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Resumo

A Internet das Coisas (Internet of Things – IoT) pode ser vista como a presença pervasiva de
objetos físicos ou “coisas” que, embarcadas com capacidade de computação, armazenamento e
comunicação de dados, interagem umas com as outras e com outras entidades computacionais
tradicionais, tais como computação móvel em nuvem, para cooperativamente prover serviços
do dia-a-dia para usuários em um contexto específico, habilitando os chamados ambientes in-
teligentes.

Ambientes inteligentes são, de fato, parte de nossas vidas. O número de dispositivos de
IoT conectados cresce mais rápido que a população e que o número de usuários na Internet, o
que aumenta a necessidade de mecanismos robustos de autenticação e controle de acesso que
garantam a segurança em ambientes de tecnologia tão heterogêneos.

Devido a essa alta heterogeneidade de IoT, os esquemas de autenticação tradicionais
baseados em Infraestrutura de Chave Pública e certificados digitais são inadequados à maioria
dos dispositivos de IoT, que não tem recursos computacionais suficientes para executá-los. A
maioria das propostas de autenticação e controle de acesso que tem como alvo dispositivos com
recursos limitados, por sua vez, normalmente baseiam seu mecanismo de controle de acesso
apenas na autenticação, estratégia que também é conhecida como abordagem tudo ou nada. No
entanto, em um ambiente inteligente complexo, os dispositivos IoT geralmente oferecem uma
variedade de recursos que, então, exigem um mecanismo de controle de acesso com permis-
sões mais granularizadas. Por outro lado, as propostas que abordam o controle de acesso mais
refinado para dispositivos com restrição de recursos em IoT geralmente delegam a decisão de
controle de acesso a uma entidade externa confiável, o que cria uma dependência de terceiros
na comunicação entre dois dispositivos, que é afetada nos casos de instabilidade ou indisponi-
bilidade no serviço de autorização.

Além de demandar segurança dentro desses ambientes de tecnologia tão diversificados,
o paradigma IoT também acena para a interoperabilidade segura e perfeita entre dispositivos
que pertençam a diferentes ambientes inteligentes. Por último, há necessidade de soluções de
autenticação e controle de acesso que cubram todo o ciclo de vida do dispositivo IoT, ou seja,
desde a fabricação do dispositivo até seu descomissionamento.

Neste trabalho, propomos Authentication of Things (AoT) (Autenticação das Coisas),
uma solução holística de autenticação e controle de acesso granular para todo o ciclo de vida
de dispositivos de IoT. O AoT tem como alvo a natureza altamente heterogênea e interoperável
dos ambientes inteligentes de IoT, onde os dispositivos de IoT: (i) operam uns aos outros em
um domínio de confiança local, onde as operações exigem permissões de controle de acesso



granulares; (ii) não tem qualquer dependência de terceiros durante os processos de autenti-
cação e controle de acesso; (iii) podem operar como dispositivos convidados em um domínio
estrangeiro, ou seja, não originalmente seu domínio local de confiança; e (iv) interagem com
um servidor remoto em um domínio de confiança do fabricante, que representa a relação de
confiança entre os dispositivos e seu fabricante durante seu ciclo de vida.

O AoT tem como alicerces Criptografia Baseada em Identidade (IdentityBased Cryp-
tography – IBC) para distribuir as chaves e autenticar os dispositivos e Criptografia Baseada em
Atributos (Attribute-Based Cryptography – ABC) para garantir criptograficamente um esquema
de Controle de Acesso Baseado em Atributos (Attribute Based Access Control – ABAC).

Nós projetamos o AoT como uma composição de protocolos e primitivas criptográficas,
portanto, nós baseamos a modelagem e a análise de segurança do AoT sobre o paradigma da
Composibilidade Universal. Nós avaliamos, para diferentes níveis de segurança, os requisitos
computacionais de um protótipo do AoT implementado sobre uma variedade de plataformas,
representando uma ampla gama de dispositivos de IoT, desde representantes de smartphones
a microcontroladores que podem ser usados em aparelhos de baixo custo. Nossos resulta-
dos indicam que o desempenho do AoT varia de acessível em recursos limitados, eficiente
em plataformas intermediárias e muito eficiente em dispositivos poderosos.

Palavras-chave: Internet das Coisas, Controle de Acesso, Autenticação, Segurança, Crip-
tografia Baseada em Identidade, Criptografia Baseada em Atributos.



Abstract

The Internet of Things (IoT) can be seen as the pervasive presence of physical objects or
“things” that, embedded with computing, storage, and communication capabilities, interact
among each other and with other traditional computational entities, such as mobile and cloud
computing, to cooperatively provide everyday services for users in a specific context, enabling
the so-called smart environments.

Smart environments are, in fact, part of our daily lives. The number of IoT-connected
devices grows faster than both population and Internet users, which increases the need for strong
authentication and access control mechanisms to guarantee security in such heterogeneous tech-
nology environments. Due to this high heterogeneity of IoT, traditional authentication schemes
based on Public Key Infrastructure (PKI) and certificates are expensive and most IoT devices
cannot afford to run them. Most proposals targeting such resource-constrained devices typically
base their access control mechanism solely on authentication, which is also known as the all-or-
nothing approach. However, in a complex smart environment, IoT devices often offer a range
of resources that require different permissions rights, which, in turn, demands a fine-grained ac-
cess control mechanism. On the other hand, proposals that address fine-grained access control
for resource-constrained devices in IoT usually delegate the access control decision to an exter-
nal trusted entity, which creates a third-party dependency on device-to-device communication
and it is impacted in cases of instability or unavailability on the authorization service.

Besides demanding security in these diverse technology environments, the IoT paradigm
also beckons safe and seamless interoperability among devices that belong to different smart
environments. Last, there is a lack of options for authentication and access control solutions
that cover the entire IoT device life-cycle, i.e., from device manufacturing to decommissioning.

In this work, we propose Authentication of Things (AoT), a holistic tailor-made au-
thentication and fine-grained access control solution for the entire IoT device life-cycle. AoT
targets the highly heterogeneous and interoperable nature of IoT smart environments, where
IoT devices: (i) operate each other in a local domain of trust, where the operations demand
fine-grained access control permissions; (ii) do not have any dependency on third parties during
the authentication and access control processes; (iii) can operate as guest devices in a foreign
domain, i.e., not originally their local domain of trust; and (iv) interact with a remote server in
a manufacturer domain of trust, which represents the trust relationship between the devices and
their manufacturer during their life-cycle.

In order to accomplish our goals, AoT protocols relies on Identity-Based Cryptogra-
phy (IBC) to distribute keys and authenticate devices as well as Attribute-Based Cryptography



(ABC) to cryptographically enforce a fine-grained Attribute-Based Access Control (ABAC).
We design AoT as a composition of cryptographic protocols and primitives, therefore, we base
its modeling and security analysis under the Universal Composability paradigm. We evaluate
the requirements, at different security levels, of an AoT prototype implemented on a variety of
platforms, representing a wide range of IoT devices, from representative smartphones and mi-
crocontrollers that could be used on low-end appliances. Our results indicate AoT performance
ranges from affordable on resource-constrained devices, efficient on intermediate devices, and
highly efficient on powerful devices.

Keywords: Internet of Things, Access Control, Authentication, Security, Identity-Based Cryp-
tography, Attribute-Based Cryptography.
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Chapter 1

Introduction

The Internet of Things (IoT) [6, 7] perhaps represents nowadays the concept that comes clos-
est to Mark Weiser’s ubiquitous computing envisioning presented in 1991 [119]. IoT can be
seen as the pervasive presence of physical objects or “things” that, embedded with computing,
storage, and communication capabilities, interact among each other and with other traditional
computational entities, such as mobile and cloud computing, to cooperatively provide everyday
services for users in a specific context, enabling the so-called smart environments, e.g., smart
houses, offices, manufacturing, and cities.

Smart environments are, in fact, part of our daily lives. The number of IoT-connected
devices grows faster than both population and Internet users1, which increases the need for
strong authentication and access control (authorization) mechanisms to guarantee security in
such heterogeneous networks [110]. Besides demanding security inside these diverse technol-
ogy environments, the IoT paradigm also beckons safe and seamless interoperability among
devices that belong to different smart environments, e.g., a guest device in a smart house might
want access to smart appliances’ operations available for visitors, while a foreign citizen needs
to consume the digital services a smart city makes available for tourists.

Due to the highly heterogeneous nature of IoT, ranging from smartphones to smart mo-
tion sensors in a smart house context, for instance, traditional authentication schemes based
on Public Key Infrastructure (PKI) and certificates, which carry significant processing, mem-
ory, storage, communication, and management overheads, are deemed unfit for the devices on
the lower end of this range, the resource-constrained IoT devices [109]. Several authentica-
tion schemes for IoT especially targeting resource-constrained devices have been proposed as
a solution to this problem [85, 86, 91, 98, 99, 108]. Albeit authentication differs in concept
and purpose from access control, they are indeed closely related security subjects. Notably,
most of these proposals on security that target resource-constrained devices typically base their
access control mechanism solely on authentication, which is also known as the all-or-nothing
approach, i.e., once authenticated, the entity has full access to any resource on the destina-
tion [128]. However, in IoT architectures such as smart environments, IoT devices often offer
a range of resources that require different permissions rights, e.g., a kitchen smart appliance

1https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-paper-c11-741490.html

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
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has few operations that are available to be safely executed by the kids in a smart house, which
demands a fine-grained access control mechanism.

In fact, there are a variety of works that propose alternatives for fine-grained access con-
trol for resource-constrained devices in IoT [30, 35, 39, 56, 76, 105]. The existing approaches
usually delegate the access control decision to an external trusted entity, taking such a decision
out of the IoT device. On the one hand, the access control processing burden is removed from
the resource-constrained device. On the other hand, it creates a third-party dependency on a sup-
posed direct device-to-device operation, which impacts user experience in cases of instability
or unavailability on the authorization service.

Although the enormous attention authentication and access control for IoT has received
from the research community, there is scant literature covering the entire IoT device life-
cycle [124], i.e., from the beginning-of-life, when the device is manufactured then deployed
in a smart environment, passing through the middle-of-life, when it communicates not only
with other devices in its smart context but also with its manufacturer to potentially be updated,
and, last, the end-of-life, when it is disposed [69]. The majority of the authentication and access
control proposals for IoT on the literature, even without being explicit, approach the middle-
of-life of IoT devices, i.e, when the device is cooperatively providing its operations in its smart
environment domain. However, neither a trusted relationship with the manufacturer nor a se-
cure decommissioning process for end life are usually contemplated. The lack of the former
has a high probability of leaving IoT devices out to date, potentially vulnerable to security
threats, which, in turn, might lead to devastating consequences since it puts all devices in the
smart environment connected to them at risk [1]. The absence of the latter, on the other hand,
gives adversaries access to consumers’ personal information and to the cryptographic material
from their trusted environments, which might be used to abuse the trusted relationships, also
becoming a potential threat to the other devices in the smart environment [57].

1.1 Goal

In this work, we aim at designing, developing, and evaluating a holistic authentication
and fine-grained access control solution for IoT. Our solution, Authentication of Things (AoT),
provides authentication and access control to all stages in an IoT device’s life-cycle (Figure 1.1),
in particular: pre-deployment, ordering, deployment, functioning, and retirement. AoT targets
the highly heterogeneous and interoperable nature of IoT smart environments, where IoT de-
vices: (i) operate each other in what we call a local domain of trust, where the operations
demand fine-grained access control permissions; (ii) do not have any dependency on third par-
ties during the authentication and access control processes; (iii) can operate as guest devices in
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a foreign domain, i.e., not originally their local domain of trust; and (iv) interact with a remote
server in a manufacturer domain of trust, which represents the trust relationship between the
devices and their manufacturer during their life-cycle.

Figure 1.1: Entire IoT device life-cycle.

1.2 Approach

In order to accomplish our goals, AoT protocols relies on Identity-Based Cryptography
(e.g., [19, 31, 102, 106]) to distribute keys and authenticate devices as well as Attribute-Based
Cryptography (e.g., [13, 44]) to cryptographically enforce a fine-grained Attribute-Based Ac-
cess Control [50, 125]. We chose these cryptosystems because they are certificate-free and
thus do not impose certificate-related overheads on devices. Our key insight is to tackle the
well-known key escrow problem [28] of identity-based schemes designing a two-domain ar-
chitecture composed of a manufacturer domain and a local domain. These domains manage
manufacturer-to-device and local device-to-device trust relationships, respectively.

We design AoT as a composition of cryptographic protocols and primitives, therefore,
we base its modeling and security analysis under the Universal Composability paradigm [23,
49, 61]. In this context, we extend a specific functionality [62] to support a set of crypto-
graphic primitives which, in turn, supports the analysis of the identity-based authenticated key
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agreement protocols categorized into the same family of protocols proposed by [81] under the
Universal Composability paradigm.

We implement an AoT prototype, at different security levels, on different platforms,
varying computational resources, representing a wide range of IoT devices. We use a recently
launched Android mobile phone, a Google Pixel 6, as a representative of smartphones that could
be used in a smart environment supported by AoT. Other powerful entities in a smart environ-
ment are represented by a Raspberry Pi3, a low-cost programmable computer. We represent
intermediate smart devices with Raspberry Pi1. Last, as our representative of microcontrollers
that could be used on low-end appliances supporting AoT, we use an Arduino Due. We use
our prototype to quantify CPU, memory, storage, and communication overheads imposed by
AoT protocols. Our results indicate AoT performance ranges from affordable on resource-
constrained devices like the Arduino Due to efficient on intermediate devices like the Raps-
berry Pi1, and negligible on powerful devices like the Raspberry Pi3 and on smartphones like
the Google Pixel 6.

1.3 Contributions

The majors contributions of our work are summarized as follows.

• An authentication and access control solution that cover all the stages in an IoT device
life-cycle, i.e., from device manufacturing to decommissioning.

• A fine-grained Attribute-Based Access Control mechanism cryptographically enforced
by Attribute-Based Cryptography.

• An extension of a functionality [62] in the Universal Composability framework which
ends up supporting the analysis of identity-based authenticated key agreement proto-
cols [81].

We also have the following minor contributions:

• A two-domain architecture that allows separated device-to-manufacturer and device-to-
device trust relationships during the IoT device life-cycle.

• A protocol for device ownership reassignment and a protocol for authentication and ac-
cess control between devices from different domains of trust.

• Device-to-device authentication and access control processes’ decision without any dele-
gation to third parties.
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• Modeling and security analysis of AoT protocols under the Universal Composability
paradigm.

• Experimental evaluation of AoT protocols based on real prototypes and quantification of
various performance metrics on diverse hardware at different security levels.

• To the best of our knowledge, we provide the first ABS experimental evaluation results
for powerful, intermediate, and resource-constrained devices.
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1.5 Organization

The remainder of this work is structured as follows. Chapter 2 introduces the fundamen-
tals of AoT’s design. We discuss related work in Chapter 3. Chapter 4 presents AoT protocols
and the assumptions under which it has been designed. In Chapter 5 we perform the security
analysis of AoT protocols. Chapter 6 describes the development of AoT prototype, detailing the
implementation and optimization of cryptographic primitives as well as a demo comprising all
stages of an IoT device life-cycle in a smart house. Chapter 7 presents AoT prototype resource
requirements. Chapter 8 summarizes our work and gives directions for future work.
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Chapter 2

Background

In this chapter, we cover the fundamentals of AoT, namely Authentication in Section 2.1,
Attribute-Based Access Control (ABAC) in Section 2.2, Identity-Based Cryptography (IBC)
in Section 2.3, Attribute-Based Cryptography (ABC) in Section 2.4, and Pairing-Based Cryp-
tography (PBC) in Section 2.5.

2.1 Authentication

Authentication [75] is allegedly the most important security property in IoT [107]. One
of authentication’s major goals is to prevent illegitimate nodes from taking part in network
activities. This can protect most network operations, unless legitimate nodes have been com-
promised.

Broadly speaking, authentication comprises two properties. The first is source authenti-
cation [109], which guarantees a receiver that the message indeed originated from the claimed
sender. The second is data authentication [109], which prevents integrity violation, i.e., it pre-
vents that a message is altered while in transit between the sender and the receiver, and ensures
that the received message is “fresh”, i.e., not being replayed.

In the world of cryptography, authentication can be achieved through the use of sym-
metric or asymmetric (public-key) cryptosystems [109]. More precisely, through the use of
Message Authentication Codes (MACs) [109] and Digital Signatures [109], respectively. (It
is worth noting only the latter provides nonrepudiation, i.e., prevent a device from denying
previous commitments or actions.)

AoT leverages both MACs and Digital Signatures for authentication in its suite of pro-
tocols.
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2.2 Attribute-Based Access Control

Access Control [14] regulates who or what (e.g., a user) can perform an operation (e.g.,
read or write) on an object (e.g., a file).

Traditional access control models are inconvenient for IoT [125]. For instance, Manda-
tory Access Control, Discretionary Access Control, and Role-Based Access Control are user
centric and do not consider factors like resource information, relationship between the user (the
requester) and the resource provider, and dynamic information (e.g., current time and user iden-
tifier). Moreover, in large scale networks like IoT deployments, it might be unmanageable for
one to keep a list of who is granted access to what.

ABAC [125], on the other hand, simplifies access control by replacing discretionary per-
missions with policies based on attributes. The model grants rights to users based on attributes
like resource characteristics and contextual information. The idea is based on the observation
that, in a given organization, permissions are often assigned to the attributes of users rather than
to their identity. Attributes, in turn, are assigned to users according to their responsibilities or
qualifications. In ABAC, the possession of an attribute can be easily altered without modifying
the underlying access structure; and new permissions can be conveniently granted to attributes
as new objects or operations are incorporated into the system.

AoT adopts ABAC as its fine-grained access control model for IoT.

2.3 Identity-Based Cryptography

The notion of IBC dates back to Shamir’s original work [106], but it has only become
practical with the advent of PBC [18, 54, 82, 102]. The main advantage of IBC is that it does
not require the expensive explicit public-key authentication (like traditional PKI does). In these
systems, users may have a meaningful public-key rather than a random string of bits; and those
keys can thus be derived from the user’s public information [28, 113]. Note this information
intrinsically binds a user to its public-key, which makes other means of accomplishing this
binding, e.g., digital certificates, unnecessary [28, 113]. Finally, IBC also allows secure com-
munication between users of different IBC domains [81].

IBC, however, is not a panacea and it turns out that private-keys in IBC are not generated
by their respective owners but rather by Private Key Generators (PKGs), i.e., those keys are not
actually private. So, a PKG could, if it wanted to, impersonate any user in the system [28, 113].
This is the well-known key escrow problem of identity-based systems; and the main challenge
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for the wide adoption of IBC [28, 113].

2.4 Attribute-Based Cryptography

ABC [13, 44], also known as Fuzzy IBC [101], is an extension of the idea used in IBC.
As such, ABC also suffers from the key escrow problem. Compared to IBC, ABC focuses on
groups of users rather than solely on users’ identities. The cryptosystem relies on a subset of
user attributes to control private-key ownership.

Broadly speaking, there are two classes of ABC schemes, namely Key-Policy ABC (KP)
(e.g., [44]) and Ciphertext-Policy ABC (CP) (e.g., [13]). In the former, the policy is attached
to private keys, and attributes annotate messages. In the latter, messages carry the policy and
users possess a key for each of their respective attributes. There is a close fit between KP and
applications that deliver digital content like cable TV [44]. In KP, however, the sender of a
message has no control over who or what will be able to access the contents of his messages.
CP, on the other hand, does allow this control.

In the context of signature schemes, CP is commonly referred to as Policy-Endorsing
Attribute-Based Signature [117]. Here, users are assigned a set of attributes and the correspond-
ing private keys. A user’s ability to perform operations over a message (e.g., sign a message)
depends on the attribute set associated with the user as well as the policy associated with the
message. To be concrete, messages carry a boolean expression of attributes called the signing
policy or the predicate of the message. To verify a signature correctly, a user must sign the
message using the keys associated with any subset of attributes that satisfies the predicate.

It is worth stressing the synergy between ABC and ABAC (Section 2.2). On the one
hand, ABC is similar to ABAC in that they both are based on user attributes. On the other
hand, ABC and ABAC are also complementary, since they may be combined so the former
cryptographically enforces the later.

We chose CP to be the underlying cryptographic construction of AoT’s access control
mechanism. Precisely, AoT employs ABC signatures (ABS for short) during its most frequent
operation and maps ABAC policies onto ABC predicates.
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2.5 Pairing-Based Cryptography

PBC [19, 53, 102] has paved the way for the design of original cryptographic schemes
and made existing cryptographic protocols both more efficient and convenient. It has also shed
some light on many long-standing open problems allowing quite a few of them to be solved
elegantly. Identity-Based Encryption (IBE) [19] is most likely the main evidence of this, as
IBE has enabled complete IBC schemes. (But note that there are other pairing-free ways of
performing IBE today [20, 31].)

The bilinear pairing is the major cryptographic primitive in PBC. Pairings, for short,
were first used in the context of cryptanalysis [82], but their pioneering use in cryptosystems is
due the works of Sakai, Ohgishi, and Kasahara [102], Boneh and Franklin [19], and Joux [53].
AoT relies heavily on PBC. For instance, AoT makes use of pairings to distribute keys and
to implement ABS. In the following, we present an overview of the mathematical foundation
behind pairings.

2.5.1 Elliptic Curves

Let Fqk denote the field of integers modulo q
k. An elliptic curve E over Fqk is defined by

an equation of the form y
2 = x

3 + ax+ b, with a, b 2 Fqk . A pair (x, y), where x, y 2 Fqk , is a
point on E curve if (x, y) satisfies the curve’s equation. An additional point at infinity, denoted
O, is also said to be on the curve. The set of all pairs of solutions together with the point at
infinity is denoted E(Fqk), E for short. There exists well-known method for adding two elliptic
curve points P1, P2 2 E producing a third point on the elliptic curve P3 = P1 + P2 2 E. The
scalar multiplication of a point P 2 E is defined as the repeated addition to the point P 2 E to

itself, e.g, s · P =

s timesz }| {
P + ...+ P 2 E if s > 0 and s · P = O, if s = 0. With this addition rule,

the set of points E forms an abelian group with point O as the identity element. The number n
of points in E is called the order of the curve over the field Fqk . The order r of a point P 2 E is
the least r > 0 such that r ·P = O. The order r always divides the order n of the curve. The set
of r-torsion points on E is the set E[r] = {P 2 E | r · P = O}. The set of points generated by
P is a subgroup of E[r], consequently, a subgroup of E[n]. A subgroup G of an elliptic curve
E(Fqk) has embedded degree k if its order r divides qk � 1 for the smallest possible k.
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2.5.2 Bilinear Pairings

Let G1 and G2 be additively-written with identity O and generators G1 and G2, respec-
tively, and GT is a multiplicatively-written group with identity 1 [40] such that they all have the
same order., i.e., | G1 |=| G2 |=| GT |.

A bilinear pairing is a map ê : G1 ⇥G2 ! GT is said to be admissible if it satisfies the
following properties:

• Bilinear: ê(aP, bQ) = ê(P,Q)ab 8P 2 G1, Q 2 G2 and 8, a, b 2 Z⇤

|G1|
.

• Non-degenerate: ê(G1, G2) 6= 1.

• Computable: there is a polynomially bounded algorithm to compute ê(aP, bQ) 8P 2
G1, Q 2 G2.

The choice of the groups G1, G2, GT , and the pairing ê are part of the set up of the
identity- and attribute-based cryptosystems’ parameters. During the key generation phase, the
cryptosystem KGC define users’ public and private keys with respect to such parameters.

In this work, we restrict to elliptic curves. The groups G1 and G2 are groups of points
on the elliptic curve over the field Fq and GT is a subgroup of the multiplicative group of a finite
field related to Fq, e.g., one of its extensions [41].

When G1 = G2, the pairing is said to be symmetric. In this case, the elliptic curve E is
supersingular defined over Fq with embedded degree k > 1. The group G1 is always a subgroup
of E(Fq), and there exists a “distortion map”  which maps G1 into E(Fq) and the symmetric
pairing of P , Q 2G1 is obtained by computing ê(P, (Q)). The actual goal of  is to guarantee
the points P and  (Q) are always linearly independent.

When G1 6= G2, the pairing is said to be asymmetric. In this case, a common instanti-
ation is to choose G1 as a subgroup of points of the elliptic curve E(Fq), G2 as a subgroup of
points of the elliptic curve E(Fqk) and GT as the multiplicative subgroup of the finite extension
Fqk [40].

As pointed in [41], asymmetric pairings provide good performance and flexibility for
high security levels. Therefore, this is our adoption in AoT.

2.5.3 Security Assumption
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There are in the literature many different security assumptions used to build pairing-
based cryptography protocols, e.g., Bilinear Inverse Diffie-Hellman Problem (BIDH) [126], the
q-Strong Diffie-Hellman (q-SDH) [17], etc. We describe here the Bilinear Decisional Diffie-
Hellman (BDDH) [11, 18], a security assumption that we use in Chapter 5.5.

BDH Parameter Generator. Let B(1⌘) be a BDH Parameter Generator [18] algorithm,
which takes as input a security parameter ⌘ and returns two additively-written groups G1 and
G2 with order r, identity O and generators G1 and G2, respectively, a group GT with order r, a
multiplicatively-written group with identity 1, and a admissible bilinear map ê : G1⇥G2 ! GT .

BDDH Assumption. The BDDH assumption holds for B if for every polynomial time algo-
rithm A (in ⌘) the BDDH advantage of A, defined as

Adv
BDDH

A,B
(1⌘) =

���Pr
h
Exp

BDDH�0
A,B

(1⌘) = 1
i
� Pr

h
Exp

BDDH�1
A,B

(1⌘) = 1
i���

is negligible as a function in ⌘, where the experiments Exp
BDDH�0
A,B

and Exp
BDDH�1
A,B

are defined as follows. In the experiments x R � Z⇤

q
describes x an element chosen uniformly at

random from Z⇤

q
.

Function Exp
BDDH�0
A,B

(1⌘):
(G1, G2, G1, G2, GT , q, ê) := B(1⌘)
a R � Z⇤

q
, b R � Z⇤

q
, c R � Z⇤

q
, z R � Z⇤

q

return A(⌘, (G1, G2, q, ê), a ·G1, a ·G2, b ·G1, c ·G1, c ·G2, ê(G1, G2)a·b·c)
end

Function Exp
BDDH�1
A,B

(1⌘):
(G1, G2, G1, G2, GT , q, ê) := B(1⌘)
a R � Z⇤

q
, b R � Z⇤

q
, c R � Z⇤

q
, z R � Z⇤

q

return A(⌘, (G1, G2, q, ê), a ·G1, a ·G2, b ·G1, c ·G1, c ·G2, ê(G1, G2)z);̇
end
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Chapter 3

Related Work

In what follows, we briefly describe previous work on security for constrained devices (Sec-
tion3.1) and Elliptic Curve Cryptography (ECC) and PBC implementation on resource-constrained
devices (Section3.2). Then, in Section3.3, we describe authentication and access control schemes
for IoT.

3.1 Security for constrained devices

Before the advent of IoT, much work has been proposed for securing Mobile Ad hoc
NETworks (MANETS) and sensor networks in general. The studies for MANETs (e.g., [27,
51, 115, 127, 129]) are not applicable to IoT because they assumed Personal Digital Assistants
(PDAs), which have more computational resources than many IoT devices. Traditional PKC-
based solutions are such an example. The works tailored to sensor networks (e.g., [22, 37, 47,
73, 79, 92, 94, 96, 111, 118, 130]) are usually ill-suited to IoT, too. This is because they often
make assumptions that do not apply to IoT and thus the proposed solutions cannot be applied
as-is. For instance, while sensor devices often run the same application and are owned by a
single entity in sensor networks, devices in IoT may execute different applications and report
to more than one authority. AoT brings authentication and access control to IoT, addressing
IoT-specific requirements and constraints.

3.2 ECC and PBC on resource constrained devices

One of the first efforts to implement ECC into resource-constrained devices is presented
by [46]. The work presents an implementation of ECC primitives based on two 128-bit elliptic
curves. The authors use as target devices a family of 16-bit MSP430 microcontrollers with 1 KB
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of RAM and a maximum clock frequency of 3.8 MHz.
Discussion about PBC in a resource-constrained context, in turn, is presented by [90].

In this work, the authors claim that it is a real possibility to have PBC running in such type of
devices by presenting estimated performance numbers of the Tate pairing computation over the
8-bit processor ATmega128L.

Although with a low level of security, the actual implementation of pairings on a resource-
constrained device, a wireless sensor node, is first presented in TinyTate [89]. The target node is
also the 8-bit ATmega128L microcontroller with 7.3828 MHz of clock frequency, and 4 KB of
RAM. The cryptographic library TinyECC is the basis of implementation, and the results show
that a Tate pairing computation takes about 30 s.

In the work NanoECC, [112] present improved numbers for pairing computation using
NIST k163 Koblitz curve [87]. The run times to compute a pairing are 17.93 s on the 8-bit
ATmega128L and 11.82 s on the 16-bit MSP430 with 8.192 MHz clock frequency, and 10 KB
of RAM.

[43] implement PBC code specifically tailored to the family of 16-bit MSP430 micro-
controller with 8MHz clock frequency. The authors use the same 100-bit security level BN
curve used in AoT’s prototype implementation (BN-254), and obtain a run time of 14.7 s to
compute an optimal Ate pairing.

Using lazy reduction optimizations, [42] improve the computation of optimal Ate pair-
ing at 100-bit security level (BN-254 curve) to 9.930 s in a 16-bit MSP430 microcontroller
with 8 MHz, 8 KB RAM. Using a specialized 32-bit hardware multiplier, the result is further
improved to 5.967 s.

In TinyPBC [92], the authors present run times of 1.90 s to compute ⌘T pairings on the
7.4MHz ATmega128L, 1.27 s on an 8 MHz MSP430, and 0.14 s on a 13 MHz ARM platform.
These results are achieved using a supersingular 271-bit order curve, no longer consider se-
cure [8]. In Secure-TWS [91], the authors evaluate, among others, the Boneh-Lynn-Shacham
(BLS) scheme [16], a signature scheme based on pairings. The target devices are the MSP430-
F2418 with 16-bit 16 MHz clock frequency, and 8 KB of RAM, and the ARM LPC2138 with
32-bit 60 MHz clock frequency, and 32 KB of RAM. In the BLS scheme there are 2 pairings
computation, the authors used 80-bit security bit nonsupersingular MNT curve and Tate pair-
ing. The run times of BLS are 1.59 s and 98.4 ms on MSP and ARM platforms, respectively.
Unfortunately, there is no result of pairing computation alone.

[114] present a hardware approach to accelerate pairing computation. The authors equip
a 32-bit processor equivalent to the ARM Cortex-M0+ (48 MHz clock frequency) with a dedi-
cated hardware module to speed up arithmetic in the prime field. Using 100-bit security level
(BN254 curve), the authors reach 164 ms for pairing computation.

From the above analysis, it is clear that the implementation of PBC has been taken to a
high level of optimization to fit resource constrained-devices. However, not only the research
community has put efforts in bringing down run time numbers but also devices with more
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computational power are becoming more and more affordable, allowing the implementation of
PBC protocols and schemes such as AoT.

3.3 Authentication and access control for IoT

In the following sections we discuss works that do not consider a fine-grained access
control mechanism for IoT (Section 3.3.1), proposals of access control models and frameworks
for IoT (Section 3.3.2), and proposals that address authentication and fine-grained access control
(Section 3.3.1). In Section 3.3.4, we present a comparison table among all the discussed works
and AoT.

3.3.1 Authentication

Several works on authentication and access control for IoT enforce their access control
scheme solely on the authentication mechanism, i.e., fine-grained access control is not consid-
ered. Below, we describe some work that, in a certain way, can be categorized as so.

In [91], the authors propose to authenticate communication from a device to multiple
users. The proposal named Secure Tiny Web Services (Secure-TWS) investigates the resource
overheads for digital signatures, notably, for the Elliptic Curve Digital Algorithm (ECDSA) and
the Boneh-Lynn-Shacham (BLS) short signature schemes. The work contemplates a prototype
on a set of resource-constrained devices.

[85] propose a scheme to provide authentication for smart domestic devices. The au-
thors employ IBC and Wi-Fi as well as Bluetooth and NFC to authenticate message exchange
between devices. NFC is used during Bluetooth pairing and key distribution. The authors
present prototypes of their proposal for intermediate and powerful devices.

Yavuz proposes an ECC-based authentication scheme for IoT devices called Efficient
and Tiny Authentication (ETA) [122]. Due to its ECC nature, the proposal provides authenti-
cation with a small key and signature sizes. Even though the author claims the scheme targets
resource-constrained devices, the evaluation comprises only powerful devices.

In [98], it is proposed a two-phase authentication scheme for IoT. The proposed protocol
relies on implicit certificates to provide mutual authentication in a heterogeneous architecture.
In the first phase, the entities on the architecture obtain their credentials from a trusted party to,
then, in the second phase, be able to mutually authenticate each other. The protocol is designed
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based on the ECQV implicit certificate and ECDH key exchange mechanisms.
[80] propose a federated end-to-end authentication scheme for IoT based on IBC. In this

work, constrained IoT devices are located in sub-networks connected to the Internet through
more powerful border gateways, which maintain a local trusted authority. The end-to-end au-
thentication between nodes from different domains requires a federation between the gateways.
The authors provide an experimental evaluation of their proposal on a resource-constrained
device.

In [120], the authors propose a method for key agreement and authentication that allows
two IoT devices physically close to each other to agree on a common key based on the Chan-
nel State Information (CSI) available from the Orthogonal Frequency Division Multiplexing
(OFDM) of the current WiFi standard.

[99] propose a key management architecture for the resource- constrained devices in IoT
that enables device-to-server authentication. The proposal allows a resource-constrained device
to establish a pre-shared symmetric key with a resource server within the Datagram Transport
Layer Security (DTLS) handshake.

In [108], it is proposed a lightweight and escrow-less authenticated key agreement for
IoT that enables device-to-device authentication in such a context. The proposal protocol com-
bines the SMQV (strengthened-Menezes-Qu-Vanstone) protocol combined with implicit certifi-
cates. The proposal ends-up in an efficient approach that avoids transmission and storage costs
of traditional PKI-based certificates.

[60] propose an Elliptic Curve Cryptography (ECC)-based authentication protocol for
a context where IoT devices, represented as resource-constrained devices, send data to a cloud
server. The authors provide an analytical performance evaluation of their scheme and a security
analysis using an automated tool.

In [48], the authors propose a decentralized authentication scheme for IoT based on
blockchain. They call their system “bubbles of trust”, where the bubbles are analogous to AoT’s
home domains. The authors evaluate their approach in a prototype comprised of powerful and
intermediate (similar to the one we used in our evaluation) devices. Communication device-to-
device is always dependent on the ledger.

In [33], the authors propose a lightweight symmetric-based user authentication scheme
for IoT. The authors consider an architecture that comprises a registration authority, users, gate-
ways, and IoT devices. In this case, a gateway distributes tokens generated by the registration
authority for a pool of IoT devices it manages. The user also receives a token that will, then, al-
low her to authenticate to the devices. The authors provide an analytical performance evaluation
and a security analysis of their scheme.

[86] propose a key management scheme for securing communications between IoT de-
vices in an architecture formed by field nodes, gateways and a remote server. Their scheme
is based on lightweight symmetric cryptographic and can be portable even in sensor nodes.
The authors provide a experimental performance analysis on resource-constrained devices and
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a security analysis using a automated tool.
[103] propose a federated lightweight authentication for IoT. Their protocol relies on im-

plicit certificates and symmetric cryptography and, then, can be executed on resource-constrained
devices without the dependency on an external entity. As a federated-based solution, their ap-
proach contemplates inter-domain communication. The authors also evaluate their approach on
resource-constrained devices.

3.3.2 Access Control Frameworks

An authorization framework for IoT is proposed in [105]. The authors describe a frame-
work that allows fine-grained and access control based on eXtensible Access Control Markup
Language (XACML) to connected devices with limited processing power and memory. Their
proposed architecture comprises a resource directory, where are kept the public and symmet-
ric keys of the devices as well as the access policies, the resource-constrained device, the user
that accesses the device resource, and a back-end authorization engine, which signs and verifies
assertions of the users. The resource constrained-devices enforce the access control decision
locally, however, the users always depend on the authorization engine to requests access to
devices’ operations. The authors provide a proof of concept of their proposal on a resource-
constrained device.

[100] propose an schema that unifies the access control mechanism in an architecture
comprises of intelligent agents, IoT devices and hybrid elements. Their schema abstracts the
nature of the IoT entities in the access control policies, which allows the model to support
different IoT contexts at the same time.

In [38], the authors present an architectural model to enables access control in IoT con-
texts. They propose the usage of OAuth2, which make their model compatible with RESTful
services. In their approach, an IoT application needs to developed with a policy enforcement
point and, then, be registered as a service in an Identity Provider to have the authorization layer
automatically integrated.

[2] propose an access control model for virtual objects communication in IoT. Their
model combines ACLs, RBAC, and ABAC, where ACLs control publish and subscribe rights
of virtual objects and RBAC and ABAC govern the administrative rights on the ACL itself.

In [97], the authors present a blockchain-based architecture for IoT access authoriza-
tions. Their proposal architecture follows the principles of decentralization, resilience, off-line
working, and low processor usage for authorization. The authors define a decoder that receives
an existing access control model (RBAC, ABAC, or ACL) and translate it to mechanisms sup-
ported in their architecture.
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3.3.3 Authentication and fine-grained Access Control

[74] propose an identity-based authentication and access control framework for IoT.
The authors consider an architecture where things have a registration authority, and users have
their exclusive registration authority. The communication between users and things is always
dependent on the trusted authorities. In this case, OpenID is used to provide authentication and
RBAC to govern access control.

In [52], it is presented an initial design that aims at making certificate-based authenti-
cation feasible for resource-constrained objects in IoT. This proposal is based on DTLS and
uses certificate pre-validation which is computed on gateways, and a delegation procedure also
executed on an external entity to reduce the computing burden on resource-constrained devices.

[123] propose an ECC-based authentication and access control mechanism for wireless
sensor networks. In their work, the architecture comprises users’ smart devices, sensor nodes,
base stations, gateways, and a trusted certificate authority. In their proposal, users have to nego-
tiate with the base stations the secret parameter to be used in the cryptosystem. The certificate
authority, in turn, issues attribute certificates to users and sensors nodes. Hence, during access
control, the user presents her certificate that must be verified by the node against the ABAC
access policy before access to the data can be guaranteed. The proposal does not consider
inter-domain communication nor provides an experimental evaluation of the protocols.

In [39], the authors evaluate the usage of OAuth 2.0 together with MQTT protocol as a
model for federated identity and access management in IoT. The authors identify a number of
issues, in open-source implementation of the protocols and in fundamentals, where propose fur-
ther research. Besides authentication, the work provides access control, performance evaluation
on a resource-constrained platform, and, as a federated approach, inter-domain communication.

[30] propose an architecture targeted to IoT scenarios for an external authorization ser-
vice based on OAuth. In their proposal, the access control is delegated to an external service,
which has to be invoked by the devices. The authors present an evaluation of their proposal on
a resource-constrained device.

An authentication and authorization infrastructure for IoT applications based on IBC,
SAML and XACML is proposed in [36]. The proposal provides two operational modes. The
first one is specific for resource-constrained devices, in which case the access control is dele-
gated to an external server. The other option, in turn, if the device itself has enough computa-
tional resources, it executes the access control processes.

In [55], the authors propose an OpenID-based authentication service for IoT. In their
approach, the user’s authentication is performed by an OpenID platform and user authorization
to devices is performed by an access policy description component that executes on a relying
party, which, in turn, intermediates the communication to the devices.

[76] propose a distributed access control solution for IoT based on a blockchain architec-
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ture. In their proposal, gateways manage the user access to devices information and control the
device communication. Besides, each gateway keeps a copy of the ledger, which, in turn, main-
tains the public key of each device on the environment. The authors provide an experimental
evaluation in resource-constrained devices.

[72] also propose an authentication with fine-grained access control scheme for IoT
based on blockchain. In their proposal, which targets the industrial context, the authors replace
the ECDSA signature used in the Bitcoin system with ABS (they use the same scheme we adopt
in the AoT prototype) and use secure certificateless multi-receiver encryption to send encrypted
data from one entity to a group of pre-selected receivers. The transactions in their architecture
carry instructions, such as querying, storing, and operating data signed with ABS, where the
fine-grained access control is guaranteed. As their proposal targets the industry, the authors
evaluate the performance of their prototype on a powerful device.

In [35], the authors propose an ABAC scheme based on blockchain for IoT. In their
architecture, each device receives a set of attributes issued by a trusted authority. The trusted
authority acts as a key generation center to issue an IBC key pair for IoT devices when they
are registered on the system, and as an attribute authority when the devices apply for a set of
attributes. Upon authorization, the attribute authority records each attribute as a transaction
on the blockchain. Before enrolling in an access control protocol, a pair of devices mutually
authenticate each other. Then, they execute a challenge-response protocol in which the requester
must sign the challenge with a subset of attributes that satisfies that ABAC access policy. The
signature is verified by the other party consulting the records on the blockchain.

A decentralized authentication scheme based on blockchain for IoT is proposed in [56].
In this case, the authors not only consider authentication but also access control defined on
top of smart contracts. To communication to each other, the IoT devices always depend on
the ledger. This work comprises a performance analysis based on a prototype that executes on
powerful and intermediate devices.

3.3.4 Comparison

For the sake of comparison, we summarize the works we discussed above in Table 3.1.
As comparison metrics we verify if the work covers: (i) the entire IoT device life-cycle; (ii)
authentication; (iii) fine-grained access control; (iv) when the proposal contemplates access
control we check if it demands an external server or the devices themselves can process the re-
quest; (v) inter-domain communication; (vi) the minimum computation capability of the device
used on the proposal evaluation or prototype; and (vii) if the proposal is escrow resistant in the
main domain (compared to AoT’s home domain).
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Work IoT Device
Life-Cycle Authentication Fine-grained

Access Control
Access Control

Server-independent
Inter-Domain

Communication IoT Device Escrow
Resistance

[91] - 3 - - - constrained -
[85] - 3 - - - intermediate -
[122] - 3 - - - powerful -
[98] - 3 - - - constrained -
[80] - 3 - - 3 constrained -
[120] - 3 - - - powerful 3
[99] - 3 - - - constrained -
[108] - 3 - - - constrained 3
[60] - 3 - - - - -
[48] - 3 - - - intermediate 3
[33] - 3 - - 3 - 3
[86] - 3 - - - constrained 3
[103] - 3 - - 3 constrained 3
[105] - 3 3 - 3 constrained -
[100] - - 3 - 3 - -
[38] - 3 3 - 3 - -
[2] - - 3 - 3 - -
[97] - - 3 3 3 - 3
[74] - 3 3 - 3 - -
[52] - 3 - - 3 constrained 3
[123] - 3 3 3 3 - -
[39] - 3 3 - 3 constrained 3
[30] - 3 3 - - constrained 3
[36] - 3 3 3 3 powerful -
[76] - 3 3 - 3 constrained 3
[72] - 3 3 - - powerful -
[55] - 3 3 - 3 powerful 3
[35] - 3 3 - 3 constrained -
[56] - 3 3 - 3 intermediate 3
AoT 3 3 3 3 3 constrained -

Table 3.1: Related work comparison.

We observe from table 3.1 that AoT has some advantages over related work on authen-
tication and access control for IoT. First, AoT covers the entire IoT device life-cycle, which
we point as a major contribution of our work. Another clear contribution is fine-grained access
control, which is indeed considered in other works, however, they end up requiring devices with
more computational resources than AoT does or depending on external entities to perform the
decision making on behalf of the devices.



40

Chapter 4

Authentication of Things

In this chapter, we present AoT. AoT comprises a suite of protocols that cover all stages of an
IoT device’s life-cycle. We provide an overview of AoT (Section 4.1), present AoT’s auxiliary
(Section 4.2) and main protocols (Sections 4.3–4.7), and discuss its complementary features
(Section 4.8).

4.1 Overview

4.1.1 Assumptions

In what follows, we assume (i) every message is numbered; (ii) every message carries
the identifiers of the interlocutors, although we make it explicit in key agreement protocols
for security analysis purposes; (iii) cryptographic material can be securely loaded into devices
at the manufacturer’s facility; (iv) PINs can be securely entered onto devices at home; (iv)
cryptographic primitives are ideal—i.e., flawless—and can be treated as black boxes; (v) the
device manufacturer is trusted.

4.1.2 Problem

In IoT, questions as how to enable authentication and fine-grained access control re-
main unanswered. On the one hand, traditional PKC is computationally expensive and most
IoT devices cannot afford to run them. On the other hand, authentication schemes for IoT es-
pecially targeting resource-constrained devices, typically base their access control mechanism
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solely on authentication, which is also known as the all-or-nothing approach. Alternatives for
fine-grained access control for resource-constrained devices in IoT, in turn, usually delegate the
access control decision to an external trusted entity, creating a third-party dependency on a sup-
posed direct device-to-device operation, which impacts user experience in cases of instability
or unavailability on the authorization service. To make things worse, questions regarding the
portability and mobility of “things” arise. Portability and mobility are typical of IoT and they
reinforce the call for interoperation between local and guest devices. Last, there is a lack of op-
tions for authentication and access control solutions that cover the entire IoT device life-cycle,
i.e., from device manufacturing to decommissioning.

4.1.3 Goal

Our ultimate goal is to design a holistic tailor-made authentication and fine-grained ac-
cess control solution for the entire IoT device life-cycle. Our solution can be used in many smart
contexts, however, we describe it as a smart house use case. AoT targets the highly heteroge-
neous and interoperable nature of IoT smart environments, where devices like home appliances:
(i) interact with other home appliances, personal devices, and a home server in a local domain
of trust, where the resources demand fine-grained access control permissions; (ii) do not have
any dependency on third parties during the authentication and access control processes; (iii) can
be operated by other (usually personal) devices from foreign domains; and (iv) interact with a
remote cloud server in a manufacturer domain of trust, which represents the trust relationship
between the appliance and its manufacturer’.

4.1.4 Approach

As usual, our approach concentrates (i) on key distribution to bootstrap security (ii) and
on access control to govern permissions over device operations. However, we implement those
in a novel way: IBC is used to distribute keys and ABC to control access to device operations.

Our key insight to tackle the key escrow problem of IBC (Section 2) is a two-domain ar-
chitecture (Figure 4.1). More precisely, our solution comprises two distinct IBC setups, namely:
a manufacturer (Cloud) setup and a local (Home) setup. They respectively define manufacturer-
to-device and domestic device-to-device trust relationships. There is no overlap in these trust
relationships and thus an artifact generated in the Cloud domain is invalid in the Home domain
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and vice-versa. Note that the key escrow still holds in each IBC setup individually; however,
the escrow now is no longer a major problem. For the Cloud’s IBC keys escrow, this is be-
cause the user’s privacy is preserved in that requests originating from the Cloud domain are
null in the Home domain. For the Home’s IBC and ABC keys escrows, the context of where it
takes place already deals with the problem. Nevertheless, the compromising of such a device
leads to the compromising of the entire Home Domain, which means the device itself should
integrate further protection mechanisms. In this sense, standard techniques can be used to pro-
tect the cryptographic material, like employing a Hardware Security Module (HSM) or Trusted
Platform Module (TPM).

Figure 4.1: AoT two-domain architecture.

Our suite of protocols cryptographically provides authentication and access control over
wireless mediums. One of AoT’s key features is the ability to deploy devices without resorting
to cabled connections. Instead, AoT leverages a home’s physical protection and a reliable device
(e.g., the Home domain manager’s smartphone) to bridge the very first communication between
a new device and the Home server to bootstrap security. This communication can happen over
different encodings and transmission technologies. AoT delivers access control by combining
ABAC and ABC so the former cryptographically enforces the later. Here, a permission for
operating a device is ultimately tied to the ABC attributes of a requester; and the ABC attributes
and predicates are governed by the higher-level ABAC policies.
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4.1.5 Life-Cycle

In AoT, the life-cycle of an IoT device comprises five main stages, namely: (1) pre-
deployment, (2) ordering, (3) deployment, (4) functioning, and (5) retirement. By the way of
example, consider a given device life-cycle. In the pre-deployment, the cryptographic material
of the Cloud domain is loaded into the device at the factory, i.e., during its manufacturing
process. Next, in ordering, the (about to become) owner of the device purchases it and gets a
PIN that grants the owner the initial access to the device. Deployment, as its name suggests, is
when the device is deployed in its Home domain for the very first time and therefore is the stage
responsible for bootstrapping security in such a context. During deployment, the owner uses
the PIN to access the device, which puts it in setup mode. The device, in turn, uses the owner’s
personal device to establish a trust relationship with the Home server. (The Home server is the
trusted home authority in charge of managing keys and orchestrating access control inside the
home domain. For instance, the Home server issues IBC and ABC keys as well as advertises
access permissions over the domestic network.) Finally, during this stage, the device is also
bound to a user in the Cloud domain. Now, the way is paved for functioning, which corresponds
to the daily operation of the device. At this point, users request the device’s operations, and the
latter reacts based on users’ clearance levels. Retirement is the end point of a device life-cycle.
It takes place whenever its owner will no longer use the device. During this stage, there is a
wipeout cryptographic material held by the device and the owner is unbound from the device in
the Cloud domain.

4.1.6 Complementary Features

AoT has also some complementary features. For instance, AoT enables inter-domain
interactions between devices on different Home domains, meaning that devices from different
Home domains may interoperate seamlessly as long as their respective Home servers have pre-
viously agreed on some parameters. This strategy is appealing because it neither violates the
identity-based nature of AoT, nor requires key escrow across the participating domains. Our
suite of protocols also address device reassignment, enabling a user to trade or give away one
or more of his devices. Finally, we explain how AoT achieves key revocation.
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4.2 Auxiliary Protocols

The auxiliary protocols SessionKey (Protocol 4.1), PairwiseKeyAgreement (Protocol 4.2),
and SessionKeyDerivation (Protocol 4.3) compose the AoT’s session key establishment strat-
egy. Protocols KeyIssue, Binding, and Unbinding (Protocols 4.4, 4.5, and 4.6, respectively),
in turn, assist the main protocols (Sections 4.3–4.7) in issuing a private key and binding and
unbinding a device to a user in the Cloud domain, respectively.

4.2.1 SessionKey

In AoT, we use a context-dependent strategy to establish the session keys for its proto-
cols. SessionKey protocol (Protocol 4.1) is used in contexts where forward secrecy is a require-
ment or extra computational burden to establish a session key can be tolerated. In practice, it
is used as a session key establishment protocol in KeyIssue, Binding, Unbinding, and Deploy-
ment. SessionKey is based on the enhanced [29] identity-based key agreement protocol of [81].
A server S – Home server H or Cloud server C – sets up the identity-based cryptosystem I

for the domain Z – Home domain H or Cloud domain C – as follows. It first inputs a secu-
rity parameter ⌘ in a BDH parameter generator B (Section 2.5.3), which returns the groups G1

and G2 with order r, identity O, and generators G
I
1,Z and G

I
2,Z , respectively, the group GT

of order r and identity 1, and the admissible bilinear pairing ê : G1 ⇥ G2 ! GT . Besides,
X selects mapping functions MAP1 : {0, 1}⇤ ! Z⇤

r
and MAP2 : {0, 1}⇤ ⇥ {0, 1}⇤ ⇥ G1 ⇥

G1 ⇥ GT ! {0, 1}n, randomly chooses an master secret secretI
Z
2 Z⇤

r
, and a sets the master

public key (S’s public key) P I
S,Z := secretI

Z
· GI

1,Z . The IBC public key of a device X is cal-
culated as P

I
X ,Z := MAP1(idX ,Z ) · GI

1,Z + P
I
S,Z . X’s IBC private key, in turn, is calculated as

S
I
X ,Z := (MAP1(idX ,Z ) + secretI

Z
)�1· GI

2,Z .
Following the Protocol 4.1 step by step, when a device A has to establish a session key

with device B, A calculates B’s IBC public key P
I
B,Z (step 1). A then generates a random

scalar xA 2 Z⇤

r
and associates it with B’s IBC public key in a relation we call RA through a

scalar multiplication operation, i.e, RA := xA ·P I
B,Z (step 2). After that, A generates a nonce nA,

combines it in a message with the previously calculated term RA and a session key establishment
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request label, and sends the message to device B (step 3)1.

1. A : P
I
B,Z := MAP1(idB,Z ) ·GI

1,Z + P
I
S,Z

2. A : RA := xA · P I
B,Z

3. A! B : idA,Z , idB,Z , nA,RA, session_req

Upon receiving such a message, B calculates A’s IBC public key (step 4), generates its random
scalar xB 2 Z⇤

r
and associates it with A’s IBC public key in the relation RB := xB ·P I

A,Z (step 5).
In step 6, B calculates the identity-based key k

ID
B,A applying the mapping MAP2 over the identi-

ties of A and B, the relations RA and RB, and the result of the product of the pairing of the rela-
tion RA received from A with IBC private key S

I
B,Z and the pairing of the IBC groups generators

parameters and the random scalar xB, i.e., kID
B,A := MAP2(idA,Z , idB,Z ,RA,RB, ê(RA, S

I
B,Z)

ê(G1, G2)xB). Now, B has a key that A also will able to generate in step 10.

4. B : P
I
A,Z := MAP1(idA,Z ) ·GI

1,Z + P
I
S,Z

5. B : RB := xB · P I
A,Z

6. B : k
ID
B,A := MAP2(idA,Z , idB,Z ,RA,RB, ê(RA, S

I
B,Z)ê(G

I
1,Z , G

I
2,Z)

xB)

Differently from the original protocols [29, 81], the subsequent messages of Protocol 4.1 also
allow the devices A and B to (indirectly) confirm the agreed key. To confirm k

ID
B,A, however,

we first observe that the session key generated by the protocol must serve the cryptographic
purpose of the session of the higher-level protocol. For instance, in Binding the session key is
used for authentication, while in KeyIssue the session key is used for authenticated encryption.
Following the best practice of single-purpose use of keys, we define that kID

B,A can be used only
to derive new keys to perform arbitrary cryptographic operations. Hence, we use kID

B,A to derive:
(i) a new MAC key k

MAC
B,A to perform the confirmation of kID

B,A; and (ii) the actual session key
kB,A. Therefore, in step 7, B uses the pseudo-random function PRF over the concatenation of
nB and nA using k

ID
B,A to derive k

MAC
B,A . In step 8, after B generates its nonce nB, it uses PRF

over the concatenation of nB and nA using the k
ID
B,A to derive the session key kB,A, which can

be used by the higher-level protocol to fulfill the required cryptographic purpose. Then, in step
9, B responds A with the nonce nB, the relation RB generated in step 5, an acknowledgment
label string, and uses key k

MAC
B,A to calculate the MAC of all this content concatenated with nA

received in step 3.

7. B : k
MAC
B,A := PRF(nA | nB)kID

B,A

8. B : kB,A := PRF(nB | nA)kID
B,A

9. B ! A : idB,Z , idA,Z , nB, RB, session_ack, MAC(nA | RA)kMAC
B,A

After receiving such a message, in step 10, A calculates the key using the mapping MAP2

over the identities of A and B, the relations RA and RB, and the result of the product of the pair-
ing of the relation RB received from B with IBC private key S

I
A,Z and the pairing of the IBC

1As we mentioned on the assumptions, in key agreement protocols we we make it explicit the identifiers of
interlocutors on exchanged messages.
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groups generators parameters and the random scalar xA, i.e., kID
A,B := MAP2(idA,Z , idB,Z ,RA,RB,

ê(RB, S
I
A,Z)ê(G1, G2)xA). After that, analogously to B, A derives the keys kMAC

A,B (step 11) and
kA,B (step 12). To proceed with the protocol, A verifies the MAC of the message received in
step 9 (not explicitly shown in the protocol). If the verification fails, A aborts the protocol ex-
ecution. Otherwise, A sends B an acknowledgment label string and a MAC of it concatenated
with nA, RA, nB, and RB (step 13).

10. A : k
ID
A,B := MAP2(idA,Z , idB,Z ,RA,RB, ê(RB, S

I
A,Z)ê(G

I
1,Z , G

I
2,Z)

xA)

11. A : k
MAC
A,B := PRF(nA | nB)kID

A,B

12. A : kA,B := PRF(nB | nA)kID
A,B

13. A! B : idA,Z , idB,Z , session_ack, MAC(nA | RA | nB | RB)kMAC
A,B

Upon receiving such a message, B verifies the MAC (also not shown in the protocol),
if it fails, B aborts the protocol execution. Otherwise, the session is established, and a higher-
level protocol can use the session key for its cryptographic purpose. We also allow the higher-
level protocols to use the nonces generated during session key establishment as a session stamp
to authenticate the protocol messages until their conclusion, which we consider the end of a
session.

The keys kID
B,A := MAP2(idA,Z , idB,Z ,RA,RB, ê(RA, S

I
B,Z)ê(G

I
1,Z , G

I
2,Z)

xB) and k
ID
A,B :=

MAP2(idA,Z , idB,Z ,RA,RB, ê(RB, S
I
A,Z)ê(G

I
1,Z , G

I
2,Z)

xA) calculated by devices B and A in steps
6 and 10 of the protocol, respectively, are the same. We show bellow, using pairing properties,
that the computation of the last term on the mapping MAP2 performed by both devices end up
in the same result.

Expanding the term ê(RA, S
I
B,Z)ê(G

I
1,Z , G

I
2,Z)

xB :

ê(RA, S
I
B,Z)ê(G

I
1,Z , G

I
2,Z)

xB =

ê(xA · P I
B,Z , S

I
B,Z)ê(G

I
1,Z , G

I
2,Z)

xB =

ê(xA · (MAP1(idB,Z ) ·GI
1,Z + P

I
S,Z), S

I
B,Z)ê(G

I
1,Z , G

I
2,Z)

xB =

ê(xA · (MAP1(idB,Z ) ·GI
1,Z + secretI

Z
·GI

1,Z), S
I
B,Z)ê(G

I
1,Z , G

I
2,Z)

xB =

ê(xA · (MAP1(idB,Z ) + secretI
Z
) ·GI

1,Z , S
I
B,Z)ê(G

I
1,Z , G

I
2,Z)

xB =

ê(xA(MAP1(idB,Z ) + secretI
Z
) ·GI

1,Z , (MAP1(idB,Z ) + secretI
Z
)�1 ·GI

2,Z)ê(G
I
1,Z , G

I
2,Z)

xB =

ê(GI
1,Z , G

I
2,Z)

xA ê(GI
1,Z , G

I
2,Z)

xB = ê(GI
1,Z , G

I
2,Z)

xA+xB
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Expanding the term ê(RB, S
I
A,Z)ê(G

I
1,Z , G

I
2,Z)

xA :

ê(RB, S
I
A,Z)ê(G

I
1,Z , G

I
2,Z)

xA =

ê(xB · P I
A,Z , S

I
A,Z)ê(G

I
1,Z , G

I
2,Z)

xA =

ê(xB · (MAP1(idA,Z ) ·GI
1,Z + P

I
S,Z), S

I
A,Z)ê(G

I
1,Z , G

I
2,Z)

xA =

ê(xB · (MAP1(idA,Z ) ·GI
1,Z + secretI

Z
·GI

1,Z), S
I
A,Z)ê(G

I
1,Z , G

I
2,Z)

xA =

ê(xB · (MAP1(idA,Z ) + secretI
Z
) ·GI

1,Z , S
I
A,Z)ê(G

I
1,Z , G

I
2,Z)

xA =

ê(xB(MAP1(idA,Z ) + secretI
Z
) ·GI

1,Z , (MAP1(idA,Z ) + secretI
Z
)�1 ·GI

2,Z)ê(G
I
1,Z , G

I
2,Z)

xA =

ê(GI
1,Z , G

I
2,Z)

xB ê(GI
1,Z , G

I
2,Z)

xA = ê(GI
1,Z , G

I
2,Z)

xA+xB

Therefore, ê(RA, S
I
B,Z)ê(G

I
1,Z , G

I
2,Z)

xB = ê(RB, S
I
A,Z)ê(G

I
1,Z , G

I
2,Z)

xA , i.e., all the terms
in MAP2 are the same, which results kID

B,A and k
ID
A,B are equal. As the MAC and session keys are

derived from the identity-based keys using the exchanged nonces, kMAC
B,A and k

MAC
A,B are also equal,

as well as are the keys kB,A and kA,B.

SESSIONKEY(device A, device B)
1. A : P

I
B,Z := MAP1(idB,Z ) ·GI

1,Z + P
I
S,Z

2. A : RA := xA · P I
B,Z

3. A! B : idA,Z , idB,Z , nA,RA, session_req

4. B : P
I
A,Z := MAP1(idA,Z ) ·GI

1,Z + P
I
S,Z

5. B : RB := xB · P I
A,Z

6. B : k
ID
B,A := MAP2(idA,Z , idB,Z ,RA,RB, ê(RA, S

I
B,Z)ê(G

I
1,Z , G

I
2,Z)

xB)
7. B : k

MAC
B,A := PRF(nA | nB)kID

B,A
8. B : kB,A := PRF(nB | nA)kID

B,A
9. B ! A : idB,Z , idA,Z , nB, RB, session_ack, MAC(nA | RA)kMAC

B,A
10. A : k

ID
A,B := MAP2(idA,Z , idB,Z ,RA,RB, ê(RB, S

I
A,Z)ê(G

I
1,Z , G

I
2,Z)

xA)
11. A : k

MAC
A,B := PRF(nA | nB)kID

A,B
12. A : kA,B := PRF(nB | nA)kID

A,B
13. A! B : idA,Z , idB,Z , session_ack, MAC(nA | RA | nB | RB)kMAC

A,B
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Where the symbols denote:
P

Y
X,Z : X’s public key of cryptosystem Y, domain Z
I : Identity-based cryptosystem

MAP1(m), MAP2(m) : mapping functions over m
idX,Z : X’s identity in domain Z

G
I
1,Y , G

I
2,Z : domain Z’s identity-based cryptosystem additively-written groups

G1 and G2 generator points, respectively
RX : Device X’s relation that associates a X’s random scalar

with the intended communication partner’s Identity-based public key
xX : random scalar generated by X

!: unicast transmission
nX : nonce generated by X

session_req, _ack : request and acknowledgment labels
k

ID
X,Y : identity-based key agreed by X and Y

ê : a computable, non-degenerate bilinear pairing function
S
Y
X,Z : X’s private key of cryptosystem Y, domain Z

k
MAC
X,Y : MAC key established by X and Y

PRF(m)k : Pseudo-random function over m using key k

kX,Y : session key agreed by X and Y

msg, MAC(m)k : MAC over the message msg appended to m using key k

|: concatenation

Protocol 4.1: SessionKey.

4.2.1.1 Security Considerations

Key agreement protocols are usually evaluated under the following security properties:
(i) known key security – if a key generated in a specific session is compromised, it should not
affect any key generated in another session; (ii) key-compromise impersonation resilience –
if the long-term private key of an entity is compromised, it should not allow the adversary to
impersonate other entities to the one whose key got leaked; (iii) unknown key-share resilience –
an entity should not be coerced into establish a key with a second one thinking it is establishing
a key with a third one; (iv) key control resilience – no attacker should be capable to force pre-
selected values in an execution of the protocol; and (v) forward secrecy – the compromise of
the long-term private keys of an any of the parties involved in the key agreement or the trusted
authority should not compromise secrecy of past sessions, i.e., the adversary should not be able
to generate past session keys if the long-term private key is compromised.

As we based the SessionKey protocol (Protocol 4.1) on the work of [81] and [29], we
heritage all its security properties. Therefore, based on the proof presented in [29], the Session-
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Key protocol guarantees known key security, and resilience to key-compromise impersonation,
unknown key-share, and key control. The protocol, however, can guarantee forward secrecy
only if an adversary compromises at most one of the two long-term private keys of the entities
directly involved in the protocol, not both and neither the trusted authority’s private key. In
AoT context, the only protocol that requires forward secrecy is the KeyIssue, which allows a
device D to request the server, i.e., the trusted authority, its sensitive cryptographic material
(private key) related to its domain. In this case, the session key used to protect such sensitive
data is established through the SessionKey protocol. We observe that, in this case, if only the
long-term private-key of D is compromised, the adversary is not able to generate previously
session keys due to SessionKey forward secrecy property, i.e., the adversary is not able to reveal
the new private key D just received. However, if such an adversary manages to compromise the
other device involved in the protocol, i.e., the trusted authority, it does not matter if the device is
compromised or not because, as we mentioned in Section 4.1, the escrow inside each individual
domain will make the whole domain, including the device D, already compromised. Therefore,
in AoT context the SessionKey limitation is tolerated.

4.2.2 Long-TermKeyAgreement

In AoT’s session key establishment strategy, the Long-TermKeyAgreement protocol (Pro-
tocol 4.2) is used to establish a common long-term pairwise key k

LT
A,B. In practice, devices A

and B that operate each other in a Home domain, previously establish a common long-term
pairwise key k

LT
A,B, which is the source of the non-expensive session key derivation process in

each operation between the devices in the Functioning stage of their life-cycle. The Long-
TermKeyAgreement protocol must be executed at least once, e.g., in the first occurrence of
communication between two devices. Subsequent protocol executions are used to renew the
key k

LT
A,B from time to time. We do not detail each step of Protocol 4.2 because it is identical

to the SessionKey protocol detailed in the previous section, we name it differently to make its
purpose clear.
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LONG-TERMKEYAGREEMENT(device A, device B)
1. A : P

I
B,H := MAP1(idB,H) ·GI

1,H + P
I
H,H

2. A : RA := xA · P I
B,H

3. A! B : idA,H, idB,H, nA,RA, long_term_key_req

4. B : P
I
A,H := MAP1(idA,H) ·GI

1,H + P
I
H,H

5. B : RB := xB · P I
A,H

6. B : k
ID
B,A := MAP2(idA,H, idB,H,RA,RB, ê(RA, S

I
B,H)ê(G

I
1,H , G

I
2,H)

xB)
7. B : k

MAC
B,A := PRF(nA | nB)kID

B,A
8. B : k

LT
B,A := PRF(nB | nA)kID

B,A
9. B ! A : idB,H, idA,H, nB, RB, long_term_key_ack, MAC(nA | RA)kMAC

B,A
10. A : k

ID
A,B := MAP2(idA,H, idB,H,RA,RB, ê(RB, S

I
A,H)ê(G

I
1,H , G

I
2,H)

xA)
11. A : k

MAC
A,B := PRF(nA | nB)kID

A,B
12. A : k

LT
A,B := PRF(nB | nA)kID

A,B
13. A! B : idA,H, idB,H, long_term_key_ack, MAC(nA | RA | nB | RB)kMAC

A,B

Where the new symbols denote:
H : Home domain
H : Home server

long_term_key_req, _ack : request and acknowledgment labels
k

LT
X,Y : common long-term pairwise key established by X and Y

Protocol 4.2: Long-TermKeyAgreement.

4.2.3 SessionKeyDerivation

The SessionKeyDerivation protocol (Protocol 4.3), in turn, is a protocol used to de-
rive session keys from a pairwise common key k. The protocol is conceived especially to be
used in a context where extra computational burden to establish a session key cannot be tol-
erated, i.e., the higher-level protocol involved in the session already impose a considerable
computational burden to resource-constrained devices. In practice, the SessionKeyDerivation
protocol is used to derive a session key from the long-term pairwise key established by the
Long-TermKeyAgreement protocol. We use the protocol also to derive a session key from an
ephemeral key in a specific context of execution of the KeyIssue protocol during the Deploy-
ment stage, detailed in Section 4.2.4.

The protocol starts with a device A generating a nonce nA and sending it with a session
key derivation request label to the intended communication device B (step 1). Upon receiving
such a message, B generates a nonce nB and derives a confirmation MAC key k

MAC
B,A from k

and the concatenation of nA received in step 1 and nB (step 2). Then, in step 3, B derives the
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session key kB,A from k and the concatenation of nonce nB with nA. In step 4, B responds A
with the nonce nB, the session key derivation acknowledgment label, and uses the MAC key
k

MAC
B,A to calculate the MAC of all this content concatenated with nonce nA received in step 1.

After receiving the response, A derives the k
MAC
A,B using k and nA | nB and verifies the MAC of

the message received in step 5 (not explicitly shown in the protocol). If the verification fails,
A aborts the protocol execution. Otherwise, A derives the session key kA,B from k and nB

| nA (step 6), and sends B an acknowledgment label and a MAC of it concatenated with nA

and nB (step 7). Upon receiving the final message, B verifies the MAC (also not shown in
the protocol), if it fails, B aborts the protocol execution. Otherwise, the session is established.
Analogously to the case of the new SessionKey protocol, we also allow the higher-level proto-
cols that use the SessionKeyDerivation protocol to leverage not only the session key kA,B but
also the nonces generated during the session establishment as a session stamp to authenticate
the protocol messages until their conclusion, which we consider the end of a session.

SESSIONKEYDERIVATION(device A, device B , key k)
1. A! B : idA,H, idB,H, nA, session_key_derivation_req

2. B : k
MAC
B,A := PRF(nA | nB)k

3. B : kB,A := PRF(nB | nA)k
4. B ! A : idB,H, idA,H, nB, session_key_derivation_ack, MAC(nA)kMAC

B,A
5. B : k

MAC
A,B := PRF(nA | nB)k

6. B : kA,B := PRF(nB | nA)k
7. A! B : idA,H, idB,H, session_key_derivation_ack, MAC(nA | nB)kMAC

A,B

Where the symbols denote:
session_key_derivation_req, _ack : request and acknowledgment labels

Protocol 4.3: SessionKeyDerivation.

4.2.3.1 Security Considerations

The protocol SessionKeyDerivation provides the following properties: (i) known key se-
curity – as the session key is created from random nonces, there is no connection between keys
generated in different sessions. Therefore, if a key generated in a specific session is compro-
mised, it does not affect any key generated in another session; (ii) unknown key-share resilience
– a device cannot be coerced into establishing a session key with a second device thinking it is
establishing a key with a third one because the long-term key is pairwise; and (iii) key control
resilience – as both devices have their contributions to the session key confirmed in MACs,
there is no attacker capable to force pre-selected values in execution of the protocol.

As discussed in works that propose strategies where the session key is derived from
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long-term keys [12], the SessionKeyDerivation protocol does not provide any forward secrecy,
i.e., the compromise of the key k leads to the compromise of all past session keys established
between A and B that were derived from k. Forward secrecy is indeed very important, how-
ever, it might not be a requirement in some scenarios, for instance, when only authentication is
required [24]. As we mentioned, in AoT, the SessionKeyDerivation protocol is used to establish
session keys in two scenarios. The most common one is during a Functioning stage (Sec-
tion 4.6). In the context of Functioning, confidentiality is not a requirement, once the protocol
that governs the stage must guarantee only authentication and access control over the execution
of operations. Hence, session keys from the past give no advantage to an adversary, because
the operation has already been executed or not. That is why the lack forward secrecy is not a
problem.

The protocol SessionKeyDerivation also does not provide key-compromise imperson-
ation resilience because once the long-term pairwise key is compromised, the adversary can
impersonate the partner on the key to a device. Under a Functioning perspective, when an at-
tacker compromises the long-term key, he has two possibilities: (i) the impersonation of the
device A that requests the operation to the device B or (ii) the impersonation of the device
B owner of the operation to the requester A. If an adversary impersonates A, as we present
in Functioning (Stage 4.4), he stars by requesting an operation execution on the device B,
however during the protocol execution he must prove that he has a subset of attributes needed to
satisfy the operation’s predicate. In this case, the adversary must compromise not only the long-
term key, but also the attribute-based private key of A (SA

A,H) to have the signature successfully
checked and the operation executed. On the other hand, with k

LT
A,B possession, the adversary is

able to impersonate B and acknowledge to A the execution of any requested operation on B.
However, in many cases, the user who is expecting the operation to be executed will be able to
detect that it has actually not been executed and notice that something is wrong. As a mitigation,
we propose to renew the long-term key k

LT
A,B frequently, reducing the attack window opportu-

nities to explore the security issues discussed. This approach can be applied depending on the
application, in which during idle periods the devices can enroll on Long-TermKeyAgreement
protocol to renew the long-term keys.

The other scenario where the SessionKeyDerivation protocol is used is during a De-
ployment, when a device still does not have any keys in the Home domain. In this case, the
device being deployed generates, in the beginning of the stage, an ephemeral key that is shared
with the Home server in a secure way. This key is then, used to derive the session key for
the KeyIssue protocol. This scenario requires confidentiality. However, as an ephemeral key is
used to establish this single session, there is no lack of forward secrecy neither key-compromise
impersonation is a problem.
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4.2.4 Key Issue

Auxiliary protocol KeyIssue (Protocol 4.4) objective is to allow a device D to request
to the server S its sensitive cryptographic material related to the domain Z in the cryptosystem
Y. The protocol starts by analyzing in which context it is being executed (step 1): during the
Deployment stage (Stage 4.3), when the device D does not have the IBC key of domain H, or
when the sensitive information has already been issued to D. In the first case, the device D

has no private key that allows it to enroll in a session key establishment protocol with server
S using SessionKey protocol (Protocol 4.1). However, as the device D is under a Deployment
execution, it has already generated and shared the ephemeral key kD,S with S (Stage 4.3 – steps
3 and 7, respectively). Then, D and S (home server H in this case) establish a session key using
SessionKeyDerivation protocol (Protocol 4.3) with the ephemeral key kD,S as the derivation key
(step 2 in the first block of the if clause). In the second case, a KeyIssue for the IBC in the
domain H has already been executed between device D and server S, which means the device
has already received its cryptographic material that allows it to enroll in a SessionKey protocol
with server S to establish the session key (step 2 in the second block of the if clause).

KEYISSUE(device D, server S , domain Z , cryptosystem Y)
1. D : if SI

D,S does not exist:
2. D, S : SESSIONKEYDERIVATION(D, S , kD,S)

otherwise:
2. D, S : SESSIONKEY(D, S)

3. D ! S : issue_req, AUTH-ENC(nS | nD)kD,S
4. S ! D : S

Y
D,Z , issue_ack, AUTH-ENC(nS | nD)kD,S

Where the symbols denote:
issue_req, _ack : request and acknowledgment labels

msg, AUTH-ENC(m)k : authenticated encryption over the message msg

appended to m using key k

Protocol 4.4: KeyIssue.

Having established the session, in step 3, device D sends an authenticated encrypted
message formed by a key issue request label concatenated with nonces nD and nS . Upon re-
ceiving such a message, S runs the authenticated decryption algorithm over the message (not
explicitly shown in the protocol), if the decryption and verification of the message fail, S aborts
the protocol execution. Otherwise, S sends D an authenticated encrypted message formed by
D’s private key of domain Z related to cryptosystem Y and a key issue acknowledgment la-
bel appended to the nonces nD and nS (step 4). Upon receiving such a message, D runs the
authenticated decryption algorithm over the message (not explicitly shown in the protocol), if
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the decryption and verification of the message fail, D aborts the protocol execution. Otherwise,
D’s private key has been successfully issued.

4.2.5 Binding and Unbiding

Binding (Protocol 4.5) binds a device D to a user U in the Cloud domain. In step 1,
the protocol SessionKey is invoked to establish kD,C between device D and cloud server C. The
nonces created at session establishment are used until end of the session. In step 2, the device D
requests the clould server C to bind itself to the user U with identity idU,C in the Cloud domain
by sending a message signed with its IBC signing key in cloud domain containing the request
label and D’s identity concatenated with the nonces generated during session establishment.
Upon receiving the message, and successfully verifying the signature, the cloud server C binds
U to D (step 3). In step 4, C acknowledges the operation by authenticating the message with
the session key.

BINDING(device D, user U )
1. D,C : SESSIONKEY(D, C)
2. D ! C : bind_req, idU,C , SIG(nC | nD)

S
I
D,C

3. C : binds U to D

4. C ! D : bind_ack, MAC(nC | nD )kD,C

Where the new symbols denote:
C : Cloud server

bind_req, _ack : request and acknowledgment labels
C : Cloud domain

Protocol 4.5: Binding.

Unbinding (Protocol 4.6) is analogous to and performs the same steps as the Binding
protocol. The main difference is that it unbinds rather than binds device D and user U . Besides,
in step 4 the cloud server C sends D a pin0

B, which is set by D as a new access pin for a new
deployment in case of an ownership reassignment (Section 4.8.1).
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UNBINDING(device D, user U )
1. D,C : SESSIONKEY(D, C)
2. D ! C : unbind_req, idU,C , SIG(nC | nD)

S
I
D,C

3. C : unbinds U to D

4. C ! D : unbind_ack,pin0B, MAC(nC | nD )kD,C

Where the new symbols denote:
unbind_req, _ack : request and acknowledgment labels

Protocol 4.6: Unbinding.

4.3 Pre-Deployment

Pre-Deployment (Stage 4.1) takes place at the factory and loads the Cloud domain’s
cryptographic material into devices. This material will be used, further, to establish a remote
communication channel between devices and the manufacturer. Such a channel allows the exe-
cution of critical procedures by the manufacturer (e.g., software or firmware updates). Besides,
it allows devices to run the auxiliary protocols with the Cloud server.

First, the Cloud server C generates the device D’s identity idD,C (step 1) and, from that,
C derives D’s IBC private key S

I
D,C (step 2). Next, the Cloud server C generates an access

PIN pinD and loads them in tandem with all the remaining cryptographic material into device D
(step 3). Note that the loading is secured via a physical channel, ensuring the communication is
both confidential and authenticated. Finally, the Cloud server C deletes SI

D,C and ships D to its
trader TD (step 4).

PRE-DEPLOYMENT(Device D)
1. C : idD,C := D

0
s serial#

2. C : S
I
D,C := GENI,C(secretI

C
, idD,C)

3. C ! D : PHY(idD,C | SI
D,C | pinD)

4. C V TD : D

Where the new symbols denote:
GENX,Z (s, i) : private key generator of cryptosystem X, domain Z

using secret s and information i
secretX

Y
: secret parameter of cryptosystem X , domain Y

PHY(m) : m secured via a physical channel
pinX : PIN to grant acess to X

V: secure shipping
TX : trader of X

Stage 4.1: Pre-deployment.



4.4. Ordering 56

4.4 Ordering

Ordering (Stage 4.2) illustrates a user U ordering a device D from trader TD. Here, all
digital communication is secured via TLS. The user U places the order and pays for the device
(step 1). The trader TD, in exchange, sends the user U an acknowledgment (step 2). At this
point, the Trader lets the Cloud server C know about the order (step 3), and the Cloud server, in
turn, sends the user U a PIN pinD (step 4). Last, the Trader ships the device D out to user U ’s
home (step 5). The PIN pinD will be used in the Deployment (Stage 4.3) to grant access to D.

ORDERING(device D, user U )
1. U ! TD : TLS($ | order_req)
2. TD ! U : TLS(order_ack)
3. TD ! C : TLS(D | U)
4. C ! U : TLS(pinD)
5. TD V U : D

Where the new symbols denote:
TLS(m) : m protected via TLS

$ : payment
order_req, _ack : request and acknowledgment labels

Stage 4.2: Ordering.

4.5 Deployment

Deployment (Stage 4.3) bootstraps the security of devices in their Home domains. It
paves the way for the protocols and is thus paramount for AoT. Here, the root user Ur—most
likely, the household owner—and his personal device DUr

play a key role. More precisely, DUr

acts like a trusted bridge between the device being deployed and the Home server.
To set up a new device D, Ur enters D’s access PIN pinD onto D itself, which puts D

in deployment mode (step 1). Next, in step 2, user Ur uses her device DUr
to send to device D

the root user’s identity idUr ,H in the domain H and the Home server H IBC public key P
I
H,H.

In step 3, the device D generates an ephemeral (i.e., valid for only a short period) pairwise key
kD,H at random, and prepares a message to be sent to DUr

in step 4. First, D encrypts kD,H using
H’s IBC public key P

I
H,H and concatenates the resulting ciphertext to the information about all

its available operations. The message is then sent in step 4. In step 5, the root user Ur sets in
her device DUr

the identity idD,H of device D, the owner user UD of D, the attributes AD of
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the device, and the set of predicates YD that any other device in the domain needs to satisfy to
execute each one of D’s operations. (Recall from Section 2.4 a predicate is a signing policy.)
We assume communication in these first steps is made via channels that are not only secure but
adequate for the device D being deployed (e.g., wireless). As the Deployment protocol runs
behind closed doors (i.e., at the device owner’s home), transmission mechanisms like typing
on a keyboard on the device or scanning QRCodes could be carefully employed to exchange
data securely. (These are the mechanisms we use in our prototype, but other approaches are
possible.) Note this strategy permits one to set up even bulky devices (like a fridge) without
resorting to a cabled connection or requiring that the device is physically close to the Home
server.

1. Ur ! D : PHY(pinD)
2. DUr

! D : PHY(idUr ,H | P I
H,H)

3. D : generates ephemeral kD,H

4. D ! DUr
: PHY(infoD | ENC(kD,H )

P
I
H,H

)

5. Ur ! DUr
: PHY(idD,H | UD | AD | YD)

The protocol proceeds with the root device DUr
requesting the deployment of the device

D to the server H . To this end, DUr
first establishes a session key kDUr

,H with H using the
SessionKey (Protocol 4.1). Besides the session key that will be used later, the nonces generated
at session key establishment are also used until the end of the Deployment. In step 7, DUr

requests H a deploy of D by sending a message signed with its IBC signing key containing the
request label, all of D’s information set by the the root user, the encrypted pairwise ephemeral
key kD,H generated by D in step 3, and the nonces generated during session establishment. Our
key insight in this stage is to use the root device DUr

as an authentication bridge between the
new device D and the Home server H . Particularly, the root device DUr

“blindly signs”2 the
recently generated pairwise key kD,H.

6. DUr
, H : SESSIONKEY(DUr , H )

7. DUr
! H : deploy_req, idD,H,AD,YD, infoD,

ENC(kD,H )
P
I
H,H

, SIG( nH | nDUr
)
S
I
DUr

,H

In steps 8, 9, and 10 the Home server H generates Home and “Inter” domain IBC and
ABC private keys for the device D based on all the information received from DUr

in step 7.

8. H : S
I
DU ,H := GENI,H(secretI

H
, idDU ,H)

9. H : S
I
DU ,I := GENI,I(secretI

I
, idDU ,H)

10. H : S
A
DU ,H := GENA,H(secretA

H
, ADU

)

Last, in steps 11, 12, and 13 the Home server H issues IBC and ABC private keys to
the device D using KeyIssue protocol (Protocol 4.4). More specifically, as D does not have any

2We use double quotes because a blind signature refers to a specific cryptographic construction [109].
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cryptographic material in the Home domain, the KeyIssue in step 11 is secured by the ephemeral
key kD,H generated by device D in step 3. In steps 11 and 12, on the other hand, as the device D
received its IBC private key for the Home domain in the previous step, the KeyIssue can already
be executed in a session established by the SessionKey protocol (Protocol 4.1).

11. D : KEYISSUE(D, H , H, I)

12. D : KEYISSUE(D, H , I , I)

13. D : KEYISSUE(D, H , H, A)

Then, H broadcasts D’s information (identity, attributes, operations, predicate sets, and
owner) in the domain (step 14) to inform all devices about the recent deployed device D. At this
point, device D is granted access to the Internet, e.g., through the Home domain’s Wi-Fi router.
Device D then binds itself (step 15) using Binding (Protocol 4.5) to its owner user UD defined
by Ur in step 5. Finally, H acknowledges DUr

the deployment of D (step 16), concluding the
session established in step 6.

14. H ) GH : YGH , infoGH
, SIG

S
I
H,H

15. D : BINDING (D, UD)
16. H ! DUr

: deploy_ack, MAC(nH | nDUr
)k

DUr
,H

Root device deployment. It is clear from the above description the root device DUr
cannot

itself follow the protocol, as it plays a key role in the whole process. In fact, DUr
—and DUr

alone—needs to be deployed using a secure channel to the server. We believe this is an easy
task since DUr

is most likely a smartphone and can be easily connected to the server by using a
cabled connection like USB. Note also that this procedure is carried out only once.
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DEPLOYMENT(device D)
1. Ur ! D : PHY(pinD)
2. DUr

! D : PHY(idUr ,H | P I
H,H)

3. D : generates ephemeral kD,H

4. D ! DUr
: PHY(infoD | ENC(kD,H )

P
I
H,H

)

5. Ur ! DUr
: PHY(idD,H | UD | AD | YD)

6. DUr
, H : SESSIONKEY(DUr , H )

7. DUr
! H : deploy_req, idD,H,AD,YD, infoD,

ENC(kD,H )
P
I
H,H

, SIG( nH | nDUr
)
S
I
DUr

,H

8. H : S
I
DU ,H := GENI,H(secretI

H
, idDU ,H)

9. H : S
I
DU ,I := GENI,I(secretI

I
, idDU ,H)

10. H : S
A
DU ,H := GENA,H(secretA

H
, ADU

)
11. D : KEYISSUE(D, H , H, I)
12. D : KEYISSUE(D, H , I , I)
13. D : KEYISSUE(D, H , H, A)
14. H ) GH : YGH , infoGH

, SIG
S
I
H,H

15. D : BINDING (D, UD)
16. H ! DUr

: deploy_ack, MAC(nH | nDUr
)k

DUr
,H

Where the new symbols denote:
Ur : root user

DUr : personal device of the root user
infoX : type and supported operations of X

ENC(m)k : encryption over m using key k

UX : user of device X

AX : X’s set of attributes
YX : X’s set of predicates

deploy_req, _ack : request and acknowledgment labels
msg, SIG(m)k : signature over the message msg appended to m using key k

I : “Inter” domain
A : Attribute-based cryptosystem
): broadcast transmission

GX : domain’s X group of devices

Stage 4.3: Deployment.

4.6 Functioning

Functioning (Stage 4.4) governs the normal operation of devices. In the protocol, a
user U requests an operation op on device B using device A (step 1) (e.g., the user uses her
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smartphone to request the image from the internal camera of a smart fridge). In step 2, the
device A verifies if the long-term pairwise key k

LT
A,B exists, and if not, it invokes the Long-

TermKeyAgreement protocol. Hence, in step 3, devices A and B establish the new session key
kA,B using the SessionKeyDerivation protocol (Protocol 4.3). Analogously to the previously
described protocols, Functioning also leverages the nonces created at session establishment
until the end of the session to authenticate the messages (steps 4, 5, and 7). In step 4, device
A requests the execution of operation op in B, which responds, in step 5, with the predicate
⌥op. The device A proves it has the rights to perform the operation by signing a message
formed by the operation description op and the predicate ⌥op appended to the nonces created at
session establishment with a (sub)set of attributes in the signing key that satisfies the predicate
⌥op (step 6). If device B successfully verifies the signature satisfies the predicate, then the
requested operation is performed (not explicitly shown in the protocol), and A is acknowledged
(step 7). Otherwise, B aborts the protocol execution.

FUNCTIONING(user U , device A, device B , operation op)
1. U : uses A to request op over B
2. A : if kLT

A,B does not exist:
A,B : LONG-TERMKEYAGREEMENT(A, B)

3. A,B : SESSIONKEYDERIVATION(A, B , kLT
A,B )

4. A! B : op_req, op, MAC(nB | nA)k
A,B

5. B ! A : op,⌥op, MAC(nB | nA)k
A,B

6. A! B : op,⌥op, SIG(nB | nA)
S
A
A,H

7. B ! A : op_ack, op, MAC(nB | nA)k
A,B

Where the new symbols denote:
op_req, _ack : request and acknowledgment labels

⌥op : operation op’s predicate

Stage 4.4: Functioning.

4.7 Retirement

Broadly speaking, Retirement is simply a special operation and the protocol (Stage 4.5)
is thus analogous to Functioning (Stage 4.4). To run Retirement, a user U employs the device
A to request the retirement of a device B. The retirement is performed if A’s attributes satisfy
the predicate. These steps are executed in the same way as other operations are in Functioning
(Stage 4.4, steps 1–6). Here, we assume that B is owned by U . So, B unbinds itself from its
owner U (step 2) and deletes all of its keys from both the Cloud and Home domains (step 3).
The retirement is concluded with B signalizing it has been successfully retired, which plays the
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role of a retirement_ack (step 4), e.g., if the device has a screen, it can display “retired” on its
screen. Note that a retired device can no longer be used in the home domain.

RETIREMENT(user U , device A, device B)
1. A : {Requests retirement}
2. B : UNBINDING(B , U )
3. B : deletes SI

B,C , SI
B,H, SA

B,H and RB

4. B : signalizes ‘retired’

Where the new symbol denotes:
RX : X’s pre-shared keys ring

Stage 4.5: Retirement.

4.8 Complementary Features

In this section, we describe other capabilities in AoT, in particular how to handle device
ownership transfer (Section 4.8.1), access revocation (Section 4.8.2), and guest access (Sec-
tion 4.8.3).

4.8.1 Device Ownership Reassignment

Reassignment (Protocol 4.7) allows a user U to transfer the ownership of a device B

he owns to another user V . The protocol is similar to Retirement (Stage 4.5) and the same
observations there apply. Here, however, the device B does not delete its Cloud domain keys.

In the beginning, U tells the Cloud server C about the reassignment which, in turn, sends
the user V a new PIN pin0

B (Protocol 4.7, steps 1–2). The subsequent steps of the protocol are
analogous to the first steps of any operation (Stage 4.4, steps 1–6). Next, B unbinds itself from
U , which also makes B to receive from C the its new access pin pin0

B. Then, B deletes all of
its keys from the Home domain (step 5). The protocol continues with B signalizing ‘ownership
reassigned’, which plays the role of a reassignment_ack (step 6) e.g., if the device has a screen, it
can display “ownership reassigned” on its screen. Finally, U ships B to V (step 7).
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REASSIGNMENT(user U , device A, device B , user V )
1. U ! C : TLS(B | V )
2. C ! V : TLS(pin0B)
3. A : {Requests reassignment}
4. B : UNBINDING(B , U )
5. B : deletes SI

B,H, SA
B,H and RB

6. B : signalizes “ownership reassigned”
7. U V V : B

Where the new symbol denotes:
pin0X : new PIN to grant acess to X

Protocol 4.7: Reassignment.

4.8.2 Key Revocation

Revocation is not the main focus of AoT. In spite of that, as a revocation mechanism
in AoT, we follow the scheme proposed by Boneh and Franklin [19] and later improved by
Boldyreva et al. [15]. The strategy consists of associating keys with their respective expiring
dates (a timestamp), so they become invalid after a given period of time. In this setup, instead
of using solely the map MAP(idD,X ) of the device D identity idD,X to form D’s keys, the identity
is actually concatenated with a timestamp, i.e., MAP(idD,X | timestamp). The granularity of the
timestamp can be set by the Home or Cloud servers. For instance, keys may be renewed on a
daily basis. With this strategy, keys are instantly revoked as soon as their timestamps expire.

4.8.3 Inter-Domain (Guest) Operation

InterDomainKeyAgreement (Protocol 4.8) allows a device A from a foreign Home do-
main (i.e., a guest) to agree on a key and thus interoperate with device B from a local Home
domain. The protocol is identical to the SessionKey protocol (Protocol 4.1), i.e., based on the
enhanced [29] identity-based key agreement protocol of [81], which allows key agreement be-
tween entities from different domains.

Protocol InterDomainKeyAgreement requires the A and B’s Home servers to have a
new IBC setup, which we call “Inter” domain, with agreed common public parameters: (i) the
groups G1 and G2 with their generators GI

1,IA
= G

I
1,IB

, and G
I
2,IA

= G
I
2,IB

, respectively; (ii) the
group GT ; (iii) the bilinear pairing function ê : G1⇥G2 ! GT ; and (iv) the mapping functions
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MAP1 : {0, 1}⇤ ! Z⇤

r
and MAP2 : {0, 1}⇤ ⇥ {0, 1}⇤ ⇥ G1 ⇥ G1 ⇥ GT ! {0, 1}n. Besides, it

is also required that both devices obtain the public key of their partners’ “Inter” domain (P I
IA

and P
I
IB

) in an authenticated manner. We do not detail each step of Protocol 4.8 because it is
identical to the SessionKey protocol (Protocol 4.1).

INTER-DOMAINSESSIONKEY(device A, device B)
1. A : P

I
B,I := MAP(idB,H) ·GI

1,IB
+ P

I
IB

2. A : RA := xA · P I
B,I

3. A! B : idA,H, idB,H, nA,RA, inter_session_req

4. B : P
I
A,I := MAP(idA,H) ·GI

1,IA
+ P

I
IA

5. B : RB := xB · P I
A,I

6. B : k
ID
B,A := MAP2(idA,H, idB,H,RA,RB, ê(RA, S

I
B,I)ê(G

I
1,IB

, G
I
2,IB

)xB )

7. B : k
MAC
B,A := PRF(nA | nB)kID

B,A
8. B : kB,A := PRF(nB | nA)kID

B,A
9. B ! A : idB,H, idA,H, nB,RB, inter_session_ack, MAC(nA | RA)kMAC

B,A
10. A : k

ID
A,B := MAP2(idA,H, idB,H,RA,RB, ê(RB, S

I
A,I)ê(G

I
1,IA

, G
I
2,IA

)xA)

11. A : k
MAC
A,B := PRF(nA | nB)kID

B,A
12. A : kA,B := PRF(nB | nA)kID

B,A
13. A! B : idA,H, idB,H, inter_session_ack, MAC(nA | RA | nB | RB)kMAC

A,B

Where the new symbols denote:
IX X’s “Inter” domain

G
I
1,IX

: Group G1 generator of IBC of X’s “Inter” domain
P

I
IX

: Public key of X’s “Inter” domain
inter_session_req, _ack : request and acknowledgment labels

Protocol 4.8: Inter-Domain Session Key.

Inter-DomainOperation stage (Stage 4.6) governs the operations of devices from differ-
ent domains. Because guest users have no attributes in domains they visit, domains must define
an attribute “guest” which entitles guest devices to a limited set of permissions in the domain.
Foreign operation requests are done in a manner similar to conventional operation requests. The
exception is that the device does not have to prove possession of a certain attribute set. Instead,
the requested operation is permitted if guests are allowed to perform it. That is, if the predicate
to perform the operation is satisfied by the attribute “guest”. Besides, no signatures are used
during this interaction as the Attribute-Based Cryptosystems of A and B do not interoperate.
Instead, they make use of MACs generated using the session key to authenticate. Describing
in details, a guest user U starts the process by requesting in her device A the execution of an
operation op on a device B (step 1). In step 2, devices A and B establish the a session key kA,B

using the Inter-DomainSessionKey protocol (Protocol 4.3). In step 3, device A requests the ex-
ecution of operation op in B. Upon receiving such a message, if the predicate ⌥op to execute the
operation op is not satisfied by the attribute guest alone (not explicitly shown in the protocol),
device B aborts protocol execution. Otherwise, B performs the operation op and acknowledges
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it to A in step 4.

INTER-DOMAINOPERATION(user U , device A, device B , operation op)
1. U : uses A to request op over B
2. A,B : INTER-DOMAINSESSIONKEY(A, B)
3. A! B : inter_op_req, op, MAC(nB | nA)k

A,B
4. B ! A : inter_op_ack, op, MAC(nB | nA)k

A,B

Where the new symbols denote:
inter_op_req, _ack : request and acknowledgment labels

Stage 4.6: Inter-Domain Operation.
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Chapter 5

Security Analysis

In this chapter, we perform the security analysis of the protocols that compose each stage of a
device life-cycle in AoT. We start with an introduction of the Universal Composability paradigm
(Section 5.1), the framework we use to analyze AoT. In Section 5.2, we present the specific
model we use in our analysis. In Section 5.3, we describe a functionality for cryptographic
primitives, which we extend in Section 5.4, and prove our construction in Section 5.5. Finally,
we present in Section 5.6 a functionality that will allow us to detail the security analysis of AoT
protocols in Section 5.7.

5.1 Universal Composability

The security analysis of a protocol involves, at its core, proposing a mathematical model
to represent all aspects related to a given protocol execution: the definition of the security prop-
erties that the protocol aims to satisfy, the adversarial behavior, the environment, adversary, and
other protocols interaction, and all the threats that come from the execution environment [23].
In this context, the Universal Composability (UC) [23, 95] is a general paradigm based on the
simulation proof technique [84], also known as real/ideal model, that allows a modular design
and analysis of cryptographic protocols.

In UC, a protocol execution is orchestrated by an entity called environment generates all
the inputs to the parties in a protocol, reads all their outputs, and interacts with the adversary in
an arbitrary way. Besides, the environment represents everything that is outside that particular
execution and can, directly or indirectly, influence it, for instance, the concurrent execution of
the same protocol, noises, other protocols’ executions, users, attackers, etc. The idea behind
this concept is to keep the protocol security analysis in a stand-alone setting, as used in the
simulation-based paradigm, at the same time guaranteeing the secure composition of the pro-
tocol in a realistic scenario where an instance of the protocol is executed in concurrency with
many other protocols, in a complex environment. This goal is achieved by formulating the se-
curity definitions such that they are preserved under a general composition operation [23]. The
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new operation allows different protocols to be securely composable as modules of wider proto-
col systems. Therefore, UC can be used as a protocol design technique to put together modules,
smaller protocols, already proven universally composable secure inside a specific UC model to
build a more complex system that is automatically secure based on the composition theorems
of the chosen model. Besides, using the benefits of the modularity, UC also can be used to
decompose a protocol system into smaller components, perform individual and simpler security
analysis of such components, and then put together the results to prove the security of the whole
system.

In UC, the objective of the security analysis is to show that a real protocol that aims
to provide some specific secure property is at least as secure as an idealized protocol, called
functionality, that provides the desired secure property. The goal is achieved by proving that
for every protocol adversary there is an functionality adversary, called simulator, such that an
environment cannot distinguish if it is interacting with the protocol and the real adversary or
with the functionality and the simulator. Therefore, from the environment perspective, if there
is no adversary that can cause any difference between the usage of a real protocol or its security
property idealization, the real protocol indeed provides such a property.

There are different models for universal composability, each one with its own underly-
ing computational model, notions of security, and theorems, such as the canonical UC model
proposed by Ran Canetti [23], the GNUC [49], and the IITM [61]. In the next section, we
detail the IITM, the model we selected to perform the security analysis of AoT protocols.

We chose to analyze AoT under an UC model due to its modular nature. We observe that
AoT is designed as a composition of several cryptographic protocols and primitives, therefore,
we show that each different component of AoT can be securely composable to be part of the
wider system.

5.2 IITM Model

The model for universal composability used in our work is based on the IITM model
proposed by [61] that has been being constantly extending in many aspects during the years [62,
63, 65, 66, 67, 68]. The IITM model was selected because, even not directly applicable to AoT
protocols, we could extend an existing framework built over the model with great synergy with
AoT protocols to support our security analysis.
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5.2.1 Computational Model

The computational model used in IITM model is based on Inexhaustible Interactive
Turing Machines, which are probabilistic polynomial-time Turing machines with named input
and output tapes parameterized with a polynomial.

Analogously to a program source code, a machine M has its own programming com-
posed of internal variables used to process messages received on input tapes and write messages
on output tapes. An instance of a machine, in turn, is analogous to a program execution. In the
IITM model, every component – environments, protocols, functionalities, and adversaries – are
machines or a system of machines.

A system of machines, written as M = M1 | · · · | Mk | !M 0

1 · · · | !M 0

k0 , is composed
of machines Mi, i 2 {1, ..., k}, and M

0

j
, j 2 {1, ..., k0}, that communicate among themselves

using named input and output tapes. If two machines, for instance, M1 and M2, have tapes with
the same name, say t, they communicate with each other using t, where t is an input tape in
M1 and an output tape in M2 or the opposite of that. In a system of machines, there are two
different sets of tapes, the set in which tapes have matching names in two different machines,
which models internal communication, and tapes that have unique names, called external tapes,
which allow the communication among different systems.

A machine is activated upon receiving a message on an input tape. A run of a system M
is started by the activation of a special machine called master machine. During the execution
of M, only one instance of a machine is active while all the others are waiting for an input. In
every run of a system M, an unbounded number of new instances of machines in the scope of
a ! operator, called bang operator, can be created, while machines that are not on that scope can
have only one instance created. The bang operator is used to model the concurrent execution
of multiple instances of a protocol. Any machine M has two modes of execution. When it
is activated, upon an input on any of its tapes, M is in the CheckAddress mode, which is a
mechanism to address the specific instance of M in a system of machines. The computation
results in an accept or in a reject. An accept makes the instance to proceed to the Compute

mode, which is, in turn, concluded with a message written on an output tape, which activates
a specific machine in the system, or without any output, which activates the master machine
of the system with an empty input. A reject, on the other hand, means that the particular
instance cannot handle that input, and there are different scenarios depending on the scope of
the machine. For example, if a machine M of system M has an input tape named t, and, in a
particular point of a specific run of M, a current active instance of a machine, say M1, writes
the message m on tape t, there are two possible scenarios: (i) case M , the machine M is not in
the scope of a bang operator; and (ii) case !M , machine M is in the scope of a bang operator.

(i) case M . The first instance of M created in the run of M is activated. If there is no such
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an instance created yet, the instance of M is created.

• The instance of M executes in CheckAddress mode with m as input on tape t. If the
computation results in an accept, the instance proceeds to Compute. Otherwise, i.e.,
if the computation results in a reject, the master machine of M is activated with an
empty input.

(ii) case !M . Suppose there are already some instances of M in the run of M. The first
instance of M created in the run of M is activated.

• The instance of M executes in CheckAddress mode with m as input on tape t.

• If the computation results in an accept, the instance proceeds to Compute. Otherwise,
i.e., if the computation results in a reject, the next instance of M created on M is
activated.

• The process is repeated until one of existent instances returns accept from the com-
putation in CheckAddress mode with m as input on tape t.

• If m gets rejected by all current instances of M in M, a new instance of M is created
and activated.

• If the new instance of M executes in CheckAddress mode with m as input on tape t

and returns accept, it proceeds to the Compute. Otherwise, i.e., if the new instance
also rejects m, the new instance is destroyed and the master machine of M is acti-
vated with an empty input.

The term inexhaustible comes from the fact that in both modes of computation, an IITM can-
not be exhausted, upon every activation it performs actions. The overall runtime of a system
of IITMs is polynomially bounded in the security parameter plus the length of all inputs it
processes.

Two systems of machines M and N are called indistinguishable (M ⌘ N ) if the differ-
ence between the probability that M and N write 1 on their the decision tape is negligible.

5.2.2 Security Notions

In this section, we present the underlying security notions of the IITM model, that is,
the basic components that we will use to model the protocol execution, the adversarial behavior,
and the bad interactions with concurrent instances of other, or even the same, protocols that run
in a system as well as how we prove the security of a protocol. As there is no perfect model, the
IITM poses limitations that will be discussed when it is appropriated.
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The IITM model uses the following terminology. The external tapes of machines are di-
vided into i/o tapes, or i/o interface, which models communication between users and protocols
or functionalities as well as the internal communication among components of a wider system,
and network tapes, or network interface, which model the untrusted network communication
and allow the interaction between adversaries and simulators with protocols and functionalities,
respectively. The model considers three types of systems: (i) protocol systems, which model
real protocols and functionalities and have both i/o and network interfaces; (ii) adversarial sys-
tems, which model adversaries and simulators and have only the network interface; and (iii)
environmental systems, which model the environments, i.e., the users of protocols and func-
tionalities, and have both i/o and network interfaces. In the model, the environments are the
master machines of a whole protocol execution modeling.

In the IITM model, adversary and environment systems are classified as responsive,
which means they respond immediately upon receiving a special type of message, called re-
stricting message, on the network. This is a mechanism that allows the exchange of control
messages to model real-world behavior, expanding the capabilities of the model. It allows, for
instance, to model a direct interference of the adversary on a protocol execution. In a certain
point of a execution, for example, the adversary may be asked if a specific instance of a machine
or a particular key should be corrupted before continue its execution. Of course this type of re-
quest does not exist in practice, i.e., no protocol will contact the adversary to harm its users,
however, the model must allow the modeling of corrupted users.

In Figure 5.1a, we depict an IITM system E | S | F, where the functionality F ideally
implements a two-party protocol with roles A and B. F has two pairs of i/o tapes (solid lines)
to interface with the environment E , one for each protocol role. The network tapes (dashed
lines) allow communication between F and the simulator S . Figure 5.1b, in turn, shows an
IITM system E | A | P, where P = MA | MB | MC is a two-party real protocol modeling
with three machines MA, MB, and MC . The machines MA and MB represent, respectively, the
roles A and B on the protocol. They have i/o tapes to interface with E and network tapes that
allow communication with the adversary A. The tapes that connect a protocol machine with the
adversary are called network because they model an untrusted communication channel, which
is controlled by the adversary. Therefore, when there is a message exchange between the roles
in the protocol specification (A! B, for instance), in the modeling the instance MA writes the
message on its network tape, i.e., it gives the message to A. The machine MC , on the other
hand, represents an internal component that acts as a service provider for MA and MB using
internal i/o interface, but it is not directly accessible for E .
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(a) E | S | F.
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interface of P
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E

A

P

MC

(b) E | A | P.

Figure 5.1: IITM ideal (a) and real (b) settings modeling.

In this work, we deal with both single- and multi-session versions of protocols and
functionalities. In the example above, we represent P = MA | MB | MC as the single-session
version of a protocol, because neither of the machines of protocol roles A and B are in the scope
of the ! operator. This means in a run of P, only one instance of machines MA and MB can be
created. Therefore, each one of the instances can correspond to a single party in E . Hence, the
instances will execute the protocol until it ends and nothing more. In the multi-session modeling
of P, denoted by P = !MA | !MB | MC , an unbounded number of instances of MA and MB

can be created, i.e., multiple concurrent executions (sessions) of the protocol can be handled,
as illustrated in Figure 5.2. Notice that MC is not in the scope of the bang operator. That is
because, in many cases, there is the need to share a service, usually a functionally, among all
concurrent executions of a protocol, this topic will be discussed in more details in Section 5.3.6.
A functionality F, in turn, as it is an idealization, can implement single- and multi-session
versions of a protocol without being in the scope of the bang operator, the system just need an
appropriate user identification scheme.
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Figure 5.2: Representation of a multi-session two-party real protocol P = !MA | !MB | MC .

The user identification scheme that we use in this work is based on party identifiers
(pid) and local session identifiers (lsid) locally chosen and managed by the party, i.e., by the
environment. In a run of a system, all the instances of machines expect inputs to be prefix with a
tuple like (pid, lsid) from the environment, adversaries, and other machines. Analogously, all of
their output messages are prefix with (pid, lsid). With this in mind, if an instance of a machine
MA that represents a role A in a two-party multi-session protocol outputs in any of its tapes
a message with prefix (pid0, lsid0), it means that, at some point in the run of the system, this
instance has executed in CheckAddress mode with an input from user (pid0, lsid0) that returned
accept and in Compute mode the instance wrote the message on an output tape. Therefore, in
a run of such a protocol, there will be at most one instance of MA representing the user (pid0,
lsid0). We usually say such a user is fully identified by the tuple (pid0, lsid0, A). A functionality
F, in turn, since it has a specific pair of tapes for each role for the protocol it ideally implements,
can run in CheckAddress and accept messages from all the users (pid, lsid), i.e., it can handle
in a single machine instance all the users in the system. The same way, it can fully identify the
users by the tuple (pid, lsid, r), where r is the specific role that has its dedicated pair of tapes in
F.

We now present how we use the IITM model to prove the security of a real protocol.
In a high level, consider that in a real setting, the environment E interacts with a protocol
and the adversary in an arbitrary way, choosing the inputs to the parties in their sessions, and
instructing A which ones to corrupt. At the end of the system run, E outputs in its decision
tape a single bit, which tells whether the environment thinks it has interacted with a protocol
P or with a functionality F and a simulator S . If a simulator S can be designed such that no
environment E can tell with non-negligible probability whether it is interacting with P and A
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or F and S , then P is as secure as F. A more formal definition of this security notion, called
strong simulatability, illustrated in Figure 5.3, is: let P and F be, respectively, a real protocol
and a functionality modeled in IITM as protocol systems with the same i/o interfaces. Then,
P is at least as secure as F, or P realizes F (P  F), if there exists a simulator S modeled in
IITM as an adversarial system, such that P and S | F have the same i/o interfaces, and for all
environment E modeled in IITM as an environmental system that connects to the i/o interface
of P and of S | F, it holds true that E | P ⌘ E | S | F. The relation  is reflexive and transitive.
Notice that in the strong simulatability, as E chooses everything for the adversary, the adversary
is absorbed by the environment, which plays both roles.

In a security analysis of a protocol P, the general idea to prove P  F is to build a
proper S that internally simulates P and then show that for every use case in E the result is the
same.

MA

i/o interface
of F

overall output
decision tape

external
input

MB

E

P

MC

⌘
A

i/o interface
of F
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external
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Figure 5.3: IITM security notion.

5.2.3 Theorems

The IITM model has many useful composition theorems. Theorem 5.1, for instance,
handles the composition of a limited number of protocol systems.

Theorem 5.1 ([61]) Let P1 and P2 be real protocol systems and F1 and F2 functionalities
such that P1 realizes F1 (P1  F1) and P2 realizes F2 (P2  F2). Then it holds true that
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the composition of P1 and P2 also realizes the composition of the functionalities F1 and F2:
P1 | P2  F1 | F2.

Theorem 5.2, in turn, guarantees the secure composition of an unbounded number of
instances of a real protocol that realizes a functionality. This means the security analysis of a
multi-session protocol can be proved by performing the analysis of the single-session version of
the protocol. However, the Theorem 5.2 assumes that concurrent sessions of the protocol have
disjoint states, i.e., there is no information shared among the sessions. This is a limitation for
our purposes, and, as we will need such a result to prove the security of one of AoT protocols,
we state another joint state composition theorem in Section 5.3.6.

Theorem 5.2 ([61]) Let P be the single-session version of a real protocol system and F a
single-session version of a functionality such that P  F. Then it holds true that !P  !F.

As a corollary of the IITM composition theorems, and using that the relation  is re-
flexive and transitive, we have that: if a real protocol P1 that has already been proven to realize
a functionality F1 (P1  F1) is composed with another protocol P to build a more complex
protocol Q = P | P1, which, in turn, has to be proven to realize a functionality F , we can
analyze Q as P | F1  F , where P ideally uses the functionality F1. After the analysis, the
functionality F1 can be directly changed to its realization P1, which gives a real implementation
of Q.

5.3 Functionality for Cryptographic Primitives

As discussed in the Section 5.1, the UC models can be used to analyze the security
of communication protocols in a modular way, allowing the composition of previously proven
protocols to build more complex systems. This is especially interesting if we could support the
analysis of real protocols based on a previously proven secure set of cryptographic primitives
inside the model. That is the key idea behind the framework proposed by [66]. The authors
propose a functionality called Fcrypto to support the execution of cryptographic primitives in an
ideal way, which is proved in a realization Pcrypto based on standard cryptographic assumptions.
Based on their results, it is possible, for instance, to analyze the security of a real protocol P
that intends to realize a specific functionality F using Fcrypto as the cryptographic primitives’
provider for P without any reduction proofs regarding the cryptographic primitives, that have
already been conducted in the analysis of Pcrypto. Fcrypto allows a protocol such as P to ide-
ally: generate and derive symmetric keys, use symmetric and asymmetric encryption schemes,
generate and verify MACs, use a digital signature scheme, and generate fresh nonces.
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Although the functionality Fcrypto is equipped with most basic cryptographic primitives,
it needs to be extended when a protocol being analyzed in the framework needs an unsupported
cryptographic primitive. This is done, for instance, in [62]. The authors add to Fcrypto the mech-
anisms to support standard Diffie-Hellman key exchange. Similarly, we present in Section 5.4
an extension of Fcrypto to support a set of operations that, in turn, will enable the usage of Fcrypto

to build identity-based authenticated key agreement protocols [29, 70, 81, 121] categorized into
the same family of protocols proposed by [81].

5.3.1 Fcrypto Modeling

In this section, we present the Fcrypto modeling: the general Fcrypto machine interface
(Section 5.3.1.1), the identification of users (Section 5.3.1.2), how cryptographic keys are han-
dled (Section 5.3.1.3), how the Diffie-Hellman key exchange is implemented (Section 5.3.1.4),
the existent cryptographic operations (Section 5.3.2), how it is parameterized (Section 5.3.5),
and initialized (Section 5.3.3).

5.3.1.1 Fcrypto Interface

The multi-session version of the functionality for cryptographic primitives [62, 65, 66]
is modeled by a single machine Fcrypto that interfaces with an n-party higher-level protocol. The
machine Fcrypto has n pairs of i/o tapes, one pair for each protocol role, and a network interface
for adversary communication. In Figure 5.4, for instance, we show a diagram representing a
two-party multi-session protocol P = !MA | !MB with roles A and B, respectively. In this case,
MA and MB implement their respective roles following the higher-level protocol specification
and uses the i/o interfaces of Fcrypto to request the cryptographic operations they need.

5.3.1.2 Users

The functionality Fcrypto expects to receive messages prefixed with party and local ses-
sion identifiers (pid, lsid). As the messages are sent and received in tapes specific for each
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Figure 5.4: Modeling the implementation of a multi-session two-party protocol P which uses
Fcrypto as a cryptographic provider.

protocol role, any user is fully identified by the tuple (pid, lsid, r), where r is the role in the
protocol.

5.3.1.3 Cryptographic Keys

In Fcrypto, a symmetric key, besides its actual value, also have a specific type, which
models the security requirement of single-purpose usage of keys. The type pre-key rep-
resents keys that can be used only to derive other symmetric keys of arbitrary types. Keys
of unauthenc-key type, in turn, can only perform unauthenticated encryption and decryp-
tion. Similarly, authenc-key keys can perform only authenticated encryption and decryp-
tion, mac-key keys can only generate and verify MACs, and dh-key represents keys estab-
lished by a Diffie-Hellman key exchange, which can be used only to derive new symmetric keys
of arbitrary types.

A key also has its corruption status, which determines if the corresponding cryptographic
operation is performed ideally or without security guarantees. To provide such guarantees,
Fcrypto does not reveal the actual value of keys directly to their users, otherwise, Fcrypto could
not tell if a key has been “seen” or not by any other user than the keys’ owner. Instead, Fcrypto

gives the users pointers that reference the keys. Thus, the pointers can be used as parameters of
the operations that are performed inside the functionality. Even though, a user is able to retrieve
the actual value of a key, which makes the key known outside Fcrypto, i.e., corrupted. Therefore,
in the case of symmetric keys, Fcrypto needs to keep track whether a key is known outside its
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domains or not. For that, it uses two sets. The set Keys contains all the keys controlled by
the functionality, generated by it or inserted by the users. The set Keysknown ✓ Keys, in turn,
contains the keys that have become known outside Fcrypto by being explicitly retrieved by its
owner, the keys that have been encrypted with a corrupted key, the keys that have not been
generated by Fcrypto, but explicitly inserted by a user, and the keys that have been corrupted by
the adversary.

In Fcrypto, the adversary (simulator) provides the actual values of the keys1 generated
in the functionality. However, the corruption status of a key is what tells Fcrypto whether the
corresponding cryptographic operation is performed ideally (uncorrupted key) or without se-
curity guarantees (corrupted key). In the realization Pcrypto of Fcrypto, however, an uncorrupted
key will actually not be known by the adversary or the environment. After receiving a key
k from the adversary, Fcrypto first checks if there is any collision with its current keys, i.e., if
k /2 Keys, and asks for another key until the check passes. Similarly, whenever a user insert
a key k in Fcrypto, the functionality prevents key guessing of unknown keys by rejecting k if
k 2 Keys\Keysknown. In fact, one of the main objective of these sets, besides keeping the track
of (un)known keys, is to give Fcrypto a mechanism to guarantee the generation of fresh keys and
resistance against guessing of unknown keys, because the functionality has no dependency on a
particular algorithm for generating keys, which, in turn, must be implemented by its realization.

Fcrypto also allows higher-level protocols to model setup assumptions. Two or more users
can create a pre-shared symmetric key of type pre-key, unauthenc-key, authenc-key,
or mac-key using a specific operation that has as a parameter the name of the key. Hence, if
the users use a common name and type, they will get pointers to the same key in Fcrypto.

Asymmetric keys, in turn, are modeled a little bit differently. First of all, there is no
interface to generate asymmetric keys using Fcrypto. The functionality assumes there is a key
distribution scheme, then all the asymmetric keys are provided by the adversary in the initializa-
tion phase of Fcrypto. Furthermore, the private keys are not accessible to users, not even through
pointers. These keys are kept inside the functionality and can be indirectly used by their owners
with the corresponding cryptographic operation, specifically decryption or signing. Besides,
there is no option to retrieve the actual value of private keys. Public keys, on the other hand,
have the actual values returned to users when requested. Last, private keys can be corrupted
only by the adversary.

1The adversary also provides the values of other secret cryptographic information and also nonces.
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5.3.1.4 Diffie-Hellman Key Exchange

Diffie-Hellman (DH) key exchange modeling in Fcrypto is based on general cyclic groups
G of order n and generator G, exponents e 2 Z⇤

n
, and group elements, also called DH shares,

H = G
e 2 G. In Fcrypto, exponents are modeled analogously to keys, the users do not receive

the actual value e of an exponents, but a pointer to it. However, the users can get the actual
value of its corresponding DH share H = G

e. A user with access to an exponent e can combine
it with an arbitrary DH share H = G

d, not necessarily generated in Fcrypto, to create a new
symmetric key k = G

ed. Fcrypto guarantees that if the exponents e and d were created in Fcrypto,
then the resulting key k is only be accessible by the owners of e and d. The corruption status
of exponents are also tracked by sets. The general set Exp contains all exponents, and the set
Expknown ✓ Exp keeps the exponents that become known to the environment. Hence, if an
exponent e is unknown, e 2 Exp\Expknown. An auxiliary set, called BlockedElements, is used
to maintain all DH shares that cannot be generated in Fcrypto. This set is used to avoid that an
exponent being created in Fcrypto does not result in a DH share that has not been created in the
functionality, but received by higher-level protocol that wants to use it inside Fcrypto and, hence,
has been explicitly blocked in Fcrypto by the higher-level protocol.

Similarly to keys modeling, the adversary also provides the actual value of exponents
for Fcrypto, which means that the corruption status of the exponents determine if the key derived
from them is corrupted or not. In the realization Pcrypto of Fcrypto, however, an uncorrupted expo-
nent will actually not be known by the adversary or the environment. Whenever Fcrypto receives
a new exponent e from the adversary, it performs some verification before accepting the value.
First, it checks if e 2 Z⇤

n
to guarantee consistency with the DH group. Then, Fcrypto checks if

e /2 Exp, modeling fresh exponent generation. Last, Fcrypto verifies if Ge
/2 BlockedElements,

i.e., it checks if the resulted DH share derived from the generated exponent has not already been
blocked in the functionality. If any of the mentioned verification fails, Fcrypto will request the
adversary a new value for the exponent until all verification pass successfully.

Keys that are generated using the DH key exchange capability in Fcrypto have the type
dh-key. These keys can be used only to derive new symmetric keys of other types. In addition,
they can be generated only by the GenDHKey and Store operations. The corruption status of
exponents (known or unknown) is what determines the if a a new key of type dh-key created
from them if corrupted (known) or not. Fcrypto marks a kew key as uncorrupted only if it is
generated from two unknown exponents. That is, if any of them is known, or if the DH share
used to create the key is not generated in Fcrypto, the key is corrupted.
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5.3.2 Cryptographic Operations

Bellow, we present the list of cryptographic operations provided by Fcrypto, a detailed
description of Fcrypto’s behavior upon each command is provided in [66] and [62].

• Generate a fresh symmetric key
Command: (New, type)
Users can ask Fcrypto to generate a fresh symmetric key of type type 2 {pre-key,
unauthenc-key, authenc-key, mac-key}.

• Establish a pre-shared key
Command: (GetPSK, type, name)
Users can establish pre-shared symmetric keys of type type 2 {pre-key,
unauthenc-key, authenc-key, mac-key} and identified by name 2 {0, 1}⇤ to
model setup assumptions. Different users that use the command with same type and
name parameters have a common pre-shared key.

• Store a key
Command: (Store, type, k)
Users can store a key k of type type in Fcrypto. This command allows higher-level
protocols to use the functionality with keys that are not created by it. As the key is known
outside Fcrypto, after making sure there is no key guessing of unknown keys, Fcrypto adds
the key k to the set Keysknown.

• Retrieve a key value
Command: (Retrieve, ptr)
Users can retrieve the actual value of a key referred by the pointer ptr, which makes
Fcrypto to add the key to the set Keysknown and inform the adversary about it.

• Check if two keys are equal
Command:(Equal?, ptr , ptr0)
Users can check if two pointers, ptr and ptr0, refer to the same key.

• Check if a key is corrupted
Command:(Corrupted?, ptr)
Users can check if a key k referred by a pointer ptr is corrupted.

• Key derivation
Command: (Derive, ptr, type, seed)
Users can ask Fcrypto to derive a new symmetric key of type type 2 {pre-key,
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unauthenc-key, authenc-key, mac-key} from the seed seed and the symmet-
ric key referred by ptr, which, in turn, must have type pre-key or dh-key.

• Symmetric encryption
Command: (Enc, ptr, msg)
Users can encrypt a message msg using a key referred by pointer ptr. The type of the
referred key, unauthenc-key or authenc-key, determines if the operation will be
unauthenticated or authenticated, respectively.

• Symmetric decryption
Command: (Dec, ptr, ciph)
Users can decrypt a ciphertext ciph using a key referred by pointer ptr. Similarly to en-
cryption, the type of the referred key, unauthenc-key or authenc-key, determines
if the operation will be unauthenticated or authenticated, respectively.

• Generate a MAC
Command: (Mac, ptr , msg)
Users can generate a MAC on a message msg with a key of type mac-key referred by
ptr.

• Verify a MAC
Command: (MacVerify, ptr, msg, �)
Users can verify if a MAC � corresponds to the MAC generated on the message msg with
the key of type mac-key referred by ptr.

• Encryption public key request
Command: (GetPubKeyPKE, pid0)
A user (pid, lsid, r) can request the encryption public key of party pid0.

• Signature verification public key request
Command: (GetPubKeySig, pid0)
A user (pid, lsid, r) can request the signature verification public key of party pid0.

• Asymmetric encryption
Command: (PKEnc, pid0, Ppid0 , msg)
A user (pid, lsid, r) can encrypt a message msg under the encryption public key Ppid0 of
party pid0.

• Decryption under private keys
Command: (PKDec, ciph)
Users can decrypt a ciphertext ciph using her private key.
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• Generate a signature
Command: (Sign, msg)
Users can sign a message msg with her private key.

• Verify a signature
Command: (SigVerify, msg, pid0, Ppid0 , msg, �)
A user (pid, lsid, r) can verify if a signature � corresponds to the signature generated on
the message msg with the signing key related to the public key Ppid0 of party pid0.

• Corruption status request for an asymmetric (encryption or signing) key
Command: (CorruptPKE?, pid0) and (CorruptSig?, pid0)
A user (pid, lsid, r) can check the corruption status of the private (encryption and signing,
respectively) key of party pid0.

• Generate fresh nonces
Command: (NewNonce)
Users can generate fresh nonces that does not collide with any nonce previously generated
in Fcrypto. Nonces are also provided by the adversary, and Fcrypto guarantees their freshness
using a set N, analogously to keys. However, as nonces are not secrets, there is no need
to keep the known and unknown status.

• Get the DH group parameters
Command: (GetDHGroup)
Users can ask for the DH group parameters G, n, and G generated in Fcrypto during ini-
tialization.

• Generate fresh exponents
Command: (GenExp)
Users can request a pointer to a new exponent e that does not collide with any other
exponent previous generated or inserted in Fcrypto and the corresponding DH share G

e.

• Block a DH share to be genereated
Command: (BlockGroupElement, H)
Users can block DH shares H = G

e from being generated upon a GenExp command.

• Retrieve an exponent
Command: (RetrieveExp, ptr)
Users can retrieve the exponent referred by a pointer ptr, which makes Fcrypto to add the
referred exponent to the set Expknown, and inform the adversary about it.

• Store an exponent
Command: (StoreExp, e)
Users can store an exponent e in Fcrypto. This command allows higher-level protocols



5.3. Functionality for Cryptographic Primitives 81

use Fcrypto with exponents that are not created by it. As the exponent is known out-
side the functionality, after making sure there is no exponent guessing of unknown expo-
nents, Fcrypto adds the exponent to the set Expknown, and informs the adversary.

• Generate a new Diffie-Hellman key
Command: (GenDHKey, ptr, H)
Users can generate new keys of type dh-key derived from a DH share H and the expo-
nent referred by pointer ptr.

5.3.3 Initialization

Fcrypto can be activated by either a message on the network tape or on an input tape.
Upon such a command, Fcrypto executes the GroupGen(1⌘) algorithm to support the Diffie-
Hellman key exchange and stores the resulting group and parameters (G, n, G). Then, Fcrypto

sends this result to the adversary together with a request of all of cryptographic algorithms and
pairs of keys of the encryption and signing asymmetric schemes. After receiving the response,
the initialization is complete. Depending on the tape that initialization was requested, Fcrypto

resumes the message processing (initialization on the input tape) or gives the control back to
the adversary (initialization on the network tape).

5.3.4 Corruption Model

To describe the corruption model of Fcrypto, assume it as a cryptographic module that
can keep the long-term keys of a party at the same time it can generate fresh cryptographic
material. That being said, the corruption model of cryptographic secrets is such that during
the initialization, the adversary indicates in each pair of asymmetric keys if it is corrupted or
not. After that, private encryption keys can be corrupted by the adversary before they are used
for the first time but not afterwards. Signing keys, on the other hand, can be corrupted at any
point in time. Pre-shared keys, in turn, can be corrupted when they are retrieved, that is, upon a
GetPSK command, Fcrypto asks the adversary for the value of key, the adversary then indicates
together with the provided value if such a key is corrupted or not. Notice that we can refer to the
keys we mentioned so far as long-term information of parties. This information could have been
exposed throughout time and that is the reason the adversary can corrupt these keys directly in
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Fcrypto and not in the higher-level protocol that uses the functionality. On the other hand, fresh
secret generated in Fcrypto is considered local computation of the user, thus it is not corrupted by
the adversary, which is the case of exponents with the GenExp command and new keys with
command New. Therefore, the corruption model of the higher-level protocol that uses Fcrypto

must consider these assumptions. Besides, any secret that can become known outside Fcrypto

gets corrupted. Similarly, every key that is derived from components that can be known outside
Fcrypto, using commands Derive and GenDHKey, has the corruption status dependent on the
corruption status of those components.

5.3.5 Parameterization

The functionality for cryptographic primitives Fcrypto is parameterized with a security
parameter ⌘ and two algorithms. Recall that the status of a key determines if the cryptographic
operation is performed ideally or security cannot be guaranteed by Fcrypto. Regarding encryp-
tion, there is a need for a leakage algorithm L that leaks some information about the plaintext
that is being ideally encrypted in case of an unknown key. This algorithm can, for instance, leak
the length of the plaintext (L(msg, ⌘) = 1|msg|). To handle the DH key exchange, in turn, Fcrypto

needs an algorithm GroupGen(1⌘) to setup the DH group G.

5.3.6 Joint State Composition Theorem

In this section, we state a theorem that we use to analyze the security of SessionKey-
Derivation protocol in Section 5.7.2. We need this, because the theorems presented in Sec-
tion 5.2.3 that guarantee that the security of a multi-session protocol can be proved by perform-
ing the analysis of the single-session version of the protocol, which is clearly a simpler task,
assume that concurrent sessions of the protocol have disjoint states, i.e., there is no information
shared among the sessions. This is a considerable limitation for analyzing protocols that use
long-term pairwise keys or asymmetric keys, since they would be required, for instance, to use
a fresh long-term pairwise key in each session. As a solution to that, the Theorem 5.3 [65]
states that under specific conditions on a real protocol P, called implicit disjointness, we can
prove that the P’s multi-session version, where all sessions use the same ideal cryptographic
functionality Fcrypto, realizes a functionality F, by performing the security analysis of the a
single-session version of P. In reality, implicit disjointness is a condition that guarantees that
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different sessions of P do not interfere with each other even when they share information in the
same functionality Fcrypto, such as pre-shared and asymmetric keys. Before stating the theorem,
however, we need to define the condition of implicit disjointness, which demands the introduc-
tion of partnering functions and explicitly shared keys. As in the proofs of our protocols we
only use MAC requests to establish the sessions, we omit the details about the other types of
requests that can be used to guarantee implicit disjointness, although they are very similar.

Partnering Function [65] – A partnering function ⌧ is a function that can groups users (pid,
lsid, r) of a protocol P into sessions, i.e., if P is a two-party protocol with roles A and B, in
a run of P, ⌧ group instances of machine MA with instances of machines MB. In practice,
partnering functions are usually determined based on the nonces that parties exchange on a
protocol. Formally, the partnering function ⌧ for a protocol that uses Fcrypto (P | Fcrypto) is
a polynomial-time computable partial function that maps every sequence of configurations ↵
of a machine instance Mr in a run of P to a string and returns either a sub-string of ↵ that
represents the session, i.e., a session stamp, or ?. For every environment E , a (partial) run ⇢
of E | P | Fcrypto, and every instance (pid, lsid, r), it is defined ⌧(pid,lsid,r)(⇢) = ⌧(↵) where ↵ is
the projection of ⇢ to the sequence of configurations of Mr with party identifier pid and local
session identifier lsid. Instances (pid, lsid, r) and (pid0, lsid0, r0) belong to the same session, or
are partners, in a (parcial) run ⇢ if ⌧(pid,lsid,r)(⇢) = ⌧(pid0,lsid0,r0)(⇢) 6= ?. The partnering function
⌧ is valid if, for every environment E that interacts with P | Fcrypto, the following holds (with
overwhelming probability over runs ⇢ of the system): (i) once a session stamp is assigned, it
is fixed; (ii) corrupted instances do not belong to sessions, i.e., if (pid0, lsid0, r0) is corrupted
⌧(pid,lsid,r)(⇢) = ?; (iii) Every session contains at most one user per role, i.e., for every partner
(pid0, lsid0, r0) of (pid, lsid, r) in ⇢, it holds that r 6= r0 or (pid0, lsid0, r0) = (pid, lsid, r).

Explicitly Shared Keys [65] – Explicitly shared keys are pre-shared keys or keys derived from
them in different sessions with the same parameters.

Implicit Disjointness [65] – Let P be a multi-session protocol that uses Fcrypto and ⌧ a valid
partnering function for P | Fcrypto. Then, P satisfies implicit session disjointness with respect to
⌧ if for every environment E for P | Fcrypto the following holds with overwhelming probability
for runs ⇢ of E | P | Fcrypto: (i) every explicitly shared key is either always marked unknown
or always marked known in Fcrypto; (ii) whenever an instance (pid0, lsid0, r0) uses an explicitly
unknown shared key to successfully verify a MAC � in Fcrypto at some partial run ⇢0 point in ⇢,
there exists a specific instance (pid, lsid, r) that sent a MAC generation request to Fcrypto which
resulted in � such that both users are partners or both users are corrupted in ⇢0.

Theorem 5.3 ([65]) Let Fsingle be a machine that acts as a bridge between the environment
and protocol systems (protocols and functionalities) which allows an environment to create at
most one session of the system, i.e., only one instance per role on the system. Let F be multi-
session version of a functionality and P a multi-session version of a protocol that uses Fcrypto
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and satisfies implicit disjointness w.r.t. ⌧ , if Fsingle | P | Fcrypto ⌧
Fsingle | F, then it holds

true that P | Fcrypto  F.

5.4 Fcrypto Extension

In this section, we describe how we extend Fcrypto to support a set of cryptographic primi-
tives that, in turn, enable the usage of Fcrypto to build identity-based authenticated key agreement
protocols categorized into the same family of protocols proposed by [81]. In a high level, a de-
tailed description is presented in SessionKey protocol (Section 4.2.1), a user in an identity-based
key agreement protocols of such a category needs to generate unique secret scalar x 2 Z⇤

r
and

associate it in a public relation R 2 G1 with the intended communication party identity using
a scalar point multiplication operation. This information is, then, shared in a public network
with the intended communication party. The partner generates analogous information and also
shares it with the user. Having received their corresponding public relations, the users put their
secret scalar in a pairing operation and are able to derive a common key.

In a high level modeling, our extension of Fcrypto allows two users (pid, lsid, r) and
(pid0, lsid0, r0) to generate unique secret scalars (x 2 Z⇤

r
) xpid and xpid0 , respectively, tied to

the identity of each other in public relations (R 2 G1) Rpid and Rpid0 , respectively. The users
can then exchange these public relations in the network to create a common symmetric key k

derived from these public relations and their respective scalars. Fcrypto guarantees that if the
relations were created in Fcrypto, the resulting key k is only accessible by the owners of scalars
xpid and xpid0 . Therefore, we add to the functionality Fcrypto an Identity-Based Cryptosystem,
secret scalars, public relations, and a new type of key.

We add to Fcrypto initialization (Section 5.3.3), more specifically to the phase in which
Fcrypto requests the cryptographic algorithms and pairs of asymmetric keys to the adversary,
the request of the pairs of identity public and private keys of each party pid (P I

pid and S
I
pid,

respectively) in the environment and the Identity-Based Cryptosystem public parameters (G1,
G2, GT , r), where G1 and G2 are the descriptions of the two additively-written groups of order
r, and GT is the description of the multiplicatively-written group of order r. Analogously to the
other asymmetric cryptosystems in Fcrypto, we assume the keys have been distributed and that
the identity private keys have a corruption status to represent if they are corrupted or not.

Our scalar modeling in Fcrypto is similar to DH exponents. The scalars belong to the
IBC set Z⇤

r
, their actual value of scalars are not revealed to users unless explicitly requested.

Instead, the users receive pointers that refer to the scalars they generate. On the other hand,
the public relations R 2 G1 between scalars and users identities are indeed public, and can
be directly accessed. The corruption of scalars is also tracked using sets. The new set Scalar
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keeps all the scalars controlled in Fcrypto. The set Scalarknown ✓ Scalar, in turn, maintains all
corrupted scalars. Hence, if a scalar x is uncorrupted, x 2 Scalar\Scalarknown. Analogously to
fresh keys and exponents in Fcrypto, the corruption model of scalars is such that the adversary
cannot directly corrupt them, scalars only become corrupted when they have their actual value
retrieved by the users. The scalars generation is handled by the new command (NewScalar,
pid0), explained in details in the next section.

We add to Fcrypto the new type of keys id-key to represent the keys established using
secret scalars and public relations. We define that id-key keys can only be generated by the
new command GenIDKey, described in details in the next section, and can only be used to
derive new keys of arbitrary types. Analogously to other keys in Fcrypto, the corruption status
of an id-key key is tracked in the existing sets Keys and Keysknown. As we add the new type
id-key in the set of symmetric keys in Fcrypto, we extend following existent operations to
also consider the id-key keys: (Retrieve, ptr), (Equal?, ptr , ptr0), (Corrupted?,
ptr), (Derive, ptr, type, seed), and (Store, type, k).

5.4.1 Fcrypto ID-Based Operations

In this section, we describe in details the new identity-based operations we add to Fcrypto.
As the operations make sense only in the IBC context, in all of them, Fcrypto first verifies if the
requester and the intended communication partner (if the commands requires so) have IBC keys,
and if not, an error message is returned to the user, otherwise, it proceeds.

• Corruption status request of the identity private key
Command: (CorruptPID?, pid0)
Return: (Corrupted, bool)
A user (pid, lsid, r) can request the corruption status of the identity private key of party
pid0. Fcrypto returns the message (Corrupted, bool), where the boolean bool contains
true if the identity private key of party pid0 is corrupted, otherwise, bool = false.

• Generate a fresh scalar associated with an identity
Command: (NewScalar, pid0)
Return: (ScalarPointer, ptrxpid , Rpid)
A user (pid, lsid, r) can request a pointer to a fresh scalar related to an intended commu-
nication partner pid0. Upon such request, Fcrypto asks the adversary for a new scalar xpid

with the message (ProvideScalar, pid0) on the network interface.

After receiving the scalar value xpid and a relation Rpid from the adversary, Fcrypto first
verifies if xpid2 Z⇤

r
and Rpid 2 G1 to guarantee consistency with the IBC groups. Then, it



5.4. Fcrypto Extension 86

checks if xpid /2 Scalars. If any of the checks fail, Fcrypto requests the adversary new values
until everything checks successfully, which models that a new scalar do not collide with
any previously generated values. As a result, Fcrypto adds the scalar to the set Scalars and
internally registry the entry ((pid, lsid, r), ptrxpid , xpid, Rpid, pid0), which represents the
user (pid, lsid, r), through scalar pointer ptrxpid , has access to the scalar xpid, which is
tied with the identity of party pid0 in the relation Rpid. Then, Fcrypto returns the message
(ScalarPointer, ptrxpid , Rpid) to the user.

• Generate an ID-Based key
Command: (GenIDKey, ptrxpid , R, pid0)
Return: (IDKey, ptrk)
A user (pid, lsid, r) can request Fcrypto a pointer ptrk that refers to a new key of type
id-key derived from the scalar xpid refereed by ptrxpid and from the relation R re-
ceived from user pid0. Upon such a request, Fcrypto first checks if Rpid, R 2 G1 to keep
consistency with the IBC settings and returns an error if the check fails.

The entry ((pid, lsid, r), ptrxpid , xpid, Rpid, q) exists2 in Fcrypto, i.e., the scalar xpid that
belongs to user (pid, lsid, r) is tied to the identity of a party q. Then, Fcrypto verifies if an
entry such as ((pid0, lsid0, r0), ptrxpid0 , xpid0 , R, p) exists, i.e., the relation R that ties an
xpid0 and an identity of a party p was created by a user (pid0, lsid0, r0) in Fcrypto. Below we
discuss all the possibilities.

(i) The entry ((pid0, lsid0, r0), ptrxpid0 , xpid0 , R, p) exists, q = pid0, and p = pid. That is,
the requester (pid, lsid, r) generated a scalar xpid tied to the identity of pid0, which,
in turn, generated a relation R that ties the scalar scalar xpid0 and the identity of
pid. In this case, Fcrypto generate a common key for (pid, lsid, r) and (pid0, lsid0, r0)
guaranteed to be accessible only by the scalars’ owners.

If there already exists an id-key key k derived from pid, pid0, xpid, and R, Fcrypto

defines ptrk to reference such a key, and returns (IDKey, ptrk) to the user.

If the key does not exist yet, Fcrypto must generate it. An id-key key is dependent
on the IBC in the environment, i.e., it is derived from the secret scalars together
with the identity of the users. We define that the corruption status of the private
identity key of the users has precedence over the scalars’ when determining the
corruption status of a resulting id-key key, which models that if the private key
is corrupted, uncorrupted scalars cannot guarantee the security of the resulting key.
Therefore, Fcrypto checks if both scalars are corrupted, or the identity private key of
pid or pid0 is corrupted. If any of the conditions is true, the key k is corrupted, i.e.,
known. Hence, Fcrypto asks the adversary for a new id-key key with the message

2For the sake of simplicity, we consider that pointers are always valid and comes from their real owners,
otherwise, Fcrypto could just return an error.
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(ProvideIDKey, known, pid, xpid, r, pid0, R, xpid0) on the network interface.
Otherwise, the key k is uncorrupted, i.e., unknown, and Fcrypto asks the adversary
for a new key with the message (ProvideIDKey, unknown, pid, xpid, r, pid0, R,
xpid0) on the network interface. Fcrypto keeps asking for a new key k until k /2 Keys,
which models that a new key never collides with any previously generated key. Once
Fcrypto accepts the key, it adds k to the set Keys, registers k as derived from pid, pid0,
xpid, and R sets the pointer ptrk to refer k, and adds k to the set Keysknown if k is
known.

In the end, Fcrypto returns the message (IDKey, ptrk) to the user.

(ii) The entry ((pid0, lsid0, r0), ptrxpid0 , xpid0 , R, p) exists, q 6= pid0, and p = pid. That is,
the requester (pid, lsid, r) generated a scalar xpid tied to an identity that is not pid0,
the generator of R. However, the relation R was created using the identity of the
requester pid tied to the scalar xpid0 .

This means that even the user (pid, lsid, r) being the owner of the scalar xpid and
the public relation R being address to it, the party (pid0, lsid0, r0) will never received
a relation that contains the scalar xpid tied to its identity because this scalar, when
generated, was already tied to the identity of another party. However, Fcrypto must
generate the key anyway.

Analogously to the previous case, Fcrypto checks if both scalars are corrupted, or the
identity private key of pid or pid0 is corrupted. If any of the conditions is true, the
key k is corrupted, i.e., known. Hence, Fcrypto asks the adversary for a new key with
the message (ProvideIDKey, known, pid, xpid, r, pid0, R, xpid0) on the network
interface. Otherwise, the key k is uncorrupted, i.e., unknown, and Fcrypto asks the
adversary for a new key with the message (ProvideIDKey, unknown, pid, xpid,
r, pid0, R, xpid0) on the network interface. Fcrypto keeps asking for a new key k until
k /2 Keys. Once Fcrypto accepts the key, it adds k to the set Keys, registers k as
derived from pid, pid0, xpid, and R, sets the pointer ptrk to refer k, and adds k to the
set Keysknown if k is known. In the end, Fcrypto returns the message (IDKey, ptrk)
to the user.

Here we highlight an aspect of our modeling. A secret scalar can be seen as a confi-
dential nonce, that is, it should not be revealed and used only once to derive a single
key. The first requirement we model by considering the scalars a secret in Fcrypto,
i.e., using the pointers instead of returning their actual values to users. The sec-
ond requirement, in turn, we model by tying, at generation, a scalar to the intended
communication partner identity public key, which partially fulfill the requirement,
because, in spite of a user not being able to use a scalar generated to communicate to
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one party to communicate to another one, two parties can reuse scalars they generate
to communicate with each other.

(iii) The entry ((pid0, lsid0, r0), ptrxpid0 , xpid0 , R, p) exists, and p 6= pid. Therefore,
the relation R was created using an identity of another party than pid. This key
will make sense only for user (pid, lsid, r). However, Fcrypto must generate the key
anyway.

This new key cannot be derived from two scalars, besides the relation R is pub-
lic, therefore, the corruption status of the resulting key depends solely on the iden-
tity private key of the requester. Then, Fcrypto checks if the identity private key of
pid is corrupted. If so, Fcrypto asks the adversary for a new key with the message
(ProvideIDKey, known, pid, xpid, r, pid0, R) on the network interface. Other-
wise, the key k is uncorrupted, i.e., unknown, and Fcrypto asks the adversary for a
new key with the message (ProvideIDKey, unknown, pid, xpid, r, pid0, R) on
the network interface. Fcrypto keeps asking for a new key k until k /2 Keys. Once
Fcrypto accepts the key, it adds k to the set Keys, registers k as derived from pid, pid0,
xpid, and R, sets the pointer ptrk to refer k, and adds k to the set Keysknown if k is
known. In the end, Fcrypto returns the message (IDKey, ptrk) to the user.

(iv) The entry ((pid0, lsid0, r0), ptrxpid0 , xpid0 , R, p) does not exist in Fcrypto. Therefore,
R was not created in Fcrypto. This key will make sense only for user (pid, lsid, r).
However, Fcrypto must generate the key anyway.

Analogously to the previous case, this new key cannot be derived from two scalars,
and the relation R is public, therefore the corruption status of the resulting key de-
pends solely on the identity private key of the requester. Then, Fcrypto checks if the
identity private key of pid is corrupted. If so, Fcrypto asks the adversary for a new key
with the message (ProvideIDKey, known, pid, xpid, R) on the network interface.
Otherwise, the key k is uncorrupted, i.e., unknown, and Fcrypto asks the adversary
for a new key with the message (ProvideIDKey, unknown, pid, xpid, R) on the
network interface. Fcrypto keeps asking for a new key k until k /2 Keys. Once Fcrypto

accepts the key, it adds k to the set Keys, registers k as derived from pid, pid0, xpid,
and R, sets the pointer ptrk to refer k, and adds k to the set Keysknown if k is known.
In the end, Fcrypto returns the message (IDKey, ptrk) to the user.

• Retrieve the actual value of a scalar
Command: (RetrieveScalar, ptrxpid)
Return: (Scalar, xpid)
A user (pid, lsid, r) can request the actual value xpid of the scalar referred by ptrxpid .
As a result, Fcrypto adds the scalar xpid to Scalarknown as a corrupted scalar, informs the
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adversary about it, and returns the message (Scalar, xpid) to the user.

5.4.2 Corruption Model

In our extension we add to Fcrypto three types of confidential information that can be
affected by corruption, the identity private keys, scalars, and id-key keys. We define that
the adversary can statically corrupt identity private keys at the moment they are provided to
Fcrypto or before they are used for the first time, i.e., when the first id-key key is derived,
but not afterwards. Similarly to other asymmetric settings in Fcrypto, the identity private keys
cannot be corrupted by being requested by the users. The scalars, in turn, as fresh confidential
information generated in Fcrypto, are considered a local computation of the user, thus cannot be
corrupted by the adversary. Last, as a key that is derived from other components that can be
known outside Fcrypto, the corruption status of id-key keys depend on the corruption status of
those components at generation phase, as described in the GenIDKey command.

5.5 Realization Pcrypto of Fcrypto

In this section, we show how we can extend Pcrypto to realize our Fcrypto extension. Dif-
ferent from the original proposal of Pcrypto [66], however, we do not intend to provide a detailed
proof of our extension based on standard cryptographic assumptions, we want to show that
Pcrypto realizes our extension using the particular enhanced [29] identity-based cryptosystem
from [81]. Therefore, when it is appropriate we signalize the results we are reusing without
going into further details and formalism.

5.5.1 Pcrypto Definition

As first detailed in [66] and extended in [62] Pcrypto has the same i/o interface as Fcrypto

and it is parameterized with authenticated and unauthenticated symmetric encryption schemes,
⌃authenc and ⌃unauthenc, respectively, a public-key encryption mechanism ⌃pub, a digital sig-
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nature scheme ⌃sig, a MAC scheme ⌃MAC, the algorithm GroupGen(1⌘) to generate the DH
group, and two families of pseudo-random functions to derive keys, F for the general case and
F0 for the GroupGen algorithm. We extend Pcrypto adding to it the identity-based cryptosystem
⌃IBC [29, 81]. The cryptosystem ⌃IBC is initialized with the input of the security parameter ⌘
into the BDH parameter generator B (Section 2.5.3), which returns the groups G1 and G2 with
order r, identity O, and generators G1 and G2, respectively, the group GT of order r and iden-
tity 1, and the admissible bilinear pairing ê : G1 ⇥ G2 ! GT . Besides, ⌃IBC selects mapping
functions MAP1 : {0, 1}⇤ ! Z⇤

r
and MAP2 : {0, 1}⇤ ⇥ {0, 1}⇤ ⇥ G1 ⇥ G1 ⇥ GT ! {0, 1}n

and a randomly chosen master secret s 2 Z⇤

r
that defines a master public key P

I = s · G1. The
identity public key of a party pid in the system is calculated as P I

pid = ( MAP1(pid) · G1 + P
I ),

and the identity private key of such a party is calculated as SI
pid = (( MAP1(pid) + s)�1 ·G2).

Upon activation, Pcrypto initializes itself. First, it executes the GroupGen algorithm and
stores the results. Then, it has to set up public encryption and digital signature schemes. In
these cases, the adversary has to send requests to Pcrypto to generate the key pairs for each party
pid in the environment that should have a key pair. In each request, the adversary indicates if a
private key is corrupted or not. If so, the adversary provides together the value of the key pair,
otherwise, Pcrypto generates the pair of keys following the appropriate key generation algorithm
from ⌃pub or ⌃sig. In the end, Pcrypto stores the value of the keys together with their corruption
status.

In our extension, after concluding the setup of existing asymmetric cryptosystems, Pcrypto

initializes the ⌃IBC cryptosystem. It first executes the BDH algorithm B, sets up MAP1 :

{0, 1}⇤ ! Z⇤

r
, MAP2 : {0, 1}⇤ ⇥ {0, 1}⇤ ⇥ G1 ⇥ G1 ⇥ GT ! {0, 1}n, the master secret

s 2 Z⇤

r
randomly chosen and the master public key P

I = s · G1. Then, Pcrypto informs the ad-
versary that it can start requesting the generation of IBC keys. Analogously to the other pair
of keys, the adversary sends requests to Pcrypto to generate the IBC keys of each party. In each
request it is also informed if the private key should be corrupted or not and, if so, the adversary
provide the value of the keys in the same message. Otherwise, i.e., if the private key is not
corrupted, Pcrypto generates the key pair as defined in ⌃IBC. Last, Pcrypto stores the keys for each
party together with the corruption status of the private key.

We also add to Pcrypto the ability to track the (un)known status of scalars, and the new
type of keys id-key to represent keys established using the identity-based operations. As
in Fcrypto, Pcrypto stores the types of symmetric keys and use them to verify if a requested op-
eration can be executed with a given pointer, and maintains the corruption status of all other
confidential material (keys, exponents, and scalars), which allows it to respond to the users ap-
propriately when requested, as in Fcrypto. However, as in its original proposal, Pcrypto does not
need the sets used in Fcrypto to guarantee freshness and resistance to collision and key guessing,
because, as a real implementation, Pcrypto must do so based on the mathematical properties of
its cryptosystems and not by verifying whether an element already belongs to a set or not.
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5.5.2 Pcrypto ID-Based Operations

Now we detail how each id-based operation defined for our extension is actually imple-
mented in Pcrypto. As the operations only make sense in an IBC context, in all new operations,
Pcrypto first verifies if the requester and the intended communication partner (if the commands
requires so) have keys created in ⌃IBC, and if not, an error message is returned to the user,
otherwise it proceeds.

• Generate a fresh scalar associated with an identity
Command: (NewScalar, pid0)
Return: (ScalarPointer, ptrxpid , Rpid)
A user (pid, lsid,r) requests Pcrypto a new pointer to a fresh scalar related to an intended
communication partner pid0 with message (NewScalar, pid0). Upon such request, Pcrypto

randomly selects xpid 2 Z⇤

r
, creates a pointer ptrxpid that refers xpid, calculates Rpid = xpid

·P I
pid0 , where P

I
pid0 is the identity public key of pid0, and returns (ScalarPointer,

ptrxpid , Rpid) to the user.

• Retrieve the actual value of a scalar
Command: (RetrieveScalar, ptrxpid)
Return: (Scalar, xpid)
A user (pid, lsid,r) requests the actual value xpid of the scalar referred by ptrxpid with
message (RetrieveScalar, ptrxpid). Pcrypto returns the message (Scalar, xpid) to
the user.

• Generate an ID-Based key
Command: (GenIDKey, ptrxpid , R, pid0)
Return: (IDKey, ptrk)
A user (pid, lsid, r) requests Pcrypto a new key of type id-key derived from scalar xpid

refereed by ptrxpid and the relation R received from user pid0 with message (GenIDKey,
ptrxpid , R, pid0). Upon such a request, Pcrypto checks if R 2 G1 to keep consistency with
⌃IBC, and if the verification fails, Pcrypto returns an error message to the user. Otherwise,
Pcrypto calculates the a key k of type id-key as follows:

k = MAP2(pid, pid0
,xpid · P I

pid0 ,R, ê(R, S
I
pid)(G1,G2)

xpid) if the user has the role (r) ini-
tiator on the higher-level protocol; otherwise,

k = MAP2(pid0
, pid,R,xpid · P I

pid0 , ê(R, S
I
pid)(G1,G2)

xpid), i.e., if the user has the role (r)
responder on the higher-level protocol.

Then, Pcrypto creates a pointer ptrk to k, and returns (IDKey, ptrk) to the user.
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5.5.3 Pcrypto realizes Fcrypto

In this section, we present some restrictions that the environments that interact with
Fcrypto and Pcrypto must respect and show that our extension can be realized using the [81]
identity-based cryptosystem ⌃IBC.

5.5.3.1 Environment Restrictions

As we are expanding Pcrypto, we have to consider the same restrictions imposed in its
original proposal and extensions [62, 64, 66], which restrict the class of environments E that
interact with Fcrypto and Pcrypto to well-behaved environments. Besides, as our extension in-
volves a new key that is used to derive other keys and scalars that are also used to derive a
key, the restrictions also apply to the elements we add. More specifically, to be considered a
well-behaved environment, an environment E must not cause the commitment problem and it
must be used-order respecting. An environment E does not cause the commitment problem if
the cases in which an unknown key k, now including the new type id-key, used at time t in a
key derivation operation becomes known at time t

0
> t, or the cases where an unknown scalar

x used to derive an unknown id-key k at time t becomes known at time t
0
> t, happen with

negligible probability. E is used-order respecting, in turn, if the case in which an unknown key
k, now including the new type id-key, used at time t in a key derivation operation is encrypted
at time t

0
> t by another unknown key, happens with negligible probability (which avoid key

cycles). In all of AoT protocols where we intend to use our Fcrypto extension to perform the
security analysis, the environments, i.e., the higher-level protocols that use Fcrypto do not cause
the commitment problem. In the case of scalars, for instance, they are generated, used exactly
once to derive an id-key key, and then erased from the memory. Similarly, the protocols in
AoT are all used-order respecting, because none of them encrypts a key after it has been already
used.

5.5.3.2 Proof Pcrypto realizes Fcrypto

Our goal in this section is to show our operations in Fcrypto can be realized in Pcrypto

using the particular enhanced [29] identity-based cryptosystem from [81].
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As in the original proofs [62, 66], we use an intermediate machine F⇤ that acts as a
bridge between the environment and protocol systems communication to guarantee that all re-
quirements with respect to the well-behaved environments are fulfilled, which means F⇤ blocks
if any of them is not respected. Therefore, let ⌃IBC the identity-based scheme from [81], Fcrypto

the functionality for cryptographic primitives described in [66], extended in [62] and extended
by us as described in Section 5.4, Pcrypto be the realization of Fcrypto proven in [62, 66] and
extended by us as described in Section 5.5.2, and F⇤ be a machine that in any point during
the protocol systems communication blocks if the environment cause the commitment problem
or does not respect the used-order requirement. We want to show that, if the hardness of the
problem BDDH holds true for the BDH generator Bt of ⌃IBC, then

F⇤ | Pcrypto  F⇤ | Fcrypto (5.1)

We must show E | Pcrypto ⌘ E | S | Fcrypto to prove (5.1). Then, we start by designing
a simulator S that internally simulates Pcrypto and, being the adversary of Fcrypto, responds to
all of its requests, keeping the consistency defined in the ideal definition of the cryptographic
primitives in the primitive based on the mathematical properties of the assumptions assumed
in Pcrypto. As we want to reuse the original proofs of Pcrypto, our simulator S is the same as
in [62]. First of all, as the adversary of Fcrypto, S initializes Fcrypto, which, in turn, generates
the DH group and sends it to S together with a request for the cryptographic algorithms, and
key pairs. Then, S initializes its internal simulation of Pcrypto, which includes ⌃IBC. After that,
S returns all the cryptographic algorithms, keys, corruption status and public information to
Fcrypto, including all ⌃IBC-related material, the public parameters (G1, G2, GT , q) and the pair
of keys (P I, SI) with their corresponding corruption status.

After initialization, upon a new scalar request from Fcrypto with a (ProvideScalar,
pid) message, S responds with (ScalarPointer, ptrx, R · P I

pid), where x is chosen at
random from Z⇤

r
. If Fcrypto refuses a value generated by S to prevent collision and asks S to

provide another one, S stops its execution blocking any subsequent message. If Fcrypto asks
S for a new id-key key based on scalars with a message (ProvideIDKey, unknown or
known, pid, x, r, pid0, R, y), S returns k = MAP2(pid, pid0

, x · P I
pid0 ,R, ê(G1,G2)x+y) if the

r indicates an initiator role; otherwise, k = MAP2(pid0
, pid,R, x · P I

pid0 , ê(G1,G2)x+y), i.e.,
if the role r indicates a responder role. On the other hand, if Fcrypto requests for a new key
id-key key with message (ProvideIDKey, unknown or known, pid, x, r, pid0, R), S
returns k = MAP2(pid, pid0

, x ·P I
pid0 ,R, ê(R, S

I
pid)ê(G1,G2)x) if the r indicates an initiator role;

otherwise, k = MAP2(pid0
, pid,R, x · P I

pid0 , ê(R, S
I
pid)ê(G1,G2)x), i.e., if the role r indicates a

responder role. Analogously to scalars, if Fcrypto refuses a key value generated by S to prevent
collision and requests another one, S stops its execution blocking any subsequent message.
When Fcrypto asks for a key derivation based on a id-key, S behaves the same as it does for
the pre-share keys.
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As Pcrypto encompasses different cryptographic primitives, the original proof strategy [66]
is built through a series of hybrid systems, in which the cryptographic primitives in Pcrypto are
individually proven to realize its respective idealization in Fcrypto. The analysis starts from the
equivalence E | Pcrypto ⌘ E | S | Pcrypto that is obviously true. Then, the first relevant equiva-
lence E | Pcrypto ⌘ E | S | P1

crypto must be proved. In this case, P1
crypto is a hybrid copy of Pcrypto

in which the idealization (defined in Fcrypto) of the first cryptographic primitive being analyzed
substitutes its real implementation. In each one of the next steps, the equivalence E | P i

crypto ⌘
E | S | P i+1

crypto must be proven, until all n cryptographic primitives are substituted by their Fcrypto

idealization in Pn

crypto, that is, E | Pn�1
crypto ⌘ E | S | Pn

crypto ⌘ E | S | Fcrypto.

Step 1 In the first step, we define the hybrid system P1
crypto that is the same as Pcrypto except

for signature handling, asymmetric encryption and decryption, nonce generation, creation and
storage of DH exponents, and creation and storage of DH key, where we substitute all those
operations by their idealization in Fcrypto, and have to show that

E | F⇤ | Pcrypto ⌘ E | S | F⇤ | P1
crypto (1)

As we do not propose any change on such operations, the original proof from [62] still
holds.

Step 2 In the second step, we change the real implementation of scalars in the hybrid sys-
tem P2

crypto to behave as in Fcrypto, i.e., P2
crypto controls the scalars status with sets Scalar and

Scalarknown, and prevent scalar collisions by checking the contents of the sets. In this step, we
have to show that

E | F⇤ | P1
crypto ⌘ E | S | F⇤ | P2

crypto (2)

Whenever P2
crypto asks for a new scalar and its idealized control of scalars detects a

collision, it asks for another scalar. In this case, by the design of S , it blocks, that is, as P1
crypto

cannot prevent collision it does not realize P2
crypto. Our idea is to show that if a generated

scalar collides, we can build an adversary on the BDDH assumption (Section 2.5.3) with non-
negligible advantage. Since P1

crypto and P2
crypto have the same behavior in any case other than this

one, if we prove that collisions occur with negligible probability, we prove (2).
Suppose that the probability that P2

crypto rejects a scalar provided by S occurs is non-
negligible. The, we can say that some scalar x is not fresh in a non-negligible set of executions
of E | S | F⇤ | P2

cypto. As the runtime of all machines is polynomially bounded, the number of
scalars generated during an execution is also polynomially bounded. Therefore, when a scalar
x is generated, it can collide with at most a polynomial number of scalars, which means the
probability of a collision is non-negligible. This allows us to build a polynomial time adversary
A on the BDDH assumption. An algorithm for A is shown in Algorithm 1. A receives as input
the security parameter ⌘, the BDH groups description (G1, G2, r, ê) and a challenge (a · G1,
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a · G2, b · G1, c · G1, c · G2, Z) where Z = ê(G1, G2)a·b·c and, in this case the experiment
is BDDH-0, or Z = ê(G1, G2)z where z 2 Z⇤

r
is random, and, in this case, the experiment

is BDDH-1. The adversary A has to correctly guess which is the experiment (0 or 1). Upon
receiving its input, A generates a random scalar x 2 Z⇤

r
and calculates x ·G1. Hence, A verifies

if x ·G1 equals a ·G1, b ·G1, or c ·G1, and, if it does not, i.e., there was no collision, A resigns by
returning 1. If any verification succeeds, i.e., there was a collision. In this case, A is always able
to correctly guess the experiment by checking if Z equals ê(G1, G2)a·b·c, because if x · G1 =
a ·G1, then ê(b ·G1, c ·G2)x = a = ê(G1, G2)a·b·c, if x ·G1 = b ·G1, then ê(a ·G1, c ·G2)x = b =

ê(G1, G2)a·b·c, if x ·G1 = c ·G1, then ê(b ·G1, a ·G2) x = c = ê(G1, G2)a·b·c. Therefore, if Z
equals ê(G1, G2)a·b·c, A returns 0. Otherwise, it returns 1. This adversary A is a polynomially
bounded algorithm. Notice that the cases A resigns, i.e., without collisions, happen with same
probability in both experiments, without influence on the overall advantage of A. When there
is a collision, on the other hand, A always responds correctly in both experiments. As the
probability of a collision is non-negligible, the advantage Adv

DDH

A,Bt
is non-negligible, which

violates the DDH assumption. Therefore, (2) holds.

Algorithm 1: Adversary A

Input : ⌘, (G1, G2, q, ê), a ·G1, a ·G2, b ·G1, c ·G1, c ·G2, Z

Output: 0, 1
x R � Z⇤

r

if x ·G1 = a ·G1 then
if Z = ê(b ·G1, c ·G2)x then

return 0 // Correctly Guess
else

return 1 // Correctly Guess

else
if x ·G1 = b ·G1 then

if Z = ê(a ·G1, c ·G2)x then
return 0 // Correctly Guess

else
return 1 // Correctly Guess

else
if x ·G1 = c ·G1 then

if Z = ê(a ·G1, c ·G2)x then
return 0 // Correctly Guess

else
return 1 // Correctly Guess

else
return 1 // Resigns
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Step 3 In the third step, we define the hybrid system P3
crypto, copy of P2

crypto except that we
change the real implementation of id-key keys generation to behave ideally, as defined in
Fcrypto. This means that, upon a GenIDKey request, P3

crypto asks S for the new key k. Upon
receiving k, P3

crypto rejects if it finds a collision of the key in the Keys set. We now have to show
that

E | F⇤ | P2
crypto ⌘ E | S | F⇤ | P3

crypto (3)

In a high level, we have to show that there is no collisions on id-key keys, i.e., P3
crypto

never rejects the keys generated by S . Hence, we have to argue that, (i) upon a command
(ProvideIDKey, unknown or known, pid, x, r, pid0, R, y), which is responded by S with
k resulted of a mapping which the last term is ê(G1, G2)x+y is never rejected by P3

crypto; and
(ii) upon a command (ProvideIDKey, unknown or known, pid, x, r, pid0, R), which is
responded by S with k resulted of a mapping which the last term is ê(R, SI

pid)ê(G1, G2)x is
never rejected. Since P2

crypto and P3
crypto have the same behavior in any case other than these

ones, if we prove cases (i) and (ii), we prove (3).
In case (i), Fcrypto requests a key that is formed by two scalars. We known by the design

of Fcrypto, that it only requests a key if there is no pointer yet created to such a key, therefore,
if such request is made, there is no key created between the same scalars before. As scalars in
Pcrypto are randomly chosen, and there is no collision, as we just show in the proof of P2

crypto, the
sum of two scalars is also random. Since the exponent used in the paring function to generate
the key is the sum of two scalars, and ê(G1, G2) is a generator of the group GT , the term
ê(G1, G2)x+y will be uniformly distributed over the group GT , making the mapping, i.e., k,
uniformly distributed, which proves (i).

Case (ii), is actually similar to case (i). First, by the design of Fcrypto, it only requests
a single key formed by a specific scalar and a specific relation. Besides, the parameters, R
and S

I
pid of the function are such that R 2 G1 and S

I
pid 2 G2, i.e., they can be generated by

the groups generators G1 and G2. Therefore, as x is uniformly distributed over Z⇤

r
, the term

ê(R, SI
pid)ê(G1, G2)x is uniformly distributed over GT and has never been generated by Pcrypto,

making the mapping, i.e., k, uniformly distributed, which proves (ii). Hence, in fact, the keys
generated in cases (i) and (ii) are fresh, which proves (3).

Step 4 In the fourth step, we change the real implementation of symmetric encryption and
decryption and key derivation in the hybrid system P4

crypto to behave as in Fcrypto, i.e., these
operations are performed ideally. We now have to show that

E | F⇤ | P3
crypto ⌘ E | S | F⇤ | P4

crypto (4)

In this case, comparing to the original Pcrypto, we do not propose any change other than
adding the key derivation of id-key keys. However, id-key keys can be used to derive other
keys as any existent pre-key in Pcrypto. Therefore, based on the results from [62], (4) holds.
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Step 5 In the fifth step, we change the real implementation of MAC generation and verification
in the hybrid system P5

crypto to behave as in Fcrypto.

E | F⇤ | P4
crypto ⌘ E | S | F⇤ | P5

crypto (5)

As we do not propose any change on such operations, the original proof from [62] still
holds, therefore (5) holds.

With the results in (1), (2), (3), (4), and (5) we have that our extension in Fcrypto can be
realized by Pcrypto with the cryptosystem ⌃IBC:

F⇤ | Pcrypto  F⇤ | Fcrypto

5.6 Functionality to be realized

After having extended the functionality for cryptographic primitives Fcrypto and proving
its realization Pcrypto to support the identity-based operations, we have in the IITM model ideal
and real implementations to support all cryptographic primitives that we need to analyze the
security of AoT protocols. Hence, in this section, we present a functionality that ideally pro-
vides the universally composable security properties of key agreement protocols. In the end,
our goal is to prove that AoT protocols, which are a composition of higher-level protocols with
key agreement protocols, are indeed securely composable.

5.6.1 Mutually Authenticated Key Exchange

According to [83], a key exchange protocol is compliant if the honest parties who com-
ply with the protocol specification always complete the protocol having computed a common
key and knowledge of the identities of the parties with whom the key is shared. Besides cap-
turing such an objective, the standard universally composable security notions of key exchange
protocols [25] also capture the security in scenarios with or without perfect forward secrecy.
That is because, although perfect forward secrecy is an important security property, it is not
required in all contexts [24]. Indeed, as discussed in Section 4.2.1, we don’t have in AoT any
context where perfect forward secrecy is a requirement. In this section, we present FMA

sk-sig, an
idealization for a two-party mutually authenticated key exchange. Our functionality is based
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on the general FMA
key-use proposal from [62]. As in the standard universally composable security

notions of key exchange protocols only perfect forward secrecy can be modeled, we describe
FMA

sk-sig as a general functionality that follows the standard without contemplating perfect forward
secrecy [25].

In a high level, FMA
sk-sig acts as an idealized trusted party that allows two parties, initiator

and responder, to send a command to establish a fresh session with each other, which is re-
sponded by the functionality with a session key pointer. FMA

sk-sig guarantees that when it outputs a
session key pointer, the particular instance of the party that gets access to the key is uncorrupted
and in a session with its intended communication partner. Analogously, FMA

sk-sig guarantees that
the particular user instance of the partner only gets access to the same key if it is also uncor-
rupted.

An important aspect of FMA
key-use that we use in FMA

sk-sig is that it outputs to the environment
session key pointers instead of the session key itself. The idea is to offer the users a way to
perform ideal cryptographic operations in Fcrypto with the established key while they have an
active session in FMA

sk-sig. This is a feature that significantly simplifies the analysis of higher-level
protocols that can not only establish the session key but also use it in an ideal way. Our func-
tionality differs from the original FMA

key-use because, while in session, FMA
sk-sig gives the users access

to a digital signature functionality. Besides, we define that FMA
sk-sig return not only the session key

pointer but also a fresh stamp of the session that can be used by higher-level protocols during
the session. Therefore, FMA

sk-sig can be seen as the composition of the functionality for two-party
mutually authenticated key exchange with key usability, which in modeled as FMA

sk-sig | Fcrypto,
and a functionality for digital signatures, which, in turn, can also be provided by Fcrypto.

A

A B

B

E

S

FMA
sk-sig

Fcrypto

FMA
sk-sig | Fcrypto

Figure 5.5: IITM modeling of FMA
sk-sig.

The IITM modeling for FMA
sk-sig is shown in Figure 5.5. FMA

sk-sig comprises one single ma-
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chine with two pairs of i/o tapes to interface with the environment, one for each protocol role,
the initiator A and the responder B, the network tapes to communicate with the simulator S ,
and two pairs of i/o tapes to use Fcrypto as the cryptographic primitives’ provider, one for each
protocol role. Fcrypto also has its network interface to communicate with S , but it does not
interface directly with the environment. FMA

sk-sig is parameterized with a symmetric key type
t 2 {authenc-key, mac-key} to determine the type of the key established using the func-
tionality, i.e., the type of cryptographic operation that will be performed with the key while the
users are in an active session. As in AoT our protocols only use session keys to perform MAC-
and authenticated encryption-related operations, we restrict the types of keys we allow in FMA

sk-sig,
however we could allow other types of keys without major considerations.

Similarly to Fcrypto, the users in FMA
sk-sig are fully identified by the tuple (pid, lsid, r),

with party identification pid 2 {0, 1}⇤, local session identification lsid 2 {0, 1}⇤, and role r
2 {A,B}. Besides, each message in the i/o tapes of the system is prefixed with (pid, lsid).

The functionality FMA
sk-sig keeps an internal register state(pid, lsid, r)! {?, started,

inSession, exchangeFinished, sessionClosed, corrupted}, which represents
the state of each user (pid, lsid, r) in the key exchange and it is initially set to ?. The intended
communication party of each user is also kept registered in a map partner(pid,lsid,r)!pid0.

As any other instance of Fcrypto, when initialized by FMA
sk-sig, it receives the digital signa-

ture scheme pair of keys of the users from the simulator, as described in Section 5.3.3. In the
following we describe, including graphically, how FMA

sk-sig behaves, its interaction with environ-
ment, simulator, and Fcrypto.

• The user (pid, lsid) starts a key exchange with the intended communication party pid0 by
sending the command (InitKE, pid0) on the input interface of role A in FMA

sk-sig (message
1 in Figure 5.6). If state(pid, lsid, A) = ?, FMA

sk-sig sets state(pid, lsid, A) = started,
records the intended communication partner of the instance partner(pid,lsid,A) =pid0, and
informs the simulator about the request by sending the message ((InitKE, pid0), (pid,
lsid, A)) on the network interface (message 2 in Figure 5.6). The analogous scenario of a
user (pid0, lsid0) with role B and indented communication party pid is shown in Figure 5.6,
messages 10 and 20 .

• The simulator may declare two users (pid, lsid, A) and (pid0, lsid0, B) as partners in
a session by sending the message (GroupSession, (pid, lsid, A), (pid0, lsid0, B)) to
FMA

sk-sig (message 1 in Figure 5.7). The functionality only creates such a session if the
users’ states are started or corrupted and that neither of them are already part of
another recorded session. FMA

sk-sig allows the simulator to group an uncorrupted user, i.e.,
with state started, with a corrupted one, however, as we present in the next steps, a
corrupted user do not get a pointer to the session key.

Hence, FMA
sk-sig uses the command GetPSK to ask Fcrypto for a pointer to an unknown key of

type t (parameter of FMA
sk-sig) and name name = ((pid, lsid, A), (pid0, lsid0, B)) (messages
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A

A((InitKE, pid0), (pid, lsid, A))2
((InitKE, pid), (pid0, lsid0, B))20

(pid, lsid)(InitKE, pid0)1

B

B

(pid0, lsid0)(InitKE, pid)10

E

S

FMA
sk-sig

Fcrypto

Figure 5.6: Key exchange initialization in FMA
sk-sig.

2 and 6 in Figure 5.7). According to the design of Fcrypto, explained in Section 5.3
and detailed in the original proposal [66], the functionality actually asks the adversary
(simulator) for the value of keys (message 3 in Figure 5.7), this is an important aspect
that will be used to prove our protocols realize FMA

sk-sig. Then, FMA
sk-sig uses the command

NewNonce, once for each role, to ask Fcrypto fresh nonces to be used as a fresh stamp
for the session (messages 8 and 12 in Figure 5.7). Similarly to keys, Fcrypto also asks
the simulator for the value of new nonces (messages 9 and 13 in Figure 5.7). After
receiving the nonces from Fcrypto (messages 11 and 15 in Figure 5.7), FMA

sk-sig changes the
uncorrupted instances stages to inSession, records (Session, (pid, lsid, A), ptrkA

,
nA, (pid0, lsid0, B), ptrkB

, nB) as a session, and responds OK to the simulator ( 16 in
Figure 5.7).

This idea of letting the simulator in charge of grouping instances in sessions in the func-
tionality is presented in [65]. As in the IITM model the simulator internally executes
the protocol that needs to be shown to realize the functionality, it internally simulates
the protocol execution with the same entries the functionality gets from the environment.
Therefore, the protocol needs a mechanism that correctly groups the users in sessions and
showing that such a mechanism works is part of the security analysis.

• The simulator can request FMA
sk-sig to complete the key exchange for a user (pid, lsid, A).

To do so, it sends (FinishKE, (pid, lsid, A)) to FMA
sk-sig (message 1 in Figure 5.8). FMA

sk-sig

checks if state(pid, lsid, A) = inSession and that there is a record of a session between
(pid, lsid, A) and an instance of its intended communication partner, for instance, there
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A

A((GroupSession, OK), (pid, lsid, A), (pid0, lsid0, B))16

(GroupSession, (pid, lsid, A), (pid0, lsid0, B))1

(pid, lsid)(GetPSK, t, name)2
(pid, lsid)(NewNonce)8

(pid, lsid)(ptrkA
)5

(pid, lsid)(nA)11

(GetPSK, t, name)3
(NewNonce)9
(NewNonce)13

(Nonce, nB)14
(Nonce, nA)10
(Key, k)4

B

B

(pid0, lsid0)(GetPSK, t, name)6
(pid0, lsid0)(NewNonce)12

(pid, lsid0)(ptrkB
)7
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E

S

FMA
sk-sig

Fcrypto

Figure 5.7: Grouping instances into a session in FMA
sk-sig.

exists a record such as (Session, (pid, lsid, A), ptrkA
, nA, (pid0, lsid0, B), ptrkB

, nB)
and partner(pid,lsid,A)!pid0. It not, i.e., the instance is corrupted or there is no session
for the instance, the user does not receive a session key pointer. Otherwise, FMA

sk-sig sets the
state(pid, lsid, A) = exchangeFinished, and outputs the message (Established,
ptrkA , (nA, nB)) to the user (pid, lsid) on the environment (message 2 in Figure 5.8),
where ptrkA is the pointer to the established key and (nA, nB) is what we call the session
stamp. The analogous scenario where a key exchange for a user (pid0, lsid0) with role B is
completed and the session key pointer ptrkB is output is shown in Figure 5.8 in messages
10 and 20 , respectively.

• A user (pid, lsid) which has state(pid, lsid, r) = exchangeFinished has access to
the established key through pointer ptrkr , r 2 {A,B}, and can use FMA

sk-sig to perform
cryptographic operations using Fcrypto, including the ones related to the digital signature
scheme. FMA

sk-sig receives the cryptographic commands from the user (messages 1 and 10

in Figure 5.9), forwards them to Fcrypto to be processed (messages 2 and 20 Figure 5.9),
receives the results from Fcrypto (messages 3 and 30 in Figure 5.9), and returns the
result to the users (messages 4 and 40 in Figure 5.9). The symmetric operations FMA

sk-sig

can intermediate in Fcrypto for user (pid, lsid, r) are: Enc, Dec, Mac, MacVerify,
Corrupted?, and Equal?. The digital signature scheme operations FMA

sk-sig exposes, in
turn, are: GetPubKeySig, Sign, SigVerify, and CorruptSig?.
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Figure 5.8: Finishing the key exchange in FMA
sk-sig.

• The user (pid, lsid) which has state(pid, lsid, r) = exchangeFinished can close
the session in FMA

sk-sig by sending the message (CloseSession) (messages 1 and 10

in Figure 5.10). FMA
sk-sig then sets state(pid, lsid, r) = sessionClosed, revokes the

access of (pid, lsid, r) to the established key, and informs the simulator about the event
by sending (CloseSession, (pid, lsid, r)) on the network tape (messages 2 and 20 in
Figure 5.10). After receiving an acknowledge from the simulator ((messages 3 and 30

in Figure 5.10), FMA
sk-sig responds OK to the user (messages 4 and 40 in Figure 5.10).

• A user (pid, lsid) in the environment can request its corruption status in FMA
sk-sig by sending

the (Corrupt?) command (messages 1 and 10 in Figure 5.11). If state(pid, lsid, r)
= ?, i.e., if the key exchange has not yet been started, before answering the user, FMA

sk-sig

first sends the message (CorruptUser?, (pid, lsid, r)) to the simulator asking if the
user should be corrupted (messages 2 and 20 in Figure 5.11), and sets state(pid, lsid, r)
= corrupted if the answer if the corruption flag is set to true in the response message
(messages 3 and 30 in Figure 5.11). Last, FMA

sk-sig sets bool accordingly and returns
(Corrupt, bool) to the user (messages 4 and 40 in Figure 5.11).

In FMA
sk-sig the corruption model is such that the simulator can corrupt a user before a key

exchange starts and after the session is close, but not during the session. More exactly, a user
(pid, lsid, r) with state(pid, lsid, r) = ? or sessionClosed is corrupted by the simulator
when it sends the message (Corrupt, (pid, lsid, r), bool) with bool = true to FMA

sk-sig or,
when asked by FMA

sk-sig at the beginning of the key exchange, as explained in the corruption status
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Figure 5.9: Performing cryptographic operations in Fcrypto through FMA
sk-sig.
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FMA
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Figure 5.10: Closing a session in FMA
sk-sig.

request. All messages to or from corrupted users in i/o interfaces are forwarded by FMA
sk-sig to the

simulator on the network tape. To model the lack of perfect forward secrecy, FMA
sk-sig allows the

simulator to execute operations in Fcrypto using the corrupted instance (pid, lsid, r) in the name
of user (pid, lsid). However, the operations available in such case are those that have direct
relation with the session keys. For example, the simulator can execute the GetPSK command
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Figure 5.11: Corruption status request.

using an appropriate name of the key to get a pointer to key established in a past session and
use the key as in the higher-level protocol, potentially revealing the secrets of such session.
On the other hand, the simulator cannot access the digital signature scheme operations using
a corrupted instance, otherwise, we would have to require that for corrupting an instance, the
signing key of the party would have to be previously corrupted.

5.7 Security Analysis of AoT

In this section, we present security analysis of AoT in the universal composability IITM
model. Our idea is to first show that AoT’s key establishment protocols SessionKey (Sec-
tion 4.2.1) and SessionKeyDerivation (Section 4.2.3) realize the general universally compos-
able security properties of key agreement protocols, i.e., the functionality FMA

sk-sig. Then, based
on the modular design of AoT’s protocols, we show that every module is a composition of a
higher-level protocol with a key agreement protocol with key usability (FMA

sk-sig) and, as AoT is
cryptosystem agnostic, any standard cryptographic algorithm that fulfills Fcrypto requirements
can be used to instantiate a secure version of AoT, i.e., AoT is securely universally composable.
We start with the analysis of SessionKey in Section 5.7.1, then we analyze protocol SessionKey-
Derivation in Section 4.2.3, and argue about AoT’s prototols in Section 5.7.3.
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5.7.1 SessionKey Protocol

The security analysis of SessionKey protocol (Section 4.1, Protocol 4.1) consists of prov-
ing that the protocol is as secure as the functionality for mutually authenticated key exchange
with key usability and in-session access to digital signatures FMA

sk-sig, described in Section 5.6.1.
We present the protocol modeling in Section 5.7.1.1, describe its execution in Section 5.7.1.2,
and develop the proof in Section 5.7.1.4.

5.7.1.1 SessionKey IITM Modeling

The SessionKey protocol (Protocol 4.1), referred as PSK, has a straightforward two-party
multi-session protocol modeling PSK = !MA | !MB | Fcrypto, which consists of two machines MA

and MB, one for each protocol role, A as the initiator device and B as the responder one. MA

and MB have i/o tapes to interface with the environment E , the network interface for adversary
A communication, and i/o tapes to ideally use Fcrypto as the cryptographic primitives provider,
as shown in Figure 5.12.

MA

MB

E

PSK

Fcrypto

Figure 5.12: SessionKey (PSK) protocol modeling.

Users in PSK are fully identified by the tuple (pid, lsid, r), where pid and lsid are party
and local session identifiers, totally managed by the environment, and r2 {A,B} is the protocol
role. Therefore, in a run of PSK, there is a single instance (pid, lsid, r) of a machine Mr per user
(pid, lsid) in the environment. All messages in the i/o tapes are prefixed with (pid, lsid), making
the modeling totally compatible with Fcrypto identification scheme. PSK is parameterized with
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a symmetric key type t 2 {authenc-key, mac-key} to determine the type of the key
established using the protocol.

Each machine maintains an internal variable to control its current state in execution
of the protocol. This variable allows a machine to parse the messages received on its tapes
according to what has been executed up to that particular point. As the machines play different
roles, they have different stages in an execution, MA has a control stateA 2 {?, started,
finished, sessionClosed}, initially set to ?, MB, in turn, has a control stateB 2 {?,
started, secondMessageSent, finished, sessionClosed}, initially set to?. The
machines also keep their corruption status (false or true) initially set to false, and a
register with the party identifier of the intended communication partner, initially empty.

5.7.1.2 SessionKey Execution

In terms of code, the machines MA and MB implement the specification of the corre-
sponding role in the SessionKey protocol (Protocol 4.1) with some modeling necessities that
we describe during the section. The first necessity is to provide to the environment the same
interface as the functionality SessionKey wants to realize. As we want to prove PSK  FMA

sk-sig |
Fcrypto, MA and MB must provide to E the same interface as FMA

sk-sig. Therefore, a user (pid, lsid)
in E must be able to:

• send the command (InitKE, pid0) to start a key exchange with desired party pid0;

• Perform the desired cryptographic operations in Fcrypto after the session key pointer is
returned. Analogously to FMA

sk-sig, the available symmetric operations are: Enc, Dec, Mac,
MacVerify, Corrupted?, and Equal?, and the digital signature scheme operations
are: GetPubKeySig, Sign, SigVerify, and CorruptSig?.

• Send the command (CloseSession) after performing the desired cryptographic oper-
ations in the session;

• Send the command (Corrupt?) to get its corruption status.

In the following, we describe, including graphically, the code of machines MA and
MB and their behaviors in a normal run of PSK. The machines are implemented such that all
messages are sent in Compute mode. Therefore, if a message is sent, a machine has executed in
CheckAddress mode and returned accept. This means that all the protocol messages are built
and verified in the CheckAddress mode piece.

• Key exchange initialization. The machines have internal state set to ?.
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– Machines MA and MB have state = ?, and receive (one at a time) messages (pid,
lsid)(InitKE, pid0) and (pid0, lsid0)(InitKE, pid) (messages 1 and 10 in Fig-
ure 5.13, respectively) from the environment, which start key exchanges for users
(pid, lsid) and (pid0, lsid0), that have as the intended communication partners the
parties pid0 and pid, respectively. The machines accept the messages, i.e., they are
now user instances (pid, lsid, A) and (pid0, lsid0, B) in the protocol, and proceed to
Compute mode to output a message.

MA

((InitKE, pid0), (pid, lsid, A))2

((InitKE, pid0, ACK), (Corrupt, bool))3

(pid, lsid)(InitKE, pid0)1

MB
((InitKE, pid0), (pid0, lsid0, B))20

((InitKE, pid, ACK), (Corrupt, bool))30

(pid0, lsid0)(InitKE, pid)10

E

Fcrypto

Figure 5.13: Key exchange initialization in PSK.

– MA and MB inform the key exchange request to the adversary by sending, respec-
tively, ((pid, lsid), (InitKE, pid0)) and ((pid0, lsid0), (InitKE, pid)) on their output
network tapes (messages 2 and 20 in Figure 5.13, respectively).

– The adversary acknowledges the machines about the initialization, which, in turn,
can start the protocol execution. This specific acknowledge message on the begin-
ning can be used by the adversary to corrupt the users by setting the corruption flag
bool as true, as shown in messages 3 and 30 in Figure 5.13. If such request is
made, the corruption status of the machine is set to true, and the machine stops
without producing output, which makes the environment (the master machine of the
system) to be activated. Otherwise, MA sets stateA = started, MB sets stateB =
started, they record the intended communication partner (pid0 in MA and pid in
MB), and continue with protocol execution. MA prepares to send the first protocol
message, while MB concludes the CheckAddress mode returning accept, proceeds
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to Compute mode, which is concluded without outputting a message, activating the
environment.

• MA continues in CheckAddress mode from the initialization acknowledgment message
and sends the first message of the protocol on its output network tape.

MA

(pid, pid0, npid, Rpid, session_req)5

(pid, lsid)(NewScalar, pid0)1
(pid, lsid)(NewNonce)3

(pid, lsid)(ptrxpid , Rpid)2
(pid, lsid)(npid)4 MB

E

Fcrypto

Figure 5.14: First message of SessionKey protocol.

– Protocol specification:

A : P
I
B,Z := MAP1(idB,Z ) ·GI

1,Z + P
I
S,Z

A : RA := xA · P I
B,Z

A! B : idA,Z , idB,Z , nA,RA, session_req

– MA asks Fcrypto for a scalar xpid related to the identity of the recorded intended
communication partner pid0 through the command (NewScalar, pid0), obtaining
the scalar pointer ptrxpid and the public relation Rpid (messages 1 and 2 in Fig-
ure 5.14)3.

– MA uses the command (NewNonce) to ask Fcrypto for a fresh nonce, and receives
npid (messages 3 and 4 in Figure 5.14) and concludes the CheckAddress mode
returning accept.

– In Compute mode, MA sends the first protocol message (pid, pid0, npid, Rpid, session_req)
on its output network tape (message 5 in Figure 5.14).

3For the sake of simplicity, we omit the full identification of the user instance on the components generated in
Fcrypto. For instance, the best representation of a scalar pointer in a session would be ptrxpid,lsid and of the public
relation would be Rpid,lsid, because they are always tied to a specific session.
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• MB receives the first message of the protocol on its input network tape, it has stateB
= started, it prepares the second message of the protocol, and sends it on its output
network tape.

– Protocol specification:

B : P
I
A,Z := MAP1(idA,Z ) ·GI

1,Z + P
I
S,Z

B : RB := xB · P I
A,Z

B : k
ID
B,A := MAP2(idA,Z , idB,Z ,RA,RB, ê(RA, S

I
B,Z)ê(G

I
1,Z , G

I
2,Z)

xB)

B : k
MAC
B,A := PRF(nA | nB)kID

B,A

B : kB,A := PRF(nB | nA)kID
B,A

B ! A : idB,Z , idA,Z , nB, RB, session_ack, MAC(nA | RA)kMAC
B,A

– Eventually, the adversary delivers the protocol message to MB (message 1 in Fig-
ure 5.15). MB parses the message and checks if it corresponds to the expected
format and if the parties on the message correspond to the party identifiers of the
recorded intended communication partner pid and the party identifier of the user
pid0, respectively. If the checks fail, MB in CheckAddress mode returns reject to the
message. Otherwise, it continues processing in CheckAddress mode.

MA

MB

(pid0, pid, n pid0 , Rpid0 , session_ack, �2)14

(pid, pid0, npid, Rpid, session_req)1

(pid0, lsid0)(Derive, ptrk
ID
pid0

, mac-key, npid | n pid0)8

(pid0, lsid0)(Derive, ptrk
ID
pid0

, t, n pid0 | npid)10

(pid0, lsid0)(MAC, ptrk
MAC
pid0

, maux)12

(pid0, lsid0)(GenIDKey, ptrxpid0 , Rpid, pid)6
(pid0, lsid0)(NewNonce)4
(pid0, lsid0)(NewScalar, pid)2

(pid0, lsid0)(ptrxpid0 , Rpid0)3
(pid0, lsid0)(n pid0)5
(pid0, lsid0)(ptrk
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E
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Figure 5.15: Second message of SessionKey protocol.

– MB asks Fcrypto for a scalar xpid0 related to the identity of the partner pid through the
command (NewScalar, pid), obtaining the scalar pointer ptrxpid0 and the public
relation Rpid0 (messages 2 and 3 in Figure 5.15, respectively).
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– MB uses the command (NewNonce) to ask Fcrypto for a fresh nonce, and receives
n pid0 (messages 4 and 5 in Figure 5.15, respectively).

– MB uses the command (GenIDKey, ptrxpid0 , Rpid, pid) to ask Fcrypto for a new
id-key derived from the scalar xpid0 and the public relation Rpid received in the first
message of the protocol from party pid. Fcrypto returns the pointer ptrk

ID
pid0

(messages
6 and 7 in Figure 5.15, respectively).

– MB uses the command (Derive, ptrk
ID
pid0

, mac-key, npid | n pid0) to ask Fcrypto to
derive a new mac-key derived from the id-key referred by ptrk

ID
pid0

and nonce
npid concatenated with n pid0 . Fcrypto returns the pointer ptrk

MAC
pid0

(messages 8 and 9

in Figure 5.15, respectively).

– MB uses the command (Derive, ptrk
ID
pid0

, t, n pid0 | npid) to ask Fcrypto to derive
the session key of type t from the id-key referred by ptrk

ID
pid0

and nonce n pid0

concatenated with npid. Fcrypto returns the pointer ptrk
pid, pid0

(messages 10 and 11

in Figure 5.15, respectively).

– MB uses the command (MAC, ptrk
MAC
pid0

, maux) to ask Fcrypto to calculate the MAC
over the message maux using the key referred by pointer ptrk

MAC
pid0

, with maux = (pid0,
pid, n pid0 , Rpid0 , session_ack, npid, Rpid), which is responded by Fcrypto with MAC �2

(messages 12 and 13 in Figure 5.15, respectively).

– MB sets stateB = secondMessageSent and concludes the CheckAddress mode
returning accept.

– In Compute mode, MB sends the second message of the protocol (pid0, pid, n pid0 ,
Rpid0 , session_ack, �2) on its output network tape (message 14 in Figure 5.15).

• MA receives the second message of the protocol on its input network tape, it has stateA
= started, it prepares the third message of the protocol and outputs the session key
pointer to the user.

– Protocol specification:

A : k
ID
A,B := MAP2(idA,Z , idB,Z ,RA,RB, ê(RB, S

I
A,Z)ê(G

I
1,Z , G

I
2,Z)

xA)

A : k
MAC
A,B := PRF(nA | nB)kID

A,B

A : kA,B := PRF(nB | nA)kID
A,B

– Eventually, the adversary delivers the protocol message to MA (message 1 in Fig-
ure 5.16). MA parses the message and checks if it corresponds to the expected
format and if the parties on the message correspond to the party identifiers of the
recorded intended communication partner pid0 and the party identifier of the user
pid, respectively. If the checks fail, MA in CheckAddress mode returns reject to the
message. Otherwise, it continues processing in CheckAddress mode.
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MA(pid0, pid, n pid0 , Rpid0 , session_ack, �2)1

(pid, lsid)
(Established,
ptrk

pid, pid0
, (npid, n pid0))

12

(pid, lsid)(Derive, ptrk
ID
pid

, mac-key, npid | n pid0)4

(pid, lsid)(MacVerify, ptrk
MAC
pid

, maux, �2)6

(pid, lsid)(Derive, ptrk
ID
pid

, t, n pid0 | npid)8

(pid, lsid)(MAC, ptrk
MAC
pid

, maux)10

(pid, lsid)(GenIDKey, ptrxpid , Rpid0 , pid0)2

(pid, lsid)(ptrk
ID
pid

)3
(pid, lsid)(ptrk

MAC
pid
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(pid, lsid)(MacVerify, bool)7
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)9

(pid, lsid)(�3)11
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E
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Figure 5.16: MA outputs the session key pointer to the user.

– MA uses the command (GenIDKey, ptrxpid , Rpid0 , pid0) to ask Fcrypto for a new
id-key derived from the scalar xpid and the public relation Rpid0 received in the
second message of the protocol. Fcrypto returns the pointer ptrk

ID
pid

(messages 2 and
3 in Figure 5.16, respectively).

– MA uses the command (Derive, ptrk
ID
pid

, mac-key, npid | n pid0) to ask Fcrypto to
derive a new mac-key derived from the id-key referred by ptrk

ID
pid

and nonce
npid concatenated with n pid0 . Fcrypto returns the pointer ptrk

MAC
pid

(messages 4 and 5

in Figure 5.16, respectively).

– MA asks Fcrypto to verify the MAC �2 using the key referred by the pointer ptrk
MAC
pid

through the command (MacVerify, ptrk
MAC
pid

, maux, �2), where maux = (pid0, pid,
n pid0 , Rpid0 , session_ack, npid, Rpid) (message 6 in Figure 5.16). If the boolean returned
by Fcrypto (message 7 in Figure 5.16) is false, i.e, the verification failed, MA in
CheckAddress mode returns reject to this message. Otherwise, i.e., if the MAC is
successfully verified, we say MA accepted the key exchanged for (pid, lsid) and pid0.

– MA uses the command (Derive, ptrk
ID
pid

, t, n pid0 | npid) to ask Fcrypto to derive
the session key of type t from the id-key referred by ptrk

ID
pid

and nonce n pid0

concatenated with npid. Fcrypto returns the pointer ptrk
pid, pid0

(messages 8 and 9 in
Figure 5.16, respectively).

– MA uses the command (MAC, ptrk
MAC
pid

, maux) to ask Fcrypto to calculate the MAC
over the message maux using the key referred by pointer ptrk

MAC
pid

, with maux = (pid,
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pid0, session_ack, npid, Rpid, n pid0 , Rpid0), which is responded by Fcrypto with MAC �3

(messages 10 and 11 in Figure 5.16, respectively).

– MA sets stateA = finished and concludes the CheckAddress mode returning ac-

cept.

– In Compute mode, MA outputs the session key pointer ptrk
pid, pid0

and the stamp (npid,
n pid0) of the session to the user through the message (Established, ptrk

pid, pid0
,

(npid,n pid0)) (message 12 in Figure 5.16). Here we have another necessity on the
modeling. Ideally, MA should output the result to the user on the environment at the
same time that it sends the final protocol message on its output network tape. How-
ever, machines cannot write messages in two tapes simultaneously. This limitation
is not restricted to IITM but to all models in universal composability. Usually, this
restriction is overcome by modeling the machine to first output the message to the
user and wait for an adversary command on the network for the subsequent protocol
message. This is exactly the approach that we adopt.

• MA receives the request from the adversary to conclude the protocol, it has stateA =
finished and the message ready to be sent, which makes the machine to send the third
protocol message on its output network tape.

– Protocol specification:

A! B : idA,Z , idB,Z , session_ack, MAC(nA | RA | nB | RB)kMAC
A,B

– The adversary requests MA the final protocol message (message 1 in Figure 5.17).
MA parses the message and checks if it corresponds to the expected format. If the
check fails, MA in CheckAddress mode returns reject to the message. Otherwise, it
returns accept and proceed to Compute mode.
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MA

(pid, lsid)(pid, pid0, session_ack, �3)2

(pid, lsid)(FinalMessage)1

MB

E

Fcrypto

Figure 5.17: Third message of SessionKey protocol.

– In Compute mode, MA sends the third protocol message (pid, pid0, session_ack, �3)
on its output network tape (message 2 in Figure 5.17).

• MB receives the third message of the protocol on its input network tape, it has stateB =
secondMessageSent, it outputs the session key pointer to the user.

– Eventually, the adversary delivers the protocol message to MB (message 1 in Fig-
ure 5.18). MB parses the message and checks if it corresponds to the expected
format and if the parties on the message correspond to the party identifiers of the
recorded intended communication partner pid and the party identifier of the user
pid0, respectively. If the checks fail, MB in CheckAddress mode returns reject to the
message. Otherwise, it continues processing in CheckAddress mode.
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MA

MB(pid0, lsid0)(pid, pid0, session_ack, �3)1

(pid0, lsid0)
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pid0, pid
, (n pid, n pid0))

4

(pid0, lsid0)(MacVerify, ptrk
MAC
pid0
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(pid0, lsid0)(MacVerify, bool)3

E

Fcrypto

Figure 5.18: MB outputs the session key pointer to the user.

– MB asks Fcrypto to verify the MAC �3 using the key referred by pointer ptrk
MAC
pid0

through the command (MacVerify, ptrk
MAC
pid0

, maux, �3), where maux = (pid, pid0,
session_ack, npid, Rpid, n pid0 , Rpid0) (message 2 in Figure 5.18). If the boolean returned
by Fcrypto (message 3 in Figure 5.18) is false, i.e, the verification failed, MB in
CheckAddress mode returns reject to this message. Otherwise, i.e., if the MAC is
successfully verified, we say MB accepted the key exchanged for (pid0, lsid0) and
pid.

– MB sets stateB = finished and concludes the CheckAddress mode returning ac-

cept.

– In Compute mode, MB outputs the session key pointer ptrk
pid, pid0

and the stamp
(npid, n pid0) of the session to the user through the message (Established, ptrk

pid, pid0
,

(npid, n pid0)) (message 4 in Figure 5.18).

• Executing cryptographic operations. The machines have stateA = finished and stateB
= finished, they receive requests, forward to Fcrypto and return the results to the user.

– Users (pid, lsid, A) and (pid, lsid, B) with state finished has access to the same
key through pointers ptrk

pid, pid0
and ptrk

pid0, pid
, respectively. Under a request (mes-

sages 1 and 10 in Figure 5.19) to execute ideal cryptographic operations in Fcrypto,
the machines forward the requests to Fcrypto (message 2 and 20 in Figure 5.19),
and send the results received from Fcrypto to the user (messages 3 and 30 , and 4

and 40 in Figure 5.19, respectively).
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MA
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Figure 5.19: Cryptographic operations in an established session.

• Closing a session. The machines have stateA = finished and stateB = finished,
they receive the request to close the session, inform the adversary about the session being
closed, receive an acknowledgment from the adversary, revoke the access of the user to
the cryptographic material generated during the session, and acknowledge the user.

– After performing the desired cryptographic operations, an instance (pid, lsid,r) with
state finished can be requested to close the session with the CloseSession
command (messages 1 and 10 in Figure 5.20). The machine informs the adver-
sary about the request and waits for an acknowledgment message (messages 2 and
20 , and 3 and 30 in Figure 5.20, respectively). The machine then sets its state

to sessionClosed, revokes the access of (pid, lsid, r) to all the cryptographic
material generated by itself for the key exchange and during the session, and ac-
knowledges the user (messages 4 in Figure 5.20).
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MA

(pid, lsid)(CloseSession, (pid, lsid, A))2
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Figure 5.20: Closing a session.

• Corruption status request.

– At any point, the user may request the corruption status of an instance of MA or MB

(messages 1 and 10 in Figure 5.21). The machines return the value of its corrup-
tion status to the environment (messages 2 and 20 in Figure 5.21) considering the
corruption model discussed in further details in the next section.
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Figure 5.21: Corruption status request.

5.7.1.3 SessionKey Corruption Model

The corruption model of the SessionKey protocol is such that:

• The adversary can send a special message to corrupt an instance of the protocol (pid, lsid,
r), r 2 {A,B}, before a key exchange starts and after the session is closed, but not during
the key exchange or the session.

• A corrupted instance (pid, lsid, r) forwards all messages on its i/o tapes originated from
or destined to its corresponding user (pid, lsid) to the adversary on the network tape.

• The adversary can execute operations in Fcrypto using the corrupted instance (pid, lsid, r)
in the name of user (pid, lsid). The Fcrypto operations available for the adversary are all
operations exposed to E and those used in the SessionKey protocol implementation, all
other are blocked. In this case, all secret the a corrupted instance creates in Fcrypto must
be known.

• The adversary can corrupt an instance (pid, lsid, r) only if the identity private key of
party pid is corrupted. As the session is dependent on the identity-based cryptosystem
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and the corrupted instances give full control to the adversary in Fcrypto, we assume this is
reasonable modeling.

• The adversary gets access to secret components of a closed session after directly corrupt-
ing an instance because the information of a session is not erased when the session is
closed, which models the lack of perfect forward secrecy of FMA

sk-sig.

• An instance (pid, lsid, r) in a run of SessionKey with an instance of party pid0 that has not
output a session key pointer also considers itself corrupted if its identity private key or the
identity private key of pid0 is corrupted in Fcrypto, even without being explicitly corrupted
by the adversary. This means that no security can be guaranteed if any of the secret keys
from which the session key is derived is corrupted.

• Our modeling allows an instance to be corrupted only before a key exchange starts and
after the session is closed. However, as previously put, the corruption status of an in-
stance can also be determined by the identity private key’s corruption status of the parties
involved in the key exchange, and these keys might become corrupted during the key
exchange process. We then define that an instance define its initial status based on the
response received from the adversary at initialization and on the corruption status of the
identity private key of the parties involved in the key exchange. Even not corrupted, the
instance only outputs the session key pointer to its user if right before such an event an ad-
ditional check on the corruption status of the identity private keys shows that their status
have not change since the first check. Otherwise, the instance blocks all requests.

• The id-key key established by the protocol, consequently its session key, can also be
derived from the secret scalars generated by the instances that are exchanging the key.
However, the id-based key agreement commands are not exposed to the environment.
This includes the scalar retrieval command that makes a scalar known outside Fcrypto.
Therefore, the only way to have a known scalar in a run of the protocol is if the instance
that owns the scalar is actually controlled by the adversary, i.e., corrupted. In this case, we
model that the identity private key of the party has to be already corrupted, consequently
the resulting id-key and session key will be known.

5.7.1.4 SessionKey Proof

The goal of this section is to prove the Theorem 5.4, which states that the SessionKey
protocol (Protocol 4.1) realizes the functionality for mutually authenticated key exchange with
key usability and in-session access to digital signatures FMA

sk-sig | Fcrypto.
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Theorem 5.4 Let

• PSK = !MA | !MB | Fcrypto be the modeling of the SessionKey protocol (Protocol 4.1) as
described in Section 5.7.1.1;

• MA and MB to behave as described in Section 5.7.1.2;

• Fcrypto and F 0

crypto two different versions of the functionality for cryptographic primitives
extended in this work (Section 5.4);

• FMA
sk-sig functionality for mutually authenticated key exchange with key usability with key

usability and in-session access to digital signatures, described in Section 5.6.1.

Then it holds true that

PSK | Fcrypto  FMA
sk-sig | F 0

crypto.

In the case of the SessionKey protocol, we perform our analysis directly on the multi-
session version of the protocol. We have to specify a simulator S such as, for every environment
E , it holds that E | !MA | !MB | Fcrypto ⌘ E | S | FMA

sk-sig | F 0

crypto. In practice, S internally sim-
ulates the execution of PSK = !MA | !MB | Fcrypto and, as the adversary of FMA

sk-sig | F 0

crypto, it
interacts with FMA

sk-sig | F 0

crypto, such that no E can distinguish between the real and ideal settings,
as illustrated in Figure 5.22. More specifically, any instance (pid, lsid) in E , initiator or respon-
der, corrupted or uncorrupted, will get the same result when interacting with !MA | !MB | Fcrypto

or S | FMA
sk-sig | F 0

crypto. We define S as follows:

MA

i/o interface
of FMA

sk-sig

MB

E

PSK

Fcrypto

⌘
A

i/o interface
of FMA

sk-sig

B

E

FMA
sk-sig

S

F 0crypto
MA MB

Fcrypto

Figure 5.22: Simulation of !MA | !MB | Fcrypto to prove E | !MA | !MB | Fcrypto ⌘ E | S | FMA
sk-sig

| F 0

crypto
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• S maintains synchronized the corruption status of any instance (pid, lsid, r) in FMA
sk-sig |

F 0

crypto with corresponding instance (pid, lsid, r) in the simulation of PSK = !MA | !MB |
Fcrypto;

• Being the adversary of FMA
sk-sig | F 0

crypto, S initializes F 0

crypto. As a result, S receives all of
F 0

crypto public parameters, which can be used in its internal simulation of Fcrypto. Together
with the parameters response, S is asked to provide all cryptographic algorithms and
asymmetric keys related to the digital signature scheme for F 0

crypto. S forwards the request
to E and returns the algorithms and all the pair of keys to F 0

crypto;

• Whenever an instance (pid, lsid, r) initiates a key exchange with party pid0 in FMA
sk-sig, as S

is informed about it by FMA
sk-sig with the message ((InitKE, pid0), (pid, lsid, r)) (shown in

Figure 5.6), S can initiate the key exchange in its internal simulation;

• In its simulation of PSK, when an uncorrupted instance (pid, lsid, A) accepts the key ex-
change by verifying the MAC of the second protocol message, S sends the command
(GroupSession, (pid, lsid, A), (pid0, lsid0, B)) to FMA

sk-sig (shown in Figure 5.7), in-
structing the functionality to create a session between the simulated users (pid, lsid, A)
and (pid0, lsid0, B), that, respectively verified the MAC on the second protocol message
and generated such a MAC;

• Upon the GroupSession command, FMA
sk-sig uses the command GetPSK to request

F 0

crypto a pointer to a new key of type t (parameter of FMA
sk-sig). F 0

crypto, in turn, asks S
for the value of the key. Then, S responds with the value of the session key calculated in
its internal simulation of PSK. Similarly, when FMA

sk-sig uses the command NewNonce to
request F 0

crypto new fresh nonces for the session, F 0

crypto also asks S to provide the value of
the nonces, which also are provided by S based on the internal simulation of PSK. After
FMA

sk-sig receives the pointers to the session key and the nonces from F 0

crypto, it acknowledges
S about the success of the GroupSession command (shown in Figure 5.7). Hence, S
instructs FMA

sk-sig to output the session key pointer to user (pid, lsid, A) using the command
(FinishKE, (pid, lsid, A)) (shown in Figure 5.8);

• In its internal simulation of PSK, when an uncorrupted instance (pid0, lsid0, B) accepts
the key exchange by verifying the MAC on the third protocol message and outputs the
session key pointer, S instructs FMA

sk-sig to output the session key pointer to user (pid0, lsid0,
B) using the command (FinishKE, (pid0, lsid0, B)) (shown in Figure 5.8);

• Once the key exchange is completed, the users can request FMA
sk-sig the execution of the

available cryptographic operations in F 0

crypto. In the set of the symmetric cryptographic
operations, none of them requires that F 0

crypto requests new values to the adversary (sim-
ulator), for instance, for new keys, nonces, scalars, or exponents, i.e., there is no de-
pendency on Fcrypto. However, there exists a dependency regarding the digital signatures
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scheme, because the adversary can corrupt the signing keys at any time. Nevertheless, S
is able to capture such kind of corruption in Fcrypto and replicate to F 0

crypto.

• When FMA
sk-sig informs S that an instance (pid, lsid, r) asked to close its session, S updates

the internal simulation removing the access to keys and responds OK to FMA
sk-sig (shown in

Figure 5.10);

We have to show that S guarantees that, from the perspective of any E , there are no
differences between the real or the ideal settings. We start by arguing that, as the adversary of
FMA

sk-sig | F 0

crypto, S can keep F 0

crypto consistent with Fcrypto. First, we have that all new symmetric
keys in F 0

crypto are created due to GetPSK commands from FMA
sk-sig to F 0

crypto, which causes F 0

crypto

to ask the adversary S for the values of the keys. S , in turn, can provide the keys based on
its internal simulation of Fcrypto, with the same value and status. As the F 0

crypto is not exposed
to users, neither are the commands Store and Retrieve, there is no user in E capable of
inserting new symmetric keys or making keys known to the environment. We have a similar
scenario for nonces. All nonces used in F 0

crypto are created due to NewNonce commands from
FMA

sk-sig to F 0

crypto, which causes F 0

crypto to ask the adversary S for the values of nonces. S , in turn,
can provide the same values from its internal simulation of Fcrypto. Last, S receives the signature
scheme and related key pairs from E and forwards it to F 0

crypto at initialization, therefore the
cryptosystem and all the keys exist in both Fcrypto and F 0

crypto. According to the corruption
model of Fcrypto (Section 5.3.4), signing keys can be corrupted at any point in time, therefore,
as soon as the simulator receives a request from the adversary to corrupt a signing key, as
the adversary of F 0

crypto, it can corrupt such key in F 0

crypto, allowing S to keep also the digital
signature setting synchronized in both Fcrypto and F 0

crypto. Hence, S maintains F 0

crypto always
consistent with Fcrypto, which means no request such as for corruption request to F 0

crypto will
cause different results in the real or ideal settings.

Now we argue that S correctly handles the following use cases: (1) uncorrupted initiator
instances and (2) uncorrupted responder instances during the key exchange; (3) uncorrupted
instances after the key exchange; and (4) corrupted instances. During the analysis, some key
points from the corruption model of SessionKey (Section 5.7.1.3) are constantly mentioned, we
reinforce them bellow:

• The adversary can explicitly corrupt an instance (pid, lsid, r) before key exchange starts
and after the session is closed, but not during the key exchange or the session.

• An instance (pid, lsid, r) of party pid can be explicitly corrupted only if its identity private
key is corrupted.

• An instance (pid, lsid, r) in a run of SessionKey with an instance of party pid0 that has not
output a session key pointer also considers itself corrupted if its identity private key or the
identity private key of its partner pid0 is corrupted. Even with an uncorrupted status, right
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before outputting a session key pointer, such an instance checks the corruption status of
its identity private key and the identity private key of its partner pid0 again. If any of the
keys has become corrupted, the instance blocks.

Now we analyze each one of the four use cases.

(1) Uncorrupted initiator instance during the key exchange.

Let (pidA, lsidA, A) be an uncorrupted instance of an initiator that wants to exchange a key
with party pid0. This instance can be simulated by S using Fcrypto until it outputs a session
key after verifying the MAC on the second message of the protocol without dependency on
any information or operation in F 0

crypto. We have to show that S pairs with (pidA, lsidA, A)
a single instance of a responder which party identifier is pid0.

As (pidA, lsidA, A) is uncorrupted and outputs the session key pointer, the identity private
key of parties pidA and pid0 must be uncorrupted, otherwise this instance would block ac-
cording to the corruption model. Therefore, any instance of pid0 cannot have been explicitly
corrupted by the adversary.

By outputting the key pointer, the instance (pidA, lsidA, A) has successfully verified and
accepted the MAC over the message m = (pid0, pidA, n, R, session_ack, npidA , RpidA), where
R = x · P I

pidA and RpidA = xpidA · P I
pid’. The key (pidA, lsidA, A) uses to verify the MAC is

necessarily derived from the id-key that comes from: (i) the public relation R that carries
a scalar x tied to the identity public key of pidA; (ii) a scalar xpidA created by instance
(pidA, lsidA, A) that is tied to the identity public key of pid0 on the public relation RpidA;
and (iii) the identity private key of pidA. Analogously, the key used to create such MAC
is necessarily derived from the id-key that comes from: (i) the public relation RpidA that
carries the identity public key of pid0; (ii) the scalar x that is tied to identity public key of
pidA on the public relation R; and (iii) the identity private key of pid0. No other party than
pid0 could generate such a key, hence the MAC on the second protocol message must have
been created by an instance of pid0, which we identify as (pid0, lsid0, r).

We just showed pidA is the session partner of (pid0, lsid0, r). As the identity private key of
pidA is uncorrupted, the instance (pid0, lsid0, r) cannot consider itself corrupted. Therefore,
(pid0, lsid0, r) is uncorrupted.

Now we have to show that the instance (pid0, lsid0, r) is indeed a responder. Suppose (pid0,
lsid0, r) is an initiator. As such, it must have already accepted a second protocol message by
verifying a MAC of a message m0 = (pidA, pid0, npidA , RpidA , session_ack, n, R), using a key
that is necessarily derived from the id-key that comes from: (i) the public relation RpidA

that carries the scalar xpidA tied to the identity public key of pid0; (ii) the scalar x created
by (pid0, lsid0, r) that is tied to the identity public key of pidA on the public relation R;
and (iii) the identity private key of pid0. Analogously, the key used to create such MAC is
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necessarily derived from the id-key that comes from: (i) the public relation R that carries
the identity public key of pidA; (ii) the scalar xpidA; and (iii) the identity private key of
pidA. No other instance than (pidA, lsidA, A) could generate such a key, because only this
instance has access to the secret scalar xpidA . As (pidA, lsidA, A) does not create any MAC
before accepting the second message of the protocol, (pid0, lsid0, r) is indeed a responder,
i.e, r = B.

Now we have to show that (pid0, lsid0, B) is assigned to a session in FMA
sk-sig with no other

instance than (pidA, lsidA, A).

Based on the design of S , a GroupSession command to create the session between the
uncorrupted responder instance (pid0, lsid0, B) and an uncorrupted initiator instance is sent
only when the initiator successfully verifies and accepts the MAC over m = (pid0, pidA,
n, R, session_ack, npidA , RpidA) on the second protocol message. As the scalars are unique
and this MAC is only verified and accepted by the initiator instance that created the scalar
xpidA , which is the instance (pidA, lsidA, A), the only possible GroupSession command
to create the global session for (pid0, lsid0, B) has necessarily the instance (pidA, lsidA, A)
as initiator.

Last, as the scalars x and xpidA are ideally created and the identity private keys of parties
pidA and pid0 are uncorrupted, the resulting id-key in the simulation is unknown in Fcrypto,
which results in an unknown session key. Hence, as the sets of keys are synchronized in
Fcrypto and F 0

crypto, the simulator can indeed provide the exact same key from the simulation
to F 0

crypto. Besides, this key can only be accessed by instances (pidA, lsidA, A) and (pid0,
lsid0, B) which is the expected behavior in FMA

sk-sig. Similarly, as the nonces n and npidA

are ideally created in Fcrypto, the simulator can indeed provide the nonces from the internal
simulation to F 0

crypto and keep also the set of nonces synchronized in Fcrypto and F 0

crypto.

Therefore, real and ideal settings behave identically from the perspective of an uncorrupted
initiator (pidA, lsidA).

(2) Uncorrupted responder instance during the key exchange.

Let (pidB, lsidB, B) be an uncorrupted instance of a responder that wants to exchange a
key with party pid0. This instance can be simulated by S using Fcrypto until it outputs a
session key pointer after verifying the MAC on the third message of the protocol without
dependency on any information or operation in F 0

crypto. We have to show that S has paired
(pidB, lsidB, B) with a single instance of an initiator which party identifier is pid0.

If (pidB, lsidB, B) is uncorrupted and outputs the session key pointer, the identity private
key of parties pidB and pid0 must be uncorrupted, uncorrupted, otherwise this instance
would block according to the corruption model. Therefore, any instance of pid0 cannot have
been explicitly corrupted by the adversary.



5.7. Security Analysis of AoT 124

By outputting the key pointer, the instance (pidB, lsidB, B) has successfully verified and
accepted the MAC over the message m = (pid0, pidB, session_ack, n, R, npidB , RpidB ), where
R = x · P I

pidB and RpidB = xpidB · P I
pid’. The key (pidB, lsidB, B) uses to verify the MAC is

necessarily derived from the id-key that comes from: (i) the public relation R that carries
a scalar x tied to the identity public key of pidB; (ii) a scalar xpidB created by instance (pidB,
lsidB, B) that is tied to the identity public key of pid0 on the public relation RpidB ; and (iii)
the identity private key of pidB. Analogously, the MAC key used to create such MAC is
necessarily derived from the id-key that comes from: (i) the public relation RpidB that
carries the identity public key of pid0; (ii) the scalar x that is tied to identity public key of
pidB on the public relation R; and (iii) the identity private key of pid0. No other party than
pid0 could generate such a key, hence the MAC on the third protocol message must have
been created by an instance of pid0, which we identify as (pid0, lsid0, r).

We just showed pidB is the session partner of (pid0, lsid0, r). As the identity private key of
pidB is uncorrupted, the instance (pid0, lsid0, r) cannot consider itself corrupted. Therefore,
(pid0, lsid0, r) is uncorrupted.

We have to show that the instance (pid0, lsid0, r) is indeed an initiator. Suppose (pid0, lsid0,
r) is a responder. As such, the instance (pid0, lsid0, r) creates the MAC over a message m0 =
(pid0, pidB, n, R session_ack, npidB , RpidB ) sent on a second protocol message. The key (pid0,
lsid0, r) uses to create such MAC is necessarily derived from the id-key that comes from:
(i) the public relation RpidB that carries the scalar xpidB tied to the identity public key of
pid0; (ii) the scalar x that is tied to identity public key of pidB on the public relation R; and
(iii) the identity private key of pid0. However, the public relation RpidB is created by instance
(pidB, lsidB, B) upon scalar xpidB generation, which it performed by (pidB, lsidB, B) after it
receives its first protocol message. As a responder, the second protocol message is send by
(pid0, lsid0, r) only after it receives its fist protocol message. Therefore, (pid0, lsid0, r) cannot
have been received RpidB in its first protocol message before (pidB, lsidB, B) has received
its first protocol message. Analogously, to successfully verify such a MAC, the key (pidB,
lsidB, B) needs is necessarily derived from the id-key that comes from the scalar xpidB

that is generated after pidB receives its first message. However, the scalar xpidB is already
MACed on the message. Then, as scalars are implemented ideally, (pidB, lsidB, B) is not
able to create its scalar xpidB . Last, we have that xpidB 6= x due to collision resistance of
scalars in Fcrypto, which guarantees (pidB, lsidB, B) 6= (pid0, lsid0, r). Therefore, (pid0, lsid0,
r) is indeed an initiator, i.e, r = A.

Now we have to show that (pid0, lsid0, B) is in a global session with (pid0, lsid0, A) in FMA
sk-sig.

Having generated a MAC on the third message, the initiator (pid0, lsid0, A) accepted the
MAC over m = (pidB, pid0, npidB , RpidB , session_ack, n, R) on the second message of the
protocol and, consequently, output a session key pointer. The only instances capable of
generating such a MAC are (pidB, lsidB, B) and (pid0, lsid0, A), the instances that have
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access to scalars xpidB and x, respectively. However, being the initiator, (pid0, lsid0, A)
could not have created any MAC up to that point in the protocol. Therefore, as (pid0, lsid0,
A) and (pidB, lsidB, B) are uncorrupted instances, when (pid0, lsid0, A) accepts the key
exchange, S creates in FMA

sk-sig a group session for the responder instance (pidB, lsidB, B)
with initiator (pid0, lsid0, A).

Last, as the scalars x and xpidB are ideally created and the identity private keys of parties
pidA and pid0 are uncorrupted, the resulting id-key in the simulation is unknown in Fcrypto,
which results in an unknown session key. Hence, as the sets of keys are synchronized in
Fcrypto and F 0

crypto, the simulator can indeed provide the exact same key from the simulation
to F 0

crypto. Besides, this key can only be accessed by instances (pid0, lsid0, A) and (pidB,
lsidB, B) which is the expected behavior in FMA

sk-sig. Similarly, as the nonces n and npidB

are ideally created in Fcrypto, the simulator can indeed provide the nonces from the internal
simulation to F 0

crypto and keep also the set of nonces synchronized in Fcrypto and F 0

crypto.

Therefore, real and ideal settings behave identically from the perspective of an uncorrupted
responder (pidB, lsidB).

(3) Uncorrupted instances after the key exchange.

Let (pidA, lsidA, A) and (pidB, lsidB, B) be uncorrupted instances of an initiator and a
responder, respectively, with an established unknown session key.

As shown in the previous cases, S can perfectly simulate the instances to the point when
the instances get the pointers to the unknown session key in Fcrypto. Besides, no instance
other than the ones in the session has access to the session key pointer. By the design of
S , the session key is provided by S to F 0

crypto and FMA
sk-sig is instructed to output session key

pointers to (pidA, lsidA, A) and (pidB, lsidB, B). Therefore, after the key establishment
phase, during the usage of the session key and other cryptographic operations, the real and
ideal settings behave identically from the perspective of uncorrupted instances.

(4) Corrupted instances.

Let (pid, lsid, r), r2 {A,B} be a corrupted instance. The simulator controls the i/o interface
of such an instance. This instance is corrupted due to one of the two reasons:

(i) it was explicitly corrupted by the adversary or (ii) the identity private key of one of
the parties involved in the key exchange is corrupted. In case (i), the adversary controls
the instance before the key exchange starts or after it finishes. In any of these stages, the
adversary gets access only to known keys in Fcrypto, which, in fact, do not exist in F 0

crypto.
Therefore, S can simulate the same behavior of Fcrypto for this kind of corrupted instance. In
case (ii), the simulator also has to simulate unknown keys in Fcrypto. However, as we shown
during our analysis, an uncorrupted instance actually will never established a session key
with a corrupted user, therefore, the unknown keys related to this case will never be inserted
in F 0

crypto. Hence, S can also simulate this kind of corrupted instance.
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With the analysis of the four possible cases, we conclude the proof of Theorem 5.4.

Now we present Corollary 5.1, that comes from Theorem 5.1, the proof that our exten-
sion Pcrypto realizes ou extension Fcrypto (Section 5.5) and Theorem 5.4 we just proved. We use
this result to replace Fcrypto by our extension Pcrypto, obtaining a real implementation of the Ses-
sionKey protocol (Protocol 4.1), a universally composable mutual authenticated key exchange
protocol.

Corollary 5.1 Let PSK = !MA | !MB be the IITM modeling of the SessionKey protocol (Pro-
tocol 4.1) such that MA and MB behave as described in Section 5.7.1.2; Fcrypto and Pcrypto

defined as in Section 5.5; FMA
sk-sig be the functionality for mutually authenticated key exchange

with key usability and in-session access to digital signatures, as described in Section 5.6.1; F⇤

be a machine such that in any point during the protocol systems communication blocks if the
environment cause the commitment problem or does not respect the used-order requirement.
Then it holds true that:

F⇤ | PSK | Pcrypto  F⇤ | FMA
sk-sig | Fcrypto.

5.7.2 SessionKeyDerivation Protocol

Analogously to the security analysis of the SessionKey protocol, in our analysis of Ses-
sionKeyDerivation protocol (Section 4.3) we also need to proof that the protocol is as secure
as the functionality for mutually authenticated key exchange with key usability and in-session
access to digital signatures FMA

sk-sig, described in Section 5.6.1. We present the protocol mod-
eling in Section 5.7.2.1, describe its execution in Section 5.7.2.2, and develop the proof in
Section 5.7.2.4.

5.7.2.1 SessionKeyDerivation IITM Modeling

The SessionKeyDerivation protocol (Protocol 4.3), referred as PSKD, analogously to PSK,
has a straightforward two-party multi-session protocol modeling PSKD = !MA | !MB | Fcrypto,
which consists of two machines MA and MB, one for each protocol role, A as the initiator device
and B as the responder one. MA and MB have i/o tapes to interface with the environment E ,
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the network interface for adversary A communication, and i/o tapes to ideally use Fcrypto as the
cryptographic primitives provider, as shown in Figure 5.23.

MA

MB

E

PSKD

Fcrypto

Figure 5.23: SessionKeyDerivation (PSKD) protocol modeling.

Users in PSKD are fully identified by the tuple (pid, lsid, r), where pid and lpid are
party and local session identifiers, totally managed by the environment, and r 2 {A,B} is the
protocol role. Therefore, in a run of PSKD, there is a single instance (pid, lsid, r) of a machine
Mr per user (pid, lsid) in the environment. All messages in the i/o tapes are prefixed with
(pid, lsid), making the modeling totally compatible with Fcrypto identification scheme. PSK is
parameterized with a symmetric key type t 2 {authenc-key, mac-key} to determine the
type of the key established using the protocol.

Each machine maintains an internal variable to control its current state in execution
of the protocol. This variable allows a machine to parse the messages received on its tapes
according to what has been executed up to that particular point. As the machines play different
roles, they have different stages in an execution, MA has a control stateA 2 {?, started,
finished, sessionClosed}, initially set to ?, MB, in turn, has a control stateB 2 {?,
started, secondMessageSent, finished, sessionClosed}, initially set to?. The
machines also keep their corruption status (false or true) initially set to false, and a
register with the party identifier of the intended communication partner, initially empty.

5.7.2.2 SessionKeyDerivation Execution

In terms of code, the machines MA and MB implement the specification of the cor-
responding role in the SessionKeyDerivation protocol (Protocol 4.3) with the same modeling
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necessities we have to model the SessionKey protocol. The first necessity is to provide to the
environment the same interface as the functionality SessionKeyDerivation wants to realize. As
we want to prove PSK  FMA

sk-sig | Fcrypto, MA and MB must provide to E the same interface as
FMA

sk-sig. Therefore, a user (pid, lsid) in E must be able to:

• send the command (InitKE, pid0) to start a key exchange with desired party pid0;

• Perform the desired cryptographic operations in Fcrypto after the session key pointer is
returned. Analogously to FMA

sk-sig, the available symmetric operations are: Enc, Dec, Mac,
MacVerify, Corrupted?, and Equal?, and the digital signature scheme operations
are: GetPubKeySig, Sign, SigVerify, and CorruptSig?.

• Send the command (CloseSession) after performing the desired cryptographic oper-
ations in the session;

• Send the command (Corrupt?) to get its corruption status.

In the following, we describe, including graphically, the code of machines MA and MB

and their behaviors in a normal run of PSKD. The machines are implemented such that all
messages are sent in Compute mode. Therefore, if a message is sent, a machine has executed in
CheckAddress mode and returned accept. This means that all the protocol messages are built
and verified in the CheckAddress mode piece.

• Key exchange initialization. The machines have internal state set to ?.

– Machines MA and MB have state = ?, and receive (one at a time) messages (pid,
lsid)(InitKE, pid0) and (pid0, lsid0)(InitKE, pid) (messages 1 and 10 in Fig-
ure 5.13, respectively) from the environment, which start key exchanges for users
(pid, lsid) and (pid0, lsid0), that have as the intended communication partners the
parties pid0 and pid, respectively. The machines accept the messages, i.e., they are
now user instances (pid, lsid, A) and (pid0, lsid0, B) in the protocol, and proceed to
Compute mode to output a message.

– MA and MB inform the key exchange request to the adversary by sending, respec-
tively, ((pid, lsid), (InitKE, pid0)) and ((pid0, lsid0), (InitKE, pid)) on their output
network tapes (messages 2 and 20 in Figure 5.24, respectively).

– The adversary acknowledges the machines about the initialization, which, in turn,
can start the protocol execution. This specific acknowledge message on the begin-
ning can be used by the adversary to corrupt the users by setting the corruption flag
bool as true, as shown in messages 3 and 30 in Figure 5.13. If such request is
made, the corruption status of the machine is set to true, and the machine stops
without producing output, which makes the environment (the master machine of the
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MA

((InitKE, pid0), (pid, lsid, A))2

((InitKE, pid0, ACK), (Corrupt, bool))3

(pid, lsid)(InitKE, pid0)1

MB
((InitKE, pid0), (pid0, lsid0, B))20

((InitKE, pid, ACK), (Corrupt, bool))30

(pid0, lsid0)(InitKE, pid)10

E

Fcrypto

Figure 5.24: Key exchange initialization in PSKD.

system) to be activated. Otherwise, MA sets stateA = started, MB sets stateB =
started, they record the intended communication partner (pid0 in MA and pid in
MB), and continue with protocol execution. MA prepares to send the first protocol
message, while MB concludes the CheckAddress mode returning accept, proceeds
to Compute mode, which is concluded without outputting a message, activating the
environment.

• MA continues in CheckAddress mode from the initialization acknowledgment message
and sends the first message of the protocol on its output network tape.

– Protocol specification:

A! B : idA,H, idB,H, nA, session_key_derivation_req

– MA uses the command (NewNonce) to ask Fcrypto for a fresh nonce, and receives
npid (messages 1 and 2 in Figure 5.25). MA concludes the CheckAddress mode
returning accept.

– In Compute mode, MA sends (pid, pid0, npid, session_key_derivation_req), the first pro-
tocol message, on its output network tape (message 3 in Figure 5.25).

• MB receives the first message of the protocol on its input network tape, it has stateB
= started, it prepares the second message of the protocol, and sends it on its output
network tape.
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MA

(pid, pid0, npid, session_key_derivation_req)3

(pid, lsid)(NewNonce)1

(pid, lsid)(npid)2

MB

E

Fcrypto

Figure 5.25: First message of SessionKeyDerivation protocol.

– Protocol specification:

B : k
MAC
B,A := PRF(nA | nB)k

B : kB,A := PRF(nB | nA)k
B ! A : idB,H, idA,H, nB, session_key_derivation_ack, MAC(nA)kMAC

B,A

– Eventually, the adversary delivers the protocol message to MB (message 1 in Fig-
ure 5.26). MB parses the message and checks if it corresponds to the expected
format and if the parties on the message correspond to the party identifiers of the
recorded intended communication partner pid and the party identifier of the user
pid0, respectively. If the checks fail, MB in CheckAddress mode returns reject to the
message. Otherwise, it continues processing in CheckAddress mode.

– MB uses the command (NewNonce) to ask Fcrypto for a fresh nonce, and receives
n pid0 (messages 2 and 3 in Figure 5.26, respectively).

– MB then requests Fcrypto a pointer to a pre-key established between parties pid
and pid’ using command (GetPSK, pre-key, pid | pid’) (message 4 in Fig-
ure 5.26), which models the setup assumptions in AoT. This key is either the key that
has been established using the Long-TermKeyAgreement protocol (Protocol 4.2) for
deriving the key for access control during a functioning stage or it is the ephemeral
key that has been shared between the device being deployed and the home server in
the beginning of the deployment stage to be used in the first execution of the KeyIs-
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MA

MB

(pid0, pid, n pid0 , session_key_derivation_ack, �2)12

(pid, pid0, npid, Rpid, session_key_derivation)1

(pid0, lsid0)(Derive, ptrk , mac-key, npid | n pid0)6

(pid0, lsid0)(Derive, ptrk , t, n pid0 | npid)8

(pid0, lsid0)(MAC, ptrk
MAC
pid0

, maux)10

(pid0, lsid0)(GetPSK, pre-key, pid | pid0)4
(pid0, lsid0)(Newnonce)2

(pid0, lsid0)(n pid0)3
(pid0, lsid0)(ptrk )5
(pid0, lsid0)(ptrk

MAC
pid0

)7
(pid0, lsid0)(ptrk

pid0, pid
)9

(pid0, lsid0)(�2)11

E

Fcrypto

Figure 5.26: Second message of SessionKeyDerivation protocol.

sue protocol (Protocol 4.4). Fcrypto returns the pointer ptrk to the pre-shared key
(message 5 in Figure 5.26).

– MB uses the command (Derive, ptrk , mac-key, npid | n pid0) to ask Fcrypto to
derive a new mac-key derived from the pre-key referred by ptrk and nonce
npid concatenated with n pid0 . Fcrypto returns the pointer ptrk

MAC
pid0

(messages 6 and 7

in Figure 5.26, respectively).

– MB uses the command (Derive, ptrk , t, n pid0 | npid) to ask Fcrypto to derive the
session key of type t from the pre-key referred by ptrk and nonce n pid0 con-
catenated with npid. Fcrypto returns the pointer ptrk

pid, pid0
(messages 8 and 9 in

Figure 5.26, respectively).

– MB uses the command (MAC, ptrk
MAC
pid0

, maux) to ask Fcrypto to calculate the MAC
over the message maux using the key referred by pointer ptrk

MAC
pid0

, with maux = (pid0,
pid, n pid0 , session_key_derivation_ack, npid), which is responded by Fcrypto with MAC �2

(messages 10 and 11 in Figure 5.26, respectively).

– MB sets stateB = secondMessageSent and concludes the CheckAddress mode
returning accept.

– In Compute mode, MB sends the second message of the protocol (pid0, pid, n pid0 ,
session_key_derivation_ack, �2) on its output network tape (message 12 in Figure 5.26).

• MA receives the second message of the protocol on its input network tape, it has stateA
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= started, it prepares the third message of the protocol and outputs the session key
pointer to the user.

– Protocol specification:

B : k
MAC
A,B := PRF(nA | nB)k

B : kA,B := PRF(nB | nA)k

– Eventually, the adversary delivers the protocol message to MA (message 1 in Fig-
ure 5.27). MA parses the message and checks if it corresponds to the expected
format and if the parties on the message correspond to the party identifiers of the
recorded intended communication partner pid0 and the party identifier of the user
pid, respectively. If the checks fail, MA in CheckAddress mode returns reject to the
message. Otherwise, it continues processing in CheckAddress mode.

MA(pid0, pid, n pid0 , session_key_derivation_ack, �2)1

(pid, lsid)
(Established,
ptrk

pid, pid0
, (n pid, n pid0))

12

(pid, lsid)(Derive, ptrk , mac-key, npid | n pid0)4

(pid, lsid)(MacVerify, ptrk
MAC
pid

, maux, �2)6

(pid, lsid)(Derive, ptrk , t, n pid0 | npid)8

(pid, lsid)(MAC, ptrk
MAC
pid

, maux)10

(pid, lsid)(GetPSK, pre-key, pid | pid0)2

(pid, lsid)(ptrk )3
(pid, lsid)(ptrk

MAC
pid

)5
(pid, lsid)(MacVerify, bool)7
(pid, lsid)(ptrk

pid, pid0
)9

(pid, lsid)(�3)11

MB

E

Fcrypto

Figure 5.27: MA outputs the session key pointer to the user.

– MA requests Fcrypto a pointer to the pre-key established between parties pid and
pid’ using the command (GetPSK, pre-key, pid | pid’) (message 2 in Fig-
ure 5.27). Fcrypto returns ptrk (message 3 in Figure 5.27).

– MA uses the command (Derive, ptrk , mac-key, npid | n pid0) to ask Fcrypto to
derive a new mac-key derived from the pre-key referred by ptrk and nonce
npid concatenated with n pid0 . Fcrypto returns the pointer ptrk

MAC
pid

(messages 4 and 5

in Figure 5.27, respectively).
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– MA asks Fcrypto to verify the MAC �2 using the key referred by the pointer ptrk
MAC
pid

through the command (MacVerify, ptrk
MAC
pid

, maux, �2), where maux = (pid0, pid,
n pid0 , session_key_derivation_ack, npid) (message 6 in Figure 5.27). If the boolean re-
turned by Fcrypto (message 7 in Figure 5.27) is false, i.e, the verification failed,
MA in CheckAddress mode returns reject to this message. Otherwise, i.e., if the
MAC is successfully verified, we say MA accepted the key exchanged for (pid, lsid)
and pid0.

– MA uses the command (Derive, ptrk , t, n pid0 | npid) to ask Fcrypto to derive the
session key of type t from the pre-key referred by ptrk and nonce n pid0 con-
catenated with npid. Fcrypto returns the pointer ptrk

pid, pid0
(messages 8 and 9 in

Figure 5.27, respectively).

– MA uses the command (MAC, ptrk
MAC
pid

, maux) to ask Fcrypto to calculate the MAC
over the message maux using the key referred by pointer ptrk

MAC
pid

, with maux = (pid,
pid0, session_key_derivation_ack, npid, n pid0), which is responded by Fcrypto with MAC
�3 (messages 10 and 11 in Figure 5.27, respectively).

– MA sets stateA = finished and concludes the CheckAddress mode returning ac-

cept.

– In Compute mode, MA outputs the session key pointer ptrk
pid, pid0

and the stamp (npid,
n pid0) of the session to the user through the message to the user through the message
(Established, ptrk

pid, pid0
, (npid, n pid0)) (message 12 in Figure 5.27). Here we

use the same approach we used in SessionKey execution modeling (Section 5.7.1.2),
i.e., MA outputs results to the user and waits for a final protocol message request
from the adversary on the network tape.

• MA receives the request from the adversary to conclude the protocol, it has stateA =
finished and the message ready to be sent, which makes the machine to send the third
protocol message on its output network tape.

– Protocol specification:

A! B : idA,H, idB,H, session_key_derivation_ack, MAC(nA | nB)kMAC
A,B

– The adversary requests MA the final protocol message (message 1 in Figure 5.28).
MA parses the message and checks if it corresponds to the expected format. If the
check fails, MA in CheckAddress mode returns reject to the message. Otherwise, it
returns accept and proceed to Compute mode.

– In Compute mode, MA sends (pid, pid0, session_key_derivation_ack, �3), the third pro-
tocol message, on its output network tape (message 2 in Figure 5.28).
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MA

(pid, lsid)(pid, pid0, session_key_derivation_ack, �3)2

(pid, lsid)(FinalMessage)1

MB

E

Fcrypto

Figure 5.28: Third message of SessionKeyDerivation protocol.

• MB receives the third message of the protocol on its input network tape, it has stateB =
secondMessageSent, it outputs the session key pointer to the user.

– Eventually, the adversary delivers the protocol message to MB (message 1 in Fig-
ure 5.29). MB parses the message and checks if it corresponds to the expected
format and if the parties on the message correspond to the party identifiers of the
recorded intended communication partner pid and the party identifier of the user
pid0, respectively. If the checks fail, MB in CheckAddress mode returns reject to the
message. Otherwise, it continues processing in CheckAddress mode.

– MB asks Fcrypto to verify the MAC �3 using the key referred by pointer ptrk
MAC
pid0

through the command (MacVerify, ptrk
MAC
pid0

, maux, �3), where maux = (pid, pid0,
session_key_derivation_ack, npid, n pid0) (message 2 in Figure 5.29). If the boolean re-
turned by Fcrypto (message 3 in Figure 5.29) is false, i.e, the verification failed,
MB in CheckAddress mode returns reject to this message. Otherwise, i.e., if the
MAC is successfully verified, we say MB accepted the key exchanged for (pid0,
lsid0) and pid.

– MB sets stateB = finished and concludes the CheckAddress mode returning ac-

cept.

– In Compute mode, MB outputs the session key pointer ptrk
pid, pid0

and the stamp
(npid, n pid0) of the session to the user through the message (Established, ptrk

pid, pid0
,

(npid, n pid0)) (message 4 in Figure 5.29).
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MA

MB(pid0, lsid0)(pid, pid0, session_key_derivation_ack, �3)1

(pid0, lsid0)
(Established,
ptrk

pid0, pid
, (n pid, n pid0))

4

(pid0, lsid0)(MacVerify, ptrk
MAC
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, maux, �3)2

(pid0, lsid0)(MacVerify, bool)3

E

Fcrypto

Figure 5.29: MB outputs the session key pointer to the user.

• Executing cryptographic operations. The machines have stateA = finished and stateB
= finished, they receive requests, forward to Fcrypto and return the results to the user.

– Users (pid, lsid,A) and (pid, lsid,B) with state finished has access to the same key
through pointers ptrk

pid, pid0
and ptrk

pid0, pid
, respectively. Under a request (messages

1 and 10 in Figure 5.30) to execute ideal cryptographic operations in Fcrypto, the
machines forward the requests to Fcrypto (message 2 and 20 in Figure 5.30), and
send the results received from Fcrypto to the user (messages 3 and 30 , and 4 and
40 in Figure 5.30, respectively).
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MA

(pid, lsid)(CryptoCmd, cmd)1

(pid, lsid)(CryptoRes, res)4

(pid, lsid)(CryptoCmd, cmd)2

(pid, lsid)(CryptoRes, res)3
MB

(pid0, lsid0)(CryptoCmd, cmd)10
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E
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Figure 5.30: Cryptographic operations in an established session.

• Closing a session. The machines have stateA = finished and stateB = finished,
they receive the request to close the session, inform the adversary about the session being
closed, receive an acknowledgment from the adversary, revoke the access of the user to
the cryptographic material generated during the session, and acknowledge the user.

– After performing the desired cryptographic operations, an instance (pid, lsid,r) with
state finished can be requested to close the session with the CloseSession
command (messages 1 and 10 in Figure 5.31). The machine informs the adversary
about the request and waits for an acknowledgment message (messages 2 and 20 ,
and 3 and 30 in Figure 5.31, respectively). The machine then sets its state to
sessionClosed, revokes all cryptographic material generated by itself for the
key exchange, and acknowledges the user (messages 4 in Figure 5.31).
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(pid, lsid)(CloseSession, (pid, lsid, A))2

(pid, lsid)(CloseSession, ACK)3
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Figure 5.31: Closing a session.

• Corruption status request.

– At any point, the user may request the corruption status of an instance of MA or MB

(messages 1 and 10 in Figure 5.32). The machines return the value of its corrup-
tion status to the environment (messages 2 and 20 in Figure 5.32) considering the
corruption model discussed in further details in the next section.
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MA

(pid, lsid)(Corrupt?, (pid, lsid, A))2

(pid, lsid)((Corrupt, bool),(pid, lsid, A))3

(pid, lsid)(Corrupt?)1

(pid, lsid)(Corrupt, bool)4

MB
(pid0, lsid0)(Corrupt?, (pid0, lsid0, B))20

(pid0, lsid0)((Corrupt, bool),(pid0, lsid0, B))30

(pid0, lsid0)(Corrupt?)10

(pid0, lsid0)(Corrupt, bool)40

E

Fcrypto

Figure 5.32: Corruption status request.

5.7.2.3 SessionKeyDerivation Corruption Model

The corruption model of SessionKeyDerivation protocol is such that:

• The adversary can send a special message to corrupt an instance of the protocol (pid, lsid,
r), r 2 {A,B}, before a key exchange starts and after the session is closed, but not during
the key exchange or the session.

• A corrupted instance (pid, lsid, r) forwards all messages on its i/o tapes originated from
or destined to its corresponding user (pid, lsid) to the adversary on the network tape.

• The adversary can execute operations in Fcrypto using the corrupted instance (pid, lsid, r)
in the name of user (pid, lsid). The Fcrypto operations available for the adversary are all
operations exposed to E and those used in the SessionKeyDerivation protocol implemen-
tation, all other are blocked. In this case, all secret the corrupted instance creates in Fcrypto

must be known.

• The adversary can corrupt an instance (pid, lsid, r) only if the key previously shared
between pid and its intended communication partner is corrupted, i.e., known in Fcrypto,
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which models that if the adversary can access this key through the corrupted instance,
such a key must be corrupted.

• The adversary gets access to secret components of a closed session after directly corrupt-
ing an instance because the information of a session is not erased when the session is
closed, which models the lack of perfect forward secrecy of FMA

sk-sig.

• An instance (pid, lsid, r) in a run of SessionKeyDerivation with an instance of party pid’
that has not output a session key pointer also considers itself corrupted if the key previ-
ously shared between pid and pid’ is corrupted (known) in Fcrypto, even is this instance
has not been explicitly corrupted by the adversary. This means that no security can be
guaranteed if the secret key from which the session key is derived is corrupted.

• Our modeling allows an instance to be corrupted only before a key exchange starts and
after the session is closed. However, the corruption status of an instance can also be deter-
mined by the corruption status of the key previously shared between the parties involved
in the key exchange, and this key might become corrupted during the key exchange pro-
cess. We define that an instance define its initial status based on the response received
from the adversary at initialization and on the corruption status of the key previously
shared with its intended communication party. Even not corrupted, the instance only out-
puts the session key pointer to its user if right before such an event an additional check
on the corruption status of the pre-shared key shows that its status has not change since
the first check. Otherwise, the instance blocks all requests.

5.7.2.4 SessionKeyDerivation Proof

The goal of this section goal is to prove that our multi-session of the SessionKeyDeriva-
tion protocol (Protocol 4.3) is as secure as the two-party mutually authenticated key exchange
with key usability and in-session access to digital signatures functionality FMA

sk-sig. However, the
direct analysis on the multi-session version of the protocol is complex. Hence, we use Theo-
rem 5.3 to analyze the security of SessionKeyDerivation in a single-session version and directly
obtain the security for its multi-session one. Therefore, our goal is to prove the Theorem 5.5.

Theorem 5.5 Let

• PSKD = !MA | !MB | Fcrypto be the multi-session version modeling of the SessionKey-
Derivation protocol (Protocol 4.3) as described in Section 5.7.2.1 that uses Fcrypto and
satisfies implicit disjointness w.r.t. a partnering function ⌧ .
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• MA and MB to behave as described in Section 5.7.2.2;

• Fcrypto and F 0

crypto two different versions of the functionality for cryptographic primitives
extended in this work (Section 5.4);

• FMA
sk-sig be multi-session version of the functionality for mutually authenticated key ex-

change with key usability and in-session access to digital signatures, as described in
Section 5.6.1.

• Let Fsingle be a machine that acts as a bridge between the environment and PSKD and
FMA

sk-sig, which allows the environment to create at most one session in PSKD and in FMA
sk-sig.

Then it holds true that

Fsingle | PSKD | Fcrypto ⌧
Fsingle | FMA

sk-sig | F 0

crypto

The first step of this proof is to find a partnering function ⌧ for the PSKD protocol and
show it is valid and satisfies implicit disjointness. As we mentioned in Section 5.3.6, a partner-
ing function ⌧ maps every sequence of configurations ↵ of a machine instance Mr in a run of
a real protocol P to a string and finds in ↵ a sub-string that represents the session. A possible
partnering function for PSKD is the pair of nonces the roles exchange in the protocol. In a run
⇢ of E | PSKD | Fcrypto, let ↵ be the sequence of configurations of an instance of Mr, i.e., (pidr,
lsidr, r), r 2 {A,B}. If (pidr, lsidr, r) is corrupted, ⌧(↵) = ? because, due to our modeling,
there is no protocol execution to have a sequence ↵ where a session stamp for (pidr, lsidr, r)
can be found. Otherwise, i.e., if (pidr, lsidr, r) is uncorrupted, in the case r = A and ↵ contains
the first two messages of the protocol, then ⌧ = (npidA , npidB ), where npidA is the nonce generated
by (pidA, lsidA, A) and npidB is the nonce received by this instance. Analogously, in the case
r = B and ↵ contains the first two messages of the protocol, ⌧ is also (nA, nB), where npidA is
the nonce received by (pidB, lsidB, B) and npidB is the nonce generated by this instance. As the
nonces do not collide in Fcrypto, ⌧ = (npidA , npidB ) is a valid partnering function for PSKD.

We still have to show ⌧ = (npidA , npidB ) satisfies implicit disjointness, which implies
to show that in a run ⇢ of the system (i) every explicitly shared key is either always marked
unknown or always marked known in Fcrypto; and (ii) whenever an instance (pid0, lsid0, r0) uses
an explicitly unknown shared key to successfully verify a MAC � in Fcrypto at some point in a run
of the system, there exists a specific instance (pid, lsid, r) that sent a MAC generation request
to Fcrypto which resulted in � such that both users are partners or both users are corrupted in this
particular run. Assume k to be the shared key between parties pidA and pidB in ⇢. The key k

is an explicitly shared key. Since k is never encrypted or retrieved by the environment in ⇢, k
is either always corrupted or always uncorrupted in ⇢. As k is a pre-shared key, all other keys
derived from it follows the corruption status of k, i.e., all other keys are always known or always
unknown in ⇢. Therefore, the requirement (i) is satisfied for all the keys. We have to show that
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the MAC key derived from k only successfully verifies a MAC � if � has been generated in
the same session according to the partnering function ⌧ . Considering the MAC of message m
= (pidB, pidA, npidB , session_key_derivation_ack, npidA) on the second message of the protocol, as
it has the contents of the partnering function itself, the condition (ii) is satisfied. We have the
same for the MAC of message m = (pidA, pidB, session_key_derivation_ack, npidA , npidB ) on the third
message of the protocol, because it also carries the contents of the partnering function, hence the
condition (ii) is also satisfied. Therefore, we conclude that ⌧(pidA,lsidA,A)(⇢) = ⌧(pidB ,lsidB ,B)(⇢) =

(npidA , npidB ), which means the users (pidA, pidA, A) and (pidB, pidA, B) are partners in ⇢ and
the function ⌧ = (npidA , npidB ) is a valid partnering function for PSKD and it satisfies implicit
disjointness.

Now we have to show Fsingle | PSKD | Fcrypto ⌧
Fsingle | FMA

sk-sig | F 0

crypto, i.e., the single-
session version of PSKD realizes the single-session version of FMA

sk-sig. Analogously to any other
simulation proof, we have to specify a simulator S such as, for every environment E , it holds
that E | Fsingle | !MA | !MB | Fcrypto ⌘ Fsingle | S | FMA

sk-sig | F 0

crypto. In this case, as we have
Fsingle, we can be more restrict and defined S to internally simulate the execution of the single-
session version of PSKD = MA | MB | Fcrypto. Besides, as the adversary of FMA

sk-sig | F 0

crypto, S
also interacts with a single session of FMA

sk-sig | F 0

crypto. As usual, we have to show that no E can
distinguish between the real and ideal settings, as illustrated in Figure 5.33. More specifically,
the two users (pidA, lsidA) and (pidB, lsidB) in E , corrupted or uncorrupted, will get the same
result when interacting with Fsingle | !MA | !MB | Fcrypto or Fsingle | S | FMA

sk-sig | F 0

crypto. We
define S as follows:

MA

i/o interface
of FMA

sk-sig

MB

E

PSK

Fcrypto

Fsingle

⌘ A

i/o interface
of FMA

sk-sig

B

E

FMA
sk-sig

S

F 0crypto
MA MB

Fcrypto

Fsingle

Figure 5.33: Simulation of MA | MB | Fcrypto to prove E | Fsingle | !MA | !MB | Fcrypto ⌘ E |
Fsingle | S | FMA

sk-sig | F 0

crypto

• S maintains synchronized the corruption status of users (pidA, lsidA, A) and (pidB, lsidB,
B) in FMA

sk-sig | F 0

crypto with the corresponding users (pidA, lsidA, A) and (pidB, lsidB, B) in
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the simulation of PSKD = MA | MB | Fcrypto;

• Being the adversary of FMA
sk-sig | F 0

crypto, S initializes F 0

crypto. As a result, S receives all of
F 0

crypto public parameters, which can be used in its internal simulation of Fcrypto. Together
with the parameters response, S is asked to provide all cryptographic algorithms and
asymmetric keys related to the digital signature scheme for F 0

crypto. S forwards the request
to E and returns the algorithms and all the pair of keys to F 0

crypto;

• Whenever the users (pidA, lsidA, A) and (pidB, lsidB, B) initiates a key exchange with
each other in FMA

sk-sig, as S is informed about it by FMA
sk-sig with the message ((InitKE,

pidB), (pidA, lsidA, A)) and ((InitKE, pidA), (pidB, lsidB, B)), respectively, S can
initiate the key exchange in its internal simulation (shown in Figure 5.6).

• In its simulation, when the uncorrupted user (pidA, lsidA, A) accepts the key exchange by
verifying the MAC of the second protocol message, S sends (GroupSession, (pidA,
lsidA, A), (pidB, lsidB, B)) to FMA

sk-sig (shown in Figure 5.7), instructing the functionality
to create a session between the simulated users (pidA, lsidA, A) and (pidB, lsidB, B),
that, respectively verified the MAC on the second protocol message and generated such a
MAC;

• Upon the GroupSession command, FMA
sk-sig uses the command GetPSK to request

F 0

crypto a pointer to a new key of type t (parameter of FMA
sk-sig). F 0

crypto, in turn, asks S
for the value of the key. Then, S responds with the value of the session key calculated in
its internal simulation of PSKD. Similarly, when FMA

sk-sig uses the command NewNonce to
request F 0

crypto new fresh nonces for the session, F 0

crypto also asks S to provide the value of
the nonces, which also are provided by S based on the internal simulation of PSKD. After
FMA

sk-sig receives the pointers to the session key and the nonces from F 0

crypto, it acknowledges
S about the success of the GroupSession command (shown in Figure 5.7). Hence, S
instructs FMA

sk-sig to output the session key pointer to user (pidA, lsidA) using the command
(FinishKE, (pidA, lsidA, A)) (shown in Figure 5.8);

• In its internal simulation of PSKD, when the uncorrupted user (pidB, lsidB, B) accepts the
key exchange by verifying the MAC on the third protocol message and outputs the session
key pointer, S instructs FMA

sk-sig to output the session key pointer to user (pidB, lsidB) using
the command (FinishKE, (pidB, lsidB, B)) (shown in Figure 5.8);

• Once the key exchange is completed, the users can request FMA
sk-sig the execution of the

available cryptographic operations in F 0

crypto. In the set of the symmetric cryptographic
operations, none of them requires that F 0

crypto requests new values to the adversary (sim-
ulator), for instance, for new keys, nonces, scalars, or exponents, i.e., there is no de-
pendency on Fcrypto. However, there exists a dependency regarding the digital signatures
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scheme, because the adversary can corrupt the signing keys at any time. Nevertheless, S
is able to capture such kind of corruption in Fcrypto and replicate to F 0

crypto.

• When FMA
sk-sig informs S that users (pidA, lsidA, A) or (pidB, lsidB, B) asked to close the

session, S updates the internal simulation removing the access to keys and responds OK
to FMA

sk-sig (shown in Figure 5.10).

We have to show that S guarantees that, from the perspective of any E , there are no
differences between the real or the ideal settings. We start by arguing that, as the adversary
of FMA

sk-sig | F 0

crypto, S can keep F 0

crypto consistent with Fcrypto. First, we have that the only new
symmetric key in F 0

crypto is created due to the GetPSK command from FMA
sk-sig to F 0

crypto, which
causes F 0

crypto to ask the adversary S for the value of the key. S , in turn, can provide the key
based on its internal simulation of Fcrypto, with the same value and status. As the F 0

crypto is
not exposed to users, neither are the commands Store and Retrieve, there is no user in
E capable of inserting new symmetric keys or making the key known to the environment. We
have a similar scenario for nonces. All nonces used in F 0

crypto are created due to NewNonce

commands from FMA
sk-sig to F 0

crypto, which causes F 0

crypto to ask the adversary S for the values of
nonces. S , in turn, can provide the same values from its internal simulation of Fcrypto. Last, S
receives the signature scheme and related key pairs from E and forwards it to F 0

crypto at initial-
ization, therefore the cryptosystem and all the keys exist in both Fcrypto and F 0

crypto. According
to the corruption model of Fcrypto (Section 5.3.4), signing keys can be corrupted at any point
in time, therefore, as soon as the simulator receives a request from the adversary to corrupt a
signing key, as the adversary of F 0

crypto, it can corrupt such key in F 0

crypto, allowing S to keep
also the digital signature setting synchronized in both Fcrypto and F 0

crypto. Hence, S maintains
F 0

crypto always consistent with Fcrypto, which means no request such as for corruption request to
F 0

crypto will cause different results in the real or ideal settings.
Now we argue that S correctly handles the following use cases: (1) uncorrupted initiator

user and (2) uncorrupted responder user during the key exchange; (3) uncorrupted users after the
key exchange; and (4) corrupted users. During the analysis, some key points from the corruption
model of SessionKeyDerivation (Section 5.7.2.3) are constantly mentioned are summarized as
follows:

• The adversary can explicitly corrupt a user (pidr, lsidr, r) before key exchange starts and
after the session is closed, but not during the key exchange or the session.

• A user (pidr, lsidr, r) can be explicitly corrupted only if the key previously shared with its
intended communication party is corrupted.

• A user (pidr, lsidr, r) in a run of SessionKeyDerivation that has not output a session key
pointer also considers itself corrupted if the key it previously shared with its intended
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communication partner is corrupted. Even with an uncorrupted status, right before out-
putting a session key pointer, such user checks the status of this key, and it blocks if there
is any change.

(1) Uncorrupted initiator user during the key exchange.

Let (pidA, lsidA, A) be an uncorrupted initiator user that wants to exchange a key with
party pid0. This user can be simulated by S using Fcrypto until it outputs a session key
after verifying the MAC on the second message of the protocol without dependency on any
information or operation in F 0

crypto. As we are analyzing the single-session version of the
protocol, we have to show that S pairs with (pidA, lsidA, A) the user (pid0, lsid0, B).

As (pidA, lsidA, A) is uncorrupted and outputs the session key pointer, the key previously
shared between parties pidA and pid0 must be uncorrupted, otherwise this instance would
block according to the corruption model. Therefore, user (pid0, lsid0, B) cannot have been
explicitly corrupted by the adversary.

By outputting the key pointer, the user (pidA, lsidA, A) has successfully verified and ac-
cepted the MAC over the message m = (pid0, pidA, n, session_key_derivation_ack, npidA), where
npidA is the nonce generated by (pidA, lsidA, A). The key (pidA, lsidA, A) uses to verify the
MAC is derived from the pre-key shared between pidA and pid0, i.e., no other party than
pid0 could generate such a key, hence the MAC on the second protocol message must have
been created by user (pid0, lsid0, B).

We just showed pidA is the session partner of (pid0, lsid0, B). As the key pidA and pid0 share
is uncorrupted, the user (pid0, lsid0, B) cannot consider itself corrupted. Therefore, the user
(pid0, lsid0, B) is uncorrupted.

We do not we to show that the instance (pid0, lsid0, B) is indeed a responder, because as we
are considering the single-session version of the protocol and (pidA, lsidA, A) is already an
initiator, (pid0, lsid0, B) must be a responder.

Now we have to show that (pid0, lsid0, B) is assigned to a session in FMA
sk-sig with (pidA, lsidA,

A).

Based on the design of S , a GroupSession command to create the session between the
uncorrupted user (pid0, lsid0, B) and the uncorrupted initiator user is sent only when the
initiator successfully verifies and accepts the MAC on the second protocol message which
is calculated over m = (pid0, pidA, n, session_key_derivation_ack, npidA). As there is no other
session, the only possible GroupSession command to create the global session for (pid0,
lsid0, B) has necessarily the user (pidA, lsidA, A) as initiator.

Last, as the previously shared key between pidA and pid0 is uncorrupted, the resulting ses-
sion key is also uncorrupted, i.e., unknown. Hence, as the sets of keys are synchronized in
Fcrypto and F 0

crypto, the simulator can indeed provide the exact same key from the simulation
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to F 0

crypto. Besides, this key can only be accessed by users (pidA, lsidA, A) and (pid0, lsid0,
B) which is the expected behavior in FMA

sk-sig. Similarly, as the nonces n and npidA are ideally
created in Fcrypto, the simulator can indeed provide the nonces from the internal simulation
to F 0

crypto and keep also the set of nonces synchronized in Fcrypto and F 0

crypto.

Therefore, real and ideal settings behave identically from the perspective of an uncorrupted
initiator (pidA, lsidA).

(2) Uncorrupted responder instance during the key exchange.

Let (pidB, lsidB, B) be an uncorrupted responder user that wants to exchange a key with
party pid0. This user can be simulated by S using Fcrypto until it outputs a session key pointer
after verifying the MAC on the third message of the protocol without dependency on any
information or operation in F 0

crypto. As we are analyzing the single-session version of the
protocol, we have to show that S has paired (pidB, lsidB, B) with the user (pid0, lsid0, A).

As (pidB, lsidB, B) is uncorrupted and outputs the session key pointer, the key previously
shared between parties pidB and pid0 must be uncorrupted, otherwise this instance would
block according to the corruption model. Therefore, user (pid0, lsid0, A) cannot have been
explicitly corrupted by the adversary.

By outputting the key pointer, the user (pidB, lsidB, B) has successfully verified and ac-
cepted the MAC over the message m = (pid0, pidB, session_key_derivation_ack, n, npidB ), where
npidB is the nonce generated by (pidB, lsidB, B). The key (pidB, lsidB, B) uses to verify the
MAC is derived from the pre-key shared between pidB and pid0, i.e., no other party than
pid0 could generate such a key, hence the MAC on the third protocol message must have
been created by user (pid0, lsid0, A).

We just showed pidB is the session partner of (pid0, lsid0, A). As the key pidB and pid0 share
is uncorrupted, the user (pid0, lsid0, A) cannot consider itself corrupted. Therefore, the user
(pid0, lsid0, A) is uncorrupted.

We do not we to show that the instance (pid0, lsid0, A) is indeed an initiator, because as we
are considering the single-session version of the protocol and (pidB, lsidB, B) is already a
responder, (pid0, lsid0, A) must be an initiator.

Now we have to show that (pidB, lsidB, B) is in a global session with (pid0, lsid0, A)
in FMA

sk-sig. Based on the design of S , a GroupSession command to create the session
between the uncorrupted user (pid0, lsid0, B) and the uncorrupted initiator user is sent when
the initiator successfully verifies and accepts the MAC on the second protocol message.
The initiator only sends the third message of the protocol after it successfully verifies and
accepts such MAC. Therefore, a GroupSession was necessarily trigger. As there is no
other session, the GroupSession command created the global session for (pid0, lsid0, B)
and (pid0, lsid0, A).
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Last, as the previously shared key between pidB and pid0 is uncorrupted, the resulting ses-
sion key is also uncorrupted, i.e., unknown. Hence, as the sets of keys are synchronized in
Fcrypto and F 0

crypto, the simulator can indeed provide the exact same key from the simulation
to F 0

crypto. Besides, this key can only be accessed by users (pidB, lsidB, B) and (pid0, lsid0,
A) which is the expected behavior in FMA

sk-sig. Similarly, as the nonces n and npidB are ideally
created in Fcrypto, the simulator can indeed provide the nonces from the internal simulation
to F 0

crypto and keep also the set of nonces synchronized in Fcrypto and F 0

crypto.

Therefore, real and ideal settings behave identically from the perspective of an uncorrupted
responder (pidB, lsidB).

(3) Uncorrupted instances after the key exchange.

Let (pidA, lsidA, A) and (pidB, lsidB, B) be uncorrupted instances of an initiator and a
responder, respectively, with an established unknown session key.

As shown in the previous cases, S can perfectly simulate the instances to the point when the
instances get the pointers to the unknown session key in Fcrypto. Besides, no other user than
the ones in the session has access to the session key pointer. By the design of S , the session
key is provided by S to F 0

crypto and FMA
sk-sig is instructed to output session key pointers to

(pidA, lsidA, A) and (pidB, lsidB, B). Therefore, after the key establishment phase, during
the usage of the session key and other cryptographic operations, the real and ideal settings
behave identically from the perspective of uncorrupted instances.

(4) Corrupted instances.

Let (pid, lsid, r), r2 {A,B} be a corrupted instance. The simulator controls the i/o interface
of such an instance. This instance is corrupted due to one of the two reasons:

(i) it was explicitly corrupted by the adversary or (ii) the key previously shared with the
intended communication partner is corrupted. In case (i), the adversary controls the instance
before the key exchange starts or after it finishes. In any of these stages, the adversary gets
access only to known keys in Fcrypto, which, in fact, do not exist in F 0

crypto. Therefore, S
can simulate the same behavior of Fcrypto for this kind of corrupted instance. In case (ii),
the simulator also has to simulate unknown keys in Fcrypto. However, as we shown during
our analysis, an uncorrupted instance actually will never established a session key with a
corrupted user, therefore, the unknown keys related to this case will never be inserted in
F 0

crypto. Hence, S can also simulate this kind of corrupted instance.

With the analysis of the four possible cases, we conclude the proof of Theorem 5.5.

Now we present Corollary 5.2, that comes first from Theorem 5.3 that guarantee the se-
curity analysis of the single-version of protocol SessionKeyDerivation we just presented suffices
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to show the security of the multi-session version of protocol SessionKeyDerivation, the Theo-
rem 5.1 and the proof that our extension Pcrypto realizes ou extension Fcrypto (Section 5.5). We
use this result to replace Fcrypto by our extension Pcrypto, obtaining a real implementation of the
SessionKeyDerivation protocol (Section 4.3), a universally composable mutual authenticated
key exchange protocol.

Corollary 5.2 Let PSKD = !MA | !MB be the IITM modeling of the SessionKeyDerivation (Sec-
tion 4.3) such that MA and MB behave as described in Section 5.7.2.2; Fcrypto and Pcrypto defined
as in Section 5.5; FMA

sk-sig be the functionality for mutually authenticated key exchange with key
usability and in-session access to digital signatures, as described in Section 5.6.1; F⇤ be a
machine such that in any point during the protocol systems communication blocks if the envi-
ronment cause the commitment problem or does not respect the used-order requirement. Then
it holds true that:

F⇤ | PSKD | Pcrypto  F⇤ | FMA
sk-sig | Fcrypto.

5.7.3 AoT Modular Analysis

In this section, we analyze each stage of an IoT device life-cycle in AoT under the per-
spective of secure composition of protocols. The first stage, the Pre-Deployment (Stage 4.1)
takes place at the factory, where all the communication to devices is physically protected, there-
fore it is considered secure by design. The Ordering stage (Stage 4.2), in turn, does not directly
involve devices, and yet, it has all of its digital communication protected by a TLS channel,
hence, it is also considered secure by design. Therefore, we focus our security analysis on the
protocols that compose the Deployment, Functioning, Retirement, and Inter-DomainOperation
stages (Stages 4.3, 4.4, 4.5, and 4.6, respectively).

5.7.4 Deployment Stage

We start our analysis with the Deployment stage (Stage 4.3). In our method, we decou-
ple the Deployment stage specification, identifying the step where the communication between
two parties starts with a session key establishment protocol (PSK or PSKD) and the step where
the communication end, which means the end of the high-level protocol. Then, we verify if
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the cryptographic operations executed with the established key during the protocol session are
supported by PSK or PSKD. Then, as PSK and PSKD realize the functionality for mutually au-
thenticated key exchange with key usability and in-session access to digital signatures FMA

sk-sig,
we can say that the composition of the higher-level module with the session key establishment
protocol also realizes FMA

sk-sig. The first high-level protocol (P) we identify in the Deployment
stage (Stage 4.3) comprises the steps 6, 7, and 16. We observe that in step 6, a session key is
established using protocol SessionKey (Protocol 4.1), i.e., PSK. We can model it as the compo-
sition P | PSK. Now, we verify that in steps 7 and 16, the cryptographic operations involved are,
respectively, a digital signature and a MAC generation, followed by a MAC verification (not
shown in the Deployment description). As these operations are all provided by PSK, we have
that P | PSK  FMA

sk-sig, i.e., P | PSK is a secure universally composable protocol.

DEPLOYMENT(device D)

...

6. DUr
, H : SESSIONKEY(DUr , H )

7. DUr
! H : deploy_req, idD,H,AD,YD, infoD,

ENC(kD,H )
P
I
H,H

, SIG( nH | nDUr
)
S
I
DUr

,H

...

16. H ! DUr
: deploy_ack, MAC(nH | nDUr

)k
DUr

,H

Now, we identify explicit calls to the high-level protocol KeyIssue in steps 11, 12, and
13, and an explicit call to Binding in step 15. We start checking the KeyIssue protocol.

DEPLOYMENT(device D)

...

11. D : KEYISSUE(D, H , H, I)

12. D : KEYISSUE(D, H , I , I)

13. D : KEYISSUE(D, H , H, A)

...

15. D : BINDING (D, UD)

KeyIssue protocol (Protocol 4.4), which we identify as P, in step 2, invokes protocol
SessionKey (Protocol 4.1) or SessionKeyDerivation (Protocol 4.3), i.e., PSK or PSKD, respec-
tively, depending on the case. In both cases, however, the subsequent steps are the same. In step
3 and 4, the established key is used in an authenticated encryption scheme. As this operation is
supported by PSK and PSKD, we have that P | PSK  FMA

sk-sig and P | PSKD  FMA
sk-sig, i.e., P | PSK

and P | PSKD are secure universally composable protocols.
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KEYISSUE(device D, server S , domain Z , cryptosystem Y)

1. D : if SI
D,S does not exist:

2. D, S : SESSIONKEYDERIVATION(D, S , kD,S)

otherwise:
2. D, S : SESSIONKEY(D, S)

3. D ! S : issue_req, AUTH-ENC(nS | nD)kD,S

4. S ! D : S
Y
D,Z , issue_ack, AUTH-ENC(nS | nD)kD,S

Binding protocol (Protocol 4.5), which we identify as P, in step 1, invokes protocol
SessionKey (Protocol 4.1), i.e., PSK. Then, in step 2, a digital signature is used and, in step 4, the
established key is used to generate a MAC. These operations are supported by PSK. Therefore,
we have that P | PSK  FMA

sk-sig, i.e., P | PSK is a secure universally composable protocol.

BINDING(device D, user U )

1. D, C : SESSIONKEY(D, C)

2. D ! C : bind_req, idU,C, SIG(nC | nD)
S
I
D,C

3. C : binds U to D

4. C ! D : bind_ack, MAC(nC | nD )kD,C

Other steps in the Deployment stage (Stage 4.3) can be supported by Fcrypto as a primitive
cryptographic provider. For instance, in step 3, a device generated an ephemeral key to later
encrypt it using a public key. Ideal key generation and public key encryption operations are
provided as functionalities by Fcrypto. Analogously, Fcrypto can also supports a digital signature
scheme for the message in step 14. Therefore, all the communication in these steps can be
securely composable with Fcrypto. The remaining steps (1, 2, 4, and 5), we observe they are
related to physically protected communication, which is considered secure by design.

DEPLOYMENT(device D)

1. Ur ! D : PHY(pinD)
2. DUr

! D : PHY(idUr ,H | P I
H,H)

3. D : generates ephemeral kD,H

4. D ! DUr
: PHY(infoD | ENC(kD,H )

P
I
H,H

)

5. Ur ! DUr
: PHY(idD,H | UD | AD | YD)

14. H ) GH : YGH , infoGH
, SIG

S
I
H,H
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5.7.5 Functioning Stage

Functioning stage (Stage 4.4), in step 2, invokes the Long-TermKeyAgreement proto-
col (Protocol 4.2) that establishes a long-term pairwise key. In Fcrypto, this is modeled as a
setup assumption using the command GetPSK, which we already considered inside Session-
KeyDerivation modeling. Then, we model the Functioning, which we call P, as a composition
with SessionKeyDerivation protocol PSKD (Protocol 4.3), i.e., P | Fcrypto. In the subsequent
steps, the established key is used in MAC operations and a digital signature is also performed.
All these operations are supported by PSKD. Therefore, P | PSKD  FMA

sk-sig, i.e., P | PSKD is a
secure universally composable protocol.

FUNCTIONING(user U , device A, device B , operation op)

1. U : uses A to request op over B
2. A : if kLT

A,B does not exist:
A,B : LONG-TERMKEYAGREEMENT(A, B)

3. A,B : SESSIONKEYDERIVATION(A, B , kLT
A,B )

4. A! B : op_req, op, MAC(nB | nA)k
A,B

5. B ! A : op,⌥op, MAC(nB | nA)k
A,B

6. A! B : op,⌥op, SIG(nB | nA)
S
A
A,H

7. B ! A : op_ack, op, MAC(nB | nA)k
A,B

Retirement stage (Stage 4.5) and Reassignment protocol (Protocol 4.7 are special cases
of Functioning. However, they explicitly call protocol Unbinding (Protocol 4.6), therefore, we
have to analyze it.

RETIREMENT(user U , device A, device B)

...

2. B : UNBINDING(B , U )

REASSIGNMENT(user U , device A, device B , user V )

...

4. B : UNBINDING(B , U )

Unbinding protocol (Protocol 4.6), which we identify as P, in step 1, invokes protocol
SessionKey (Protocol 4.1), i.e., PSK. In step 2, a digital signature is used and, in step 4, the es-
tablished key is used to generate a MAC. These operations are all supported by PSK. Therefore,
we have that P | PSK  FMA

sk-sig, i.e., P | PSK is a secure universally composable protocol.
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UNBINDING(device D, user U )

1. D, C : SESSIONKEY(D, C)

2. D ! C : unbind_req, idU,C, SIG(nC | nD)
S
I
D,C

3. C : unbinds U to D

4. C ! D : unbind_ack,pin0

B, MAC(nC | nD )kD,C

5.7.6 Inter-DomainOperation Stage

Inter-DomainOperation stage (Stage 4.6), which we identify as P, in step 1, invokes
protocol Inter-DomainSessionKey (Protocol 4.8) which is identical to the SessionKey protocol
(Protocol 4.2.1), i.e., PSK. In steps 2 and 3, the established key is used in MAC operations,
which are, in turn, supported by PSK. Therefore, we have that P | PSK  FMA

sk-sig, i.e., P | PSK

is a secure universally composable protocol, which concludes our modular security analysis of
AoT.

INTER-DOMAINOPERATION(user U , device A, device B , operation op)

5. U : uses A to request op over B
6. A,B : INTER-DOMAINSESSIONKEY(A, B)

7. A! B : inter_op_req, op, MAC(nB | nA)k
A,B

8. B ! A : inter_op_ack, op, MAC(nB | nA)k
A,B
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Chapter 6

Development

We now describe our AoT prototype, its software architecture (Section 6.1), its implementation
(Section 6.2), and our proof-of-concept demo (Section 6.2.5).

Our prototype provides authentication and access control using device identities and at-
tributes; isolated Cloud and Home domains, allowing users and manufactures to control devices
independently; lightweight requirements, supporting resource-constrained embedded devices;
and flexibility, being deployable on different platforms.

6.1 Architecture

Figure 6.1 shows the entities in our architecture. Our architecture comprises one Cloud
server (Figure 6.1, label 1) to control the manufacturer’s Cloud domain. We assume the Cloud
server has on-demand resource allocation (CPU, storage, memory, and bandwidth), typical of
cloud environments. Our architecture also comprises multiple Home servers, one for each
Home domain (Figure 6.1, label 2). Although Home servers need not scale like Cloud servers,
we assume a Home server stays on and has sufficient resources to control hundreds of devices
in its domain. Home servers can run on video-game consoles, desktop PCs, network gateways,
or Hardware Secure Modules (HSMs).

Each device (Figure 6.1, label 3) connects to its Home domain (dashed line) and also to
the manufacturer’s Cloud domain (solid line). The devices also communicate to each other in
their Home domains (dotted lines). Our architecture considers devices vary wildly (in terms of
processing power, available memory, storage capacity, communication technologies, size, and
weight) and may have constrained resources.

Entities in our architecture run the software stack shown in Figure 6.2. The implementa-
tion of the AoT protocol is the center piece of the software stack. It is built atop a cryptographic
library accessed through native method calls, and communicates with the exterior world us-
ing the appropriate communication technologies and encoding mechanisms. Most entities also
provide interfaces for user interaction (not shown in the software stack).
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Figure 6.1: Entities comprising the AoT architecture.
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6.2 Implementation

6.2.1 Software stacks

Our architecture encompasses devices running heterogeneous hardware and different
operating systems, each with their own specific software stack. We implement Cloud and Home
servers on LAMP (Linux, Apache, MySQL, and PHP). We also implement AoT on smartphones
as a native Android application. The realization of our software stack on these implementations
is shown in Figure 6.2. Our Cloud and Home servers communicate with devices using the HTTP
protocol. The Web servers call binaries that implement AoT’s protocols from PHP. On Android
devices, we implement the user interface using Android’s standard interface, and use the Java
Native Interface (JNI) to call AoT protocol functions on a native application which, in turn,
call the cryptographic primitives from a cross-compiled cryptographic library. On resource-
constrained devices, the firmware is formed by a network and message handler module that
receives the messages from the network, parses them, and appropriately calls the AoT protocol
functions which, analogously to the other cases, call the cryptographic primitives from a cross-
compiled cryptographic library. We note that modifications to one layer in the stack do not
imply changes in other layers, e.g., we could exchange HTTP for another transport such as
HTTPS or CoAP, or use any cryptographic library.

6.2.2 Communication

Our cryptographic code is agnostic to message encoding and transport; any two devices
can exchange information using any mutually-supported encoding and protocol. For example,
our prototype can exchange data using QR codes, when deploying a fridge in a Home domain,
or HTTP, when changing user attributes from a smartphone.
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6.2.3 User interfaces

Although entities share the same underlying implementation of the AoT protocol, they
run application code and user interfaces implemented using native libraries. For example, our
Android applications run in Android’s Dalvik virtual machine and use the Java Native Interface
(JNI) to call our low-level AoT cryptographic primitives.

6.2.4 Cryptography

All entities in our architecture – Cloud servers, Home servers, and devices – share the
same underlying implementation of AoT and use our extended version of the RELIC crypto
library [4]. We chose RELIC because it targets resource-constrained devices and efficiently
implements several curve-based cryptographic primitives and protocols at different (e.g., 100-
and 128-bit) security levels. We have further improved RELIC’s performance including new
architecture-dependent optimizations by means of carefully crafted assembly for the ARM ar-
chitecture to implement the base field arithmetic backend for a specific elliptic curve. For
instance, we use in the arithmetic backend extensive use of the wide 32-bit multiplier instruc-
tion UMLAL for implementing Karatsuba-Comba multiplication, squaring, and Montgomery
modular reduction to accelerate primitives used by AoT.

We implement the core of AoT session key establishment and access control mech-
anisms on top of our extended version of RELIC, which we identify as MB and ABS in Fig-
ure 6.2. We need to implement them because differently from the other cryptographic protocols,
i.e., IBE, IBS, MAC, and AES, they are not part of RELIC.

6.2.4.1 MB Implementation

We implement our SessionKey protocol (Protocol 4.1) which is based on the enhanced
[29] identity-based key agreement protocol of [81] (the reason of the name MB) with three al-
gorithms: MB setup, MB key generation, MB public relation generation, and MB session key
establishment. Our implementation relies mainly on PBC (explained in Section 2.5), which
is parameterized in the library at compile time, which means during the execution of the al-
gorithms, all the PBC parameters, i.e., groups G1 and G2 with order r, identity O, and gen-
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erators G1 and G2, respectively, the group GT of order r and identity 1, and the admissible
bilinear pairing ê : G1 ⇥ G2 ! GT , the mapping functions MAP1 : {0, 1}⇤ ! Z⇤

r
and

MAP2 : {0, 1}⇤ ⇥ {0, 1}⇤ ⇥ G1 ⇥ G1 ⇥ GT ! {0, 1}n are set. In the AoT context, the MB
setup and MB key generation algorithms are run by the server S of domain Z , while MB public
relation generation, and MB session key establishment are run by any entity that needs to estab-
lish a session key with another entity in the domain Z . The MB setup algorithm (Algorithm 2)
sets the public and private parameters of an identity-based cryptosystem. It chooses random a
random master secret s 2 Z⇤

r
, and sets the master public key P

I
S,Z of the system. The algorithm

outputs s, and P
I
S,Z .

Algorithm 2: MB Setup
Output: s, P I

S,Z
1 s random from Z⇤

r

2 P
I
S,Z = s ·G1

The MB key generation algorithm (Algorithm 3) generates the keys of the IBC. It takes
as input the identity idD,Z of device D in domain Z , the IBC master public key P

I
S,Z , and the

IBC master secret s, and outputs the identity private key S
I
D,Z of device D on domain Z .

Algorithm 3: MB Key Generation
Input : idD,Z , P I

S,Z , s
Output: SI

D,Z
1 S

I
D,Z = ((MAP1(idD,Z ) + s)�1 ·G2)

A device A uses the algorithm MB public relation generation (Algorithm 4) to generate
a random scalar associated with the identity of the intended communication device B. Algo-
rithm 4 takes as input the identity idB,Z of the device B on domain Z , and the IBC master
public key P

I
S,Z . The algorithm outputs a randomly chosen scalar x 2 Z⇤

r
and the public relation

R = x · P I
B,Z .

Algorithm 4: MB Public Relation Generation
Input : idB,Z , P I

S,Z
Output: x, R

1 P
I
B,Z = (MAP(idB,Z ) ·G1 + P

I
S,Z)

2 x random from Z⇤
r

3 R = x · P I
B,Z

A device A which identity is idA,Z uses the algorithm MB session key establishment
(Algorithm 5) to derive a new identity-based key k. Algorithm 5 takes as input a scalar x
2 Z⇤

r
, a public relation R 2 G1, the identity of the intended communication device idB,Z , the

device identity idA,Z , the requester private key S
I
A,Z , the IBC master public key P

I
S,Z , and a flag

initiator, and returns a key k according the Algorithm 5.
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Algorithm 5: MB Session Key Establishment
Input : x, R, idB,Z , idA,Z , SI

A,Z , P I
S,Z , initiator

Output: k
1 P

I
B,Z = (MAP(idB,Z ) ·G1 + P

I
S,Z)

2 if initiator then
3 k = MAP2(idA,Z , idB,Z , x · P I

B,Z ,R, ê(R, S
I
A,Z)ê(x ·G1, G2))

4 else
5 k = MAP2(idB,Z , idA,Z ,R, x · P I

B,Z , ê(R, S
I
A,Z)ê(x ·G1, G2))

6.2.4.2 ABS Implementation

Our ABS implementation, core of Functioning stage (Stage 4.4), in turn, is based on the
evolution of the seminal ABS work of [77, 78], which is one of the most practical construc-
tions of ABS, however, it is criticized of being proved only in the generic group model. Our
implementation comprises five algorithms: ABS setup, ABS attribute generation, ABS signa-
ture generation (S.ABS), and ABS deterministic (D.ABS) and probabilistic (P.ABS) versions
of signature verification.

Analogously to MB, our implementation is based mainly on PBC. Besides, this partic-
ular ABS scheme relies on Monotone Spam Programs (MSP), which represent the predicates
as monotone boolean functions. Informally, monotone means that the boolean expression con-
tains zero negations (not operators). We can work around this limitation by inverting attributes
when needed, e.g., creating attributes such as “over 18 years old” and “under 18 years old”. In
practice, an MSP is a matrix with dimensions ` ⇥ t, where ` denotes the number of attributes
and t the number of ‘and’ operators in the boolean expression plus one.

In AoT, the ABS setup and attribute generation algorithms are run by Home servers,
while ABS signature generation and ABS signature verification are run by devices in a home
domain whenever access control is executed. The ABS setup algorithm (Algorithm 6) sets up
the ABS cryptosystem. It takes as input the ABS maximum MSPs width tmax and randomly
chooses [H0, Htmax ] generators of G1, randomly chooses G and C generators of G2, randomly
chooses a0, a, b 2 Z⇤

r
and sets A0 = a0 ·H0 and Ai = a ·Hi, Bi = b ·Hi for 1  i  tmax. The

algorithm outputs the ABS master private key as SA
H,H = a0, a, b and the ABS master public key

as PA
H,H = G,C, [H0, Htmax ], [A0, Atmax ], [B1, Btmax ].

The ABS attribute generation algorithm (Algorithm 7) generates the keys of each user
in the system. It takes as input the set of attributes AD of device D, and the ABS master public
and private keys, PA

H,H and S
A
H,H, respectively. The algorithm outputs the ABS private key of

device D as SA
D,H = Kbase, K0, {Ku|u 2 AD} as detailed in Algorithm 7.

The S.ABS (Algorithm 8) takes as input a message m to be signed, a predicate ⌥ that
should be satisfied, a MSP matrix M`⇥t that represents ⌥, a vector ~u1⇥` that relates each attribute
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Algorithm 6: ABS Setup
Input : tmax

Output: P
A
H,H = G,C, [H0, Htmax ], [A0, Atmax ], [B1, Btmax ]

S
A
H,H = a0, a, b

1 H0 G1 random generator
2 G,C  G2 random generators
3 a0, a, b random from Z⇤

r

4 A0 = a0 ·H0

5 for i = 1 to tmax do
6 Hi G1 random generator
7 Ai = a ·Hi

8 Bi = b ·Hi

Algorithm 7: ABS Attribute Generation
Input : PA

H,H, SA
H,H,AD

Output: SA
D,H = Kbase,K0, {Ku|u 2 AD}

1 Kbase G2 random generator
2 K0 = a0

�1 ·Kbase

3 foreach u 2 AD do
4 Ku = (a+ bu)�1 ·Kbase

in ⌥ with a row in M`⇥t, the device D’s ABS private key S
A
D,H, and the ABS master public key

P
A
H,H. The algorithm outputs the signature � = Y,W, [S1, S`], [P1, Pt] as detailed in Algorithm 8.

Algorithm 8: S.ABS - ABS Signature Generation
Input : m,⌥,M`⇥t, ~u1⇥`, S

A
D,H, P

A
H,H

Output: � = Y,W, [S1, S`], [P1, Pt]
1 Computes ~vM = [1, 0, 0, ..., 0]1⇥`

2 µ = H(m||⌥)
3 r0 random from Z⇤

r

4 Y = r0 ·Kbase

5 W = r0 ·K0

6 for i = 1 to ` do
7 ri random from Z⇤

r

8 Si = ((vir0) ·Ku(i)) + ri · (C + µ ·G)

9 for j = 1 to t do
10 X = O
11 for i = 1 to ` do
12 X = X + (Mijri) · (Aj + u(i) ·Bj)

13 Pj = X

Both version of ABS signature verification algorithms, D.ABS (Algorithms 9) and P.ABS
(Algorithms 10), take as input the message m, predicate ⌥, MSP matrix M`⇥t, vector ~u1⇥`, sig-
nature �, and ABS master public key P

A
H,H. The algorithms return true if the signature verifies
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and false otherwise. P.ABS trades determinism in the signature verification by efficiency. In this
case, legitimate signatures are successfully verified with probability 1, while invalid signatures
are successfully verified with probability at most 1/q. In terms of efficiency, the probabilis-
tic algorithm needs ` + 2 computation of pairings compared to `t + t + 2 performed by the
deterministic version.

Algorithm 9: D.ABS - ABS Deterministic Signature Verification
Input : m,⌥,M`⇥t, ~u1⇥`,�, P

A
H,H

Output: true or false
1 if ê(A0,W ) 6= ê(H0, Y ) return false
2 for j = 1 to t do
3 X = 1
4 for i = 1 to ` do
5 X = Xê(Mij · (Aj + u(i) ·Bj), Si)

6 if j = 1 then
7 if X 6= ê(H1, Y )ê(P1, C + µ ·G) return false

8 else
9 if X 6= ê(Pj , C + µ ·G) return false

10 return true

Algorithm 10: P.ABS - ABS Probabilistic Signature Verification
Input : m,⌥,M`⇥t, ~u1⇥`,�, P

A
H,H

Output: true or false
1 if ê(A0,W ) 6= ê(H0, Y ) return false
2 T = O
3 for j = 1 to t do
4 rj  random from Z⇤

r

5 T = T + rj · Pj

6 L = 1
7 for i = 1 to ` do
8 T = O
9 for j = 1 to t do

10 T = T + (Mijrj) · (Aj + u(i) ·Bj)

11 L = Lê(T, Si)

12 if L 6= ê(r1 ·H1, Y )ê(T,C + µ ·G) return false
13 return true

The computational complexity of ABS, D.ABS, and P.ABS depends on PBC operations,
more precisely, on pairings and elliptic curve scalar point multiplication. Although these oper-
ations can be executed on resource-constrained devices [92], ABS requires devices to compute
a product of pairings (Algorithm 9, line 5 and Algorithm 10, line 11), which increases not only
compute time but also memory consumption. As a mitigation to this problem, we optimized
RELIC to compute products of pairings simultaneously. Pairing computation can be divided in
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two phases: the Miller loop consisting of a square-and-multiply algorithm and the final expo-
nentiation. When a product of pairings is computed simultaneously (a multi-pairing operation),
squarings in the full extension field and the final exponentiation can be shared for all pairings,
keeping a single variable accumulating partial results in the Miller loop [104]. This optimiza-
tion saves one large GT element to be stored and around 50% finite field multiplications per
additional computed pairing in the product.

6.2.4.3 AoT Cryptographic Instantiation

Our complete implementation of AoT combines the following cryptographic proto-
cols and algorithms. (i) McCullagh-Barreto: an enhanced MB identity-based key agreement
protocol [29, 81], the MB algorithms we just described. (ii) Boneh-Franklin (BF-IBE): an
identity-based encryption scheme, adapted to employ asymmetric pairings [18]. (iii) Bellare-
Namprempre-Nevem (vBNN-IBS): a pairing-free identity-based signature with short signatures
and fast verification [26]. (iv) Maji-Prabhakaran-Rosulek: an attribute-based signature [78],
the ABS algorithms we just described. (v) keyed-Hash Message Authentication Code (HMAC):
a specific type of message authentication code (MAC) involving a cryptographic hash function,
using SHA384 [59]. (vi) Advanced Encryption Standard (AES): the standard for symmetric
encryption, using CBC mode and 256 bits key length [32]. From now on, we refer to them as
simply MB, IBE, IBS, ABS, HMAC, and AES, respectively.

6.2.4.4 Parameterization

As previously mentioned, the core of the cryptographic protocols in AoT relies mainly
on PBC, which is, in practice, based on elliptic curves, as described in Section 2. Therefore,
in order to make AoT practical, it is crucial to choose elliptic curve parameters that allow an
efficient implementation of pairing computation without compromising security level.

In AoT we first adopt a curve from Barreto-Naehrig (BN) [9] family, an important class
of pairing-friendly elliptic curves [93]. Curves in this family support an efficient optimal Ate
pairing construction [116], with a reduction of a quarter on the number of cycles in the Miller
loop [34]. This, in turn, makes these curves ideal from an implementation point of view [5].
BN curves have the form E : y2 = x

3 + b, b 6= 0, they are parameterized by an integer u 2 Z
and defined over a field Fp with a prime and group orders p = 36u4 + 36u3 + 24u2 + 6u + 1
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and r = 36u4 + 36u3 + 18u2 + 6u+ 1, respectively, and embedding degree k = 12. We select
the BN254 curve [88] E : y2 = x

3 + 2 parameterized by the integer u = �(262 + 255 + 1),
which generates a 254-bit prime number curve order. In this instantiation, elements from the
groups G1, G2, and GT take 64, 128, 384 bytes, respectively. BN curves have been affected
by improvements of the asymptotic complexity of discrete logarithm in finite fields of small
characteristic [58], which reduced the concrete security of BN254 curve that is now considered
to be at between 100- and 110-bit security level.

As an alternative for the long-term security, at 128-bit security level we adopt a pairing-
friendly curve from the from the Barreto-Lynn-Scott (BLS) family. BLS curves over a field Fp

also have the form E : y2 = x
3+ b, b 6= 0 and support an optimal Ate pairing construction [10].

These curves vary according to different embedding degrees. We select a BLS12 curve, which
has embedding degree k = 12 and it is parameterized by an integer u 2 Z with p = 1

3(u �
1)2(u4 � u

2 + 1) + u and r = u
4 + u

2 + +1, respectively. In contrast to BN curves, the
group order of a BLS curve is not prime but divisible by the large prime parameter r. The
pairing is then defined on the r-torsions points. Specifically, we select the BLS12-381 curve [21]
E : y2 = x

3 + 4 parameterized by the integer u = �(263 + 262 + 260 + 257 + 248 + 216), which
generates a 381-bit prime field number order. In this instantiation, elements from the groups
G1, G2 and GT take 96, 192, 576 bytes, respectively.

At both security levels, variable-base and fixed-base scalar multiplications are imple-
mented using the window NAF and single-table comb methods [71], respectively. Parameters
for 100-bit security are enough for more constrained devices and short- medium-term secu-
rity, while parameters for 128-bit security ensure long-term security, but still lack efficiency in
resource constrained devices, as we present in our experiments in Section 7.

6.2.5 Demo

We develop a demo to showcase our AoT prototype. Our demo covers the entire life-
cycle of a smart fridge, from pre-deployment to retirement. We demonstrate the functionalities
in our architecture executing operations on multiple devices and transferring information using
different communication technologies.
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6.2.5.1 Scenario Overview

In our demo, we cover the life-cycle of a smart fridge. First, the device is pre-deployed
at the factory, which creates it in the Cloud domain. Then, after a user purchases the smart
fridge online, she receives a PIN from the vendor, that allows her to put the device in deploy-
ment mode. When the user receives the brand new fridge, she deploys it in her home domain.
When the user receives the brand new fridge, she deploys it in her home domain. During the
deployment process, the user defines the fridge’s attributes and access policies to its operations
such as defrost, temperature change, access to the internal camera, and retirement. In the user’s
home domain, there are already deployed a smart TV and a smart motion sensor. The smart
TV can request images from other devices and present them on its screen, while the smart sen-
sor can request an operation to another device when it sensor motion. When the users has no
intention of using the fridge anymore, she retires the device.

6.2.5.2 Implementation

In our demo we consider the following entities: (i) a cloud server, (ii) an emulated man-
ufacturing device, (iii) a home server, (iv) an emulated smart TV, (v) an emulated smart fridge,
(vi) a QRCode reader for the emulated smart fridge, (vii) a smartphone for the administrator of
the home domain, and (viii) a smart presence sensor. The cloud and home servers as well as the
emulated smart home appliances are implemented in a Raspberry Pi3 with a 64 bits quad-core
1.2GHz processor, 1 GB of RAM and 8 GB storage. We use two Android smartphones LG
Nexus5 with a 32 bits ARM quad-core 2.3 GHz processor, 2 GB of RAM and 16 GB storage.
One of them plays the roles of manufacturing device and fridge’s QRCode reader, while the
other acts as the administrator device, which can be used to deploy new devices or to operate
any other device in the home domain. Last, the smart sensor is implemented in an Arduino Due
with a 32 bits ARM M3 84 MHz processor, 96 KB of RAM and 512 KB storage and plays the
smart sensor role.

As mentioned in Section 6.2, all entities in our architecture share the same underlying
cryptographic implementation, including the core of our session key establishment [29, 81] and
access control mechanism [78], built on top of our extended version of RELIC cryptographic
library [4] and accessed through native calls using the first set of parameters described in Sec-
tion 6.2.4.4. The cloud and home servers as well as the emulated home appliances are based
on LAMP and call the binaries from PHP. The Android applications run in Android’s Dalvik
virtual machine and use the JNI to call our low-level cross-compiled cryptographic functions.
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The Arduino microcontroller, in turn, is programmed to call cross-compiled cryptographic func-
tions. The devices exchange information, which is encoded serialized in binary format, using
QRCodes during the initial deployment of the fridge and HTTP when changing user attributes
from the administrator smartphone or accessing an emulated device operation.

6.2.5.3 Pre-deployment

In our demo, the pre-deployment (Stage 4.1) of the smart fridge if performed by con-
necting the manufacturing device to the fridge through USB. The smartphone detects the fridge,
generate the fridge’s cryptographic keys for the Cloud domain, load the keys onto the fridge,
and inform the Cloud server about the new fridge.

6.2.5.4 Deployment

The user purchases a brand new smart fridge. The fridge’s vendor sends the user a PIN,
that will put the device in set up mode (e.g., in a confirmation e-mail after checking out on the
vendor’s website). Given the new device is bulky, we deploy it in the home domain using the
administrator’s smartphone as a bridge to the home server. After the user inputs the PIN to put
the fridge in deployment mode (Stage 4.3, step 1), the fridge enables its QRCode reader to get
the home server’s public key, as shown in Figure 6.3.

Figure 6.3: Fridge being put in deployment mode (left) and enabling its QRCode reader for
home server public key presentation (right).
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The user then accesses its Home Manager Android Application and selects the option to
deploy a new device, she is instructed to show a QRCode that contains the Home server public
key to the fridge’s QRCode reader, as shown in Figure 6.4 (Stage 4.3, step 2).

Figure 6.4: The user is instructed to show a QRCode to the device’s reader.

Next, the fridge generates an ephemeral pairwise key, encrypts it using the just read
home server public key, and shows the ciphertext back to administrator’s smartphone as a QR-
Code on its built-in display, as shown in Figure 6.5 (left). The administrator reads the fridge’s
QRCode using her smartphone’s camera (Stage 4.3, step 4). Then, the administrator uses the
Android application to configure the fridge, choosing its attributes and defining access control
policies for each one of available operations (Stage 4.3, step 5), as shown in Figure 6.5 (right).

Upon conclusion, the application sends all the information (including the QRCode ci-
phertext) to the home server (Stage 4.3, step 7). At this point, the home server can decrypt
the data sent by the administrator and, then, it has a pairwise key with the fridge. Hence, it
can then generate the home domain keys for the fridge and securely send them to it (Stage 4.3,
steps 8-13) and broadcast to the domain information about the new device (Stage 4.3, step 14).
Once the fridge joins the home domain, it is able to communicate with all other devices as well
as it is able to communicate with the Cloud domain to update its status with the Cloud server
(Stage 4.3, step 15), e.g., after using its attributes to receive Internet access through the home’s
wireless router.
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Figure 6.5: The fridge displays a ciphertext to the user (left). Then the user sets the fridge’s
attributes access control policies (right).

6.2.5.5 Functioning

Now that the fridge can be accessed by other devices, the user tries to display the image
of the internal camera of her fridge using the smart TV (Stage 4.4, step 4). The fridge then
challenges the TV to prove it has the required attributes to access that operation, which is
controlled by the policy “parents OR kitchen” (Stage 4.4, step 5). However, as the TV only has
the “screen” attribute, it is not able to appropriate sign the fridge challenge and the access to
the fridge’s camera is denied (Stage 4.4, step 6), as shown in Figure 6.6 (left). The user then
opens the Home Manager Android Application in her smartphone and changes the policy to
access the internal camera of the fridge to “parents OR kitchen OR screen”. Now, on a new try
to access the fridge internal camera, the TV satisfies the access control policy and the operation
is executed, as shown in Figure 6.6 (right).
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Figure 6.6: An operation requested by the smart TV to the smart fridge is denied (left) and then
granted after assigning the appropriate attributes (right).

Last, the user configures her smart motion sensor to request the fridge to show in its
built-in screen the content of its internal camera every time someone approaches the fridge’s,
besides, the user also gives the smart sensor the attribute “motionsensor” in her Android appli-
cation. Now, every time the sensor detects someone near the fridge, it requests the fridge the to
display in its built-in screen the image of its internal camera (Stage 4.4, step 4). The fridge then
challenges the sensor to prove it has the required attributes to access that operation (Stage 4.4,
step 5), which the user sets to be controlled by the policy “motionsensor OR kitchen”. As the
user assigned such an attribute to the sensor, it is able to appropriate sign the challenge and the
operation is executed (Stage 4.4, step 6), as shown in Figure 6.7.

Figure 6.7: Smart motion sensor requests an operation which is successfully executed by the
fridge.

6.2.5.6 Retirement

When the life of the fridge comes to an end, the user accesses the Smart Home Con-
troller Android Application in her smartphone and chooses the retirement operation of the
fridge (Stage 4.4, step 4). The fridge then challenges the smartphone to prove it has the re-
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quired attributes to access that operation, which is controlled by the policy root (Stage 4.4, step
5). As the user is indeed the Home domain root user and her device has the root attribute, the
fridge executes the operation (Stage 4.4, step 6) which, in this case, is to unbind itself from its
owner on the Cloud domain (Stage 4.5, step 2), erase all of its cryptographic keys (Stage 4.5,
step 3) and display a retirement message on its built-in screen (Stage 4.4, step 4), as shown in
Figure 6.8 (right).

Figure 6.8: The root user requests the smart fridge retirement using her smartphone (left) and
the operation is executed (right).
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Chapter 7

Evaluation

In this chapter, we present the evaluation of our AoT prototype at both 100- and 128-bit security
level. We start with a brief analytical evaluation of computational and communication overhead
Section 7.1 to then present our experimental results in Section 7.2. We show that our crypto-
graphic instantiation of AoT supports deployment in a variety of devices, representing a wide
range of IoT devices, including resource-constrained embedded devices.

7.1 Analytical Evaluation

In this section, we analyze the computational costs and communication overhead of
both parameterizations of our implementation of AoT, described in Section 6.2. We quantify
computational costs of AoT as a function of the number of the most expensive operations in
its cryptographic primitives. In particular, we consider the number of pairings (denoted ê),
elliptic curve scalar multiplications in group G1 (denoted pG1

) and group G2 (denoted pG2
),

exponentiation in group GT (denoted eGT ), and elliptic curve scalar multiplication in E(Fq)1

(denoted p). Other operations (symmetric primitives) are executed in negligible time. Table 7.1
summarizes the computational costs results. In the table, ` denotes the number of attributes
and t the number of ‘and’ operators in the predicate plus one. ABS is the most expensive
cryptographic primitive in AoT. The computational cost of ABS grows with the size of the
span program matrix generated from the predicate. It is also the core of our access control
mechanism (in the Functioning stage), consequently, it is the most frequently used primitive in
AoT. In later sections, we focus our analysis on ABS.

We quantify communication overhead as the amount of bytes in a signature, the over-
head caused by the encryption technique, or the overhead due to an agreement on parameters
to establish a key. We compute communication overhead considering 16-byte nonces, 1-byte
labels, and the size of elements in groups G1 and G2 described in Section 6.2. Table 7.2 sum-

1Recall from Section 2.5 that groups G1 and G2 are implemented as subgroups with order r of the elliptic
curve E(Fqk) while group GT is implemented using a multiplicative subgroup of the finite extension Fqk .
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Computational Overhead
Primitive Sender Receiver
D.ABS 2`tpG1

+ (3 + 2`)pG2
(t`+ 1)pG1

+ 2pG2
+ (`t+ t+ 2)ê

P.ABS 2`tpG1
+ (3 + 2`)pG2

(2`t+ t+ 1)pG1
+ 1pG2

+ (`+ 2)ê
IBS 1p 3p
IBE 1pG1

+ 1eGT + 1ê 1ê
MB 1pG1

+ 2ê 1pG1
+ 2ê

Table 7.1: Computational and communication overhead for AoT cryptographic primitives.

marizes the results.

Communication Overhead (bytes)
Primitive 100-bit sec. level 128-bit sec. level
D.ABS 256 + 256`+ 64t 384 + 384`+ 96t
P.ABS 256 + 256`+ 64t 384 + 384`+ 96t
IBS 128 160
IBE 96 128
MB 64 96

Table 7.2: Communication overhead for AoT cryptographic primitives considering 100-bit and
128-bit security levels.

Communication overhead for most primitives is constant. In ABS, in turn, communica-
tion overhead depends on the size of the span program matrix, which is around a few hundreds
of KBs per signed message. We believe this overhead is still small enough to fit in one packet,
or few small packets when running over low-power communication networks that employ small
frames. Network transmission delay and energy costs induced by AoT are negligible compared
to CPU processing time and energy costs [91].

7.2 Experiments

We evaluate both versions of our AoT prototype, at 100- and 128-bit security levels,
on different platforms, varying computational resources, representing a wide range of IoT de-
vices. We use a recently launched Android mobile phone, a Google Pixel 6, as a representative
of smartphones that could be used in a smart environment supported by AoT. Other powerful
entities in a smart environment are represented by a Raspberry Pi3, a low-cost programmable
computer. We represent intermediate smart devices with Raspberry Pi1. Last, as our represen-
tative of microcontrollers that could be used on low-end appliances supporting AoT, we use an
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Arduino Due. Table 7.3 presents the computation resources of each platform. In the next sec-
tions, we present the experimental results for the 100- and 128-bit security levels, respectively,
starting with the resource-constrained device.

Resouce Google Pixel 6 Raspberry Pi3 Raspberry Pi1 Arduino Due
CPU arch. arm64-v8a armv7-a armv6 armv7-m
Word size 64 bits 64 bits 32 bits 32 bits
Clock 1.8 GHz 1.2 GHz 700 MHz 84 MHz
Cores 8 4 1 1
RAM 12 GB 1 GB 512 MB 96 KB
Storage 256 GB 8 GB 4 GB 512 KB
OS Android 12 Linux raspberry Linux raspberry None

4.9.59-v7+ 5.10.17+

Table 7.3: Summary of devices used in experimental evaluation.

7.2.1 100-bit Security Level Results

7.2.1.1 Resource-constrained Platform

We start our evaluation on our representative of resource-constrained devices, the Ar-
duino Due. We evaluate three versions of our prototype at 100-bit security level. The first one
is using RELIC without any optimization. In the second one, we implement the base field arith-
metic backend for the BN254 curve using crafted assembly code for the ARM architecture, as
mentioned in Section 6.2. In the third version of our prototype, we reach the limit of our num-
bers using the optimized version of RELIC and overclocking the Arduino Due microcontroller.

AoT prototype without optimization. Figure 7.1 shows run times for the cryptographic
primitives used in AoT executed on our first prototype. We execute each algorithm to measure
100 run times and plot the quartiles as well as the 5th and 95th percentiles (almost indistinguish-
able on the Figure). We omit our results for symmetric primitives (AES and HMAC) as they
run in less than 5 milliseconds. In the Figure, “Enc”, “Dec”, “Sign”, and “Ver” are abbrevia-
tions for encryption, decryption, signature generation, and signature verification, respectively.
The abbreviations D.Ver and P.Ver refer to the deterministic (D.ABS) and probabilistic (P.ABS)
versions of the ABS signature verification algorithm. In case of IBE, we consider a 32 bytes
length message, the size of message that is used in AoT (Stage 4.3 – step 4). In IBS, we use
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messages with 1KB, covering all cases IBS is used in AoT (Stage 4.3 – steps 7 and 14, and
Protocols 4.5 and 4.6, step 2). In ABS, we initially consider predicates of the form A^B, i.e.,
with two attributes and a single “and” operator. We observe that even without optimization if we
consider the context where each primitive is executed in AoT, with the exception of ABS, the
cryptographic primitives execute in reasonable time. For instance, IBE encryption is executed
at device deployment (Stage 4.3 – step 4), a setup process executed only once. In this context,
it might be acceptable to have an embedded device with 1.5s overhead to encrypt the ephemeral
key it generates. Analogously, the MB scheme is used to establish session keys for protocols
not frequently executed, more specifically for KeyIssue, Binding, and Unbinding, therefore, its
1.8s overhead might also be acceptable in this case. Even so, our optimized prototype signifi-
cantly reduced these numbers. However, the ABS numbers without optimization can indeed be
impractical for some IoT applications, given ABS is the primitive used in each access control
on a device operation. In this version, our Due AoT prototype takes around 3.3s to generate the
signature on a predicate of the form A^B, and 6.5s and 3.8s to verify it using the deterministic
and probabilistic algorithms, respectively.

Arduino Due 
100−bit Sec. Level − Without Optimization

IBE IBS ABS

1

2

3

4

5

6

7

Enc Dec Sign Ver Sign D.Ver P.Ver MB
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un
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e 
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Figure 7.1: Run times for asymmetric cryptographic primitives on the Due at 100-bit security
level without optimization. Run times for IBE and IBS use 32 bytes and 1KB messages, respec-
tively, and ABS uses predicates of the form A^B.

As discussed in Section 7.1, ABS efficiency is impacted by its most computationally ex-
pensive operations, the elliptic curve scalar multiplication in groups G1 and G2 and the bilinear
pairing (ê). According to Table 7.1, the size of an ABS predicate, i.e., the number ` of attributes
and the number t of “and” operators plus one, determine the number of expensive operations ex-
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ecuted in the ABS signature and verification algorithms. We use those numbers to evaluate how
this version of our AoT prototype would scale in a realistic IoT scenario. Table 7.4 shows run
times in milliseconds of expensive operations in this first version of our prototype. Figure 7.2
shows analytically estimated run times for ABS signature generation (on the top), deterministic
verification (on the middle), and probabilistic verification (on the bottom) considering different
predicate structures, where we vary the number of attributes (1  `  10) and use only “and”
operators. Curves in Figure 7.2 are plotted combining the experimental numbers from Table 7.4
and ABS costs from Table 7.1. In the x axis we represent the number of attributes ` in each
predicate.

Arduino Due
100-bit Sec. Level - No Optimization

Operation Run Time (ms)
Scalar point multiplication in G1 143.0± 2.0
Scalar point multiplication in G2 339.0± 5.0
Bilinear pairing (ê) 790.0± 1.0

Table 7.4: Expensive operations run times (ms) on our prototype without any optimization on
the Arduino Due.

We observe that for complex predicates with ten attributes and nine “and” operators, our
AoT prototype would take around 36s to generate a signature, almost two minutes to verify it us-
ing the deterministic algorithm and around 40s to verify it using the probabilistic algorithm. We
complement the curves in Figure 7.2 with our experimental averaged over 30 runs (coefficients
of variation are below 5%, not shown) considering the same predicate structures. By comparing
the analytical and experimental results, we observe that the analytical run times significantly
overestimate our implementation run times. There are two main reasons for this. First, the
signature verification algorithms need the product of pairings, however, we optimized our code
(even in the version without assembly code) to compute multi-pairings simultaneously (Sec-
tion 6.2). Second, and this applies to signature generation as well, the analytical costs consider
that the `⇥ t coefficient matrix in a predicate’s MSP does not contain any zeros. In practice, we
find coefficient matrices are sparse, which significantly reduces the amount of executed opera-
tions. For example, the analytical run time for generating a signature on a predicate of the form
A^B ^C ^D ^E is around 11.5s. Our implementation, in turn, takes 7.5s (Figure 7.2 on the
bottom). To verify such a signature the analytical run times are around 30s and 14s using the
deterministic and probabilistic algorithms, respectively, while our implementation takes around
13.5s and 7s.



7.2. Experiments 174

●
●

●
●

●

●

●

●

●

●

1 2 3 4 5 6 7 8 9 10

10

20

30

40

Number of Attributes

ABS Sign

R
un

 T
im

e 
(s

)

●

Results
Analytical
Experimental

● ●
●

●
●

●

●

●

●

●

1 2 3 4 5 6 7 8 9 10

20
40
60
80

100
120

Number of Attributes

ABS D.Ver

R
un

 T
im

e 
(s

)

● ●
●

●
●

●
●

●

●

●

1 2 3 4 5 6 7 8 9 10

10
20
30
40
50

Number of Attributes

ABS P.Ver

R
un

 T
im

e 
(s

)
Arduino Due 

100−bit Sec. Level − Without Optimization

Figure 7.2: Analytical and experimental run times for ABS algorithms (signature generation on
the top, deterministic signature verification on the middle, and probabilistic signature verifica-
tion on the bottom) varying predicate structures in our prototype of AoT without optimization
on the Arduino Due. The curves on the Figure are plotted combining Tables 7.1 and 7.4.

We also evaluate the RAM usage of ABS algorithms considering the same variations on
the predicate structures we just presented. Figure 7.3 shows our experimental results. We mea-
sure maximum memory utilization as the maximum stack size reached by each ABS algorithm
during its execution, once RELIC only allocates memory on the stack. In terms of memory
consumption, ABS is well-suited for resource-constrained devices as it requires at most 19KB
of RAM memory for a predicate with ten attributes and nine “and” operators. The memory
usage profile is the same for the three versions of our AoT prototype at 100-bit security level,
once our optimization does not target memory consumption but execution time.

Finally, we also evaluate storage requirements for AoT on the Due. Our extended RELIC
library plus our AoT implementation takes 146 KB of storage, which fits on the Due while
leaving significant storage space for applications. The storage requirement also is not impacted
by our optimization as well, all of our three AoT prototypes on the Due have less than 150 KB.

AoT prototype with assembly code optimization. Now we show the results of our optimized
version of our AoT prototype. Every result is generated using the same test cases from the
previous version of the prototype, i.e., messages length, number of runs, predicate structures,
etc. Figure 7.4 shows the run times for the asymmetric cryptographic primitives used in this
optimized version of our AoT prototype.
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Figure 7.3: Experimental ABS algorithms’ RAM requirements at 100-bit security level on the
Arduino Due for varying the number of attributes in the predicate and using only “and” opera-
tors.

We observe that the optimized prototype considerably improves the performance of all
cryptographic primitives used in AoT. IBS signature run times decrease from 76ms to 45ms and
from 376ms to 245ms for signature generation and verification, respectively. IBE encryption
and decryption run times are reduced from 1.5s to 721ms and from 779ms to 348ms, respec-
tively. The session key establishment using the MB scheme, in turn, is reduced from 1.8s to
840ms. ABS numbers, in turn, become reasonable for a wide range of applications supported
by resource-constrained devices in the context of smart environments where a 100-bit security
level is enough. With this version of our prototype, an ABS signature on a predicate on the form
A^B is reduced from 3.3s to 1.6s compared to the version without optimization. The run time
of signature verification algorithms, in turn, are reduced from 6.5s to 3s in the deterministic
version and from 3.8 to 1.9s in the probabilistic one, respectively.

We also evaluate how the optimized version of our AoT prototype would scale in a
realistic IoT scenario. Table 7.5 shows run times of ABS algorithms’ most expensive operations
on this optimized version or our prototype. Figure 7.5, in turn, shows the analytically estimated
run times combined with our experimental results for the same variation on the number of
attributes (1  `  10) using only “and” operators on the predicate structures we presented
before. Analytically estimated run times in Figure 7.2 are plotted combining the experimental
numbers from Table 7.5 and ABS costs from Table 7.1. In this case, comparing the optimized
prototype with its version without optimization, the experimental run time for generating a
signature on a predicate of the form A^B^C^D^E is reduced from 7.5s to 3.6s, while to verify
such a signature using the deterministic and probabilistic versions of verification algorithms, the
run times are reduced from 13.5s to 6.1s and from 7s to 3.8s, respectively. Last, in this version
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Figure 7.4: Run times for asymmetric cryptographic primitives on the Ardunio Due at 100-bit
security level with optimized code. Run times for IBE and IBS use 32 bytes and 1KB messages,
respectively, and ABS uses predicates of the form A^B.

of our prototype, a complex predicate with ten attributes and nine “and” operators is signed in
7s, while such a signature can be verified in 11s and 7s using the deterministic and probabilistic
versions of ABS algorithms, respectively.

Arduino Due
100-bit Sec. Level - Optimized

Operation Run Time (ms)
Scalar point multiplication in G1 92± 2
Scalar point multiplication in G2 140± 6
Bilinear pairing (ê) 353± 1

Table 7.5: Expensive operations run times (ms) on our optimized prototype on the Arduino
Due.
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Figure 7.5: Analytical and experimental run times for ABS algorithms (signature generation
on the top, deterministic signature verification on the middle, and probabilistic signature veri-
fication on the bottom) varying predicate structures in our optimized prototype of AoT on the
Arduino Due. The curves on the Figure are plotted combining Tables 7.1 and 7.5.

AoT prototype with assembly code optimization and overclocking the device microcon-
troller. Trying to improve even more the ABS run times, we show the results we obtain using
our optimized version of AoT prototype executed on the Arduino Due with a microcontroller in
an overclocking state. The maximum frequency we manage to stabilize the Due microcontroller
in a overclocking state is 114 MHz. Considering the microcontroller’s original 86 MHz clock
frequency, the hypothetical best speedup we can reach with such an overclock rate is 1.36.
Figure 7.6 shows the run times for the asymmetric cryptographic primitives used in AoT for
an optimized prototype executed on a microcontroller in overclocking state. Focusing specifi-
cally on the ABS numbers, this strategy allows us to reduce the ABS signature generation run
time from 1.6s to 1.2s, which represents a 1.33 speedup. The ABS signature verification algo-
rithms, in turn, are reduced from 3s to 2.4s in the deterministic version and from 1.9s to 1.5s
in the probabilistic one. These reductions represent 1.25 and 1.27 speedups, respectively. As
expected, the improvement in the run times is not directly proportional to the clock frequency
increase, even so, the results get close to the hypothetical best improvement. With this improve-
ment on ABS run times, the range of applications supported resource-constrained devices in the
context of smart environments is amplified. However, in any scenario, this kind of strategy
must be applied carefully because it carries several drawbacks such as increased device power
consumption, device overheating, and reduced lifespan of hardware components of the device.
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Figure 7.6: Run times for asymmetric cryptographic primitives at 100-bit security level with
optimized code and overclocking the Due microcontroller. Run times for IBE and IBS use 32
bytes and 1KB messages, respectively, and ABS uses predicates of the form A^B.

Table 7.6 shows run times (in ms) of ABS most expensive operations on this optimized
and overclock version or our prototype. Figure 7.7, in turn, shows the analytically estimated
run times combined with our experimental results for the same variation on the number of
attributes (1  `  10) and only “and” operators on the predicate structures we presented
before. Analytically estimated run times in Figure 7.7 are plotted combining the experimental
numbers from Table 7.6 and ABS costs from Table 7.1. In this case, comparing the overclock
version with the optimized one, the experimental run times for generating a signature using
a predicate of the form A ^ B ^ C ^ D ^ E is reduced from 3.6s to 2.9s, while to verify
such a signature using the deterministic and probabilistic versions of verification algorithms,
respectively, the numbers are reduced from 6.1s to 4.7s and from 3.8s to 2.9s. A complex
predicate with ten attributes and nine “and” operators is singed in 5.4s and verified in 8.7s and
5.4s using the deterministic and probabilistic versions of ABS algorithms, respectively.
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Arduino Due
100-bit Sec. Level - Optimized & Overclock

Operation Run Time (ms)
Scalar point multiplication in G1 69± 2
Scalar point multiplication in G2 107± 5
Bilinear pairing (ê) 266± 2

Table 7.6: Expensive operations run times (ms) on our optimized prototype on the Arduino Due
with an microcontroller in overclocking state.
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Figure 7.7: Analytical and experimental run times for ABS algorithms varying predicate struc-
tures in our optimized prototype of AoT on the Due with microcontroller in overclocking state.
The curves on the Figure are plotted combining Tables 7.1 and 7.5.

Strategies to improve ABS performance. Our experiments show that at a 100-bit security
level a wide range of applications that depends on resource-constrained devices can indeed
be supported by our implementation of AoT. However, it is important to understand what can
be done if more performance is needed. To do so, we perform further analysis on our AoT
implementation. First, we note the Arduino platform does not provide a proper tool to analyze
in detail the execution of a program. Hence we use as an alternative one of our other evaluation
platforms, the Raspberry Pi3, which has the CPU architecture with the same instruction set as
the Arduino Due. This means our optimized assembly code can be executed on both platforms,
which, in turn, allows us to compile and execute the ABS algorithms without optimization and
using our optimized code on the Raspberry Pi3 using a profiling software which shows us in
detail the speedup obtained with our optimizations. Table 7.7 presents the profiling results of
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ABS algorithms considering the the arithmetic backend of curve BN254 base field implemented
without optimization and optimized using ARM assembly instructions. In the Table, we show
how much the most time consuming arithmetic functions (multiplication and modular reduction
on the base field) contribute to the overall execution of ABS algorithms. These numbers are
generated using the software Gprof [45]. We combine these percentages of contributions with
the run times obtained in our experimental evaluation on the Due to estimate the individual run
time of such arithmetic functions in the ABS algorithms’ execution. Last, we use the estimated
run times to estimate the individual speedup obtained with the optimized code.

ABS Algorithm Function Without Optimization Optimized Speedup% Time Run Time (s) % Time Run Time (s)

Signature
Generation

Multiplication 33.65% 1.11 23.81% 0.38 2.91
Modular Reduction 32.83% 1.08 20.48% 0.33 3.31
Others 33.52% 1.11 55.71% 0.89 1.24

Deterministic
Signature

Verification

Multiplication 33.95% 2.21 27.05% 0.81 2.72
Modular Reduction 25.28% 1.64 16.49% 0.49 3.32
Others 40.77% 2.65 56.46% 1.69 1.56

Probabilistic
Signature

Verification

Multiplication 32.83% 1.25 21.00% 0.42 2.97
Modular Reduction 25.10% 0.95 18.51% 0.37 2.58
Others 42.07% 1.60 60.49% 1.21 1.32

Table 7.7: Profiling results of ABS algorithms at 100-bit security level using Gprof [45] on
Raspberry Pi3 combined with experimental run times from the Arduino Due.

We observe that applying Amdahl’s law [3] in the numbers from Table 7.7, i.e., if we
could hypothetically implement field multiplication and modular reduction functions in negli-
gible time, only the ABS signature generation would perform below 1 second, while the prob-
abilistic and deterministic signature verification would take 1.07s and 1.64s, respectively. This
aspect show us that other approaches to improve the performance of an ABS construction such
as the one we chose to be part of our prototype must be carefully analyzed. For instance, the
usage of an off-the-shelf co-processor that provides only the field multiplication and modular
reduction would not be enough to have run times below 1 second. On the other hand, if such a
component handles not only these operations but all field arithmetic backend might be a good
choice. If other strategies such as the development of dedicated hardware are under consider-
ation, in turn, several other aspects, such as the level of speedup suitable for the application,
the power consumption requirements, and prototyping and production costs, must be taken into
account. In this case, Application Specific Integrated Circuit (ASIC) provides the best cases for
speedup and energy efficiency in a context such as IoT. However, the prototyping and produc-
tion costs might be too high. As a plausible alternative there are the Field Programmable Gate
Array (FPGAs), which offer a flexible environment for prototyping where good speedups for
an IoT application can be reached at the same time it has lower costs compared to ASIC.
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7.2.1.2 Intermediate Platform

Now we present the evaluation of our prototype on a representative of intermediate plat-
forms that could be part of a smart environment supported by AoT, the Raspberry Pi1. As we
use the same underlying implementation of AoT, the memory and storage requirements ob-
tained for the Due prototype show that these numbers are negligible compared to the amount of
resources available on our other platforms, including the Raspberry Pi, therefore we focus on
evaluating execution time.

First of all, we notice that even being an ARM-based platform, during the development
of the optimized code for the ARM architecture, we end up using instructions specifically from
the armv7’s instruction set which are not available on the instruction set of the Raspberry Pi1
CPU (armv6). This means that our optimized code does not execute directly on the Raspberry
Pi1 without proper modification. However, as we will present, the efficiency of AoT prototype
without any optimization on the Raspberry Pi1 is enough for most IoT applications, therefore
we do not put effort into adapting the original implementation. Every result we present is
generated using the same test cases used in the evaluation of AoT on the resource-constrained
platform. Figure 7.8 shows the run times for the asymmetric cryptographic primitives used in
AoT on the Raspberry Pi1.
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Figure 7.8: Run times for asymmetric cryptographic primitives on the Raspberry Pi1 at 100-bit
security level. Run times for IBE and IBS use 32 bytes and 1KB messages, respectively, and
ABS uses predicates of the form A^B.
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We observe that even without any optimization, all cryptographic primitives used in AoT
execute in reasonable time on the Raspberry Pi1. For instance, IBE encryption and decryption,
IBS signature generation and verification, and the MB scheme are executed under 100ms. The
ABS run times, in spite of being higher than 100ms, are at most 370ms, which makes it suitable
for most IoT applications. Specifically, an ABS signature on a predicate of the form A ^ B

takes around 190ms, a probabilistic signature verification takes around 230ms and the most
timing consuming deterministic signature verification takes around 370ms.

We also evaluate how our AoT prototype on an intermediate platform would scale in a
realistic IoT scenario. Table 7.4 shows run times of ABS algorithms’ most expensive operations
on our prototype for the Raspberry PI1. Figure 7.9, in turn, shows analytically estimated run
times for ABS signature generation (on the top), deterministic verification (on the middle), and
probabilistic verification (on the bottom) considering different predicate structures, where we
vary the number of attributes (1  `  10) and use only “and” operator. Curves in Figure 7.9
are plotted combining the experimental numbers from Table 7.8 and ABS costs from Table 7.1.
In the x axis we represent the number ` of attributes in the predicate.

Raspberry Pi1
100-bit Sec. Level

Operation Run Time (ms)
Scalar point multiplication in G1 9.1± 0.3
Scalar point multiplication in G2 18.0± 2.0
Bilinear pairing (ê) 43.0± 0.7

Table 7.8: Expensive operations run times (ms) on the AoT prototype for the Raspberry Pi1.

The analytical curves from Figure 7.9 show that for complex predicates with ten at-
tributes and nine “and” operators, AoT prototype on the Raspberry Pi1 would take around 2.5s
to generate a signature, 5.8s to verify it using the deterministic algorithm and around 2.5s to
verify it using the probabilistic algorithm. As we did in the evaluation on resource-constrained
platform, we complement the Figure 7.9 curves with our experimental averaged over 30 runs
(coefficients of variation are below 5%, not shown) considering the same predicate structures.
As expected, the experimental results are considerably better. The prototype on the Raspberry
Pi1 actually takes around 800ms to sign such a complex predicate, 1.3s to verify it using the de-
terministic algorithm and around 800ms to verify it using the probabilistic algorithm. Therefore,
our AoT implementation is indeed well-suited for intermediate platforms such as the Raspberry
Pi1.
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Figure 7.9: Analytical and experimental run times for ABS algorithms (signature generation on
the top, deterministic signature verification on the middle, and probabilistic signature verifica-
tion on the bottom) varying predicate structures in our prototype of AoT on the Raspberry Pi1.
The curves on the Figure are plotted combining Tables 7.1 and 7.8.

7.2.1.3 Powerful Platforms

Now we present the evaluation of our AoT prototype on the representatives of pow-
erful platforms, the Raspberry Pi3 and the Google Pixel 6. Theoretically, both devices have
CPUs (armv8 and armv7, respectively) compatible with our prototype optimized for the ARM
platform with assembly code based on the armv7 instruction set. However, we only use our
optimized prototype on the Raspberry Pi3 due to the many problems we face during the library
building using the Android native development kit tool chain for the smartphone. Nevertheless,
AoT imposes negligible overhead on the Google Pixel 6, even without any optimization. Every
result we present is generated using the same test cases used in the evaluation of AoT on other
platforms.

Figure 7.10 shows the run times of asymmetric cryptographic primitives used in AoT
on both powerful platforms (Raspberry Pi3 results on the left and Google Pixel 6 results on the
right). These devices have processors significantly more powerful than the Arduino Due and the
Raspberry Pi1, which results in significantly higher performance. All cryptographic primitives
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used in AoT execute in less than 100ms on the Raspberry Pi3 and in less than 25ms on the
Google Pixel 6.
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Figure 7.10: Run times for asymmetric cryptographic primitives in AoT on the Raspberry Pi3
(left) and Google Pixel 6 (right) at 100-bit security level. Run times for IBE and IBS use 32
bytes and 1KB messages, respectively, and ABS uses predicates of the form A^B.

We also evaluate how our AoT prototype on the powerful platforms would scale in real-
istic IoT scenarios. Table 7.9 shows run times of ABS algorithms’ most expensive operations on
our prototype for the Raspberry Pi3 and Google Pixel 6. Figures 7.11 and 7.12 show analytically
estimated run times for ABS signature generation (on the top), deterministic verification (on the
middle), and probabilistic verification (on the bottom) on the Raspberry Pi3 and Google Pixel
6, respectively, considering the different predicate structures varying the number of attributes
(1  `  10) and use only “and” operator. Curves in the Figures are plotted combining the
experimental numbers from Table 7.9 and ABS costs from Table 7.1. In the x axis we represent
the number ` of attributes in the predicate.

100-bit Sec. Level
Raspberry Pi3 Google Pixel 6

Operation Run Time (ms) Run Time (ms)
Scalar point multiplication in G1 2.73± 0.05 0.54± 0.01
Scalar point multiplication in G2 3.70± 0.20 1.05± 0.05
Bilinear pairing (ê) 10.40± 0.20 2.49± 0.01

Table 7.9: Expensive operations run times (ms) on the AoT prototype at 100-bit security level
for the Raspberry Pi3 and the Google Pixel 6.

The analytical curves in Figures 7.11 and 7.12 show that for a complex predicate with
ten attributes and nine “and” operators our AoT prototype on the Raspberry Pi3 and on the
Google Pixel 6 would take, respectively, around 640ms and 140ms to generate a signature, 1.5s
and 340ms to verify it using the deterministic algorithm and around 710ms and 150ms to verify
it using the probabilistic algorithm. As we did in the evaluation on other platforms, we com-
plement the curves on the Figures with our experimental averaged over 30 runs (coefficients of
variation are below 5%, not shown) considering the same predicate structures. As expected, the
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experimental results are even better. The AoT prototype on Raspberry Pi3 actually takes around
200ms to sign such a complex predicate, 340ms to verify it using the deterministic algorithm
and around 210ms to verify it using the probabilistic algorithm. The Google Pix 6, in turn,
actually takes 48ms to sign this predicate, 80ms to verify it using the deterministic algorithm
and around 45ms to verify it using the probabilistic algorithm. Therefore, experimental results
show that AoT imposes negligible overhead on powerful devices.
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Figure 7.11: Analytical and experimental run times for ABS algorithms (signature generation
on the top, deterministic signature verification on the middle, and probabilistic signature veri-
fication on the bottom) varying predicate structures in our prototype of AoT on the Raspberry
Pi3. The curves on the Figure are plotted combining Tables 7.1 and 7.9.
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Figure 7.12: Analytical and experimental run times for ABS algorithms (signature generation
on the top, deterministic signature verification on the middle, and probabilistic signature verifi-
cation on the bottom) varying predicate structures in our prototype of AoT on the Google Pixel
6. The curves on the Figure are plotted combining Tables 7.1 and 7.9.

7.2.2 128-bit Security Level Results

7.2.2.1 Resource-constrained Platform

We start the evaluation of our AoT prototype at 128-bit security level on the Arduino
Due. Differently from the 100-bit security level, there is no version of RELIC with the base
field arithmetic of curve BLS12-381 implemented in assembly code for the ARM architecture.
Therefore, we generate the experimental results using an evaluation prototype that does not
include any optimization. Then, we estimate the run times of a hypothetical optimized proto-
type using the speedup we obtained on the 100-bit security level experiments. Every result we
present is generated using the same test cases used in the evaluation of AoT prototype on other
platforms.

Before discussing the run time aspects of this version of our prototype, we evaluate the
usage of RAM for ABS algorithms and the storage requirement of our AoT prototype at 128-
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bit security level. Starting with RAM, we measure maximum memory utilization during the
execution of each ABS algorithm varying the number of attributes (1  `  10) and using
only “and” operators on test predicates. Figure 7.13 shows our experimental results. In terms
of memory consumption, the ABS implementation on our AoT prototype at 128-bit security
level, in spite of requiring twice as much memory as the 100-bit security level version of our
prototype, is well-suited for resource-constrained devices as it requires at most 38KB of RAM
memory for a complex predicate with ten attributes and nine “and” operators. The storage
requirements for AoT on the Due, in turn, do not differ from the other versions of our prototype.
The RELIC library plus our AoT implementation takes 147 KB of storage, which fits on the Due
while leaving significant storage space for applications. RAM and storage requirements are not
affected by the optimizations we envision in the subsequent analysis, remaining the same for a
hypothetical optimized prototype.
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Figure 7.13: Experimental ABS algorithms’ RAM requirements at 128-bit security level on
the Arduino Due for varying the number of attributes in the predicate and using only “and”
operators.

Figure 7.14 shows the run times for the cryptographic primitives used in AoT. As ex-
pected, using a curve with a larger base field order (381-bit in this case versus 254-bit in the
case of the BN curve) and without optimization, the run time results are high on the Due. Our
128-bit security level prototype on the Due takes around 3.7s and 1.9s to perform IBE encryp-
tion and decryption, respectively, 4.4s to establish keys using the MB scheme, and 142ms and
707ms to generate and verify an IBS signature. Even with high run times, as these primitives are
not frequently executed, they are acceptable for resource-constrained devices executing AoT at
128-bit security level. However, the ABS run times for this version of our prototype on the Due,
as ABS algorithms are executed in each access control of a device operation, fulfill the timing
requirements of a narrow range of IoT applications. In this version, our AoT prototype on the
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Due takes around 6s to generate a signature for a predicate of the form A ^ B, and 15s and 8s
to verify it using the deterministic and probabilistic algorithms, respectively.
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Figure 7.14: Run times for asymmetric cryptographic primitives on the Due at 128-bit security
level without optimization. Run times for IBE and IBS use 32 bytes and 1KB messages, respec-
tively, and ABS uses predicates of the form A^B.

As there is no optimization for curve BLS12-381 on RELIC, we estimate the ABS run
times for a prototype if such an option was available based on the results obtained in the pro-
filing analysis of prototype versions without optimization and with assembly code for curve
BN254 (Section 7.2.1). First of all, we use the Raspberry Pi3 as an auxiliary platform to profile
our prototype at 128-bit security level without optimization. We use the contribution percent-
ages of multiplication, modular reduction on the base field, and other functions on the overall
run times of ABS algorithms obtained from the profiling on the Raspberry Pi3 combined with
the experimental run times for ABS algorithms on the Due to estimate the run times of each
arithmetic function on the Due. Then, we use the optimization speedup we obtained with the
assembly implementation in the 100-bit prototype evaluation to estimate the ABS algorithms’
run times on a hypothetically optimized version of RELIC for curve BLS12-381. Table 7.10
presents all these numbers. We estimate that our AoT prototype using an optimized version
of RELIC for curve BLS12-381 on the Due would take around 2.7s to generate an ABS sig-
nature for a predicate of the form A ^ B, and 6.5s and 4s to verify such a signature using the
deterministic and probabilistic ABS algorithms, respectively.

Analogously to the strategy adopted for our 100-bit prototype, another effort to reduce
the ABS run times would be to overclock the Arduino Due microcontroller. We also estimate the
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ABS Function Without Optimization Optimization Estimated ABS Estimated
Algorithm % Time Run Time (s) Speedup Run Time (s) Run Time (s)

Signature
Generation

Multiplication 37.31% 2.28 2.91 0.78
2.69Modular Reduction 38.08% 2.32 3.31 0.70

Others 24.61% 1.50 1.24 1.21
Deterministic

Signature
Verification

Multiplication 40.16% 6.04 2.72 2.22
6.52Modular Reduction 28.69% 4.31 3.32 1.30

Others 31.15% 4.68 1.56 3.00
Probabilistic

Signature
Verification

Multiplication 33.72% 2.69 2.97 0.90
3.94Modular Reduction 32.56% 2.59 2.58 1.01

Others 33.72% 2.69 1.32 2.03

Table 7.10: Profiling results of ABS algorithms at 128-bit security level using Gprof [45] on
Raspberry Pi3 combined with experimental run times on the Due and speedup obtained on the
100-bit security level evaluation.

results of such a scenario by applying the speedup obtained by overclocking the microcontroller
in the 100-bit security level experimental evaluation to the run times we just presented. We
estimate that our AoT prototype using optimized assembly code at 128-bit security level on the
Arudino Due with its microcontroller in an overclocking state at 114MHz would take around 2s
to generate an ABS signature on a predicate of the form A ^ B, 5.2s to verify such a signature
using the deterministic ABS algorithm, and 3.1s to verify the signature using the probabilistic
ABS algorithm. Therefore, IoT applications that can afford such performance overheads on
the resource-constrained devices as a trade-off for 128-bit security level can leverage such an
instantiation of AoT. Otherwise, alternative schemes to speedup computation, as discussed in
Section 7.2.1, should be considered.

7.2.2.2 Intermediate Platform

Now we present the evaluation of our prototype at 128-bit security level on the Rasp-
berry Pi1. As we use the same underlying implementation of AoT, the memory and storage
requirements obtained for the Due prototype show that these numbers are negligible compared
to the amount of resources available on our other platforms, including the Raspberry Pi, there-
fore we focus on evaluating execution time. Every result we present is generated using the same
test cases used in the evaluation of AoT on other test platforms. Figure 7.15 shows the run times
for the asymmetric cryptographic primitives used in AoT on the Raspberry Pi1.

We observe that even without any optimization, all cryptographic primitives used in AoT
execute in reasonable time on the Raspberry Pi1. For instance, IBE encryption and decryption,
IBS signature generation and verification, and the MB scheme are executed under 250ms. The
ABS run times are also suitable for most IoT applications. Specifically, an ABS signature on
a predicate of the form A ^B takes around 320ms, a probabilistic signature verification takes



7.2. Experiments 190

Raspberry Pi1 
128−bit Sec. Level

IBE IBS ABS

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Enc Dec Sign Ver Sign D.Ver P.Ver MB

R
un

 T
im

e 
(m

s)

Figure 7.15: Run times for asymmetric cryptographic primitives on the Raspberry Pi1 at 128-bit
security level. Run times for IBE and IBS use 32 bytes and 1KB messages, respectively, and
ABS uses predicates of the form A^B.

around 420ms and the most timing consuming deterministic signature verification takes around
770ms.

Table 7.11 shows run times of ABS algorithms’ most expensive operations for the Rasp-
berry PI1 to allow us to evaluate how our AoT prototype at 128-bit security level executing on
an intermediate platform would scale in a realistic IoT scenario. Figure 7.16 shows analytically
estimated run times for ABS signature generation (on the top), deterministic verification (on
the middle), and probabilistic verification (on the bottom) considering different predicate struc-
tures, where we vary the number of attributes (1  `  10) and use only “and” operator. Curves
in Figure 7.16 are plotted combining the experimental numbers from Table 7.11 and ABS costs
from Table 7.1. In the x axis we represent the number ` of attributes in the predicate.

Raspberry Pi1
128-bit Sec. Level

Operation Run Time (ms)
Scalar point multiplication in G1 15.6± 0.3
Scalar point multiplication in G2 30.0± 1.0
Bilinear pairing (ê) 93.9± 0.4

Table 7.11: Expensive operations run times (ms) on the AoT prototype at 128-bit security level
for the Raspberry Pi1.

The analytical curves from Figure 7.16 show that for complex predicates with ten at-
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tributes and nine “and” operators, AoT prototype on the Raspberry Pi1 would take around 4s to
generate a signature, 12s to verify it using the deterministic algorithm, and around 4.5s to verify
it using the probabilistic algorithm. As we did in the evaluation on our other test platforms, we
complement the Figure 7.16 curves with our experimental averaged over 30 runs (coefficients
of variation are below 5%, not shown) considering the same predicate structures. As expected,
the experimental results are considerably better. The prototype on the Raspberry Pi1 actually
takes around 1.3s to sign such a complex predicate, 2.7s to verify it using the deterministic
algorithm, and around 1.2s to verify it using the probabilistic algorithm. In terms of scalability,
the numbers for complex predicates are a bit high for intermediate platforms on this version of
our AoT prototype. However, as we do not implement any optimization on this version, there
is much room for improvement, as discussed for resource-constrained devices.
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Figure 7.16: Analytical and experimental run times for ABS algorithms (signature generation
on the top, deterministic signature verification on the middle, and probabilistic signature veri-
fication on the bottom) varying predicate structures in our prototype of AoT on the Raspberry
Pi1. The curves on the Figure are plotted combining Tables 7.1 and 7.8.

7.2.2.3 Powerful Platforms

Now we present the evaluation of our AoT prototype at 128-bit security level on the
Raspberry Pi3 and the Google Pixel 6. Every result we present is generated using the same test
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cases used in the evaluation of AoT on other platforms.
Figure 7.17 shows the run times of asymmetric cryptographic primitives used in AoT

on both powerful platforms (Raspberry Pi3 results on the left and Google Pixel 6 results on the
right). All cryptographic primitives used in AoT execute in less than 300ms on the Raspberry
Pi3 and in less than 70ms on the Google Pixel 6.
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Figure 7.17: Run times for asymmetric cryptographic primitives in AoT on the Raspberry Pi3
(left) and Google Pixel 6 (right) at 128-bit security level. Run times for IBE and IBS use 32
bytes and 1KB messages, respectively, and ABS uses predicates of the form A^B.

Table 7.12 shows run times of ABS algorithms’ most expensive operations on our pro-
totype for the Raspberry Pi3 and Google Pixel 6. We use these numbers to evaluate how our
AoT prototype at 128-bit secutity level would scale in realistic IoT scenarios when execited
on powerful platforms. Figures 7.18 and 7.19 show analytically estimated run times for ABS
signature generation (on the top), deterministic verification (on the middle), and probabilistic
verification (on the bottom) on the Raspberry Pi3 and Google Pixel 6, respectively, considering
the different predicate structures varying the number of attributes (1  `  10) and use only
“and” operator. Curves in the Figures are plotted combining the experimental numbers from
Table 7.12 and ABS costs from Table 7.1. In the x axis we represent the number ` of attributes
in the predicate.

128-bit Sec. Level
Raspberry Pi3 Google Pixel 6

Operation Run Time (ms) Run Time (ms)
Scalar point multiplication in G1 4.9± 0.1 1.07± 0.03
Scalar point multiplication in G2 9.8± 0.4 2.50± 0.10
Bilinear pairing (ê) 30.8± 0.10 7.70± 0.10

Table 7.12: Expensive operations run times (ms) on the AoT prototype at 128-bit security level
for the Raspberry Pi3 and the Google Pixel 6.
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Figure 7.18: Analytical and experimental run times for ABS algorithms (signature generation
on the top, deterministic signature verification on the middle, and probabilistic signature veri-
fication on the bottom) varying predicate structures in our prototype of AoT at 128-bit security
level on the Raspberry Pi3. The curves on the Figure are plotted combining Tables 7.1 and 7.12.
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Figure 7.19: Analytical and experimental run times for ABS algorithms (signature generation
on the top, deterministic signature verification on the middle, and probabilistic signature veri-
fication on the bottom) varying predicate structures in our prototype of AoT at 128-bit security
level on the Google Pixel 6. The curves on the Figure are plotted combining Tables 7.1 and 7.12.
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The analytical curves in Figures 7.18 and 7.19 show that for a complex predicate with
ten attributes and nine “and” operators our AoT prototype on the Raspberry Pi3 and on the
Google Pixel 6 would take, respectively, around 1.2s and 270ms to generate a signature, 4s and
1s to verify it using the deterministic algorithm and around 1.5s and 320ms to verify it using
the probabilistic algorithm. As we did in the evaluation on other platforms, we complement the
curves on the Figures with our experimental averaged over 30 runs (coefficients of variation are
below 5%, not shown) considering the same predicate structures. As expected, the experimental
results are considerably better. The AoT prototype at 128-bit security level on Raspberry Pi3
actually takes around 450ms to sign such a complex predicate, 900ms to verify it using the
deterministic algorithm and around 420ms to verify it using the probabilistic algorithm. The
prototype executed on the Google Pix 6, in turn, actually takes 100ms to sign this predicate,
230ms to verify it using the deterministic algorithm and around 100ms to verify it using the
probabilistic algorithm. Therefore, experimental results show that AoT at 128-bit security level
also imposes negligible overhead on powerful devices.
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Chapter 8

Conclusion and Future Work

In IoT, questions as how to enable authentication and fine-grained access control remain unan-
swered. Authentication schemes for IoT which target resource-constrained devices, typically
base their access control mechanism solely on authentication. Alternatives for fine-grained ac-
cess control for resource-constrained devices in IoT, in turn, usually delegate the access control
decision to an external trusted entity, which impacts user experience in cases of instability or
unavailability on the authorization service. Besides, questions regarding the portability and mo-
bility of “things” arise. Portability and mobility are typical of IoT and they reinforce the call
for interoperation between local and guest devices. Last, there is a lack of options for authenti-
cation and access control solutions that cover the entire IoT device life-cycle, i.e., from device
manufacturing to decommissioning.

In this work we proposed AoT, a holistic authentication and fine-grained access control
solution for the entire IoT device life-cycle, namely: pre-deployment, ordering, deployment,
functioning, and retirement. Besides, in AoT, all device-to-device authentication and access
control processes’ decision do not have any delegation to third parties, the solution allows de-
vice ownership reassignment, interoperation between devices from different local domains of
trust, and contemplates separated device-to-manufacturer and device-to-device trust relation-
ships during the IoT device life-cycle.

AoT protocols relies on IBC to distribute keys and authenticate devices as well as ABC
to cryptographically enforce a fine-grained ABAC model. Our insight is to tackle the well-
known key escrow problem of IBC is designing a two-domain architecture to manage the sepa-
rated manufacturer-to-device and local device-to-device trust relationships.

We designed AoT as a composition of cryptographic protocols and primitives, and pre-
sented its modeling and security analysis under the Universal Composability paradigm. In this
context, we extended the functionality for cryptographic primitives from [62] to support a new
set of primitives which, in turn, allows the analysis of the identity-based authenticated key
agreement protocols categorized into the same family of protocols proposed by [81].

We implemented an AoT prototype, at different security levels, on different platforms,
varying computational resources, representing a wide range of IoT devices. We used a recently
launched Android mobile phone, a Google Pixel 6, as a representative of smartphones that
could be used in a smart environment supported by AoT. Other powerful entities in a smart
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environment were represented by a Raspberry Pi3. We represented intermediate smart devices
with Raspberry Pi1. Last, as our representative of microcontrollers that could be used on low-
end appliances supporting AoT, we used an Arduino Due. We used our prototype to quantify
CPU, memory, storage, and communication overheads imposed by AoT protocols. Our results
showed that memory and storage requirements of AoT are, at both 100- and 128-bit secu-
rity levels, well-suited for all types of devices analyzed. In terms of performance, at 100-bit
security-level, the AoT performance ranges from affordable on resource-constrained devices
like the Arduino Due to efficient on intermediate devices like the Rapsberry Pi1, and negligi-
ble on powerful devices like the Raspberry Pi3 and on smartphones like the Google Pixel 6.
The same apply if we observe results at 128-bit security level for intermediate and powerful
devices. In case of resource-constrained devices, however, the run times might be enough for
a limited number of applications, and alternatives for speeding up the ABS computation might
be considered.

In future work, we plan to enhance the following aspects of AoT.

• Key establishment strategy will be extended to consider an identity-based key agreement
protocol without escrow, which will make it provide also perfect forward secrecy.

• Propose a new key establishment protocol also for the Functioning stage, such that it will
be resistant to key-compromise impersonation.

• Our extension on the Fcrypto functionality will be once more extended to support the anal-
ysis of a wider set of identity-based key agreement protocols under the Universal Com-
posability paradigm;

• We will research a new possibility for an ABS scheme which has the following require-
ments:

– lighter than the ABS scheme used in our prototype;

– analyzed in a more robust security model than the scheme used in our prototype;

– practical to be implemented;

– allows AoT inter-domain access control.
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