as domain level and molecular level. Bottom-up designs
work the other way around, starting the design at the domain level and going up to more
abstract levels. In both ways, the development cycle of new circuits and designs needs
many person-hours of work. Also, due to the complexity, many errors could be introduced
due to manual fatigue and mistakes. Because of these difficulties, various tools were and
are being developed to address those issues, making the design of DSD circuits faster,
easier, and more correct.

Figure 2.8 illustrates that we can organize the workflow development of DSD circuits
in four principal steps, top-down, i.e., from the more abstract to the more specific: (I)
the generic CRN design; (II) the CRN-to-DSD compilation; (III) the DSD simulation
and analysis; and (IV) the DSD compilation to nucleotides. For each step, a particular
software tool facilitates developing circuits in DNA. It is essential to highlight that it is
possible to simulate the behavior of the molecular circuit in the design steps, so step (III)
is a verification of the (I), (II), and (IV) steps.

The first step is to express the desired behavior for the DNA circuit, comprising the
generic CRN design. Copasi (39) and Surface CRN (24) tools help model, simulate and
visualize the dynamical behavior of biochemical systems from the description of generic
CRNs (5, 53).
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(a) Convergence of k-medoids clustering on an artificial dataset from an starting position
chosen by the BUILD heuristic (Algorithm 2).
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“mouse” data set. The distant orange
squares are outliers. Adaptated from
(23).

Figure 2.7: Four SWAP iterations of K-medoids algorithm.
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In the second step, we must convert (or compile) such CRN into DSD systems.
Thus, we must map each species of the CRN to DNA domains. These domains form small
fragments to allow the DSD technique’s implementation. Nuskell (7) software focuses on
converting generic CRN into various schemes (also called encodings) of DSD reactions.
Then, the dynamic behavior of these DSD reactions is simulated and analyzed accordingly.

Also, in this step, the DNAr (89) is a software package developed for R language
that permits the analysis and simulation of molecular circuits at the abstraction level
of CRN. Similarly to Nuskell, the DNAr package can convert generic CRNs into DSD
reactions and simulate them. Additionally, this package provides various quality-of-life
features to its users, such as offering functions to visualize and compare simulation results
from both abstraction levels (CRN and DSD), export the DSD reactions to Visual DSD
(49), and promote developers to build new extensions on top of DNAr to generate and
simulate large-scale complex CRNs. DNAr simulate a CRN with data received as a set of
vectors. These vectors are organized in a data-oriented design, i.e., each vector contains
only one type of data, such as species names, concentrations, reactions, rates, or others.
Each value is associated with its index in vectors. For example, in Algorithm 4, we see
how to invoke DNAr and simulate a simple unimolecular CRN.

The species names and their initial concentrations are defined on lines 5 and 6. Note
that each line initializes the species and ci parameters with lists. Each position in those
lists refers to one species. In other words, species[0] (value 'A') and ci[0] (value 1e-5)
are associated by their index 0. The same happens with reactions[0] (value 'A -> B')
and ki[0] (value 5e-5), which are the reaction and its rate. The last parameter t is a list
containing the sequence of ten time points from 0 to 72000 used to simulate and plot the

(I) (II)

(III) (IV)
Figure 2.8: Design flow of DNA Strand Displacement (DSD) circuits. Step (I) is the design
of generic Chemical Reaction Network (CRN); Step (II) is the compilation to a specific
encoding of DSD CRN; Step (III) is the behavioral simulation of the reactions; Step (IV)
is the syntesis of DNA strands.
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Algorithm 4: DNAr code to simulate the unimolecular reaction A→ B.
1 library(DNAr) # Loading the library
2

3 # Simulating
4 b <- react(
5 species = c('A', 'B'),
6 ci = c(1e-5, 0),
7 reactions = c('A -> B'),
8 ki = c(5e-5),
9 t = seq(0, 72000, length.out = 10) # Using 10 time points

10 )

graph.
DNAr, as in this previous example, provides the conversion from this data to ODEs

and solves them to generate a graph showing the species’ concentrations varying over time.
When building more complex CRNs, managing these lists is entirely manual and

cumbersome. It leads to various problems, such as laboriousness from creating unique
species’ names to incorrectly positioning the data according to their respective indices in
lists. This tribulation led to the necessity to create a tool that could lift this responsibility
from the shoulders of designers and abstract it in a way that allowed them to focus on
what matters: designing the circuits.

DNAr-Logic (57, 56) and DNAr-Analog (68) are two extensions built on top of
DNAr that completely abstract the chemical and biological nature of DSD circuits. They
solve this problem by exposing a simple Application Programming Interface (API) to
developers to construct their complex circuits programmatically without worrying about
these nuisances. The package’s responsibility is to correctly name and reference all the data
from the species’ names, initial concentrations, reactions, and rates without distracting
the users from their real focus: iterating through designing, testing, and validating their
molecular circuits. They will be described in more details on Chapter 4.

The third step is to study the circuit at a lower level of abstraction, i.e., DSD
systems. In this step, we can analyze the DSD reactions from various perspectives. The
Multistrand (78) software provides a more detailed perspective. It is built on top of
NUPACK (101), and can simulate nucleic acid kinetic interactions on a thermodynamic
energy model. It also supports multiple interacting strands and various usage modes to
study kinetic trajectories. In simpler terms, it operates on nucleic acid domain interactions.
From a broader perspective, the KinDA (10) software framework simulates the kinetic
behavior of DSD reactions on the domain level with nucleotide sequences assigned to each
domain. It uses Multistrand and NUPACK software to simulate the DSD reactions and
obtain results.

Similarly to KinDA, there is the Microsoft Visual DSD (49) software. The tool
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operates in the nucleic acid domain level of abstraction. It defines a domain-specific
programming language for programming nucleic acid circuits. This language automatically
computes all possible reactions between the species, facilitating a reaction-based approach
and eliminating the complication of manually constructing the reaction network. It can
analyze and simulate the circuits using various methods, including stochastic simula-
tion, approximate simulation of stochastic dynamics using moment closure techniques,
integration of the chemical master equation, and satisfiability analysis for stable systems.

Finally, at the fourth and last step, the design of DNA circuits achieves the highest
level of detail. At this point, it is necessary to define all nucleotides of the DNA strands
involved and the specific characteristics of the solution. The NUPACK (101) is a software
suite for analyzing and designing nucleic acid structures, devices, and systems. It provides
a simulation on a very low-level abstraction. It deals with complex test tube ensembles
containing arbitrary numbers of interacting strand species, providing meaningful tools to
analyze and design the DNA intermolecular interactions. The tool provides algorithms that
work on two elemental class problems: sequence analysis and sequence design. The first one
analyzes the equilibrium base-pairing properties of a given set of DNA (or RNA) strands
over a specified ensemble; the second one is the design of the sequences of a set of DNA
or RNA strands over a specified ensemble given a set of desired equilibrium base-pairing
properties. Likewise, the Piperine (85) specifies all characteristics of the candidate DNA
strands for experimental implementation in the laboratory. It is an automatic and complete
tool. It offers support from the specification of CRN to the definition of nucleotides of
DNA molecules.

Although this is a comprehensive list of the most widely known tools, this list is far
from complete. Due to the necessity of automation, verification, scalability, and efficiency
in boot-starting this new technology, new tools are constantly being developed and tested
by various researchers around the globe.
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Chapter 3

Related works and Historical
Background

The purpose of this chapter is to make a brief, but comprehensible, literature review of
the most important works about computing systems made of biological components, such
as DNA. Section 3.1 presents some review of the previous works done to build computing
systems out of biological components. Section 3.2 will cover works done to bring machine
learning to Chemical Reaction Networks (CRNs).

3.1 DNA Computing

This section will present some works that use DNA as a biological compound
capable of computing. Other biological compounds, such as proteins and a-like, will be
mentioned but are not the focus of this work. From this chapter onwards, we will use the
terms “species” and “signal” synonymously to refer to the (single or double) strands of
DNA present in an aqueous solution. Also, we need to define that the terms in silico, in
vitro, and in vivo refer to the medium where the algorithms run. The in silico algorithms
run implemented as a conventional program inside a conventional electronic computer.
The in vitro algorithms are implemented as a Chemical Reaction Network (CRN) that
react chemically in a laboratory but can be simulated in a conventional computer. The
in vivo algorithms run as a drug inside living organisms but can also be simulated in a
conventional computer.

The idea of computing using biological compounds is not a novel thing. Many
types of substances, such as proteins, appear to process and transfer information instead
of being used as metabolic intermediates or when building cellular structures. Instead,
they are used in biochemical “circuits” that perform simple computational tasks such
as amplification, integration, and information storage (15). Conceptually, any protein
transforming an input signal into an output signal could operate as a computational or
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information-carrying element. Proteins can interact with chemical constructs, such as
DNA and RNA; proteins can also respond to light, temperature, mechanical forces, and
voltage, all of these useful as biochemical circuits inputs (15).

Due to proteins and ribonucleic acid (DNA and RNA) present in cells, some authors
declare that cells are the smallest computer in nature: they can be seen as molecular
machines that process inputs through state transitions and generate outputs (77). However,
the DNA and RNA inside cells were recognized as the repositories for computational
programs. Because of that, early biomolecular computer research focused on human-scale
electronic computers operated by humans to solve these complex problems of cells (77).
More recent works focus on a different strategy: using nucleic acids such as DNA and
RNA to implement the computation itself, i.e., molecular computers that allow input
and output to be molecules, producing a native biomolecular system to control biological
processes. For example, a molecular computer identifying and analyzing Messenger RNA
(mRNA) of disease-related genes and producing a single-stranded DNA molecule modeled
to work as an anticancer drug when needed (9).

Soloveichik presented one of seminal works that bootstrapped the use of nucleic
acids to implement the dynamic behavior of any kind of formal chemical reactions (83).
Their work showed how to construct systems of DNA molecules to closely approximate
the dynamic behavior of arbitrary systems of coupled chemical reactions. Furthermore, by
leveraging strand displacement reactions, they showed it is possible to compile any system
of chemical equations into real chemical systems that use DNA as a universal substrate to
do Turing-universal computation.

Further developing the idea of using DNA strand displacement to make computation,
Quian developed a simple DNA gate that can be used in synthesizing large-scale molecular
circuits (71). Using DNA strand displacement cascades, they develop DNA circuit design
techniques that scale up easily, allowing the systematic creation of large molecular circuits.
These large circuits are possible because the gates amplify small signals and incorporate
a threshold to clean up noise and erroneous signals present along the circuit. Another
characteristic of the gate is its modular design. It allows the systematic automated design
of large circuits by a compiler that converts a high-level description of a circuit into a
molecular implementation at the level of DNA sequences.

Although not directly related to DNA, Jiang projected basic logic gates such
as AND, OR, NOR, XOR using a system of chemical reaction networks that can be
implemented in DNA (42), for example, using the 4-Domain schema (83). By project,
these circuits amplify weak signals and incorporate a threshold to clean up noise and
erroneous signals present in the circuits. Also, the gates were used to create larger circuits,
such as a square-root unit, a binary adder, and a linear feedback shift register that worked
without errors.

The extensive survey brought up by Boruah showed that various solutions designed
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using DNA could solve some NP-Complete problems — such as Travelling Salesman
Problem (93), Boolean Satisfiability Problem, 3-Vertex Coloring Problem, and Vertex
Cover Problem, for example — using the intrinsically massively parallel (20) characteristic
of molecular computers (14, 96).

A more recent and extensive review of the literature compiled by Fan showed
that DNA could be applied in different kinds of computation other than digital logic
computation, such as multivalued logic and fuzzy logic, and also be used as “logic building
blocks” that can construct new materials (32). Beyond computation, DNA has also been
investigated as a very dense information storage device (91, 74).

Using DNA as a molecular “wet hardware” to implement computation is a feasible
and efficient way to solve problems of combinatorial nature (22) and to interface with
problems of biological nature natively (65).

3.2 CRN Machine Learning

The machine learning field applies several algorithms to teach the computer to
identify similarities in the analyzed data. The learning process involves identifying
similarities within data through a significant amount of calculations, which try to minimize
the error to make predictions or categorize previously unseen new data.

Because these calculations can be parallelizable, the massively parallel nature of
molecular reactions can help in this aspect. So, different scientific groups worldwide
started to attack this problem, implementing machine learning algorithms using molecular
reactions.

Qian (73) implemented a neural network algorithm using its previously designed
DNA gate (71). They showed that the developed architecture allows experimental scale-up
of multilayer digital circuits, transforming linear threshold circuits into DNA Strand
Displacement (DSD) cascades that function as small neural networks. Also, their approach
allowed the implementation of a working Hopfield associative memory. Although the
memory was trained in silico, it remembered four single-stranded DNA patterns, recalling
the most similar one even with an DNA pattern with missing or wrong bases.

Other work by Lakin proposed a biochemical circuit for learning linear functions
(46). They used DNAzymes, which are DNA oligonucleotides that are capable of performing
a specific chemical reaction, often but not always catalytic (16). The DNAzymes were
used to catalyze the chemical reactions that implement the learning circuit designed. Their
architecture achieved a novel mechanism to maintain and modify its internal state. They
performed simulations to demonstrate that the circuit can learn and deal satisfactorily
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with performance, scalability, and robustness to noise.
In work by Noh, they implemented molecular learning with DNA kernel machines

(66). Their algorithm interprets the hybridization between DNA molecules as comput-
ing the inner product between embedded vectors in a corresponding vector space. The
algorithm performs the learning of a binary classifier in this vector space. In addition to
the simulation, they implemented the algorithm in vitro using various DNA operations,
including hybridization, denaturing, Polymerase Chain Reaction (PCR), and gel elec-
trophoresis. Similarly, Zhang presented learning based on support vector machines (102).
Their approach consisted of doing the training in silico with a in vitro DSD implementation
of a winner-takes-all algorithm.

In another work, Xiong used a full in vitro training and classification implementation
of convolutional neural network (97). They also discovered that a cyclic physicochemical
process (freeze/thaw cycling) could be a potent driver for strand displacement. When
freezing, the steep increase in DNA concentrations could trigger the generation of a
subpopulation of active complexes; during thawing, the steep drop in DNA concentrations
could disassemble active and unproductive complexes.

Lakin, later, designed a supervised learning algorithm using adaptive DNA Strand
Displacement (DSD) networks (48). By developing an adaptive amplifier new gate,
they presented a circuit architecture that is generally applicable to the implementation of
adaptive algorithms. The work includes a strand displacement learning circuit, a prediction
subcircuit and a feedback circuit. The simulation of the DNA learning was validated with
a reference implementation.

Although not a molecular reaction design, Lee used K-means algorithm in silico
together with social network analysis theorem to effectively calculate the representative
DNA strand of a group of single DNA strands (50). The hybridization tendency of this
representative strand was empirically tested and confirmed to be the higher among the
others strands, revealing a symbolic sequence representing multiple DNA strands.

Another approach to learning similarities between data is using the Reservoir
Computing (RC) paradigm, where the authors implemented DNA molecular memristors
to recognize the digits from the MNIST dataset (53). The molecular memristors were
implemented in Chemical Reaction Network (CRN), and their behavior was mathematically
validated through an Ordinary Differential Equation (ODE) model.

Table 3.1 shows a summary of recent works related to machine learning implemented
partially or fully in Chemical Reaction Network (CRN) or DSD.

Following, in Chapter 4, we will introduce the first contribution of this work: the
Computer Aided Design (CAD) software tool that facilitates the development of molecular
circuits. After, in Chapter 5, we will present the second contribution: the design of a CRN
that implements the K-Medoids unsupervised learning algorithm. This implementation,
however, differs from previously mentioned works in two key aspects: the clustering



3.2. CRN Machine Learning 49

algorithm can be compiled to any chemical reactions that can implement the CRN. Also, it
can be used to perform clustering of DNA strands by similarity in vitro without previously
knowing the sequences of DNA strands.
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Table 3.1: Table showing the comparison between the Machine Learning algorithms present
in the literature and our proposal.

Work Technology Type Algorithm In-silico In-vitro
(73) DSD Supervised Neural-

Network
Training Classify

(46) DNAzymes Supervised Neural-
Network

— Train and
Classify

(66) DSD Supervised SVM1 — Train and
Classify

(48) DSD Supervised Neural-
Network

— Train and
Classify

(102) DSD Supervised SVM1 Training Classify
(97) DSD Supervised Neural-

Network
— Train and

Classify
(53) CRN Supervised Reservoir

Computing
— Train and

Classify
(50) DSD Unsupervised K-Means Clustering Classify
Our work DSD Unsupervised K-Medoids — Cluster

and Clas-
sify

1Support Vector Machine
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Chapter 4

Design of Digital and Analog DNA
Systems

This Chapter will present part of the contributions developed by this work, such as
the Constructive Methodology for Molecular Circuits using the DNAr-Logic software
package. This package handles the specific implementation details of molecular circuits
for the designer, abstracting the tiresome work of designing the circuits at the CRN
level. The DNAr-Logic software package to the R Language allows modularization and
programmatically assists the development of digital molecular circuits modeled as generic
CRNs (57, 56). The last Section 4.2 will present the contribution to the development of
DNAr-Analog, although it was not the focus of this work.

4.1 DNAr-Logic

Although the chemical systems presented in previous Chapters are usually in the
field of analogical signal processing, it is possible to achieve digital logic behavior with an
appropriate set of coupled chemical reactions.

Analog molecular circuits have some advantages, such as chemical species concen-
trations that vary continuously over time are inherently analog signals that better interface
with biological samples in a laboratory. Nevertheless, digital molecular circuits have the
advantage of allowing the implementation of logical constructs and, with them, making
decisions. Contrary to analog molecular circuits, the number of species and reactions
needed to implement these digital logic circuits explode as soon as the circuits increase in
size and complexity.

DNAr-Logic is a software package designed to programmatically abstract, simulate
and test new molecular digital logic circuits in DNA Strand Displacement (DSD) (57, 56).
It is built atop DNAr (89). Both DNAr and DNAr-Logic leverage the power of R: an
open-source and easy-to-use programming language used by the scientific community.
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DNAr-Logic abstracts the need to write Chemical Reaction Networks (CRNs) to
create digital logic circuits based on DSD technology. This package implements all the
basic logic gates needed to build more complex circuits. The circuits can be designed
constructively and simulated without requiring chemistry or DSD mechanism knowledge.

4.1.1 Methodology

Our package implements — using some previously CRN proposed digital logic
gates (42) and DNAr simulation capabilities — the molecular reactions in complementary
representation of digital single-bit signals, combinational circuits — Majority, (N)AND,
(N)OR and XOR logic gates — and sequential circuits — Latch-D and Flipflop-D (57).
Table 4.1 contains all the gates implemented in DNAr-Logic with their specific resource
(species and reactions) usage.

Table 4.1 lists all the available gates. The gates identified by an asterisk were
proposed by other authors, while the gates without an asterisk are contributions from
this work. In the Table 4.1, the columns “Species” and “Reactions” count the respective
unique species and reactions each logic element uses. For example, a “signal” element in
the first row represents a “wire” in a digital logic circuit. Due to all signals representing
bits in dual-rail (complementary representation), there is the need to use three species for
each signal: one species to represent the “zero” value, another species to represent the
“one” value, and a third species to represent the intent to “switch” values (from zero to
one and vice-versa). The number of reactions needed to implement the correct behavior of
a bistable digital signal is three. A bistable digital signal is a signal that can only have
two stable levels: the “zero” level and the “one” level; any other possible signal levels,
such as 50% of “zero” and 50% of “one,” are unstable and the slight imbalance tending
one of those two levels make the signal “switch” to the tended stable level.

The columns “Inputs” and “Outputs” of Table 4.1 count the number of signal
inputs and outputs each element have in its interface. For example, the “AND” element
has two signals as inputs and one as output. In other words, the “AND” element uses
3 × 3 = 9 species and 3 × 3 = 9 reactions only to encode its input and output signals.
Next, the columns “Total Species” encode all the species needed for the element to operate,
which, for the “AND” element, is 9 + 1 = 10 species and 9 + 5 = 14 reactions.

Another specific example is the “NOT” element. This element does not use any
species or reactions because an invert operation is “free” in the dual-rail (complementary
representation) encoding: as each signal uses two independent species to represent the
“zero” and “one” values, just by using the complement signal species the designer get the
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Table 4.1: List of digital circuit elements implemented in DNAr-Logic. Specifically, the
NOT gate does not use species nor reactions because an invert operation is “free” in the
dual-rail (complementary representation) encoding. Previously proposed the gates are
signaled by * (42).

Element Species Reactions Inputs Outputs Total
Species

Total Reactions

Signals* 3 3 0 0 3 3
AND* 1 5 2 1 10 14
OR* 1 5 2 1 10 14
XOR* 2 8 2 1 11 17
Latch-D* 2 6 2 1 11 15
FF-D* 4 22 2 1 13 31
Majority 2 10 3 1 14 22
NAND 1 5 2 1 10 14
NOR 1 5 2 1 10 14
NOT 0 0 0 0 0 0
FF-JK 0 0 3 1 43 55

“inverted” value for free.
The general design concept of DNAr-Logic package is explained in Section 4.1.2.

4.1.2 Design

The DNAr-Logic software package implements digital logic in the context of DNA
Strand Displacement (DSD). To do so, it encodes bits in complementary representation, a
synonym to dual-rail representation — a term often used in the electrical and computer
engineering fields.

The dual-rail encoding encodes the binary values “zero” and “one” using two
different signals that are complementary and mutually exclusive. Here, we define this
representation by using two different DNA species to represent the values “zero” and
“one” of a signal. When the species of the “zero” value is present in the solution, the
species of the “one” value is absent, and vice-versa.

The DNAr-Logic software package defines three concepts: signals, gates, and
circuits. Signals are binary values (in complementary representation) used by gates. Gates
are structures that receive one or more input signals, process them, and generate one
or more output signals. Circuits contain timing metadata used in simulations, all the
signals, and connected gates that process information. One circuit can be part of another
larger circuit, allowing hierarchical composition of designs. At low-level, these high-level
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concepts are data structures that encapsulate the information needed by DNAr — DNA
species’ names, reactions (with their rates), and species’ concentrations — to run the
simulations. By exposing a simple API to developers to construct their complex circuits
programmatically, the package’s assumes responsibility to correctly name and reference all
the data from the species’ names, initial concentrations, reactions, and rates making users
focus only on the development itself: iterating through designing, testing, and validating
their molecular circuits.

4.1.3 Examples, Simulations and Results

The following Sections will show five examples of molecular circuits programmati-
cally designed using DNAr-Logic’s features in growing order of complexity. The objective
is to show the tool’s scalability with complex circuits. Section 4.1.3.1 shows the building
of a half-adder using the elementary molecular logic gates present in DNAr-Logic. Section
4.1.3.2 presents the implementation of a majority gate in DNAr-Logic. Then, Section
4.1.3.3 shows a full-adder built entirely of these majority gates. Section 4.1.3.4 instructs
how to build a J-K flip-flop using DNAr-Logic. Last but not least, Section 4.1.3.5 will
show the construction of a 4-bit Carry-Look-Ahead Adder (by majority gates).

4.1.3.1 Half-Adder

A half-adder is the simplest logic circuit designed to produce the result of the sum
of two bits. It consists of two logic gates — an AND gate and an XOR (eXclusive OR)
gate — to calculate the results of carry-out and sum, respectively. Figure 4.1 show the
schematic design of the half-adder circuit. At the left part of the Figure, “A” and “B” are
the two input signals, each one carrying one bit of information. The top gate is the XOR
gate that receives “A” and “B” as inputs and generates the “Sum” signal as output. The
output of the XOR gate is “1” when both inputs have different values and “0” otherwise.
The bottom gate is the AND gate that also receives “A” and “B” as inputs and generate
the “Cout” (carry-out) signal as output. The carry-out signal contains the value “1” only
when both inputs contain the value “1” and “0” otherwise.

Algorithm 5 contains a code example of how to construct and simulate a circuit of
a half-adder, seen in Figure 4.1, using the DNAr-Logic package. At line 2, the variables A
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and B are the binary input values of the circuit. At lines 3 and 4, an AND gate and an
XOR gate are created with names “_Cout” and “_Sum”, respectively. The output of AND
gate is the “carry-out” value; the output of XOR gate is the “Sum” value. Both gates
receive binary value ’1’ in input signals. In line 5, the circuit is created and configured to
simulate from 0 to 15000 seconds in 200 units intervals. Lines 6 and 7 show both gates
being added to the circuit. In line 8, a list is created containing the species names of the
output signals from both gates. At last, in line 12, the plot_circuit_4domain function
simulate the circuit using the DSD 4-Domain coding (83) and plot the concentrations only
of the specified species.

Algorithm 5: Code example in R using DNAr-Logic to build an half-adder
circuit.

1 library(DNArLogic)
2 A <- 1; B <- 1
3 andGate <- make_and_gate('_Cout', A, B)
4 xorGate <- make_xor_gate('_Sum', A, B)
5 circuit <- make_circuit(seq(0, 15000, 200))
6 circuit <- circuit_add_gate(circuit, andGate)
7 circuit <- circuit_add_gate(circuit, xorGate)
8 speciesList <- c(andGate$species$output$value0,
9 andGate$species$output$value1,

10 xorGate$species$output$value0,
11 xorGate$species$output$value1)
12 plot_circuit_4domain(circuit, speciesList)

Figure 4.2 presents the simulation result of the referred circuit using the 4-Domain
DSD coding (83). Because signals are coded in complementary representation, a signal
value is represented by two species: one species for zero value and another for one value.
The signals “_Cout_AND_out_0” and “_Cout_AND_out_1” change concentration as the
actuation of the AND gate happens. The concentration of species “_Cout_AND_out_0”
goes to zero while “_Cout_AND_out_1” goes to one. Thus, this represents that the AND
gate switched its output value from zero to one, because both of its inputs have logic value
one.

Sum

Cout

A

B

Figure 4.1: Circuit for a half-adder containing an XOR gate generating the Sum signal
and AND gate generating the Carry-Out signal.
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The signals “_Sum_XOR_out_0” and “_Sum_XOR_out_1” does not change concentra-
tion as the time passes. This behavior happens because both values of inputs A and B are
1, which does not trigger the change of the output logic value of the XOR gate. As the
XOR gate only outputs 1 when both inputs are different (0 and 1 or vice-versa), there is
no change, and the output value of the XOR gate remains zero.
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Figure 4.2: Simulation result of code from Algorithm 5; The respective concentrations of
output signals Carry-out and Sum are shown (complementary representation).

4.1.3.2 Logic Majority Gate

The Majority Gate is a three-input logic gate that implements the majority function:
a device that outputs a HIGH signal (TRUE logic value) when the majority of its signal
inputs are HIGH, otherwise it outputs a LOW signal (FALSE logic value), i.e. a majority
gate returns true if and only if more than 50% of its inputs are true.

Using the same convention of (42), here we define the molecular reactions for a
majority gate. Suppose the inputs of the majority gate are A, B and C, and the output
is Z. These signals are represented by the concentrations of A0/A1, B0/B1, C0/C1 and
Z0/Z1, respectively.

By definition, Z = 1 when two of the three inputs are 1 (thus the “majority” of
the inputs). Which means that when both A1 and B1, or A1 and C1, or B1 and C1 are
present, Z1 should be generated and Z0 should be cleared out of solution. Similarly, Z = 0
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when two of the three inputs are 0. This is implemented by the reactions:

A1 +B1 −→ A1 +B1 + Z ′
1 (4.1a)

A1 + C1 −→ A1 + C1 + Z ′
1 (4.1b)

B1 + C1 −→ B1 + C1 + Z ′
1 (4.1c)

A0 +B0 −→ A0 +B0 + Z ′
0 (4.1d)

B0 + C0 −→ B0 + C0 + Z ′
0 (4.1e)

A0 + C0 −→ A0 + C0 + Z ′
0 (4.1f)

In the first reaction, A1 combines with B1 to generate Z ′
1, an indicator that the

value of Z should be set to 1. The concentrations of A1 and B1 do not change. Similarly,
in the fourth reaction, A0 combines with B0 to generate Z ′

0, an indicator that the value of
Z should be set to 0. All the reactions in (4.1) behave in the same manner.

The molecules Z ′
0 and Z ′

1 are transferred to an external sink denoted by ∅. These
could be waste types whose concentration are not tracked. This is implemented by the
reactions:

2Z ′
0 −→ ∅

2Z ′
1 −→ ∅

(4.2)

When two input molecules are both present, these reactions maintain the concen-
tration of Z ′

1 (or, analogously, Z ′
0) at an equilibrium level. When there is only one — A1

or B1 or C1 — input molecule present, the molecule Z ′
1 get cleared out. The same occurs

when there is only one — A0 or B0 or C0 — input molecule present, the molecule Z ′
0 get

cleared out.
When the concentration of Z ′

1 is at an equilibrium level, Z ′
1 switches the molecules

Z0 to Z1. Similarly, when the concentration of Z ′
0 is at an equilibrium level, Z ′

0 switches
the molecules Z1 to Z0. This behavior is implemented by the reactions:

Z ′
1 + Z0 −→ Z1

Z ′
0 + Z1 −→ Z0

(4.3)

Taken together, reactions (4.1), (4.2) and (4.3) implement a 3-to-1 majority gate.
Figure 4.3 contains the simulation result using the 4-Domain DSD coding (83) from the
majority gate defined in Section 4.1.3.2.

For the sake of similarly redudant results, only two simulation graphs are shown.
However, simulations were run with all the possible combinations of input values, and all of
them display the expected correct behavior. When two of the three inputs from a majority
gate have TRUE values, the generated output is also TRUE (Figure 4.3a). When all the
three inputs have TRUE values, the same occurs, but less time is needed to the output
signal to change (Figure 4.3b). This time difference is due to the greater production of Z ′

1



4.1. DNAr-Logic 58

0.0e+00

2.5e−08

5.0e−08

7.5e−08

1.0e−07

0 2500 5000 7500 10000

Time (s)

C
o

n
c
e

n
tr

a
ti
o

n

Species

_MAJ_out_1

_MAJ_out_0

(a) Output species concentrations for any two inputs of value 1.

0.0e+00

2.5e−08

5.0e−08

7.5e−08

1.0e−07

0 2500 5000 7500 10000

Time (s)

C
o

n
c
e

n
tr

a
ti
o

n

Species

_MAJ_out_1

_MAJ_out_0

(b) Output species concentrations for all three inputs of value 1.

Figure 4.3: Simulation result of majority gate; The respective concentrations of outputs
signals are shown (complementary representation).

molecule by all the three Reactions (4.1a), (4.1b) and (4.1c). Consequently, the change in
the output signal is faster when this occurs. Besides this difference in reaction time, the
behavior of the designed majority gate is correct and fully functional.

Algorithm 6 shows how the majority gate is implemented in DNAr-Logic. Lines 3
to 13 contain the setup code needed to create a new generic gate with three inputs and
one output. Lines 21 to 32 contain the designed reactions from Equations 4.1, 4.2, and 4.3.
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Algorithm 6: Code example of DNAr-Logic implementation of majority gate.
1 make_majority_gate <- function(name, input1value, input2value, input3value) {
2 # Generate species for 3 input signals and 1 output signal
3 gate <- make_generic3to1_gate(name, 'MAJ', input1value, input2value, input3value)
4
5 # Append 2 specific majority gate species
6 gate$species <- append(gate$species, c(outTo1 = jn(name, '_MAJ_out_to_1'),
7 outTo0 = jn(name, '_MAJ_out_to_0')))
8
9 # Append 2 specific majority gate species' concentrations

10 gate$ci <- append(gate$ci, list(0, 0))
11
12 # Auxiliary variables to hold species names
13 A1 <- gate$species$input1$value1; A0 <- gate$species$input1$value0
14 B1 <- gate$species$input2$value1; B0 <- gate$species$input2$value0
15 C1 <- gate$species$input3$value1; C0 <- gate$species$input3$value0
16 Z1 <- gate$species$output$value1; Z0 <- gate$species$output$value0
17 Z_1 <- gate$species$outTo1; Z_0 <- gate$species$outTo0
18
19 # Append the majority gate reactions
20 gate$reactions <- append(gate$reactions, list(
21 jn(A1, ' + ', B1, ' -> ', A1, ' + ', B1, ' + ', Z_1 ),
22 jn(A1, ' + ', C1, ' -> ', A1, ' + ', C1, ' + ', Z_1 ),
23 jn(B1, ' + ', C1, ' -> ', B1, ' + ', C1, ' + ', Z_1 ),
24 jn(A0, ' + ', B0, ' -> ', A0, ' + ', B0, ' + ', Z_0 ),
25 jn(B0, ' + ', C0, ' -> ', B0, ' + ', C0, ' + ', Z_0 ),
26 jn(A0, ' + ', C0, ' -> ', A0, ' + ', C0, ' + ', Z_0 ),
27
28 jn('2', Z_0 , ' -> 0'),
29 jn('2', Z_1 , ' -> 0'),
30
31 jn(Z_1, ' + ', Z0, ' -> ', Z1),
32 jn(Z_0, ' + ', Z1, ' -> ', Z0)
33 ))
34
35 # Append the majority gate reactions' rates
36 gate$ki <- append(gate$ki, list(1E-2,1E-2,1E-2,1E-2,1E-2,1E-2,1E-2,1E-2,1E-2,1E-2))
37
38 # Return the newly built majority gate
39 return(gate)
40 }

4.1.3.3 Full Adder with Majority Gates

The circuit schema of a full-adder using majority gates can be seen in Figure 4.4.
Algorithm 7 shows how to implement using the features present in the DNAr-Logic. Line
1 contains the declaration of variables A, B, and Cin, all initialized with logic value one.
All of them will be used as the binary input values of the circuit. In lines 2, 3, and 4,
three instances of majority gates are created with names “_Cout,” “_Sum,” and “_aux,”
respectively. The third input of the “_aux” majority gate is the complement from input
signal Cin. The first and last inputs from the “_Sum” majority gate are set to zero. The
reason is that these inputs will receive the intermediate results generated by the other
two majority gates. So, their “default” value is zero to not interfere with future values
generated by the previously mentioned majority gates. Later in code (lines 9 and 12),
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Figure 4.4: Full-adder circuit schema with only Majority Gates.

these inputs will be linked to the outputs from gates “_Cout” and “_aux,” respectively.
In line 5, the circuit is created and configured to simulate from 0 to 15000 seconds in
200-unit intervals. Lines 6, 7, and 8 show all gates being added to the circuit. In line 15, a
list is created containing the species names of the output signals from both “_Cout” and
“_Sum” gates. The plot_circuit_4domain function simulates the circuit using the DSD
4-Domain coding (83) and plots the concentrations only of the specified species.

Due to current limitations in DNAr, it is not possible to manually alter concentra-
tions of DNA species after the simulation has begun, i.e., the initial concentrations must
be defined before the simulation starts. Thus, we run a single simulation for each set of
inputs.

Algorithm 7: Code example to build an full-adder circuit using majority gates.
1 A <- 1; B <- 1; Cin <- 1
2 cout <- make_majority_gate('_Cout', A, B, Cin)
3 sum <- make_majority_gate('_Sum', 0, Cin, 0)
4 aux <- make_majority_gate('_aux', A, B, (1 - Cin))
5 circuit <- make_circuit(seq(0, 15000, 200))
6 circuit <- circuit_add_gate(circuit, cout)
7 circuit <- circuit_add_gate(circuit, sum)
8 circuit <- circuit_add_gate(circuit, aux)
9 circuit <- circuit_link_gate_signals_not(circuit,

10 cout$species$output,
11 sum$species$input1)
12 circuit <- circuit_link_gate_signals(circuit,
13 aux$species$output,
14 sum$species$input3)
15 species <- c(sum$species$output$value1,
16 sum$species$output$value0,
17 cout$species$output$value1,
18 cout$species$output$value0)
19 plot_circuit_4domain(circuit, species)

Figure 4.5 shows the simulation result using the 4-Domain DSD coding (83) for
the full adder defined before. Again, for the sake of limited space, only four simulation
results are shown. However, simulations were run with all the possible combinations of
input values and all of them show the expected behavior of a full-adder circuit.
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(a) Output concentrations when all inputs have
value 0.
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(b) Output concentrations when only input A
has value 1.
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(c) Output concentrations when inputs A and
B have value 1.
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(d) Output concentrations when all inputs have
value 1.

Figure 4.5: Simulation result of a full-adder using majority gates; The respective con-
centrations of output signals, carry-out (Cout) and Sum, are shown in complementary
representation.

First, Figure 4.5a shows the outputs Sum and Carry-out as zero because the three
inputs (A, B and C) have value zero. Next, Figure 4.5b shows output signal Sum becoming
value one and Carry-out staying at zero because only input A has value one. Next, in
Figure 4.5c, two of three inputs (A and B) have value one and only the output signal
Carry-Out goes to value one, besides the oscillation of Sum output signal. This oscillation
is due to the latency of the propagation of signals in the chemical circuit. The Carry-out
output signal has only one majority gate in its critical path to produce the result. The
Sum output signal, however, has two majority gates in its critical path. One of them
produces the Carry-out signal that influences the calculation of the next majority gate.
Finally, Figure 4.5d shows the simulation result when all the inputs (A, B and C) have
value one. Both concentrations of output signals Sum and Carry-out change as the signals
propagates through the chemical circuit and stabilizes at the correct values of the sum.
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4.1.3.4 JK-Flip-Flop

A Flip-Flop is a sequential circuit, i.e., it is a memory element that holds a binary
value. It can be used in biological applications as a memory that retains information
of presence (or absence) of a DNA strand in the solution, for example. By design, the
Flip-Flops can store an arbitrary value received from its input. This Flip-Flop type is
known as “Data” or “D-Flip-Flop”. Another kind is the “T-Flip-Flop”, or the “Toggle”
type. It is the one capable of changing its internal state from 0 to 1 and vice-versa. The
“JK-Flip-Flop” can operate as either type D or type T, just based on the value of its J
and K input signals. Figure 4.6 shows how to build a Flip-Flop of JK and T types from a
D type Flip-Flop, respectively drawn in dark-red, orange and blue.

In Algorithm 8 shows how to implement a JK-Flip-Flop using only DNAr-Logic’s
high-level functions. Again, the writing of low-level CRN is not needed. As the JK-Flip-
Flop is an entity used in other circuits, its circuit does not need the timing information,
as seen in line 3. So, in lines 3 to 6, the JK-Flip-Flop circuit is created and its interface
is defined with three inputs and one output. The lines 9 to 12 show the creation of
the three logic gates and one D-Flip-Flop used to make a JK-Flip-Flop. The code in
lines 15 to 19 insert the instantiated elements into the circuit. The lines 22 to 32 shows
the interconnections of signals between the circuit elements. Finally, line 35 shows the
compilation of the circuit, i.e., the species and reactions from all the circuit elements are
combined into one circuit.

The Flip-Flops are sequential circuits that need a periodic clock signal to synchronize
when they change their internal memory state. The methods to implement proper “clock”
signals in CRNs are beyond the scope of this work. An assortment of molecular oscillators

D Q

Q

Q

QCLK

J

K

T

JK Flip-Flop

T Flip-Flop

Figure 4.6: Circuit to build a JK-Flip-Flop and a T-Flip-Flop from D-Flip-Flop.
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Algorithm 8: Code example to build an JK-Flip-Flop circuit using basic logic
gates and a D-Flip-Flop.
1 make_jkff <- function(name, jValue, kValue, eValue) {
2 # JK-Flip-Flop circuit interface
3 entity <- make_circuit(0)
4 interface <- make_generic3to1_gate(name, 'JKFF', jValue, kValue, eValue)
5 entity$inputs <- list(interface$species$input1, interface$species$input2,

interface$species$input3)↪→
6 entity$output <- c(interface$species$output)
7
8 # Instantiate the sub-entities
9 jand <- make_and_gate(jn(name, '_jand'), 0, 0)

10 kand <- make_and_gate(jn(name, '_kand'), 0, 0)
11 jkor <- make_or_gate(jn(name, '_jkor'), 0, 0)
12 ffd <- make_flipflopd(jn(name, '_bit'), 0, 0)
13
14 # Insert sub-entities into the circuit
15 entity <- circuit_insert_gate(entity, interface)
16 entity <- circuit_insert_gate(entity, jand)
17 entity <- circuit_insert_gate(entity, kand)
18 entity <- circuit_insert_gate(entity, jkor)
19 entity <- circuit_insert_gate(entity, ffd)
20
21 # Insert interconnections into the circuit
22 entity <- circuit_insert_gate(entity, make_link_gate(interface$species$input1,

jand$species$input2))↪→
23 entity <- circuit_insert_gate(entity, make_link_gate(interface$species$input2,

kand$species$input1, negated = TRUE))↪→
24 entity <- circuit_insert_gate(entity, make_link_gate(interface$species$input3,

ffd$inputs[[2]]))↪→
25
26 entity <- circuit_insert_gate(entity, make_link_gate(jand$species$output,

jkor$species$input1))↪→
27 entity <- circuit_insert_gate(entity, make_link_gate(kand$species$output,

jkor$species$input2))↪→
28 entity <- circuit_insert_gate(entity, make_link_gate(jkor$species$output,

ffd$inputs[[1]]))↪→
29
30 entity <- circuit_insert_gate(entity, make_link_gate(ffd$output,

interface$species$output))↪→
31 entity <- circuit_insert_gate(entity, make_link_gate(ffd$output, jand$species$input1,

negated = TRUE))↪→
32 entity <- circuit_insert_gate(entity, make_link_gate(ffd$output, kand$species$input2))
33
34 # Combine all the sub-entities in the final entity
35 entity <- circuit_compile(entity)
36
37 return(entity)
38 }
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Figure 4.7: Simulation results of the JK-Flip-Flop. Each vertical black bar, from left to
right, indicates the moment when the JK-Flip-Flop (output value Q) is being set (J=1,
K=0), reset (J=0, K=1), toggled (J=1, K=1) and in hold state (J=0, K=0), respectively.
The axis are shown in arbitrary units (a.u.).

has been proposed in the literature that can be used in this context (105, 94, 35).
Figure 4.7 shows the simulation result from the code showed in Algorithm 8.

Simulations were run with all the possible combinations of input values (and all of them
presented the expected behavior). For the sake of limited space, only one simulation graph
that contains all the possible input combinations are shown. Figure 4.7 presents groups of
four vertical black bars intersecting the time axis on the four line graphs. These vertical
lines mark the clock rising edge. At each rising edge of the clock, the signals J and K
have a different value. From left to right, respectively, on the first bar shows that the
JK-Flip-Flop is being set (J=1, K=0), i.e., output signal Q changes from 0 to 1; in the
second bar, it is being reset (J=0, K=1), i.e., output signal Q changes from 1 to 0; the
third bar, it is being toggled (J=1, K=1), i.e., output signal Q changes from 0 to 1; and
the fourth bar, the JK-Flip-Flop is put in hold state (J=0, K=0), i.e., output signal Q
does not change.
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4.1.3.5 4-bit Adder with Carry Look-ahead

An n-bit Adder circuit is a prevalent combinational logic circuit capable of adding
two binary numbers with n bits each. It uses n 1-bit full adders to sum each bit. Each full
adder receives three inputs A, B, and Cin. The inputs A and B are single bits coming from
two binary numbers. The input Cin is the previous sum’s carry-out bit. After adding A,
B, and Cin together, the resulting sum is placed in the respective S output bit. In Figure
4.8, we can see a full adder circuit built using majority gates.

A

B

Cin

M
A
J

M
A
J

M
A
J

P

G

S

Figure 4.8: Full Adder using Majority Gate with generate and propagate output signals.

The full adder also outputs the G (generated) and P (propagated) signals. They
are used to speed up the calculation for all the carry bits. The G output signal means that
the sum of A and B input signals generate a carry-out if the addition will always carry,
regardless of whether there is an Cin. In other words, it generates the carry if and only
if both of A and B are 1. Equation 4.4 shows the formalization of the G output signal,
where i is the index of i-th bit’s sum. The dot signal denotes a logical AND function.

Gi = G(Ai,Bi) = Ai · Bi (4.4)

Differently from the G output signal, the P output signal means that the sum of
A and B input signals will propagate a carry out if there is an Cin. In other words, it
propagates the carry if and only if at least one of A or B is 1. Equation 4.5 shows the
formalization of the P output signal, where i is the index of i-th bit’s sum. The plus signal
denotes a logical OR function.

Pi = P(Ai,Bi) = Ai + Bi (4.5)
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We need to emphasize that propagate and generate signals only depend on a single
bit of the A and B inputs and do not rely on any other bit in the sum.

Each sum’s carry-out bit is produced in parallel by a circuit called Carry Look-
Ahead (CLA) unit. In Figure 4.9, a 4-bit Adder with the CLA circuit is shown. Its
purpose is to speed up the carry-outs calculation by doing it in parallel with the adders’
sum calculation. All the carry-outs are produced in the CLA unit only by looking at G
(generated) and P (propagated) output signals from all full adders. The respective carry
signal is calculated as seen in Equation 4.6.

Ci = Gi + Pi · Ci−1 (4.6)

Carry Look-a-head Unit
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Figure 4.9: 4-bit Adder with Carry Look-ahead circuit.

Figure 4.10 shows the simulation results from the circuit. Although simulations were
performed with all the possible combinations of input values (and all of them presented
the expected behavior), for the sake of limited space, only one simulation graph are shown.
In the example, the values of input numbers A and B are set as 3 (00112) and 7(01112),
respectively. After a certain amount of time, the result converge to value 10(10102).

Due to space constraints, the code that implements the 4-bit Adder with Carry
Look-ahead circuit using DNAr-Logic is omitted. It is present at the DNAr-Logic git
repository1.

1https://git.nanocomp.dcc.ufmg.br/dnacomputing/dnar-logic/-/blob/master/examples/
jkff.r

https://git.nanocomp.dcc.ufmg.br/dnacomputing/dnar-logic/-/blob/master/examples/jkff.r
https://git.nanocomp.dcc.ufmg.br/dnacomputing/dnar-logic/-/blob/master/examples/jkff.r
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Figure 4.10: Simulation result of output signal S of each individual full-adder when sums
3 + 7 resulting in 10 (1010 - binary coded). The axis are shown in arbitrary units (a.u.).

4.1.4 Discussion

Only the simulations from the largest circuits — 4-bit CLA Adder and the JK-
Flip-Flop circuits — will be discussed for the scalability argument. This choice was made
because all the smaller circuits took fewer resources to build and simulate (number of
species, reactions, and simulation time). The simulation of 4-bit CLA Adder and the
JK-Flip-Flop circuits took around 37.1 and 73.3 seconds, respectively, in an Intel Core
i5-4440 CPU at 3.10GHz, 16 GiB of RAM and Debian Linux(kernel version 5.7.15). The
release of the R software suite used was 4.0.2. The actual number of solved reactions for
the 4-bit CLA Adder was 676, while the JK-Flip-Flop CRN solved 408 reactions.

Although there are fewer reactions to simulate the JK-Flip-Flop, its simulation
needed 180 points to have sufficient resolution to see the clock events and signal changes.
The 4-bit CLA Adder, on the other hand, needed only 60 points. The difference of
simulation points needed explains the difference in run time between the two circuits, even
though the fastest simulation has a higher number of reactions. Further, the number of
reactions and the convergence time of real experiments justify the development of packages
such as the DNAr-Logic. In a few lines, one can describe the circuits and the package
creates the necessary reactions, which would be a challenging task for a developer to do
manually.

Future DNA computers will be much slower than traditional electronic machines.
In our examples, simulations show that the reactions would take three to four orders
of magnitude of time to converge when executing in the real world. It is important to
emphasize that DNA digital systems have no intention of replacing conventional digital
circuits. Still, open new niches for the application of digital logic in health treatments in
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vitro and in vivo, such as smart drug delivery, diagnose the presence of pathogen’s genetic
information or treatment of diseases caused by malfunctioning DNA.

In this Section, we implemented, simulated, and validated the DNAr-Logic extension
to the DNAr package. This extension contains the implementation in R language, using the
framework provided by the DNAr package. The objective of this extension to the DNAr
package is to make the construction of complex digital logic circuits in DSD technology
easier and systematically correct. The proposed tool represents an advancement in the
future development of molecular logic, which should positively impact the field’s progress.

4.2 DNAr-Analog

The development of DNAr for simulating CRNs and DNAr-Logic to ease the
development of molecular digital logic circuits showed the benefits of abstracting the
low-level details of chemical intricacies from circuit developers. However, the number of
species and reactions needed to implement these digital logic circuits explode as soon as
the circuits increase in size and complexity. This quick escalation currently limits effective
practical implementation on the laboratory bench.

When analyzing the recent literature, the proposals for analog DNA circuits have
significantly increased lately (99, 84, 107, 106, 67, 69, 92). The increasing interest from
researchers in analog molecular circuits has some possible explanations: 1) chemical species
concentrations that vary continuously over time are inherently an analog signal, and 2) using
approximate computation as a trade-off for gains obtained with ease of implementation of
the circuit (67). These factors make utilizing analog circuits more feasible, less costly, and
better interface with biological samples in a laboratory. Nevertheless, the works in the
literature are independent, implemented in different simulation tools, and with distinctive
parameters, making it difficult to build larger circuits and systems by reusing what already
exists.

Due to the facts mentioned above, the development of DNAr-Analog library (68)
to compile gates/units from different related works seemed a natural further development
after DNAr-Logic development to the DNAr package. This new package is a project led
and developed by Poliana Aparecida Corrêa de Oliveira as part of her Ph.D. work. It is
still in the early stages of development and is a collaborative effort of both parties.
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Chapter 5

Implementation of DNA Clustering

This chapter describes the thesis proposal. It first presents the implementation of the
K-medoids unsupervised learning algorithm in Chemical Reaction Networks (CRNs), which
later will be converted to DNA Strand Displacement (DSD) reactions. Section 5.1 will
cover the implementation details: from the explanation on how to cluster the DNA strands
by similarity, the design of the algorithm in Chemical Reaction Networks (CRNs) and
to the details related to the speeds of the reactions involved, which are based on the
physicochemical characteristics of the solution.

5.1 K-medoids in DNA

The K-Medoids clustering algorithm, described in Section 2.3, is an unsupervised
learning algorithm. This algorithm is able to choose which elements are capable of
maximizing similarity with all the other data in the set, given as input a universe set
containing several elements and a similarity criterion between them. In other words, at
the end of the execution (and without having received any type of previous training), the
algorithm will create subsets that, within each one, contains elements which have the most
significant similarity to each other.

The usefulness of an unsupervised learning algorithm in the biological context is
to allow similarity analysis in the genetic code itself, be it DNA or RNA. Even when
two complementary genetic sequences on different strands have small differences (due to
replication errors and mutations), they can still interact with each other. When in vivo,
the cellular apparatus itself correct these errors; in other cases, they are harmless, as they
end up encoding the same proteins (in the case of messenger RNA).

However, the most viable way (26) to carry out this analysis of the similarity
between genetic domains is in silico (50). First, it is necessary to do the genetic sequencing
of several samples and store this data in databases; then, run the clustering algorithm on
computers capable of working with these large volumes of data. Finally, after the execution
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time, analyze the results (50). This work proposes the possibility of using the DNA (or
RNA) both as hardware that runs the algorithm and as the input data itself, allowing the
processing to be massively parallelized due to the numerous chemical reactions occurring
simultaneously in the solution.

Thus, when using chemical reactions to function as “wet hardware”, we can obtain
massive performance gains in problems that are often difficult to solve: both related to
the execution time and the energy consumed in the process, as shown in (26).

5.1.1 Clustering Based on DNA Domain Similarity

As explained in Section 2.1, DNA (and RNA) strands contain bases that hybridize
with their complementary bases, i.e., A-T and C-G (or A-U and C-G in RNA). A domain
X is a sub-sequence of bases present in a single DNA strand. A single DNA strand may
contain one or more domains. A complementary domain X* is a domain that contains
complementary bases that can hybridize with bases present in domain X. So, a domain
X and its complementary domain X* must have the same length, i.e., the same quantity
of bases, denoted by |X| = |X*|. We define in Equation 5.1 the complementarity ratio,
δ(X,X*), of domain X relative to X* as the number of bases from both domains (X and
X*) that complement themselves on the corresponding positions divided by the total
number of bases in domain X:

δ(X,X*) = Complementary Bases(X,X*)
|X|

. (5.1)

When the complementarity ratio is 1 (meaning 100%), it means all the bases in
domain X can hybridize with the bases in domain X*. When the complementarity ratio is
less than 1, it means that some bases in the complementary domain X* do not match with
its counterpart domain X. Although it’s possible to both domains hybridize, the binding
velocity is reduced and can even not occur when the dissimilarities between X and X*
are high enough. Also, we need to emphasize that both the position on the strand and
type of bases have influence on the reaction speed. Because DNA strands may have more
than one domain, the complementarity ratio needs to consider all domains, denoted as
Dom(S), present in a strand S. Equation 5.2 defines the complementarity ratio between
two different DNA strands S and T, considering each of its domains, i.e., s ∈ Dom(S) and
t ∈ Dom(T):

Complementarity Ratio(S,T) =
∑Dom(S)

s

∑Dom(T)
t δ(s, t)

|Dom(S)| × |Dom(T)|
. (5.2)
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Table 5.1: Example DNA species.

Name Sequence
S1 AAATAATTA
S2 TAATTCGGT
S3 ACCTACCTA
S4 TAGGTATTT

Table 5.1 shows four DNA species named from S1 to S4, each one containing only
one domain. We wrote each of these species in 5’ to 3’ direction. For example, let us
calculate the Complementarity Ratio between species S1 and S2. Because S1 and S2 are
constituted by only one domain each, we can use equation 5.2 as:

Complementarity Ratio(S1, S2) =
δ(S1, S2)

|Dom(S1)| × |Dom(S2)|
. (5.3)

Because the DNA hybridization starts between 5’ from one strand and 3’ from the
other strand, we need to reverse one of the strands. Arbitrally, we choose S2 to reverse. So,
the last base from S1 (adenine) will bond with the first base from reversed S2 (thymine).
Figure 5.1a shows how many complementary bases are between S1 and S2, which is six.
Because both strands have nine bases each, we have δ(S1, S2) = 6/9 ≈ 0.667. Taking
equation 5.3 and substituting the values we have:

Complementarity Ratio(S1, S2) =
0.667

1× 1
= 0.667 . (5.4)

As another example, when calculating the complementarity ratio between species
S1 and S4, we obtain a value of δ(S1, S4) = 7/9 ≈ 0.778. Then, substituting in equation
5.2:

Complementarity Ratio(S1, S4) =
δ(S1, S4)

|Dom(S1)| × |Dom(S4)|
(5.5a)

=
0.778

1× 1
= 0.778 . (5.5b)

From the result of equations 5.4 and 5.5, it is possible to see that species S1 and S4
have a higher complementarity ratio than species S1 and S2. This high complementarity
favors a higher “affinity,” in other words: favors a higher reaction rate between species S1

and S4 than between S1 and S2.
Some strands having a higher “affinity” will naturally react faster. This natural

chemical behavior of “affinity” between DNA strands can be used as a “distance function”
in a clustering algorithm. However, we must emphasize that the hybridization rate is
dependent not only on the complementarity ratio, but also on temperature and strand
concentration in solution (66).
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S1
3' AAATAATTA 5'

|...|||||
5' TGGCTTAAT 3'

S2

(a) Hybridization between strands S1 and
S2; It is possible to see six bonds between
S1 and S2.

S1
3' AAATAATTA 5'

|||||..||
5' TTTATGGAT 3'

S4

(b) Hybridization between strands S1 and
S4; It is possible to see seven bonds between
S1 and S4.

Figure 5.1: This figure shows the hybridization between strands. A line represents the
presence of a hydrogen bond between bases; a dot otherwise represents the lack of a
hydrogen bond. Please note that strands S2 and S4 are reversed when compared with
Table 5.1, because of the opposite 5’ to 3’ hybridization.

Although the hybridization rate is an empirical measured value in a laboratory, a
software developed by DNA and Natural Algorithms Group at Caltech, called Multistrand
(6), tries to approximate it by simulating the chemical interactions between bases in DNA
strands. It was applied as a support tool in this work to calculate all the hybridization
rates.

5.1.2 Algorithm implementation in CRN

The Chemical Reaction Network (CRN) developed in this work to implement one
iteration of the K-Medoids algorithm is organized into gates, each one carrying a specific
step in the iteration cycle. Because the K-Medoids algorithm needs various successively
iterations to converge, all the gates are designed to be reused in all iterations. To achieve
this behavior, we applied the buffering technique (47): initially, all gates are buffered (i.e.,
inactive) in the solution. When a specific step in the iteration needs to run, the gate must
be unbuffered (i.e., turned active) to proceed. Some gates convert their inputs into an
inactive (buffered) state. This inactivation is needed because these species must be present
in the solution when a new iteration cycle starts. So they will be restored to an active
state (unbuffered) when the iteration ends and a new iteration needs to start.

Figure 5.2 illustrates the flow of interactions between species and gates: input
species are white circles, inactive input species are grey circles, intermediate species are only
text, and gates are colored boxes. Lines of various styles denote the route of interaction
between species. For reasons of simplicity, we omit the activation/inactivation process of
the gates, and the figure depicts an example with only four input species (the same species
from Table 5.1). In the following sections, we describe the algorithm dataflow present in
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Figure 5.2, step by step, which includes the purpose of each gate, its behavior, how this
behavior can be modeled in a CRN, and how it interacts with the other components.

IS1 IS2 MistrustS2

S1 CB CS1 S2inClassS1

S2 S4inClassS1 JS2

S4 S4inClassS3 JS4 R

S3 CB CS3 S2inClassS3

IS3 IS4 MistrustS4

Figure 5.2: Example circuit for one iteration of clustering algorithm with four species S1,
S2, S3 and S4. Two of them (S1 and S3) are used as medoids to classify species S2 and S4.
Due to the complementarity ratio of both S2 and S4 to S1 and S3 being different, S2 and
S4 will react with the Counter Gates (C) at different speeds. This will generate different
concentrations of count signals. When reacting with the Join Gate (J), these signals will
produce the Mistrust Signal, used in classification. The greater difference between input
concentrations of the Join Gate, the higher its output concentration is.

5.1.2.1 Counter Builder Gate

The first step in the iteration is to choose the initial medoids (as seen in Section
2.3.2.2). For example, suppose we are starting the first iteration of the algorithm, and the
initial medoids were randomly chosen as S1 and S3. These species must be absent from
the solution and substituted by inactive versions IS1 and IS3 respectively; otherwise, they
will interfere in this and subsequent iterations. This is done by the Counter Builder (CB)
gates, represented as yellow boxes (a) in Figure 5.3. The CB gates consume species S1

and S3 producing inactive versions IS1 and IS3 , represented as gray circles in Figure 5.3. It
also produces CS1 and CS3 that are the respective Counter Gates (C) for S1 and S3, shown
as blue boxes (b) in Figure 5.3. This can be modeled as reactions shown in the following
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IS1

S1 CB CS1

S2 JS2

S4 JS4 R

S3 CB CS3

IS3

(a)

(a)

(b)

(b)

Figure 5.3: Species S1 and S3 will be used as medoids, so when activating their respective
Counter Builder (CB) gates in yellow, they generate their respective Counters (CS1 and
CS3). Species S1 and S3 are inactivated by Counter Builder gates producing species IS1

and IS3 .

equations 5.6 and 5.7:
CB+ S1 −→ CB+ IS1 + CS1 (5.6)

CB+ S3 −→ CB+ IS3 + CS3 (5.7)

The Counter builder (CB) gates are present before and after the arrow because they are a
chemical species that is not consumed in the process and remains present in the solution.

It is vital to say that both Counter Builder Gates (CB) and Counter Gates (C)
have an active and an inactive (buffered) state. These states are necessary to correctly
implement the reuse of species and gates in various iterations present in the algorithm
and are toggled via species in the solution.

It is also important to emphasize that the concentration of the input species must be
the same or as close as possible; that is, there must be no significant variation between the
concentrations of the DNA strands that will be used as input to the algorithm, since this
difference in concentration ends up influencing the speed of reactions and, consequently,
invalidating the principle of reaction rate being controlled by the affinity of the DNA
strands. More details of the implementation of reactions are in Appendix A.
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5.1.2.2 Counter Gate

IS1 IS2

S1 CB CS1 S2inClassS1

S2 S4inClassS1 JS2

S4 S4inClassS3 JS4 R

S3 CB CS3 S2inClassS3

IS3 IS4

(b)

(b)

Figure 5.4: The remaining input species S2 and S4 react with the counters gates CS1 and
CS3 . The input species S2 are consumed by CS1 and CS3 (dashed lines) being converted
into its inactive state IS2 . The same happens with input species S4 consumed by CS1 and
CS3 (dotted lines) being converted into its inactive state IS4 . The velocity of consumption
of both S2 and S4 are defined by their “affinity” with counters CS1 and CS3 , as explained in
Section 5.1.1. Both counter gates CS1 and CS3 produces intermediate species “inClassS1”
and “inClassS3” which concentration encodes the “affinity” of input species S2 and S4 to
species S1 and S3.

The next step in the iteration, after the Counter Builder (CB) gates generate the
Counter (C) gates for the selected medoids (S1 and S3 in this example), is the “counting,”
i.e., the classification of the remaining non-medoid input species (S2 and S4 in this example).
Each Counter (C) gate is represented as a blue box (b) in Figure 5.4. The dashed and
dotted lines show the course of the S2 and S4 species in the circuit, respectively. First, the
non-medoid species (S2 or S4) reacts with all the counter gates according to their reaction
rate. The reaction rate is directly related to their “affinity,” i.e., their complementarity
ratio (defined in Section 5.1.1) between each input species and each counter gate.

Next, for each copy of non-medoid species (S2 or S4), a counter gate will produce an
inactivated version of it (IS2 or IS4) and an intermediate species (“inClassS1” or “inClassS3”)
which concentration encodes the “affinity” of input species S2 and S4 to species S1 and S3.
Equations 5.8 and 5.9, for example, show the modeled reactions of this behavior for S2
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(but the same model applies to S4 as well):

CS1 + S2
k1−→ CS1 + IS2 + S2inClassS1; (5.8)

CS3 + S2
k2−→ CS3 + IS2 + S2inClassS3. (5.9)

The counter gates CS1 and CS3 are present before and after the arrow because it is
a chemical species not consumed in the process and remain present in the solution.

The higher the “affinity” between an input species and a gate, the faster the reaction.
This behavior can be seen as different reaction ratios k1 and k2. When k1 = k2 both
reactions have the same velocity. When k1 > k2 then the reaction described in equation
5.8 will produce a higher concentration of its outputs faster than reaction described in
equation 5.9 (and vice-versa). This natural competition between counter gates and input
species drives the final concentration level of intermediate species (“S2inClassS1” and
“S2inClassS3” in this example) when the input species are fully depleted in the solution.
More details of the implementation are in Appendix A.

5.1.2.3 Join Gate

After the Counter (C) gate generated the intermediate species “S2inClassS1”,
“S2inClassS3”, “S4inClassS1” and “S4inClassS3”, all the Join (J) gates can start processing
these signals. Each Join (J) gate is represented as a orange box (c) in Figure 5.5 and
are responsible for generating the analog Mistrust signal. The Mistrust signal represents
the level of mistrust of the classification provided by the Counter gates through the
intermediate signals “XinClassY ” which means X species in Y cluster.

The Join gates need two intermediate signals as inputs to generate the Mistrust
signal. These inputs need to be two different intermediate species produced by two different
counter gates that use the same species as input. For example: one join gate will have
as input signals “S2inClassS1” and “S2inClassS3”; similarly, other join gate will exist to
process the signals “S4inClassS1” and “S4inClassS3”. If more counter gates generated
more intermediate signals, there would be various join gates to cover, two-by-two, all the
possible analyses of classifications.

When the trust in classification by Counter (C) Gates is high (in other words,
classified species have a high “affinity” for only one medoid), then the mistrust signal
concentration is low. Conversely, when the trust in classification is low, i.e., the classified
species have an equal “affinity” for more than one medoid, the mistrust signal concentration
is high.
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IS1 IS2 MistrustS2

S1 CB CS1 S2inClassS1

S2 S4inClassS1 JS2

S4 S4inClassS3 JS4 R

S3 CB CS3 S2inClassS3

IS3 IS4 MistrustS4

(c)

(c)

Figure 5.5: Both counter gates CS1 and CS3 produces intermediate species “inClassS1”
and “inClassS3” which concentration encodes the “affinity” of input species S2 and S4 to
species S1 and S3. For example: the Join (J) gate will pair each copy of the intermediate
species “S2inClassS1” and “S2inClassS3” to generate the output signal “MistrustS2” which
high concentration levels means high mistrust in classification of species S2.

It is possible to see that the Join gate works as an analog subtraction operation: if
both inputs have the same concentration, the output is zero; if inputs have significantly
different concentrations, the output concentration is high. The higher the concentration
difference from the inputs, the higher the output concentration. This analog subtraction
behavior can be modeled as the reactions present in Equations 5.10 and 5.11:

JS2 + S2inClassS1 + S2inClassS3 −→ JS2 + 2MistrustS2 (5.10)

JS4 + S4inClassS1 + S4inClassS3 −→ JS4 + 2MistrustS4 (5.11)

The join gates JS2 and JS2 are present before and after the arrow because they are a species
not consumed in the process and remain present in the solution. Also, it is necessary
to notice that the join gate generates two copies of the Mistrust signal for one copy of
each “inClass” signal. This design is for correctly executing the analog subtraction of the
concentration of inputs.

Same as Counter Builder Gates (CB) and Counter Gates (C), Join (J) gates too
have an active and an inactive (buffered) state. These states are necessary to correctly
implement the reuse of species and gates in various iterations present in the algorithm and
are toggled via species in the solution.More details of the implementation are in Appendix
A.
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5.1.2.4 Restorer Gate

IS1 IS2 MistrustS2

S1 CB CS1 S2inS1

S2 S4inS1 JS2

S4 S4inS3 JS4 R

S3 CB CS3 S2inS3

IS3 IS4 MistrustS4

(d)

Figure 5.6: At the end of one iteration, the Restorer (R) gate is responsible for “cleaning”
the solution from the intermediate species (such as “inClass” and “Mistrust” signals) and
reverting the inactivation of the input species. In our example, the species “IS1”, “IS2”,
“IS3” and “IS4” are restored to their previous state, i.e., the active species “S1”, “S2”, “S3”
and “S4”, respectively. These active species are, then, ready to be used in a new iteration
that will soon start.

Last (but not least), the restoration step is done by the Restorer (R) gate. It is
represented as a green box (d) in Figure 5.6. It is responsible for making the circuit ready
for a new iteration, which involves reverting the inactivation from the currently running
iteration’s input species and removing the leftover species from the solution. In other
words: at the end of every iteration, it reverts the inactivation of the input species and
removes from the solution the leftover species produced from the counter gates, such as
signals “inClass,” and join gates output “Mistrust” signals. In our example, the species
“IS1”, “IS2”, “IS3” and “IS4” are restored to their previous state, i.e., the active species “S1”,
“S2”, “S3” and “S4”, respectively. Also, the “inClass” and “Mistrust” signals are no longer
present in the solution, which may interfere in the execution of the next iteration. The
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behavior described can be modeled as the reactions present in Equations 5.12a to 5.12f.

R+ IS1 −→ S1 + R; (5.12a)

R+ IS2 −→ S2 + R; (5.12b)

R+ IS3 −→ S3 + R; (5.12c)

R+ IS4 −→ S4 + R; (5.12d)

R+MistrustS2 −→ R; (5.12e)

R+MistrustS4 −→ R. (5.12f)

The restorer gate R is present before and after the arrow because it is a species not
consumed in the process and remain present in the solution.

Like all previous gates, Restorer (R) gates have an active and an inactive (buffered)
state. Without this capability, all the gates would always be active, interfering in the
computation. More details of the implementation are in Appendix A.

5.1.2.5 Iteration Setup

Because the K-Medoids algorithm needs various iterations to converge to a result
fully, all the previously described gates (except for Restorer Gates) must be inactivated
(buffered). Without this action, they will continue to operate and consume the inputs
generating outputs. After this action, the Restorer Gates will reenable the original inputs
in the solution and remove the intermediary signals that could interfere with the new
iteration that will start soon.

5.2 Simulations and Results

This section will discuss the simulation results of CRN K-Medoids algorithm
presented in Section 5.1. First, Section 5.2.1 presents how the simulation framework is
organized. Section 5.2.2 explains how the convergence criteria of K-Medoids algorithm
was chosen. Finally, Section 5.2.3 discuss the simulation results of four case studies, in
growing order of complexity.
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5.2.1 Simulation Framework

To simulate the circuit described in Section 5.1 we first need to calculate the
reaction rates between all the species. The Multistrand software provides these reaction
rates to be used in our simulation (6). We do not need to know these reaction rates in
advance in the real world because they are not needed. This natural chemical behavior of
“affinity” between DNA strands drives the reaction rate making them naturally hybridize
faster or slower, depending on their complementarity level.

The DNAr software package was used to simulate the K-Medoids algorithm in
Chemical Reaction Networks (CRNs). First, we choose (or generate) strands with some
sequences of bases. Then, they will be the input of Multistrand software to calculate
all the possible reaction rates between the strands based on the complementarity of the
sequences themselves. After that, the reaction rates will be fed into the K-Medoids CRN
algorithm. Then, it will simulate the concentration change of each species in the solution
along the time, concerning all previously defined gates. Finally, the mistrust signals are
checked to decide if another iteration of the algorithm will be needed or if it should stop
due to the convergence criteria.

Due to a current limitation in our simulation framework, we simulate each iteration
of the K-Medoids algorithm (as described in 5.1) as a CRN. We called “in vitro” this first
simulation phase. Then, by the end of each iteration, the concentration values of mistrust
signals are used in the “in silico” simulation phase. This phase is run in a computer that
checks the algorithm’s convergence and decides if another iteration needs to run.

5.2.2 Convergence Criteria

K-Medoids is a very flexible clustering algorithm: it allows the maximization (or
minimization) of any cost function and distance function that fits the problem well (43).
To correctly determine the better cost function for the complementarity problem, we
performed an analysis of six cost functions using the value provided by the concentration of
the “Mistrust” signals: maximum mistrust value (max), arithmetic mean (arith), geometric
mean (geo), harmonic mean (harm), median (med) and simplified silhouette (silh) (88).

The silhouette refers to a technique of understanding and confirmation of consistency
within data clusters (75). It measures how well classified a point is when compared to other
clusters. Its value ranges from -1 to +1. A high value means that the point is well classified
in its cluster and poorly classified in neighboring clusters. Comparing the silhouette as a
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Table 5.2: Average results of seven experiments that were run with six cost functions.
Each line shows the experiments optimized by the respective cost function named and
each column shows the calculated costs for each experiment. The color grading were done
by columns, i.e., on each column the best cost is in green and the worst cost in red.

max arith geo harm med silh

exp_max

exp_arith

exp_geo

exp_har

exp_med

exp_silh

0.832673

0.876675

0.864995

0.943966

0.891653

0.909497

0.493056

0.44686

0.446916

0.551872

0.45683

0.558632

0.37647

0.339491

0.339102

0.400473

0.355412

0.470763

0.268869

0.269981

0.268624

0.235161

0.281212

0.380096

0.516807

0.41043

0.410301

0.579273

0.377633

0.537222

0.479445

0.547633

0.545678

0.473501

0.610768

0.810225

cost function with other methods in a clustering algorithm (such as K-Medoids) shows it
is a great way to optimize the fitness of the clusters found (88).

Table 5.2 contains the average results of seven experiments that were run with
six cost functions. Each experiment comprises ten species to be clusterized with two
initially selected medoids. Our objective is to compare each cost function to see which
one optimizes the clustering better. Each row shows the experiments optimized by the
cost function presented in the first column. For example: in the first row, “exp_max”,
the experiment was optimized by the “maximum value” cost function; in the second row,
“exp_arith”, the experiment was optimized by the “arithmetic mean” cost function; and
so on. Each column shows the calculated costs for each experiment. The color grading
was done by columns, i.e., on column “max” the best maximum cost is in green and the
worst maximum cost in red. We need to emphasize that, in all columns, the best cost
is the lowest value; the exception is the “silhouette” column, where the best cost is the
highest value.

Analyzing Table 5.2, we can see that in the main diagonal, we can obtain the best
values because each experiment optimizes its respective cost function. Another critical
piece of information that Table shows is the silhouette value in the last column. It informs
how bad the clustering process is when optimizing by minimizing maximum and harmonic
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mean values. The arithmetic mean, geometric mean and median minimizations show better
silhouette values but are far from the best value. As explained earlier, the silhouette with
a high value means that the points are well classified in their cluster and poorly classified
in neighboring clusters.

Using the simplified silhouette as a cost function (88), and maximizing its value
during the K-Medoids execution, shows that we can retrieve substantial gains as better
clustering of DNA species.

5.2.3 Simulation Results

First, Section 5.2.3.1 shows the first case study using the four DNA species (with
the two initially selected medoids) defined in Table 5.1 in Section 5.1.1. Next, Section
5.2.3.2 shows a case study of digit classification. Both case studies run the K-Medoids
clustering algorithm proposed in Section 5.1.2. Lastly, the results are discussed in Section
5.2.4.

5.2.3.1 Case Study: Four strands, Nine bases

Section 5.1 explained the implementation of the K-Medoids algorithm as a Chemical
Reaction Network (CRN) that can be implemented using the DSD technique. It defined
four random DNA species from S1 to S4 in Table 5.1 and guided the reader through the
algorithm inner workings in Sections 5.1.1 and 5.1.2. This section shows the algorithm
simulation results for these species using the simplified silhouette as a cost function (88).
Only for the sake of remembering Table 5.1, the species are defined as follows:

Name Sequence
S1 AAATAATTA

S2 TAATTCGGT

S3 ACCTACCTA

S4 TAGGTATTT

These DNA strands were randomly chosen because the clustering algorithm design
can cluster DNA strands by their complementarity independently of their sequence of
nucleic bases. The reaction rates calculated by the Multistrand software based on strand
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complementarity are shown in Figure 5.7 (6). The color grading is a heatmap, i.e., the
maximum rate is in dark green and the minimum in white. We need to emphasize that
because the graph shows the reaction rate of all possible combinations, the resulting matrix
is symmetric. Due to the matrix symmetry and to simplify the visualization, we choose to
omit the elements above the main diagonal.

S1 - A
AATAATTA

S2 - T
AATTCGGT

S3 - A
CCTACCTA

S4 - T
AGGTATTT

S1 - AAATAATTA

S2 - TAATTCGGT

S3 - ACCTACCTA

S4 - TAGGTATTT
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Figure 5.7: Heatmap showing reaction rates for each pair of strands of Table 5.1 calculated
by Multistrand.

In this first case study, the species S1 and S3 were randomly chosen as initial
medoids to run the algorithm. Figure 5.2 shows a visual representation of the circuit used.
Figures 5.8 and 5.9 shows the concentration of output species from Mistrust and Join
gates, respectively, at the end of the first iteration. Both concentration and time axis are
in arbitrary units. These simulations show the dynamic behavior of one iteration of the
K-Medoids algorithm (composed of species and reactions) introduced and explained in
Chapter 5.

The graphic presented at Figure 5.8 shows the concentration values for the Mis-
trustS2 and MistrustS4 species, calculated by the Join gates JS2 and JS4 as described in
Section 5.1.2.3. Both Join gates use “inClass” species as their input, and the graph in
Figure 5.9 shows their concentrations along the time.

The mistrust species indicate how well the classification was. The best scenario is
for all the mistrust species to be as close to zero as possible. However, in this first iteration,
the medoid configuration has yet to approach this scenario. S2 and S4 species have a
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Figure 5.8: Mistrust signals from the first iteration using the species S1 and S3 as medoids.

Figure 5.9: InClass signals from the first iteration using the species S1 and S3 as medoids.

significant level of “affinity” for the S3 species but still compete with S1. Nevertheless, the
signals S2inClassS3 and S4inClassS3 have a higher concentration than S2inClassS1 and
S4inClassS1.

Also, in this case, the S4inClassS1 and S4inClassS3 signals have a broader difference
in concentration. This difference implies a better classification for S4 and a lower concen-
tration of MistrustS4 signal. The S2inClassS1 and S2inClassS3 signals, on the other hand,
generate a higher MistrustS2 signal because they have a narrow difference in concentration
showing a poorer S2 classification. To sum it up: the different concentrations are explained
by their different “affinity” as their reaction rate, as shown in Figure 5.7. We can denote
the clustering configuration found at the end of this iteration by (S1) and (S2, S3, S4),
where the underline marks the medoids of each cluster.

After the reactions, due to a current limitation in implementation, we must calculate
in silico the cost function, i.e., the simplified silhouette method. The cost calculated for
this configuration by the simplified silhouette method is 0.1289, close to the basal value of
0.

Figures 5.10 and 5.11 are similar to Figures 5.8 and 5.9, but the algorithm chosen
medoids S3 and S4 when trying to minimize the clustering cost by the simplified silhouette
method. Albeit S3 and S4 are grouped in the same cluster at the end of the first iteration,



5.2. Simulations and Results 85

Figure 5.10: Mistrust signals from the last iteration using the species S3 and S4 as medoids.

S4 is not a medoid and cannot react with S2, nor S3 can react with S1. The K-Medoid
algorithm works by performing a greedy search and tries to see if changing two points
(one medoid by one non-medoid), i.e., S1 by S4, can increase cluster quality. The graphic
presented by Figure 5.10 shows the concentration values for the MistrustS1 and MistrustS2

species. The graphic of Figure 5.11 shows the concentration value of the “inClass” species.

Figure 5.11: InClass signals from the last iteration using the species S3 and S4 as medoids.

It is possible to see that, with this new medoid configuration, the S1 and S2 species
have more “affinity” for the S4 species than S3. Another exciting change in this medoid
configuration is that the “affinity” of S1 species for the S4 is so high that the MistrustS1

signal is close to zero, meaning that S1 signal hybridizes almost only with the S4 medoid,
as confirmed in the bottom graphic of “inClass” signals. At last, we can see that, compared
with the first iteration, all the mistrust signals have a reduction in their value. Furthermore,
the last iteration medoid configuration clusters the other species better, i.e., have their
pairs of “inClass” signals farther apart than the initial medoid configuration seen in Figure
5.9. This better clusterization reflects the cost calculated for this configuration by the
simplified silhouette method, which is 0.7689, closer to the best value of 1.

Figure 5.12 show the evolution of cost using the simplified silhouette and Table 5.3
show the final clusterization for our example.
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Figure 5.12: The evolution of simplified silhouette cost through the iterations.

Table 5.3: Clusters from the final iteration of K-Medoids algorithm.

Medoid Complementary species
S3 - ACCTACCTA

S4 - TAGGTATTT
S1 - AAATAATTA
S2 - TAATTCGGT

5.2.3.2 Case Study: Digit Classification

The MNIST database (Modified National Institute of Standards and Technology
database) is an extensive collection of handwritten digits. Many researchers use this
database as a benchmark to evaluate machine learning algorithms’ performance, particularly
well-resolved with convolutional neural networks. It has a training set of 60,000 examples
and a test set of 10,000 examples. Figure 5.13 shows a sample of the whole dataset. Each
digit is a grayscale picture with a resolution of 28x28 pixels of a handwritten digit from 0
to 9, so each image equals 784 bytes of information.

To use these images in our molecular K-Medoids classification, first, we must encode
them in DNA, choosing an encoding method among many (70). Independently of the
encoding chosen, a grayscale image with 784 bytes of information will result in a long
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Figure 5.13: Sample of digits from MNIST dataset.

strand containing hundreds of bases, making strand displacement difficult. So, we need to
reduce the information quantity to a manageable size, i.e., not going over the number of
tens of bases.

The chosen method was to reduce the image resolution from 28x28 to 7x7 pixels.
Information loss happens when an image’s resolution is reduced because pixels are thrown
away, and the resulting image becomes much more jagged. Interpolation filters exist to
minimize this resizing problem by calculating an average pixel color from neighbor pixels,
i.e., trying to combine information from various pixels into one. We applied the Lanczos
Resampling filter for image reduction. This filter has a trade-off between the reduction of
aliasing artifacts and the preservation of sharp edges.

After the reduction in resolution, the image is still grayscale. Pixels in grayscale
images are unsigned 8-bit values representing from black (value 0) to white (value 255)
and all the shades of gray (between 0 and 255). So, we have a reduction of 94%: from
28x28 = 784 bytes to 7x7 = 49 bytes. A significant reduction in size, but 49 bytes is still
much data to evaluate a proof-of-concept algorithm. However, it is possible to reduce the
amount of data even more. This resulting image goes through a threshold filter to convert
the gray pixels into black or white (zero or one). This final step can encode the output
image in 49 bits, just over 6 bytes.

After these image-processing steps, we chose the simple transcoding method “two-
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(a) Original 28x28 image. (b) Resized 7x7 image. (c) After threshold filter.

0000000
0001110
0011100
0001000
0000100
0011000
0000000

(d) Binary representation.

00000000000111000111000001000000010000110000000000
A A A A A T G A T G A A T A A A T A A G A A A A A

(e) DNA representation.

Figure 5.14: The five steps, from (a) to (e), needed to encode a picture containing hand-
drawn digit five from MNIST dataset.

(a) Sample of sixteen MNIST digits.

S01 - 3
S02 - 8

S03 - 7
S04 - 1

S05 - 7
S06 - 3

S07 - 8
S08 - 3

S09 - 1
S10 - 8

S11 - 3
S12 - 1

S13 - 1
S14 - 7

S15 - 8
S16 - 7

S01 - 3
S02 - 8
S03 - 7
S04 - 1
S05 - 7
S06 - 3
S07 - 8
S08 - 3
S09 - 1
S10 - 8
S11 - 3
S12 - 1
S13 - 1
S14 - 7
S15 - 8
S16 - 7
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(b) Reaction rates.

Figure 5.15: Reaction rates between sixteen samples of MNIST dataset.

to-one” to convert the resulting pictures of 49 bits into DNA (70). The transcoding
“two-to-one” converts bits of information into one nucleic acid base. For example, bits
valued “00” become A, “01” become T, “10” become C, and “11” become G. Because
49 bits are an odd quantity, an extra zero bit was added at the end as padding to make
possible encode each image into strands containing 25 bases. Figure 5.14 illustrates all the
steps taken to encode each picture as DNA.
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(a) Cluster by Medoid S05. (b) Cluster by Medoid S10. (c) Cluster by Medoid S16.

(d) Cluster by Medoid S12.

Figure 5.16: Final clusters of digits from Figure 5.15a.

After picking sixteen images from digits 1, 3, 7, and 8 from MNIST (4 of each) and
applying the image preprocessing described before, four initial medoids from this sample
were randomly selected and used as input of K-Medoids molecular algorithm presented in
Chapter 5. Figure 5.15 shows the sample input with the respective reaction rates between
them, pairwise.

The algorithm converged with a silhouette of 0.8731281, and the resulting four
clusters are represented in Figure 5.16. It is possible to see that the hand-drawn digits
depicted in the clusters are classified wrong because one cluster contains almost all the
samples of data with distinctly wrong shapes. This incorrect classification is due to images
containing big black pixels chunks around the edges. Also, removing so much information
from the pictures in the preprocessing phase caused low-resolution images to have degraded
shapes and retain only a significant amount of black regions.

Reducing the information quantity and quality through preprocessing the dataset
used as input caused the wrong classification. The original hand-drawn digits have a much
higher resolution of 28x28, and the whole dataset contains tens of thousands of images
that provide more information to the clustering algorithms. For our purposes, we need
a smaller dataset capable of exploring the potential of molecular K-Medoids in practical
applications, such as similar DNA sequences with minor mutations.
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For this, we resort to the old and very popular bitmap fonts used in old computer
systems before PostScript, TrueType, and OpenType vector fonts were available. Bitmap
fonts are low-resolution fonts designed pixel by pixel to be clear and easily identifiable
on old computer screens. Figure 5.17 shows the font used in the following example: the
Courrier 11 bitmap font downloaded from the Monobit website 1.

(a) All the glyphs in Courrier 11 bitmap font.

(b) Glyphs of the ten numerals from Courier 11 bitmap font.

Figure 5.17: Courier 11 bitmap font downloaded from Monobit website.

After choosing the font, we must take a subset from it. To compare to the MNIST
dataset, we choose the subset of the ten numerals (Figure 5.17b) from all the glyphs in the
Courier 11 bitmap font. This new dataset is a better alternative to the MNIST dataset
because it has less information, as each glyph is a 5x7 = 35 bits of information, fourteen
bits less than the 7x7 preprocessed images from MNIST. Besides being smaller, applying
any filter in the glyphs from the bitmap font is unnecessary. So, we selected the glyphs of
numbers 1, 3, 7, and 8 and applied a 10% “salt & pepper” noise to each. We generated
a dataset of ten images for each number. Figure 5.18 display this dataset containing
corrupted versions of the original images to simulate mutations in the original data.

Next, we selected and scrambled four glyphs from each numeral (one glyph being
the original and three being the mutated ones) and gave them as input to the K-Medoids
molecular algorithm. Figure 5.19b shows their respective reaction rates pairwise, and
Figure 5.19a shows the glyphs used as input.

Figure 5.20 shows the result obtained by the molecular K-Medoids algorithm.
Because of the use of four medoids, the algorithm tried its best to group similar images
into four clusters. The first cluster shown in Figure 5.20a has the S5 species (number 1)
as medoid and successfully clusters all other images containing the number 1 (albeit with
imperfections). The second cluster displayed in Figure 5.20b has the S16 species (number
7) as medoid. It also shows the correct clustering of pictures containing the number seven,

1https://robhagemans.github.io/monobit/

https://robhagemans.github.io/monobit/
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Figure 5.18: Generated dataset of glyphs 1, 3, 7, and 8 with respective mutations generated
by applying 10% of “salt & pepper” noise.

(a) Sample of sixteen digits.

S01 - 8
S02 - 1

S03 - 1
S04 - 1

S05 - 1
S06 - 3

S07 - 8
S08 - 7

S09 - 7
S10 - 8

S11 - 7
S12 - 3

S13 - 3
S14 - 8

S15 - 3
S16 - 7

S01 - 8
S02 - 1
S03 - 1
S04 - 1
S05 - 1
S06 - 3
S07 - 8
S08 - 7
S09 - 7
S10 - 8
S11 - 7
S12 - 3
S13 - 3
S14 - 8
S15 - 3
S16 - 7
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(b) Reaction rates.

Figure 5.19: Reaction rates between sixteen samples of generated Courier 11 dataset.

missing only one species alone in the fourth cluster in Figure 5.20d. The third cluster
depicted in Figure 5.20c has species S7 (number 8) as medoid, portraying a mixture of
the correct clustering of species containing the corrupted number 8 and all the species
containing the number 3. Because the difference between glyphs 3 and 8 is minimal (only
2 pixels between the non-corrupted versions), the algorithm found that the 3’s are similar
to the 8’s and vice-versa. This result yields a silhouette of 0.9444282, and the clusters’
elements show significant resemblances.
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(a) Cluster S5. (b) Cluster S16. (c) Cluster S7. (d) Cluster S9.

Figure 5.20: Resulting clusters after runing the molecular K-Medoids algorithm on dataset
from Figure 5.19.

5.2.4 Discussion

The simulation of the K-Medoids CRN algorithm with the instance of sixteen
samples of numbers presented in Section 5.2.3.2 took approximately 24 hours in an Intel
Core i5-4440 CPU at 3.10GHz, 16 GiB of RAM and Debian Linux (kernel version 6.4).
The release of the R software suite used was 4.3.1. The version of Multistrand software
used was 2.1. The number of species and solved reactions were 968 and 648, respectively.

The 24-hour processing time can be divided into roughly two distinct phases: The
initial processing phase spans 12 hours and is dedicated to Multistrand’s calculations of
reaction rates among the sixteen species. Meanwhile, the subsequent 12-hour phase is
reserved for simulating the operation of the K-Medoids CRN. The first phase is notably time-
consuming, primarily because the K-Medoids CRN algorithm requires the determination
of reaction rate values for every combination of input species. However, it’s important
to note that this phase is exclusively necessary during simulation scenarios. In contrast,
when conducting in vitro experiments, these reaction rates are intrinsic properties of the
input species and do not require additional computation.

Although the number of reactions and species of the K-Medoids iteration is in the
same order of magnitude as the CLA Adder circuit presented in Section 4.1.3.5, their
simulation time differs significantly, with the K-Medoids CRN simulation taking 12 hours
because of the iterative and greedy characteristics of the K-Medoids algorithm, which
needs many iterations to converge to a solution. Again, the number of reactions, the
iterative design process of circuits, and the actual convergence time of experiments justify
the development of tools that can help alleviate low-level details from designers.

In this Section, we proposed, designed, implemented, simulated, and validated the
iteration of the K-Medoids Algorithm in generic Chemical Reaction Network (CRN). This
implementation shows the feasibility of constructing an unsupervised learning molecular
circuit and validates its correctness as a tool to cluster DNA species by their similarity.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

DNA Strand Displacement (DSD) is a promising emerging technology with great
potential to be a tool used in various fields of science. Due to its complex and multidis-
ciplinary nature, scientists need tools that provide a high level of abstraction to make
designing and experimenting more straightforward, consequently popularizing its use.

This work proposed to explore the proven computing capabilities of DSD technology
as a hardware substrate for developing digital, analog, and machine-learning modular
molecular circuits.

The first contribution of this work is the DNAr-Logic extension (57, 56) to help the
efficient and scalable design of digital molecular circuits, focusing on applying the principles
of abstraction and scaling of molecular circuits. The objective of this extension to the
DNAr package is to make the construction of digital logic circuits in DSD technology easier
and systematically correct. Using DNAr-Logic one can design digital logic circuits without
in-depth knowledge of chemical reaction networks and DSD technology. The proposed
tool is robust, i.e., it can deal with complex designs programmatically and can abstract
and simulate complex digital logic circuits with hundreds of reactions (56), abstracting the
user from writing all the chemical reaction networks by hand, i.e., hides all the specific
chemical implementation details from the designer.

After the development of DNAr-Logic, the inception DNAr-Analog extension was
a natural further development (68). It is a new software package in its initial stages of
development that, using the same framework created for DNAr-Logic, compiles analog
circuits containing analog gates/units from different works in the literature (67, 69). Analog
molecular circuits, compared to their digital counterparts, are more feasible, less costly, and
better interface with biological samples in a laboratory. Both packages will automatically
handle the specific implementation details to allow the designer to scale the design, i.e., to
focus on creating more complex molecular circuits. They are an advancement in the future
development of molecular logic, which should impact the development of new technologies.
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Finally, this work presented a modular approach to designing a molecular circuit
that implements one iteration of the K-Medoids clustering algorithm. This implementation
was designed to use nucleic acids (DNA or RNA) both as input of the algorithm and as
hardware substrate to perform computation. The implementation also provided a way to
control each algorithm phase to perform the computation correctly by using gates that
can be turned on or off when needed. Also, the design of the restorer gate to restore the
inputs to their initial state to allow a new iteration provides an effective way to reuse
the same strands over various iterations. The CRN K-Medoids clustering algorithm can
cluster generic nucleic acid strands by its complementarity ratio, signaling that the strands
have similar sequences of bases. This correct clustering behavior was demonstrated when,
for example, corrupted pictures of numbers encoded in DNA sequences were clustered by
their level of similarity. Although the simulation period was very time-consuming, this
implementation demonstrates the feasibility of designing modular molecular computers
that can iteratively process information using nucleic acid strands both as a hardware
substrate and input values.

In conclusion, molecular computing and DNA Strand Displacement (DSD) represent
groundbreaking fields at the intersection of biology, chemistry, and computer science,
offering immense potential for revolutionizing information processing and diagnostics.
These innovative approaches harness DNA molecules’ remarkable programmability and
specificity to perform complex computational tasks and act as nanoscale switches. The
ability to design and precisely manipulate DNA sequences has opened up new avenues
for creating highly efficient and parallelized computing systems. Moreover, the inherent
parallelism and low energy requirements of molecular computing hold promise for addressing
some of the scalability and energy efficiency challenges faced by traditional silicon-based
technologies. As researchers continue to refine and expand the capabilities of DNA-based
computing, we anticipate exciting advancements that may eventually lead to practical
applications in fields such as medicine, biotechnology, and data storage.

However, it is necessary to acknowledge that molecular computing and DSD are
still nascent, facing numerous technical hurdles and limitations. Issues like leaks, error
rates, scalability, and integrating molecular systems with conventional electronics must be
addressed to realize their potential fully. Additionally, ethical considerations surrounding
the potential misuse of these technologies and the need for responsible research practices
should remain at the forefront of discussions in these fields. Despite these challenges, the
progress made thus far underscores the immense promise of molecular computing and DSD
as transformative tools in pursuing more efficient and sustainable computing paradigms,
offering a glimpse into a future where biology and technology seamlessly merge for the
betterment of society.



6.2. Future Works 95

6.2 Future Works

As molecular computing continues to evolve, researchers are poised to embark on a
journey filled with exciting possibilities and challenges. Building upon the foundational
knowledge and achievements discussed earlier, the following list outlines some key areas
and avenues of future works that hold immense promise for advancing the frontiers of
molecular computing and DNA Strand Displacement (DSD):

• Implement the entire K-Medoids algorithm as Chemical Reaction Network (CRN)
to run in vitro, turning the implementation fully autonomous and independent from
electronic computers;

• Develop new technologies to accelerate the simulation of molecular circuits in various
levels of abstractions;

• Develop new algorithms and tools to assist the development of molecular computing;

• Publish papers in respected journals with findings;

• Continue collaborative work with the Nanocomp research group;

The number of applications and research projects is uncountable, only subject to the
specialists’ knowledge and creativity. These endeavors have the potential to not only refine
our understanding of these fields but also pave the way for groundbreaking applications
that could transform industries and drive innovation in science and technology.
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Appendix A

Gate Implementation Details

A.1 Counter Builder Gate

The Counter Builder Gate (CB) is responsible for releasing inactive (i.e., buffered)
Counter Gates (C) for the specific input species that will act as medoids in an iteration
of the algorithm. They are represented as yellow boxes marked as (a) in Figure 5.3. In
the process of releasing the Counter Gates (C), the Builder Gate (CB) inactivates (i.e.,
buffers) the medoid strands to prevent them from reacting to the activated Counter Gates
(C). This inactivation is necessary to maintain the species in the solution to be used in the
next iteration of the algorithm and prevent them from being “counted” as if they were
non-medoids.

BA+ BCBX −→ CBX (A.1a)

CBX + BDA −→ BCBX (A.1b)

CBX + X −→ IX + CBX + BCX (A.1c)

Equations A.1 show the reactions needed to implement the Counter Builder (CB) gate.
Equations A.1a and A.1b show the unbuffering and buffering reactions, respectively.
Equation A.1c show the iteraction between the gate (CB) with the input (X) , which
inactivate it (IX) and release the buffered Counter (BC) Gate. Table A.1 describes each
species acronyms used in Equation A.1.

A.2 Counter Gate

The Counter Gates (C) are responsible for literally “counting,” i.e., reacting the
non-medoid strands with the selected medoid strand, how many non-medoid strands are
in the solution. They are represented as blue boxes marked as (b) in Figure 5.3. In the
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Table A.1: Table describing each species acronyms used in Equation A.1 for Counter
Builder (CB) Gate.

Species Description
BA Buffer activator (for CB gate)
BCBX Buffered Counter Builder
CBX Counter Builder
X Input species of the gate
BCX Buffered(inactive) Counter Gate for X species (input)
IX Inactivated species X (for use in later iterations)
BDA Buffer deactivator (for CB gate)

process, the Counter Gates inactivates (i.e., buffers) the non-medoid strands and produces
report strands used as input in the Join Gates to generate the mistrust signal.

BAC+ BCX −→ CX (A.2a)

CX + BDC −→ BCX (A.2b)

CX + S −→ CX + IS + Rep (A.2c)

Equation A.2 shows the reactions needed to implement the Counter (C) gate. Equations
A.2a and A.2b show the unbuffering and buffering reactions, respectively. Equation A.2c
show the iteraction between the gate (C) with the input (S) , which inactivate it (IS)
and release the reporter signal (Rep). Table A.2 describes each species acronyms used in
Equation A.2.

Table A.2: Table describing each species acronyms used in Equation A.2 for Counter (C)
Gate.

Species Description
BAC Buffer activator (for Counter Gate)
BDC Buffer deactivator (for Counter Gate)
BCX Buffered(inactive) Counter Gate for X
CX Unbuffered(active) Counter Gate for X
S Strand of DNA to be counted/clustered
IS Strands of DNA witch have been counted/clustered; S in

“inactive” state (may be used later in other gates)
Rep Strand of DNA only used to report counting
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A.3 Join Gate

The Join Gates (J) are responsible for generating the analog Mistrust Signal.
The Mistrust Signal represents the level of mistrust of the classification provided by the
Counter (C) Gates. When the trust in classification by Counter (C) Gates is high (in
other words, classified species have a high affinity for only one medoid), then the mistrust
signal concentration is low. Conversely, when the trust in classification is low, i.e., the
classified species have an equal affinity for more than one medoid, the mistrust signal
concentration is high. The Join Gates are represented as orange boxes marked as (c) in
Figure 5.5. The gate works as an analog subtraction operation: if both inputs have the
same concentration, the output is zero; if inputs have significantly different concentrations,
the output concentration is high. The higher the concentration difference from the inputs,
the higher the output concentration.

BA+ BJXY −→ JXY (A.3a)

JXY + BDA −→ BJXY (A.3b)

JXY + X←→ TXY (A.3c)

TXY + Y −→ 2MisXY (A.3d)

Equation A.3 shows the reactions needed to implement the Join (J) gate. Equations A.3a
and A.3b show the unbuffering and buffering reactions, respectively. Equation A.3c show
the iteraction between the gate (J) with the input X, releasing a intermediary signal TXY.
Equation A.3d show the intermediary signal TXY interacting with the input Y which
release two copies of the Mistrust signal (MisXY). These copies denote that one strand
of X and one strand of Y were present in the solution, contabilizing both strands. The
bimolecular equations A.3c and A.3d are needed to allow the 4-Domain (83) encoding
of the equivalent equation JXY + X + Y −→ 2MisXY. Table A.3 describes each species
acronyms used in Equation A.3.

Table A.3: Table describing each species acronyms used in Equation A.3 for Join (J) Gate.

Species Description
BA Buffer activator (for JXY gate)
BJXY Buffered Join Gate for X and Y inputs
JXY Join Gate for X and Y inputs
TXY Auxiliary species to allow the 4-Domain encoding.
MisXY Analog signal for mistrust between input signals
BDA Buffer deactivator (for JXY gate)
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A.4 Restorer Gate

The Restorer Gates (R) are responsible for reverting the inactivation (i.e., buffering)
from the species of this iteration. The Restorer Gates are represented as green boxes
marked as (d) in Figure 5.6. The Restorer Gates (R) take the inactivated species by
Counter Builder (CB) and Counter (C) Gates and reactivate (i.e., unbuffers) the species
to be used in the next iteration. The Restorer Gates (R) also clean the not used leftovers
inputs from Join (J) Gate.

BAR+ BR −→ R (A.4a)

R+ BDR −→ BR (A.4b)

IS + R −→ S+ R (A.4c)

Mistrust+ R −→ R (A.4d)

Equation A.4 shows the reactions needed to implement the Restorer (R) gate. Equations
A.4a and A.4b show the unbuffering and buffering reactions, respectively. Equation A.4c
show the iteraction between the gate (R) with the input (IS), which unbuffers it releasing
the activated species S. Equation A.4d show the elimination of leftovers of reporter signals
generated by the Join (J) Gates. Table A.4 describes each species acronyms used in
Equation A.4.

Table A.4: Table describing each species acronyms used in Equation A.4 for Restorer (R)
Gate.

Species Description
BAR Buffer activator (for Restorer Gate)
BDR Buffer deactivator (for Restorer Gate)
BR Buffered(inactive) Restorer Gate
R Unbuffered(active) Restorer Gate
S Unbuffered Species (DNA) that was counted
CS Buffered Species, i.e., counted, S in “inactive” state
Mistrust Output reporter analog signal
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