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+:
OcdLedOLOMK
f,
gg&OOK
84/.43:+
?43h304
4i8016
-+
%31,>601K
84:
.=/-1:+/<4
/4
13<@
jk-4
�+83+<4
/k
gL@jlMK
-+
gM
-+
/45+:734
-+
OLOL@



���������	
����
�	���������
�����	���	�������	����	�������	��� ��!	"��#�����	��	$���� %�����&�����!	��	'()*+)'*',!	-�	.'/',!	���0����	1��2���	�3��
�	�	4�
�5��
!	���	0��
�����	��	
��6	78�	�������	�8	.*679,!	�	.,	�	��:��;��	�	'*'*6���������	
����
�	���������
�����	���	<�����	$�����	��=����!	"��#�����	��	$���� %�����&�����!	��	*').*)'*',!	-�	*>/,,!	���0����	1��2���	�3��
�	�	4�
�5��
!	���	0��
�����	��	
��6	78�	�������	�8	.*679,!	�	.,	�	��:��;��	�	'*'*6���������	
����
�	���������
�����	���	��������	?@�A��	B� ��	��	��=@�!	C��D���	EF ����!	��*9).*)'*',!	-�	.*/'9!	���0����	1��2���	�3��
�	�	4�
�5��
!	���	0��
�����	��	
��6	78	�	�������	�8.*679,!	�	.,	�	��:��;��	�	'*'*6���������	
����
�	���������
�����	���	$��=�G�	H��=��	$��I� �!	C��D���	EF ����!	��*+).*)'*',!	-�	../79!	���0����	1��2���	�3��
�	�	4�
�5��
!	���	0��
�����	��	
��6	78	�	�������	�8.*679,!	�	.,	�	��:��;��	�	'*'*6���������	
����
�	���������
�����	���	JE�K<KBL	MEK�NOCE	BE	PE�C�	$LC�<L!	C��D���EF ����!	��	.+).*)'*',!	-�	*+/*+!	���0����	1��2���	�3��
�	�	4�
�5��
!	���	0��
�����	��	
��6	78�	�������	�8	.*679,!	�	.,	�	��:��;��	�	'*'*6Q	
����R��
�	����	��������	���	���	���0���
	��	����1S��/))���6�0�T6;�)���)�������
��U�V�����6�1�W
�
�X��������U���0����Y�U��T
�U
�����U�V�����X*!	��0���
��	�	�Z�T�	:���3�
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Resumo

Atualmente, Sistemas de Recomendação (SsR) têm se preocupado com o ambiente online
de aplicações do mundo real, onde o sistema deve continuamente aprender e prever novas
recomendações. Trabalhos atuais têm abordado essa tarefa como um problema de Multi-
Armed Bandit (MAB) ao propor modelos de Contextual Bandit (CB). A ideia é aplicar téc-
nicas de recomendação usuais para explorar as preferências do usuário, enquanto o sistema
também tenta aprender novas informações sobre seus gostos. Contudo, o nível de person-
alização desses modelos ainda está diretamente relacionado às informações previamente
disponíveis sobre os usuários. Após uma extensa revisão da literatura sobre o assunto,
observamos que os algoritmos atuais têm negligenciado o impacto de cenários de incerteza
sobre as preferências do usuário. Assumindo que o modelo bandit pode aprender inde-
pendentemente do item recomendado, tais modelos estão perdendo uma oportunidade de
obter mais informações sobre os usuários. Nesse sentido, esta dissertação aborda o desafio
de lidar com cenários de incerteza em modelos de Contextual Bandit. Em particular, in-
vestigamos dois cenários comuns em sistemas interativos: (1) quando o usuário entra pela
primeira vez e (2) quando o sistema continua fazendo recomendações incorretas devido a
suposições enganosas anteriores. Em ambos os cenários, propomos introduzir conceitos de
Reinforcement Learning para representar o trade-off entre exploitation e exploration nos
modelos bandit. Nossa solução consiste em recomendar itens não personalizados com base
na entropia e na popularidade para obter mais informações sobre o usuário sem diminuir a
precisão do modelo quando um cenário de incerteza é observado. Essa solução é então in-
stanciada em três algoritmos bandit tradicionais, criando novas versões de cada um deles.
Experimentos em domínios de recomendação distintos mostram que essas versões mod-
ificadas superam suas versões originais e todas as demais linhas de base, aumentando a
acurácia a longo prazo. Além disso, uma avaliação contrafactual valida que tais melhorias
não foram simplesmente alcançadas devido ao viés de conjuntos de dados offline.

Palavras-chave: Sistemas de Recomendação, Multi-Armed Bandits



Abstract

Nowadays, Recommendation Systems (RSs) have been concerned about the online envi-
ronment of real-world applications where the system should continually learn and predict
new recommendations. Current works have addressed this task as a Multi-Armed Ban-
dit (MAB) problem by proposing Contextual Bandit (CB) models. The idea is to apply
usual recommendation techniques to exploit the user’s preferences while the system also
addresses some exploration to learn new information about their tastes. The personali-
sation level of such models is still directly related to the information previously available
about the users. However, after an extensive literature review on this topic, we observe
that current algorithms have neglected the impact of scenarios of uncertainty about the
user’s preferences. Assuming that the bandit model can learn regardless of the recom-
mended item, such models are wasting an opportunity to get more information about the
users. In this sense, this dissertation addresses the challenge of handling scenarios of un-
certainty in Contextual Bandit models. In particular, we investigate two usual scenarios
in interactive systems: (1) when the user joins for the first time and (2) when the system
continually makes wrong recommendations because of prior misleading assumptions. In
both scenarios, we propose to introduce concepts from the Active Learning theory to rep-
resent the usual trade-off between exploration and exploitation in the bandit models. Our
solution consists of recommending non-personalised items based on entropy and popular-
ity to get more information about the user without decreasing the model’s accuracy when
an uncertain scenario is observed. This solution is then instantiated into three traditional
bandit algorithms, creating new versions of each of them. Experiments in distinct recom-
mendation domains show that these modified versions outperform their original ones and
all baselines by increasing the cumulative reward in the long run. Moreover, a counter-
factual evaluation validates that such improvements were not simply achieved due to the
bias of offline datasets.

Keywords: Recommendation Systems, Multi-Armed Bandits
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Chapter 1

Introduction

This chapter introduces the dissertation presented in this work. The first section de-
scribes the research context by explaining the user’s feedback problem with contextual
bandits, highlighting its challenges, and emphasising how it has been addressed in the
last few years. Then, the second section points out the statement of the thesis and the
main research questions raised in order to support our study. We intend to study how
the uncertainty scenarios around the user’s preferences can influence the user’s long-term
experience in the system. The main motivation is described in more detail in the third
section. Finally, we present the main contributions and the complete outline of this work
in the last two sections.

1.1 Background

Recommendation Systems (RSs) emerged at the beginning of the century to handle
the amount of information available on online platforms of e-commerce and entertainment.
Initially, such systems were proposed as simple filtering tools to identify what is more likely
to be of user interest [181]. Then, after the years, the collective effort of industry and
academia has resulted in an impressive number of algorithms, approaches, and advances
in this field [67, 118, 263]. RSs became more complex approaches to make personalised
recommendations in batches with their prior knowledge about user behaviours and/or rel-
evant characteristics of the items. However, nowadays, RSs are no longer straightforward
offline algorithms that make batch predictions according to business requirements. In cur-
rent online systems, RSs have become responsible for guiding the entire user’s experience
as a sequential decision model where the user continually interacts with the system in a
feedback loop [261, 293].

The user feedback loop is an interactive scenario where the system recommends
items to individual users while feedback on these recommendations is continuously ob-
served. As illustrated in Figure 1.1, at each user’s interaction, the system should rec-
ommend one or more items, receive the user’s feedback (i.e., a click, a like, a play, and
others), and then update its knowledge to the next trial [259]. The main goal is to learn
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at each interaction in order to increase the system knowledge and maximise the user’s sat-
isfaction in the long run. In this sense, some critical challenges must be addressed. First,
how to rapidly learn a new user’s interest while not compromising his/her recommenda-
tion experience? Then, how to identify changes in the user’s preferences and relearn them
over the interactions?

Figure 1.1: The feedback loop between a user and the recommendation system [50]. At
each user’s interaction, the system recommends an item(s) and receives feedback from
a user. The recommendation and the user’s choice are made according to the model
implemented and based on the user’s preferences.

In the last years, researchers have answered such questions by balancing the goals
of learning the user profile and providing accurate predictions as a Multi-Armed Bandit
(MAB) problem [18, 85, 245, 257]. MAB is a classic problem of the Reinforcement Learn-
ing theory in which a fixed limited set of resources (arms) must be selected to maximise
the expected gain (reward). Basically, at each trial, the system has to decide which arms
to select, which order to select, and whether to continue with it or try a different option.
In general, MAB models usually face the traditional dilemma between:

(1) exploiting the arm that seems the best option so far; or
(2) exploring an arm not yet tried out (or not tried enough).

Exploitation has notions of being greedy and a high probability of bringing a faster
payback but can introduce a regret of missing unexplored opportunities. In turn, explo-
ration usually has notions of gaining info, but it can take a long time to ensure enough
knowledge for the model and may introduce a regret of wasting time on failures. The
optimal solution is achieved by combining information and greedy gains.

In the recommendation field, items are usually modelled as the arms to be pulled
and selecting an arm is equivalent to recommending an item [192]. The reward is the
user’s feedback on that recommendation (e.g., clicks, acceptance, satisfaction, etc). Then,
while exploitation means selecting items with a high probability of being rated, explo-
ration means recommending different items in an attempt to gain more information about
users [288, 192]. Similar to traditional recommendation scenarios, the item probability to
be rated (a.k.a, the item utility) is defined by traditional RSs (like Collaborative Filtering)
according to the user’s history of actions [133, 40, 18]. In turn, the exploration step is often
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performed by random or uncertain choices like usual MAB solutions, such as ε-Greedy,
Upper Confidence Bound (UCB), and Thompson Sampling (TS). Some of them occa-
sionally explore items randomly (ε-Greedy algorithm). Other ones choose which options
to explore by favouring actions with higher uncertainty because they can provide more
information gains (UCB and Thompson Sampling algorithms) [133, 239, 281]. However,
addressing the exp-exp dilemma while providing personalised recommendations remains
an open challenge in the literature.

Current solutions have provided personalised recommendations in the interactive
scenario by implementing Contextual Bandit models [266, 259]. In this case, a context
(in the form of a feature vector) is revealed at each user’s interaction and an arm must be
selected based on it. The idea is similar to that used by traditional context-aware RSs but
implemented in an online environment where the user will evaluate the recommendation
and provide feedback (i.e., the reward) [133, 239]. Thus, the bandit model has worked for
each user individually and provided personalised recommendations over the entire journey
of each of them [129, 288, 257, 239]. However, despite the current advances, the personal-
isation level of such models still is directly related to the amount of information collected
to represent the user’s preferences. Moreover, unfortunately, there are several scenarios
where the model may be uncertainty about the users’ preferences over their journey
in the system. A first example is the pure cold-start scenario where the user is completely
new in the system and no information is previously provided [200, 17]. Another example
happens when the system is not confident enough about its current knowledge of the user
due to a preference change or even because the system has not defined the user’s profile
correctly [260, 174]. In both, the utility of any item (i.e., arm) for this user is not reliable
enough to make good recommendations for them.

1.2 Thesis Statement

In light of this context, we aim to investigate the limitations of Contextual Bandits
through the following thesis statement:

Recommending non-personalised items that enhance exploration and exploitation
in scenarios of uncertainty where the information about the user is not straightforward or
even does not exist increases the accuracy of Contextual Bandit models.

A closer look at the preceding statement introduces the main assumptions hereby
adopted. It refers to the quality of bandit models in scenarios of uncertainty about the
user’s preferences. We hypothesise that Contextual Bandit models fail to handle the ex-
ploration and exploitation trade-off required to maximise the long-term rewards when
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they have faced such scenarios. For this reason, such bandit models are limited to achiev-
ing per-user boundaries of accuracy in the long term. Especially in this work, we study
two scenarios of uncertainty about the user’s preferences in the feedback loop problem:
the first interactions (i.e., the pure cold-start problem) and the interactions after consecu-
tive mismatches (i.e., when the system does not hit any recommendation for a while). In
the first one, the total absence of user information creates a clear scenario of uncertainty
where the system is not able to exploit or explore his/her unknown preferences. The
second one refers to scenarios where the information about the user is not straightforward
and the system keeps exploiting wrong assumptions that ultimately lead to unsatisfactory
recommendations. In both, by assuming that bandit algorithms can always learn regard-
less of the items recommended, current Contextual Bandits have neglected the impact of
such scenarios on the user’s journey. We believe these algorithms are wasting an oppor-
tunity to use such scenarios to gain more insights into the users’ preferences. In the first
interactions or after successive mismatches, the users may not expect fully personalised
recommendations. By implementing approaches that can acquire more knowledge about
the users’ preferences in such scenarios of uncertainty, the accuracy of bandit models can
be significantly improved over the long term.

In this sense, we raise three main research questions (RQ) to guide this work:

- RQ1: How have current Contextual Bandit assumptions about uncertainty scenarios
impacted the personalised recommendations?

- RQ2: How can exploration and exploitation be ensured in Contextual Bandit models
when user preferences are uncertain?

- RQ3: What is the impact of enhancing exploration and exploitation when the Con-
textual Bandit model is uncertain about the user preferences?

The first question (RQ1) aims to investigate the bandit models in the recommen-
dation field in two different aspects: how they have been applied so far and what is the
impact of their assumptions. In order to answer the first part of RQ1, we first perform
a Systematic Literature Review (SLR) over the last 20 years of research in the field. A
total of 1327 articles are examined and 230 are selected as the most relevant for this work
(see Appendix A). Reading these articles, we notice that most state-of-the-art Contextual
Bandit algorithms still define the utility of an item for a user by a linear combination of
their features vector. The idea is similar to traditional Matrix Factorisation algorithms
where users and items are represented in linear features to provide personalised recom-
mendations [288]. However, such works do not address scenarios involving uncertainty
around the user’s preferences. Researchers have assumed that only the exploration step
of bandit models can deal with such scenarios. This work, in turn, studies the implemen-
tation details of current bandit algorithms and identifies a critical limitation to scenarios
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of uncertainty. When bandit models face the scenario with the highest uncertainty (the
pure cold-start problem), such models have performed as naive non-personalised RSs by:

(1) selecting items randomly in an attempt to guess the users’ preferences – a strategy
of pure exploration; or

(2) selecting the best items defined by the information known prior (similar to choosing
the most popular items) – a strategy of pure exploitation; or

(3) making a simple random exploration of the previous knowledge inferred by a Bayesian
model – in an attempt to combine exploration and exploitation.

Then, by answering the second aspect of RQ1, this work studies the impact of the
non-personalised approach in Contextual Bandit models. In this step, we only focus on
the pure cold-start scenario where there is a clear scenario of uncertainty about the user
preferences. Our analyses show that strategies based on pure exploration (like random
ones) can get more knowledge into the model but it often requires many interactions
until the users receive useful recommendations. On the other hand, pure-exploitation
approaches often recommend potentially relevant items for users. However, these items
do not add much knowledge to the model because most people usually like them (since
they are the most popular). The result is a bandit model with high precision in the first
user’s interactions that cannot maximise long-term satisfaction. Thus, it is expected that
a combination of the exploration and exploitation strategies may achieve better results by
optimising both goals. However, a simple random strategy over the most popular items (as
made by some of the current models) is also not enough to maximise long-term satisfaction.

Hence, the second research question aims to investigate how to ensure an effective
combination of exploration and exploitation in such scenarios of uncertainty. Answering
RQ2, we propose to apply concepts from the Active Learning (AL) theory. Traditionally,
AL is applied to improve machine learning models by adding more feedback (i.e., true
labels) [188]. In this sense, we propose to apply an AL strategy that combines the popu-
larity and entropy of the items to get more information about the users without decreasing
the model’s accuracy. This strategy is selected since it does not use any information about
the users and it might resemble the combination of exploration and exploitation even in
scenarios of uncertainty. While using popularity means increasing the probability that a
user will rate an item (i.e., exploitation), applying entropy means increasing the amount
of possible information to be achieved if the user rates an item (i.e., exploration). In the
first scenario of uncertainty, we create an initial context for new users based on the combi-
nation of popularity and entropy. The idea is to compel the bandit models to choose items
based on this AL strategy in the first interaction. Thus, new users will start their journey
by facing potentially relevant items that can also add some knowledge to the system. In
turn, in the scenario of misleading assumptions, we introduce this AL strategy every time
the recommender does not find a relevant item for consecutive times, such as 3, 5, 10,
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or even 20 consecutive unsuccessful recommendations. The idea is to stop exploiting the
wrong information for that user and try to learn their preferences again with a proper
strategy. Since such strategies are not dependent on any specific information about the
users, both modifications can be applied together in any Contextual Bandit model. In
this work, we propose to apply our AL strategy in three distinct bandit algorithms – one
for each class of the traditional MAB problem – Linear ε-Greedy [288], LinUCB [129],
and the Particle Thompson Sampling [114].

Therefore, the third research question (RQ3) aims to measure the impact of this
non-personalised Active Learning strategy in current Contextual Bandit models. To an-
swer RQ3, we perform distinct experiments on three datasets from different recommen-
dation domains (i.e., movies, songs, and books). First, we compare those three original
bandit algorithms with their modified versions that add our AL approach in the first user’s
interactions and after consecutive mismatches. This experiment highlights that applying
AL in scenarios of uncertainty improves the quality of recommendations in the long run.
The knowledge acquired by the model creates a chain reaction that results in our modified
approaches outperforming the original ones. In the second experiment, we ensure that the
existing bias of offline datasets has not caused this potential improvement. We perform a
counterfactual evaluation using the Open Bandit Pipeline [189] to mitigate the exposure
and selection bias from the user feedback problem [55, 165]. Results from different coun-
terfactual estimators support our previous conclusions on an unbiased dataset. Then,
in a third experiment, we compare our modified algorithms with baselines from three
classes of algorithms related to this dissertation: (1) State-of-the-art Contextual Bandits,
like LinUCB [129], Linear UCB, and GLM-UCB [288]; (2) Meta-Learning approaches,
like NICF [297]; and (3) Bayesian Inference methods, like PTS [114], ICTRTS [245], and
Cluster-Bandit [192]. Results show that our algorithms significantly outperform all base-
lines in the cumulative reward in the long run. All experiments were executed using the
iRec, another contribution of this work (see Appendix B), a framework that enables the
reproducibility of our entire evaluation process [209].

1.3 Motivations

First of all, the main motivation of this work consists in filling the lack of ap-
proaches to mitigate scenarios of uncertainty about the user’s preferences in Contextual
Bandits. As aforementioned, we noticed that some scenarios of uncertainty have forced
current bandit models to work as simple non-personalised algorithms that exploit the
most liked items or even random items for all new users. Indeed, this idea of applying
non-personalised approaches to make the first recommendations when the system does
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not know anything about the target user is plausible. Over the years, these approaches
have been applied in several e-commerce services and have achieved great results handling
the user cold-start problem [203]. However, we assume that this naive representation may
negatively influence the performance of such bandit models in the long run. In general,
non-personalised recommendation systems are based on the same premise: in the absence
of prior information, the behaviour of a subset of new users tends to approximate the ex-
pected behaviour of its underlying population. Although this assumption is valid for most
users, other ones may have specific preferences and they may be not only interested in the
most popular items. Nowadays, the diversity of users has become a striking feature in the
current systems, since they house men, women, young people, adults or the elderly, with-
out distinctions between age group, gender, social class, religion or any other [94]. Thus,
items that appeal to a large portion of the population will not always satisfy all the prefer-
ences of the various existing users. Presenting unattractive items to new users makes these
new users end up leaving the system without providing an expected financial return [170].

The second motivation is related to mitigating the user cold-start problem. Despite
more than twenty years of academic research, it remains one of the hardest challenges of
the field [22]. As all personalised algorithms have to correlate the user’s preferences to the
items’ characteristics, the recommendation will not be successful if the system does not
know any information about them [186, 26]. Similarly, most recommendation systems still
fail to provide useful recommendations to new users in the industry. Indeed, this problem
is usually recognised as one of the hardest challenges to achieve the desirable KPIs (Key
Performance Indicators) for the business. This problem represents a crucial stage for the
business since it provides the first impression for users and it is responsible for converting
them into customers. In particular, in interactive systems, the cold-start problem might
create even more impact on the recommendation system since the next interactions are
predicted based on the first ones. As with any sequential model, the first recommen-
dations might lead to wrong conclusions about the users’ preferences. Despite the most
recent advances, most users keep leaving the systems after the first interactions [179].
The percentage of new users that become customers is low. And, unfortunately, current
interactive models have neglected this challenge by assuming that systems would always
learn the user’s preferences independently of the first items recommended.

Furthermore, our third motivation is related to the user’s short and long-term ex-
perience. We know that an unpleasing experience during the first user’s interactions in
the system can lead to two other problems: (1) the user may have an unpleasant experi-
ence, being disappointed with the system; or (2) the system may model an incorrect profile
about the user and start to recommend items that do not fit his/her real preferences. How-
ever, we do not know the impact of changing the first users’ interactions in the long-term
user experience. As aforementioned, most Contextual Bandits usually show random items
until they get all the user’s information required to make personalised recommendations.
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It usually leads to a slow learning process, taking so many interactions to reflect positive
rewards. Nevertheless, what may happen if we change the first recommended items? If the
learning stage in the initial interactions is faster than usual, what would happen with the
user’s long-term experience? The studies published so far have been only concerned with
new prediction rules or new exploration approaches. Since the first stage, neither work has
been specifically concerned with the first recommendations (when the user is completely
new to the system). In our opinion, the challenge should be related to selecting a small
subset of potentially useful items to: (1) please the users at the beginning of their experi-
ence with relevant items; and (2) ensure enough knowledge about the user’s preferences.

1.4 Main Contributions

The main contribution of this work is inherent to the user feedback problem and
the contextual bandits. We identify room for exploration in the current representation of
Contextual Bandit algorithms when facing scenarios of uncertainty about the user’s pref-
erences. Then, we propose a new solution that applies concepts from the Active Learning
theory in this interactive recommendation field. This new approach outperforms all base-
lines and significantly impacts the model’s accuracy in the long run. Hence, as main
contributions of this dissertation, we highlight:

1. An extensive literature review about Multi-Armed Bandits in the recommendation
field to provide an updated picture of the last 20 years.

2. The formulation of a problem in the way that current Contextual Bandit algorithms
have handled scenarios of uncertainty about the user’s preferences;

3. An empirical methodology that demonstrates the impact of naive non-personalised
assumptions in the user’s experience on current bandit models;

4. The proposal of applying Active Learning to properly address exploration and ex-
ploitation in scenarios of uncertainty about the user’s preferences;

5. New algorithms based on Active Learning to enhance the user’s long-term experience
that outperforms strong baselines in the literature;

6. An empirical evaluation of bandit algorithms that simulate two scenarios of uncer-
tainty – the pure cold-start and misleading assumptions;

7. A new framework for evaluating and implementing bandit models, named iRec, with
all algorithms and methodologies used in this dissertation;
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8. A counterfactual evaluation of our approach with a simulated dataset that confirms
the usefulness of our approaches in an unbiased domain.

Furthermore, this work has resulted in six papers: two national papers, two inter-
national papers, and two international journals. The first papers were two national papers
published in one of the most important Brazilian conferences on the Web – WebMedia
(assigned as B1 by CAPES). In the first one, [208] have demonstrated the problem of Con-
textual Bandit algorithms in the pure cold-start problem. In the second one, [204] have
presented a first approach to mitigate this problem – the basis of our current solutions.
The first international one was published as a resource paper at the SIGIR conference.
[209] introduce and explain the iRec framework created to allow the reproducibility of the
dissertation experiments. Then, the other two international papers were published in two
journals. The first one was published on the Expert Systems with Applications (assigned
as A1 by CAPES) and [205] have presented our Systematic Literature Review. The other
international journal was published in the first volume of the new ACM Transactions
on Recommender Systems. [207] describe all the details about the Active Learning ap-
plication in the first scenario of uncertainty – the pure cold-start problem. Finally, the
second international paper [206] was published at the main track of the SIGIR conference
(assigned as A1 by CAPES). This is the most recent paper about this work and contains
the core of this dissertation, presenting our new solutions in both scenarios of uncertainty
about user preferences.

1.5 Outline

The remaining of this work is organised as follows. In Chapter 2 we present the
background concepts about Recommendation Systems and Multi-Armed Bandits. This
chapter includes the main concepts, definitions, and approaches to both topics. It con-
tains all the information required to understand this work and where it is located in the
literature. Moreover, it also presents and discusses the two challenges related to the un-
certainty about the user’s preferences. Then, each new chapter addresses and discusses
one of the three research questions raised by this work.

First, in Chapter 3, we answer RQ1 by describing how the current bandit algo-
rithms have been applied in the recommendation field. This discussion highlights the
potential problem of current assumptions when the bandit model is facing a scenario of
uncertainty about the user’s preferences. Then, in Chapter 4, we answer RQ2 by propos-
ing a new approach to mitigate such challenges existing in current Contextual Bandit
models. Our proposal consists of the application of Active Learning to create modified
versions of three distinct bandit algorithms. Contrasting their original versions, these
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new algorithms are able to address exploration and exploitation even in scenarios of un-
certainty about the users. Finally, in Chapter 5, we answer RQ3 by demonstrating the
potential gains of these modified versions in relation to their original versions and other
strong baselines of the literature. In this chapter, we also make a counterfactual evalua-
tion of our proposal to demonstrate that our gains are not biased by the current offline
datasets from the literature. Chapter 6 presents the main conclusions, limitations, and
future works related to this topic.

As additional chapters, we also present two appendices at the end of this work.
Appendix A describes the Systematic Literature Review performed by this work to study
and understand how the literature has discussed both topics together in the last 20 years.
This work allowed us to consolidate an updated picture of the main research, highlighting
the most used concepts and methods, their core characteristics, and their main limita-
tions. In turn, Appendix B presents details about the iRec, an evaluation framework
for recommendation systems in the interactive environment. It contains all the details
required to understand this framework and the main guidelines to teach anyone how to
apply it in their own research.
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Chapter 2

Background Concepts

This chapter introduces the background concepts around the main topics discussed in
this dissertation. First, we describe the general recommendation problem, the usual ap-
proaches applied to mitigate it, and the main challenges around them. Then, we present
a short review of the main concepts of the Reinforcement Learning theory by formally
describing the Multi-Armed Bandit (MAB) problem. This section highlights the main
strategies applied to mitigate the MAB problem and simulate the online learning envi-
ronment. Finally, we describe how such strategies have been applied to recommendation
systems in recent years and the remaining open challenges. It contains all the information
required to understand this dissertation and how this work fits in the literature.

2.1 Recommendation Systems

In the last three decades, the exponential growth of digital information on the Web
has induced users into a stressful situation in which they do not know what to buy, listen
to, or watch. Unintentionally, several e-commerce services have created hard scenarios
for finding a relevant option just by offering thousands of distinct products at the same
time [109]. Due to its drawbacks for their customers, this information overload has influ-
enced several works to create a search mechanism to mitigate its impact since the 90s. One
of the greatest examples is the Recommendation Systems (RSs), proposed as a new tool to
provide personalised suggestions of items (e.g., movies, books, songs, etc) as output and
guide users through the huge variety of options [202]. The idea is to identify the most rele-
vant items for each user to improve their experience and also increase the business-related
key performance indicators (KPIs), such as sales numbers or customer retention [45].

2.1.1 Recommendation Problem

The recommendation problem is defined as finding, among a potentially large num-
ber of items, those that better suit each user’s individual interests in the system [26]. In
this sense, at the most general level, any recommender system is designed to create a
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certain value or utility for each user. Formally, given a set of users U = {u1, u2, ..., um},
a set of items I = {i1, i2, ..., in} (e.g., books, movies, or songs), and the utility function
f(u, i) that maps the user u interest on the item i, the goal is to find an item i∗ ⊂ I that
maximises the utility function:

∀u ∈ U, i∗u ← arg max
i∈ I

f(u, i) (2.1)

Initially, the utility function f was designed to return a rating prediction. This
prediction refers to how much a user u should like an item i. Figure 2.1 shows an example
of such a task, where the system must estimate a rating for the unrated items of the target
user (the one circled by blue). User ratings are triples 〈u, i, rui〉 where rui is the value
assigned – explicit or implicitly – by the user u to an item i. Usually, this value is a real
number (e.g., from 0 to 1), a binary variable (e.g., like/dislike), or a value in a discrete
range (e.g., from 1 to 5). Then, the prediction task consists of extrapolating the function
f to the entire user and item space: f : U × I → R. Nowadays, however, researchers are
more focused on creating a ranked list of items through a top-k recommendation task. In
this task, the system must select a list of k items i∗u to recommend for the user u. Thus,
the function f is defined as f : U ×L∗ → R, where L∗ is the set of all permutations up to
the length k. Technically, this one can also use the same algorithms that were designed
for the first task and then rank the items based on the predicted rating. Alternatively,
other algorithms that do not consider the recommendable items individually but directly
aim to optimise the ranking, can be used in this case – approaches of learning-to-rank or
diversity-based methods.

Figure 2.1: An example of a recommendation scenario with ratings from 1 to 5.

However, in both representations, recommendation still is a singular task in the
field due to the human factor at the core of the recommendation. In these tasks, both the
input signal and the prediction target consist of or involve user behaviour at their core.
This brings about a specific level of complexity compared to, for instance, recognising
shapes in an image or diagnosing a medical condition from medical tests [45]. Further-
more, recommendation is often not just about predicting people’s actions, but about
enhancing (and hence changing) such actions by bringing awareness about potentially
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better choices. In this sense, the recommendation problem is usually faced by the model
illustrated in Figure 2.2. Similar to a usual search engine where the challenge is centred on
the correlation between queries and documents, users and items are the main elements of a
recommendation system [202]. While each user represents the query that guides the search
mechanism, the items are the documents that should be retrieved. And, as a document
must match the query searched, the items must match the user’s profile. This matching
represents the correlation between the items and each target user. The system’s perfor-
mance still directly depends on the available knowledge about users and items. Even the
best matching approach will not be effective if the users and items are indexed differently.

Items
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Figure 2.2: Standard model defined to mitigate the recommendation problem.

In general, the items’ representation is usually associated with their characteristics,
like description, their target audience or even an embedding with all possible attributes.
The item’s description is related to every single detail assigned by the system for that
item in its domain. It can be textual as a movie’s synopsis and a song lyric, or categorical
as the movie’s genres, the song categories, the product’s size, colour, or shape, and other
examples. Despite their simplicity, these characteristics are plentiful in a real system. In
scenarios where a product has just been released and the system does not know which
users will like/dislike it, the best approach is to exploit its characteristics and recommend
it with similar items [294].

On the other hand, there are two key elements when describing users’ preferences:
the representation of their profiles and their maintenance. In the literature, several ap-
proaches represent user preferences for distinct domains. For instance, using the history
of purchases in an e-commerce website, web usage mining (analysis of the links and time
spent on a web page), listening habits (songs that a user listens to), and others. However,
once the profile has been created, it does not remain static because the user’s interests
might (and probably will) change. In this sense, a recommendation system should update
the available knowledge about users according to their feedback for each recommendation.
This feedback can be explicit when the system knows the user’s opinion or implicit when
the system can only infer the user’s opinion. The first one usually comes in the form
of positive or negative ratings in a discrete scale (e.g. from 0 to N) or a binary value
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(like/dislike). Another way to gather explicit feedback is to allow users to write com-
ments and opinions (i.e., reviews) about the items. In turn, the second type of feedback
is usually gathered by monitoring the user’s actions like the history of purchases, the time
spent on a web page, the links followed by the user, the mouse movements, or analysing
a media player usage (tracking the play, pause, skip and stop buttons). This one is more
abundant than the explicit feedback but less accurate in representing the user’s interests.

2.1.2 Recommendation Methods

In the literature, several works have proposed distinct approaches to handle the
user-item matching process over the years. Especially, there are three main generations
of recommendation systems, as illustrated in Figure 2.3.

Figure 2.3: Recommendation system generations.

The first one emerged in the mid of 90s and it refers to the first strategies proposed
in the recommendation field [233]. In general, these strategies assume a correlation be-
tween users and items with similar preferences and characteristics, creating the basis for
all other generations of methods. The second generation emerged around 2005 when the
researchers were especially motivated by the Netflix competition1 to find new approaches
and solutions for the recommendation problem. This generation was recognised by the
matrix factorisation algorithms, opening new research directions for other personalised
approaches that still are applied in real-world scenarios [5, 119]. Just recently, in the
middle of the last decade, with the exponential growth of data around user behaviour
by tracking their path in e-commerce and collecting impressions around each interaction,
these algorithms were replaced with new approaches based on Deep Learning, Neural
Networks, and others. This change marked the third generation of algorithms [74, 54, 97].

However, even the recent approaches are still based on the concepts defined in the
first generation by the correlations between users and items with similar characteristics.

1In October 2006, Netflix released a recommendation challenge by offering $1, 000, 000 to those who
improve at least 10% their movie recommendation system.
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In this sense, we propose to review concepts around these main classes of recommenda-
tion systems that are the basis of all other generations of algorithms. In general, they
are split into two classes of methods: personalised and non-personalised [202, 26]. While
personalised methods usually exploit the available information about users to make rec-
ommendations that suit their profile, non-personalised methods only exploit the users’
global opinion or items’ global popularity to make the same recommendation for every
user. The personalised ones are split into four main sub-classes: Content-Based (CB),
Collaborative Filtering (CF), Demographic Filtering (DF), and Hybrid methods [26].

2.1.2.1 Content-Based

Formally, Content-Based methods estimate the utility function f(u, i) for the item i

to user u through a known function f(u, j) defined by the same user u to an item j similar
to i [233]. In other words, to estimate the user u rating to the item i, these methods first
find similar items to i and then use this previous information to make the recommen-
dation. Differently from other approaches, however, the similarity of items is estimated
according to their characteristics, such as their description, category, gender, and others.
It assumes that items with similar attributes will be evaluated similarly since users usually
exhibit a correlated preference with the items’ attributes [196, 186].

Figure 2.4: Standard recommendation engine of Content-based methods.

In these approaches, an item i is described as a vector Xi = (x1, x2, ..., xn) of n
attributes, which can be binary, nominal or numeric. In a movie scenario, for example,
these attributes can be the actors, directors, genres, year of release, synopsis and others.
Similarly, the user profile is modelled based on the attributes of items attributes rated by
u in the past. It is formally described as a vector Yu = (y1, y2, ..., yn) where each element
is a combination of the items’ attributes. Thus, the recommendation is made by filtering
all items in the domain to find the item whose X attributes match the user’s Y profile.
This process is illustrated in [26] as shown in Figure 2.4.
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2.1.2.2 Collaborative Filtering

Collaborative Filtering methods assume that users (or items) with similar con-
sumption histories would share common interests (or a common target audience). In this
case, the utility function f(u, i) is estimated based on (1) users : by the function f(v, i) pre-
viously defined by another user v that shares the same interests than u; or (2) items : by the
function f(u, j) previous defined by the same user u to another item j since j has the same
attributes or share the same target audience than i [196, 26]. Besides this, these methods
are also split into two subgroups according to the strategy used as shown in Table 2.1.

Classes Methodology
Memory-based Model-based

User-oriented Combines the preferences of the k
most like-minded users, with similar
or correlated behaviour.

Correlates the user history of actions
to predict new recommendations for
the target user.

Item-oriented Combines the ratings of the k most
similar items, considering all users.

Correlates the past item ratings to
predict new recommendations for
the target user.

Table 2.1: Classes of collaborative filtering methods.

Memory-based methods explicitly measure the user or item similarity by using a
correlation metric to make the recommendation [26]. The usual methods are often item-
based, recommending based on the similarity of items (e.g., Item-kNN), or user-based,
recommending based on the similarity of the target-user to other users (e.g., User-kNN).
User-oriented Memory-based CF methods determine for each user a group of nearest
neighbour users whose past ratings are similar, or highly correlated, with the user rat-
ings. Scores for unseen items are predicted based on a combination of the scores known
from the nearest neighbours. As these Memory-based CF methods are based primarily
on clusters of users, their effectiveness depends on the generated clusters expressing high
correlations between users. In the same way, Item-oriented Memory-based CF defines,
for each item, a group of the most similarly evaluated items, considering all users in the
domain. Later, scores for unseen items are derived from scores given for similar items by
the target user of the recommendations.

On the other hand, Model-based CF methods learn a descriptive model of user pref-
erences and then use it to generate ratings [26]. Many of these methods are inspired by
machine learning, algebraic representation, statistical inference, deep learning approaches,
neural networks or other techniques [245, 297]. Latent factor methods represent one of the
most efficient and popular approaches in Model-based CF since they are generally effective
at estimating overall structure that relates, simultaneously, most or all items [119]. These
techniques have proven to be efficient in recommendation systems when predicting user
preferences from known user-item ratings [60, 54]. Especially, in model-based approaches,
users and items are considered an ensemble of multiple interests or aspects. Each user
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u ∈ U has a probabilistic membership in each of the aspects z ∈ Z so that users in the
same interest groups have similar tastes. Similarly, each item i ∈ I has a probability to
be interesting for the users in each aspect z ∈ Z. Thus, common model-based approaches
usually represent the interest of u about i ∈ I by the mix of these probabilities as follows.

P (i|u) =
∑
z∈Z

P (i|z) · P (z|u) (2.2)

The first term P (i|z) does not depend on the target user and represents how rele-
vant the item i is for the group z. The second term P (z|u) is the user-penalisation term
also known as the user model. In current years, both have been addressed by latent feature
vectors extracted from Probabilistic Matrix Factorisation (PMF) methods [184, 60, 54].
It factorises the rating matrixMm×n into the product of two low-rank matrices P ∈ Rm×z

and Q ∈ Rz×n. While the matrix Pm×z contains the user-model θu, representing the mul-
tiple interests of each user u in the z groups, the matrix Qz×n represents how relevant is
the item i for the z groups. The recommendation is then redefined as the association of
the users’ features pu ∈ P and the items’ features qi ∈ Q as follows: s(i, u) = p>u · qi.

2.1.2.3 Hybrid Methods

In general, hybrid methods aim to explore the advantages of each traditional ap-
proach [5]. Most existing techniques can be classified as proposed by [150] and illustrated
by [26] in Figure 2.5:

(A) Combining distinct approaches: CF and CB methods are implemented sepa-
rately and their predictions are combined by a quality function that determines the
best recommendation to use [24, 116].

(B) Adding CB in CF: an attempt is made to incorporate some characteristics of a CB
into CF methods, such as by integrating content attributes into the user’s profile (or
items) in calculating the similarity function between users (or items) [157, 132, 104].

(C) Unified Model: a model that incorporates both CB and CF strategies in a single
model by combining content information with the users’ history of ratings and their
preferences [171, 62].

(D) Adding CF in CB: it aims to incorporate some characteristics of CF in CB meth-
ods, such as dimensional reduction strategies applied to a large collection of existing
content [159].
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Figure 2.5: Standard definition of Hybrid methods.

2.2 Recommendation Challenges

Currently, most of the Recommendation Systems are semi-supervised strategies
that explore the prior knowledge of users and items to generate personalised recommen-
dations. Both Collaborative Filtering and Content-Based methods use the users’ con-
sumption history (i.e., past information) to model the profile of the target user. For
this reason, the most critical challenges are related to the absence of information or the
assumption of wrong preferences about users/items. Such scenarios still prefigure as out-
standing problems for current models.

2.2.1 Cold-Start problem

The Cold-Start Problem is one of the most common issues that negatively affect the
key performance indicators (KPIs) of many companies [25, 101]. It refers to the challenge
of making personalised recommendations for new users or items that have few (or none)
historical data [196, 5]. In the literature, there are three distinct perspectives on this prob-
lem. First, when a new user signs up for a service or they are an inactive user who has not
interacted for so long time, the system may not have enough data to establish their pref-
erences. This problem is known as user cold-start problem and it refers to the challenge of
providing relevant recommendations when the user’s profile is not well defined. Similarly,
when a new item is added to the system, the data amount to understand its characteristics
and how it relates to other items in the system is limited. This problem is known as item
cold-start problem and it refers to the challenge of recommending items with few ratings.
Then, a third problem happens when the system has only a set of items with few ratings
to recommend for an inactive/new user. This problem is known as user-item cold-start
problem [254] but this only happens in new systems and applications. However, the other
two problems usually happen in most systems at some point in the user’s journey and an
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inaccurate approach to mitigate them may create a negative impact on the business.
In this sense, recent works have addressed the Cold-Start problem using several

approaches [136]. The first proposals were based on Content-Based (CB) methods to
replace the absence of ratings by the existing characteristics of the items/users [157, 137].
This approach is effective because the system usually has detailed information about the
items, such as their genre, keywords, or attributes. Even the newest items released in the
system contain such information that can be correlated with the other existing items [168].
Collaborative Filtering (CF) approaches, in turn, usually require a significant amount of
historical data to correlate items/users with the same rating information. This may not be
available to new items/users. In this sense, hybrid approaches that combine both CB and
CF were also proposed to address the cold-start problem [197, 69, 195]. In this case, the
system tries to combine the few ratings available with personal information about the user-
s/items [218, 195]. Other approaches include knowledge-based and contextual-based rec-
ommendation systems. Both rely on user input to identify their preferences, constraints,
location, or even their current mood or activities to make recommendations [76, 7, 110].

However, such methods still suffer from the pure cold-start problem. The terms
pure cold-start and cold-start are often interchangeably used, but they can refer to slightly
different aspects of the recommendation problem [203]. The pure cold-start problem typ-
ically refers to a scenario where a new user/item has no historical data available in the
system – i.e., there are no past interactions or preferences for the user, or no metadata or
other information about the item. The system has no information to learn the user’s pref-
erences or the item’s quality and providing accurate recommendations is extremely hard.
In turn, the term cold-start refers to a broader situation where the recommendation sys-
tem has a limited amount of data to work with. It occurs in scenarios where there is some
data available but it is sparse or incomplete, or where the system only has some indications
about which items may suit the user’s preferences [267]. In general, the pure cold-start
problem is considered the most challenging aspect of the recommendation problem, as it
requires the system to make predictions based on very limited data. There is no perfect so-
lution for this and researchers continue to explore new approaches to address these issues.

2.2.2 Misleading Assumptions

Misleading assumptions occur when the system has learned the wrong preferences
about a user/item and it is unable to make satisfactory recommendations. This can hap-
pen in at least three distinct cases throughout the user’s journey. First, this problem
may be associated with the traditional cold-start problem [25]. When a user only has a
few interactions, the recommendation model may learn wrong preferences just because
there is not enough information. Second, this problem may also happen when addressing
users with dynamic preferences where their taste changes frequently or suddenly [260, 53].
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In this scenario, the system may not rely on its past information or general user prefer-
ences. Then, the third scenario may happen when the system faces a shared account
problem [236, 87]. This problem happens when more than one person uses the same ac-
count in the system because they share the same login information or when they have a
family plan in the system. In this case, the preferences learned from one person may not
be suitable to make recommendations for another one.

In the literature, such problems have been handled individually. The pure cold-
start problem has been handled by knowledge-based and non-personalised methods as
mentioned in the last section (see it for more details). In turn, the other two problems
are discussed in this section. User Dynamic Preferences have been addressed as time
or contextual-aware recommendation systems [141, 124]. Recently, researchers have ad-
dressed this problem by Deep Learning (DL) models [166, 252]. Wang et al. [246] apply a
recurrent neural network to capture the session information in user interactions and pre-
dict the user’s preferences in real-time. Similarly, Baral et al. [16] applies DL to capture
the user’s preferences changes and uses it as a context for the recommendation engine. Fi-
nally, other works also propose to explore the potential of using social network connections
to capture user dynamic preferences [175].

On the other hand, the shared account problem has been addressed by distinct
approaches related to the user’s profile. In real-world systems, the most usual approach
consists of allowing users to create multiple profiles within the same account [70]. This al-
lows each user to have their own preferences and history, which can be used to provide per-
sonalised recommendations. Netflix is a good example of this approach. Other solutions
explore different approaches related to user profiles. Some works have proposed to identify
users who share the same account and treat them as a group [151, 152]. This has been done
by analysing patterns in user behaviour, such as the items they interact with and the time
of day they use the account. Since identified, each group can be treated as a single user for
recommendation purposes. Other similar works have proposed to segment users based on
their interests and preferences [236, 167]. This has been done by clustering users based on
the items they interact with and the ratings they give. Since segmented, recommendations
are tailored to each group. Finally, most recent approaches have proposed to rely on user
feedback to improve their recommendations [224, 59]. In these cases, the recommendation
system asks users to rate items or provide feedback on whether a recommendation was
helpful. This feedback is then used to adjust the recommendations for each user over time.

In this work, however, these problems are summarised as the misleading problem.
In our opinion, these three scenarios may happen when the system has made some wrong
assumptions about a user and keeps exploiting it. If the current model deployed in a
system leads to consecutive mistakes for one particular user, it may represent that this
model is uncertain about the user’s preferences. In this sense, a simple indicator for the
misleading problem consists of counting the number of cumulative misses achieved by a
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model for a user. Then, when this counter reaches a threshold previously defined, it should
indicate that the model is not exploiting the correct preferences and that exploration is
not helping the system to find better options. To the best of our knowledge, neither other
work has proposed to handle this problem in this simple abstraction. This is a brief sim-
plification of the aforementioned problems but our intention is not to solve them. They
are only examples of how misleading assumptions may harm recommendation models.

2.3 Multi-Armed Bandits

The Multi-Armed Bandit (MAB) problem, sometimes called the K-armed bandit
problem [287], is a classic problem in which a fixed limited set of resources (arms) must
be selected between competing choices to maximise their expected gain (reward). The
name ‘bandit’ comes from imagining a gambler at a row of slot machines in a casino,
who has to improve his/her profit by maximising the sum of rewards earned through a
sequence of lever pulls. Basically, at each trial, the gambler has to decide which machines
to play, how many times to play each machine, in which order to play them, and whether
to continue with the current machine or try a different machine. However, each machine
provides a random reward according to its probability distribution. Then, the best way
to solve this problem is to handle a crucial dilemma, deciding for the exploitation of the
machine that has the highest expected payoff and the exploration of other machines to
get more information about the expected payoffs.

Formally, the MAB is a sequential decision model represented by 〈A,R,Q〉 where
an agent has to continually choose an action a ∈ A for T trials among a set of actions A
(|A| = K) in order to maximise the cumulative reward

∑T
t=1 rt. In this case, rt = Rt(at)

is the reward achieved when an action a is performed. An MAB algorithm performs an
action a at each trial t according to an action selection policy π. This policy follows a
probability distribution, usually called the value function Q, over each possible action a.
The function Q defines if an action a must be selected (or not) by measuring the expected
reward – Qt(a) = E[rt|a]. Figure 2.6 illustrates this MAB definition by showing the agent
and the environment continually interacting in a sequence of discrete time steps t. At
each trial t, the agent samples an arm at and receives a reward rt. The history of actions
and rewards guides the agent selection for the time t+ 1 and the other trials.

In a similar definition, it is possible to redefine the MAB main goal to minimise
the regret associated with each action a chosen, as shown in Equation 2.3. Calling the
arm with the highest expected reward at time t as the best arm, denoted as a∗t , and its
expected reward as the optimal reward r∗t , the regret can be defined as the difference
between r∗t and the reward rt achieved by the agent. Sometimes, it is also possible to
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Figure 2.6: The traditional framework of Multi-Armed Bandits.

redefine the objective function according to the work goal by maximising the average
reward returned, maximising the percentage of optimal action selection, minimising the
number of trials without rewards, and so many others.

Maximise
T∑
t=1

rt︸ ︷︷ ︸
Reward

≡ Minimise
T∑
t=1

(r∗t − rt)︸ ︷︷ ︸
Regret

(2.3)

In general, the quality of any MAB algorithm is usually related to the way it handles
the exploration and exploitation dilemma in its action selection policy π. If the agent only
performs the exploration, it will choose the actions randomly by ignoring all the knowledge
achieved in the earlier steps. On the other hand, if the agent only performs exploitation,
it will choose the actions according to the short-term reward similar to greedy approaches
and, perhaps, never find the long-term reward. After all, each agent’s decision has long-
term consequences: each action influences the environment and determines what type of
information the agent can observe to update its policy going forward [19]. In this sense,
many MAB algorithms have been proposed in the literature with different properties [219].
The main algorithms are called as ε-Greedy [13], Upper Confidence Bounds (UCB) [13, 12],
and Thompson Sampling (TS) [51]. As these algorithms can exploit the same value func-
tion Qt(a) = E[rt|a], the main difference between them is related to the exploration step.
In terms of the exploration strategies, these algorithms can: (1) do no exploration at all,
focusing on the short-term returns; (2) occasionally explore at random; or (3) choose which
options to explore by favouring actions with higher uncertainty because they can provide
higher information gain. These types of strategies can classify these MAB algorithms, as
shown in Figure 2.7. The next subsections show more details about each algorithm.

No exploration!

- Greedy algorithm

Random exploration

- ε-Greedy algorithm

Smart exploration
- Upper Confidence Bound (UCB)
- Thompson Sampling

Figure 2.7: Distinct exploration strategies applied in each MAB algorithm.
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2.3.1 ε-Greedy

The ε-Greedy algorithm handles the exp-exp dilemma by selecting the best action
most of the time and doing a random exploration occasionally. The best action is usually
estimated according to the experience by averaging the rewards associated with the target
action a that was observed so far, as defined by Equation 2.4. The value function Q for
each arm a in the trial t usually considers the mean of rewards achieved in the earlier
trials τ < t. Nt(a) is the number of times that the action a was taken before the trial t.
This exploitation step is performed with probability (1− ε).

a∗t = arg max
a∈A

Qt(a) = arg max
a∈A

1

Nt(a)

t−1∑
τ=1

rτ (2.4)

Otherwise, the algorithm performs the random exploration uniformly with proba-
bility ε. The main idea behind this step is to guarantee the algorithm to not get stuck in
a suboptimal reward forever. However, the challenge is to define the ε. In general, this
parameter gives a poor performance at the extremes. If it is too small, the learning ability
defined by the exploration is slow at the start, and the algorithm will be slow to react
to changes. In turn, if it is too big, the algorithm will waste many trials pulling random
arms without gaining much. The best parameter should allow the algorithm to choose the
best action for a large proportion of the time. Unfortunately, due to the randomness, the
algorithm may end up exploring a bad action which the agent has already confirmed in
the past. To avoid such inefficient exploration, there are two main approaches available.
The first one is to decrease the parameter ε in time. The second and most usual one
is to be optimistic about options with high uncertainty and, thus, to prefer actions for
which the agent has not had a confident value estimation yet. This kind of exploration
is considered smarter than the other because it favours the exploration of actions with a
strong potential to have an optimal value. It is the main base of the other two strategies
usually applied by MAB algorithms.

2.3.2 Upper Confidence Bound (UCB)

The UCB algorithm measures the function value Qt(a) by considering the confi-
dence bound of the reward value, called Ct(a), so that the true value is below with bound
Qt(a) ≤ Qt(a)+Ct(a) with high probability. The main idea is to apply the upper bound to
measure the potential of each action (arm) according to the uncertainty about its quality.
Then, the agent always selects the greediest action with the highest UCB:

a∗t = arg max
a∈A

Qt(a) + Ct(a) (2.5)
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In the literature, there are several approaches to measure the confidence bound
Ct(a) [163, 129, 133, 272]. In general, Ct(a) is defined as a function of Nt(a), where a larger
number of trials Nt(a) is directly related to a smaller bound Ct(a). The traditional UCB
algorithm measures Ct(a) by Hoeffding’s Inequality [72], a theorem to any bounded distri-
bution. Applying it, these works found that the probability of the expected reward being
greater than the confidence bound is very small: P[Q(at) > Q̂t(a) + Ct(a)] ≤ e−2tCt(a)2 .
In this sense, the main works define a very tiny threshold p and apply it to measure the
confidence bound, as follows: Ct(a) =

√
− log p / 2Nt(a). One current heuristic aims

to reduce the threshold p in time t to propose a parameter-free algorithm. The famous
UCB1 algorithm [13] is proposed setting p = (t − 4) to make a more confident bound
estimation with more rewards observed. Its algorithm performs as follow:

Ct(a) =

√
2 log t
Nt(a)

and a∗t = arg max
a∈A

Qt(a) +

√
2 log t
Nt(a)

(2.6)

Furthermore, other works have also explored the prior distribution of rewards by
modelling the expected mean reward as a Gaussian and setting the upper confidence
bound C based on the standard deviation. These approaches are called Bayesian UCB
and they are able to make better-bound estimation [145, 249]. A traditional implementa-
tion draws the reward distribution according to a prior distribution Beta with parameter
θ and sets Ct(a) = α·σt(a), where α is an adjustable hyperparameter and σ is the standard
deviation of how many times a was chosen.

2.3.3 Thompson Sampling (TS)

Distinct from the other approaches, the Thompson Sampling algorithm implements
the idea of probability matching. At each time step, the main idea is to select action a
according to the probability that a is optimal according to the history of actions ht already
known by the agent:

π(a|ht) = P[Q(a) > Q(a′),∀a′ 6= a|ht] = E[a = arg max
a∈A

Q(a)] (2.7)

Nowadays, the main TS algorithms are based on the Bernoulli bandit where they
naturally assume that Q(a) follows a Beta distribution by defining Q(a) as the success
probability θ in Bernoulli distribution. In general, the value of Beta(α, β) is within the
interval [0, 1] and the parameters α and β correspond, respectively, to the counts when the
agent achieves success or failure to get a reward. Then, at each time t, the agent must sam-
ple an expected reward, Q̃(a), from the prior distribution Beta(αi, βi) for every action. The
best action is selected among the samples: a∗t = arg maxa∈A Q̃(a). After the true reward
is observed, the Beta distribution is updated accordingly by doing Bayesian inference. If
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the action selected is correct (i.e., a∗t = ai), then α is updated. Otherwise, the β is incre-
mented. This simple idea has worked very well in many scenarios [51]. However, for several
practical and complex problems, estimating the posterior distributions with observed true
rewards can be computationally expensive. In this case, it is necessary to approximate
the posterior distributions using methods like Gibbs sampling, Laplace, and Bootstraps.

2.4 Summary

In this chapter, we present all the information required to understand this dis-
sertation in three main sections. In the first one, we discuss the background concepts of
recommendation systems. The recommendation problem is defined as a prediction and/or
ranking task where the system should maximise a utility function related to the user’s
preferences. Then, we present the usual recommendation modelling to address the item’s
characteristics and the user’s preferences in the system. Their representation is essen-
tial to ensure the best performance of the user-item matching process – the core of the
recommendation problem. In the literature, there are distinct methods and strategies to
make this matching. The following subsection groups these methods by their traditional
taxonomy of Content-Based Filtering, Collaborative Filtering, and Hybrid.

Then, in the second section, we discuss the usual challenges in the recommenda-
tion task. Especially, this work highlights two of them: the cold-start and the misleading
assumptions. The first one happens when there is not enough (or even no) information to
represent the users and items. The second one happens when the recommendation model
learns wrong assumptions about the user’s preferences and exploits them without success
for a while. Such problems are the core of this work where we discuss their impact on
interactive scenarios represented by Multi-Armed Bandit models.

Finally, in the third section, we discuss the main concepts around the Reinforce-
ment Learning theory. First, we highlight the Multi-Armed Bandit problem by formally
describing it as an interactive scenario where the system must maximise the reward ex-
pected (or minimise the regret). Then, we present the three main approaches usually
designed to mitigate this problem: ε-Greedy, UCB, and Thompson Sampling. In general,
they are different in terms of the exploration stage. Some do not perform any exploration,
others occasionally explore randomly, and others choose to explore by favouring actions
with higher uncertainty. In the next chapter, we discuss how these approaches are applied
in the recommendation field through Contextual Bandits and what issues are related to
their assumptions.
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Chapter 3

Contextual Bandits &
the user’s preferences uncertainty

This chapter investigates the first question raised by this work: How have current Contex-
tual Bandit assumptions about uncertainty scenarios impacted the personalised recommen-
dations? First, we present the background of Contextual Bandits and their assumptions
in the users, items, and rewards representation. Then, we discuss the potential effects
of these assumptions in scenarios of uncertainty about the user’s preferences. To sup-
port this discussion, we perform an experiment with three bandit algorithms in distinct
domains. This experiment simulates the behaviour of such algorithms when facing the
scenario with the highest uncertainty: the pure cold-start problem.

3.1 Contextual Bandits

In the literature, contextual-aware systems consist of algorithms that usually apply
some information about items (e.g., categories, genres, etc.) or users (e.g., age, gender,
etc.) to improve the quality of the recommendations [26]. The idea is to take different
contextual attributes to capture user preferences more correctly than only rating-based
algorithms. These attributes can be related to the user, item, season, weather, or others
and they can directly guide the system recommendations [6]. In general, authors have
presented three different approaches to include context:

(1) prefiltering: context is used to select some set of data and then predict as usual;

(2) posfiltering: ratings are predicted and the results are filtered using the context;

(3) modelling: the context is used inside the RS by an embedding representation.

In general, the modelling approaches remain the best ones to provide contex-
tual recommendations because they can identify non-trivial relations between users and
items [26]. In this case, users and items are modelled as vectors of features according to an
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algebraic or probabilistic representation [133, 239, 291]. Despite the recent advances, the
most traditional methods explored over the years still are based on Matrix Factorisation
and Probabilistic Matrix Factorisation [26, 271, 44]. In this case, a rating matrixMm×n is
decomposed into two low-rank matrices: P ∈ Rm×z and Q ∈ Rz×n. While Pm×z contains
the user-model pu, representing the multiple interests of each user u in z features, the
matrix Qz×n represents how relevant an item i is for the z features. Then, the relevance
r̃ of an item i for a user u is estimated by the combination of the users’ features pu ∈ P
and the items’ features qi ∈ Q as follow:

r̃(i, u) = p>u · qi (3.1)

Contextual bandit algorithms have applied this modelling approach to represent
the context and applied traditional concepts of MAB in recommendation systems. Items
are typically modelled as arms to be pulled and selecting an arm is equivalent to recom-
mending an item in a specific context [192]. The reward is the user’s feedback on that
recommendation (e.g., clicks, acceptance, satisfaction, etc.). At each trial, the model has
to decide which arms to select and whether to continue with it or try a different option.
Classical examples of such approach are LinUCB [129], FactorUCB [239], hLinUCB [238],
and CoLin [257]. LinUCB was proposed to personalise some news to users by exploring
the context represented by demographic, geographical, and behavioural information about
them. Similarly, FactorUCB also adds users’ social influence to improve the algorithm’s
convergence rate. In turn, CoLin [257] is a linear bandit model based on Collaborative
Filtering concepts that explores user dependencies. This dependency is represented by
a graph that keeps the affinity between users to estimate the parameters of the ban-
dit model. More recently, hLinUCB [238] was proposed to overcome the previous one
by aggregating the user’s information in latent factors associated with some observable
contextual information.

However, in several real-world scenarios, contextual information is not always avail-
able to the system due to the users’ privacy concerns. In recent years, several countries
have approved a law of data protection that forbids systems to collect any personal infor-
mation about users without their previous authorisation. Moreover, users may log into
the system from incognito navigation or even without allowing the cookies, and forget
(or ignore) to fill all forms about their personal information. In this sense, such factors
have limited the applicability of these methods over the years and highlighted other ap-
proaches that do not apply sensible information. Algorithms like Linear UCB [288] and
GLM-UCB [288] are more applicable since they construct the context only based on the
latent factors of a Probabilistic Matrix Factorisation formulation. Both are UCB-based
algorithms from the original LinUCB. Their difference is in the prediction rule. Further-
more, GLM-UCB also enables the applicability of non-linear representations to estimate
the reward and performs a time-dependent exploration process.
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Thus, even these recent algorithms remain following the usual prediction rule de-
fined in Equation 3.1 to combine the users and items feature vectors [266, 239]. Tra-
ditional MAB approaches, such as the ε-Greedy, UCB, and Thompson Sampling, have
been adapted for this objective function [129, 51, 288, 98, 239]. Indeed, after conducting
a detailed reading of the works related to contextual bandit algorithms in our SLR (see
Appendix A), we identified the main patterns usually applied to implement a linear rep-
resentation of each MAB algorithm. These implementations are illustrated in Table 3.1.
All algorithms usually start by representing users and items into a linear features vector
from the historic of actions h and finish by updating these representations at each iter-
ation t. The difference between them is related to the way they control the exploration-
exploitation dilemma. While the ε-Greedy performs a random choice with probability
ε, UCB and Thompson Sampling perform exploration by measuring the uncertainty Σ

around the information available about users and items.

ε-Greedy UCB Thompson Sampling

- Estimate pu,t based on ht

- With probability (1 - ε):

i∗t = arg max
i∈I

(p>u,t · qi)

- Otherwise:
pick i∗t randomly

- Receive the reward ru,i

- Update ht based on ru,i

- Estimate pu,t based on ht

- Estimate Σu,i by ht and
{qi∀i∈I}

- Choose the item:

i∗t = arg max
i∈I

(p>u,i qi + Σu,i)

- Receive the reward ru,i

- Update ht based on ru,i

- Estimate (µu,t,Σu,t) from ht

- Estimate (νi,t,Ψi, t) from ht

- Sample p̃u,t ∼ N (pu|µu,Σu)

- Sample q̃i,t ∼ N (qi|νi,Ψi)

- Choose the item:
i∗t = arg max

i∈I
(p̃>u,t · q̃i,t)

- Receive the reward ru,i
- Update ht based on ru,i

Table 3.1: The typical linear implementation of the three main MAB algorithms.

3.2 User uncertainty in Contextual Bandits

Contextual Bandits have been extremely effective in the recommendation task
since they can self-learn according to each context at each user’s interaction [36, 107].
As aforementioned, even the most recent approaches have explored the linear representa-
tion of users and items to capture non-trivial relations between them. The disadvantage,
however, is in the absence of data, where the system would not have enough instances to
represent these features ideally. Especially after the recent advances in textual processing
and categorical interpretation to better represent the item’s metadata, the challenge has
been centred on the absence of information about the users [77, 241, 101].

During the user’s journey into an interactive system, there are at least two critical
challenges related to the lack of information. These challenges are illustrated in Figure 3.1
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regarding the user’s temporal line in the system. The first one is known as Cold-Start
and it happens two times in the first user’s interactions. It is hardest in the first inter-
action (T = 0) when the user is completely new or when they log in without identifying
themselves. In this case, the literature refers to it as a Pure Cold-Start problem. The
system does not have any information about the user and it cannot provide personalised
recommendations [101, 203, 200]. After some interactions, the system knows a little bit
more about the user but it is not enough to define their profile (T > 0). This scenario
is named Cold-Start [26, 219, 102]. In turn, the second critical challenge happens when
the system has already learned a profile (T >> 0) for the user but its modelling is not
well defined. In some cases, the system could have made wrong assumptions about the
user’s preferences and it is now exploiting a wrong profile. In another situation, the user’s
preferences may have suddenly changed and their profile is not correct anymore [260, 174].

Figure 3.1: Distinct challenges about the user’s preferences in their journey.

In both challenges, the utility of any item (i.e., arm) for this user is not reliable
enough to make personalised recommendations for them. Thus, mitigating such chal-
lenges is crucial for the success of any interactive RSs [219, 102]. However, our extensive
literature review (see Appendix A) revealed that recent works in interactive scenarios
have underestimated such challenges. By assuming that the bandit model can always
learn regardless of the items recommended for each user, neither of them has proposed
approaches to mitigate such challenges.

3.2.1 Pure Cold-Start

In the pure cold-start problem, bandit models are unable to define the contextual
features vector for each user. They have assumed that the new user has no preferences
for any item or feature. In practice, it means that such models have been initialising
the contextual vector with a constant c ≥ 0 for all features available. Thus, an item is
predicted by using this contextual vector to represent the user’s features preference pu and
following the traditional rule of p>u qi, where qi represents the features of each item i. In
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this sense, we figured out that a simple initialisation of pu with constant values may lead to
an undesirable bias in the recommendations. If this value is 0, a usual approach in current
implementations, the user feature vector pu will lead the prediction rule to be equal to 0

regardless of the item feature vector. It results in a uniform selection of items (i.e., random
or based on the items’ IDs) with the same relevance score for this user – {s(I, u) = 0 :

∀i ∈ I}. In turn, if this value c is a constant c > 0, the items’ features vector will become
the sole relevant term of the objective function and the relevance score will follow its
distribution – {s(I, u) ∼ qi : ∀i ∈ I}. It results in a fully biased recommendation towards
the most representative items previously identified through the linear representation.

Prediction Rule: i∗(t) = arg max
i∈I

p>u qi

(t = 0)


pu = {0 : z ∈ Z} → i∗(0) = arg max

i∈I
0 · qi (random)

pu = {c : z ∈ Z} → i∗(0) = arg max
i∈I

c · qi (biased)

In other words, most Contextual Bandits are usually compelled to take one of these
two options when facing a new user:

(1) a pure exploration – recommending items randomly; or
(2) a pure exploitation – recommending items biased by the current knowledge.

The first option assumes that users are willing to interact for a long time and the
algorithm is concerned with learning as much about the users’ preferences. In turn, the
second one assumes that users can leave the system after a few interactions and, thus, the
system has to recommend items potentially relevant for users as soon as possible. Indeed,
both assumptions are highly relevant. Nevertheless, here, they represent the well-known
dilemma between exploration and exploitation from a new point of view: in the first users’
interactions. Should we allow users to make their own choices and thus possibly lose the
opportunity to sell something? Or, should we assume that they are impatient and recom-
mend the best options, losing the opportunity to learn what they like? In this work, we be-
lieve that both options must be addressed to improve the user’s experience in the system.

3.2.2 Misleading Assumptions

Misleading assumptions occur when the system has learned the wrong preferences
about a user and it is unable to make satisfactory recommendations. This problem may
happen in at least three distinct situations throughout the user’s journey after the first in-
teractions. First, the model faces the traditional cold-start problem where a user only has
a few interactions and the model is unable to learn their preferences [9]. Second, when the
user has dynamic preferences where their taste changes frequently or suddenly [260, 53].
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And, third, when facing the shared account problem whereby multiple users use the same
account and their behaviour is considerably different [236]. The absence of data or distinct
behaviours may lead the model to fail the next relevant items for the user.

In general, such uncertainty scenarios have been underestimated in Contextual
Bandits due to the model’s capacity to handle them by exploring new items and enhancing
its known preferences. Researchers have assumed that by utilising user feedback at each
interaction, any misleading assumptions would eventually be rectified. Although this is
indeed true, the relearning process for individual user preferences is often time-consuming.
Furthermore, the learning process of most models is primarily focused on identifying which
arms have more potential to be relevant, rather than on understanding the user’s prefer-
ences. While this approach is generally effective in situations where the model can attempt
different actions repeatedly, it may not be suitable for interactive recommendation systems
where time is crucial in preventing user churn. In this work, we believe that addressing
such scenarios may help bandit models respond more quickly in these uncertain situations.

3.3 Practical Outgrowths

In this section, we measure the impact of scenarios of uncertainty in the behaviour
of the three traditional models presented in Table 3.1. First, we inspect the usual imple-
mentation of each algorithm when they have to handle one scenario of uncertainty. Then,
we demonstrate the impact of such naive choices on algorithm behaviour. For this inves-
tigation, we only selected the Pure Cold-Start problem since this scenario represents the
moment with the highest uncertainty about the user’s preferences. Moreover, it is guar-
anteed that this scenario will always happen regardless of the recommendation domain.
In short, we have noticed that the same algorithm may perform completely differently
according to the way they were implemented to handle this scenario of uncertainty.

3.3.1 Algorithms implication

First, we analyse the prediction rule of traditional Contextual Bandit algorithms:

(1) ε-greedy algorithms usually measures the item’s relevance by the product of fea-
tures vectors pu and qi with a probability (1 − ε): i∗t = arg max

i∈I
(p>u,t · qi). Thus, its

predictions would change according to the constant value c used to initialise the user’s
features vector pu. If c = 0, the algorithm will perform a pure exploration of the items by
recommending them randomly. Otherwise, when c > 0, it will perform pure exploitation
of the items’ features (i.e., the vector q). The score of each item will be similar to its qi
value, biasing the entire prediction rule.
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(2) In turn, UCB algorithms implement a confidence bound to represent the system
uncertainty over the items and users. This confidence bound is usually measured by the
combination of the item’s features vector qi with uncertainty over the user at that trial
t, named Σu,t. This component Σ is initialised as a simple identity matrix Iz×z and it is
updated at each trial t. It sets the uncertainty component as:

i∗(t) = arg max
i∈I

p>u,tqi +

√
qi · Σu,t · qi> (3.2)

Thus, even if c = 0, the vector qi will guide the recommendation due to the con-
fidence bound associated with the prediction rule. In other words, these algorithms will
always perform a pure exploitation of the previous item’s knowledge:

if pu = {0}, then: i∗(t) = arg max
i∈I

√
qi · Σu,t · qi> (3.3)

(3) On the other hand, TS algorithms usually estimate the features vectors by sam-
pling p̃u,t ∼ N (pu|µu,Σu) and q̃i,t ∼ N (qi|νi,Ψi) from the feature distributions usually
extracted by a Probabilistic Matrix Factorisation (PMF) method. However, when the
user is new and there is no information about their preferences, the system must initialise
µu,t and Σu,t. The variance Σ is the uncertainty around that user and it starts from an
identity matrix I. In turn, the mean µ is measured based on the items rated by that user
and it is initialised by the constant values c. In this case, regardless of the value assumed
by c, the algorithm will sample pu from a normal distribution centred in c. Thus, at each
iteration, TS algorithms will estimate pu by sampling it from the prior distribution. As
pu can assume any value around c, the prediction will be defined by the linear product
of these ‘random’ values and the qi vector. Thus, these algorithms can, in a certain way,
combine exploration and exploitation to perform the first recommendations. However, we
assume that is not the best way to perform this combination since it will be created by
random samples combined with the current system bias (the qi vector).

In this sense, the behaviour of each bandit algorithm is contingent on how it is
implemented to handle scenarios of uncertainty. A naive initialisation of the user’s feature
vector can have a significant deviation from their expected results.

3.3.2 Item features bias

As aforementioned, when facing scenarios of uncertainty, Contextual Bandit mod-
els are compelled to choose between two main options: exploiting the current system
knowledge or making an exploration of random items. In this sense, the idea of perform-
ing recommendations based on the previous system knowledge is not bad. However, this
knowledge may be biased by the user’s selection and the most popular items. There-
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fore, we select and analyse the correlation between these items’ feature vectors and the
most popular bias in three distinct domains: movies, books, and songs. Each domain is
represented by one of the datasets highlighted in Table 3.21.

Datasets # Users # Items Sparsity
Netflix 10,000 17,372 98.69%

GoodBooks 53,423 10,000 98.88%
Yahoo Music R1 10,000 13,214 99.22%

Table 3.2: Datasets from three different recommendation domains.

In this experiment, we aim to investigate whether the current knowledge exploited
by current Contextual Bandits is biased or not. First, for each dataset, we select all the
data available and measure the items’ popularity and the items’ features vector. Popular-
ity is the number of distinct users who rated the item. In turn, the item features vector is
extracted from a Singular Value Decomposition (SVD) – an approach usually applied in
Contextual Bandits. The SVD is applied over the entire dataset by using 10 eigenvalues
and it returns the factorised matrices: (1) Pm×z, representing the users’ features in z

latent features; (2) Sz×z with the eigenvalues extracted; and (3) Qz×n, representing the
items features in z features. Then, to compute the correlation between the popularity
and the features vectors, we aggregate the vector qi into one single number for each item.
This value represents the item’s importance overall features by performing qi · qi>. After
that, we plot the values achieved for each item in Figure 3.2. This result highlights that
the item features vector qi is extremely biased to the most popular items. In other words,
when the recommendations are based on the items feature vector qi, the recommended
items will be similar to the most popular ones.

(a) Movies – Netflix (b) Books – GoodBooks (c) Music – Yahoo R1

Figure 3.2: Popularity versus the items features vector importance measured by qi · qi>.
There is a significant correlation between the items features vector of Matrix Factorisation
models and the most popular items.

1They are available at: https://www.kaggle.com/datasets/zygmunt/goodbooks-10k, https://
webscope.sandbox.yahoo.com/catalog.php?datatype=r

https://www.kaggle.com/datasets/zygmunt/goodbooks-10k
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r


3.4. Impact on Recommendation Systems 50

3.4 Impact on Recommendation Systems

The idea of exploiting non-personalised methods to face scenarios of uncertainty
about the user’s preferences is plausible. Indeed, such approaches have been applied in
different e-commerce [203]. However, to the best of our knowledge, there is not any work
that has studied the impact of such methods in interactive recommendation systems. In
this sense, we propose an evaluation methodology to highlight this impact in three domains
and point out potential new approaches. This experiment is mainly focused on the pure
cold-start problem where there is a clear scenario of uncertainty that is easier to measure.

3.4.1 Evaluation Methodology

In order to measure the impact of interactions performed over naive methods in the
performance of an interactive recommendation system, we created an evaluation method-
ology as illustrated in Figure 3.3. This methodology consists of two interactive systems
(or two stages) – one on the left and another one on the right. The first one contains
a non-personalised recommender that will interact with the user for some time by pro-
viding popular or random items. Then, the second one contains a bandit algorithm that
will apply the knowledge created by the first system (the grey area in the middle of the
Figure) to make personalised recommendations. The main idea is to analyse the bandit
performance (second system) based on the knowledge achieved by the first system (the
non-personalised one). In this sense, the performance of the second system will reflect
the impact of the first recommendations over the entire user’s journey.

Figure 3.3: An illustration of our methodology created to identify the problem’s impact
on contextual bandit algorithms.

Stage 1: First, we simulate an interactive scenario where the new user will face non-
personalised recommendations for t times while the system learns with each feedback. As
there is no consensus in the literature on how many items are needed to reach the desirable
knowledge, we create this experiment to be parameter-free. This means that instead of
defining a value for t, the interactive scenario will run until the system hits a percentage
of the relevant items for each user. This percentage is defined in slots of 10% like 10%,
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20%, 30%, ..., and 80%. Thus, for each user, the system will create eight distinct slots
with the user’s interactions made until hits that percentage of relevant items. In a simple
example, if user A has 10 relevant items while another user B has 100 in the groundtruth,
the interactive system will make as many as necessary recommendations until it achieves
1, 2, 3, ..., 8 relevant items for A and 10, 20, 30, ... 80 items for B. Probably, the system
will perform fewer recommendations for user A than user B, but both will have 8 distinct
slots of knowledge. To achieve distinct learning scenarios, we use a random approach to
simulate pure exploration and the most popular items to simulate pure exploitation. In
this stage, we recommend 5 items at each interaction.

Stage 2: It is another interactive system where an agent continuously recommends a
list of items to the target user. But, in this stage, the user is no longer completely new.
After stage 1, this user has already interacted with some items and there are distinct
slots of knowledge about their preferences. Thus, the idea is to make more recommenda-
tions based on each slot of knowledge – i.e., with the hits and misses made until it gets
each percentage of relevant items. These new recommendations are made according to
the usual prediction rule of the bandit algorithm implemented at this stage. Therefore,
the effectiveness of the bandit model in stage 2 will be directly related to the amount
of knowledge achieved by each approach of stage 1. In this experiment, we select the
traditional ε-Greedy algorithm by recommending 1 item per interaction.

This methodology enables the possibility to measure the impact of naive approaches to
handle uncertainty scenarios as discussed in this work. Based on the number of interac-
tions required in the stage 1 to hit each percentage of relevant items, we can measure how
long the new user had to wait until the system started to apply a personalised method.
Moreover, by measuring the precision-recall curve of the bandit algorithm in stage 2, we
can also measure the impact of the first recommendations on the user’s experience.

3.4.2 Experimental Setup

Then, in order to apply our evaluation methodology, we created an experimental
setup according to the information below.

Datasets. First, we select the three traditional datasets from distinct domains described
in Table 3.2. As we want to perform our evaluation methodology in the pure cold-start
problem since it has the highest uncertainty about the user’s preferences, we simulate
some new users in these offline datasets. Basically, we select the last 20% of users that
joined the system (i.e., users with the highest timestamps) to represent the new users.
It means 2,000 users on Netflix, 10,648 users on GoodBooks, and 2,000 users on Yahoo.
The other 80% of the data is used to train the algorithms, representing the information
already in a system. All information around these new users (ratings, demographic infor-
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mation, and others) is removed from the training set. To make possible our evaluation
methodology, we filtered all datasets to ensure that users will have at least 20 items rated
because we want to evaluate the user’s long-term preference similar to other works [77].
For those with many users (Netflix and Yahoo), we randomly selected 10,000 users in the
dataset to facilitate our exhaustive experiments on the selected bandit algorithms.

Approaches. For this experiment, we select the ε-Greedy algorithm (based on SVD for-
mulation) as the interactive RS to recommend until 10 items after each slot of knowledge.
To simulate exploration and exploitation for new users, we select as:

(1) pure-exploration: Random and Entropy-based algorithms;
(2) pure-exploitation: Most Popular and Best-Rated algorithms.

In addition, to endorse our hypothesis about the impact of a smarter strategy in the
candidate items selection, we also evaluate the performance of another non-personalised
strategy that can achieve the trade-off between exploration & exploitation. This strat-
egy combines the log of popularity and the entropy of the items. In this work, both
concepts are defined as follow:

- popularity is the number of users who have rated the item;
- entropy is measured by:

∑
r−P (i|r) · log P (i|r), where P (i|r) is the probability of

one item being rating by a value r.

Introducing popularity we want to increase the probability that a user will rate an item
(i.e., a notion of exploitation). On the other hand, by applying entropy we intend to
increase the amount of information that is possible to be achieved if the user rates the
item (i.e., a notion of exploration). Both concepts have been mentioned as one of the
most promising techniques of Active Learning [181, 75].

3.4.3 Results & Discussion

The methodology created to simulate the impact of naive methods to make the first
recommendations for new users is then applied to over 20% of the users from the three
selected datasets. Results are highlighted in Figure 3.4. Stage 1 is represented by the non-
personalised approaches highlighted above. It is individually applied to each user until it
hits a percentage of relevant items for each user – a slot of knowledge about their prefer-
ences. As aforementioned, each slot of knowledge is represented by the distinct levels of
recall in the x-axis of both figures. Thus, each y-point is the result obtained according to
each slot x of knowledge. The first one, Figure 3.4a, shows the number of interactions re-
quired to achieve this level of recall (resulting from stage 1). The second one, Figure 3.4b,
represents the results from stage 2. It is the precision achieved by using the linear ε-Greedy
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algorithm applied with the knowledge created so far. The idea is to validate which non-
personalised approach from stage 1 can create better knowledge about the system and then
produce more effective recommendations in the next stage, with the bandit algorithm.
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(a) Average of interactions performed by non-personalised RSs.
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(b) Precision@10 achieved by linear ε-Greedy with the previous knowledge.

Figure 3.4: Impact of a naive initialisation in Contextual Bandit. While pure exploration
requires more interactions to achieve higher recall, pure exploitation does it so fast.
However, this fast learning has a considerable impact on the model’s performance as a
whole. In turn, balancing exploration and exploitation improves the system’s precision
without requiring many initial interactions.

In a simple observation, pure exploration seems the best choice for new users be-
cause it guides the bandit algorithm to achieve the highest level of precision (Fig. 3.4b).
However, to ensure this performance, these approaches require that many items be pre-
sented to the users. In our experiments, for instance, Random or Entropy-based ap-
proaches require that users analyse more than 8,000 items (∼ 2,000 interactions × 5
items) to reach 80% of the user’s history (i.e., recall) – Fig. 3.4a. This is not feasible in
practice since the users may not be so patient. Indeed, current systems usually choose
pure-exploitation approaches (like Most Popular and Best-Rated) to make the first rec-
ommendations. On average, they often require less than 500 iterations (∼ 2,500 items)
to achieve 80% of relevant items for each user. However, our analysis shows these ap-
proaches do not have the same impact on the bandit’s performance – Fig. 3.4b. These
non-personalised RSs are based on global preferences and they do not add so much knowl-
edge about the users. Thus, applying a contextual bandit algorithm after approaches
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purely based on exploitation does not achieve high levels of precision.
In turn, our suggestion based on a learning process that combines exploration and

exploitation seems more effective. By weighing items’ popularity with their entropy, the
system can identify interesting items for users and increase its own knowledge. In prac-
tice, it results in an approach that requires only a few interactions (quite similar to pure
exploitation approaches) but achieves more precision gains in the user’s long-term run.
Although this combination does not bring the same knowledge achieved by pure explo-
ration approaches, it also does not require many interactions to identify the user’s taste.
Thus, evaluating both results of Figure 3.4a and Figure 3.4b together, we can support
the assumption that such a combination of exploration and exploitation since the begin-
ning of the user’s journey is more effective than other approaches. It also endorses our
thesis statement by suggesting that such scenarios of uncertainty may determine per-user
boundaries of accuracy in Contextual Bandit models.

3.5 Summary

In this chapter, we have investigated the first research question raised by this
work around the impact of some scenarios of uncertainty in Contextual Bandits. First,
we present a complete background of Contextual Bandit algorithms and their main as-
sumptions to represent users and items in the recommendation domain. By inspecting
the selected works in our Systematic Literature Review (see Appendix A), we could
highlight the main approaches applied and define the guidelines usually followed by their
implementations. It shows that even ε-Greedy, UCB, and TS usually follow the same
prediction rule of traditional recommendation algorithms.

Then, we discuss and study the implication of uncertainty scenarios in their main
prediction rule. As shown by this work, the absence of user information in the pure
cold-start problem is the scenario with the highest uncertainty and it leads the bandit al-
gorithms to perform as naive non-personalised recommenders in the first iterations. Some
of them randomly select items in an attempt to guess the users’ preferences. Others se-
lect the best items defined by the information known prior (choosing the most popular
items). Other approaches perform a random exploration of the existing knowledge. These
differences are related to the values used to represent the user’s features vector.

Moreover, to measure the impact of such naive assumptions in the learning pro-
cess of current Contextual Bandits, we create an evaluation methodology and perform a
complete experiment in three distinct recommendation scenarios. Our observations show
that naive approaches can delay the system’s learning or even result in a bad experience
for the user. It indicates that some scenarios of uncertainty determine per-user bound-
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aries of accuracy for Contextual Bandit models. However, an approach based on both
concepts of exploration and exploitation seems reasonable to mitigate such challenges.
This approach consists of an attempt to increase the current knowledge about the user’s
preferences while also exploiting the existing information in the system. It results in a
viable option for real-world scenarios by requiring only a few interactions to improve the
levels of accuracy. This approach is then explored in the next chapters of this work.
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Chapter 4

An Active Learning approach in
Contextual Bandits

This chapter addresses the second question raised by this work: How can exploration and
exploitation be ensured in Contextual Bandit models when user preferences are uncertain?
The proposed solution consists of applying concepts from the Active Learning theory to
the user feedback loop problem. Our idea is to explore such concepts in order to en-
hance current bandit models. We assume that by achieving more information about the
user’s preferences in scenarios of uncertainty, such contextual models may maximise their
cumulative reward in the long run.

4.1 Active Learning

In the literature, Active Learning approaches have been proposed to improve the
training processes of several Machine Learning algorithms that often require a considerable
amount of high-quality data [199]. Their idea is to select the best candidate data points by
querying for certain types of instances based on the data that the system has seen so far.
Formally, the process is described by Elahi et al. [75] as follows. Given a training set of N
input-output pairs {(x1, y1), (x2, y2), ..., (xn, yn)}, where xi ∈ X is an instance, and yi ∈ Y
is a label, we assume that there is a modelM that maps input to outputM : X → Y , and
another function Loss(M) which measures the error of the model (the smaller the better).
At every iteration j of the active learning process, the learner selects a candidate xj ∈
potentialCandidates ⊂ X, requests the label of it, and obtains the label yj. The instance
xj and its unknown label have the property that M ′, which is the model M re-trained by
adding the new pair (xj, yj) to the set of previously labelled instances, has the lowest loss.

In recommendation systems, Active Learning has been constantly motivated by
the need to implement more effective sign-up processes [71]. In the sign-up stage, the
system actively selects and proposes individual items or groups of items to be rated by
the users [187, 188, 9]. For that, the system evaluates the entire set of items and se-
lects the items that are estimated to be the most useful ones. The idea is to select the
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items that may improve the accuracy of the system. Elahi et al. [75] classified the main
strategies into two main categories: (1) non-personalised when the user information is not
used to determine the candidate items; and (2) personalised, otherwise. Each of them is
further partitioned into two subcategories: (1) single-heuristic when only one algorithm is
applied; and (2) combined-heuristic when more than one technique is applied. Figure 4.1
illustrates the main approaches of each class.

Figure 4.1: Active Learning approaches in recommendation systems [75].

However, the incorporation of these approaches into Contextual Bandit algorithms
for interactive recommendation scenarios has not been thoroughly explored yet. Previous
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works that deal with Active Learning in recommendation systems do not specifically ad-
dress its application within the interactive scenario [34, 75]. These works propose a search
for the best items among a set of potential candidates by minimising the loss function
related to the system’s uncertainty. Nevertheless, this approach carries inherent risks
as the items resulting from Active Learning are often controversial and may not align
with the optimal choices for personalising the items recommended. In contrast, this work
introduces a novel approach that combines one of the most promising Active Learning
strategies with Contextual Bandits. Our objective is to leverage these approaches when
the system encounters uncertainty regarding the user’s preferences.

4.2 Addressing scenarios of uncertainty

Ensuring the trade-off between exploration and exploitation in current Contextual
Bandits is challenging when the system is uncertain about the user’s preferences. As
previously discussed, the problem is usually on their prediction rule p>u qi where pu and
qi are, respectively, the user’s and item’s features vector represented by z features. Any
significant alteration of this rule could result in a wrong combination of user and item
features. Therefore, this work does not intend to modify how these algorithms usually
work. Instead, we propose to introduce more information about the users to help the
algorithms overcome such scenarios. The idea is to use the information available about
the items to warm-start the user’s profile whenever it is necessary.

In this sense, we address two concepts around the items to collect more information
about the system: (1) popularity – to maximise the probability of an item being rated;
and (2) entropy – to increase the amount of information that is possible to obtain if the
user rates the recommended item. While the first one introduces a notion of exploitation
because it suggests in general the best items in the system, the second represents a notion
of exploration since it is interested in the potential knowledge of each item. In this work,
the popularity ρ of an item i is measured by the number of distinct users who rated i.
In turn, the entropy φ is:

∑
r−P (i|r) · logP (i|r), where P (i|r) is the probability of an

item i being rated with the rating r (usually defined in a range of 1 − 5). This added
information is not associated with any sensitive information about the new users, such as
social or demographic data. For this reason, it can be adapted for any other Contextual
Bandit algorithm.
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4.2.1 Mitigating the pure cold-start problem

When users have recently joined or they are not logged into the system, the inter-
active model will understand them as new users. It means that there is no information
available about those users and it is not possible to make personalised recommendations
so far – the hardest scenario of uncertainty. In this sense, we propose to make the first
recommendation (when t = 0) equivalent to the non-personalised Active Learning strat-
egy that combines popularity and entropy as illustrated in Equation 4.1. Our idea is to
explore this moment when the user is not willing personalised recommendations to show
items with the potential to get as much information as possible.

i∗(t=0) = arg max
i∈I

p>u qi ≡ i∗(t=0) = arg max
i∈I

log ρi · φi (4.1)

In practice, it means changing the output of the current prediction rule to be the
same as the combination of popularity and entropy. In the current Contextual Bandit
approaches, we should approximate the rule p>u · qi of the values achieved by multiplying
popularity and entropy. As the item features vector qi ∈ Q can be measured even on the
user cold-start scenario, the challenge is to estimate the user’s feature vector pu. This
vector is then called as x and the goal is to minimise the difference to the set y (popularity
vs. entropy) by minimising the Equation 4.2:

f(x) =
∑
i∈I

(yi − x> · qi)2, where: yi = log ρi · φi (4.2)

In this sense, we apply a quasi-Newton method of BFGS [164] to estimate values for
x. BFGS aims to gradually minimise the loss function f(x) obtained through a gradient
evaluation method. Starting from a vector of constants −→x0 = {1}z, for n iterations, the
method estimates the next vector minimising the difference for the previous one: xn+1 =

xn − [H(xn)]−1∇f(xn). The Hessian matrix H is a square matrix of second-order partial
derivatives of f(x). This method is then applied for each item i to build the new vector x.

n iterations


−→x1 ← −→x0 − [H(−→x0)]−1∇f(−→x0)
−→x2 ← −→x1 − [H(−→x1)]−1∇f(−→x1)
...
X ← −−→xn−1 − [H(−−→xn−1)]−1∇f(−−→xn−1)

This approach is used to compute the initial user’s features vector pu. After the
first interactions, the model should update the user’s vector as usual.
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4.2.2 Mitigating misleading assumptions

When the system has learned wrong assumptions for a user, the interactive model
will exploit misleading assumptions until it relearns the user’s preferences. Thus, our
approach to handling this scenario consists of using the Active Learning theory to recover
the user’s interest after consecutive mismatching. In practice, this problem can be identi-
fied when the system has not provided at least one successful recommendation for a while.
In this case, we assume that the user does not trust the personalised recommendations
anymore. Consequently, we can replace the entire prediction rule (i.e., the original pol-
icy) with a recommendation based on the selected AL approach. Our proposal is to make
this replacement when the number of consecutive mismatches, denoted as m, reaches a
threshold T > 0 specified as a parameter. In this way, the algorithm will have two value
functions: one based on the AL approach, combining popularity and entropy; and another
consisting of the original value function of the model.

Prediction Rule

i∗(t) =

 original policy Qt, if m < T
arg max

i∈I
log ρi · φi, otherwise

This novel approach offers an option to reduce the potential for misleading results
with any Contextual Bandit algorithm. The extent of this change depends on the number
of times the model chooses to use the AL approach. If T is too low (e.g., 1 or 2), the AL
approach will likely provide more recommendations than the original Contextual Bandit
model. Conversely, if T is too high (e.g., 20 or 30), more items will be recommended
based on the original value function. The ideal value depends on the Contextual Bandit
model and the desired outcome of the recommendations.

4.3 Modified Contextual Bandits

The Active Learning approach proposed by this work does not rely on sensitive in-
formation of new users, such as demographic or social and it can be adapted to any other
bandit algorithm. In the first scenario, the idea is to modify the starting point (t = 0)
of the interactive process. This captures the context x and then uses it to generate the
user’s features. In the second scenario, we only need to create a mismatch counter m
to assess how often the user does not rate the proposed item. If this counter reaches a
threshold, the prediction rule is switched to the AL approach.

In this sense, we select three distinct contextual bandit models to be adapted by our
new approach – one from each bandit class. Algorithms 1, 2, and 3 illustrate their adap-
tations. For the first scenario, we compute the context x before the interactive process of
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each method (on line 1). This context is then used to estimate the user’s feature vector pu
and updated with each item rated by the user. For the second scenario, we implemented
a conditional state in the prediction rule of each algorithm. If the number of mismatches
reaches the threshold T (for T > 0), the AL prediction rule will be triggered, and the
item will then be selected based on the combination of its popularity and entropy. The
remaining lines of the algorithms are the same as their original versions [288, 129, 114].

4.3.1 Contextual Linear ε-Greedy

The original version consists of a linear representation of the traditional ε-Greedy
based on a Probabilistic Matrix Factorisation (PMF) to extract the features [288]. It ex-
ploits the usual rule (p>u ·qi) with probability ε and explores a random item with probability
1− ε. The Algorithm 1 illustrates the modified version.

Algorithm 1 Contextual ε-Greedy

Require: features Q = {q1, ..., qn} from PMF, popularity ρ, entropy φ, variance λp, ε,
and the threshold T > 0

1: X← BFGSx
∑

i(log ρi · φi − x>Qi)
2

2: Σu,t ← λpId
3: m← 0
4: for t = 1, 2, ..., T do
5: Estimates pu,t ← Σ−1

u,t ·X
6: With probability 1 - ε:
7: If m < T :
8: it

∗ ← arg max
i∈I\R

p>u,tqi

9: Otherwise:
10: it

∗ ← arg max
i∈I

log ρi · φi
11: m← 0
12: Otherwise: selects it∗ randomly
13: Receives the reward ru,i∗(t)

14: If ru,i∗(t) = 0: m← m+ 1
15: Updates Σu,t ← Σu,t + qi∗(t) · q>i∗(t)

16: Updates X← X + ru,i∗(t) · qi∗(t)

17: end for

4.3.2 Contextual LinUCB

The original version consists of a linear representation of the UCB defining the
contexts as latent factors from the SVD [129]. It also exploits the usual rule (p>u · qi) but
adds an uncertainty over through the confidence interval ||qi||. Algorithm 2 illustrates it.
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Algorithm 2 Contextual LinUCB
Require: features Q from SVD, popularity ρ, entropy φ, the value α, threshold T > 0
1: X← BFGSx

∑
i(log ρi · φi − x>Qi)

2

2: Initialise Σu,t ← Id; Initialise m← 0
3: for t = 1, 2, ..., T do
4: Estimates pu,t ← Σ−1

u,t ·X
5: If m < T :
6: it

∗ ← arg max
i∈I\R

p>u,tqi + α||qi||2,Σu,t where ||qi||2,Σu,t =
√
q>i Σu,tqi

7: Otherwise:
8: it

∗ ← arg max
i∈I

log ρi · φi
9: m← 0
10: Receives the reward ru,i∗(t)

11: If ru,i∗(t) = 0: m← m+ 1
12: Updates Σu,t ← Σu,t + qi∗(t) · q>i∗(t); Updates X← X + ru,i∗(t) · qi∗(t)

13: end for

4.3.3 Contextual PTS

The original version consists of an adaptation of the traditional TS model using
PMF and Bayesian inference around the items [114]. It also adds a particle filtering
approach for exploration. The modified version is illustrated in Algorithm 3.

Algorithm 3 Contextual PTS
Require: features from PMF, variances σ, K particles, popularity ρ, entropy φ, and

threshold T > 0
1: X← BFGSx

∑
i(log ρi · φi − x>Qi)

2

2: Initialise particles: [dXu ← X]∀K; Initialise m← 0
3: for t = 1, 2, ..., T do
4: d′ ∼ dw
5: Q̃← d′Q
6: p̃u ∼ P (pu|Q̃, d′σP , σ, ro1:t−1)
7: If m < T :
8: it

∗ ← arg max
i∈I\R

p̃uq̃i

9: Otherwise:
10: it

∗ ← arg max
i∈I

log ρi · φi
11: m← 0
12: Receives the reward ru,i∗(t)

13: If ru,i∗(t) = 0: m← m+ 1
14: rot ← (u, it

∗, ru,i∗(t))
15: Updates d based on [114]
16: end for
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4.4 Summary

In this chapter, we answered the second research question by presenting a novel
approach that applies concepts from Active Learning to mitigate scenarios of uncertainty
about the user’s preferences. First, we present the background concepts around Active
Learning and how this theory has been applied in traditional recommendation systems. In
short, Active Learning aims to select items with the strongest potential to collect as much
information as possible about the users. In this work, we propose to apply this concept
from their non-personalised strategies since we intend to mitigate scenarios of uncertainty
about the users. The selected strategy is based on the entropy and popularity of each
item to balance the probability of increasing the system knowledge and the probability of
being rated by the user.

Then, we present our approach that combines this non-personalised method with
current Contextual Bandit models. Our idea is to introduce this Active Learning approach
in two scenarios when the system is uncertain about the user’s preferences: the first in-
teraction (pure cold-start problem), and after some misleading assumptions. For the first
scenario, we propose to add an initial feature vector to make the first recommendation
exclusively based on the Active Learning strategy. In turn, for the second one, we propose
to use this non-personalised strategy every time the user dislikes the recommendation for
a consecutive number of times. In these ways, we ensure that the Contextual Bandit
model still applies the trade-off between exploration and exploitation.

Finally, we select three traditional Contextual Bandits – Linear ε − Greedy, Lin-
UCB, and PTS (one from each class of MAB), and demonstrate how our approach could
be applied to each algorithm. In short, we add two additional steps. The first is placed
at the beginning of each algorithm and it aims to select the contextual vector for the new
users. This contextual vector will represent the first user’s features. In turn, the second
step is a conditional procedure that proposes to change the prediction rule. This approach
aims to replace the current rule with one based on Active Learning when the condition
is applied. The condition is a simple counter of the number of consecutive mismatches
reached by the bandit algorithm. In the next chapter, we aim to answer our third question
by measuring the impact of such changes on the models’ performance.
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Chapter 5

Experiments: Results & Discussions

As aforementioned, this work investigates whether mitigating scenarios of uncertainty
about the user’s preferences may improve the quality of current Contextual Bandits. In
this sense, our proposal consists of applying an Active Learning approach in two of these
scenarios: pure cold-start and misleading assumptions. As this approach is not dependent
on the base algorithm, we apply this approach to three distinct bandit models and create
their modified versions. Our idea is to introduce more information about the users in such
scenarios of uncertainty to improve the next recommendations made by the interactive
model. Thus, this chapter aims to measure the quality of our solutions through the third
research question raised by this work: What is the impact of enhancing exploration and
exploitation when the Contextual Bandit model is uncertain about the user preferences?

First, we present our experimental setup designed to answer this question. It fol-
lows the best practices in the literature about Multi-Armed Bandits and contains distinct
evaluation metrics for three real-world domains. Then, we perform distinct analyses of
the performance of our modified algorithms. Such analyses aim to answer the third re-
search question by answering three smaller questions about our proposed solution based
on Active Learning theory:

- Q1: Are the modified versions of the bandit algorithms statistically superior to the
original ones?

- Q2: Has the improvement of these modified versions been caused by the usual pop-
ularity bias of offline datasets?

- Q3: What is the effect of addressing uncertainty scenarios compared to existing
state-of-the-art baselines?

5.1 Experimental Setup

In order to validate our proposal, we define an experimental setup that simulates
the user cold-start problem in offline datasets. All details are explained as follows.
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Datasets. First, we select three recommendation datasets from three distinct domains:
movies, books, and songs. They are all described in Table 5.1. To facilitate our interactive
experiment, we randomly filter 10,000 users from datasets with many interactions (i.e.,
Netflix and Yahoo), and ensure that each user has at least 20 items rated.

Datasets # Users # Items Sparsity
Netflix 10,000 17,372 98.67%

GoodBooks 53,423 10,000 98.88%
Yahoo Music R1 10,000 13,214 99.22%

Table 5.1: An overview of the datasets applied in this work.

Then, to simulate the pure cold-start scenario, we select the last 20% users who
joined the system as the new users. These users are selected by defining a global times-
tamp to cut the dataset into training and test sets as illustrated in Figure 5.1. The cut
time of each dataset consists of the first timestamp of the last 20% of new users. All data
prior to the first interaction of the new users (coloured green in the figure) are used to
train the algorithms, representing the information already within the system. In turn, all
data from new users are removed from the training set (coloured yellow). This approach
ensures that there is no data leakage in the experiment and it results in 2,000 users on
Netflix, 10,648 on GoodBooks, and 2,000 on Yahoo. The only drawback is that we have
to remove the extra ratings that happened before the cut point (those coloured red) from
users that are in the training set.

Figure 5.1: Global timestamp cut to select new users in offline datasets.

Evaluation Policy. As the interactive scenario has been recently studied in the litera-
ture, there is no consensus about the best practices to evaluate bandit algorithms. In this
sense, we searched for all policies available on the articles from our SLR (see Appendix A)
and, then, propose the evaluation policy described on the Algorithm 4. This evaluation is
quite similar to a recent one proposed by Sanz-Cruzado et al. [192]. Each trial represents
a user’s interaction with the system when one item is recommended and the user will
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rate or not it. At each trial t ∈ T , the new user u is selected uniformly to simulate the
random accessing pattern of users in the real world. Then, the system will recommend 1

item i for this user according to the method Π. This method Π will recommend the new
item based on the training set D, the available items (i.e., the items that have not been
recommended yet – I \ Ru), and the knowledge ∆ achieved until the trial t. After that,
the system will update the current knowledge for the next iterations. Differently for other
works, the system is not compelled to only recommend previously rated items (i.e., those
from the test) to avoid a biased solution. All items can be recommended at each trial as
long as it was not recommended in another trial before. Moreover, in our case, we compel
the system to always make T iterations for each new user u.

Algorithm 4 Evaluation Policy
Require: Training set D, testing set T , number of trials T , and the number of items k

to be recommended for each user per trial
1: Ru ← ∅ ∀u∈U // Recommendation list
2: ∆← ∅ // Knowledge around the users
3: N ← |U | × T // Total number of iterations to play
4: for t = 1, 2, 3, ..., N do
5: ∆′ ← ∅ // Saves the current knowledge
6: u← |U | // Random selects a user u (limited to T trials)
7: it ← Π(u,D, I \Ru,∆) // Gets the item recommended
8: Ru ← Ru ∪ {it} // Saves this item
9: ∆← ∆ ∪ {T (u, it)} // Updates the system knowledge
10: end for

After that, the recommendations are then evaluated based on the Cumulative Re-
ward [192]. A reward is 1 when the recommended item was rated by the target user
with a value r ≥ 4 in the test set. For the experiments, we perform an extensive grid
search for the best parameters of all algorithms by using 20% of the training as validation.
This search includes the parameter τ used in our approach. All these evaluation policies
and metrics applied in this work were published in an open-source framework named
iRec [209]. The iRec is a complete framework that enables reproducible experiments in
the interactive recommendation field with several methodologies, algorithms, and datasets
(see Appendix B for more details).

Baselines. Mitigating the lack of information about users is one of the hardest challenges
of the literature and it has attracted the attention of a huge number of researchers [17,
77, 241, 203]. However, its impact on the user’s journey has not been deeply studied
in an interactive scenario modelled by Contextual Bandits. Moreover, most of the re-
cent works do not address such challenges in the user’s journey since his first interaction,
when no item has been rated yet [101, 200]. In this work, in turn, one of the uncertainty
scenarios consists of the pure cold-start problem, where there is not any previous knowl-
edge available (e.g., not even 1 item rated or no social information). Furthermore, to the
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best of our knowledge, neither other work has proposed to mitigate these challenges by
compelling the Contextual Bandits to address exploration and exploitation since the first
recommendations.

Therefore, we only identified three classes of algorithms related to this challenge:

(1) State-of-the-art Contextual Bandits. Context-aware recommendation systems
can mitigate the lack of information about the users and items by exploring their external
attributes (i.e., context) [123]. In general, this context can be:

- fully observable: when the contextual factors are known explicitly;
- partially observable: when only some information is known explicitly; or
- unobservable: when there is not any explicit information and the system needs to
model it by latent variables.

In the Multi-Armed Bandit field, for instance, there are several algorithms to work with
partially observable or unobservable contextual factors. Algorithms like LinUCB [129],
FactorUCB [239], hLinUCB [238], and CoLin [257] explore explicit information about
the user (demographic, geographical, and others) and the items (descriptions, categories,
and others). Other ones, like FactorUCB, CoLin [257], Linear UCB [288] and GLM-
UCB [288] explore unobservable factors by modelling users and items with a Probabilis-
tic Matrix Factorisation approach. And, more recently, new algorithms like the hLin-
UCB [238] have been proposed to aggregate the partially observable information about
the users with the latent factors usually applied in the field. However, as this work pro-
poses to study the scenario with the total absence of user information, we do not apply
any strategy that requires partially observable factors. We decided to use the algorithms
highlighted in bold because they are competitive baselines for our modified algorithms.

(2) Meta-Learning approaches. Similar to the Active Learning theory, Meta-learning
is a class of Reinforcement Learning algorithms recently popularised for training easily
generalised machine learning models. The idea is to create models that can rapidly adapt
to a new task that is not used during the training with only a few examples [127]. It is
inspired by the human learning process, which can quickly learn new tasks based on a
small number of examples. In the recommendation field, it has been adapted to help the
system deal with the huge amount of users that must receive a personalised recommenda-
tion. The idea is to consider each user as a single task and create a learning environment
with a set of users to teach algorithms how to deal with new tasks (i.e., new users). The
first work proposed in this sense was MeLU [127], a meta-learning strategy to identify the
specific items that can be used to analyse the individual preferences of new users quickly.
Then, the most recent work has proposed the NICF [297] to use Meta-Learning to guide
a neural network model in an interactive environment. NICF outperformed MeLU.
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(3) Bayesian Inference methods. These algorithms are based on probabilistic dis-
tributions to make inferences when very little evidence is available. Thus, in the rec-
ommendation field, they have been directly applied to deal with the cold-start scenario.
They usually are variations of the traditional Thompson Sampling by applying a Beta
distribution to fit the probability of success and failure of each arm with two positive
parameters: α and β. They can be used to learn the arms’ relevance before the in-
teractive recommendation, through a training sample, or even learn it over the user’s
interactions. If they choose to learn on live, they will explore different arms in the first
recommendations until they learn the best options. In turn, if they choose to learn before
the recommendations, they will exploit the most successful arms (i.e., the most popular
options). In this class of algorithms, we can highlight PTS [114], ICTRTS [245], and
Cluster-Bandit [192]. PTS introduces a particle filtering process to guide the recommen-
dations made by a PMF formulation. In turn, ICTRTS applies a TS and particle filtering
approach combined with a topic regression model to handle the dilemma of exploration
and exploitation. Finally, Cluster-Bandit is a variant of the nearest-neighbours collabora-
tive filtering algorithm but endowed with a controlled stochastic exploration from a Beta
distribution. All of these three algorithms are baselines for this work.

In this sense, we compare our modified algorithms with two non-personalised algo-
rithms; three traditional MAB algorithms adapted to the recommendation field; and six
competitive baselines. All baselines are highlighted in bold above. For all baselines, we
perform an extensive grid search for the best parameters in a validation set (20% of the
training). In most cases, we could follow the range of parameters searched in their origi-
nal papers. However, some authors have not described such information and the authors
have not answered our emails. In these cases, we inferred the range of parameters based
on our own knowledge of such algorithms. The best parameters identified are described
in Table 5.2. All the code is available at our GitHub repository1 and split by the main
experiments of our most recent paper [206].

5.2 Modified vs. Original Algorithms

This section aims to answer the first sub-question: Are the modified versions of
the bandit algorithms statistically superior to the original ones? Basically, we perform a
comparison of the modified Linear ε-Greedy, LinUCB, and PTS algorithms created in this
work (see Algorithms 1, 2, 3) with their original versions. For this experiment, we split
our modified versions into two versions for each bandit algorithm. The first one proposes
to only mitigate the pure cold-start problem. Thus, each algorithm contains the context

1https://github.com/ncsilvaa/bandit-uncertainty

https://github.com/ncsilvaa/bandit-uncertainty
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Netflix Good Books Yahoo Music
UCB c=0.01 c=0.25 c=0.01
TS α0=1, β0=100 α0=1, β0=100 α0=1, β0=100
ε-Greedy ε=0.001 ε=0.1 ε=0.0001

Linear UCB
� α=0.5 , T=20, q2p=0.01
� σ2

q=0.01 , σ2=0.05
� num_lat=20
� stop_criteria=0.0009

� α=1 , T=20, q2p=0.01
� σ2

q=0.01 , σ2=0.05
� num_lat=15
� stop_criteria=0.0009

� α=1 , T=20, q2p=0.01
� σ2

q=0.01 , σ2=0.05
� num_lat=15
� stop_criteria=0.0009

Linear ε-Greedy
� num_lat=5, ε=0.001
� stop_criteria=0.0009
� σ=0.05, T=20
� σ2

q=0.001, σ2
u=0.001

� num_lat=20, ε=0.01
� stop_criteria=0.0009
� σ=0.05, T=20
� σ2

q=0.01, σ2
u=0.01

� σ=0.05, num_lat=20
� stop_criteria=0.0009
� T=20, ε=0.5
� σ2

q=0.01, σ2
u=0.01

GLM-UCB

� c=4 , T=20, q2p=0.01
� σ2

q=0.01 , σ2=0.05
� num_lat=10
� stop_criteria=0.0009

� c=4 , T=20, q2p=0.01
� σ2

q=0.01 , σ2=0.05
� num_lat=20
� stop_criteria=0.0009

� c=4 , T=20, q2p=0.01
� σ2

q=0.01 , σ2=0.05
� num_lat=10
� stop_criteria=0.0009

NICF

� batch=256
� clip_param=0.2
� dropout=0.01
� gamma=0.0
� inner_epoch=50
� latent_factor=10
� learning_rate=0.001
� num_blocks=1
� num_heads=2
� restore_model=False
� rnn_layer=2
� time_step=100
� training_epoch=4000

� batch=256
� clip_param=0.2
� dropout=0.01
� gamma=0.0
� inner_epoch=50
� latent_factor=10
� learning_rate=0.001
� num_blocks=1
� num_heads=2
� restore_model=False
� rnn_layer=2
� time_step=100
� training_epoch=4000

� batch=256
� clip_param=0.2
� dropout=0.01
� gamma=0.0
� inner_epoch=50
� latent_factor=10
� learning_rate=0.001,
� num_blocks=1
� num_heads=2
� restore_model=False
� rnn_layer=2
� time_step=100
� training_epoch=4000

PTS
� num_lat=15 , D=8
� σ2

U=0.6, σ2
V =0.6

� σ2=0.3

� num_lat=5 , D=2
� σ2

U=1.0, σ2
V =1.0

� σ2=0.5

� num_lat=10 , D=6
� σ2

U=0.6, σ2
V =0.6

� σ2=0.3

ICTRTS � num_lat=2, B=5 � num_lat=2, B=5 � num_lat=2, B=5

Cluster-Bandit
� B=5 , C=0.5 , D=3
� num_clusters=8
� num_lat=20

� B=5 , C=0.5 , D=3
� num_clusters=8
� num_lat=20

� B=5 , C=0.5 , D=3
� num_clusters=4
� num_lat=20

LinUCB � α = 0.9, num_lat=5 � α = 0.25, num_lat=10 � α = 1.0, num_lat=10

Table 5.2: Parameters identified after a Grid Search tuning using 20% of the training set.

created in line 1, but they do not have the conditional statement based on the number of
consecutive mistakes (i.e., m < T ). This version is tagged as t = 0 since it only mitigates
the first user’s interaction in the system. The second version, in turn, proposes to miti-
gate both scenarios of uncertainty – the pure cold-start and the misleading assumptions.
These versions are identical to the Algorithms 1, 2, 3 presented in the last chapter. They
are tagged as t ≥ 0 for working on the entire user journey since the first interactions. The
identified parameters of each version are described in Table 5.3.

Therefore, Table 5.4 highlights the Cumulative Reward achieved after T interac-
tions evaluating (or not) one recommended item. Each value is an average of the reward
achieved for all users in this experiment. In this sense, we applied the Wilcoxon test for
non-parametric distributions with a p-value equal to 0.05.
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Netflix Good Books Yahoo Music

LinUCBt=0 � α=0.9
� num_lat=5, τ=0

� α=0.25
� num_lat=10, τ=0

� α=0.5
� num_lat=20, τ=0

LinUCBt≥0 � α=0.9,
� num_lat=5, τ=20

� α=0.25,
� num_lat=10, τ=20

� α=0.3,
� num_lat=10, τ=10

PTSt=0
� num_lat=10, D=10
� τ=0, σ2=0.3
� σ2

U=0.6, σ2
V =0.6

� num_lat=5, D=2
� τ=0, σ2=0.5
� σ2

U=1.0, σ2
V =1.0

� num_lat=10 , D=10
� τ=0, σ2=0.3
� σ2

U=0.6, σ2
V =0.6

PTSt≥0
� num_lat=10 , D=4
� τ=5, σ2=0.3
� σ2

U=0.6, σ2
V =0.6

� num_lat=5 , D=2
� τ=5, σ2=0.5
� σ2

U=1.0, σ2
V =1.0

� num_lat=10 , D=10
� τ=5, σ2=0.3
� σ2

U=0.6, σ2
V =0.6

Linear ε-Greedyt=0

� τ=0, ε=0.001
� num_lat=5
� stop_criteria=0.0009
� T=20, σ=0.05
� σ2

q=0.01, σ2
u=0.01

� τ=0, ε=0.01
� num_lat=20
� stop_criteria=0.0009
� T=20, σ=0.05
� σ2

q=0.01, σ2
u=0.01

� τ=0, ε=0.01
� num_lat=20
� stop_criteria=0.0009
� T=20, σ=0.05
� σ2

q=0.01, σ2
u=0.01

Linear ε-Greedyt≥0

� τ=5, ε=0.001
� num_lat=5
� stop_criteria=0.0009
� T=20, σ2

q=0.001
� σ2

u=0.001, σ=0.01

� τ=5, ε=0.01
� num_lat=20
� stop_criteria=0.0009
� T=20, σ2

q=0.01
� σ2

u=0.01, σ=0.05

� τ=5, ε=0.01
� num_lat=20
� stop_criteria=0.0009
� T=20, σ2

q=0.01
� σ2

u=0.01, σ=0.05

Table 5.3: Identified parameters for our modified version of the algorithms.

In general, we can observe significant improvements in both modified versions for
each algorithm throughout all interactions. Obviously, the results of each modified ap-
proach still depend on the quality of the original bandit algorithm. In the Linear ε-Greedy
(the simplest of these three models), we notice several improvements across all user inter-
actions. In the original version, the model starts from a completely random solution (a
pure-exploration approach) and cannot get satisfactory results in 100 interactions. Oth-
erwise, in the modified versions, the model begins by recommending popular items with
high entropy – a better approach than the original one, producing short-term improve-
ments as well. Moreover, the modified version that addresses both uncertainty scenarios
(t ≥ 0) produces even better results than the others. It happens because the model can
also recalculate its behaviour if it experiences consecutive mismatches. Similar behaviour
can be observed in the LinUCB algorithm. While there may not be a substantial dif-
ference among the three variants, our modified versions have demonstrated statistically
superior performance compared to the original implementations.

On the other hand, when analysing the contextual change in the PTS algorithm,
we notice that our improvement is not as expressive as in the others. It happens because
this model already performs a combination of exploration and exploitation in the first
interactions by making a Bayesian inference of the distribution known prior. However, in
practice, this approach consists of a random sampling of the most popular items and still
is strongly biased by the exploitation goal. In turn, as our approach offers a smarter way
to combine exploration and exploitation, our contextual changes make the model able to
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Dataset Netflix
Measure Cumulative Reward

T 5 10 20 50 100
Linear ε-Greedy 0.002 0.189 0.735 2.104 5.479

Linear ε-Greedyt=0 0.382N 0.817N 2.229N 6.245N 12.617N
Linear ε-Greedyt≥0 0.330N 0.971N 2.985N 10.274N 20.004N

PTS 0.412 0.918 2.190 7.639 14.846
PTSt=0 0.493N 1.034N 2.583N 8.218N 15.379N
PTSt≥0 0.469N 1.028N 2.691N 8.276N 15.312N
LinUCB 0.677 2.225 5.535 13.567 22.980

LinUCBt=0 1.065N 2.777N 6.111N 14.159N 23.410N
LinUCBt≥0 1.065N 2.777N 6.111N 14.161N 23.409N
Dataset Yahoo Music
Measure Cumulative Reward

T 5 10 20 50 100
Linear ε-Greedy 0.021 0.059 0.187 0.985 3.278

Linear ε-Greedyt=0 1.090N 2.189N 4.497N 11.122N 19.857N
Linear ε-Greedyt≥0 1.190N 2.459N 5.355N 13.208N 22.867N

PTS 0.902 2.267 5.649 15.263 23.333
PTSt=0 0.637H 1.655H 4.804H 14.998H 24.023N
PTSt≥0 0.657H 1.722H 4.857H 14.994H 24.112N
LinUCB 0.746 1.475 5.702 16.662 26.538

LinUCBt=0 1.410N 2.641N 4.191H 16.780• 27.349N
LinUCBt≥0 1.411N 2.509N 7.395N 18.057N 27.425N
Dataset Good Books
Measure Cumulative Reward

T 5 10 20 50 100
Linear ε-Greedy 0.026 0.039 0.092 0.282 0.723

Linear ε-Greedyt=0 0.403N 1.016N 2.036N 5.871N 11.726N
Linear ε-Greedyt≥0 0.404N 0.997N 2.026N 6.164N 12.794N

PTS 0.841 2.047 4.159 7.669 12.121
PTSt=0 0.969N 2.256N 4.331N 8.233N 12.825N
PTSt≥0 0.993N 2.324N 4.507N 8.492N 13.095N
LinUCB 0.651 0.889 3.572 9.541 15.758

LinUCBt=0 1.174N 1.893N 5.435N 11.252N 17.522N
LinUCBt≥0 1.174N 1.893N 5.435N 11.258N 17.548N

Table 5.4: A comparison between original Contextual Bandits and their modified versions
for each recommendation domain. While algorithms labelled with t = 0 only address the
pure cold-start, those labelled with t ≥ 0 mitigate both scenarios of uncertainty. The
results show a significant improvement achieved by the modified algorithms based on
the Wilcoxon test with a p-value = 0.05. The symbol N represents significant gains, •
represents statistical draws, and H represents significant losses.

surpass its original version in most of the datasets. Only in the Yahoo dataset that such
gain is mainly focused on the long term. In our opinion, it happens because this dataset is
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part of an experiment made by Yahoo where they included some random recommendations
during the user’s journey. In this sense, the popularity bias is not so strong and the combi-
nation of exploration and exploitation made by the original PTS is already enough to en-
sure a good understanding of the user’s preferences. In this case, our modified algorithms
require more interactions to learn the user’s preferences and surpass the original versions.

Therefore, these empirical findings strongly reinforce our thesis statement by demon-
strating the statistical superiority of all modified algorithms when compared to their origi-
nal ones. However, these results also raise a subsequent question to be further investigated.
As most of the recommendations’ datasets are biased by the items’ popularity and our
approach takes advantage of this characteristic, it is crucial to explore the possibility that
the observed performance gains are solely attributed to this inherent bias. Consequently,
it becomes imperative to investigate the presence of any potential biases in these results
in order to ascertain their validity.

5.3 Counterfactual Evaluation

This section aims to investigate our second sub-question: Has the improvement of
these modified versions been caused by the usual popularity bias of offline datasets? In
this sense, we perform a counterfactual evaluation of the modified Contextual Bandits to
evaluate them without the selection and exposure bias [55, 165]. Such biases usually occur
in offline datasets because all user ratings were collected from the user interactions with
items recommended by a specific recommendation policy (i.e., the model in production
at the time of the user’s interaction). Counterfactual estimators enable using existing
log data to estimate how some new target recommendation policy (i.e., a new approach)
would have performed if it had been used instead of the policy that logged the data. It
enables an Off-Policy Evaluation (OPE) akin to an unbiased offline A/B test [142].

However, the current counterfactual estimators require that we know the produc-
tion policy used to create the dataset – which is not available for offline datasets. In this
sense, we create a synthetic recommendation dataset based on a prior known policy to
produce ratings from 1 to 5. For this experiment, we adapt the recently published Open
Bandit Pipeline [189] to create a dataset following the same settings of the traditional
MovieLens 100k. It means that we create 100k synthetic ratings for the same amount of
users. In this experiment, each context contains the user-id and their features (i.e., genre,
age, and occupation). The context is selected according to the user-id based on the same
order as the MovieLens dataset. However, at each interaction, the items are selected based
on a simple Linear Regression (the recommendation policy π0) that performs a weighted
selection according to a random sample of items. In this sense, the recommendations
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policy is now known by our system and the recommended items are not fully biased by
their popularity. The ratings from each user to the recommended item are simulated by
also using a Linear policy. Table 5.5 highlights some statistics of this new dataset. It is
limited to 1,000 items due to the current limitations of the OBP framework.

Synthetic Dataset
# Users 943
# Items 1,000
Sparsity 93.75%

Rating mean 3.25 (std. 1.27)
Avg. ratings per user 62 (std. 60)
Avg. ratings per item 59 (std. 26)

Table 5.5: Synthetic Dataset statistics.

For the counterfactual evaluation, we get the synthetic dataset and split it into train
and test by selecting the last 20% of users as the new ones (i.e., test set). Both original and
modified methods are trained and executed with this synthetic dataset, making 100 rec-
ommendations of one item for each new user. Then, each policy πe (i.e., a recommender) is
evaluated by three offline performance estimators. These OPEs estimate how these other
policies (i.e., recommendation systems) would have performed if they had been used in-
stead of the original policy π0. All of them aim to mitigate the absence of rewards for
each possible action. In the equations below, D represents the synthetic dataset, a is the
action selected (i.e., the recommended item), x is the context of each action (i.e., the user
identifier and their features), and n refers to the amount of data recorded in the dataset.

(1) Direct Method (DM): learns a model to estimate all missing rewards r̂ for every
single action a in each context x. Its goal is to approximate the estimated reward
r̂(xi, a) by exploiting the logged datasetD as a traditional supervised machine learn-
ing problem. Then, it uses all imputed rewards for weighting the actions selected
by the new policy as follows. The result is an estimator with a low variance but a
high bias for the current data.

V̂DM(πe;D, r̂) :=
1

n

n∑
i=1

∑
a∈A

πe(a|xa)r̂(xi, a)

(2) Inverse Propensity Score (IPS): weights the new policy with the known value of
the original policy π0 used to create the synthetic dataset as follows. If for all action
a and context x it holds that πe(a|xa) > 0 ⇒ π0(ai|xi) > 0, the result is unbiased
and V̂IPS(πe;D)→ V (πe). However, it also results in a high variance estimator due
to the variability of this propensity score.

V̂IPS(πe;D) :=
1

n

n∑
i=1

πe(a|xa)
π0(ai|xi)

· ri
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(3) Doubly Robust (DR): combines the DM and IPS estimators to reduce the vari-
ance and perform better than both. It is unbiased and consistent once it applies
a correction term in the propensity score. Moreover, it also has the potential to
achieve an optimal variance once it applies the DM estimator.

V̂DR(πe;D, r̂) := V̂DM(πe;D, r̂) +
1

n

n∑
i=1

πe(a|xa)
π0(ai|xi)

· (ri − r̂(xi, ai))

Results of each estimator are presented in Table 5.6. The first three columns
(named IPS, DM, and DR) contain the average policy value made by each estimator for
each user. These values are the expected reward measured by the counterfactual estima-
tors for each algorithm after recommending 100 items. Such values represent the algorithm
performance without the position and selection bias removed by each estimator. All of
these three estimators can be used to measure the quality of these bandit algorithms – the
higher value the better performance. Complementary, the other three columns contain
the confidence interval around the average value in the first three columns. These values
are used to represent the distribution of the estimated rewards made for each user. As ex-
pected, the DM estimator is biased by the original policy π0 used to create the dataset and
it presents the smallest variance for all algorithms. On the other hand, the IPS estimator
is not biased by the original policy π0 but it has the highest variance for all recommenda-
tion policies. DR is the most unbiased and consistent value. The highlighted results show
when the estimated value of our modified versions is higher than the original algorithm’s
standard deviation upper bound (e.g., the value 3.911 for the Linear ε-Greedyt=0 made
by the DR estimator is higher than the upper bound of its original version: 3.793).

Dataset Synthetic Dataset
Measure Estimated policy value 95.0% CI (lower) – 95.0% CI (upper)

Estimators IPS DM DR IPS DM DR
Random 0.656 3.253 3.245 0.000 - 1.791 3.226 - 3.281 3.214 - 3.276

Most Popular 3.643 3.394 3.438 2.113 - 5.476 3.370 - 3.420 3.373 - 3.526
Linear ε-Greedy 2.685 3.775 3.768 0.838 - 4.894 3.732 - 3.816 3.743 - 3.793

Linear ε-Greedyt=0 3.058 3.924 3.911 0.978 - 5.886 3.883 - 3.968 3.883 - 3.937
Linear ε-Greedyt≥0 3.470 4.042 4.161 1.32 - 5.908 3.845 - 4.18 4.135 - 4.187

PTS 2.468 4.370 4.392 0.765 - 4.59 4.31 - 4.417 4.367 - 4.418
PTSt=0 5.588 4.350 4.398 2.733 - 8.802 4.304 - 4.391 4.374 - 4.423
PTSt≥0 5.802 4.320 4.365 3.117 - 8.666 4.276 - 4.357 4.34 - 4.393
LinUCB 2.651 4.352 4.371 0.939 - 4.635 4.33 - 4.373 4.356 - 4.386

LinUCBt=0 3.392 4.627 4.620 1.331 - 5.857 4.593 - 4.673 4.611 - 4.629
LinUCBt≥0 4.849 4.500 4.508 2.572 - 7.72 4.475 - 4.524 4.499 - 4.518

Table 5.6: Estimated policy values of the modified and original versions in a synthetic
dataset. All modified strategies have outperformed the original ones. LinUCB has demon-
strated the highest performance across all other algorithms.
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Comparing the original algorithms with their modified versions (i.e., three by three
in this table), our modified ones exhibit superior performance across all counterfactual
estimators. Particularly, both Linear ε-Greedy and LinUCB algorithms demonstrate sig-
nificant improvement when evaluated using the DR estimator. The only exception is the
PTS algorithm. This outcome could be attributed to the synthetic dataset utilised for
evaluating these estimators. As previously described, this dataset was generated by se-
lecting the item with the highest probability from a randomly sampled set of items for
each user during each interaction. This selection process closely resembles the PTS algo-
rithm, which randomly chooses items based on their probability to maximise the expected
rewards. Consequently, the original algorithm already performs well on this dataset. Fur-
thermore, when considering all algorithms at the same time, the modified versions of
LinUCB continue to exhibit the highest estimated policy value. These values underscore
the quality of this algorithm as a strong candidate for real-world applications.

Dataset Synthetic Dataset
Measure Relative policy value Average Gains

Estimators IPS DM DR All Estimators DR
Random 0.199 0.990 0.987 H 28% H 2%

Most Popular 1.109 1.033 1.046 N 5.5% N 4.6%
Linear ε-Greedy 0.817 1.149 1.147 N 3% N 14%

Linear ε-Greedyt=0 0.931 1.194 1.190 N 10.5% N 19%
Linear ε-Greedyt≥0 1.056 1.230 1.266 N 18% N 26%

PTS 0.751 1.330 1.337 N 13.5% N 33%
PTSt=0 1.701 1.324 1.338 N 45% N 33%
PTSt≥0 1.766 1.315 1.329 N 46% N 32%
LinUCB 0.807 1.325 1.331 N 15% N 33%

LinUCBt=0 1.033 1.408 1.406 N 27.5% N 40%
LinUCBt≥0 1.476 1.370 1.372 N 40.5% N 37%

Table 5.7: The relative value achieved by each algorithm considering the original policy
π0 used to create the synthetic dataset. Such gains represent if the new algorithm would
perform better or not than the original recommender used to collect the offline dataset.

Complementary, Table 5.7 presents the relative value of each recommendation pol-
icy – how much this new policy πe improved the original policy π0. Values higher than 1
mean that the policy would have performed better if it had replaced the original policy.
The last two columns highlight the percentage of improvement achieved by each algorithm
considering an average of all estimators and the DR estimator. Simple approaches like
Random and Most Popular are not able to outperform the original policy – they would
not have improved the model. This result reflects the meaning of a counterfactual evalu-
ation. Even though the Most Popular approach performs satisfactorily in the traditional
offline evaluation (see Table 5.4), it does not mean it would have performed better in the
real world. The Most Popular recommendations are fully biased by the exposure bias
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of the popular items on the traditional offline datasets. On the other hand, all modified
Contextual Bandits would have improved the original policy. In this Table, we highlight
all approaches that have significantly improved by more than 20% of the original recom-
mendation policy. Most of these results refer to our modified approaches. It emphasises
that our AL approach is really able to learn the user’s preferences and increase the gains
of a bandit algorithm. Moreover, such results also answer our second subquestion by
showing that the improvements achieved by our AL approach are not related to the usual
popularity bias of offline datasets.

5.4 Baselines Comparison

Finally, this section aims to answer the third subquestion: What is the effect of
addressing uncertainty scenarios compared to existing state-of-the-art baselines? In this
sense, we compare our modified versions with strong baselines from the literature. We
select all algorithms listed in bold in Section 5.1. They are:

- Non-personalised algorithms: Random and Most Popular;

- MAB algorithms: ε-Greedy, UCB, and TS;

- Contextual Bandit Algorithms: Linear ε-Greedy, Linear UCB, GLM-UCB, Lin-
UCB, and PTS;

- Interactive models: NICF, Cluster-Bandit, and ICTRTS.

Table 5.8 shows the results of each algorithm for each recommendation domain.
The first group of columns contain the average of the accumulated number of hits to
represent the Cumulative Reward of each bandit algorithm. The second group of columns
contain the ratio of relevant items recommended to represent the Recall of each bandit
model. In this work, an item is relevant for a user if this item has received a rating higher
than 4. Both metrics show the values achieved by each algorithm in different stages of
the user journey – represented by the number T of interactions. A result in the column of
T = 20, for instance, represents the cumulative reward or the corresponding recall after
20 recommendations of 1 item (i.e., 20 items recommended). While the first rows in this
table refer to the baselines, the last three algorithms refer to the modified versions. All
these algorithms are executed using the iRec framework [209], another marginal contri-
bution of this work to the literature – see Appendix B for more details. The iRec enables
the reproducibility of our entire evaluation process and it contains all the algorithms
implemented in Python.
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Dataset Netflix
Measure Cumulative Reward Recall

T 5 10 20 50 100 5 10 20 50 100
Random 0.029 0.057 0.104 0.247 0.484 0.000 0.001 0.001 0.003 0.006
Popular 1.581N 2.771 4.915 10.203 17.776 0.036N 0.058N 0.096 0.185 0.304
ε-Greedy 0.671 1.292 2.417 5.304 9.791 0.009 0.017 0.032 0.074 0.142
UCB 0.558 1.176 2.274 5.222 9.660 0.007 0.016 0.031 0.073 0.138
TS 1.006 1.944 3.535 7.502 12.981 0.014 0.027 0.049 0.103 0.180

LinearUCB 0.659 1.718 4.105 11.104 21.308 0.009 0.027 0.065 0.178 0.335
GLM-UCB 0.649 1.277 3.711 11.580 21.835 0.010 0.021 0.060 0.194 0.352
L. ε-Greedy 0.002 0.189 0.735 2.104 5.479 0.000 0.001 0.004 0.012 0.036
LinUCB 0.677 2.225 5.535 13.567 22.980 0.008 0.039 0.108 0.254 0.395
PTS 0.412 0.918 2.190 7.639 14.846 0.006 0.016 0.038 0.150 0.274
NICF 1.429 2.446 4.508 9.248 13.983 0.027 0.044 0.078 0.148 0.212

Cluster Bandit 0.571 1.230 3.132 7.420 13.882 0.007 0.016 0.053 0.119 0.209
ICTRTS 0.016 0.052 0.339 2.148 5.091 0.000 0.001 0.004 0.027 0.067

L. ε-Greedyt≥0 0.330 0.971 2.985 10.274 20.004 0.004 0.012 0.043 0.175 0.332
PTSt≥0 0.469 1.028 2.691 8.276 15.312 0.008 0.018 0.053 0.164 0.278

LinUCBt≥0 1.065 2.777• 6.111N 14.161N 23.409N 0.017 0.053 0.121N 0.265N 0.400N
Dataset Yahoo Music R1
Measure Cumulative Reward Recall

T 5 10 20 50 100 5 10 20 50 100
Random 0.015 0.032 0.072 0.192 0.390 0.000 0.001 0.001 0.004 0.008
Popular 1.593 2.902 5.080 10.581 17.432 0.043 0.076 0.131 0.266 0.425
ε-Greedy 0.602 1.460 3.080 7.424 13.360 0.014 0.036 0.076 0.183 0.323
UCB 0.514 1.358 3.018 7.330 13.277 0.013 0.034 0.075 0.179 0.321
TS 0.957 1.907 3.697 8.356 14.720 0.025 0.048 0.093 0.204 0.354

LinearUCB 1.571 3.265• 6.604 15.208 24.906 0.044• 0.091• 0.177 0.380 0.588
GLM-UCB 0.910 1.634 4.955 14.197 24.328 0.026 0.045 0.133 0.358 0.576
L. ε-Greedy 0.021 0.059 0.187 0.985 3.278 0.001 0.001 0.004 0.018 0.057
LinUCB 0.746 1.475 5.702 16.662 26.538 0.018 0.035 0.149 0.419 0.625
PTS 0.902 2.267 5.649 15.263 23.333 0.021 0.055 0.141 0.378 0.555
NICF 1.661• 3.192 5.795 11.218 14.954 0.043 0.084 0.150 0.281 0.362

Cluster Bandit 0.996 2.428 4.704 10.095 16.777 0.028 0.064 0.123 0.254 0.413
ICTRTS 0.011 0.138 1.167 6.149 13.446 0.000 0.003 0.028 0.153 0.327

L. ε-Greedyt≥0 1.190 2.459 5.355 13.208 22.867 0.029 0.059 0.129 0.302 0.504
PTSt≥0 0.657 1.722 4.857 14.994 24.112 0.015 0.041 0.119 0.372 0.57

LinUCBt≥0 1.411 2.509 7.395• 18.057N 27.425N 0.036 0.063 0.196• 0.454N 0.649N
Dataset Good Books
Measure Cumulative Reward Recall

T 5 10 20 50 100 5 10 20 50 100
Random 0.039 0.077 0.155 0.375 0.757 0.001 0.001 0.002 0.005 0.010
Popular 1.238 2.231 4.246 7.919 11.993 0.017 0.030 0.057 0.105 0.157
ε-Greedy 0.445 0.792 1.424 3.121 5.721 0.006 0.011 0.019 0.041 0.075
UCB 0.404 0.742 1.342 2.990 5.579 0.006 0.010 0.018 0.040 0.073
TS 0.792 1.393 2.354 4.605 7.297 0.011 0.019 0.031 0.061 0.096

LinearUCB 0.451 0.976 2.741 7.467 13.557 0.006 0.013 0.037 0.098 0.175
GLM-UCB 0.347 0.757 1.600 7.184 13.519 0.005 0.010 0.021 0.094 0.176
L. ε-Greedy 0.026 0.039 0.092 0.282 0.723 0.001 0.001 0.002 0.004 0.011
LinUCB 0.651 0.889 3.572 9.541 15.758 0.009 0.012 0.048 0.124 0.202
PTS 0.841 2.047 4.159 7.669 12.121 0.011 0.027 0.056 0.102 0.160
NICF 1.379N 2.547N 4.362 7.488 10.400 0.019N 0.035N 0.059 0.099 0.136

Cluster Bandit 0.944 1.792 4.001 7.577 11.835 0.013 0.024 0.054 0.101 0.155
ICTRTS 0.330 1.054 2.723 6.897 11.251 0.004 0.014 0.036 0.091 0.148

L. ε-Greedyt≥0 0.404 0.997 2.026 6.164 12.794 0.005 0.013 0.026 0.079 0.165
PTSt≥0 0.993 2.324 4.507 8.492 13.095 0.014 0.031 0.061 0.113 0.172

LinUCBt≥0 1.174 1.893 5.435N 11.258N 17.548N 0.016 0.025 0.072N 0.147N 0.226N

Table 5.8: Cumulative reward of all baselines and the three modified versions made by
this work. Results show a statistical improvement in the modified algorithms by applying
the Wilcoxon test with a p-value = 0.05. The symbol N represents significant gains, •
represents statistical draws, and H represents significant losses.

The results of our experiments reveal a statistically significant superiority of at
least one of our modified versions over all other baseline models after the initial interac-
tions. As our new Active Learning approach introduces some level of entropy in the initial
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recommendations, it was expected that other models would outperform our modified ver-
sions in the short term. Besides that, even during these initial interactions, our algorithms
demonstrate a cumulative reward that remains relatively close to the fully biased mod-
els, such as the Most Popular or NICF. Such performance highlights the fact that our
approach seeks exploration in the first interactions but does not forget to exploit the in-
formation previously available. Moreover, by balancing this trade-off between exploration
and exploitation, our approach is also responsible for an expressive improvement in the
modified versions after the 20th interaction across all datasets. The main reason for such
gain is related to the knowledge achieved in the first user’s interactions. In other words,
our modified versions are able to learn more about the users’ preferences while they are
still recommending relevant items for the users. Thus, our modified versions outperform
all other baseline models in the user long run.

Moreover, considering each one of the modified versions proposed by this work, we
can also highlight that:

1. The Linear ε-Greedy algorithm has been transformed into a highly competitive op-
tion. Before our modifications, the Linear ε-Greedy was one of the worst models,
taking many interactions (T � 100) to learn user preferences. After it, this simple
algorithm outperforms other approaches that take so much time to execute, like
the Cluster-Bandit; and approaches that require so much effort to calibrate their
parameters, like the NICF, ICTRTS, and PTS.

2. The modified PTS model becomes more competitive with the other algorithms in
the long run. With the addition of entropy to the already biased popularity model,
it learns more about user preferences and thus maximises their experience.

3. Especially, the modified LinUCB outperforms all of the state-of-the-art algorithms
in the long run by achieving a bigger cumulative reward. After mitigating both
scenarios of uncertainty, this method achieves better results even than strategies
developed with similar assumptions, like Linear UCB and GLM-UCB.

Such results answer our third research question by highlighting the effect of ad-
dressing scenarios of uncertainty about the user’s preferences in Contextual Bandits. The
modified versions of traditional algorithms improve the user boundaries of accuracy in
the long run.
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5.5 Summary

This chapter aimed to answer the third research question related to the impact of
adding more knowledge about the users when the Contextual Bandit is uncertain about
their preferences. Then, we propose an experimental setup based on three distinct rec-
ommendation domains: movies, songs, and books. For each dataset, we simulate both
scenarios of uncertainty by selecting the last users that joined our system as new users.
All information about these new users was removed from the dataset and the algorithms
were trained with the remaining data collected before the first interaction of these new
users. After that, we raised three subquestions to guide our experiments.

Answering the first subquestion we highlighted that our modified versions proposed
in the last chapter are statistically superior to their original versions. In all datasets, ad-
dressing the pure cold-start and/or the misleading assumptions, the bandit models have
become better than their original versions. Then, answering the second subquestion we
perform a counterfactual evaluation in a synthetic and unbiased dataset. The idea of such
analysis was to prove that the aforementioned gains of our modified versions were not only
caused by the usual bias of the offline datasets. Experiments with distinct counterfactual
estimators have supported the previous experiments and highlighted the potential of the
modified LinUCB algorithm. Indeed, answering our third subquestion by comparing the
impact of the modified versions with existing state-of-the-art baselines, we notice that
LinUCB has outperformed all baselines for all datasets. Such results support our as-
sumption that addressing scenarios of uncertainty can contribute to improving the user’s
experience in the long run.
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Chapter 6

Conclusions & Future Work

This chapter starts by restating our statement of thesis, its relevance, and the research
questions raised in this study. Then, we provide a synthesis of empirical findings with
respect to the underlying questions. Next, we summarise the main contributions and
the limitations of this dissertation. Then, we present promising research directions to be
explored in the future. The chapter ends with our final remarks.

6.1 Restatement of Thesis

Recent works have addressed Recommendation Systems (RSs) as an interactive
scenario through a Contextual Bandit model. In this case, items are modelled as arms
to be pulled and selecting an arm is equivalent to recommending an item. The reward
is the user’s feedback on that recommendation (e.g., clicks, acceptance, satisfaction, etc).
At each iteration, the model should mitigate the dilemma between (1) exploiting the arm
that seems the best option so far; and (2) exploring an arm not yet tried out (or not tried
enough). However, the personalisation level of such bandit models still is dependent on
the amount of information available to represent the users. Scenarios where the model is
uncertain of the users’ preferences may introduce some bias in the balance of exploration
and exploitation. In this work, we studied two of these scenarios. The first one happens
when a user joins for the first time. The system is not able to exploit or explore their
unknown preferences. The second one happens when the current knowledge about the
users is unreliable because their profiles were not correctly defined or their preferences
suddenly changed. In this case, the system keeps exploiting wrong assumptions that lead
to unsatisfactory recommendations and a simple exploration strategy is not enough to
relearn the user’s profile in an acceptable time. In light of this context, we explore the
following statement:

Exploring scenarios of uncertainty where the information about the user is not
straightforward or even does not exist increases the accuracy of Contextual Bandit models
in the long term.
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Especially, we raised three main research questions that guided our study. The empirical
findings related to each question are discussed in the next section.

6.2 Empirical Findings

In order to handle the complexity inherent to the above statement, we split our
investigation into three main research questions (RQ). We extensively investigated each
of these questions in each one of the previous chapters. This section synthesises these
findings to validate our study.

- RQ1: How have current Contextual Bandit assumptions about uncertainty scenarios
impacted the users’ experience?

a) A Systematic Literature Review on all journals and conference papers pub-
lished from 2000 to 2020 highlighted that most of the approaches are still
assuming a linear assumption to represent users and items in Contextual Ban-
dit models. By inspecting 1327 papers and deeply studying 230 of them, we
identified the usual implementation pattern of the traditional MAB approaches
in Recommender Systems (see Table 3.1).

b) Studying such assumptions in Section 3.2, we identified a limitation from these
Contextual Bandit models to handle scenarios of uncertainty about the user’s
preferences. When facing the pure cold-start problem or misleading assump-
tions, such models are not able to correctly balance the trade-off between ex-
ploration and exploitation (see Section 3.3).

c) An empirical methodology created to simulate such limitations has demon-
strated the long-term impact of such scenarios (see Section 3.4). On average,
pure exploration approaches have required that users rate more than 8,000
items (∼ 2,000 interactions × 5 items) for hitting 80% of the user’s history. In
turn, pure exploitation approaches have limited the accuracy of bandit models
because they are not able to get the required knowledge in the first interactions.

- RQ2: How can exploration and exploitation be addressed in Contextual Bandit mod-
els when user preferences are uncertain?

a) This work proposes to address exploration and exploitation through Active
Learning approaches. Such approaches aim to ask for the user’s feedback on
data points that are the most informative to the Machine Learning model. Our
objective is to leverage this AL concept when the Contextual Bandit model en-
counters some uncertainty regarding the user’s preferences.
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b) This novel approach address exploration and exploitation by balancing the
item’s popularity and its entropy. While using popularity means increasing
the probability that a user will rate an item (i.e., exploitation), applying en-
tropy means increasing the amount of possible information to be achieved if
the user rates an item (i.e., exploration).

c) Our proposal does not intend to change the successful linear assumption made
by current Contextual Bandits. It aims to introduce Active Learning in an
initial context to mitigate the pure cold-start problem and change the rec-
ommendation engine when the system has made misleading assumptions. We
demonstrated how to apply our approach in three distinct bandit algorithms
(see Algorithms in Section 4.3).

- RQ3: What is the impact of adding more knowledge about the users when the
Contextual Bandit model is uncertain of their preferences?

a) First, we measured the impact of adding Active Learning to Contextual Bandits
by comparing the new algorithms with the original ones. Results demonstrate
that our new approach is able to provide significant improvements achieving
statistical gains over all algorithms (see Table 5.4).

b) Then, we demonstrated that such improvements are not related to the pop-
ularity bias of offline datasets. Applying a counterfactual evaluation in the
results of our algorithms in a synthetic and unbiased dataset highlighted gains
of over 25% on average (see Table 5.7).

c) Finally, we contrasted our modified algorithms to strong baselines in the lit-
erature and demonstrated significant gains in the user’s long run. In particu-
lar, our approach has made even simple algorithms, such as Linear ε-Greedy,
achieve similar or better results than complex and powerful techniques of neu-
ral networks, such as NICF. Moreover, the modified version of the LinUCB has
outperformed all baselines analysed.

6.3 Summary of Contributions

The main contributions could be classified into three main groups.

• Concepts and Problems: This study introduces novel concepts and investigates
emerging challenges intrinsic to the recommendation task within Contextual Bandits
models. Firstly, we elucidate two well-known hurdles from the literature on Recom-
mender Systems (RSs) – pure cold-start and misleading assumptions – through the
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lens of current bandit models. Then, we integrate some concepts from the Active
Learning theory into Contextual Bandit algorithms to address the trade-off between
exploration and exploitation in recommendation domains.

• Algorithms: We propose a new approach to be applied in current Contextual
Bandits based on Active Learning concepts to effectively mitigate these two afore-
mentioned scenarios of uncertainty. This approach is not dependent on any personal
information about the users and can be instantiated for most of the Contextual Ban-
dit models. In this work, we create new versions for three distinct bandit algorithms.

• Understanding and Knowledge: We acquired further knowledge about the im-
portance of addressing the user’s preferences correctly to mitigate the system un-
certainty in Contextual Bandit models. Our modified versions of traditional bandit
algorithms have improved the user’s experience in the long run in three distinct
domains. Moreover, we also confirmed the value of a counterfactual evaluation to
ensure that our conclusions are not biased by the offline datasets.

Furthermore, we point out a new and relevant constraint to be addressed for other
researchers in the recommendation field within Contextual Bandits. To the best of our
knowledge, this is the first effort to mitigate scenarios of user uncertainty in these inter-
active systems. We reported all of these findings along distinct publications [208, 204,
209, 205, 207, 206].

6.4 Limitations of the Work

The study has offered an evaluative perspective on the algorithmic limitations
of Contextual Bandits unaddressed by the literature. As a direct consequence of this
methodology, the study faced a number of limitations, which need to be discussed.

• Scope of this work: Our discussions are related to scenarios of uncertainty about
the user’s preferences in recommendation systems. However, this work only ad-
dresses the pure cold-start problem and the misleading assumptions. Certainly,
there are other scenarios of uncertainty where we are unable to claim if our ap-
proach will mitigate them. Moreover, the scenario of misleading assumptions can
be represented by other different strategies. In this work, for instance, we have
mentioned that this concept may also be related to the cold-start, dynamic user
preferences, or even the shared account problem. Finally, we can also mention the
absence of personalised Active Learning strategies due to the scope of uncertainty
that is mostly related to the absence of reliable user information.
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• Extent of results: Our findings are purely based on heuristic assessments. Hence,
we cannot make strong claims about the best approach to address the two scenarios
of uncertainty studied in this work. Moreover, despite testing in three distinct do-
mains, we cannot ensure that the results are extensible to all other domains where
recommendation systems can be applied. Finally, despite the easy applicability of
our new contextual approach, we are unable to ensure that it will work for non-linear
algorithms that were not tested in this dissertation.

• Implementation decisions: For the sake of efficiency, we adopted several simplis-
tic decisions that should be refined to handle the actual conditions of recommenda-
tion domains. For instance, we have studied the impact of scenarios of uncertainty
in linear bandit models. Despite our SLR highlighting them as the most common as-
sumption for Contextual Bandits in recent years, we are not sure about this impact
on algorithms with other assumptions.

• Experimental design: For the sake of efficiency and to ensure the long-term ex-
perience of each user, we have sampled some of the datasets to only include 10,000
users with more than 20 items rated. Based on our tests, it does not have any im-
plication for the algorithms’ performance, but we should properly test them in huge
datasets to make strong claims about our conclusions. Moreover, it is still unclear
the necessary conditions to achieve the same results in an online environment. De-
spite our effort to perform a counterfactual evaluation of our new algorithms, such
methodology is just an approximation of online experiments. Sometimes, this work
uses the term “user’s experience” to refer to the performance of an algorithm for a
specific user, but we are aware that other factors besides the recommendation engine
are also essential to ensure the best experience for a user in real-world applications.

6.5 Future Research

Aligned with the foregoing discussion about the limitations of this dissertation, we
highlight as possible directions of future work three main branches.

1. Online Experiment: This study investigates the potential of Active Learning in
enhancing the user experience in interactive recommendation systems. To advance
this research, the next logical step involves conducting an online evaluation to mon-
itor user choices from initial interactions to subsequent ones. Our idea is to select a
conventional dataset and conduct an experiment that closely aligns with the method-
ology described in Section 5.1. In order to investigate scenarios of uncertainty, such
as the pure cold-start and the misleading assumptions, the entire dataset can be
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used as the training set for our algorithms that will act by just incorporating new
users for each person who participates in the experiment. As our strategies do not
rely on any prior knowledge about the users, any person is available to participate in
this experiment. The huge challenges will be: (1) developing a real-time responsive
system capable of generating new recommendations at each interaction and dynam-
ically incorporating user feedback; and (2) ensuring that each user interacts for as
many interactions as possible to enable a comprehensive evaluation of the long-term
user’s preferences.

2. Personalised Active Learning: In Section 4.1, we provided a comprehensive
overview of the most popular strategies in the Active Learning theory, categorising
them as either personalised or non-personalised methods. As the main objective of
this work is on scenarios of uncertainty, where reliable user information is scarce,
we have specifically chosen non-personalised algorithms. However, it is also impor-
tant to acknowledge the potential of personalised strategies in Contextual Bandits
models. Therefore, we strongly encourage other researchers to explore this direction
by integrating Active Learning algorithms into the interactive recommendation sce-
nario. The modifications we have made through the adoption of non-personalised
strategies have already demonstrated the promising potential of such approaches.

3. Scenarios of uncertainty: This study highlights the significance of effectively
handling the uncertainty about the user in Contextual Bandit models. Given the
limited scope and time constraints of this research, we have primarily focused on
two specific scenarios: the pure cold-start problem and the presence of misleading
assumptions about users. However, it is important to acknowledge the existence of
additional scenarios documented in the literature that warrant exploration. Specifi-
cally, we have touched upon the Dynamic User Preferences and the Shared Account
problem, both of which hold considerable relevance in contemporary real-world en-
tertainment applications. In this sense, we encourage other researchers to delve into
these issues by employing alternative strategies derived from the Active Learning
theory. To the best of our knowledge, the exploration of such problems in this
particular context remains relatively uncharted territory.

6.6 Final Remarks

In summary, this work showed that the uncertainty about the user’s preferences
must be addressed in Contextual Bandit models when applied to the feedback problem
in Recommendation Systems. By incorporating concepts from the Active Learning the-
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ory in such scenarios, we can attain a more comprehensive understanding of the user that
leads to more relevant items being recommended during the user’s journey. Indeed, offline
experiments in distinct domains and a counterfactual evaluation in an unbiased dataset
have highlighted the potential enhancements achievable through these strategies. It is
worth emphasising that even straightforward strategies, when appropriately applied at
the opportune moment, can introduce substantial improvements to existing models.
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Appendix A

A Systematic Literature Review about
Multi-Armed Bandits in
Recommendation Systems

This appendix represents an extra part of this thesis that was developed to identify the
main guidelines around our research topic. It was published in a journal format on Ex-
pert Systems With Applications [205]. Basically, this study aims to review, organise, and
present all works around Multi-Armed Bandits applied in the recommendation field. In
this sense, we perform a Systematic Literature Review (SLR) protocol and search for
works published in the main conferences and journals from the first studies (2000) un-
til the last years (2020). Our research is guided by three main questions in order to:
(1) synthesize the knowledge available in the literature around this topic; (2) highlight
the best practices to construct and evaluate a bandit interactive model; and (3) analyse
the current efforts to handle the traditional recommendation challenges.

A.1 Systematic Literature Review Protocol

A systematic literature review (SLR) is a scientific methodology designed to an-
swer some well-formulated research questions. It aims to identify and synthesise all of the
scholarly research on a particular topic by applying a rigorous, unbiased, and reproducible
protocol. In general, there is a standard protocol usually defined by several steps at a
high level to not consider the influence of research question type on the review proce-
dures. Here, we design a protocol inspired by Çano and Morisio [41] that manages the
review process in three main phases. First, we perform the paper collection by defining
the search strings and searching in the main digital sources. Then, in phase 2, we per-
form the selection of papers in two steps: a coarse selection by analysing the title, year,
conference, and abstract; and a detailed selection of the publications, by reading the full
paper. Finally, in phase 3, we extract the main information of the papers according to our



A.1. Systematic Literature Review Protocol 116

criteria. Figure A.1 presents an overview of each step performed by this SLR protocol,
representing a clear set of steps that are further discussed in the next sections.

Figure A.1: Systematic Literature Review protocol.

A.1.1 Phase 1: Research questions, search strings and sources

First of all, this SLR defines the research questions to be applied to the main digital
sources to identify and collect the most relevant papers in the literature. These questions
are responsible to guide all the processes of our systematic literature review. Here, as this
work is concerned about the application of Multi-Armed Bandits in the recommendation
field, we design three main research questions to be answered by this SLR:

- Q1: How have MAB algorithms been used in the RS field?

- Q2: How have MAB algorithms been empirically evaluated in the RS field?

- Q3: How have MAB algorithms dealt with classic challenges of the RSs literature,
such as the cold-start problem?

The first question is more inclusive and it may refer to most papers in the recom-
mendation field related to MAB. Answering Q1, it is possible to consolidate a summary
of the main research conducted in the last years. In turn, the second one refers to papers
of MAB in the recommendation field that has performed an experimental evaluation. By
analysing these papers we can identify how some MAB concepts are applied, what are
the main adopted methods, what are their characteristics, and even how they are eval-
uated in this scenario. These analyses can also drive several future directions for the
literature. Finally, the third question allows us to provide insights into how MAB has
been applied to face some classical RSs’ challenges. In Q3, we inspect papers related to
bandit algorithms concerned with the main scenario of uncertainty studied in this work
(the cold-start problem), and other relevant challenges from the literature.

In order to answer these questions, we propose to search for publications written
in English and published in the last two decades, from 2000 until 2020 into the main
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well-known repositories, such as IEEE Explorer, ACM Digital Library, Springer, Scopus,
Scielo, and others. We advocate the use of the Google Scholar search engine because
it automatically searches in these repositories. There, we use three search strings (SS)
driven by the research questions as follows:

SS-Q1: ("multi-armed bandit" OR "multi-armed bandits") AND

("recommender system" OR "recommender systems" OR "recommendation")

SS-Q2: ("multi-armed bandit" OR "multi-armed bandits") AND

("recommender system" OR "recommender systems" OR "recommendation") AND

("experimental" OR "experiments" OR "evaluation" OR "datasets")

SS-Q3: ("multi-armed bandit" OR "multi-armed bandits") AND

("recommender system" OR "recommender systems" OR "recommendation") AND

("CF" OR "collaborative filtering") AND ("cold-start")

A.1.2 Phase 2: Selection of papers

Applying our search strings in the main sources, we identified 1327 articles by elim-
inating duplicates – those with the same title and publication link. While the first and
second strings (SS-Q1 and SS-Q2) retrieved 930 and 936 papers respectively, the third
string (SS-Q3) retrieved only 365 papers. To objectively decide whether to select each
preliminary study for further processing or not, we defined a set of inclusion and exclusion
criteria listed in Table A.1.

Inclusion criteria
- Papers presenting MAB algorithms in the context of recommendation systems
- Papers that even though do not specifically propose a new MAB algorithm, but
contrast those MAB with other methods to perform online recommendations
- Papers from conferences and journals
- Papers published from 2000 to 2020
- Papers written in English
Exclusion criteria
- Papers not addressing recommendation systems at all
- Papers addressing RSs but not considering a MAB modelling
- Papers that report only abstracts or presentation slides
- Gray literature

Table A.1: Inclusion and exclusion criteria of our SLR.

In general, we only include journal and conference papers, leaving out grey litera-
ture, workshop presentations, abstract papers or slide presentations. Then, the selection
of the most relevant studies is performed as follows. We initially analyse the title, publi-
cation year, and publication type (i.e., journal, conference, workshop, etc.), dropping out
every paper that does not perform a recommendation study or does not address a bandit
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model at all. After this step, we reach a list of 408 papers (30.75%). These papers are
then deeply examined by analysing their introduction, experimental setup, and conclu-
sion. From the 408 papers, 178 papers were rejected due to the same criteria listed, and
230 papers were selected as relevant studies for our SLR. These studies represent the most
relevant works about MAB in the recommendation field and the remaining discussion of
this chapter is focused on them.

A.1.3 Phase 3: Data extraction

In order to achieve our three main goals, we also propose to collect the main infor-
mation for each paper. Then, we build a data extraction form to collect both paper meta-
data (i.e., author, title, year, etc.) and the relevant content data as described in Table A.2.

Data Explanation Examples
Title - -
Authors - -
Publication year - -
Conference - -
Source Digital library where the paper is

available
-

Domain Domains studied in the paper News, movies, songs, ads, etc.
Dataset Public or private dataset used to

train the algorithm
Yahoo, MovieLens, Netflix,
etc.

Method The bandit method applied ε-Greedy, UCB, TS, etc.
RS Characteristics The recommendation concept ap-

plied to guide the bandit algorithm
Graphs, matrix factorisation,
probabilistic, etc.

Context A context applied to improve the
recommendation

User profile, items’ character-
istics, cookies, etc.

Data Type The type of feedback provided by
the user

Rating, clicks, likes, etc.

Data Processing A processing stage performed to
normalise the data

Mean-centering, Z-score, etc.

Metrics The main metrics applied to mea-
sure the recommendation’s quality

Precision, recall, CTR, etc.

Evaluation The methodology applied to simu-
late the online user’s interaction

Trials, interactions, etc.

Table A.2: Data extraction form.

While the metadata allows us to understand whereby is each work, the relevant
content is used to answer our research questions and provide an overview of the main
published works. It is defined based on the needed information to develop, apply, and
analyse any MAB method in the field. The extraction process happens during the second
step of reading when we examine the introduction, experimental setup, and conclusion of
each paper. Here, we focused on 190 papers from the 230 works previously selected due
to their experimental nature (i.e., those that performed experimental analyses).
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A.2 MAB in Recommendation Systems

Nowadays, several works have modelled the online recommendation task as a Multi-
Armed Bandit problem [241, 77, 244]. In most of the bandit representations, the items to
be recommended are modelled as the arms to be pulled. Selecting an arm a is equivalent
to recommending an item i and the reward is the user response to this recommendation
(e.g., clicks, ratings, acceptance, etc.) [192]. Thus, the main goal is also to maximise the
expected reward achieved after T times, as shown in Equation A.1. Here, however, the
difference from traditional learning scenarios is the goal, which must be related to the
user’s satisfaction with the system. It requires a personalised action selection policy π
to the users’ preferences and tastes identified by the historic of user’s actions h. For this
reason, the item i∗t should be chosen according to a prediction rule π, which is defined as
a function to exploit and explore the current known information about the user until now:
i∗t ≡ π(ht). In the literature, there are a lot of distinct strategies to define and improve
this action selection policy π.

i∗(·) = arg max
i(·)

T∑
t=1

E [ru,it|t] (A.1)

In this sense, the primary goal of our systematic literature review is to shed light
on the current advances of MAB in the recommendation field. We intend to provide an
overview of the most used concepts and methods, their characteristics, and also how they
can be applied, evaluated, or improved. We guide our analysis in the 183 papers previ-
ously selected to answer the three research questions raised before. First, we highlight
what the current works have proposed in the last few years by exploring some data ex-
tracted, such as the domain, dataset, method, RS characteristics, and context. Next, we
analyse the evaluation criteria of MAB in the recommendation field by inspecting the ex-
perimental setup of the selected publications. Here, we investigate specific characteristics
of the papers, such as the data type, the data processing approach, the evaluation metrics
applied, and also the methodology chosen by the authors. And, finally, we discuss the
application of MAB in traditional RSs’ challenges by highlighting the number of works
concerned with usual problems and their assumptions to handle each of them.

A.2.1 Works developed so far

The application of MAB in the recommendation field has received more attention
recently. Despite the recommendation field had emerged in the mid of 90s, the first studies
about this topic started in 2005 and it has become more relevant after 2010. In Figure A.2,
it is possible to notice that more than 50% of all publications about this topic was only
proposed in the last five years (2016 to 2020). The main explanation for this current
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interest of the literature may be related to two main factors: the saturation of methods and
concepts in the traditional scenario due to the great advances made in the last decade; and
the increasing investment of several companies in RSs by requiring models capable to deal
with the users’ needs without having to retrain the prediction model at each interaction.
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Figure A.2: Annual publications about MAB in the recommendation field.

Both interests of industry and academic have influenced several conferences to
accept papers about the MAB application in the recommendation field and propose in-
teresting talks between researchers and business leaders of big companies such as Netflix,
Spotify, Google, Pandora, and others. Here, in our SLR, we identified 112 distinct confer-
ences/journals that have accepted at least one paper about this topic. Table A.3 shows an
overview of these conferences and journals by highlighting the top-20 that have accepted
more papers. Therefore, the first insight we found is that MAB has been extensively
discussed in the main conferences around the world.

# Conference/Journal Papers # Conference/Journal Papers
1 RecSys 21 11 IJCAI 4
2 WWW 12 12 KDD 4
3 NIPS 11 13 TKDE 3
4 ICML 10 14 SAC 3
5 CIKM 9 15 University Lib 3
6 SIGIR 8 16 ICTAI 3
7 AAAI 7 17 UMAP 3
8 AISTATS 6 18 UAI 3
9 ICONIP 4 19 JMLR 3
10 WSDM 4 20 Neurocomputing 3

Table A.3: Conferences and journals that have accepted more papers about multi-armed
bandits in the recommendation field.

Moreover, we identified that several approaches have been proposed for distinct do-
mains by simulating a recommendation of movies to watch, news to read, products to buy,
songs to hear, and others. Specifically, in the 190 papers with experimental evaluations



A.2. MAB in Recommendation Systems 121

previously selected by our SLR, we identified 50 distinct domains highlighted according
to the number of times each one is applied in a paper (i.e., their frequency) in Figure A.3.
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Figure A.3: The main domains used in MAB research in the recommendation field.

In general, the recommendation of Movies and News are the most usual by ap-
pearing in 24.7% and 22.1% of the papers [180, 208, 293, 281, 48, 231, 214, 138, 258]. The
main works usually simulate these domains with traditional datasets available in the lit-
erature, such as the MovieLens library, the collection of news from the Yahoo front page,
and the Amazon repository of users’ purchases. Moreover, it is also a usual practice to
evaluate MAB algorithms in synthetic or generic domains. While the synthetic domain is
usually designed to simulate random (i.e., without bias) interactions of users with items,
the generic domain refers to traditional datasets often applied to evaluate some Machine
Learning algorithms (e.g., Iris Flower Species1, CNAE-92, and others). In addition, we
also noticed: (1) works proposed to other traditional recommendation domains, like Songs
[257, 239, 155, 290, 108, 221, 262, 232], Artists [163, 98, 81, 43, 266, 285], Ads [82, 133,
222, 8, 223, 251, 149], Points-of-Interest (POIs) [57, 192, 296, 242, 230, 89, 213, 93], Prod-
ucts [85, 268, 38, 275, 253, 169], and Bookmarking [82, 81, 49, 262, 240]; (2) works that
apply recommendation MAB algorithms to offer personalised rankings in the traditional
Information Retrieval task [276, 237, 220]; and (3) works especially focused on non-usual
scenarios like Jokes [177, 178, 176, 117, 265], Food [91, 106, 63, 92], and Jobs [194, 84].

However, despite the huge number of distinct domains currently used, the algo-
rithms applied to handle the MAB problem are often related to the same approaches.
Extracting the data related to ‘Method’ of each paper previously selected by our SLR, we
calculate in our analysis the percentages of works related to each MAB approach in Fig-
ure A.4a. As we can see, the most used MAB algorithms are based on UCB, Thompson
Sampling and ε-Greedy approaches, with 45.8%, 18.9%, and 16.8% of works, respectively.
Other approaches, such as P2EE [182] and EXP3 [161, 128, 143] are unusual and less effec-
tively. The works that are not concerned with a specific MAB algorithm, giving the option
to apply any learning algorithm, are classified as independent from MAB (‘i.i.d. MAB’).
These works were not excluded by our SLR since we are also interested in all spectrums

1http://archive.ics.uci.edu/ml/datasets/Iris
2https://archive.ics.uci.edu/ml/datasets/CNAE-9

http://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/CNAE-9
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related to applications of MAB. Our SLR also found works focused on designing other
learning algorithms for specific scenarios that are classified here as ‘Others’. Besides, Fig-
ure A.4b highlights the application evolution of the three main MAB approaches over the
last five years. Despite the greater number of publications based on the UCB approach,
we can notice a growing interest among researchers in Thompson Sampling (TS) recently.
The main explanation can be associated with the lack of theoretical analysis about TS
before the publication of the paper named ‘An Empirical Evaluation of Thompson Sam-
pling’ [51]. After this relevant work, more researchers could propose new MAB algorithms
based on TS approaches, reflecting it in the number of publications in the next years.
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Figure A.4: MAB algorithms usually applied in the recommendation field.

Similarly, extracting the data related to ‘RS Characteristic’ of each paper previously
selected by our SLR, our analyses also find the percentages of works where the RSs tech-
niques are applied and also the number of techniques by year. A picture of this information
is shown in Figure A.5. Here, these techniques are strongly relevant for the MAB algo-
rithms because they must be combined to improve the recommendation’s quality [287].
The most usual RSs techniques aim to identify relevant items with distinct assumptions.
Some techniques have assumed that users will like items that were liked by other users with
the same preferences and tastes, designing algorithms based on Clusters [56, 82, 133, 81,
115, 270, 292, 61, 30, 111, 83, 14, 211], Graphs [31, 133, 49, 257, 283, 131, 29], and Matrix
Factorisation [129, 239, 288, 229, 208, 156, 88, 148, 160, 39, 105, 225, 86, 227]. Other ones
have considered some statistical fundamentals to model the user’s behaviour and, then,
developed algorithms based on Bayesian [249, 145, 65, 3, 284, 83, 103] or Probabilistic con-
cepts [277, 98, 250, 261, 222, 279, 23, 295, 274, 15, 273, 73, 280, 147, 35, 139, 193, 158]. Our
SLR also identifies other technique, related to memory-based [31, 153, 37, 33, 289, 192, 100,
29, 227] and hybrid approaches [260, 77, 2, 191, 144, 135, 125, 126, 222, 92]. Moreover, it
is important to observe that the three most applied techniques are based on Collaborative
Filtering (CF) concepts, the most popular class of RSs in the literature [26]. Therefore,
we also analyse the total of works that consider these techniques over the years in Fig-
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ures A.5b. This figure shows the current growth of interest in Probabilistic and Matrix
Factorisation. Indeed, these techniques have achieved the best results in the last few years.

0% 5% 10% 15% 20% 25%
Percentage of studies

Probabilistic
MF

Cluster-based
Others
Hybrid

Graph-based
Memory-based

Neural Network
Bayesian

Tree-based

RS
s T

ec
hn

iq
ue

s

21%
17%

13%
12%

9%
8%

5%
5%

4%
3%

(a) RSs Techniques

2015 2016 2017 2018 2019 2020
Year

0
2
4
6
8

10
12
14

Pu
bl
ica

tio
ns

Probabilistic
MF
Cluster-based

(b) RSs techniques over the last years

Figure A.5: RSs techniques usually combined with MAB algorithms.

Moreover, Figure A.6 highlights an updated picture of how MAB algorithms have
been developed in the literature. This grid basically correlates the MAB approaches with
the top-10 RSs techniques most applied in order to indicate how the action selection pol-
icy π has been implemented by the most relevant works in the field. The numbers show
how many works were published with a MAB approach combined with an RSs strategy.
In addition to the observations made before, we can also notice the influence of Collab-
orative Filtering concepts in MAB algorithms. In the top-10 RSs techniques applied, six
of them are memory-based or model-based approaches (typical classes of CF algorithms).
And, for the best of our knowledge, even the hybrid and heuristic approaches may usually
apply a collaborative filtering representation combined with other information.

Then, studying this majority set of MAB algorithms (those CF-based), we identi-
fied two main groups of works with the same assumption of similarity between arms (i.e.,
playing one arm will give you information about similar arms). The first one has described
the reward structure in terms of clusters of users and/or items and defined it similarly to
memory-based methods (e.g., the k-Nearest Neighbours) [81, 133, 82]. In turn, the other
one has assumed a similar structure between arms by constructing a model for each arm
similar to CF model-based methods [288, 239, 276]. While some works have assumed a
non-linear model applying a deep learning algorithm, other works have assumed a lin-
ear model and represented items/users probabilistically by vectors of features extracted
from MF approaches [129, 288, 239, 244]. The linear bandits are most frequently applied
and they are usually represented in two ways. Some works represent the reward by a
Bernoulli [42] or Gaussian [98, 99, 243] distribution, applying (or not) a Bayesian Infer-
ence. They model an unknown probability distribution over the rewards (Ri(r) = P[r|i])
and try to identify the arm that will maximise the expected reward returned. In turn,
other linear works usually represent each item i and user u by their features vector ex-



A.2. MAB in Recommendation Systems 124

Probabilistic
43 (23%)

MF
35 (18%)

Cluster-based
26 (14%)

Hybrid
20 (11%)

Graph-based
16 (8%)

Memory-based
10 (5%)

Neural Network
9 (5%)

Bayesian
8 (4%)

Tree-based
7 (4%)

Heuristic
5 (3%)

Top-10 RSs Techniques

UCB
65

(34%)

TS
38

(20%)

ε-Greedy
33

(17%)

Others
24

(13%)

i.i.d. MAB
19

(10%)

M
AB

 A
pp

ro
ac

he
s

10

17

9

3

4

14

6

7

4

4

13

3

3

5

2

7

3

5

1

4

9

2

5

2

1

6

1

3

1

2

3

2

5

1

6

1

2

3

Figure A.6: An updated picture of the main RS techniques applied with MAB algorithms
according to the works selected by our SLR.

tracted from an MF application called as qi and pu respectively. Here, the rating matrix
Mm×n is estimated according to the product of two low-rank matrices P ∈ Rm×z and
Q ∈ Rz×n. While the matrix Pm×z contains the user-model pu, representing the multiple
interests of each user u in the z features, the matrix Qz×n represents how relevant the item
i is for the z groups. In this case, the expected reward is reformulated for the product of
user and item features vectors:

i∗(·) = arg max
i(·)

T∑
t=1

E [ru,it |t] = arg max
i(·)

T∑
t=1

E [p>u qit |t] (A.2)

Furthermore, current approaches usually introduce the user/item context avail-
able in the system to provide more effective recommendations [256, 226, 289]. Such
approaches are named contextual Multi-Armed Bandits (CMAB) and they have been
studied in around 43% of works selected by our SLR. Basically, in a typical contextual
bandit setting, each arm a is associated with a d-dimensional context vector xa, and its
expected reward is guided by a conjecture of the context vector and an unknown bandit
model, named θ∗. Here, in the online recommendation field, the unknown bandit model
parameter θ∗ is usually attached to each user to reflect their corresponding personalised
preferences where θ∗u for u ∈ U are independently estimated based on the observations
from the corresponding users. Then, in a linear contextual bandit setting, it is assumed
that ra ∼ N (x>a θ

∗, σ2) and the expected reward rt achieved in a specific context xa is
defined as E[rt|xa] = x>a θ

∗. One of the most famous CMAB algorithms was designed by
following these assumptions to maximise the total reward (i.e., the total user clicks). It is
named LinUCB [129] and it measures the upper confidence bound for each item according
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to the context x for choosing one of them at every trial t:

i∗t = arg max
i∈I

(x>t,i θ
∗ + α

√
x>t,iA

−1
i xt,i) (A.3)

In general, the context x often summarises information of both the user ut and the
item i [1, 135]. However, our SLR also finds several definitions of context in the selected
works. Some works simply model the d-dimensional vector x as a traditional embedding
of TF-IDF values, measuring it by the items and users’ tags [81, 259]. Currently, the
works have modelled the context as users/items feature vectors extracted from an MF
formulation [288, 98, 99, 248, 245, 3]. Other works, in turn, define the context with other
information available in the dataset. Song et al. [212], Bouneffouf et al. [32], and Gutowski
et al. [91], for example, use all information available about the users as context. They
propose an embedding with the cookies of the users’ last accesses to the system, their
demographic information (e.g., gender, age, etc), and any other information available in
their profile (e.g., preferences, social connection, etc.). Other works, like [133, 155, 28],
apply explicit information about items to model the context. This type of data is very
informative in specific domains, such as news [133, 129, 222], e-commerce [294, 261], and
POIs [74, 296]. Other works are focused on extracting the context of users/items according
to their cluster of interests [34, 269].

A.2.2 The Evaluation Criteria

In the literature, the evaluation criteria is a protocol defined to measure if a rec-
ommendation technique is (or is not) effective in a domain [68, 58]. Throughout the
decades of recommendation systems research, it has been continually adapted and im-
proved for several works [234, 46, 235] by performing two distinct criteria to measure the
recommendation quality: (1) an offline experimentation; and (2) an online user’s study.
While offline experiments are often concerned about the prediction power – their ability
to accurately predict the user’s choices, the online assessments aim to measure the real
business value – the actual value gain that a recommendation system can achieve to the
system. However, due to performing AB tests with actual users, an online evaluation is
more expensive than an offline and it usually requires a real system to collect the users’
actions and opinions [121, 201]. Hence, it is a common practice to identify more offline
experimentation than online user studies, especially when it is studying new scenarios
and applications. Indeed, in our systematic review, studying the applicability of MAB
in the recommendation field, we identified only 5 works (2.6%) that performed an online
evaluation of their bandit algorithms. Once our study is really new, most of the works
are still concerned with analysing their algorithms by offline experiments. By reviewing
their evaluation criteria we identified three main steps to perform an offline evaluation:

Usual Datasets. In the MAB application in the recommendation field, we identified dis-
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tinct datasets that are selected or even created to measure the bandit performance. One
usual practice is to create synthetic datasets to be applied specifically for some experimen-
tal analyses. However, it is not encouraged because these datasets are not reproducible
and cannot provide confidence in the results achieved. The applicability of real-world
datasets is undoubtedly the best practice for analysing the performance of any new rec-
ommendation technique. Fortunately, from the papers selected by our SLR, 186 works
(80.9%) apply at least one real dataset in their experimentation. Our SLR highlights
the datasets most applied to evaluate distinct bandit algorithms in Table A.4 and also
provides how other researchers can find them.

Repository Domain Available at
MovieLens Movies https://grouplens.org/datasets/movielens/

Yahoo! News News https://webscope.sandbox.yahoo.com/

LastFM Music https://grouplens.org/datasets/hetrec-2011/

Delicious Bookmarking https://grouplens.org/datasets/hetrec-2011/

Netflix Movies https://kaggle.com/netflix-inc/netflix-prize-data

Jester Jokes https://goldberg.berkeley.edu/jester-data/

KDD - Online Ads Advertising https://www.kaggle.com/c/kddcup2012-track2/overview

Avazu Advertising https://kaggle.com/c/avazu-ctr-prediction

Amazon Products http://jmcauley.ucsd.edu/data/amazon/links.html

Yahoo! Music Music https://webscope.sandbox.yahoo.com/catalog.php?datatype=r

Million song Music http://millionsongdataset.com/

Yelp Restaurant https://yelp.com/dataset_challenge

Epinions Products http://alchemy.cs.washington.edu/data/epinions/

Table A.4: The main repositories with the datasets most applied by researchers to study
MAB proposals in the recommendation field.

Data Processing. In most of these datasets previously mentioned, there is not only the
information available about the users and items of the system but also the feedback that
was given by a specific user to an item of the catalogue. This feedback may be explicit if
the user explicitly says what they like and dislike, or implicit if it remains not clear if the
user liked or not that item. For this reason, similar to traditional recommendation scenar-
ios, 20% of works selected by our SLR have performed a data processing step to clean the
data available by removing incomplete data, noises, and redundant records. These works
usually perform a normalisation of their rating data by mapping each rating according to
static scales or specific functions. Some works, like [40], simply defined that ratings less
or equal to 3 mean the user did not like the item (mapping as 0) and, otherwise, ratings
greater than 3 mean the user likes this item (mapping as 1). Other works, such as the
one proposed in [20], define a specific function to normalise their ratings by converting
each value to a [0, 1] range. There is no consensus about the better practice behind the
normalisation. However, it has become even more popular after the growth of UCB and
Thompson Sampling applications due to their statistical assumptions of distributions such

https://grouplens.org/datasets/movielens/
https://webscope.sandbox.yahoo.com/
https://grouplens.org/datasets/hetrec-2011/
https://grouplens.org/datasets/hetrec-2011/
https://kaggle.com/netflix-inc/netflix-prize-data
https://goldberg.berkeley.edu/jester-data/
https://www.kaggle.com/c/kddcup2012-track2/overview
https://kaggle.com/c/avazu-ctr-prediction
http://jmcauley.ucsd.edu/data/amazon/links.html
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
http://millionsongdataset.com/
https://yelp.com/dataset_challenge
http://alchemy.cs.washington.edu/data/epinions/
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as the Beta and Bayesian [284].

Methodologies & Metrics. As the bandit algorithm is an online learning method (see
Fig. 2.6), most of the offline experiments must define an approach to simulate the user
interaction with a real system. In the papers selected by our SLR, we identified five main
approaches applied during the experimental evaluation:

- Trials: when a rating is estimated for one user-item pair in each interaction [284,
113, 52, 96, 134, 154].

- Interactions: when more than one item is recommended for the user [241, 140,
229, 217, 64, 237].

- Replayer: when the system tries to predict the items consumed chronologically
according to the user’s consumption historic [277, 243, 244, 130, 222].

- Leave-one-out: when the system left one item out of the training step and tries
to predict this specific item for a given user [77].

- Cross-validation: when the system performs the same user interaction many times
by applying distinct data at the training [98, 249].

Based on our analyses, the methodology most applied is the trials, by covering
more than 45.3% of the works selected. The second one is the Interactions, being applied
in 8.9% of the works. Replayer, Leave-one-out, and Cross-validation are only applied
in 2.6%, 0.5%, and 1.1% respectively. Possibly, the popularity of trials is related to a
traditional bias that still exists in the evaluation criteria of several works. Similar to the
first decade of researchers in the recommendation field, most bandit algorithms have been
evaluated only according to their prediction power – their ability to accurately predict the
user’s choices. Indeed, most evaluation metrics applied are to measure traditional predic-
tion power. Especially, the researchers brought the classical metrics of reward and regret
to the recommendation field and focused their bandit algorithms to maximise (minimise)
it. In this case, the reward is interpreted as the number of hits achieved by such a method.
On the other hand, regret is directly associated with the traditional error metrics used in
the recommendation field, such as the MAE, RMSE, and others. Basically, these metrics
represent the error in estimating a rating for a specific user-item pair.

However, it is now widely agreed that accurate predictions are crucial but insuffi-
cient to deploy a good recommendation engine [47, 46]. In many applications, people use
a recommendation system for more than exact anticipation of their tastes. Users may also
be interested in discovering new items, rapidly exploring diverse items, preserving their
privacy, fast responses from the system, and many more properties of the interaction with
the recommendation engine. Unfortunately, as shown in Figure A.7, metrics such as diver-
sity, novelty, and unexpectedness have been applied only for less than 20% of the papers.
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Figure A.7: Frequency of works which implemented each evaluation metric.

A.2.3 Facing RS challenges with MAB algorithms

Once the current works have combined MAB approaches with the main recommen-
dation techniques, their solutions are susceptible to facing real challenges in the recom-
mendation field. In this sense, our SLR also found many works concerned with addressing
some challenges, such as data sparsity, cold-start, privacy, or explainability. In this sec-
tion, we are concerned with explaining these challenges and understanding how MAB are
handling them. Especially, we have a particular interest in the cold-start problem because
it is the most similar challenge to the one described in this dissertation.

Data Sparsity & Scalability. Traditionally, while sparsity refers to the absence of
data in a dataset, scalability refers to the difficulty of proposing an algorithm capable of
presenting quick responses. In particular, in the recommendation field, both are strictly
related because they are a consequence of the quick-growing of datasets according to more
users and items added in real-world systems. With more items in a system, the difficulty
for users to rate all of them also increases, worsening the data sparsity problem. Simi-
larly, with more users in a system, it is more expensive to process all data and provide
recommendations for all of them. Then, developing a scalable algorithm to handle the
huge data sparsity is one of the great challenges of recommendation systems.

In the literature, many works have been proposed to face this problem in traditional
scenarios, but only a few of them have also been concerned about it in the bandit do-
main. In general, we identified scalability and sparsity as being handled in distinct ways.
Some works have proposed a cluster-based algorithm to address (or even summarise) the
huge number of distinct dimensions (i.e., preferences) in a manageable number. The most
relevant works in this sense are CLUB [66], DynUCB [163], and COFIBA [133]. In partic-
ular, Nguyen and Lauw [163] present studies of how to alleviate the sparsity problem with
clusters of users. Other works, like [261] propose to deal with sparse scenarios through
social information available from items and users. Indeed, all of these techniques help
to improve the scalability of MAB algorithms by training their models only for groups
of users. On the other hand, there are other works focused exclusively on such a scal-
ability problem. Rahman and Oh [177], for instance, proposes a parallel version to the
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classic UCB algorithm, proposed in [13]. And, Tekin et al. [228] and Nguyen et al. [162]
present distributed MAB algorithms for the recommendation. Despite that, we did not
find proposals that had goals to deal with both challenges simultaneously.

Cold-Start problem. The cold start problem is a well-known problem for recommenda-
tion systems in the literature. It usually refers to the absence of information that makes it
more difficult to provide personalised recommendations. In general, there are three cases
of cold start that may affect the system [25]:

- New community: refers to the start-up of the recommendation, when, although
a catalogue of items might exist, almost no users are present and the lack of user
interaction makes it very hard to provide reliable recommendations.

- New item: a new item is added to the system with some content information, but
it has not received any review yet.

- New user: a new user makes their registration in the system and accesses it for
the first time (they have not provided any interaction yet).

In the literature, all of these cases have been explored by using MAB algorithms.
In our SLR we identified that most of the works are related to the new community prob-
lem due to the evaluation policy applied. As the researchers have usually evaluated the
learning quality of bandit algorithms, they simulate a start-up scenario without any in-
formation about users and items [208, 77, 172]. However, this is an unrealistic scenario
because even if a system is released right now, this system may get more information
about its products on the big web. For these reasons, other works have been proposed
exclusively to face the new item or new user problems. Indeed, it is more likely that such
scenarios happen in practice where new products are recently released and new users are
usually joining the systems.

In general, the new item problem (or item cold-start) often is faced by a hybrid ap-
proach that combines the bandit algorithms with content-based (CB) concepts [222, 241].
Basically, these approaches use the items’ characteristics to correlate items and user prefer-
ences when there is no information about the items. In turn, we found two classes of bandit
algorithms that are concerned with the new user problem (or user cold-start): (1) the
Contextual MAB (CMAB); and (2) the hybrid approaches. The first one applies the con-
textual information about items or users (e.g., age, gender, contents, etc.) to allow users
to explore the system’s options [163, 173, 277]. The second one proposes to apply a model
selection to handle the first two stages of the user’s experience, changing from one model
to another when the system has enough data about the user [126, 77, 125, 144, 91, 90].

Privacy Concerns. The growing concern about the privacy of users has affected sev-
eral e-commerce systems and created many discussions in the recommendation field. The
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success of a recommendation is directly related to its personalising ability. Consequently,
many algorithms try to collect as much data about the user as possible. In particular,
this is even more evident in contextual algorithms [163, 173, 277]. In order to improve the
quality of the recommendations, such algorithms dynamically adapt to the users’ inter-
ests and requirements based on the information collected by the recommendation agent.
However, such information is often potentially confidential since it is associated with the
users’ particular interests in their previous interactions they may prefer to keep secret
due to the content accessed, or even their addresses. In this sense, several privacy policies
have been discussed over the years, leading many recommendation algorithms to change
itself [146, 95, 183]. Even the multi-armed bandits’ algorithms should be considered.

In the literature, we identified many proposals that can be applied to bandit al-
gorithms. A first proposal is performing the recommendations in a particular device, like
the users’ own devices, in order to keep their personal information in their hands [264].
However, a local recommendation does not present promise since the best personalising
methods are often related to incorporating useful information from other users who have
similar preferences. So, Malekzadeh et al. [146] have proposed to apply a privacy model
of crowd-blending [80], where a user mixes himself with a number l ≥ 1 of other users
in a way that replacing him data with any other user does not change the results of the
recommendation. So, their privacy is protected by this group of other users with the same
interests. Another approach, proposed by Zhou et al. [292], suggests storing the central
recommendation model on a cloud server, only updating the learning parameters by each
local recommendation agent. Then, all training data is kept on the local user agent and no
updates are stored on the cloud server for privacy protection. Other works have discussed
the privacy problem specifically for bandit algorithms by proposing a system that updates
local agents by collecting feedback from other agents in a private manner [95, 183].

Explainable Recommendations. Nowadays, there is a growing consensus that ex-
planations have helped the user to better understand and interpret the rationale of the
recommendation system, thereby making it more trustworthy and engaging [282]. Fa-
mous platforms like Netflix, Amazon, and Spotify have labelled their recommendations
with explanations such as ‘because you watched it, you can like this’. Traditionally, their
proposals usually follow one of two orthogonal dimensions: (1) the information source
or display style of the explanations (e.g., textual sentence explanation, or visual explana-
tion), which represents the human-computer interaction (HCI) perspective; and (2) model
to generate such explanations, which represents the machine learning (ML) perspective.
At the first one, various visualisation techniques for explaining recommendations have
been proposed, including interfaces with concentric circles [112] and pathways between
columns [27]. One of the most relevant is the taxonomy proposed by Friedrich and Zanker
[78] taking into account the style (e.g., collaborative, knowledge, utility or social expla-
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nation style) and paradigm (e.g. content-based, knowledge or collaborative-based) and
type of preference model. In turn, from the second perspective, other approaches have
been proposed. Kouki et al. [120], for instance, propose a hybrid recommendation system
built on a probabilistic programming language and show that explanations improve the
user experience of recommendation systems.

In our SLR, we identify two works concerned with explaining the recommendations
by applying a reinforcement learning algorithm. First, McInerney et al. [155] proposed
that users would respond to explanations differently and dynamically, and thus, a bandit-
based approach for exploitation-exploration trade-off would help to find the best explana-
tion orderings for each user. In particular, they proposed methods to jointly learn which
explanations each user responds to, which are the best contents to recommend for each
user, and how to balance exploration with exploitation to deal with uncertainty. This work
shows that just as exploitation-exploration is beneficial to recommendation tasks, it is also
beneficial to explanation tasks. Similarly, Wang et al. [247] proposed a model agnostic to
a reinforcement learning framework to generate explained sentences for any recommen-
dation model. In this design, the recommendation model to be explained is a part of the
environment, while the agents are responsible for generating explanations and predicting
the output ratings of the recommendation model based on these explanations. In this case,
the agents will learn how to generate sentences with good explainability and correct gram-
mar by trying to optimise the expected reward of the user’s ratings for these sentences.

A.3 Summary

In this appendix, we have presented a systematic literature review of Multi-Armed
Bandits in the recommendation field to shed light on their applicability and open chal-
lenges. By inspecting 1327 articles published from the last twenty years (2000 - 2020), we
identified 230 works as the most relevant studies about MAB in the field. These articles
were read in detail and analysed to fill a specific data extraction form. This form guides us
to answer three main questions by: (1) consolidating an updated picture of the main re-
search conducted in this area so far; (2) highlighting the most used concepts and methods,
their core characteristics, and their main limitations; and (3) evaluating the applicability
of MAB-based recommendation approaches in some traditional RSs’ challenges, such as
data sparsity, scalability, cold-start, privacy, and explainability.

The discussions indicate that several advances were already achieved by the exist-
ing works. In general, most existing works are focused on UCB or Thompson Sampling
algorithms combined with concepts of collaborative filtering, such as Matrix Factorisa-
tion, clustering approaches, and others. Especially, by inspecting these works in detail, we
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also presented a standard implementation for each traditional MAB algorithm (ε-Greedy,
UCB, and TS) when they are combined with matrix factorisation concepts. Moreover,
the analyses of this work also identify the main methodologies and metrics applied to
simulate the online environment. In the inspected works, we observe a simple abstrac-
tion of the traditional evaluation criteria of reinforcement learning scenarios. In these
cases, the system is only concerned about the model’s learning by measuring the reward
or regret assigned. In other words, current methodologies have only been concerned with
the prediction power of the recommendation – an outdated concept in the current rec-
ommendation literature that is more worried about the user’s satisfaction or engagement.
Moreover, based on our knowledge achieved by reading the works identified by our SLR,
we believe that the traditional challenges of the recommendation domain should be more
studied. Most of them, like the cold-start problem, can directly affect the performance of
current bandit algorithms.
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Appendix B

iRec: An Interactive Recommendation
Framework

Despite the relevancy of Multi-Armed Bandits for both academia and industry, their ap-
plicability in the online recommendation task is still recent and new. There still is a
lack of consensus about the best evaluation practices to address them. Only a few li-
braries and one framework were created to store bandit-based algorithms and provide
some evaluation metrics. Moreover, most of them are completely focused on the MAB
problem and not well designed for a recommendation scenario. In this sense, during the
development of this work, we built a new framework that contains several algorithms,
evaluation methodologies, evaluation metrics, and a compatible infrastructure with the
main recommendation datasets in the literature. This framework is named iRec and it is
deeply explained in this appendix. It represents another extra part of this thesis and it
was published at the SIGIR Conference [209].

B.1 Libraries & Frameworks

Despite the recent advances and the new bandit algorithms published, only a few
works have been concerned about proposing or identifying a reproducible and fair ex-
perimental evaluation. Even with the growing consensus about reproducibility, current
works about Multi-Armed Bandits in Recommendation Systems do not provide complete
details about their experiments and even their source codes. Moreover, it is common that
each article often applies its specific methodology and does not follow the same evaluation
pattern. And, unfortunately, contrasting the current consensus of the RS community to
measure the user’s experience and engagement, most of the research papers about bandit
in recommendation systems have only been concerned about the prediction power of each
method. In general, they usually evaluate the traditional reward/regret metric from the
reinforcement learning theory. Other metrics related to diversity, novelty, serendipity,
unexpectedness, or even coverage have not been included in mostly of the recent works
on this field.



B.1. Libraries & Frameworks 134

In a huge inspection of the literature, we only found three recent works that tried
to handle the evaluation of bandit algorithms in the recommendation field.

• MABWiser [216, 215] is an open-source library implemented in Python to address
Multi-Armed Bandit algorithms with rapid prototyping and hyperparameter tun-
ing. It provides batch and online simulations for traditional MAB solutions and
Contextual Bandits (i.e., adaptations for the recommendation field). Despite the
classical algorithms, like the ε-Greedy, UCB, TS, and Softmax [122], it also contains
Parametric and Non-Parametric bandits. The parametric models include regression-
based techniques such as LinUCB and LinTS. In terms of non-parametric ones, they
implement some clustering approaches, like k-means and KNN algorithms.

• Open Bandit Pipeline (OBP) [189] is an open-source library containing both
Multi-Armed Bandit algorithms and a series of evaluation policies. In short, this
library can be divided into four main modules: a dataset module, which provides
mechanisms to work on the datasets; a module where the implemented models are
described; a simulation module, which allows to contrast and evaluate the perfor-
mance of bandits algorithms; and finally an evaluation policy module, which has
generic abstract interfaces ideal for custom implementations in which researchers
can add and evaluate their algorithms.

• BEARS [19] is the unique framework proposed so far to mitigate the lack of pat-
tern in bandit evaluations and support reproducible offline assessments. It is imple-
mented in Python and it consists of simple building blocks to configure agents (so-
lution approaches) and environments (problem settings). However, this framework
only contains a few classic algorithms and is still limited to the traditional accuracy
metrics from the RL scenario. Moreover, BEARS does not provide any data prepa-
ration strategy, and it does not allow any hyperparameter tuning for the algorithms.

Framework Data Preparation Recommendation Models Evaluation
Filtering Split Tuning Multi-Armed Bandits Non-personalised Metrics
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BEARS X X X X X
OBP X X X X X X

MABWiser X X X X X X X X X
iRec X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Table B.1: An overview of each framework proposed in the literature and our iRec.

Contrasting these proposals, the iRec fully encompasses the experimental process
of evaluating a recommendation system from the data entry until the evaluation method-
ology. It allows users to evaluate a complete study case from the perspective expected
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in a recommendation system. Table B.1 presents an overview of all points covered by
the libraries and the framework identified so far. It compares everything expectable in
an evaluation framework from the data preparation to the evaluation process. As we can
notice, the iRec has the highest coverage of methodologies and methods in the literature.

B.2 The iRec Framework

In this section, we detail our iRec framework1 for an interactive recommendation
scenario. It is structured in three main components as usually made by classical frame-
works in the RS field [11, 190, 286]. These main components are:

• Environment Setting: responsible for loading, preprocessing, and splitting the
dataset into train and test sets (when required) to create the task environment for
the pipeline;

• Recommendation Agent: responsible for implementing the recommendation
model required as an interactive algorithm that will interact with the environment;

• Experimental Evaluation: responsible for defining how the agent will interact
with the environment to simulate the interactive scenario and get the logs required
for a complete evaluation.

In short, the framework application starts with the Environment Setting com-
ponent. By this component, a researcher can choose a database to be loaded for the
experiment and define and execute all the data preparation modules to be applied to
it, such as prefiltering and the data splitting strategy to create the training and testing
sets. In the iRec, while the training set is used to tune the recommendation algorithms,
the testing set represents the target audience of the recommendations in the interactive
scenario (task environment). In this work, the iRec is focused on interactive personalised
recommendations. Consequently, all models aim to identify the best item(s) for each
user at each iteration. The Recommendation Agent chooses the item(s) according to the
implemented model. The agent’s interaction with the environment occurs through the
Evaluation Policy defined by the researcher. This policy is similar to classical Reinforce-
ment Learning approaches, where one item (or a set of items) is recommended at each
algorithm iteration (i.e., trial). For a predetermined time (number of trials), the agent
performs the recommendations within the task environment, receiving a positive or neg-
ative reward and updating its knowledge (if necessary). All logs (i.e., actions taken by

1The iRec is available on https://github.com/irec-org/irec

https://github.com/irec-org/irec
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the agent and rewards provided by the target audience) are then recorded by the frame-
work to allow a proper evaluation. The Experimental Evaluation component analyses
these logs, applies traditional recommendation evaluation metrics, and performs all the
statistical tests required to conduct a fair evaluation. These components are illustrated
in Figure B.1 by different colours that are discussed in the next sections.

Figure B.1: An overview of the iRec framework. It is composed of three main components
that allow a researcher to simulate an interactive recommendation scenario and compare
distinct algorithms by a fair evaluation of their quality.

B.2.1 Environment Setting

The first component aims to create the entire environment for the recommendation
scenario by preparing the databases for the framework’s execution. It is managed by the
Data Preparation operator which identifies the selected database and applies (if required)
three main operations: loading, filtering, and splitting. The available strategies for each
module are described below. They will create the desirable Task Environment that the
researcher wants to simulate. This environment is an abstraction of an e-commerce sys-
tem like any selling platform such as Amazon, Farfetch, and others, or even a scenario of
entertainment like Netflix, Spotify, or Podimo.

Loading. The iRec framework has two different loading strategies:

- Full Data: determines that the system must read the entire database and apply a
splitting strategy;

- Split Data: determines that the data is already split into training and testing and
the system should read these two data.
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In both, the research should set the dataset path and its format. Currently, the iRec fol-
lows the usual pattern in recommendation datasets where each row is formatted as userId,
itemId, rating, timestamp. If the researcher would like to change it for other datasets,
s/he should only create a new operator that extends the default Loader and sets its new
format definition. Table B.2 lists the current datasets available to iRec.

Datasets Domain Users Items
MovieLens Movies 138,493 26,744
Netflix Movies 429,584 17,770

Yahoo Music Music 10,000 13,214
LastFM Music 5,000 36,718

Good Books Books 53,424 10,000
Good Reads Books 14,639 9,999
Amazon Store Products 14,776 68,921
Clothing Fit Clothes 105,508 5,850

Table B.2: Datasets currently accepted by the iRec.

Prefiltering. This module aims to apply all preprocessing selected by a researcher. In
general, preprocessing is a common task in the recommendation field since the datasets
usually have too much data and may directly increase an experiment’s execution time.
Moreover, to avoid a huge sparsity in the data, many works also decide to remove some
data by following certain criteria. In this way, the preprocessing stage applies filters in
the original dataset to remove users, items, or even data outliers. Currently, the iRec has
three approaches implemented to filter the data by:

- Users : selecting a predefined number random of users or those with fewer interac-
tions than a certain threshold;

- Items : selecting a predefined number of items or those with fewer interactions than
a certain threshold;

- Ratings : filtering all user-item pairs that have resulted in ratings lower than a cer-
tain threshold.

Splitting. This module aims to split the data into train, test, and validation sets. These
approaches were created to simulate the scenario of new users joining the system. Thus,
every split approach selects a group of users (and their ratings) for one set and the re-
maining group of users for the other set. In this module, the researcher can also define
some parameters to create the validation sets used in the hyperparameter tuning. The
three implemented approaches are:

- Random: a strategy that randomly selects the users to the sets;
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- Temporal : a strategy that selects the last users to join the system based on their first
timestamp. The idea is to avoid a bias of breaking the chronological order of the user’s
actions [10, 21].

- Global Timestamp: a strategy that selects a global timestamp of the dataset to create
the train and test sets. All users’ interactions that happened before this timestamp are
set in the train. The remaining of their interactions are discarded. The users who just
joined the system before this temporal cut are set in the test set. In contrast to the
other one, in this way, future users’ actions will never be used in the training set.

B.2.2 Recommendation Agent

This component aims to define an agent to interact with the previously defined
environment by making recommendations and receiving the user’s feedback. Similar to
some approaches used in the Reinforcement Learning theory, an agent is represented by
two main components: a Value Function and an Action Selection Policy. The value
function represents the agent’s goals, quantifying the expected consequences of its de-
cisions. In this case, where the agent is a recommendation system, the value function
represents the utility of each item for a user according to the algorithm prediction. The
reward usually consists of a scalar value representative of the user’s explicit/implicit feed-
back. In turn, the action selection policy represents the policy used by the agent to choose
one (or more) items to be recommended. In general, such policies have two competing
objectives: exploiting the items with the highest rewards in the past; or exploring un-
known items to improve the system’s knowledge. Thus, the definition of an agent that
implements the ε-greedy, for example, consists of defining the value function as its orig-
inal objective function and implementing its own selection policy that randomly explores
new arms with probability ε. In the UCB and TS cases, when the objective function is
already responsible for the exploration part, the implementation consists of only defining
the value function. In these cases, the selection policy performs a greedy selection by
returning the arm with the highest assigned value.

Recommendation Models. Currently, the iRec provides several state-of-the-art bandit
algorithms from the literature:

- ε-Greedy [13]: classical bandit model that random explores other arms with prob-
ability ε.

- UCB [13]: it calculates a confidence interval for each item and tries to shrink the
confidence bounds at each iteration.

- Thompson Sampling (TS) [51]: it follows a Gaussian distribution of items and
users to predict based on samples.
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- Linear TS [4]: a linear adaptation of the original TS to measure latent dimensions
using Probabilistic Matrix Factorization (PMF).

- Linear ε-Greedy [288]: linear exploitation of the latent factors defined by the PMF
of the classical ε-Greedy.

- Linear UCB [288]: an adaptation of the original LinUCB Li et al. [129] to measure
the latent dimensions by a PMF formulation.

- GLM-UCB [288]: an adaptation of the Linear UCB with a sigmoid form that
makes a time-dependent exploration.

- ICTR [244]: it is a topic regression model that utilises the TS and controls the
items’ dependency by a particle learning strategy.

- kNN Bandit [192]: a variant of the nearest-neighbours applied a classical parameter-
free TS algorithm.

- NICF [297]: a combination of neural networks and collaborative filtering that per-
forms a meta-learning of the user’s preferences.

- COFIBA [133]: it defines an upper-confidence-based to combine it in an adaptive
clustering of users and items.

- PTS [114]: it is a PMF formulation for the original TS that applies particle filtering
to guide the exploration of items over time.

- Cluster-Bandit (CB) [200]: it is a new bandit algorithm based on clusters to face
the cold-start problem.

In addition to the models mentioned above, other non-personalised recommendation sys-
tems are also implemented in the iRec. Some examples are the Most Popular, Random,
Entropy, and Best-Rated [75]. They are extremely useful as baselines, as they can be
combined with other reinforcement learning models.

Hyperparameter Tuning. Contrasting the current Reinforcement Learning approaches,
the iRec allows researchers to make a hyperparameter optimisation in their algorithms.
For complex models, like those based on a neural network, this module is essential to
ensure the quality of such recommendations [185]. Currently, our framework provides a
Grid-Search strategy to perform an exhaustive search for the best combination of hyper-
parameters. This search is done according to a range of values defined by the researcher
as a parameter for the Tuning module. According to the parameters required for the
value function selected for the experiment, the researcher can define fixed values or even
a search interval to be explored by the tuner. Based on these definitions, the iRec will
automatically run the recommender agent (with its value function and action selection
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policy) for all parameters in the search. This process is done in parallel to avoid an ex-
pensive running time. In the end, this module stores the best parameters found. This is
an optional step, represented by a dashed box in Figure B.1. The models are optimised
according to the evaluation policy and evaluation setup detailed in the next section.

B.2.3 Experimental Evaluation

This component provides the evaluation policy used to define how the recommen-
dation agent will interact with the previously defined environment. Its goal is to provide
a fair and reproducible evaluation for several algorithms in the interactive recommenda-
tion scenario. Moreover, contrasting all other frameworks available in the literature, the
iRec evaluation is centred on metrics and methodologies specifically designed by the RS
community in the last years [186, 234, 210]. Its process is split into four main modules.

Evaluation Policy. This module is responsible for determining how the recommenda-
tion agent will interact with the previously defined environment. Basically, it implements
the classical reinforcement learning algorithm where the system:

(1) selects the target user;
(2) gets the action from the recommendation model;
(3) receives the feedback from the user to that specific action;
(4) updates the model’s knowledge with this reward.

Currently, the iRec contains two main evaluation policies already defined: Fixed Inter-
actions and User-Driven Interactions. In both, each user is randomly selected and each
action will not be performed more than once for him/her. Their main difference is in the
stop criteria of the interactive scenario. In the first one, each user will be selected for T
times. Thus, the system will perform T × |U | iterations, where |U | is the number of dis-
tinct users available for the evaluation. The number T is predefined by the researcher as a
parameter. In turn, in the second one, the system will perform new actions until it hits all
items registered in the user historical. The idea is to make an exhaustive experiment to
observe which algorithm takes more time to reach all items previously rated by each user.

Evaluation Setup. This module aims to guide the entire evaluation process over the
logs from each iteration of the Evaluation Policy. As the iRec stores each execution log,
the researcher can define how s/he would like to evaluate the actions selected by the rec-
ommendation model after all interactions. The iRec already has some evaluation setups
previously defined:

- Interaction: it evaluates the selected metrics’ overall interactions registered dur-
ing the recommendation process. Given a scenario in which 100 interactions were
performed, for instance, this strategy would evaluate each one separately.
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- Intervals: it first aggregates some consecutive interactions in an interval to then eval-
uate the selected metrics over each group. For instance, in the execution of 10 inter-
actions, the researcher can define two intervals to be evaluated by the system. Then,
it will create two groups of 5 interactions each (one from the 1st to the 5th interaction
and another one from the 6th to 10th interaction) to evaluate the selected metrics.

- Cumulative: it evaluates the interactions cumulatively from the first one until a
specific value. In this way, the researcher can evaluate the accumulated result from
the 1st to the 10th interaction, then from the 1st to the 15th interaction, and so on.

- Total: it evaluates the whole recommendation process as one unique procedure. For
example, if certain items were recommended during 100 interactions, the metric will
be calculated only at the 100th interaction.

Metrics: This module contains all evaluation metrics available in the iRec. Its goal is
to provide distinct options to be selected during the previous setup. These metrics are
suitable to the recommendation scenario and are usually split into a few groups: Accu-
racy [198, 291], Coverage [79], Novelty [234] and Diversity [278]. In our architecture, they
follow an implementation pattern where each metric has two methods: (1) compute, in
which the entire calculation is performed for a given user; and (2) update, which updates
the historic of items in each user during the interactive scenario. Again, the metrics to
be used in the evaluation process are defined in a configuration file. The metrics already
implemented in iRec are:

- Precision [186]: it is the percentage of relevant items recommended considering
the number of recommended items;

- Recall [186]: it the percentage of relevant items recommended considering the entire
set of relevant items;

- Hits [186]: it is the number of recommendations that hits the history of each user;

- EPC [234]: it is measured by the expected number of relevant items not previously
seen by the user (novelty);

- ILD [234]: it is measured by the Pearson correlation of the item’s features vector
between the list of items recommended (diversity);

- EPD [234]: it is a novelty that measures the distance between the items in the
user’s profile and the recommended ones;

- Gini Coefficient [192]: it is measured as the inverse of cumulative frequency that
each item is recommended;
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- Users Coverage [210]: it represents the percentage of distinct users that are in-
terested in the recommended items.

Statistical Tests. In the iRec framework, we designed a specific module to make all
statistical tests over the evaluation metrics. The proper use of statistical tests allows the
researchers to feel more confident about the results. The idea is to compare the results
obtained by each method and identify which of them statistically outperforms the others.
In iRec, we implemented the Wilcoxon test [255] for non-parametric distributions, usual
studied in the RS community.

Output: This is a specific module that offers several methods to visualise the results
obtained. The iRec offers different ways of looking at the results through: (1) tables, in
which the user can select different methods and metrics; and (2) graphics, in which re-
searchers can find different insights from the data. If desired, the researcher can still access
the entire experiment log, which contains information about the lists of recommendations,
informing how many and which items were recommended for a given user.

B.3 Framework

This section presents a practical evaluation of our framework, detailing how to
configure and execute each of the aforementioned steps. In this sense, we designed a
command-line front-end named iRec-cmdline2 that relies on iRec and illustrate how to
prepare, execute and evaluate a practical experiment with our framework. This applica-
tion is designed based on the MLOps concept, a set of practices that aims to deploy and
maintain reliably and efficiently machine learning models in production. Its structure is
illustrated in Figure B.2. The iRec-cmdline contains a repository to: (1) settings, where it
records all configurations (i.e., parameters) required by each component; and (2) scripts,
where several scripts provide a command-line interface to trigger the entire framework.

irec-cmdline/
app/

settings/
scripts/

environment/
agents/
evaluation/

tutorials/

Figure B.2: iRec-cmdline: an application of the framework.

2Available in: https://github.com/irec-org/irec-cmdline

https://github.com/irec-org/irec-cmdline
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Script Description Parameters

download_data.py It downloads the datasets listed
in the framework.

−−dataset_name <one or more datasets>

generate_dataset.py
It reads the datasets, and

applies prefiltering and splitting
strategies.

−−dataset_loaders <one or more datasets>
−−agents <agents>

run_agent_search.py
It executes the parameter search
routine based on the specified

agents and datasets.

−−agents <agents> −−dataset_loaders
<datasets> −−evaluation_policy <eval pol-
icy> −−tasks <num tasks (optional)>

eval_agent_search.py It evaluates the parameter
search results.

−−agents <agents> −−dataset_loaders
<datasets> −−evaluation_policy <eval policy>
−−metric_evaluator <metric eval> −−metrics
<metrics>

print_search.py
It displays and updates the
settings with the best search

parameters.

−−agents <agents> −−dataset_loaders
<datasets> −−evaluation_policy <eval policy>
−−metric_evaluator <metric eval> −−metrics
<metrics> −t (print only the best parameter) −d
(save best parameter)

run_agent_best.py It runs agents on datasets based
on the best tuning parameters.

−−agents <agents> −−dataset_loaders
<datasets> −−evaluation_policy <eval pol-
icy> −−tasks <num tasks (optional)>

eval_agent_best.py It evaluates the results obtained
after running the agents.

−−agents <agents> −−dataset_loaders
<datasets> −−evaluation_policy <eval policy>
−−metric_evaluator <metric eval> −−metrics
<metrics>

print_latex_htable.py It generates Table B.4 with
results.

−−agents <agents> −−dataset_loaders
<datasets> −−evaluation_policy <eval policy>
−−metric_evaluator <metric eval> −−metrics
<metrics>

Table B.3: The main scripts

The settings is composed of several yaml files responsible to set up all parameters
from the modules of the framework. A yaml is a human-readable data-serialisation lan-
guage commonly used for configuration files. Thus, a researcher can set the parameters
of the agents, the hyperparameters tuning ranges, the functions of the preparation of
the dataset, the required evaluation policies, all evaluation metrics to be applied, and
others. In turn, the scripts contains several command-line interfaces to start operations
of the iRec. The proper use of these scripts allows the researcher to create an execution
pipeline according to their experimental setting. They are related to each one of the three
main components of the iRec. Moreover, these scripts are integrated into MLflow, an
open-source platform that manages the life cycle of machine learning models, recording
their execution logs. It means that all framework modules are integrated into this plat-
form, facilitating the management of experiments. Table B.3 presents the main scripts
that deal with the execution of common tasks for evaluating interactive recommender
systems, as well as the other scripts responsible for hyperparameter setting, results’ vi-
sualisation, and others. The next sections guide this experimentation process by showing
each configuration performed to run the iRec by command lines.
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B.3.1 Environment Setting

As previously explained, this component is responsible for preparing the databases
for the complete experimental process. In the irec-cmdline, this component is executed by
the script named generate_dataset.py. It performs the loading, prefiltering, and splitting
steps of the iRec according to the parameters configured in the file dataset_loaders.yaml.
The Configuration B.1 presents an example of how to configure these steps by considering
the MovieLens 1M dataset. The dataset name is the first parameter to be entered. After
that, the second parameter to be defined is which loader method will be used to load
the database. Currently, iRec has two methods implemented, as aforementioned. For the
MovieLens dataset, we defined the Full Data to perform the splitting with the approaches
implemented in the iRec.

Configuration B.1: dataset_loaders.yaml

MovieLens 1M:
FullDataLoader:

dataset:
path: ./data/datasets/MovieLens 1M/ratings.csv
random_seed: 0
file_delimiter: ","
skip_head: true

# prefiltering: None
prefiltering:

filter_users:
min_consumption: 50
num_users: 10

filter_items:
min_ratings: 1
num_items: 100

splitting:
strategy: temporal
train_size: 0.8
test_consumes: 5

# validation: None
validation:

validation_size: 0.2

The Loader requires the researcher to set information about the dataset, the pre-
filtering, and the splitting approach. In the first one, the researcher should define path
where the data is located, the file_delimiter that splits each row of the dataset, and
if exists any head to be skipped. By default, iRec will read the datasets available in
app/data/datasets/. Then, in the second one, the researcher must define the parameters
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for the prefiltering. In our example are applied the two possible filters are to select 10 users
and 100 items with certain criteria informed by the other parameters. If the researcher
wants to avoid this step, s/he can define the prefiltering as None as commented out in
the configuration file example. Finally, the researcher should also define which splitting
strategy will be used by setting the option strategy. We use the temporal strategy in this
configuration file, with 80% of the data composing the training and the rest for the test.
Again, we left comments on how the configuration would be if we opted for the random
strategy. Moreover, in this example, we also add the optional setting for the validation
set. Setting this option and defining the size of the validation set, the iRec will perform
the hyperparameter tuning in the next steps.

B.3.2 Recommendation Agent

As aforementioned, every recommendation system is an agent with an action se-
lection policy and a value function. While the value function determines the importance
of each item to a user (i.e., a prediction), the selection policy determines which criteria
should be followed to select an action (i.e., make a recommendation). Thus, in the irec-
cmdline, the researcher must follow a template to define the recommender system in the
file dataset_agents.yaml as illustrated in the Configuration B.2. For each dataset, the
researcher should define distinct agents to be executed by our framework. In our exam-
ple, we selected three classic MAB models to be evaluated in the MovieLens 1M dataset:
UCB, ε-Greedy and Thompson Sampling. Each agent is configured with a tag related to
the agent implementation that the algorithm should follow.

In this example, we set the tag as SimpleAgent, which means we must define only
one action selection policy and one value function for each one of them. iRec also allows
agents based on ensemble strategies [222] by using the tag EnsembleAgent and, in this
case, more than one action selection policy and/or more than one value function can be
set. After informing the agent type, we must provide the action selection policy and which
value function each agent will use. As adopted by BEARS [19], the selection policy and
the value function are implemented separately in our framework. Thus, after defining
the type of agent, we must inform them in sequence. In terms of the action selection
policy, the ε-Greedy traditionally uses the egreedy policy which selects the best items
based on the diversification parameter ε to execute random recommendations [13]. In
turn, UCB and TS use another policy, called greedy, that selects the best items at that
moment [13, 51]. Regarding the value function, each agent has a value function that refers
to itself. If the researcher wants to extend these value functions with new methods, we
strongly recommended to call them by the same name as the new method.
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Configuration B.2: dataset_agents.yaml

MovieLens 1M:
EGreedy:

SimpleAgent:
action_selection_policy:

ASPEGreedy:
epsilon: 0.1

value_function:
EGreedy: {}

UCB:
SimpleAgent:

action_selection_policy:
ASPGreedy: {}

value_function:
UCB:

c: 0.1
ThompsonSampling:

SimpleAgent:
action_selection_policy:

ASPGreedy: {}
value_function:

ThompsonSampling:
alpha_0: 1
beta_0: 100

B.3.3 Experimental Evaluation

The next step is to set the iterative process of recommending items, by setting
how the agent should interact with the environment. First, it is necessary to set up an
evaluation policy using the file evaluation_policies.yaml. In the example presented in Con-
figuration B.3, we selected the policy Fixed Interactions and set its three parameters: the
number of interactions; the size of the recommended list of items in each interaction; and a
variable that informs if (or not) the researcher would like to store the entire log of the pro-
cess. As discussed earlier, other policies can be applied. We present the other possibility
implemented by the iRec commented out in the configuration file example. The execu-
tion of the experimental evaluation is performed by the run_agent_best.py script. This
script performs according to the parameters configured in the files dataset_loaders.yaml,
dataset_agents.yaml and evaluation_policies.yaml. The results of all interactions are
recorded in log files for the evaluation setup phase.
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Configuration B.3: evaluation_policies.yaml

FixedInteraction:
num_interactions: 100
interaction_size: 1
save_info: True

#UserDrivenInteractions:
# interaction_size: 1
# recommend_test_data_rate_limit: 0.1

After that, the evaluation of the results is performed by the script eval_agent_best.py.
In addition to the dataset_loaders.yaml, dataset-
_agents.yaml and evaluation_policies.yaml files, this script also uses the parameters con-
figured in the metric_evaluators.yaml file, which defines how the researcher wants to
evaluate the actions performed by the recommendation agents after all interactions. The
list of metrics to be considered is informed to the script as a parameter– see Table B.3.
The irec-cmdline provides different evaluation setups. The Configuration B.4 presents
an example, considering a cumulative strategy, defined by the tag Interaction. For this
strategy, the researcher must set up four main parameters:

1. the number of items to be selected per interaction (e.g., 1);

2. the interval of interactions to measure the evaluation metrics (e.g., at the interac-
tions number 10, 50, and 100);

3. the total number of interactions (e.g., 100);

4. the minimum threshold for an item to be considered relevant to a user – an important
threshold for the evaluation metrics, such as Recall, EPD and EPC.

The other options are commented out in the example illustrated on Configuration B.4.
All of them are quite similar in terms of their configuration, but they can perform distinct
analyses for the researcher.

Configuration B.4: metric_evaluators.yaml

Interaction:
interaction_size: 1
interactions_to_evaluate: [10, 50, 100]
num_interactions: 100
relevance_evaluator_threshold: 3.999

#Cumulative:
# interaction_size: 1
# interactions_to_evaluate: [5, 10, 20, 50, 100]
# num_interactions: 100
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# relevance_evaluator_threshold: 3.999
#Total:

# interaction_size: 1
# interactions_to_evaluate: [5, 10, 20, 50, 100]
# num_interactions: 100
# relevance_evaluator_threshold: 3.999

#Intervals:
# interaction_size: 1
# interactions_to_evaluate: [5, 10, 20, 50, 100]
# num_interactions: 100
# relevance_evaluator_threshold: 3.999

After setting the configuration files and running the scripts, the researcher can
choose how to view the final results. Currently, irec-cmdline offers scripts that auto-
matically generate different forms of visualisation in graphics and tables. The script
print_latex_htable.py provides a table to visualise the results – see Table 3. As the name
implies, this file automatically generates a horizontal table with all models, datasets, and
metrics informed by the execution parameters. This script also performs the statistical
tests implemented in the iRec (the Wilcoxon test) over the results identified, and it also
highlights significant gains and losses in the printed table.

Dataset MovieLens 1M
Measure Hits Recall EPC ILD UsersCoverage

T 10 50 100 10 50 100 10 50 100 10 50 100 10 50 100
Popular 3.806N 13.978 22.198 0.062N 0.204 0.301 0.536 0.637 0.697 0.349 0.381 0.387 0.893 0.993 0.995
UCB 2.419 9.433 16.231 0.035 0.130 0.217 0.713 0.761 0.786 0.400 0.412 0.418 0.789 0.967 0.987
TS 2.960 11.620 19.061 0.045 0.164 0.257 0.645 0.713 0.755 0.381 0.395 0.404 0.852 0.981 0.997

e-Greedy 2.405 9.445 16.328 0.036 0.132 0.219 0.711 0.761 0.786 0.400 0.412 0.418 0.988 0.991 0.995
Linear UCB 3.115 15.025 26.887N 0.050 0.203 0.346N 0.682 0.755 0.790 0.375 0.395 0.404 0.816 0.955 0.987
GLM-UCB 2.009 14.108 25.485 0.031 0.200 0.341 0.736 0.750 0.781 0.424 0.403 0.407 0.821 0.978 0.995

NICF 3.364 8.182 11.687 0.054 0.119 0.162 0.604 0.780 0.836N 0.380 0.428 0.441N 0.890 0.983 0.988
PTS 3.685 15.639N 24.466 0.058 0.229N 0.329 0.601 0.667 0.731 0.368 0.382 0.402 0.995N 0.998N 0.998N

ICTRTS 0.661 6.770 14.556 0.008 0.091 0.195 0.899N 0.808N 0.794 0.456N 0.428N 0.421 0.422 0.949 0.987
CB 3.145 13.687 22.041 0.051 0.200 0.298 0.636 0.654 0.709 0.411 0.388 0.394 0.874 0.991 0.995

Table B.4: Experimental results obtained using all configurations files described in Section
4. The results were compared based on Wilcoxon Test with p-value=0.05. The N symbol
indicates statistical best results.

Besides that, as mentioned in Section 3.1, iRec provides an optional module to
perform a hyperparameter tuning. The researcher should select the tuning function and
define the range of parameter(s) of the agent(s). In the irec-cmdline, it can be done by
defining this information in the file agents_variables.yaml as illustrated in the Configu-
ration B.5. The first name should refer to the tuning approach selected (e.g., the Grid
Search). Then, the remaining setting file is quite similar to the one that represents the
agent templates illustrated in the Configuration B.2. However, instead of passing only
one parameter, the researcher must set a list of parameters to be explored. This example
presents the configuration for the classical bandit algorithms of ε-Greedy (ε ∈ [0.1, 1]),
UCB (c ∈ [0.1, 1]) and Thompson Sampling (alpha ∈ [0.1, 1]; beta ∈ [1, 100] ). Then,
running the script eval_agent_search.py offered by the irec-cmdline, it will execute the
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agent recommendation with the previously selected evaluation policy to search between
the parameters. It considers the files dataset_loaders.yaml, evaluation_policies.yaml and
metric_evaluators.yaml previous defined. In the end, the researcher can also run the
script print_search.py to visualise the best parameters found and automatically update
the file dataset_agents.yaml with them. Thus, in the next executions, the irec-cmdline
will run all the algorithms with the best parameter identified.

Configuration B.5: agents_variables.yaml

GridSearch:
EGreedy:

SimpleAgent:
action_selection_policy:

ASPEGreedy:
epsilon: linspace(0.1, 1, 5)

value_function:
EGreedy: {}

UCB:
SimpleAgent:

action_selection_policy:
ASPGreedy: {}

value_function:
UCB:

c: [0.1, 0.5, 1]
ThompsonSampling:

SimpleAgent:
action_selection_policy:

ASPGreedy: {}
value_function:

ThompsonSampling:
alpha_0: linspace(0.1, 1, 5)
beta_0: linspace(1, 100, 10)

B.4 Summary

In this appendix, we present the iRec, a complete framework for evaluating inter-
active recommendation systems (RS). The iRec aims to deal with the lack of consensus
about the best evaluation practices in this area, providing a complete environment for a
reproducible evaluation and fair comparisons of recommendation systems. Its structure
provides compatibility with comprehensive datasets adopted in the literature, different
data preprocessing strategies, seventeen recommendation models, a complete hyperparam-
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eter optimisation, and nine evaluation metrics with distinct goals (i.e., accuracy, novelty,
diversity, coverage, etc). Moreover, iRec provides multiple evaluation policies currently
used in the literature, statistical tests to compare the algorithms’ performance, and dif-
ferent results’ visualisations. Indeed, this framework was used to perform all experiments
in this thesis.
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